151
|
Okamatsu-Ogura Y, Matsushita M, Bariuan JV, Nagaya K, Tsubota A, Saito M. Association of circulating exosomal miR-122 levels with BAT activity in healthy humans. Sci Rep 2019; 9:13243. [PMID: 31519959 PMCID: PMC6744505 DOI: 10.1038/s41598-019-49754-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/30/2019] [Indexed: 12/31/2022] Open
Abstract
Brown adipose tissue (BAT) plays an important role in body fat accumulation and the regulation of energy expenditure. Since the role of miRNAs in the pathogenesis of obesity and related metabolic diseases is contentious, we analyzed exosomal miRNAs in serum of healthy subjects with special references to BAT activity and body fat level. Forty male volunteers aged 20–30 years were recruited. Their BAT activity was assessed by fluorodeoxyglucose positron emission tomography and computed tomography after 2 h of cold exposure and expressed as a maximal standardized uptake value (SUVmax). Exosomal miRNA levels was analyzed using microarray and real-time PCR analyses. The miR-122-5p level in the high BAT activity group (SUV ≧ 3) was 53% lower than in the low BAT activity group (SUVmax <3). Pearson’s correlation analysis revealed that the serum miR-122-5p level correlated negatively with BAT activity and the serum HDL-cholesterol, and it correlated positively with age, BMI, body fat mass, and total cholesterol and triglyceride serum levels. Multivariate regression analysis revealed that BAT activity was associated with the serum miR-122-5p level independently of the other parameters. These results reveal the serum exosomal miR-122-5p level is negatively associated with BAT activity independently of obesity.
Collapse
Affiliation(s)
- Yuko Okamatsu-Ogura
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan.
| | - Mami Matsushita
- Department of Nutrition, School of Nursing and Nutrition, Tenshi College, Sapporo, 065-0013, Japan
| | - Jussiaea Valente Bariuan
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Kazuki Nagaya
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Ayumi Tsubota
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Masayuki Saito
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| |
Collapse
|
152
|
Al-Amrani A, AbdelKarim M, AlZabin M, Alzoghaibi M. Low expression of brown and beige fat genes in subcutaneous tissues in obese patients. Arch Med Sci 2019; 15:1113-1122. [PMID: 31572455 PMCID: PMC6764296 DOI: 10.5114/aoms.2018.76684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/20/2018] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION The molecular mechanisms behind obesity pathogenesis remain largely undefined. Impairment in the browning process of subcutaneous tissues proposed to contribute to obesity pathogenesis. In the current study, we aimed to assess whether the expression of brown fat genes in subcutaneous tissues in obese patients is altered as compared to non-obese patients. MATERIAL AND METHODS Participants were recruited from patients undergoing general surgeries. At the same site of surgery, biopsies were taken from the abdominal subcutaneous tissues from each participant, along with a venous blood sample. The expression of BAT genes was measured using a real-time PCR method. Serum FGF21 was measured using an ELISA kit, and the serum blood lipid profile was measured using the Dimension VistaTM 1500 System. RESULTS A total of 58 surgical patients was involved. A low expression of BAT genes was observed in the groups with higher body mass index (BMI) (< 30 kg/m2) as compared to the groups with lower BMI (> 30 kg/m2). The expression of CIDEA and CITED1 was significantly higher in the patients with normal weight as compared to obese (p = 0.01 and p = 0.02, respectively). A significant negative correlation was found between the expression of BAT genes and BMI in patients with BMI < 35 kg/m2. However, the strongest negative correlation was observed in the expression of CIDEA (r = -0.5, p = 0.004), followed by TBX1 (r = -0.4, p = 0.01), CITED1, and ZIC1 (r = -0.4, p = 0.03). Whereas the correlation of UCP1 with BMI remained insignificant (r = -0.29, p = 0.08). When including patients with BMI > 35 kg/m2, the correlation decreased and became insignificant (p = 0.08). No significant correlation was found between the expression of BAT genes and blood lipid profiles (p > 0.05). Serum FGF21 was positively and significantly correlated to the expression of UCP1 (r = 0.56, p = 0.02) and TBX1 (r = 0.62, p = 0.01), however, this correlation was missing in patients with severe obesity. CONCLUSIONS Our data suggested that brown and beige genes expression in abdominal subcutaneous tissues is dysregulated in patients with obesity. Further studies are needed to investigate the role of browning of subcutaneous tissues in regulating body weight and metabolism in human.
Collapse
Affiliation(s)
- Aishah Al-Amrani
- PhD student, Department of Physiology, Faculty of Medicine King Saud University, Riyadh, Saudi Arabia
- Faculty of Applied Medical Sciences, Tabuk University, Tabuk, Saudi Arabia
| | - Mouaadh AbdelKarim
- Department of Physiopathology of Inflammatory Bone Diseases, University of the Littoral, Boulogne sur Mer, France
| | | | - Mohammad Alzoghaibi
- Department of Physiology, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
153
|
de Jong JMA, Sun W, Pires ND, Frontini A, Balaz M, Jespersen NZ, Feizi A, Petrovic K, Fischer AW, Bokhari MH, Niemi T, Nuutila P, Cinti S, Nielsen S, Scheele C, Virtanen K, Cannon B, Nedergaard J, Wolfrum C, Petrovic N. Human brown adipose tissue is phenocopied by classical brown adipose tissue in physiologically humanized mice. Nat Metab 2019; 1:830-843. [PMID: 32694768 DOI: 10.1038/s42255-019-0101-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 07/16/2019] [Indexed: 11/10/2022]
Abstract
Human and rodent brown adipose tissues (BAT) appear morphologically and molecularly different. Here we compare human BAT with both classical brown and brite/beige adipose tissues of 'physiologically humanized' mice: middle-aged mice living under conditions approaching human thermal and nutritional conditions, that is, prolonged exposure to thermoneutral temperature (approximately 30 °C) and to an energy-rich (high-fat, high-sugar) diet. We find that the morphological, cellular and molecular characteristics (both marker and adipose-selective gene expression) of classical brown fat, but not of brite/beige fat, of these physiologically humanized mice are notably similar to human BAT. We also demonstrate, both in silico and experimentally, that in physiologically humanized mice only classical BAT possesses a high thermogenic potential. These observations suggest that classical rodent BAT is the tissue of choice for translational studies aimed at recruiting human BAT to counteract the development of obesity and its comorbidities.
Collapse
Affiliation(s)
- Jasper M A de Jong
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Wenfei Sun
- Institute of Food, Nutrition and Health, Eidgenössische Technische Hochschule Zürich, Schwerzenbach, Switzerland
| | - Nuno D Pires
- Institute of Food, Nutrition and Health, Eidgenössische Technische Hochschule Zürich, Schwerzenbach, Switzerland
| | - Andrea Frontini
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Miroslav Balaz
- Institute of Food, Nutrition and Health, Eidgenössische Technische Hochschule Zürich, Schwerzenbach, Switzerland
| | - Naja Z Jespersen
- The Centre of Inflammation and Metabolism and Centre for Physical Activity Research Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Amir Feizi
- Novo Nordisk Research Centre Oxford, Oxford, UK
| | - Katarina Petrovic
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Alexander W Fischer
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Muhammad Hamza Bokhari
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Tarja Niemi
- Department of Surgery, Turku University Hospital, Turku, Finland
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland
| | - Saverio Cinti
- Department of Experimental and Clinical Medicine, University of Ancona, Ancona, Italy
| | - Søren Nielsen
- The Centre of Inflammation and Metabolism and Centre for Physical Activity Research Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Camilla Scheele
- The Centre of Inflammation and Metabolism and Centre for Physical Activity Research Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Barbara Cannon
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jan Nedergaard
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, Eidgenössische Technische Hochschule Zürich, Schwerzenbach, Switzerland
| | - Natasa Petrovic
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
154
|
Hafidi ME, Buelna-Chontal M, Sánchez-Muñoz F, Carbó R. Adipogenesis: A Necessary but Harmful Strategy. Int J Mol Sci 2019; 20:ijms20153657. [PMID: 31357412 PMCID: PMC6696444 DOI: 10.3390/ijms20153657] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/16/2019] [Accepted: 07/20/2019] [Indexed: 02/06/2023] Open
Abstract
Obesity is considered to significantly increase the risk of the development of a vast range of metabolic diseases. However, adipogenesis is a complex physiological process, necessary to sequester lipids effectively to avoid lipotoxicity in other tissues, like the liver, heart, muscle, essential for maintaining metabolic homeostasis and has a crucial role as a component of the innate immune system, far beyond than only being an inert mass of energy storage. In pathophysiological conditions, adipogenesis promotes a pro-inflammatory state, angiogenesis and the release of adipokines, which become dangerous to health. It results in a hypoxic state, causing oxidative stress and the synthesis and release of harmful free fatty acids. In this review, we try to explain the mechanisms occurring at the breaking point, at which adipogenesis leads to an uncontrolled lipotoxicity. This review highlights the types of adipose tissue and their functions, their way of storing lipids until a critical point, which is associated with hypoxia, inflammation, insulin resistance as well as lipodystrophy and adipogenesis modulation by Krüppel-like factors and miRNAs.
Collapse
Affiliation(s)
- Mohammed El Hafidi
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología "Ignacio Chávez", México City 14080, Mexico
| | - Mabel Buelna-Chontal
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología "Ignacio Chávez", México City 14080, Mexico
| | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología "Ignacio Chávez", México City 14080, Mexico
| | - Roxana Carbó
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología "Ignacio Chávez", México City 14080, Mexico.
| |
Collapse
|
155
|
Jung SM, Sanchez-Gurmaches J, Guertin DA. Brown Adipose Tissue Development and Metabolism. Handb Exp Pharmacol 2019; 251:3-36. [PMID: 30203328 DOI: 10.1007/164_2018_168] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Brown adipose tissue is well known to be a thermoregulatory organ particularly important in small rodents and human infants, but it was only recently that its existence and significance to metabolic fitness in adult humans have been widely realized. The ability of active brown fat to expend high amounts of energy has raised interest in stimulating thermogenesis therapeutically to treat metabolic diseases related to obesity and type 2 diabetes. In parallel, there has been a surge of research aimed at understanding the biology of rodent and human brown fat development, its remarkable metabolic properties, and the phenomenon of white fat browning, in which white adipocytes can be converted into brown like adipocytes with similar thermogenic properties. Here, we review the current understanding of the developmental and metabolic pathways involved in forming thermogenic adipocytes, and highlight some of the many unknown functions of brown fat that make its study a rich and exciting area for future research.
Collapse
Affiliation(s)
- Su Myung Jung
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Joan Sanchez-Gurmaches
- Division of Endocrinology, Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - David A Guertin
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA. .,Molecular, Cell and Cancer Biology Program, University of Massachusetts Medical School, Worcester, MA, USA. .,Lei Weibo Institute for Rare Diseases, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
156
|
Klepac K, Georgiadi A, Tschöp M, Herzig S. The role of brown and beige adipose tissue in glycaemic control. Mol Aspects Med 2019; 68:90-100. [PMID: 31283940 DOI: 10.1016/j.mam.2019.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 12/15/2022]
Abstract
For the past decade, brown adipose tissue (BAT) has been extensively studied as a potential therapy for obesity and metabolic diseases due to its thermogenic and glucose-consuming properties. It is now clear that the function of BAT goes beyond heat production, as it also plays an important endocrine role by secreting the so-called batokines to communicate with other metabolic tissues and regulate systemic energy homeostasis. However, despite numerous studies showing the benefits of BAT in rodents, it is still not clear whether recruitment of BAT can be utilized to treat human patients. Here, we review the advances on understanding the role of BAT in metabolism and its benefits on glucose and lipid homeostasis in both humans and rodents. Moreover, we discuss the latest methodological approaches to assess the contribution of BAT to human metabolism as well as the possibility to target BAT, pharmacologically or by lifestyle adaptations, to treat metabolic disorders.
Collapse
Affiliation(s)
- Katarina Klepac
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Inner Medicine 1, Heidelberg, Germany; Deutsches Zentrum für Diabetesforschung, Neuherberg, Germany
| | - Anastasia Georgiadi
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Inner Medicine 1, Heidelberg, Germany; Deutsches Zentrum für Diabetesforschung, Neuherberg, Germany
| | - Matthias Tschöp
- Deutsches Zentrum für Diabetesforschung, Neuherberg, Germany
| | - Stephan Herzig
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Inner Medicine 1, Heidelberg, Germany; Deutsches Zentrum für Diabetesforschung, Neuherberg, Germany; Chair Molecular Metabolic Control, Technical University Munich, Germany.
| |
Collapse
|
157
|
Peroxisome Proliferator Activated Receptor Gamma Controls Mature Brown Adipocyte Inducibility through Glycerol Kinase. Cell Rep 2019; 22:760-773. [PMID: 29346772 DOI: 10.1016/j.celrep.2017.12.067] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/03/2017] [Accepted: 12/20/2017] [Indexed: 01/08/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) have been suggested as the master regulators of adipose tissue formation. However, their role in regulating brown fat functionality has not been resolved. To address this question, we generated mice with inducible brown fat-specific deletions of PPARα, β/δ, and γ, respectively. We found that both PPARα and β/δδ are dispensable for brown fat function. In contrast, we could show that ablation of PPARγ in vitro and in vivo led to a reduced thermogenic capacity accompanied by a loss of inducibility by β-adrenergic signaling, as well as a shift from oxidative fatty acid metabolism to glucose utilization. We identified glycerol kinase (Gyk) as a partial mediator of PPARγ function and could show that Gyk expression correlates with brown fat thermogenic capacity in human brown fat biopsies. Thus, Gyk might constitute the link between PPARγ-mediated regulation of brown fat function and activation by β-adrenergic signaling.
Collapse
|
158
|
Zhu Q, Glazier BJ, Hinkel BC, Cao J, Liu L, Liang C, Shi H. Neuroendocrine Regulation of Energy Metabolism Involving Different Types of Adipose Tissues. Int J Mol Sci 2019; 20:E2707. [PMID: 31159462 PMCID: PMC6600468 DOI: 10.3390/ijms20112707] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/24/2019] [Accepted: 05/29/2019] [Indexed: 12/17/2022] Open
Abstract
Despite tremendous research efforts to identify regulatory factors that control energy metabolism, the prevalence of obesity has been continuously rising, with nearly 40% of US adults being obese. Interactions between secretory factors from adipose tissues and the nervous system innervating adipose tissues play key roles in maintaining energy metabolism and promoting survival in response to metabolic challenges. It is currently accepted that there are three types of adipose tissues, white (WAT), brown (BAT), and beige (BeAT), all of which play essential roles in maintaining energy homeostasis. WAT mainly stores energy under positive energy balance, while it releases fuels under negative energy balance. Thermogenic BAT and BeAT dissipate energy as heat under cold exposure to maintain body temperature. Adipose tissues require neural and endocrine communication with the brain. A number of WAT adipokines and BAT batokines interact with the neural circuits extending from the brain to cooperatively regulate whole-body lipid metabolism and energy homeostasis. We review neuroanatomical, histological, genetic, and pharmacological studies in neuroendocrine regulation of adipose function, including lipid storage and mobilization of WAT, non-shivering thermogenesis of BAT, and browning of BeAT. Recent whole-tissue imaging and transcriptome analysis of differential gene expression in WAT and BAT yield promising findings to better understand the interaction between secretory factors and neural circuits, which represents a novel opportunity to tackle obesity.
Collapse
Affiliation(s)
- Qi Zhu
- Program of Physiology and Neuroscience, Department of Biology, Miami University, Oxford, OH 45056, USA.
| | - Bradley J Glazier
- Program of Physiology and Neuroscience, Department of Biology, Miami University, Oxford, OH 45056, USA.
| | - Benjamin C Hinkel
- Program of Physiology and Neuroscience, Department of Biology, Miami University, Oxford, OH 45056, USA.
| | - Jingyi Cao
- Program of Physiology and Neuroscience, Department of Biology, Miami University, Oxford, OH 45056, USA.
| | - Lin Liu
- Program of Bioinformatics, Department of Biology, Miami University, Oxford, OH 45056, USA.
| | - Chun Liang
- Program of Bioinformatics, Department of Biology, Miami University, Oxford, OH 45056, USA.
| | - Haifei Shi
- Program of Physiology and Neuroscience, Department of Biology, Miami University, Oxford, OH 45056, USA.
| |
Collapse
|
159
|
Hirai T, Mitani Y, Kurumisawa K, Nomura K, Wang W, Nakashima KI, Inoue M. Berberine stimulates fibroblast growth factor 21 by modulating the molecular clock component brain and muscle Arnt-like 1 in brown adipose tissue. Biochem Pharmacol 2019; 164:165-176. [PMID: 30991048 DOI: 10.1016/j.bcp.2019.04.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/12/2019] [Indexed: 12/22/2022]
Abstract
Fibroblast growth factor 21 (FGF21), a member of the FGF subfamily that acts through the FGF receptor 1 with the co-receptor β-Klotho, functions as an important metabolic regulator of peripheral glucose tolerance and lipid homeostasis in an endocrine or autocrine and/or paracrine manner. Previous studies showed that FGF21 ameliorated and prevented the development of metabolic disorders, such as obesity and diabetes mellitus. In the present study, we demonstrated that berberine, a naturally occurring compound, stimulated FGF21 expression in brown adipose tissue (BAT). Furthermore, the up-regulated expression of FGF21 in brown adipocytes in response to berberine was due, at least in part, to the activation of the AMP-activated protein kinase pathway. We also found that berberine reversed high-fat diet-induced obesity concomitant with its regulation of the expression of Fgf21 and the core clock component brain and muscle Arnt-like 1 (Bmal1) in BAT. Berberine significantly up-regulated the gene expression and production of FGF21 in a dose-dependent manner in C3H10T1/2 brown adipocytes. Furthermore, the knockdown of Bmal1 prevented the up-regulated expression of FGF21 in response to berberine in C3H10T1/2 brown adipocytes, suggesting that Bmal1 links the regulatory mechanisms of FGF21 in response to berberine. The present results suggest that berberine stimulates the expression of FGF21 by modulating molecular clock Bmal1 in BAT, which may, in turn, attenuate diet-induced obesity. They also indicate the potential of berberine as a therapeutic agent for obesity and obesity-associated metabolic disorders related to circadian misalignments.
Collapse
Affiliation(s)
- Takao Hirai
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan.
| | - Yuhei Mitani
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Karen Kurumisawa
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Kohei Nomura
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Wei Wang
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Ken-Ichi Nakashima
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Makoto Inoue
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan
| |
Collapse
|
160
|
Loss of TLE3 promotes the mitochondrial program in beige adipocytes and improves glucose metabolism. Genes Dev 2019; 33:747-762. [PMID: 31123067 PMCID: PMC6601513 DOI: 10.1101/gad.321059.118] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 04/11/2019] [Indexed: 11/25/2022]
Abstract
In this study, Pearson et al. investigated the transcriptional mechanisms that promote remodeling in adipose tissue during the cold. Their findings demonstrate that transcriptional coregulator TLE3 regulates thermogenic gene expression in beige adipocytes through inhibition of EBF2 transcriptional activity. Prolonged cold exposure stimulates the recruitment of beige adipocytes within white adipose tissue. Beige adipocytes depend on mitochondrial oxidative phosphorylation to drive thermogenesis. The transcriptional mechanisms that promote remodeling in adipose tissue during the cold are not well understood. Here we demonstrate that the transcriptional coregulator transducin-like enhancer of split 3 (TLE3) inhibits mitochondrial gene expression in beige adipocytes. Conditional deletion of TLE3 in adipocytes promotes mitochondrial oxidative metabolism and increases energy expenditure, thereby improving glucose control. Using chromatin immunoprecipitation and deep sequencing, we found that TLE3 occupies distal enhancers in proximity to nuclear-encoded mitochondrial genes and that many of these binding sites are also enriched for early B-cell factor (EBF) transcription factors. TLE3 interacts with EBF2 and blocks its ability to promote the thermogenic transcriptional program. Collectively, these studies demonstrate that TLE3 regulates thermogenic gene expression in beige adipocytes through inhibition of EBF2 transcriptional activity. Inhibition of TLE3 may provide a novel therapeutic approach for obesity and diabetes.
Collapse
|
161
|
Liu Y, Fu W, Seese K, Yin A, Yin H. Ectopic brown adipose tissue formation within skeletal muscle after brown adipose progenitor cell transplant augments energy expenditure. FASEB J 2019; 33:8822-8835. [PMID: 31059287 DOI: 10.1096/fj.201802162rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Brown adipose tissue (BAT) thermogenesis increases energy expenditure (EE). Expanding the volume of active BAT via transplantation holds promise as a therapeutic strategy for morbid obesity and diabetes. Brown adipose progenitor cells (BAPCs) can be isolated and expanded to generate autologous brown adipocyte implants. However, the transplantation of brown adipocytes is currently impeded by poor efficiency of BAT tissue formation in vivo and undesirably short engraftment time. In this study, we demonstrated that transplanting BAPCs into limb skeletal muscles consistently led to the ectopic formation of uncoupling protein 1 (UCP1)+pos adipose tissue with long-term engraftment (>4 mo). Combining VEGF with the BAPC transplant further improved BAT formation in muscle. Ectopic engraftment of BAPC-derived BAT in skeletal muscle augmented the EE of recipient mice. Although UCP1 expression declined in long-term BAT grafts, this deterioration can be reversed by swimming exercise because of sympathetic activation. This study suggests that intramuscular transplantation of BAPCs represents a promising approach to deriving functional BAT engraftment, which may be applied to therapeutic BAT transplantation and tissue engineering.-Liu, Y., Fu, W., Seese, K., Yin, A., Yin, H. Ectopic brown adipose tissue formation within skeletal muscle after brown adipose progenitor cell transplant augments energy expenditure.
Collapse
Affiliation(s)
- Yang Liu
- Center for Molecular Medicine, University of Georgia, Athens, Georgia, USA; and.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Wenyan Fu
- Center for Molecular Medicine, University of Georgia, Athens, Georgia, USA; and.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Kendall Seese
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Amelia Yin
- Center for Molecular Medicine, University of Georgia, Athens, Georgia, USA; and.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Hang Yin
- Center for Molecular Medicine, University of Georgia, Athens, Georgia, USA; and.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
162
|
Bayindir-Buchhalter I, Wolff G, Lerch S, Sijmonsma T, Schuster M, Gronych J, Billeter AT, Babaei R, Krunic D, Ketscher L, Spielmann N, Hrabe de Angelis M, Ruas JL, Müller-Stich BP, Heikenwalder M, Lichter P, Herzig S, Vegiopoulos A. Cited4 is a sex-biased mediator of the antidiabetic glitazone response in adipocyte progenitors. EMBO Mol Med 2019; 10:emmm.201708613. [PMID: 29973382 PMCID: PMC6079535 DOI: 10.15252/emmm.201708613] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Most antidiabetic drugs treat disease symptoms rather than adipose tissue dysfunction as a key pathogenic cause in the metabolic syndrome and type 2 diabetes. Pharmacological targeting of adipose tissue through the nuclear receptor PPARg, as exemplified by glitazone treatments, mediates efficacious insulin sensitization. However, a better understanding of the context‐specific PPARg responses is required for the development of novel approaches with reduced side effects. Here, we identified the transcriptional cofactor Cited4 as a target and mediator of rosiglitazone in human and murine adipocyte progenitor cells, where it promoted specific sets of the rosiglitazone‐dependent transcriptional program. In mice, Cited4 was required for the proper induction of thermogenic expression by Rosi specifically in subcutaneous fat. This phenotype had high penetrance in females only and was not evident in beta‐adrenergically stimulated browning. Intriguingly, this specific defect was associated with reduced capacity for systemic thermogenesis and compromised insulin sensitization upon therapeutic rosiglitazone treatment in female but not male mice. Our findings on Cited4 function reveal novel unexpected aspects of the pharmacological targeting of PPARg.
Collapse
Affiliation(s)
- Irem Bayindir-Buchhalter
- DKFZ Junior Group Metabolism and Stem Cell Plasticity, German Cancer Research Center, Heidelberg, Germany
| | - Gretchen Wolff
- DKFZ Junior Group Metabolism and Stem Cell Plasticity, German Cancer Research Center, Heidelberg, Germany
| | - Sarah Lerch
- DKFZ Junior Group Metabolism and Stem Cell Plasticity, German Cancer Research Center, Heidelberg, Germany
| | - Tjeerd Sijmonsma
- Division Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Maximilian Schuster
- DKFZ Junior Group Metabolism and Stem Cell Plasticity, German Cancer Research Center, Heidelberg, Germany
| | - Jan Gronych
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Adrian T Billeter
- Department of General, Visceral, and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Rohollah Babaei
- DKFZ Junior Group Metabolism and Stem Cell Plasticity, German Cancer Research Center, Heidelberg, Germany
| | - Damir Krunic
- Light Microscopy Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lars Ketscher
- Department of Physiology and Pharmacology, Molecular and Cellular Exercise Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Nadine Spielmann
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Martin Hrabe de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Freising, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Jorge L Ruas
- Department of Physiology and Pharmacology, Molecular and Cellular Exercise Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Beat P Müller-Stich
- Department of General, Visceral, and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Mathias Heikenwalder
- Division Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Stephan Herzig
- Helmholtz Center Munich, Institute for Diabetes and Cancer IDC, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany
| | - Alexandros Vegiopoulos
- DKFZ Junior Group Metabolism and Stem Cell Plasticity, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
163
|
Klusóczki Á, Veréb Z, Vámos A, Fischer-Posovszky P, Wabitsch M, Bacso Z, Fésüs L, Kristóf E. Differentiating SGBS adipocytes respond to PPARγ stimulation, irisin and BMP7 by functional browning and beige characteristics. Sci Rep 2019; 9:5823. [PMID: 30967578 PMCID: PMC6456729 DOI: 10.1038/s41598-019-42256-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/26/2019] [Indexed: 12/24/2022] Open
Abstract
Brown and beige adipocytes are enriched in mitochondria with uncoupling protein-1 (UCP1) to generate heat instead of ATP contributing to healthy energy balance. There are few human cellular models to reveal regulatory networks in adipocyte browning and key targets for enhancing thermogenesis in obesity. The Simpson-Golabi-Behmel syndrome (SGBS) preadipocyte line has been a useful tool to study human adipocyte biology. Here we report that SGBS cells, which are comparable to subcutaneous adipose-derived stem cells, carry an FTO risk allele. Upon sustained PPARγ stimulation or irisin (a myokine released in response to exercise) treatment, SGBS cells differentiated into beige adipocytes exhibiting multilocular lipid droplets, high UCP1 content with induction of typical browning genes (Cidea, Elovl3) and the beige marker Tbx1. The autocrine mediator BMP7 led to moderate browning with the upregulation of the classical brown marker Zic1 instead of Tbx1. Thermogenesis potential resulted from PPARγ stimulation, irisin and BMP7 can be activated in UCP1-dependent and the beige specific, creatine phosphate cycle mediated way. The beige phenotype, maintained under long-term (28 days) conditions, was partially reversed by withdrawal of PPARγ ligand. Thus, SGBS cells can serve as a cellular model for both white and sustainable beige adipocyte differentiation and function.
Collapse
Affiliation(s)
- Ágnes Klusóczki
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Veréb
- Regenerative Medicine and Cellular Pharmacology Research Laboratory, Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Attila Vámos
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, University Medical Center Ulm, Ulm, Germany
| | - Zsolt Bacso
- Department of Biophysics and Cell Biology, Faculties of Medicine and Pharmacology, University of Debrecen, Debrecen, Hungary
| | - László Fésüs
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Endre Kristóf
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
164
|
Shin W, Okamatsu-Ogura Y, Matsuoka S, Tsubota A, Kimura K. Impaired adrenergic agonist-dependent beige adipocyte induction in obese mice. J Vet Med Sci 2019; 81:799-807. [PMID: 30956272 PMCID: PMC6612507 DOI: 10.1292/jvms.19-0070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Brown adipocytes, which exist in brown adipose tissue (BAT), are activated by adrenergic
stimulation, depending on the activity of uncoupling protein 1 (UCP1). Beige adipocytes
emerge from white adipose tissue (WAT) in response to chronic adrenergic stimulation. We
investigated obesity-related changes in responses of both types of adipocytes to
adrenergic stimulation in mice. Feeding of mice with high-fat diets (HFD: 45%-kcal fat)
for 14 weeks resulted in significantly higher body and WAT weight compared to feeding with
normal diets (ND: 10%-kcal fat). Injection with β3-adrenergic receptor agonist
CL316,243 (CL; 0.1 mg/kg, once a day) for one week elevated the mRNA and protein
expression levels of UCP1 in BAT, irrespective of diet. In WAT, CL-induced UCP1 expression
in ND mice; however, the responses to CL treatment were attenuated in HFD mice, indicating
that CL-induced browning of WAT was impaired in obese mice. Flow cytometric analysis
revealed a significant decrease in platelet-derived growth factor receptor (PDGFR)
α-expressing beige adipocyte progenitors in WAT of HFD mice compared with those of ND
mice. Expression of PDGF-B, a PDGFRα ligand, increased in WAT following CL-injection in ND
mice, but not in HFD mice. Treatment of mice with a PDGFR inhibitor significantly
decreased CL-dependent UCP1 protein induction in WAT. Our study demonstrates that
β3-adrenergic stimulation-dependent beige adipocyte induction in WAT is impaired by
obesity in mice, potentially due to obesity-dependent reduction in the number of
PDGFRα-expressing progenitors and decreased PDGF-B expression.
Collapse
Affiliation(s)
- Woongchul Shin
- Laboratory of Biochemistry, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Yuko Okamatsu-Ogura
- Laboratory of Biochemistry, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Shinya Matsuoka
- Laboratory of Biochemistry, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Ayumi Tsubota
- Laboratory of Biochemistry, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Kazuhiro Kimura
- Laboratory of Biochemistry, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| |
Collapse
|
165
|
Evans BA, Merlin J, Bengtsson T, Hutchinson DS. Adrenoceptors in white, brown, and brite adipocytes. Br J Pharmacol 2019; 176:2416-2432. [PMID: 30801689 DOI: 10.1111/bph.14631] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/28/2019] [Accepted: 02/11/2019] [Indexed: 01/01/2023] Open
Abstract
Adrenoceptors play an important role in adipose tissue biology and physiology that includes regulating the synthesis and storage of triglycerides (lipogenesis), the breakdown of stored triglycerides (lipolysis), thermogenesis (heat production), glucose metabolism, and the secretion of adipocyte-derived hormones that can control whole-body energy homeostasis. These processes are regulated by the sympathetic nervous system through actions at different adrenoceptor subtypes expressed in adipose tissue depots. In this review, we have highlighted the role of adrenoceptor subtypes in white, brown, and brite adipocytes in both rodents and humans and have included detailed analysis of adrenoceptor expression in human adipose tissue and clonally derived adipocytes. We discuss important considerations when investigating adrenoceptor function in adipose tissue or adipocytes. LINKED ARTICLES: This article is part of a themed section on Adrenoceptors-New Roles for Old Players. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.14/issuetoc.
Collapse
Affiliation(s)
- Bronwyn A Evans
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Jon Merlin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Tore Bengtsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, Stockholm, Sweden
| | - Dana S Hutchinson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| |
Collapse
|
166
|
Sebo ZL, Rodeheffer MS. Assembling the adipose organ: adipocyte lineage segregation and adipogenesis in vivo. Development 2019; 146:dev172098. [PMID: 30948523 PMCID: PMC6467474 DOI: 10.1242/dev.172098] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Adipose tissue is composed of anatomically distinct depots that mediate several important aspects of energy homeostasis. The past two decades have witnessed increased research effort to elucidate the ontogenetic basis of adipose form and function. In this Review, we discuss advances in our understanding of adipose tissue development with particular emphasis on the embryonic patterning of depot-specific adipocyte lineages and adipocyte differentiation in vivo Micro-environmental cues and other factors that influence cell identity and cell behavior at various junctures in the adipocyte lineage hierarchy are also considered.
Collapse
Affiliation(s)
- Zachary L Sebo
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
| | - Matthew S Rodeheffer
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06520-8016, USA
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520-8073, USA
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
167
|
Sugiyama M, Shindo D, Kanada N, Ohzeki T, Yoshioka K, Funaba M, Hashimoto O. Inducible brown/beige adipocytes in retro-orbital adipose tissues. Exp Eye Res 2019; 184:8-14. [PMID: 30946840 DOI: 10.1016/j.exer.2019.03.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/05/2019] [Accepted: 03/26/2019] [Indexed: 12/18/2022]
Abstract
Beige adipocytes and brown adipocytes can generate heat by using mitochondrial uncoupling protein 1 (Ucp1), a thermogenic protein. Browning/beiging is the emergence of beige adipocytes in white adipose tissues (WAT) for cold acclimatization. Here we show the existence of brown/beige adipocytes in retro-orbital WAT in mice. Histologically, Ucp1-positive cells with multilocular lipid droplets were abundant in retro-orbital WAT of immature mice; those cells decreased in number with age. However, Ucp1-positive adipocytes with multilocular lipid droplets emerged in retro-orbital WAT in adult mice, due to cold exposure as short as 3 h. Consistent with this observation, the expression level of Ucp1 mRNA was enhanced in tissues upon cold exposure. Furthermore, eye surface temperature remained within a physiological range during cold challenge. RT-qPCR suggested a mixed phenotype of brown and beige adipocytes in retro-orbital WAT. Transmission electron microscopic observation showed multiple lipid droplets and numerous mitochondria with high cristae density in retro-orbital WAT cells from both control and cold-exposed mice. Our results suggest that warming of the orbital cavity by browning/beiging in retro-orbital WAT is a protective mechanism against cold cataract caused by lowered lens temperature.
Collapse
Affiliation(s)
- Makoto Sugiyama
- Faculty of Veterinary Medicine, Kitasato University, School of Veterinary Medicine, Towada, Aomori, 034-8628, Japan
| | - Daichi Shindo
- Faculty of Veterinary Medicine, Kitasato University, School of Veterinary Medicine, Towada, Aomori, 034-8628, Japan
| | - Norihisa Kanada
- Faculty of Veterinary Medicine, Kitasato University, School of Veterinary Medicine, Towada, Aomori, 034-8628, Japan
| | - Takahiro Ohzeki
- Faculty of Veterinary Medicine, Kitasato University, School of Veterinary Medicine, Towada, Aomori, 034-8628, Japan
| | - Kazuki Yoshioka
- Faculty of Veterinary Medicine, Kitasato University, School of Veterinary Medicine, Towada, Aomori, 034-8628, Japan
| | - Masayuki Funaba
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Kyoto, 606-8502, Japan
| | - Osamu Hashimoto
- Faculty of Veterinary Medicine, Kitasato University, School of Veterinary Medicine, Towada, Aomori, 034-8628, Japan.
| |
Collapse
|
168
|
Lee MJ, Jash S, Jones JEC, Puri V, Fried SK. Rosiglitazone remodels the lipid droplet and britens human visceral and subcutaneous adipocytes ex vivo. J Lipid Res 2019; 60:856-868. [PMID: 30782959 PMCID: PMC6446708 DOI: 10.1194/jlr.m091173] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/15/2019] [Indexed: 12/28/2022] Open
Abstract
Treatment with PPARγ agonists in vivo improves human adipocyte metabolism, but the cellular mechanisms and possible depot differences in responsiveness to their effects are poorly understood. To examine the ex vivo metabolic effects of rosiglitazone (Rosi), we cultured explants of human visceral (omental) and abdominal subcutaneous adipose tissues for 7 days. Rosi increased mRNA levels of transcriptional regulators of brite/beige adipocytes (PGC1α, PRDM16), triglyceride synthesis (GPAT3, DGAT1), and lipolysis (ATGL) similarly in adipose tissues from both depots. In parallel, Rosi increased key modulators of FA oxidation (UCP1, FABP3, PLIN5 protein), rates of FA oxidation, and protein levels of electron transport complexes, suggesting an enhanced respiratory capacity as confirmed in newly differentiated adipocytes. Rosi led to the formation of small lipid droplets (SLDs) around the adipocyte central lipid droplet; each SLD was decorated with redistributed mitochondria that colocalized with PLIN5. SLD maintenance required lipolysis and FA reesterification. Rosi thus coordinated a structural and metabolic remodeling in adipocytes from both visceral and subcutaneous depots that enhanced oxidative capacity. Selective targeting of these cellular mechanisms to improve adipocyte FA handling may provide a new approach to treat metabolic complications of obesity and diabetes.
Collapse
Affiliation(s)
- Mi-Jeong Lee
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY; Obesity Center, Boston University School of Medicine, Boston, MA.
| | - Sukanta Jash
- Obesity Center, Boston University School of Medicine, Boston, MA; Department of Biomedical Sciences and Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH
| | - Jessica E C Jones
- Department of Medicine, and Department of Biochemistry, Boston University School of Medicine, Boston, MA
| | - Vishwajeet Puri
- Obesity Center, Boston University School of Medicine, Boston, MA; Department of Biomedical Sciences and Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH
| | - Susan K Fried
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY; Obesity Center, Boston University School of Medicine, Boston, MA
| |
Collapse
|
169
|
Palacios-González B, Vargas-Castillo A, Velázquez-Villegas LA, Vasquez-Reyes S, López P, Noriega LG, Aleman G, Tovar-Palacio C, Torre-Villalvazo I, Yang LJ, Zarain-Herzberg A, Torres N, Tovar AR. Genistein increases the thermogenic program of subcutaneous WAT and increases energy expenditure in mice. J Nutr Biochem 2019; 68:59-68. [PMID: 31030168 DOI: 10.1016/j.jnutbio.2019.03.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 01/31/2019] [Accepted: 03/14/2019] [Indexed: 01/04/2023]
Abstract
White adipose tissue (WAT) can differentiate into beige adipose tissue by the browning process. Some polyphenols, including isoflavones, particularly genistein, are suggested to increase the expression of browning markers. There is evidence that consumption of genistein can attenuate body weight gain and improve glucose tolerance and blood lipid levels. The aim of the present study was to investigate the potential mechanisms of stimulation by which genistein activates the browning of WAT. We studied the stimulation of the expression of browning markers in the following models: mice fed genistein; preadipocytes from 3 T3-L1 cells; and the stromal vascular fraction (SVF) from the inguinal adipose tissue of mice. The results indicated that genistein can stimulate the browning process by at least two mechanisms. An indirect mechanism was involved in the induction of PGC-1α/FNDC5 in skeletal muscle leading to an increase in the myokine irisin. In preadipocytes, irisin was able to increase the expression of Ucp1 and Tmem26, markers of browning, to increase energy expenditure. Interestingly, genistein was also able to activate browning by a direct mechanism. Incubation of preadipocytes with genistein increased UCP1 expression as well as some biomarkers of browning in a concentration-dependent manner, possibly via phosphorylation of AMPK. The effect of genistein was accompanied by an increase in the number of mitochondria as well as in the maximum respiration rate of the adipocytes. In conclusion, this study indicated that genistein can increase energy expenditure by stimulating the browning process directly in preadipocytes and indirectly by increasing the circulating levels of irisin.
Collapse
Affiliation(s)
- Berenice Palacios-González
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico, D.F. 14080
| | - Ariana Vargas-Castillo
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico, D.F. 14080
| | | | - Sarai Vasquez-Reyes
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico, D.F. 14080
| | - Patricia López
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico, D.F. 14080
| | - Lilia G Noriega
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico, D.F. 14080
| | - Gabriela Aleman
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico, D.F. 14080
| | - Claudia Tovar-Palacio
- Departamento de Nefrología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico, D.F. 14080
| | - Iván Torre-Villalvazo
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico, D.F. 14080
| | - Li-Jun Yang
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, College of Medicine, Gainesville, FL
| | | | - Nimbe Torres
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico, D.F. 14080
| | - Armando R Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico, D.F. 14080.
| |
Collapse
|
170
|
Jespersen NZ, Feizi A, Andersen ES, Heywood S, Hattel HB, Daugaard S, Peijs L, Bagi P, Feldt-Rasmussen B, Schultz HS, Hansen NS, Krogh-Madsen R, Pedersen BK, Petrovic N, Nielsen S, Scheele C. Heterogeneity in the perirenal region of humans suggests presence of dormant brown adipose tissue that contains brown fat precursor cells. Mol Metab 2019; 24:30-43. [PMID: 31079959 PMCID: PMC6531810 DOI: 10.1016/j.molmet.2019.03.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/02/2019] [Accepted: 03/11/2019] [Indexed: 12/31/2022] Open
Abstract
Objective Increasing the amounts of functionally competent brown adipose tissue (BAT) in adult humans has the potential to restore dysfunctional metabolism and counteract obesity. In this study, we aimed to characterize the human perirenal fat depot, and we hypothesized that there would be regional, within-depot differences in the adipose signature depending on local sympathetic activity. Methods We characterized fat specimens from four different perirenal regions of adult kidney donors, through a combination of qPCR mapping, immunohistochemical staining, RNA-sequencing, and pre-adipocyte isolation. Candidate gene signatures, separated by adipocyte morphology, were recapitulated in a murine model of unilocular brown fat induced by thermoneutrality and high fat diet. Results We identified widespread amounts of dormant brown adipose tissue throughout the perirenal depot, which was contrasted by multilocular BAT, primarily found near the adrenal gland. Dormant BAT was characterized by a unilocular morphology and a distinct gene expression profile, which partly overlapped with that of subcutaneous white adipose tissue (WAT). Brown fat precursor cells, which differentiated into functional brown adipocytes were present in the entire perirenal fat depot, regardless of state. We identified SPARC as a candidate adipokine contributing to a dormant BAT state, and CLSTN3 as a novel marker for multilocular BAT. Conclusions We propose that perirenal adipose tissue in adult humans consists mainly of dormant BAT and provide a data set for future research on factors which can reactivate dormant BAT into active BAT, a potential strategy for combatting obesity and metabolic disease. Dormant brown adipose tissue (BAT) dominates the perirenal adipose depot of adult humans. Multilocular BAT accumulates adjacent to local sympathetic sources. Dormant BAT displays a transcriptomic signature distinct from multilocular BAT and white adipose tissue. Brown fat precursor cells are present in human dormant perirenal BAT. SPARC is associated with a dormant BAT phenotype.
Collapse
Affiliation(s)
- Naja Z Jespersen
- The Centre of Inflammation and Metabolism and Centre for Physical Activity Research Rigshospitalet, University Hospital of Copenhagen, 2100, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Danish PhD School of Molecular Metabolism, Odense, Denmark
| | - Amir Feizi
- Novo Nordisk Research Center Oxford, Denmark
| | - Eline S Andersen
- The Centre of Inflammation and Metabolism and Centre for Physical Activity Research Rigshospitalet, University Hospital of Copenhagen, 2100, Denmark
| | - Sarah Heywood
- The Centre of Inflammation and Metabolism and Centre for Physical Activity Research Rigshospitalet, University Hospital of Copenhagen, 2100, Denmark
| | - Helle B Hattel
- The Centre of Inflammation and Metabolism and Centre for Physical Activity Research Rigshospitalet, University Hospital of Copenhagen, 2100, Denmark
| | | | - Lone Peijs
- The Centre of Inflammation and Metabolism and Centre for Physical Activity Research Rigshospitalet, University Hospital of Copenhagen, 2100, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Per Bagi
- Department of Urology, Rigshospitalet, Denmark
| | | | | | - Ninna S Hansen
- Danish PhD School of Molecular Metabolism, Odense, Denmark; Department of Endocrinology, Diabetes and Metabolism, Rigshospitalet, Denmark
| | - Rikke Krogh-Madsen
- The Centre of Inflammation and Metabolism and Centre for Physical Activity Research Rigshospitalet, University Hospital of Copenhagen, 2100, Denmark
| | - Bente K Pedersen
- The Centre of Inflammation and Metabolism and Centre for Physical Activity Research Rigshospitalet, University Hospital of Copenhagen, 2100, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Natasa Petrovic
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, 106 91, Stockholm, Sweden
| | - Søren Nielsen
- The Centre of Inflammation and Metabolism and Centre for Physical Activity Research Rigshospitalet, University Hospital of Copenhagen, 2100, Denmark
| | - Camilla Scheele
- The Centre of Inflammation and Metabolism and Centre for Physical Activity Research Rigshospitalet, University Hospital of Copenhagen, 2100, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
171
|
Sekiyama K, Ushiro Y, Kurisaki A, Funaba M, Hashimoto O. Activin E enhances insulin sensitivity and thermogenesis by activating brown/beige adipocytes. J Vet Med Sci 2019; 81:646-652. [PMID: 30880304 PMCID: PMC6541856 DOI: 10.1292/jvms.19-0036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Activin E, a secreted peptide encoded by the inhibin/activin βE subunit gene, is a member of the transforming growth factor-β superfamily, which is predominantly expressed in the liver. Recent reports have suggested that activin E plays a role in energy homeostasis as a hepatokine. Here, using transgenic mice overexpressing activin E under the control of the β-actin promoter, we demonstrate that activin E controls energy metabolism through brown/beige adipocytes. The glucose tolerance test and insulin tolerance test showed that the insulin sensitivity was improved in the transgenic mice. Furthermore, the mice had a high body temperature compared with wild-type mice. The transgenic brown adipose tissue and mesenteric white adipose tissue showed upregulation of uncoupling protein 1, which enables energy dissipation as heat by uncoupling oxidative phosphorylation from ATP production. Present results indicate that activin E activates energy expenditure through brown/beige adipocyte activation, suggesting that activin E has high potential for obesity therapy.
Collapse
Affiliation(s)
- Kazunari Sekiyama
- Faculty of Veterinary Medicine, Kitasato University, School of Veterinary Medicine, Towada, Aomori 034-8628, Japan.,Laboratory of Neuropathology, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Setagaya, Tokyo 156-8506, Japan
| | - Yuuki Ushiro
- Faculty of Veterinary Medicine, Kitasato University, School of Veterinary Medicine, Towada, Aomori 034-8628, Japan
| | - Akira Kurisaki
- Division of Biomedical Sciences, Stem Cell Technology Laboratory, Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
| | - Masayuki Funaba
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Kyoto 606-8502, Japan
| | - Osamu Hashimoto
- Faculty of Veterinary Medicine, Kitasato University, School of Veterinary Medicine, Towada, Aomori 034-8628, Japan
| |
Collapse
|
172
|
Kang NH, Mukherjee S, Yun JW. Trans-Cinnamic Acid Stimulates White Fat Browning and Activates Brown Adipocytes. Nutrients 2019; 11:E577. [PMID: 30857158 PMCID: PMC6470544 DOI: 10.3390/nu11030577] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 02/26/2019] [Accepted: 03/04/2019] [Indexed: 12/14/2022] Open
Abstract
Recently, pharmacological activation of brown fat and induction of white fat browning (beiging) have been considered promising strategies to treat obesity. To search for natural products that could stimulate the process of browning in adipocytes, we evaluated the activity of trans-cinnamic acid (tCA), a class of cinnamon from the bark of Cinnamomum cassia, by determining genetic expression using real time reverse transcription polymerase chain reaction (RT-PCR) and protein expression by immunoblot analysis for thermogenic and fat metabolizing markers. In our study tCA induced brown like-phenotype in 3T3-L1 white adipocytes and activated HIB1B brown adipocytes. tCA increased protein content of brown-fat-specific markers (UCP1, PRDM16, and PGC-1α) and expression levels of beige-fat-specific genes (Cd137, Cidea, Cited1, Tbx1, and Tmen26) in 3T3-L1 white adipocytes, as well as brown-fat-specific genes (Lhx8, Ppargc1, Prdm16, Ucp1, and Zic1) in HIB1B brown adipocytes. Furthermore, tCA reduced expression of key adipogenic transcription factors C/EBPα and PPARγ in white adipocytes, but enhanced their expressions in brown adipocytes. In addition, tCA upregulates lipid catabolism. Moreover, mechanistic study revealed that tCA induced browning in white adipocytes by activating the β3-AR and AMPK signaling pathways. tCA can induce browning, increase fat oxidation, reduce adipogenesis and lipogenesis in 3T3-L1 adipocytes, and activate HIB1B adipocytes, suggesting its potential to treat obesity.
Collapse
Affiliation(s)
- Nam Hyeon Kang
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Korea.
| | - Sulagna Mukherjee
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Korea.
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Korea.
| |
Collapse
|
173
|
Prolyl Isomerase Pin1 Suppresses Thermogenic Programs in Adipocytes by Promoting Degradation of Transcriptional Co-activator PRDM16. Cell Rep 2019; 26:3221-3230.e3. [DOI: 10.1016/j.celrep.2019.02.066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/12/2018] [Accepted: 02/15/2019] [Indexed: 02/08/2023] Open
|
174
|
Chan M, Lim YC, Yang J, Namwanje M, Liu L, Qiang L. Identification of a natural beige adipose depot in mice. J Biol Chem 2019; 294:6751-6761. [PMID: 30824545 DOI: 10.1074/jbc.ra118.006838] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/15/2019] [Indexed: 12/23/2022] Open
Abstract
Beige fat is a potential therapeutic target for obesity and other metabolic diseases due to its inducible brown fat-like functions. Inguinal white adipose tissue (iWAT) can undergo robust brown remodeling with appropriate stimuli and is therefore widely considered as a representative beige fat depot. However, adipose tissues residing in different anatomic depots exhibit a broad range of plasticity, raising the possibility that better beige fat depots with greater plasticity may exist. Here we identified and characterized a novel, naturally-existing beige fat depot, thigh adipose tissue (tAT). Unlike classic WATs, tAT maintains beige fat morphology at room temperature, whereas high-fat diet (HFD) feeding or aging promotes the development of typical WAT features, namely unilocular adipocytes. The brown adipocyte gene expression in tAT is consistently higher than in iWAT under cold exposure, HFD feeding, and rosiglitazone treatment conditions. Our molecular profiling by RNA-Seq revealed up-regulation of energy expenditure pathways and repressed inflammation in tAT relative to eWAT and iWAT. Furthermore, we demonstrated that the master fatty acid oxidation regulator peroxisome proliferator-activated receptor α is dispensable for maintaining and activating the beige character of tAT. Therefore, we have identified tAT as a natural beige adipose depot in mice with a unique molecular profile that does not require peroxisome proliferator-activated receptor α.
Collapse
Affiliation(s)
- Michelle Chan
- From the Naomi Berrie Diabetes Center, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York 10032.,the Department of Biological Sciences, Columbia University, New York, New York 10027
| | - Yen Ching Lim
- the Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore 169857, Singapore, and
| | - Jing Yang
- From the Naomi Berrie Diabetes Center, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York 10032.,the Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an City, Shaanxi Province, China
| | - Maria Namwanje
- From the Naomi Berrie Diabetes Center, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | - Longhua Liu
- From the Naomi Berrie Diabetes Center, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | - Li Qiang
- From the Naomi Berrie Diabetes Center, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York 10032,
| |
Collapse
|
175
|
Cao Q, Jing J, Cui X, Shi H, Xue B. Sympathetic nerve innervation is required for beigeing in white fat. Physiol Rep 2019; 7:e14031. [PMID: 30873754 PMCID: PMC6418318 DOI: 10.14814/phy2.14031] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 11/24/2022] Open
Abstract
It is increasingly recognized that activation of beige adipocyte thermogenesis by pharmacological or genetic approaches increases energy expenditure and alleviates obesity. Sympathetic nervous system (SNS) directly innervating brown adipose tissue (BAT) and white adipose tissue (WAT) plays a key role in promoting nonshivering thermogenesis. However, direct evidence that supports the importance of SNS innervation for beige adipocyte formation is still lacking, and the significance of beige adipocyte thermogenesis in protection of body temperature during cold challenge is not clear. Here we tested the necessity of SNS innervation into WAT for beige adipocyte formation in mice with defective brown fat thermogenesis via interscapular BAT (iBAT) SNS denervation. SNS denervation was achieved by microinjection of 6-hydroxydopamine (6-OHDA), a selective neurotoxin to SNS nerves, into iBAT, inguinal WAT (iWAT), or both. The partial chemical denervation of iBAT SNS down-regulated UCP-1 protein expression in iBAT demonstrated by immunoblotting and immunohistochemical measurements. This was associated with an up-regulation of UCP1 protein expression and enhanced formation of beige cells in iWAT of mice with iBAT SNS denervation. In contrast, the chemical denervation of iWAT SNS completely abolished the upregulated UCP-1 protein and beige cell formation in iWAT of mice with iBAT SNS denervation. Our data demonstrate that SNS innervation in WAT is required for beige cell formation during cold-induced thermogenesis. We conclude that there exists a coordinated thermoregulation for BAT and WAT thermogenesis via a functional cross talk between BAT and WAT SNS.
Collapse
Affiliation(s)
- Qiang Cao
- School of BiologyGeorgia State UniversityAtlantaGeorgia
| | - Jia Jing
- School of BiologyGeorgia State UniversityAtlantaGeorgia
| | - Xin Cui
- School of BiologyGeorgia State UniversityAtlantaGeorgia
| | - Hang Shi
- School of BiologyGeorgia State UniversityAtlantaGeorgia
| | - Bingzhong Xue
- School of BiologyGeorgia State UniversityAtlantaGeorgia
| |
Collapse
|
176
|
Li AN, Chen JJ, Li QQ, Zeng GY, Chen QY, Chen JL, Liao ZM, Jin P, Wang KS, Yang ZC. Alpha-glucosidase inhibitor 1-Deoxynojirimycin promotes beige remodeling of 3T3-L1 preadipocytes via activating AMPK. Biochem Biophys Res Commun 2019; 509:1001-1007. [DOI: 10.1016/j.bbrc.2019.01.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 01/05/2019] [Indexed: 12/11/2022]
|
177
|
Srivastava S, Veech RL. Brown and Brite: The Fat Soldiers in the Anti-obesity Fight. Front Physiol 2019; 10:38. [PMID: 30761017 PMCID: PMC6363669 DOI: 10.3389/fphys.2019.00038] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/14/2019] [Indexed: 12/16/2022] Open
Abstract
Brown adipose tissue (BAT) is proposed to maintain thermal homeostasis through dissipation of chemical energy as heat by the uncoupling proteins (UCPs) present in their mitochondria. The recent demonstration of the presence of BAT in humans has invigorated research in this area. The research has provided many new insights into the biology and functioning of this tissue and the biological implications of its altered activities. Another finding of interest is browning of white adipose tissue (WAT) resulting in what is known as beige/brite cells, which have increased mitochondrial proteins and UCPs. In general, it has been observed that the activation of BAT is associated with various physiological improvements such as a reduction in blood glucose levels increased resting energy expenditure and reduced weight. Given the similar physiological functions of BAT and beige/ brite cells and the higher mass of WAT compared to BAT, it is likely that increasing the brite/beige cells in WATs may also lead to greater metabolic benefits. However, development of treatments targeting brown fat or WAT browning would require not only a substantial understanding of the biology of these tissues but also the effect of altering their activity levels on whole body metabolism and physiology. In this review, we present evidence from recent literature on the substrates utilized by BAT, regulation of BAT activity and browning by circulating molecules. We also present dietary and pharmacological activators of brown and beige/brite adipose tissue and the effect of physical exercise on BAT activity and browning.
Collapse
Affiliation(s)
- Shireesh Srivastava
- Systems Biology for Biofuels Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Richard L Veech
- Laboratory of Metabolic Control, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
178
|
Arhire LI, Mihalache L, Covasa M. Irisin: A Hope in Understanding and Managing Obesity and Metabolic Syndrome. Front Endocrinol (Lausanne) 2019; 10:524. [PMID: 31428053 PMCID: PMC6687775 DOI: 10.3389/fendo.2019.00524] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 07/16/2019] [Indexed: 12/26/2022] Open
Abstract
White adipose tissue (WAT) is an endocrine organ highly integrated in homeostasis and capable of establishing ways of communicating and influencing multiple metabolic processes. Brown adipose tissue promotes energy expenditure by incorporating the uncoupling protein 1 (UCP1), also known as thermogenin, which decouples cellular respiration and heat production, in the mitochondrial membranes. Recent data suggest the presence of a thermogenic cell formation from white adipocytes (beige or brite cells) with a potential role in preventing obesity and metabolic syndrome. The formation of these cells is influenced by physical exertion that induces expression of PPARγ coactivator-1 (PGC1) and downstream membrane protein, fibronectin type III domain-containing protein 5 (FNDC5) in skeletal muscle. Irisin, a thermogenic adipomyokine produced by FNDC5 cleavage is involved in the browning of adipose tissue. While animal studies are congruent with regard to the relationship between physical exertion and irisin release, the results from human studies are less than clear. Therefore, this review focuses on recent advances in our understanding of muscle and adipose tissue thermogenesis. Further, it describes the molecular mechanisms by which irisin impacts exercise, glucose homeostasis and obesity. Finally, the review discusses current gaps and controversies related to irisin release, its mode of action and its future potential as a therapeutic tool in managing obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Lidia I. Arhire
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iaşi, Romania
- Clinical Hospital “Sf. Spiridon”, Iaşi, Romania
| | - Laura Mihalache
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iaşi, Romania
- Clinical Hospital “Sf. Spiridon”, Iaşi, Romania
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA, United States
- Department of Health and Human Development, University of Suceava, Suceava, Romania
- *Correspondence: Mihai Covasa
| |
Collapse
|
179
|
Chen Y, Ikeda K, Yoneshiro T, Scaramozza A, Tajima K, Wang Q, Kim K, Shinoda K, Sponton CH, Brown Z, Brack A, Kajimura S. Thermal stress induces glycolytic beige fat formation via a myogenic state. Nature 2019; 565:180-185. [PMID: 30568302 PMCID: PMC6328316 DOI: 10.1038/s41586-018-0801-z] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 11/06/2018] [Indexed: 02/06/2023]
Abstract
Environmental cues profoundly affect cellular plasticity in multicellular organisms. For instance, exercise promotes a glycolytic-to-oxidative fibre-type switch in skeletal muscle, and cold acclimation induces beige adipocyte biogenesis in adipose tissue. However, the molecular mechanisms by which physiological or pathological cues evoke developmental plasticity remain incompletely understood. Here we report a type of beige adipocyte that has a critical role in chronic cold adaptation in the absence of β-adrenergic receptor signalling. This beige fat is distinct from conventional beige fat with respect to developmental origin and regulation, and displays enhanced glucose oxidation. We therefore refer to it as glycolytic beige fat. Mechanistically, we identify GA-binding protein α as a regulator of glycolytic beige adipocyte differentiation through a myogenic intermediate. Our study reveals a non-canonical adaptive mechanism by which thermal stress induces progenitor cell plasticity and recruits a distinct form of thermogenic cell that is required for energy homeostasis and survival.
Collapse
Affiliation(s)
- Yong Chen
- UCSF Diabetes Center, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, USA
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
- Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kenji Ikeda
- UCSF Diabetes Center, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, USA
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Takeshi Yoneshiro
- UCSF Diabetes Center, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, USA
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Annarita Scaramozza
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, USA
- Department of Orthopaedic Surgery, University of California, San Francisco, CA, USA
| | - Kazuki Tajima
- UCSF Diabetes Center, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, USA
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Qiang Wang
- UCSF Diabetes Center, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, USA
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Kyeongkyu Kim
- UCSF Diabetes Center, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, USA
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Kosaku Shinoda
- UCSF Diabetes Center, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, USA
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
- Department of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY, USA
| | - Carlos Henrique Sponton
- UCSF Diabetes Center, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, USA
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Zachary Brown
- UCSF Diabetes Center, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, USA
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Andrew Brack
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, USA
- Department of Orthopaedic Surgery, University of California, San Francisco, CA, USA
| | - Shingo Kajimura
- UCSF Diabetes Center, San Francisco, CA, USA.
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, USA.
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA.
| |
Collapse
|
180
|
Moonen MP, Nascimento EB, van Marken Lichtenbelt WD. Human brown adipose tissue: Underestimated target in metabolic disease? Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:104-112. [DOI: 10.1016/j.bbalip.2018.05.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/16/2018] [Accepted: 05/21/2018] [Indexed: 02/06/2023]
|
181
|
Dev K, Dinish US, Chakraborty S, Bi R, Andersson-Engels S, Sugii S, Olivo M. Quantitative in vivo detection of adipose tissue browning using diffuse reflectance spectroscopy in near-infrared II window. JOURNAL OF BIOPHOTONICS 2018; 11:e201800135. [PMID: 29978566 DOI: 10.1002/jbio.201800135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/04/2018] [Indexed: 05/23/2023]
Abstract
White adipose tissue (WAT) and brown adipose tissue (BAT) biologically function in an opposite way in energy metabolism. BAT induces energy consumption by heat production while WAT mainly stores energy in the form of triglycerides. Recent progress in the conversion of WAT cells to "beige" or "brown-like" adipocytes in animals, having functional similarity to BAT, spurred a great interest in developing the next-generation therapeutics in the field of metabolic disorders. Though magnetic resonance imaging and positron emission tomography could detect classical BAT and WAT in animals and humans, it is of a great challenge in detecting the "browning" process in vivo. Here, to the best of our knowledge, for the first time, we present a simple, cost-effective, label-free fiber optic-based diffuse reflectance spectroscopy measurement in the near infrared II window (~1050-1400 nm) for the quantitative detection of browning in a mouse model in vivo. We could successfully quantify the browning of WAT in a mouse model by estimating the lipid fraction, which serves as an endogenous marker. Lipid fraction exhibited a gradual decrease from WAT to BAT with beige exhibiting an intermediate value. in vivo browning process was also confirmed with standard molecular and biochemical assays.
Collapse
Affiliation(s)
- Kapil Dev
- Laboratory of Bio Optical Imaging, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore
| | - U S Dinish
- Laboratory of Bio Optical Imaging, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Smarajit Chakraborty
- Fat Metabolism and Stem Cell Group, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Renzhe Bi
- Laboratory of Bio Optical Imaging, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Stefan Andersson-Engels
- Irish Photonic Integration Centre (IPIC), Tyndall National Institute, Cork, Ireland
- Department of Physics, University College Cork, Cork, Ireland
| | - Shigeki Sugii
- Fat Metabolism and Stem Cell Group, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
| | - Malini Olivo
- Laboratory of Bio Optical Imaging, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore
| |
Collapse
|
182
|
Suzuki M, Murakami M, Shirai M, Hashimoto O, Kawada T, Matsui T, Funaba M. Role of estradiol and testosterone in Ucp1
expression in brown/beige adipocytes. Cell Biochem Funct 2018; 36:450-456. [DOI: 10.1002/cbf.3366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/05/2018] [Accepted: 10/16/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Mika Suzuki
- Division of Applied Biosciences; Kyoto University Graduate School of Agriculture; Kyoto Japan
| | - Masaru Murakami
- Laboratory of Molecular Biology; Azabu University School of Veterinary Medicine; Sagamihara Japan
| | - Mitsuyuki Shirai
- Laboratory of Veterinary Pharmacology; Azabu University School of Veterinary Medicine; Sagamihara Japan
| | - Osamu Hashimoto
- Laboratory of Experimental Animal Science; Kitasato University School of Veterinary Medicine; Towada Japan
| | - Teruo Kawada
- Division of Food Science and Biotechnology; Kyoto University Graduate School of Agriculture; Kyoto Japan
| | - Tohru Matsui
- Division of Applied Biosciences; Kyoto University Graduate School of Agriculture; Kyoto Japan
| | - Masayuki Funaba
- Division of Applied Biosciences; Kyoto University Graduate School of Agriculture; Kyoto Japan
| |
Collapse
|
183
|
Paulo E, Wu D, Hecker P, Zhang Y, Wang B. Adipocyte HDAC4 activation leads to beige adipocyte expansion and reduced adiposity. J Endocrinol 2018; 239:153-165. [PMID: 30121575 PMCID: PMC6379159 DOI: 10.1530/joe-18-0173] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 08/14/2018] [Indexed: 12/18/2022]
Abstract
Numerous studies have suggested that beige adipocyte abundance is correlated with improved metabolic performance, but direct evidence showing that beige adipocyte expansion protects animals from the development of obesity is missing. Previously, we have described that the liver kinase b1 (LKB1) regulates beige adipocyte renaissance in subcutaneous inguinal white adipose tissue (iWAT) through a class IIa histone deacetylase 4 (HDAC4)-dependent mechanism. This study investigates the physiological impact of persistent beige adipocyte renaissance in energy homeostasis in mice. Here we present that the transgenic mice H4-TG, overexpressing constitutively active HDAC4 in adipocytes, showed beige adipocyte expansion in iWAT at room temperature. H4-TG mice exhibited increased energy expenditure due to beige adipocyte expansion. They also exhibited reduced adiposity under both normal chow and high-fat diet (HFD) feeding conditions. Specific ablation of beige adipocytes reversed the protection against HFD-induced obesity in H4-TG mice. Taken together, our results directly demonstrate that beige adipocyte expansion regulates adiposity in mice and targeting beige adipocyte renaissance may present a novel strategy to tackle obesity in humans.
Collapse
Affiliation(s)
| | | | | | | | - Biao Wang
- Corresponding Author, Biao Wang Ph.D., 555 Mission Bay Blvd South, Room 252Y, San Francisco, CA 94158, Phone: 415-502-2023,
| |
Collapse
|
184
|
Abstract
PURPOSE OF REVIEW The current review provides an update on secreted factors and mechanisms that promote a thermogenic program in beige adipocytes, and their potential roles as therapeutic targets to fight obesity. RECENT FINDINGS We outline recent studies revealing unrecognized mechanisms controlling beige adipocyte physiology, and summarize in particular those that underlie beige thermogenesis independently of classical uncoupling. We also update strategies aimed at fostering beige adipogenesis and white-to beige adipocyte conversion. Finally, we summarize newly identified endogenous secreted factors that promote the thermogenic activation of beige adipocytes and discuss their therapeutic potential. SUMMARY The identification of novel endogenous factors that promote beiging and regulate beige adipocyte-specific physiological pathways opens up new avenues for therapeutic engineering targeting obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Allison E. McQueen
- Metabolic Biology Graduate Program and Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley
| | - Suneil K. Koliwad
- The Diabetes Center and Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Jen-Chywan Wang
- Metabolic Biology Graduate Program and Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley
| |
Collapse
|
185
|
Uchida K, Sun W, Yamazaki J, Tominaga M. Role of Thermo-Sensitive Transient Receptor Potential Channels in Brown Adipose Tissue. Biol Pharm Bull 2018; 41:1135-1144. [PMID: 30068861 DOI: 10.1248/bpb.b18-00063] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Brown and beige adipocytes are a major site of mammalian non-shivering thermogenesis and energy dissipation. Obesity is caused by an imbalance between energy intake and expenditure and has become a worldwide health problem. Therefore modulation of thermogenesis in brown and beige adipocytes could be an important application for body weight control and obesity prevention. Over the last few decades, the involvement of thermo-sensitive transient receptor potential (TRP) channels (including TRPV1, TRPV2, TRPV3, TRPV4, TRPM4, TRPM8, TRPC5, and TRPA1) in energy metabolism and adipogenesis in adipocytes has been extensively explored. In this review, we summarize the expression, function, and pathological/physiological contributions of these TRP channels and discuss their potential as future therapeutic targets for preventing and combating human obesity and obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Kunitoshi Uchida
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College.,Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences.,Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies)
| | - Wuping Sun
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences
| | - Jun Yamazaki
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College
| | - Makoto Tominaga
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences.,Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies)
| |
Collapse
|
186
|
Tanaka-Yachi R, Shirasaki M, Otsu R, Takahashi-Muto C, Inoue H, Aoki Y, Koike T, Kiyose C. δ-Tocopherol promotes thermogenic gene expression via PGC-1α upregulation in 3T3-L1 cells. Biochem Biophys Res Commun 2018; 506:53-59. [PMID: 30336984 DOI: 10.1016/j.bbrc.2018.10.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 10/04/2018] [Indexed: 02/08/2023]
Abstract
Activation of thermogenic adipocytes (brown and beige) has been considered an attractive target for weight loss and treatment of metabolic disease. Peroxisome proliferator-activated receptor γ co-activator-1 α (PGC1-α) is a master regulator of thermogenic gene expression in thermogenic adipocytes. We previously reported that α-tocopherol upregulated PGC-1α gene expression and promoted thermogenic adipocyte differentiation in mammalian adipocytes. In this study, we investigated the effects of the vitamin E analogs (α-, γ- and δ-tocopherol) on PGC-1α and uncoupling protein 1 (UCP1) gene expression in 3T3-L1 cells. The expression of PGC-1α and UCP1 increased significantly with the addition of δ-tocopherol. In δ-tocopherol-treated cells, nuclear translocation of PGC-1α increased, as did p38 mitogen-activated protein kinase (MAPK) expression and phosphorylation. Our results suggest that p38 MAPK activation by δ-tocopherol contributes to PGC-1α activation and UCP1 induction.
Collapse
Affiliation(s)
- Rieko Tanaka-Yachi
- Department of Applied Bioscience, Kanagawa Institute of Technology, Kanagawa, Japan.
| | - Masato Shirasaki
- Department of Applied Bioscience, Kanagawa Institute of Technology, Kanagawa, Japan
| | - Rena Otsu
- Department of Applied Bioscience, Kanagawa Institute of Technology, Kanagawa, Japan
| | - Chie Takahashi-Muto
- Department of Clinical Nutrition, Kitasato Junior College of Health and Hygienic Sciences, Niigata, Japan
| | - Hideki Inoue
- Department of Applied Bioscience, Kanagawa Institute of Technology, Kanagawa, Japan
| | | | | | - Chikako Kiyose
- Department of Nutrition and Life Science, Kanagawa Institute of Technology, Kanagawa, Japan
| |
Collapse
|
187
|
Higa R, Hanada T, Teranishi H, Miki D, Seo K, Hada K, Shiraishi H, Mimata H, Hanada R, Kangawa K, Murai T, Nakao K. CD105 maintains the thermogenic program of beige adipocytes by regulating Smad2 signaling. Mol Cell Endocrinol 2018; 474:184-193. [PMID: 29574003 DOI: 10.1016/j.mce.2018.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 12/15/2022]
Abstract
Beige adipocytes are thermogenic adipocytes with developmental and anatomical properties distinct from those of classical brown adipocytes. Recent studies have revealed several key molecular regulators of beige adipocyte development. CD105, also called endoglin, is a membrane protein composed of TGF-β receptor complex. It regulates TGF-β-family signal transduction and vascular formation in vivo. We report here that CD105 maintains the thermogenic gene program of beige adipocytes by regulating Smad2 signaling. Cd105-/- adipocyte precursors showed augmented Smad2 activation and decreased expression of thermogenic genes such as Ucp1 and Prdm16-which encodes a transcriptional regulatory protein for thermogenesis-after adipogenic differentiation. Smad2 signaling augmentation by the constitutively active form of Smad2 decreased the expression of thermogenic genes in beige adipocytes. Loss of thermogenic activity in Cd105-/- beige adipocytes was rescued by Prdm16 expression. These data reveal a novel function of CD105 in beige adipocytes: maintaining their thermogenic program by regulating Smad2 signaling.
Collapse
Affiliation(s)
- Ryoko Higa
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; Department of Cell Biology, Oita University Faculty of Medicine, Yufu, Oita 879-5593, Japan
| | - Toshikatsu Hanada
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; Department of Cell Biology, Oita University Faculty of Medicine, Yufu, Oita 879-5593, Japan.
| | - Hitoshi Teranishi
- Department of Neurophysiology, Oita University Faculty of Medicine, Yufu, Oita 879-5593, Japan
| | - Daisuke Miki
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; Department of Urology, Oita University Faculty of Medicine, Yufu, Oita 879-5593, Japan
| | - Kazuyuki Seo
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Kazumasa Hada
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu, Oita 879-5593, Japan
| | - Hiroshi Shiraishi
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu, Oita 879-5593, Japan
| | - Hiromitsu Mimata
- Department of Urology, Oita University Faculty of Medicine, Yufu, Oita 879-5593, Japan
| | - Reiko Hanada
- Department of Neurophysiology, Oita University Faculty of Medicine, Yufu, Oita 879-5593, Japan
| | - Kenji Kangawa
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; National Cerebral and Cardiovascular Center, 565-8565 Osaka, Japan
| | - Toshiya Murai
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; Department of Psychiatry, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara, Sakyo, Kyoto 606-8507, Japan
| | - Kazuwa Nakao
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| |
Collapse
|
188
|
Silvester AJ, Aseer KR, Yun JW. Dietary polyphenols and their roles in fat browning. J Nutr Biochem 2018; 64:1-12. [PMID: 30414469 DOI: 10.1016/j.jnutbio.2018.09.028] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/08/2018] [Accepted: 09/19/2018] [Indexed: 02/08/2023]
Abstract
Discovery of the presence of brown adipose tissue (BAT) in newborn babies and adult humans, especially constitutively active brown fat or inducible beige fat, has led to the investigation of strategies employing BAT aimed at the development of novel therapeutic avenues for combating obesity and diabetes. Such antiobesity therapeutic tools include pharmaceutical and nutraceutical dietary polyphenols. Although there have been emerging notable advances in knowledge of and an increased amount of research related to brown and beige adipocyte developmental lineages and transcriptional regulators, current knowledge regarding whether and how food factors and environmental modifiers of BAT influence thermogenesis has not been extensively investigated. Therefore, in this review, we summarized recent updates on the exploration of dietary polyphenols while paying attention to the activation of BAT and thermogenesis. Specifically, we summarized findings pertaining to BAT metabolism, white adipose tissue (WAT) browning and thermogenic function of polyphenols (e.g., flavan-3-ols, green tea catechins, resveratrol, capsaicin/capsinoids, curcumin, thymol, chrysin, quercetin and berberine) that may foster a relatively safe and effective therapeutic option to improve metabolic health. We also deciphered the underlying proposed mechanisms through which these dietary polyphenols facilitate BAT activity and WAT browning. Characterization of thermogenic dietary factors may offer novel insight enabling revision of nutritional intervention strategies aimed at obesity and diabetes prevention and management. Moreover, identification of polyphenolic dietary factors among plant-derived natural compounds may provide information that facilitates nutritional intervention strategies against obesity, diabetes and metabolic syndrome.
Collapse
Affiliation(s)
| | - Kanikkai Raja Aseer
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea.
| |
Collapse
|
189
|
Nelson CN, List EO, Ieremia M, Constantin L, Chhabra Y, Kopchick JJ, Waters MJ. Growth hormone activated STAT5 is required for induction of beige fat in vivo. Growth Horm IGF Res 2018; 42-43:40-51. [PMID: 30193158 DOI: 10.1016/j.ghir.2018.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/21/2018] [Accepted: 08/27/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The anti-obesity actions of growth hormone (GH) led us to investigate if GH signaling is able to regulate beige/brite fat development of white adipose tissue (WAT). METHODS We studied WAT in GHR-391 mice engineered to be unable to activate STAT5 in response to GH, in mice with adipose specific deletion of GHR, in GHR-/- mice and in bGH transgenic mice. QPCR, immunoblots and immunohistochemistry were used to characterize WAT. The in vivo effects of β-3 adrenergic activation with CL-316,243 and that of FGF21 infusion were also studied. RESULTS GHR-391 mice had lower surface temperature than WT, with deficiency in β-oxidation and beiging transcripts including Ucp1. Oxidative phosphorylation complex subunit proteins were decreased dramatically in GHR-391 inguinal white adipose tissue (iWAT), but increased in bGH iWAT, as were proteins for beige/brown markers. In accord with its lack of β-3 adrenergic receptors, iWAT of GHR-391 mice did not beige in response to administration of the β-3 specific agonist CL-316,243 in contrast to WT mice. GHR-391 mice are deficient in FGF21, but unlike WT, infusion of the purified protein was without effect on extent of beiging. Finally, fat-specific deletion of the GHR replicated the loss of beiging associated transcripts. CONCLUSION In addition to promoting lipolysis, our study suggests that GH is able to promote formation of beige adipose tissue through activation of STAT5 and induction of Adrb3. This sensitizes WAT to adrenergic input, and may contribute to the anti-obesity actions of GH.
Collapse
Affiliation(s)
- Caroline N Nelson
- Institute for Molecular Bioscience, University of Queensland, 4069, Australia
| | - Edward O List
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| | - Makerita Ieremia
- Institute for Molecular Bioscience, University of Queensland, 4069, Australia
| | - Lena Constantin
- Institute for Molecular Bioscience, University of Queensland, 4069, Australia
| | - Yash Chhabra
- Institute for Molecular Bioscience, University of Queensland, 4069, Australia
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| | - Michael J Waters
- Institute for Molecular Bioscience, University of Queensland, 4069, Australia.
| |
Collapse
|
190
|
BATLAS: Deconvoluting Brown Adipose Tissue. Cell Rep 2018; 25:784-797.e4. [DOI: 10.1016/j.celrep.2018.09.044] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 08/20/2018] [Accepted: 09/12/2018] [Indexed: 01/18/2023] Open
|
191
|
Silvester AJ, Aseer KR, Jang HJ, Ryu R, Kwon EY, Park JG, Cho KH, Chaudhari HN, Choi MS, Suh PG, Yun JW. Loss of DJ-1 promotes browning of white adipose tissue in diet-induced obese mice. J Nutr Biochem 2018; 61:56-67. [PMID: 30189364 DOI: 10.1016/j.jnutbio.2018.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/21/2018] [Indexed: 11/26/2022]
Abstract
The seminal discovery of browning of white adipose tissue (WAT) holds great promise for the treatment of obesity and metabolic syndrome. DJ-1 is evolutionarily conserved across species, and mutations in DJ-1 have been identified in Parkinson's disease. Higher levels of DJ-1 are associated with obesity, but the underlying mechanism is less understood. Here, we report the previously unappreciated role of DJ-1 in white adipocyte biology in mature models of obesity. We used DJ-1 knockout (KO) mouse models and wild-type littermates maintained on a normal diet or high-fat diet as well as in vitro cell models to show the direct effects of DJ-1 depletion on adipocyte phenotype, thermogenic capacity, fat metabolism, and microenvironment profile. Global DJ-1 KO mice show increased sympathetic input to WAT and β3-adrenergic receptor intracellular signaling, leading to a previously unrecognized compensatory mechanism through browning of WAT with associated characteristics, including high mitochondrial contents, reduced lipid accumulation, adequate vascularization and attenuated autophagy. DJ-1 KO mice had normal body weight, energy balance, and adiposity, which were associated with protective effects on healthy WAT expansion by hyperplasia. Our findings revealed that browning of inguinal WAT occurred in DJ-1 KO mice that do not show increased predisposition to obesity and suggest that such potential mechanism may overcome the adverse metabolic consequences of obesity independent of an effect on body weight. Here, we provide the first direct evidence that targeting DJ-1 in adipocyte metabolic health may offer a unique therapeutic strategy for the treatment of obesity.
Collapse
Affiliation(s)
| | - Kanikkai Raja Aseer
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Hyun-Jun Jang
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Ri Ryu
- Department of Food Science and Nutrition, Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Eun-Young Kwon
- Department of Food Science and Nutrition, Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jae Gyu Park
- Advanced Bio Convergence Center, Pohang Technopark Foundation, Pohang 37668, Republic of Korea
| | - Kiu-Hyung Cho
- Gyeongbuk Institute for Bioindustry, Andong 31984, Republic of Korea
| | - Harmesh N Chaudhari
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Myung-Sook Choi
- Department of Food Science and Nutrition, Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Pann-Ghill Suh
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea.
| |
Collapse
|
192
|
Robbins A, Tom CATMB, Cosman MN, Moursi C, Shipp L, Spencer TM, Brash T, Devlin MJ. Low temperature decreases bone mass in mice: Implications for humans. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 167:557-568. [PMID: 30187469 DOI: 10.1002/ajpa.23684] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/21/2018] [Accepted: 06/26/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Humans exhibit significant ecogeographic variation in bone size and shape. However, it is unclear how significantly environmental temperature influences cortical and trabecular bone, making it difficult to recognize adaptation versus acclimatization in past populations. There is some evidence that cold-induced bone loss results from sympathetic nervous system activation and can be reduced by nonshivering thermogenesis (NST) via uncoupling protein (UCP1) in brown adipose tissue (BAT). Here we test two hypotheses: (1) low temperature induces impaired cortical and trabecular bone acquisition and (2) UCP1, a marker of NST in BAT, increases in proportion to degree of low-temperature exposure. METHODS We housed wildtype C57BL/6J male mice in pairs at 26 °C (thermoneutrality), 22 °C (standard), and 20 °C (cool) from 3 weeks to 6 or 12 weeks of age with access to food and water ad libitum (N = 8/group). RESULTS Cool housed mice ate more but had lower body fat at 20 °C versus 26 °C. Mice at 20 °C had markedly lower distal femur trabecular bone volume fraction, thickness, and connectivity density and lower midshaft femur cortical bone area fraction versus mice at 26 °C (p < .05 for all). UCP1 expression in BAT was inversely related to temperature. DISCUSSION These results support the hypothesis that low temperature was detrimental to bone mass acquisition. Nonshivering thermogenesis in brown adipose tissue increased in proportion to low-temperature exposure but was insufficient to prevent bone loss. These data show that chronic exposure to low temperature impairs bone architecture, suggesting climate may contribute to phenotypic variation in humans and other hominins.
Collapse
Affiliation(s)
- Amy Robbins
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan
| | | | - Miranda N Cosman
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan
| | - Cleo Moursi
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan
| | - Lillian Shipp
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan
| | - Taylor M Spencer
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan
| | - Timothy Brash
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan
| | - Maureen J Devlin
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
193
|
Kim S, Park JW, Lee MG, Nam KH, Park JH, Oh H, Lee J, Han J, Yi SA, Han JW. Reversine promotes browning of white adipocytes by suppressing miR-133a. J Cell Physiol 2018; 234:3800-3813. [PMID: 30132867 DOI: 10.1002/jcp.27148] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/09/2018] [Indexed: 12/30/2022]
Abstract
Brown adipocytes are characterized by a high number of uncoupling protein 1 (UCP1)-positive mitochondrial content and increased thermogenic capacity. As UCP1-enriched cells can consume lipids by generating heat, browning of white adipocytes is now highlighted as a promising approach for the prevention of obesity and obesity-associated metabolic diseases. Upon cold exposure or β-adrenergic stimuli, downregulation of microRNA-133 (miR-133) elevates the expression levels of PR domain containing 16 (Prdm16), which has been shown to be a brown adipose determination factor, in brown adipose tissue and subcutaneous white adipose tissues (WAT). Here, we show that treatment of reversine to white adipocytes induces browning via suppression of miR-133a. Reversine treatment promoted the expression of brown adipocyte marker genes, such as Prdm16 and UCP1, increasing the mitochondrial content, while decreasing the levels of miR-133a and white adipocyte marker genes. Ectopic expression of miR-133a mimic reversed the browning effects of the reversine treatment. Moreover, intraperitoneal administration of reversine in mice upregulated thermogenesis and resulted in resistance to high-fat diet-mediated weight gain as well as browning of subcutaneous and epididymal WAT. Taken together, we found a novel way to promote browning of white adipocytes through downregulation of miR-133a followed by activation of Prdm16, with a synthetic chemical, reversine.
Collapse
Affiliation(s)
- Saetbyul Kim
- Research Center for Epigenome Regulation, School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Jong Woo Park
- Research Center for Epigenome Regulation, School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Min Gyu Lee
- Research Center for Epigenome Regulation, School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Ki Hong Nam
- Research Center for Epigenome Regulation, School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Jee Hun Park
- Research Center for Epigenome Regulation, School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Hwamok Oh
- Research Center for Epigenome Regulation, School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Jieun Lee
- Research Center for Epigenome Regulation, School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Jihoon Han
- Research Center for Epigenome Regulation, School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Sang Ah Yi
- Research Center for Epigenome Regulation, School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Jeung-Whan Han
- Research Center for Epigenome Regulation, School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
194
|
Desjardins EM, Steinberg GR. Emerging Role of AMPK in Brown and Beige Adipose Tissue (BAT): Implications for Obesity, Insulin Resistance, and Type 2 Diabetes. Curr Diab Rep 2018; 18:80. [PMID: 30120579 DOI: 10.1007/s11892-018-1049-6] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The global prevalence of type 2 diabetes (T2D) is escalating at alarming rates, demanding the development of additional classes of therapeutics to further reduce the burden of disease. Recent studies have indicated that increasing the metabolic activity of brown and beige adipose tissue may represent a novel means to reduce circulating glucose and lipids in people with T2D. The AMP-activated protein kinase (AMPK) is a cellular energy sensor that has recently been demonstrated to be important in potentially regulating the metabolic activity of brown and beige adipose tissue. The goal of this review is to summarize recent work describing the role of AMPK in brown and beige adipose tissue, focusing on its role in adipogenesis and non-shivering thermogenesis. RECENT FINDINGS Ablation of AMPK in mouse adipocytes results in cold intolerance, a reduction in non-shivering thermogenesis in brown adipose tissue (BAT), and the development of non-alcoholic fatty liver disease (NAFLD) and insulin resistance; effects associated with a defect in mitochondrial specific autophagy (mitophagy) within BAT. The effects of a β3-adrenergic agonist on the induction of BAT thermogenesis and the browning of white adipose tissue (WAT) are also blunted in mice lacking adipose tissue AMPK. A specific AMPK activator, A-769662, also results in the activation of BAT and the browning of WAT, effects which may involve demethylation of the PR domain containing 16 (Prdm16) promoter region, which is important for BAT development. AMPK plays an important role in the development and maintenance of brown and beige adipose tissue. Adipose tissue AMPK is reduced in people with insulin resistance, consistent with findings that mice lacking adipocyte AMPK develop greater NAFLD and insulin resistance. These data suggest that pharmacologically targeting adipose tissue AMPK may represent a promising strategy to enhance energy expenditure and reduce circulating glucose and lipids, which may be effective for the treatment of NAFLD and T2D.
Collapse
Affiliation(s)
- Eric M Desjardins
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8N 3Z5, Canada
| | - Gregory R Steinberg
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8N 3Z5, Canada.
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8N 3Z5, Canada.
| |
Collapse
|
195
|
Fu W, Liu Y, Sun C, Yin H. Transient p53 inhibition sensitizes aged white adipose tissue for beige adipocyte recruitment by blocking mitophagy. FASEB J 2018; 33:844-856. [PMID: 30052487 DOI: 10.1096/fj.201800577r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Aging of white adipose tissue (WAT) is associated with reduced insulin sensitivity, which contributes to whole-body glucose intolerance. WAT aging in mice impairs cold-induced beige adipocyte recruitment (beiging), which has been attributed to the senescence of adipose progenitor cells. Tumor suppressor p53 has also been implicated in WAT aging. However, whether p53-related cellular aging in mature white adipocytes is causative of age-impaired WAT beiging remains unknown. It is also unclear whether transient p53 inhibition can rescue WAT beiging. Herein, we report that p53 increased in adipose tissues of 28-wk-old (aged) mice with impaired beiging capability. Cold exposure decreased p53 in beiging WAT of young mice but not in aged mice. In aged mice, inducible p53 ablation in differentiated adipocytes restored cold-induced WAT beiging and augmented whole-body energy expenditure and insulin sensitivity. Transient pharmacological inhibition of p53 led to the same beneficial effects. Mechanistically, cold exposure repressed autophagy in beiging WAT of young mice yet increased autophagy in aged WAT. p53-ablation reduced microtubule-associated protein light chain 3-mediated mitochondria clearance (mitophagy) and hence facilitated the increase of mitochondria during beiging. These findings suggest that p53-induced mitophagy in aged white adipocytes impedes WAT beiging and may be therapeutically targeted to improve insulin sensitivity in aged WAT.-Fu, W., Liu, Y., Sun, C., Yin, H. Transient p53 inhibition sensitizes aged white adipose tissue for beige adipocyte recruitment by blocking mitophagy.
Collapse
Affiliation(s)
- Wenyan Fu
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA.,Center for Molecular Medicine, The University of Georgia, Athens, Georgia, USA; and
| | - Yang Liu
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA.,Center for Molecular Medicine, The University of Georgia, Athens, Georgia, USA; and
| | - Christina Sun
- Department of Biological Sciences, Augusta University, Augusta, Georgia, USA
| | - Hang Yin
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA.,Center for Molecular Medicine, The University of Georgia, Athens, Georgia, USA; and
| |
Collapse
|
196
|
Abstract
Obesity has become epidemic worldwide, which triggers several obesity-associated complications. Obesity is characterized by excess fat storage mainly in the visceral white adipose tissue (vWAT), subcutaneous WAT (sWAT), and other tissues. Myriad studies have demonstrated the crucial role of canonical Wnt/β-catenin cascade in the development of organs and physiological homeostasis, whereas recent studies show that genetic variations/mutations in the Wnt/β-catenin pathway are associated with human metabolic diseases. In this review, we highlight the regulation of updated Wnt/β-catenin signaling in obesity, especially the distinctly depot-specific roles between subcutaneous and visceral adipose tissue under high-fed diet stimulation and WAT browning process.
Collapse
Affiliation(s)
- Na Chen
- Department of Endocrinology and Metabolism, China National Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiqiu Wang
- Department of Endocrinology and Metabolism, China National Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
197
|
Grigoraş A, Amalinei C, Balan RA, Giuşcă SE, Avădănei ER, Lozneanu L, Căruntu ID. Adipocytes spectrum - From homeostasia to obesity and its associated pathology. Ann Anat 2018; 219:102-120. [PMID: 30049662 DOI: 10.1016/j.aanat.2018.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 06/17/2018] [Indexed: 02/07/2023]
Abstract
Firstly identified by anatomists, the fat tissue is nowadays an area of intense research due to increased global prevalence of obesity and its associated diseases. Histologically, there are four types of fat tissue cells which are currently recognized (white, brown, beige, and perivascular adipocytes). Therefore, in this study we are reviewing the most recent data regarding the origin, structure, and molecular mechanisms involved in the development of adipocytes. White adipocytes can store triglycerides as a consequence of lipogenesis, under the regulation of growth hormone or leptin and adiponectin, and release fatty acids resulted from lipolysis, under the regulation of the sympathetic nervous system, glucocorticoids, TNF-α, insulin, and natriuretic peptides. Brown adipocytes possess a mitochondrial transmembrane protein thermogenin or UCP1 which allows heat generation. Recently, thermogenic, UCP positive adipocytes have been identified in the subcutaneous white adipose tissue and have been named beige adipocytes. The nature of these cells is still controversial, as current theories are suggesting their origin either by transdifferentiation of white adipocytes, or by differentiation from an own precursor cell. Perivascular adipocytes surround most of the arteries, exhibiting a supportive role and being involved in the maintenance of intravascular temperature. Thoracic perivascular adipocytes resemble brown adipocytes, while abdominal ones are more similar to white adipocytes and, consequently, are involved in obesity-induced inflammatory reactions. The factors involved in the regulation of adipose stem cells differentiation may represent potential pathways to inhibit or to divert adipogenesis. Several molecules, such as pro-adipogenic factors (FGF21, BMP7, BMP8b, and Cox-2), cell surface proteins or receptors (Asc-1, PAT2, P2RX5), and hypothalamic receptors (MC4R) have been identified as the most promising targets for the development of future therapies. Further investigations are necessary to complete the knowledge about adipose tissue and the development of a new generation of therapeutic tools based on molecular targets.
Collapse
Affiliation(s)
- Adriana Grigoraş
- Department of Morphofunctional Sciences I, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania; Department of Histopathology, Institute of Legal Medicine, Iasi, Romania.
| | - Cornelia Amalinei
- Department of Morphofunctional Sciences I, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania; Department of Histopathology, Institute of Legal Medicine, Iasi, Romania.
| | - Raluca Anca Balan
- Department of Morphofunctional Sciences I, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania.
| | - Simona Eliza Giuşcă
- Department of Morphofunctional Sciences I, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania.
| | - Elena Roxana Avădănei
- Department of Morphofunctional Sciences I, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania.
| | - Ludmila Lozneanu
- Department of Morphofunctional Sciences I, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania.
| | - Irina-Draga Căruntu
- Department of Morphofunctional Sciences I, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania.
| |
Collapse
|
198
|
Panati K, Narala VR, Narasimha VR, Derangula M, Arva Tatireddigari VRR, Yeguvapalli S. Expression, purification and biological characterisation of recombinant human irisin (12.5 kDa). J Genet Eng Biotechnol 2018; 16:459-466. [PMID: 30733760 PMCID: PMC6354006 DOI: 10.1016/j.jgeb.2018.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/21/2018] [Accepted: 06/26/2018] [Indexed: 11/05/2022]
Abstract
Fibronectin type III domain containing 5 (FNDC5) is a transmembrane protein. Upon cleavage, it yields a peptide called irisin that is supposedly bind to an unknown receptor and facilitates browning of white adipose tissue (WAT). Increased levels of irisin are associated with increased levels of energy expenditure markers PGC-1α, UCP-1, besides abundance of beige adipocytes in WAT. Though varied sizes of irisin were reported in humans and rodents it is not yet clear about the actual size of the irisin produced physiologically. Hence, we cloned and expressed human irisin (32–143 aa of FNDC5) in Escherichia coli based on the proposed cleavage site that yields 12.5 kDa peptide to study its antigenicity and other biological functions in vitro. We purified recombinant human irisin (rh-irisin) to 95% homogeneity with simple purification method with a yield of 25 mg/g wet cell pellet. rh-irisin has been detected by commercially available antibodies from different sources with similar antigenicity. Biological activity of the rh-irisin was confirmed by using 3T3-L1 pre-adipocyte differentiation by Oil red O staining. Further, rh-irisin treatment on pre-adipocytes showed increased expression of markers associated with energy expenditure. As it is involved in energy expenditure process, it could be considered as potential therapeutic option for various metabolic diseases.
Collapse
Affiliation(s)
- Kalpana Panati
- Department of Biotechnology, Government College for Men, Kadapa, AP 516 004, India.,Department of Biotechnology, Sri Venkateswara University, Tirupati, AP 517 502, India
| | | | | | - Madhavi Derangula
- Department of Zoology, Yogi Vemana University, Kadapa, AP 516 005, India
| | | | | |
Collapse
|
199
|
A novel role for PTK2B in cultured beige adipocyte differentiation. Biochem Biophys Res Commun 2018; 501:851-857. [DOI: 10.1016/j.bbrc.2018.05.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 12/27/2022]
|
200
|
Sponton CH, Kajimura S. Multifaceted Roles of Beige Fat in Energy Homeostasis Beyond UCP1. Endocrinology 2018; 159:2545-2553. [PMID: 29757365 PMCID: PMC6692864 DOI: 10.1210/en.2018-00371] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/05/2018] [Indexed: 02/07/2023]
Abstract
Beige adipocytes are an inducible form of thermogenic adipose cells that emerge within the white adipose tissue in response to a variety of environmental stimuli, such as chronic cold acclimation. Similar to brown adipocytes that reside in brown adipose tissue depots, beige adipocytes are also thermogenic; however, beige adipocytes possess unique, distinguishing characteristics in their developmental regulation and biological function. This review highlights recent advances in our understanding of beige adipocytes, focusing on the diverse roles of beige fat in the regulation of energy homeostasis that are independent of the canonical thermogenic pathway via uncoupling protein 1.
Collapse
Affiliation(s)
- Carlos Henrique Sponton
- Diabetes Center, University of California, San Francisco, San Francisco, California
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, San Francisco, California
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California
| | - Shingo Kajimura
- Diabetes Center, University of California, San Francisco, San Francisco, California
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, San Francisco, California
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California
- Correspondence: Shingo Kajimura, PhD, Department of Cell and Tissue Biology, University of California, San Francisco, 35 Medical Center Way, RMB1023, Box 0669, San Francisco, California 94143. E-mail:
| |
Collapse
|