151
|
Barker DJ, Simmons SJ, Servilio LC, Bercovicz D, Ma S, Root DH, Pawlak AP, West MO. Ultrasonic vocalizations: evidence for an affective opponent process during cocaine self-administration. Psychopharmacology (Berl) 2014; 231:909-18. [PMID: 24197178 PMCID: PMC3989366 DOI: 10.1007/s00213-013-3309-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 09/29/2013] [Indexed: 12/01/2022]
Abstract
RATIONALE Preclinical models of cocaine addiction in the rodent have shown that cocaine induces both positive and negative affective states. These observations have led to the notion that the initial positive/euphoric state induced by cocaine administration may be followed by an opposing, negative process. In the rodent, one method for inferring positive and negative affective states involves measuring their ultrasonic vocalizations (USVs). Previous USV recordings from our laboratory suggested that the transition between positive and negative affect might involve decaying or sub-satiety levels of self-administered cocaine. OBJECTIVES In order to explicitly test the role of cocaine levels on these affective states, the present study examined USVs when calculated body levels of cocaine were clamped (i.e., held at a constant level via experimenter-controlled infusions) at, below, or above subjects' self-determined drug satiety thresholds. RESULTS USVs indicated that (1) positive affect was predominantly observed during the drug loading period, but declined quickly to near zero during maintenance and exhibited little relation to calculated drug level, and (2) in contrast, negative affect was observed at sub-satiety cocaine levels, but was relatively absent when body levels of cocaine were clamped at or above subjects' satiety thresholds. CONCLUSIONS The results reinforce the opponent-process hypothesis of addiction and suggest that an understanding of the mechanisms underlying negative affect might serve to inform behavioral and pharmacological therapies.
Collapse
Affiliation(s)
- David J. Barker
- Department of Psychology, Rutgers University, 152 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA
| | - Steven J. Simmons
- Department of Psychology, Rutgers University, 152 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA
| | - Lisa C. Servilio
- Department of Psychology, Rutgers University, 152 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA
| | - Danielle Bercovicz
- Department of Psychology, Rutgers University, 152 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA
| | - Sisi Ma
- Department of Psychology, Rutgers University, 152 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA
| | - David H. Root
- Neuronal Networks Section: Integrative Neuroscience Research Branch, National Institute on Drug Abuse, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224
| | - Anthony P. Pawlak
- Department of Psychology, Rutgers University, 152 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA
| | - Mark O. West
- Department of Psychology, Rutgers University, 152 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA
| |
Collapse
|
152
|
Pro-social ultrasonic communication in rats: insights from playback studies. J Neurosci Methods 2014; 234:73-81. [PMID: 24508146 DOI: 10.1016/j.jneumeth.2014.01.023] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/13/2014] [Accepted: 01/14/2014] [Indexed: 12/17/2022]
Abstract
Rodent ultrasonic vocalizations (USV) serve as situation-dependent affective signals and convey important communicative functions. In the rat, three major USV types exist: (I) 40-kHz USV, which are emitted by pups during social isolation; (II) 22-kHz USV, which are produced by juvenile and adult rats in aversive situations, including social defeat; and (III) 50-kHz USV, which are uttered by juvenile and adult rats in appetitive situations, including rough-and-tumble play. Here, evidence for a communicative function of 50-kHz USV is reviewed, focusing on findings obtained in the recently developed 50-kHz USV radial maze playback paradigm. Up to now, the following five acoustic stimuli were tested in this paradigm: (A) natural 50-kHz USV, (B) natural 22-kHz USV, (C) artificial 50-kHz sine wave tones, (D) artificial time- and amplitude-matched white noise, and (E) background noise. All studies using the 50-kHz USV radial maze playback paradigm indicate that 50-kHz USV serve a pro-social affiliative function as social contact calls. While playback of the different kinds of acoustic stimuli used so far elicited distinct behavioral response patterns, 50-kHz USV consistently led to social approach behavior in the recipient, indicating that pro-social ultrasonic communication can be studied in a reliable and highly standardized manner by means of the 50-kHz USV radial maze playback paradigm. This appears to be particularly relevant for rodent models of neurodevelopmental disorders, as there is a tremendous need for reliable behavioral assays with face validity to social communication deficits seen in autism and schizophrenia in order to study underlying genetic and neurobiological alterations.
Collapse
|
153
|
|
154
|
|
155
|
Dopaminergic modulation of affective and social deficits induced by prenatal glucocorticoid exposure. Neuropsychopharmacology 2013; 38:2068-79. [PMID: 23648781 PMCID: PMC3746691 DOI: 10.1038/npp.2013.108] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 04/24/2013] [Accepted: 04/26/2013] [Indexed: 12/15/2022]
Abstract
Prenatal stress or exposure to elevated levels of glucocorticoids (GCs) can impair specific neurobehavioral circuits leading to alterations in emotional processes later in life. In turn, emotional deficits may interfere with the quality and degree of social interaction. Here, by using a comprehensive behavioral approach in combination with the measurement of ultrasonic vocalizations, we show that in utero GC (iuGC)-exposed animals present increased immobility in the forced swimming test, pronounced anhedonic behavior (both anticipatory and consummatory), and an impairment in social interaction at different life stages. Importantly, we also found that social behavioral expression is highly dependent on the affective status of the partner. A profound reduction in mesolimbic dopaminergic transmission was found in iuGC animals, suggesting a key role for dopamine (DA) in the etiology of the observed behavioral deficits. Confirming this idea, we present evidence that a simple pharmacological approach-acute L-3,4-dihydroxyphenylacetic acid (L-DOPA) oral administration, is able to normalize DA levels in iuGC animals, with a concomitant amelioration of several dimensions of the emotional and social behaviors. Interestingly, L-DOPA effects in control individuals were not so straightforward; suggesting that both hypo- and hyperdopaminergia are detrimental in the context of such complex behaviors.
Collapse
|
156
|
Behavioural methods used in rodent models of autism spectrum disorders: Current standards and new developments. Behav Brain Res 2013; 251:5-17. [DOI: 10.1016/j.bbr.2013.05.047] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 05/24/2013] [Accepted: 05/25/2013] [Indexed: 12/14/2022]
|
157
|
|
158
|
Brudzynski SM. Ethotransmission: communication of emotional states through ultrasonic vocalization in rats. Curr Opin Neurobiol 2013; 23:310-7. [DOI: 10.1016/j.conb.2013.01.014] [Citation(s) in RCA: 244] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 01/04/2013] [Accepted: 01/13/2013] [Indexed: 01/18/2023]
|
159
|
Rats selectively bred for low levels of play-induced 50 kHz vocalizations as a model for autism spectrum disorders: a role for NMDA receptors. Behav Brain Res 2013; 251:18-24. [PMID: 23623884 DOI: 10.1016/j.bbr.2013.04.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 12/11/2022]
Abstract
Early childhood autism is characterized by deficits in social approach and play behaviors, socio-emotional relatedness, and communication/speech abnormalities, as well as repetitive behaviors. These core neuropsychological features of autism can be modeled in laboratory rats, and the results may be useful for drug discovery and therapeutic development. We review data that show that rats selectively bred for low rates of play-related pro-social ultrasonic vocalizations (USVs) can be used to model social deficit symptoms of autism. Low-line animals engage in less social contact time with conspecifics, show lower rates of play induced pro-social USVs, and show an increased proportion of non-frequency modulated (i.e. monotonous) ultrasonic vocalizations compared to non-selectively bred random-line animals. Gene expression patterns in the low-line animals show significant enrichment in autism-associated genes, and the NMDA receptor family was identified as a significant hub. Treatment of low-line animals with the NMDAR functional glycine site partial agonist, GLYX-13, rescued the deficits in play-induced pro-social 50-kHz USVs and reduced monotonous USVs. Since the NMDA receptor has been implicated in the genesis of autistic symptoms, it is possible that GLYX-13 may be of therapeutic value in the treatment of autism.
Collapse
|
160
|
Wöhr M, Schwarting RKW. Affective communication in rodents: ultrasonic vocalizations as a tool for research on emotion and motivation. Cell Tissue Res 2013; 354:81-97. [DOI: 10.1007/s00441-013-1607-9] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 02/28/2013] [Indexed: 10/27/2022]
|
161
|
Riede T. Stereotypic laryngeal and respiratory motor patterns generate different call types in rat ultrasound vocalization. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL GENETICS AND PHYSIOLOGY 2013; 319:213-24. [PMID: 23423862 PMCID: PMC3926509 DOI: 10.1002/jez.1785] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 11/23/2012] [Accepted: 01/02/2013] [Indexed: 11/09/2022]
Abstract
Rodents produce highly variable ultrasound whistles as communication signals unlike many other mammals, who employ flow-induced vocal fold oscillations to produce sound. The role of larynx muscles in controlling sound features across different call types in ultrasound vocalization (USV) was investigated using laryngeal muscle electromyographic (EMG) activity, subglottal pressure measurements and vocal sound output in awake and spontaneously behaving Sprague-Dawley rats. Results support the hypothesis that glottal shape determines fundamental frequency. EMG activities of thyroarytenoid and cricothyroid muscles were aligned with call duration. EMG intensity increased with fundamental frequency. Phasic activities of both muscles were aligned with fast changing fundamental frequency contours, for example in trills. Activities of the sternothyroid and sternohyoid muscles, two muscles involved in vocal production in other mammals, are not critical for the production of rat USV. To test how stereotypic laryngeal and respiratory activity are across call types and individuals, sets of ten EMG and subglottal pressure parameters were measured in six different call types from six rats. Using discriminant function analysis, on average 80% of parameter sets were correctly assigned to their respective call type. This was significantly higher than the chance level. Since fundamental frequency features of USV are tightly associated with stereotypic activity of intrinsic laryngeal muscles and muscles contributing to build-up of subglottal pressure, USV provide insight into the neurophysiological control of peripheral vocal motor patterns.
Collapse
Affiliation(s)
- Tobias Riede
- Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA.
| |
Collapse
|
162
|
Hori M, Yamada K, Ohnishi J, Sakamoto S, Takimoto-Ohnishi E, Miyabe S, Murakami K, Ichitani Y. Effects of repeated tickling on conditioned fear and hormonal responses in socially isolated rats. Neurosci Lett 2013; 536:85-9. [PMID: 23313827 DOI: 10.1016/j.neulet.2012.12.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 12/28/2012] [Accepted: 12/31/2012] [Indexed: 12/28/2022]
Abstract
Positive emotional states have been reported to modify human resilience to fear and anxiety, but few animal models are available to elucidate underlying mechanisms. In the current study, we examined whether 2 weeks of tickling, which is considered to evoke positive emotions, alters conditioned fear and hormonal reactions in Fischer rats. We conditioned rats to fear an auditory tone which was initially paired with a mild foot-shock (0.2mA), and retention test was conducted 48h and 96h after conditioning. During these tests, we found that prior tickling treatment significantly diminished fear-induced freezing. To examine the effects of tickling on sympatho-adrenal and hypothalamic-pituitary-adrenal responses associated with conditioned fear, we measured plasma catecholamine and corticosterone levels in the retention test 96h after conditioning. The plasma catecholamine concentration of non-tickled rats was higher than basal levels, whereas tickled rats showed significantly reduced concentrations of both plasma adrenaline and noradrenaline. No significant differences in plasma corticosterone levels were observed between tickled and non-tickled rats. These results suggest that repeated exposure to tickling can modulate fear-related behavior and sympatho-adrenal stress responses.
Collapse
Affiliation(s)
- Miyo Hori
- Foundation for Advancement of International Science, Tsukuba, Ibaraki 305-0821, Japan
| | | | | | | | | | | | | | | |
Collapse
|
163
|
Yee N, Schwarting RKW, Fuchs E, Wöhr M. Increased affective ultrasonic communication during fear learning in adult male rats exposed to maternal immune activation. J Psychiatr Res 2012; 46:1199-205. [PMID: 22687817 DOI: 10.1016/j.jpsychires.2012.05.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 04/27/2012] [Accepted: 05/21/2012] [Indexed: 02/05/2023]
Abstract
Maternal exposure to infection during pregnancy greatly increases the risk of psychopathology in the offspring. In support of clinical findings, rodent models of maternal immune activation (MIA) show that prenatal exposure to pathogens can induce phenotypic changes in the offspring associated with schizophrenia, autism, depression and anxiety. In the current study, we investigated the effects of MIA via polyinosinic:polycytidylic acid (poly I:C) on emotional behavior and communication in rats. Pregnant rats were administered poly I:C or saline on gestation day 15 and male offspring were tested in an auditory fear conditioning paradigm in early adulthood. We found that prenatal poly I:C exposure significantly altered affective signaling, namely, the production of aversive 22-kHz ultrasonic vocalizations (USVs), in terms of call number, structure and temporal patterning. MIA led to an increase in aversive 22-kHz USVs to 300% of saline controls. Offspring exposed to MIA not only emitted more 22-kHz USVs, but also emitted calls that were shorter in duration and occurred in bouts containing more calls. The production of appetitive 50-kHz USVs and audible calls was not affected. Intriguingly, alterations in aversive 22-kHz USV emission were observed despite no obvious changes in overt defensive behavior, which highlights the importance of assessing USVs as an additional measure of fear. Aversive 22-kHz USVs are a prominent part of the rat's defensive behavioral repertoire and serve important communicative functions, most notably as alarm calls. The observed changes in aversive 22-kHz USVs show that MIA has long-term effects on emotional behavior and communication in exposed rat offspring.
Collapse
Affiliation(s)
- Nicole Yee
- Clinical Neurobiology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, Göttingen 37077, Germany.
| | | | | | | |
Collapse
|
164
|
Yee N, Schwarting RKW, Fuchs E, Wöhr M. Juvenile stress potentiates aversive 22-kHz ultrasonic vocalizations and freezing during auditory fear conditioning in adult male rats. Stress 2012; 15:533-44. [PMID: 22150360 DOI: 10.3109/10253890.2011.646348] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Traumatic experiences that occur during adolescence can render individuals vulnerable to mood and anxiety disorders. A model in juvenile rats (age: 27-29 days) was developed previously to study the long-term effects of adolescent stress exposure on behaviour and physiology. This paradigm, termed juvenile stress, involves subjecting juvenile rats to different stressors on consecutive days over a 3-day period. Here, we investigated the effects of the juvenile stress paradigm on freezing behaviour and aversive 22-kHz ultrasonic vocalizations (USVs) during auditory fear conditioning in adult male rats (age: 68-90 days). We found that rats previously subjected to juvenile stress increased aversive 22-kHz USVs (total calls and time spent calling) compared with controls during fear-conditioning training. The acoustic USV parameters between control and juvenile stress rats were largely equivalent, including duration, peak frequency and amplitude. While rats did not differ in freezing behaviour during fear conditioning, juvenile stress rats exhibited greater cue-conditioned freezing upon testing 24 h later. Our results show that juvenile stress elicited different long-term changes in freezing and aversive USVs during fear conditioning. Furthermore, they highlight the importance of assessing USVs to detect experience-dependent differences between control and stress-exposed animals which are not detectable by measuring visible behaviour.
Collapse
Affiliation(s)
- Nicole Yee
- Clinical Neurobiology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, Göttingen 37077, Germany.
| | | | | | | |
Collapse
|
165
|
Kent BA, Brown TH. Dual functions of perirhinal cortex in fear conditioning. Hippocampus 2012; 22:2068-79. [PMID: 22903623 DOI: 10.1002/hipo.22058] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2012] [Indexed: 11/09/2022]
Abstract
The present review examines the role of perirhinal cortex (PRC) in Pavlovian fear conditioning. The focus is on rats, partly because so much is known, behaviorally and neurobiologically, about fear conditioning in these animals. In addition, the neuroanatomy and neurophysiology of rat PRC have been described in considerable detail at the cellular and systems levels. The evidence suggests that PRC can serve at least two types of mnemonic functions in Pavlovian fear conditioning. The first function, termed "stimulus unitization," refers to the ability to treat two or more separate items or stimulus elements as a single entity. Supporting evidence for this perceptual function comes from studies of context conditioning as well as delay conditioning to discontinuous auditory cues. In a delay paradigm, the conditional stimulus (CS) and unconditional stimulus (US) overlap temporally and co-terminate. The second PRC function entails a type of "transient memory." Supporting evidence comes from studies of trace cue conditioning, where there is a temporal gap or trace interval between the CS offset and the US onset. For learning to occur, there must be a transient CS representation during the trace interval. We advance a novel neurophysiological mechanism for this transient representation. These two hypothesized functions of PRC are consistent with inferences based on non-aversive forms of learning.
Collapse
Affiliation(s)
- Brianne A Kent
- Department of Experimental Psychology, University of Cambridge, Cambridge, CB2 3EB, United Kingdom
| | | |
Collapse
|
166
|
Testing social acoustic memory in rats: effects of stimulus configuration and long-term memory on the induction of social approach behavior by appetitive 50-kHz ultrasonic vocalizations. Neurobiol Learn Mem 2012; 98:154-64. [PMID: 22677211 DOI: 10.1016/j.nlm.2012.05.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 05/18/2012] [Accepted: 05/23/2012] [Indexed: 02/03/2023]
Abstract
Rats emit distinct types of ultrasonic vocalizations (USVs), which serve as situation-dependent affective signals. In appetitive situations, such as rough-and-tumble-play, high-frequency 50-kHz USVs occur, whereas low-frequency 22-kHz USVs can be observed in aversive situations, such as social defeat. USVs serve distinct communicative functions and induce call-specific behavioral responses in the receiver. While aversive 22-kHz USVs serve as alarm calls and induce behavioral inhibition, appetitive 50-kHz USVs have a pro-social communicative function and elicit social approach behavior, supporting the notion that they serve as social contact calls to (re)establish or maintain contact among conspecifics. The aim of the present study was to use the rat's ability to communicate in the ultrasonic range via high-frequency 50-kHz USVs in order to develop a test for social acoustic memory in rats with relevance for human verbal memory. Verbal learning and memory is among the seven cognitive domains identified as commonly deficient in human schizophrenia patients, but particularly difficult to model. We therefore tested whether the induction of social approach behavior by playback of appetitive 50-kHz USVs is dependent on (1) acoustic stimulus configuration and (2) social long-term memory, and whether (3) social long-term memory effects can be blocked by the administration of scopolamine, a muscarinic acetylcholine antagonist producing amnesia. Results show that social approach behavior in response to playback of natural 50-kHz USVs depends on acoustic stimulus configuration and occurs only when sound energy is concentrated to a critical frequency band in the ultrasonic range. Social approach behavior was detected during the first exposure to playback of 50-kHz USVs, whereas no such response was observed during the second exposure 1week later, indicating a stable memory trace. In contrast, when memory formation was blocked by i.p. administration of scopolamine (0.5mg/kg or 1.5mg/kg) immediately after the first exposure, rats displayed social approach behavior during the second exposure as well. Induction of social approach behavior in response to repeated playback of natural 50-kHz USVs may therefore provide a new and rather unique approach for testing social acoustic memory in rats with relevance to human verbal memory.
Collapse
|
167
|
Webber E, Harmon K, Beckwith T, Peña S, Burgdorf J, Panksepp J, Cromwell H. Selective breeding for 50kHz ultrasonic vocalization emission produces alterations in the ontogeny and regulation of rough-and-tumble play. Behav Brain Res 2012; 229:138-44. [DOI: 10.1016/j.bbr.2012.01.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 11/29/2011] [Accepted: 01/04/2012] [Indexed: 01/05/2023]
|
168
|
Schwarting RKW, Wöhr M. On the relationships between ultrasonic calling and anxiety-related behavior in rats. Braz J Med Biol Res 2012; 45:337-48. [PMID: 22437483 PMCID: PMC3854164 DOI: 10.1590/s0100-879x2012007500038] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 03/08/2012] [Indexed: 11/22/2022] Open
Abstract
In the present review, the phenomenon of ultrasonic vocalization in rats will be outlined, including the three classes of vocalizations, namely 40-kHz calls of pups, and 22- and 50-kHz calls of juvenile and adult rats, their general relevance to behavioral neuroscience, and their special relevance to research on anxiety, fear, and defense mechanisms. Here, the emphasis will be placed on 40- and 22-kHz calls, since they are typical for various situations with aversive properties. Among other topics, we will discuss whether such behavioral signals can index a certain affective state, and how these signals can be used in social neuroscience, especially with respect to communication. Furthermore, we will address the phenomenon of inter-individual variability in ultrasonic calling and what we currently know about the mechanisms, which may determine such variability. Finally, we will address the current knowledge on the neural and pharmacological mechanisms underlying 22-kHz ultrasonic vocalization, which show a substantial overlap with mechanisms known from other research on fear and anxiety, such as those involving the periaqueductal gray or the amygdala.
Collapse
Affiliation(s)
- R K W Schwarting
- Experimental and Physiological Psychology, Philipps-University of Marburg, Germany.
| | | |
Collapse
|
169
|
Chabout J, Serreau P, Ey E, Bellier L, Aubin T, Bourgeron T, Granon S. Adult male mice emit context-specific ultrasonic vocalizations that are modulated by prior isolation or group rearing environment. PLoS One 2012; 7:e29401. [PMID: 22238608 PMCID: PMC3253078 DOI: 10.1371/journal.pone.0029401] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 11/28/2011] [Indexed: 12/31/2022] Open
Abstract
Social interactions in mice are frequently analysed in genetically modified strains in order to get insight of disorders affecting social interactions such as autism spectrum disorders. Different types of social interactions have been described, mostly between females and pups, and between adult males and females. However, we recently showed that social interactions between adult males could also encompass cognitive and motivational features. During social interactions, rodents emit ultrasonic vocalizations (USVs), but it remains unknown if call types are differently used depending of the context and if they are correlated with motivational state. Here, we recorded the calls of adult C57BL/6J male mice in various behavioral conditions, such as social interaction, novelty exploration and restraint stress. We introduced a modulator for the motivational state by comparing males maintained in isolation and males maintained in groups before the experiments. Male mice uttered USVs in all social and non-social situations, and even in a stressful restraint context. They nevertheless emitted the most important number of calls with the largest diversity of call types in social interactions, particularly when showing a high motivation for social contact. For mice maintained in social isolation, the number of calls recorded was positively correlated with the duration of social contacts, and most calls were uttered during contacts between the two mice. This correlation was not observed in mice maintained in groups. These results open the way for a deeper understanding and characterization of acoustic signals associated with social interactions. They can also help evaluating the role of motivational states in the emission of acoustic signals.
Collapse
Affiliation(s)
- Jonathan Chabout
- Centre de Neuroscience Paris Sud, Team “Neurobiologie de la Prise de Décision”, Université Paris Sud 11 & CNRS UMR 8195, Orsay, France
| | - Pierre Serreau
- Centre de Neuroscience Paris Sud, Team “Neurobiologie de la Prise de Décision”, Université Paris Sud 11 & CNRS UMR 8195, Orsay, France
- Institut Pasteur, “Neurobiologie Intégrative des Systèmes Cholinergiques” Unit, CNRS URA 2182, Paris, France
| | - Elodie Ey
- Institut Pasteur, “Génétique Humaine et Fonctions Cognitives” Unit, CNRS URA 2182, Paris, France
| | - Ludovic Bellier
- Centre de Neuroscience Paris Sud, Team “Neurobiologie de la Prise de Décision”, Université Paris Sud 11 & CNRS UMR 8195, Orsay, France
| | - Thierry Aubin
- Centre de Neuroscience Paris Sud, Team “Communication Acoustique”, Université Paris Sud 11 & CNRS UMR 8195, Orsay, France
| | - Thomas Bourgeron
- Institut Pasteur, “Génétique Humaine et Fonctions Cognitives” Unit, CNRS URA 2182, Paris, France
| | - Sylvie Granon
- Centre de Neuroscience Paris Sud, Team “Neurobiologie de la Prise de Décision”, Université Paris Sud 11 & CNRS UMR 8195, Orsay, France
- * E-mail:
| |
Collapse
|
170
|
Parsana AJ, Li N, Brown TH. Positive and negative ultrasonic social signals elicit opposing firing patterns in rat amygdala. Behav Brain Res 2012; 226:77-86. [PMID: 21911010 PMCID: PMC3197767 DOI: 10.1016/j.bbr.2011.08.040] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 08/25/2011] [Accepted: 08/27/2011] [Indexed: 10/17/2022]
Abstract
Rat ultrasonic vocalizations (USVs) are ethologically-essential social signals. Under natural conditions, 22kHz USVs and 50kHz USVs are emitted in association with negative and positive emotional states, respectively. Our first experiment examined freezing behavior elicited in naïve Sprague-Dawley rats by a 22kHz USV, a 50kHz USV, and frequency-matched tones. None of the stimuli elicited freezing, which is the most commonly-used index of fear. The second experiment examined single-unit responses to these stimuli in the amygdala (AM), which is well-known for its role in innate and acquired fear responses. Among 127 well-discriminated single units, 82% were auditory-responsive. Elicited firing patterns were classified using a multi-dimensional scheme that included transient (phasic) responses to the stimulus onsets and/or offsets as well as sustained (tonic) responses during the stimulus. Tonic responses, which are not ordinarily evaluated in AM, were 4.4-times more common than phasic responses. The 22kHz stimuli tended to elicit tonic increases in the firing rates, whereas the 50kHz stimuli more often elicited tonic decreases in firing rates. These opposing tonic responses correspond with the ethological valence of USVs in the two frequency bands. Thus, a relatively-small sample of single-unit responses in AM furnished a more sensitive index of emotional valence than freezing behavior. Latency analysis suggested that stimuli in the two frequency bands are processed through different pathways to AM. One possible interpretation is that phasic responses in AM reflect the detection of a stimulus change, whereas tonic responses indicate the valence of the detected stimulus.
Collapse
Affiliation(s)
| | - Nanxin Li
- Department of Psychology, Yale University
| | - Thomas H. Brown
- Department of Psychology, Yale University
- Department of Cellular and Molecular Physiology, Yale University
| |
Collapse
|
171
|
Quinpirole-induced 50kHz ultrasonic vocalization in the rat: Role of D2 and D3 dopamine receptors. Behav Brain Res 2012; 226:511-8. [DOI: 10.1016/j.bbr.2011.10.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 09/29/2011] [Accepted: 10/03/2011] [Indexed: 12/13/2022]
|
172
|
Kummer K, Klement S, Eggart V, Mayr MJ, Saria A, Zernig G. Conditioned place preference for social interaction in rats: contribution of sensory components. Front Behav Neurosci 2011; 5:80. [PMID: 22232578 PMCID: PMC3246900 DOI: 10.3389/fnbeh.2011.00080] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 11/14/2011] [Indexed: 11/13/2022] Open
Abstract
A main challenge in the therapy of drug dependent individuals is to help them reactivate interest in non-drug-associated activities. We previously developed a rat experimental model based on the conditioned place preference (CPP) paradigm in which only four 15-min episodes of social interaction with a gender- and weight-matched male Sprague Dawley rat (1) reversed CPP from cocaine to social interaction despite continuing cocaine training and (2) prevented the reinstatement of cocaine CPP. In the present study, we investigated which of the sensory modalities of the composite stimulus "social interaction" contributes most to the rats' preference for it. If touch was limited by steel bars spaced at a distance of 2 cm and running across the whole length of a partitioning, CPP was still acquired, albeit to a lesser degree. If both rats were placed on the same side of a partitioning, rats did not develop CPP for social interaction. Thus, decreasing the available area for social interaction from 750 to 375 cm(2) prevented the acquisition of CPP to social interaction despite the fact that animals could touch each other more intensely than through the bars of the partitioning. When touch was fully restricted by a glass screen dividing the conditioning chambers, and the only sensory modalities left were visual and olfactory cues, place preference shifted to place aversion. Overall, our findings indicate that the major rewarding sensory component of the composite stimulus "social interaction" is touch (taction).
Collapse
Affiliation(s)
- Kai Kummer
- Experimental Psychiatry Unit, Center of Psychiatry and Psychotherapy, Innsbruck Medical University Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
173
|
Brudzynski SM, Gibson B, Silkstone M, Burgdorf J, Kroes RA, Moskal JR, Panksepp J. Motor and locomotor responses to systemic amphetamine in three lines of selectively bred Long-Evans rats. Pharmacol Biochem Behav 2011; 100:119-24. [DOI: 10.1016/j.pbb.2011.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 07/26/2011] [Accepted: 08/10/2011] [Indexed: 01/22/2023]
|
174
|
Riede T. Subglottal pressure, tracheal airflow, and intrinsic laryngeal muscle activity during rat ultrasound vocalization. J Neurophysiol 2011; 106:2580-92. [PMID: 21832032 DOI: 10.1152/jn.00478.2011] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Vocal production requires complex planning and coordination of respiratory, laryngeal, and vocal tract movements, which are incompletely understood in most mammals. Rats produce a variety of whistles in the ultrasonic range that are of communicative relevance and of importance as a model system, but the sources of acoustic variability were mostly unknown. The goal was to identify sources of fundamental frequency variability. Subglottal pressure, tracheal airflow, and electromyographic (EMG) data from two intrinsic laryngeal muscles were measured during 22-kHz and 50-kHz call production in awake, spontaneously behaving adult male rats. During ultrasound vocalization, subglottal pressure ranged between 0.8 and 1.9 kPa. Pressure differences between call types were not significant. The relation between fundamental frequency and subglottal pressure within call types was inconsistent. Experimental manipulations of subglottal pressure had only small effects on fundamental frequency. Tracheal airflow patterns were also inconsistently associated with frequency. Pressure and flow seem to play a small role in regulation of fundamental frequency. Muscle activity, however, is precisely regulated and very sensitive to alterations, presumably because of effects on resonance properties in the vocal tract. EMG activity of cricothyroid and thyroarytenoid muscle was tonic in calls with slow or no fundamental frequency modulations, like 22-kHz and flat 50-kHz calls. Both muscles showed brief high-amplitude, alternating bursts at rates up to 150 Hz during production of frequency-modulated 50-kHz calls. A differentiated and fine regulation of intrinsic laryngeal muscles is critical for normal ultrasound vocalization. Many features of the laryngeal muscle activation pattern during ultrasound vocalization in rats are shared with other mammals.
Collapse
Affiliation(s)
- Tobias Riede
- Dept. of Biology and National Center for Voice and Speech, Univ. of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
175
|
|
176
|
Browning JR, Browning DA, Maxwell AO, Dong Y, Jansen HT, Panksepp J, Sorg BA. Positive affective vocalizations during cocaine and sucrose self-administration: a model for spontaneous drug desire in rats. Neuropharmacology 2011; 61:268-75. [PMID: 21530553 DOI: 10.1016/j.neuropharm.2011.04.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 04/01/2011] [Accepted: 04/08/2011] [Indexed: 10/18/2022]
Abstract
Ultrasonic vocalizations in the 50 kHz range (50 kHz USVs) are emitted by rodents upon activation of positive affective states and appear to be a direct measure of internal emotional and motivational urges to seek rewarding stimuli such as drugs of abuse. Since these behavioral responses do not rely on training for expression, they can be viewed as a "spontaneous" measure of affective state. The goal of the present study was to monitor spontaneous USVs throughout a widely-used cocaine self-administration and reinstatement model of addiction and relapse. To gain insight into the changes in affective state across the different phases of a standard self-administration experiment, we measured 50 kHz USVs in rats during cocaine self-administration and reinstatement, and compared these to sucrose self-administration and reinstatement. During cocaine self-administration, the number of 50 kHz USVs increased over acquisition of self-administration and decreased during extinction. Furthermore, the number of USVs on the first day of acquisition in the cocaine experiment was positively correlated with how rapidly cocaine self-administration was acquired. These findings suggest that the initial affective response to cocaine may be a sensitive predictor of the motivational efficacy of rewarding stimuli and therefore the susceptibility to acquire self-administration of cocaine. Cue- and cocaine-induced reinstatement elevated 50 kHz USVs above extinction levels. Rats trained for sucrose self-administration showed no elevation in USVs during acquisition when USVs were considered over the entire 2 h session, but they did show an elevation in USVs during acquisition when considered over only the first 5 min of the session. As with cocaine-induced reinstatement, sucrose-induced reinstatement produced significantly more USVs compared to the prior extinction day. Taken together, USVs may serve as a sensitive and dynamic non-invasive measure that spontaneously (i.e. without any formal reinforcement contingencies) quantifies the extent to which positive affect is elicited by rewards such as drugs of abuse.
Collapse
Affiliation(s)
- Jenny R Browning
- Alcohol and Drug Abuse Research Program and Program in Neuroscience, Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Stadium Way, 205 Wegner Hall, P.O. Box 646520, Pullman, WA 99164, USA
| | | | | | | | | | | | | |
Collapse
|
177
|
Naumann RT, Kanwal JS. Basolateral amygdala responds robustly to social calls: spiking characteristics of single unit activity. J Neurophysiol 2011; 105:2389-404. [PMID: 21368003 DOI: 10.1152/jn.00580.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vocalizations emitted within a social context can trigger call-specific changes in the emotional and physiological/autonomic state of the receiver. The amygdala is implicated in mediating these changes, but its role in call perception remains relatively unexplored. We examined call and pitch selectivity of single neurons within the basolateral amygdala (BLA) by recording spiking activity in response to 5 pitch variants of each of 14 species-specific calls presented to awake, head-restrained mustached bats, Pteronotus parnellii. A response-wise analysis across neurons revealed seven types of temporal response patterns based on the timing and duration of spiking. Roughly half of the responses to different call types were significantly affected by changes in call pitch. A neuron-wise analysis revealed that ∼ 12% (8/69) of the neurons preferred the same pitch across all call types. Ninety-three percent (93/100) of neurons were excited by at least one call type and 76% exhibited either complete or transient suppression to one or more call types. The majority of neurons preferred fewer than half of the 14 different simple-syllabic calls. A call-wise analysis of spiking activity revealed that call types signaling either threat or fear most consistently evoked increases in the spike rate. In contrast, calls emitted during appeasement tended to evoke spike suppression. Our data suggest that BLA neurons participate in the processing of multiple call types and exhibit a rich variety of temporal response patterns that are neither neuron nor call specific.
Collapse
Affiliation(s)
- Robert T Naumann
- Department of Physiology and Biophysics, Georgetown University, Washington, District of Columbia, USA
| | | |
Collapse
|
178
|
Azar T, Sharp J, Lawson D. Heart rates of male and female Sprague-Dawley and spontaneously hypertensive rats housed singly or in groups. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2011; 50:175-184. [PMID: 21439210 PMCID: PMC3061417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 06/30/2010] [Accepted: 08/23/2010] [Indexed: 05/30/2023]
Abstract
This study was conducted to confirm our previous reports that group housing lowered basal heart rate and various evoked heart-rate responses in Sprague-Dawley male and female rats and to extend these observations to spontaneously hypertensive rats. Heart rate data were collected by using radiotelemetry. Initially, group- and single-housed rats were evaluated in the same animal room at the same time. Under these conditions, group-housing did not decrease heart rate in undisturbed male and female rats of either strain compared with single-housed rats. Separate studies then were conducted to examine single-housed rats living in the room with only single-housed rats. When group-housed rats were compared with these single-housed rats, undisturbed heart rates were reduced significantly, confirming our previous reports for Sprague-Dawley rats. However, evoked heart rate responses to acute procedures were not reduced universally in group-housed rats compared with either condition of single housing. Responses to some procedures were reduced, but others were not affected or were significantly enhanced by group housing compared with one or both of the single-housing conditions. This difference may have been due, in part, to different sensory stimuli being evoked by the various procedures. In addition, the variables of sex and strain interacted with housing condition. Additional studies are needed to resolve the mechanisms by which evoked cardiovascular responses are affected by housing, sex, and strain.
Collapse
|
179
|
Wöhr M, Moles A, Schwarting RKW, D'Amato FR. Lack of social exploratory activation in male μ-opioid receptor KO mice in response to playback of female ultrasonic vocalizations. Soc Neurosci 2011; 6:76-87. [DOI: 10.1080/17470911003765560] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
180
|
Roullet FI, Wöhr M, Crawley JN. Female urine-induced male mice ultrasonic vocalizations, but not scent-marking, is modulated by social experience. Behav Brain Res 2011; 216:19-28. [PMID: 20540967 PMCID: PMC3094925 DOI: 10.1016/j.bbr.2010.06.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 05/25/2010] [Accepted: 06/01/2010] [Indexed: 12/20/2022]
Abstract
Despite the evidence for a communicative function of rodent scent marks and ultrasonic vocalizations, relatively little is known about the impact of social factors on these two forms of communication. Here, we tested the effects of two important social factors, prior exposure to a female and freshness of female urine, on male scent marks and ultrasonic vocalizations elicited by female urine. We also asked whether a recently reported strain difference between the highly social strain C57BL/6J (B6) and the mouse model of autism BTBR T+tf/J (BTBR) herein is specifically seen in response to female urine or also detectable in response to male urine traces. Results show that the emission of female urine-elicited ultrasonic vocalizations was dependent on previous female experience, while scent-marking behavior was not affected. A positive correlation was detected between scent-marking behavior and ultrasonic calling in the most biologically relevant context, male mice exposed to fresh female urine after female experience. Correlations were less prominent or missing in less biologically relevant contexts, e.g. in male mice exposed to fresh female urine without previous female experience, indicating that previous female experience is affecting both the emission of female urine-elicited ultrasonic vocalizations and the correlation between olfactory and acoustic communication. The strain difference in scent-marking behavior and ultrasonic calling between B6 and BTBR appears to be specific to female urine-elicited behavior as it was not seen in response to male urine traces, highlighting the relevance of the social context in which mouse communication is evaluated.
Collapse
Affiliation(s)
- Florence I Roullet
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
181
|
Using bedding in a test environment critically affects 50-kHz ultrasonic vocalizations in laboratory rats. Pharmacol Biochem Behav 2010; 96:251-9. [DOI: 10.1016/j.pbb.2010.05.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 04/22/2010] [Accepted: 05/12/2010] [Indexed: 11/21/2022]
|
182
|
Wright JM, Gourdon JC, Clarke PBS. Identification of multiple call categories within the rich repertoire of adult rat 50-kHz ultrasonic vocalizations: effects of amphetamine and social context. Psychopharmacology (Berl) 2010; 211:1-13. [PMID: 20443111 DOI: 10.1007/s00213-010-1859-y] [Citation(s) in RCA: 235] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Accepted: 04/01/2010] [Indexed: 01/17/2023]
Abstract
RATIONALE 50-kHz ultrasonic vocalizations (USVs) emitted by adult rats are heterogeneous; they occur over a wide frequency range, show varying degrees of frequency modulation, and appear to differ in their behavioral significance. However, they have not been extensively categorized. OBJECTIVES The main objective of this study was to identify subtypes of 50-kHz USVs emitted by adult rats and to determine how amphetamine (AMPH) or social testing condition affects their relative and absolute production rate and acoustic characteristics. A second objective was to determine the extent of individual differences in call rate, call subtype profile, and acoustic parameters (i.e., duration, bandwidth, and mean peak frequency). METHODS Adult male Long-Evans rats were administered systemic amphetamine (0.25-2 mg/kg, IP) and tested individually or with a cage mate for 20 min. Call categories were defined based on visual inspection of over 20,000 USV spectrograms. Surgical devocalization was performed on a subset of AMPH-tested rats in order to confirm the authenticity of call subtypes. RESULTS Fourteen categories of 50-kHz USVs were recognized. Call subtypes were differentially affected by social context, AMPH dose, and time within session. In contrast, the acoustic characteristics of call subtypes were notably stable. Marked and stable inter-individual differences occurred with respect to overall 50-kHz call rate, acoustic parameters, and call profile. CONCLUSIONS The present findings, obtained under saline and amphetamine test conditions, provide the first detailed classification of adult rat 50-kHz USVs. Consideration of 50-kHz USV subtypes may advance our understanding of inter-rat communication and affective state.
Collapse
Affiliation(s)
- Jennifer M Wright
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada
| | | | | |
Collapse
|
183
|
Wöhr M, Schwarting RK. Activation of limbic system structures by replay of ultrasonic vocalization in rats. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2010. [DOI: 10.1016/b978-0-12-374593-4.00012-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
184
|
Vocalization as a specific trigger of emotional responses. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/b978-0-12-374593-4.00017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
185
|
Bialy M, Kalata U, Nikolaev-Diak A, Nikolaev E. D1 receptors involved in the acquisition of sexual experience in male rats. Behav Brain Res 2010; 206:166-76. [DOI: 10.1016/j.bbr.2009.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 08/27/2009] [Accepted: 09/03/2009] [Indexed: 02/09/2023]
|
186
|
Medial cholinoceptive vocalization strip in the cat and rat brains: initiation of defensive vocalizations. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/b978-0-12-374593-4.00026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
187
|
Ultrasonic communication in rats: Effects of morphine and naloxone on vocal and behavioral responses to playback of 50-kHz vocalizations. Pharmacol Biochem Behav 2009; 94:285-95. [DOI: 10.1016/j.pbb.2009.09.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 09/05/2009] [Accepted: 09/08/2009] [Indexed: 02/05/2023]
|
188
|
Clark CA, Sacrey LAR, Whishaw IQ. Righting elicited by novel or familiar auditory or vestibular stimulation in the haloperidol-treated rat: Rat posturography as a model to study anticipatory motor control. J Neurosci Methods 2009; 182:266-71. [DOI: 10.1016/j.jneumeth.2009.06.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 06/12/2009] [Accepted: 06/15/2009] [Indexed: 11/30/2022]
|
189
|
Wu WL, Wang CH, Huang EYK, Chen CC. Asic3(-/-) female mice with hearing deficit affects social development of pups. PLoS One 2009; 4:e6508. [PMID: 19652708 PMCID: PMC2714966 DOI: 10.1371/journal.pone.0006508] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 07/01/2009] [Indexed: 12/17/2022] Open
Abstract
Background Infant crying is an important cue for mothers to respond adequately. Inappropriate response to infant crying can hinder social development in infants. In rodents, the pup-mother interaction largely depends on pup's calls. Mouse pups emit high frequency to ultrasonic vocalization (2–90 kHz) to communicate with their dam for maternal care. However, little is known about how the maternal response to infant crying or pup calls affects social development over the long term. Methodology/Principal Findings Here we used mice lacking acid-sensing ion channel 3 (Asic3−/−) to create a hearing deficit to probe the effect of caregiver hearing on maternal care and adolescent social development. Female Asic3−/− mice showed elevated hearing thresholds for low to ultrasonic frequency (4–32 kHz) on auditory brain stem response, which thus hindered their response to their pups' wriggling calls and ultrasonic vocalization, as well as their retrieval of pups. In adolescence, pups reared by Asic3−/− mice showed a social deficit in juvenile social behaviors as compared with those reared by wild-type or heterozygous dams. The social-deficit phenotype in juvenile mice reared by Asic3−/− mice was associated with the reduced serotonin transmission of the brain. However, Asic3−/− pups cross-fostered to wild-type dams showed rescued social deficit. Conclusions/Significance Inadequate response to pups' calls as a result of ASIC3-dependent hearing loss confers maternal deficits in caregivers and social development deficits in their young.
Collapse
Affiliation(s)
- Wei-Li Wu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, Taiwan, Republic of China
| | - Chih-Hung Wang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, Taipei, Taiwan, Republic of China
| | - Eagle Yi-Kung Huang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chih-Cheng Chen
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
190
|
Hammerschmidt K, Radyushkin K, Ehrenreich H, Fischer J. Female mice respond to male ultrasonic 'songs' with approach behaviour. Biol Lett 2009; 5:589-92. [PMID: 19515648 PMCID: PMC2781958 DOI: 10.1098/rsbl.2009.0317] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The ultrasonic vocalizations of mice are attracting increasing attention, because they have been recognized as an informative readout in genetically modified strains. In addition, the observation that male mice produce elaborate sequences of ultrasonic vocalizations (‘song’) when exposed to female mice or their scents has sparked a debate as to whether these sounds are—in terms of their structure and function—analogous to bird song. We conducted playback experiments with cycling female mice to explore the function of male mouse songs. Using a place preference design, we show that these vocalizations elicited approach behaviour in females. In contrast, the playback of pup isolation calls or whistle-like artificial control sounds did not evoke approach responses. Surprisingly, the females also did not respond to pup isolation calls. In addition, female responses did not vary in relation to reproductive cycle, i.e. whether they were in oestrus or not. Furthermore, our data revealed a rapid habituation of subjects to the experimental situation, which stands in stark contrast to other species' responses to courtship vocalizations. Nevertheless, our results clearly demonstrate that male mouse songs elicit females' interest.
Collapse
Affiliation(s)
- K Hammerschmidt
- Cognitive Ethology, German Primate Center, Göttingen, Germany.
| | | | | | | |
Collapse
|
191
|
Wöhr M, Schwarting RK. Ultrasonic calling during fear conditioning in the rat: no evidence for an audience effect. Anim Behav 2008. [DOI: 10.1016/j.anbehav.2008.04.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
192
|
Wöhr M, Dahlhoff M, Wolf E, Holsboer F, Schwarting RKW, Wotjak CT. Effects of Genetic Background, Gender, and Early Environmental Factors on Isolation-Induced Ultrasonic Calling in Mouse Pups: An Embryo-Transfer Study. Behav Genet 2008; 38:579-95. [DOI: 10.1007/s10519-008-9221-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 07/29/2008] [Indexed: 12/19/2022]
|
193
|
Bang SJ, Allen TA, Jones LK, Boguszewski P, Brown TH. Asymmetrical stimulus generalization following differential fear conditioning. Neurobiol Learn Mem 2008; 90:200-16. [PMID: 18434217 PMCID: PMC2516404 DOI: 10.1016/j.nlm.2008.02.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 02/25/2008] [Accepted: 02/28/2008] [Indexed: 10/22/2022]
Abstract
Rodent ultrasonic vocalizations (USVs) are ethologically critical social signals. Rats emit 22kHz USVs and 50kHz USVs, respectively, in conjunction with negative and positive affective states. Little is known about what controls emotional reactivity to these social signals. Using male Sprague-Dawley rats, we examined unconditional and conditional freezing behavior in response to the following auditory stimuli: three 22kHz USVs, a discontinuous tone whose frequency and on-off pattern matched one of the USVs, a continuous tone with the same or lower frequencies, a 4kHz discontinuous tone with an on-off pattern matched to one of the USVs, and a 50kHz USV. There were no differences among these stimuli in terms of the unconditional elicitation of freezing behavior. Thus, the stimuli were equally neutral before conditioning. During differential fear conditioning, one of these stimuli (the CS(+)) always co-terminated with a footshock unconditional stimulus (US) and another stimulus (the CS(-)) was explicitly unpaired with the US. There were no significant differences among these cues in CS(+)-elicited freezing behavior. Thus, the stimuli were equally salient or effective as cues in supporting fear conditioning. When the CS(+) was a 22kHz USV or a similar stimulus, rats discriminated based on the principal frequency and/or the temporal pattern of the stimulus. However, when these same stimuli served as the CS(-), discrimination failed due to generalization from the CS(+). Thus, the stimuli differed markedly in the specificity of conditioning. This strikingly asymmetrical stimulus generalization is a novel bias in discrimination.
Collapse
Affiliation(s)
- Sun Jung Bang
- Department of Psychology, Yale University, 2 Hillhouse Avenue, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
194
|
Wang H, Liang S, Burgdorf J, Wess J, Yeomans J. Ultrasonic vocalizations induced by sex and amphetamine in M2, M4, M5 muscarinic and D2 dopamine receptor knockout mice. PLoS One 2008; 3:e1893. [PMID: 18382674 PMCID: PMC2268741 DOI: 10.1371/journal.pone.0001893] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Accepted: 02/22/2008] [Indexed: 11/24/2022] Open
Abstract
Adult mice communicate by emitting ultrasonic vocalizations (USVs) during the appetitive phases of sexual behavior. However, little is known about the genes important in controlling call production. Here, we study the induction and regulation of USVs in muscarinic and dopaminergic receptor knockout (KO) mice as well as wild-type controls during sexual behavior. Female mouse urine, but not female rat or human urine, induced USVs in male mice, whereas male urine did not induce USVs in females. Direct contact of males with females is required for eliciting high level of USVs in males. USVs (25 to120 kHz) were emitted only by males, suggesting positive state; however human-audible squeaks were produced only by females, implying negative state during male-female pairing. USVs were divided into flat and frequency-modulated calls. Male USVs often changed from continuous to broken frequency-modulated calls after initiation of mounting. In M2 KO mice, USVs were lost in about 70–80% of the mice, correlating with a loss of sexual interaction. In M5 KO mice, mean USVs were reduced by almost 80% even though sexual interaction was vigorous. In D2 KOs, the duration of USVs was extended by 20%. In M4 KOs, no significant differences were observed. Amphetamine dose-dependently induced USVs in wild-type males (most at 0.5 mg/kg i.p.), but did not elicit USVs in M5 KO or female mice. These studies suggest that M2 and M5 muscarinic receptors are needed for male USV production during male-female interactions, likely via their roles in dopamine activation. These findings are important for the understanding of the neural substrates for positive affect.
Collapse
Affiliation(s)
- Haoran Wang
- Department of Psychology, Center for Biological Timing and Cognition (CTBC), University of Toronto, Toronto, Canada
- * E-mail: (HW); (JY)
| | - Shuyin Liang
- Department of Psychology, Center for Biological Timing and Cognition (CTBC), University of Toronto, Toronto, Canada
| | - Jeffrey Burgdorf
- Falk Center for Molecular Therapeutics, Northwestern University, Evanston, Illinois, United States of America
| | - Jurgen Wess
- Molecular Signaling, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, Maryland, United States of America
| | - John Yeomans
- Department of Psychology, Center for Biological Timing and Cognition (CTBC), University of Toronto, Toronto, Canada
- * E-mail: (HW); (JY)
| |
Collapse
|
195
|
Sadananda M, Wöhr M, Schwarting RK. Playback of 22-kHz and 50-kHz ultrasonic vocalizations induces differential c-fos expression in rat brain. Neurosci Lett 2008; 435:17-23. [DOI: 10.1016/j.neulet.2008.02.002] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 01/28/2008] [Accepted: 02/04/2008] [Indexed: 11/16/2022]
|