151
|
Go YM, Walker DI, Soltow QA, Uppal K, Wachtman LM, Strobel FH, Pennell K, Promislow DEL, Jones DP. Metabolome-wide association study of phenylalanine in plasma of common marmosets. Amino Acids 2014; 47:589-601. [PMID: 25526869 DOI: 10.1007/s00726-014-1893-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 12/03/2014] [Indexed: 01/13/2023]
Abstract
Little systematic knowledge exists concerning the impacts of cumulative lifelong exposure, termed the exposome, on requirements for nutrients. Phenylalanine (Phe) is an essential dietary amino acid with an aromatic ring structure similar to endogenous metabolites, dietary compounds and environmental agents. Excess plasma Phe in genetic disease or nutritional deficiency of Phe has adverse health consequences. In principle, structurally similar chemicals interfering with Phe utilization could alter Phe requirement at an individual level. As a strategy to identify components of the exposome that could interfere with Phe utilization, we tested for metabolites correlating with Phe concentration in plasma of a non-human primate species, common marmosets (Callithrix jacchus). The results of tests for more than 5,000 chemical features detected by high-resolution metabolomics showed 17 positive correlations with Phe metabolites and other amino acids. Positive and negative correlations were also observed for 33 other chemicals, which included matches to endogenous metabolites and dietary, microbial and environmental chemicals in database searches. Chemical similarity analysis showed many of the matches had high structural similarity to Phe. Together, the results show that chemicals in marmoset plasma could impact Phe utilization. Such chemicals could contribute to early lifecycle developmental disorders when neurological development is vulnerable to Phe levels.
Collapse
Affiliation(s)
- Young-Mi Go
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, 205 Whitehead Research Center, Atlanta, GA, 30322, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Lakshminarayanan B, Stanton C, O'Toole PW, Ross RP. Compositional dynamics of the human intestinal microbiota with aging: implications for health. J Nutr Health Aging 2014. [PMID: 25389954 DOI: 10.1007/s12603-014-0513-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The human gut contains trillions of microbes which form an essential part of the complex ecosystem of the host. This microbiota is relatively stable throughout adult life, but may fluctuate over time with aging and disease. The gut microbiota serves a number of functions including roles in energy provision, nutrition and also in the maintenance of host health such as protection against pathogens. This review summarizes the age-related changes in the microbiota of the gastrointestinal tract (GIT) and the link between the gut microbiota in health and disease. Understanding the composition and function of the gut microbiota along with the changes it undergoes overtime should aid the design of novel therapeutic strategies to counteract such alterations. These strategies include probiotic and prebiotic preparations as well as targeted nutrients, designed to enrich the gut microbiota of the aging population.
Collapse
Affiliation(s)
- B Lakshminarayanan
- R. Paul Ross, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland. , Tel: 00353 (0)25 42229, Fax: 00353 (0)25 42340
| | | | | | | |
Collapse
|
153
|
Lakshminarayanan B, Stanton C, O'Toole PW, Ross RP. Compositional dynamics of the human intestinal microbiota with aging: implications for health. J Nutr Health Aging 2014; 18:773-86. [PMID: 25389954 DOI: 10.1007/s12603-014-0549-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The human gut contains trillions of microbes which form an essential part of the complex ecosystem of the host. This microbiota is relatively stable throughout adult life, but may fluctuate over time with aging and disease. The gut microbiota serves a number of functions including roles in energy provision, nutrition and also in the maintenance of host health such as protection against pathogens. This review summarizes the age-related changes in the microbiota of the gastrointestinal tract (GIT) and the link between the gut microbiota in health and disease. Understanding the composition and function of the gut microbiota along with the changes it undergoes overtime should aid the design of novel therapeutic strategies to counteract such alterations. These strategies include probiotic and prebiotic preparations as well as targeted nutrients, designed to enrich the gut microbiota of the aging population.
Collapse
Affiliation(s)
- B Lakshminarayanan
- R. Paul Ross, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland. , Tel: 00353 (0)25 42229, Fax: 00353 (0)25 42340
| | | | | | | |
Collapse
|
154
|
O’Connor JE, Herrera G, Martínez-Romero A, de Oyanguren FS, Díaz L, Gomes A, Balaguer S, Callaghan RC. Systems Biology and immune aging. Immunol Lett 2014; 162:334-45. [DOI: 10.1016/j.imlet.2014.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 09/12/2014] [Indexed: 10/24/2022]
|
155
|
Montoliu I, Scherer M, Beguelin F, DaSilva L, Mari D, Salvioli S, Martin FPJ, Capri M, Bucci L, Ostan R, Garagnani P, Monti D, Biagi E, Brigidi P, Kussmann M, Rezzi S, Franceschi C, Collino S. Serum profiling of healthy aging identifies phospho- and sphingolipid species as markers of human longevity. Aging (Albany NY) 2014; 6:9-25. [PMID: 24457528 PMCID: PMC3927806 DOI: 10.18632/aging.100630] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
As centenarians well represent the model of healthy aging, there are many important implications in revealing the underlying molecular mechanisms behind such successful aging. By combining NMR metabonomics and shot-gun lipidomics in serum we analyzed metabolome and lipidome composition of a group of centenarians with respect to elderly individuals. Specifically, NMR metabonomics profiling of serum revealed that centenarians are characterized by a metabolic phenotype distinct from that of elderly subjects, in particular regarding amino acids and lipid species. Shot- gun lipidomics approach displays unique changes in lipids biosynthesis in centenarians, with 41 differently abundant lipid species with respect to elderly subjects. These findings reveal phospho/sphingolipids as putative markers and biological modulators of healthy aging, in humans. Considering the particular actions of these metabolites, these data are suggestive of a better counteractive antioxidant capacity and a well-developed membrane lipid remodelling process in the healthy aging phenotype.
Collapse
Affiliation(s)
- Ivan Montoliu
- NESTEC SA, Nestlé Research Center, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
O'Connor JE, Herrera G, Martínez-Romero A, Oyanguren FSD, Díaz L, Gomes A, Balaguer S, Callaghan RC. WITHDRAWN: Systems Biology and Immune Aging. Immunol Lett 2014:S0165-2478(14)00197-7. [PMID: 25251659 DOI: 10.1016/j.imlet.2014.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 09/12/2014] [Indexed: 10/24/2022]
Abstract
The Publisher regrets that this article is an accidental duplication of anarticle that has already been published, http://dx.doi.org/10.1016/j.imlet.2014.09.009. The duplicate article has therefore been withdrawn.
Collapse
Affiliation(s)
- José-Enrique O'Connor
- Laboratory of Translational Cytomics, Joint Research Unit, The University of Valencia and Principe Felipe Research Center, Valencia, Spain; Cytometry Laboratory, Incliva Foundation, Clinical University Hospital, The University of Valencia, Valencia, Spain.
| | - Guadalupe Herrera
- Laboratory of Translational Cytomics, Joint Research Unit, The University of Valencia and Principe Felipe Research Center, Valencia, Spain; Cytometry Laboratory, Incliva Foundation, Clinical University Hospital, The University of Valencia, Valencia, Spain
| | - Alicia Martínez-Romero
- Cytometry Technological Service, Principe Felipe Research Center, Valencia, Spain; Cytometry Laboratory, Incliva Foundation, Clinical University Hospital, The University of Valencia, Valencia, Spain
| | - Francisco Sala-de Oyanguren
- Laboratory of Translational Cytomics, Joint Research Unit, The University of Valencia and Principe Felipe Research Center, Valencia, Spain; Cytometry Laboratory, Incliva Foundation, Clinical University Hospital, The University of Valencia, Valencia, Spain
| | - Laura Díaz
- Laboratory of Translational Cytomics, Joint Research Unit, The University of Valencia and Principe Felipe Research Center, Valencia, Spain; Cytometry Laboratory, Incliva Foundation, Clinical University Hospital, The University of Valencia, Valencia, Spain
| | - Angela Gomes
- Laboratory of Translational Cytomics, Joint Research Unit, The University of Valencia and Principe Felipe Research Center, Valencia, Spain; Cytometry Laboratory, Incliva Foundation, Clinical University Hospital, The University of Valencia, Valencia, Spain
| | - Susana Balaguer
- Laboratory of Translational Cytomics, Joint Research Unit, The University of Valencia and Principe Felipe Research Center, Valencia, Spain; Cytometry Laboratory, Incliva Foundation, Clinical University Hospital, The University of Valencia, Valencia, Spain
| | - Robert C Callaghan
- Department of Pathology, Faculty of Medicine, The University of Valencia, Valencia, Spain; Cytometry Laboratory, Incliva Foundation, Clinical University Hospital, The University of Valencia, Valencia, Spain
| |
Collapse
|
157
|
Cho M, Suh Y. Genome maintenance and human longevity. Curr Opin Genet Dev 2014; 26:105-15. [PMID: 25151201 DOI: 10.1016/j.gde.2014.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 07/16/2014] [Accepted: 07/18/2014] [Indexed: 12/18/2022]
Abstract
Accumulation of DNA damage and mutations is considered an important causal factor in age-related diseases. Genetic defects in DNA repair cause premature onset and accelerated progression of age-related diseases and a shorter life span in humans and mice, providing strong evidence that genome maintenance is a bona fide longevity assurance pathway. However, the contribution of genome maintenance to human longevity itself remains to be established. Here, we review the results of human genetics studies, including genome wide association studies, and attempted to catalogue all genes involved in major DNA repair pathways that harbor variants associated with longevity. We hope to provide a comprehensive review to facilitate future endeavors aimed at uncovering the functional role of genome maintenance genes in human longevity.
Collapse
Affiliation(s)
- Miook Cho
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yousin Suh
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
158
|
Abstract
Age-related alterations in human gut microbiota composition have been thoroughly described, but a detailed functional description of the intestinal bacterial coding capacity is still missing. In order to elucidate the contribution of the gut metagenome to the complex mosaic of human longevity, we applied shotgun sequencing to total fecal bacterial DNA in a selection of samples belonging to a well-characterized human ageing cohort. The age-related trajectory of the human gut microbiome was characterized by loss of genes for shortchain fatty acid production and an overall decrease in the saccharolytic potential, while proteolytic functions were more abundant than in the intestinal metagenome of younger adults. This altered functional profile was associated with a relevant enrichment in "pathobionts", i.e. opportunistic pro-inflammatory bacteria generally present in the adult gut ecosystem in low numbers. Finally, as a signature for long life we identified 116 microbial genes that significantly correlated with ageing. Collectively, our data emphasize the relationship between intestinal bacteria and human metabolism, by detailing the modifications in the gut microbiota as a consequence of and/or promoter of the physiological changes occurring in the human host upon ageing.
Collapse
|
159
|
Silverstein MG, Ordanes D, Wylie AT, Files DC, Milligan C, Presley TD, Kavanagh K. Inducing Muscle Heat Shock Protein 70 Improves Insulin Sensitivity and Muscular Performance in Aged Mice. J Gerontol A Biol Sci Med Sci 2014; 70:800-8. [PMID: 25123646 DOI: 10.1093/gerona/glu119] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/21/2014] [Indexed: 01/14/2023] Open
Abstract
Heat shock proteins (HSPs) are molecular chaperones with roles in longevity and muscular preservation. We aimed to show elevating HSP70 improves indices of health span. Aged C57/BL6 mice acclimated to a western diet were randomized into: geranylgeranylacetone (GGA)-treated (100 mg/kg/d), biweekly heat therapy (HT), or control. The GGA and HT are well-known pharmacological and environmental inducers of HSP70, respectively. Assessments before and after 8 weeks of treatment included glycemic endpoints, body composition, and muscular endurance, power, and perfusion. An HT mice had more than threefold, and GGA mice had a twofold greater HSP70 compared with control. Despite comparable body compositions, both treatment groups had significantly better insulin sensitivity and insulin signaling capacity. Compared with baseline, HT mice ran 23% longer than at study start, which was significantly more than GGA or control. Hanging ability (muscular endurance) also tended to be best preserved in HT mice. Muscle power, contractile force, capillary perfusion, and innervation were not different. Heat treatment has a clear benefit on muscular endurance, whereas HT and GGA both improved insulin sensitivity. Different effects may relate to muscle HSP70 levels. An HSP induction could be a promising approach for improving health span in the aged mice.
Collapse
Affiliation(s)
| | | | | | - D Clark Files
- Internal Medicine-Pulmonary, Critical Care, Allergy and Immunology, and
| | - Carol Milligan
- Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | | | | |
Collapse
|
160
|
Nieman DC, Shanely RA, Luo B, Meaney MP, Dew DA, Pappan KL. Metabolomics approach to assessing plasma 13- and 9-hydroxy-octadecadienoic acid and linoleic acid metabolite responses to 75-km cycling. Am J Physiol Regul Integr Comp Physiol 2014; 307:R68-74. [PMID: 24760997 DOI: 10.1152/ajpregu.00092.2014] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bioactive oxidized linoleic acid metabolites (OXLAMs) include 13- and 9-hydroxy-octadecadienoic acid (13-HODE + 9-HODE) and have been linked to oxidative stress, inflammation, and numerous pathological and physiological states. The purpose of this study was to measure changes in plasma 13-HODE + 9-HODE following a 75-km cycling bout and identify potential linkages to linoleate metabolism and established biomarkers of oxidative stress (F2-isoprostanes) and inflammation (cytokines) using a metabolomics approach. Trained male cyclists (N = 19, age 38.0 ± 1.6 yr, wattsmax 304 ± 10.5) engaged in a 75-km cycling time trial on their own bicycles using electromagnetically braked cycling ergometers (2.71 ± 0.07 h). Blood samples were collected preexercise, immediately post-, 1.5 h post-, and 21 h postexercise, and analyzed for plasma cytokines (IL-6, IL-8, IL-10, tumor necrosis factor-α, monocyte chemoattractant protein-1, granulocyte colony-stimulating factor), F2-isoprostanes, and shifts in metabolites using global metabolomics procedures with gas chromatography mass spectrometry (GC-MS) and liquid chromatography mass spectrometry (LC-MS). 13-HODE + 9-HODE increased 3.1-fold and 1.7-fold immediately post- and 1.5 h postexercise (both P < 0.001) and returned to preexercise levels by 21-h postexercise. Post-75-km cycling plasma levels of 13-HODE + 9-HODE were not significantly correlated with increases in plasma cytokines but were positively correlated with postexercise F2-isoprostanes (r = 0.75, P < 0.001), linoleate (r = 0.54, P = 0.016), arachidate (r = 0.77, P < 0.001), 12,13-dihydroxy-9Z-octadecenoate (12,13-DiHOME) (r = 0.60, P = 0.006), dihomo-linolenate (r = 0.57, P = 0.011), and adrenate (r = 0.56, P = 0.013). These findings indicate that prolonged and intensive exercise caused a transient, 3.1-fold increase in the stable linoleic acid oxidation product 13-HODE + 9-HODE and was related to increases in F2-isoprostanes, linoleate, and fatty acids in the linoleate conversion pathway. These data support the use of 13-HODE + 9-HODE as an oxidative stress biomarker in acute exercise investigations.
Collapse
Affiliation(s)
- David C Nieman
- Appalachian State University, Human Performance Lab, North Carolina Research Campus, Kannapolis, North Carolina;
| | - R Andrew Shanely
- Appalachian State University, Human Performance Lab, North Carolina Research Campus, Kannapolis, North Carolina
| | - Beibei Luo
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China; and
| | - Mary Pat Meaney
- Appalachian State University, Human Performance Lab, North Carolina Research Campus, Kannapolis, North Carolina
| | - Dustin A Dew
- Appalachian State University, Human Performance Lab, North Carolina Research Campus, Kannapolis, North Carolina
| | | |
Collapse
|
161
|
Garvey SM, Dugle JE, Kennedy AD, McDunn JE, Kline W, Guo L, Guttridge DC, Pereira SL, Edens NK. Metabolomic profiling reveals severe skeletal muscle group-specific perturbations of metabolism in aged FBN rats. Biogerontology 2014; 15:217-32. [PMID: 24652515 PMCID: PMC4019835 DOI: 10.1007/s10522-014-9492-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 02/11/2014] [Indexed: 02/06/2023]
Abstract
Mammalian skeletal muscles exhibit age-related adaptive and pathological remodeling. Several muscles in particular undergo progressive atrophy and degeneration beyond median lifespan. To better understand myocellular responses to aging, we used semi-quantitative global metabolomic profiling to characterize trends in metabolic changes between 15-month-old adult and 32-month-old aged Fischer 344 × Brown Norway (FBN) male rats. The FBN rat gastrocnemius muscle exhibits age-dependent atrophy, whereas the soleus muscle, up until 32 months, exhibits markedly fewer signs of atrophy. Both gastrocnemius and soleus muscles were analyzed, as well as plasma and urine. Compared to adult gastrocnemius, aged gastrocnemius showed evidence of reduced glycolytic metabolism, including accumulation of glycolytic, glycogenolytic, and pentose phosphate pathway intermediates. Pyruvate was elevated with age, yet levels of citrate and nicotinamide adenine dinucleotide were reduced, consistent with mitochondrial abnormalities. Indicative of muscle atrophy, 3-methylhistidine and free amino acids were elevated in aged gastrocnemius. The monounsaturated fatty acids oleate, cis-vaccenate, and palmitoleate also increased in aged gastrocnemius, suggesting altered lipid metabolism. Compared to gastrocnemius, aged soleus exhibited far fewer changes in carbohydrate metabolism, but did show reductions in several glycolytic intermediates, fumarate, malate, and flavin adenine dinucleotide. Plasma biochemicals showing the largest age-related increases included glycocholate, heme, 1,5-anhydroglucitol, 1-palmitoleoyl-glycerophosphocholine, palmitoleate, and creatine. These changes suggest reduced insulin sensitivity in aged FBN rats. Altogether, these data highlight skeletal muscle group-specific perturbations of glucose and lipid metabolism consistent with mitochondrial dysfunction in aged FBN rats.
Collapse
Affiliation(s)
- Sean M Garvey
- Abbott Nutrition R&D, 3300 Stelzer Road, Bldg RP4-2, Columbus, OH, 43219, USA,
| | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Reprint of: Musculoskeletal system in the old age and the demand for healthy ageing biomarkers. Mech Ageing Dev 2014; 136-137:94-100. [PMID: 24662191 DOI: 10.1016/j.mad.2014.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Population ageing has emerged as a major demographic trend worldwide due to improved health and longevity. This global ageing phenomenon will have a major impact on health-care systems worldwide due to increased morbidity and greater needs for hospitalization/institutionalization. As the ageing population increases worldwide, there is an increasing awareness not only of increased longevity but also of the importance of "healthy ageing" and "quality of life". Yet, the age related chronic inflammation is believed to be pathogenic with regards to its contribution to frailty and degenerative disorders. In particular, the frailty syndrome is increasingly being considered as a key risk indicator of adverse health outcomes. In addition, elderly may be also prone to be resistant to anabolic stimuli which is likely a key factor in the loss of skeletal muscle mass with ageing. Vital to understand these key biological processes is the development of biological markers, through system biology approaches, aiding at strategies for tailored therapeutic and personalized nutritional program. Overall aim is to prevent or attenuate decline of key physiological functions required to live an active, independent life. This review focus on core indicators of health and functions in older adults, where nutrition and tailored personalized programs could exhibit preventive roles, and where the aid of metabolomics technologies are increasingly displaying potential in revealing key molecular mechanisms/targets linked to specific ageing and/or healthy ageing processes.
Collapse
|
163
|
Chichester L, Wylie AT, Craft S, Kavanagh K. Muscle heat shock protein 70 predicts insulin resistance with aging. J Gerontol A Biol Sci Med Sci 2014; 70:155-62. [PMID: 24532784 DOI: 10.1093/gerona/glu015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Heat shock protein 70 (HSP70) protects cells from accumulating damaged proteins and age-related functional decline. We studied plasma and skeletal muscle (SkM) HSP70 levels in adult vervet monkeys (life span ≈ 25 years) at baseline and after 4 years (≈10 human years). Insulin, glucose, homeostasis model assessment scores, triglycerides, high-density lipoprotein and total plasma cholesterol, body weight, body mass index, and waist circumference were measured repeatedly, with change over time estimated by individual regression slopes. Low baseline SkM HSP70 was a proximal marker for developing insulin resistance and was seen in monkeys whose insulin and homeostasis model assessment increased more rapidly over time. Changes in SkM HSP70 inversely correlated with insulin and homeostasis model assessment trajectories such that a positive change in SkM level was beneficial. The strength of the relationship between changes in SkM HSP70 and insulin remained unchanged after adjustment for all covariates. Younger monkeys drove these relationships, with HSP70 alone being predictive of insulin changes with aging. Plasma and SkM HSP70 were unrelated and HSP70 release from peripheral blood mononuclear cells was positively associated with insulin concentrations in contrast to SkM. Results from aged humans confirmed this positive association of plasma HSP70 and insulin. In conclusion, higher levels of SkM HSP70 protect against insulin resistance development during healthy aging.
Collapse
Affiliation(s)
| | | | - Suzanne Craft
- Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | | |
Collapse
|
164
|
Zhou Y, Liao Q, Lin M, Deng X, Zhang P, Yao M, Zhang L, Xie Z. Combination of ¹H NMR- and GC-MS-based metabonomics to study on the toxicity of Coptidis Rhizome in rats. PLoS One 2014; 9:e88281. [PMID: 24505462 PMCID: PMC3914965 DOI: 10.1371/journal.pone.0088281] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 01/03/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Coptidis Rhizome (CR), widely applied to treat with heat and toxicity, is one of the most commonly used traditional Chinese medicine (TCM), however, an extensive dosage can induce toxicity. Diarrhea is one of the most frequent side effects of CR treatment. METHODOLOGY/PRINCIPAL FINDINGS In this study, metabonomics was combined with the multivariate statistical analysis to discover the endogenous metabolites which related to the diarrheal induced by CR. The male Sprague-Dawley rats were dosed with 4.95 g CR/kg weight. Urine samples were collected at day -1 (before treatment), and days 14 and 21 for NMR analysis. Serum and tissues were collected at day 14 for GC-MS analysis and histopathological examination, respectively. The urine and serum metabolic profiles provided clearer distinction between CR-treated group and control group, which was confirmed by body weight change and diarrhea. Through multivariate statistical analysis, 12 marker metabolites from ¹H NMR and 8 ones from GC-MS have been found. Among those metabolites, hippurate, acetate, alanine, glycine and glutamate are likely to break the balance of gut microbiota, whereas, lactate and 2-ketoisovalerate showed association with energy metabolism. Meanwhile, we observed that the CR-induced toxicity will recover when the treatment was stopped. CONCLUSIONS/SIGNIFICANCE These results suggest that the main reason for the CR-associated diarrhea might be disturbance in the normal gut microbiota. This metabonomics approach may provide an effective way to study the alteration of gut microbiota, which is expected to find broader application in other drug-induced gastrointestinal reaction assessment.
Collapse
Affiliation(s)
- Yuting Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Qiongfeng Liao
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Manna Lin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Xuejiao Deng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Peiting Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Meicun Yao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Lei Zhang
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
165
|
Rueedi R, Ledda M, Nicholls AW, Salek RM, Marques-Vidal P, Morya E, Sameshima K, Montoliu I, Da Silva L, Collino S, Martin FP, Rezzi S, Steinbeck C, Waterworth DM, Waeber G, Vollenweider P, Beckmann JS, Le Coutre J, Mooser V, Bergmann S, Genick UK, Kutalik Z. Genome-wide association study of metabolic traits reveals novel gene-metabolite-disease links. PLoS Genet 2014; 10:e1004132. [PMID: 24586186 PMCID: PMC3930510 DOI: 10.1371/journal.pgen.1004132] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 12/10/2013] [Indexed: 12/15/2022] Open
Abstract
Metabolic traits are molecular phenotypes that can drive clinical phenotypes and may predict disease progression. Here, we report results from a metabolome- and genome-wide association study on (1)H-NMR urine metabolic profiles. The study was conducted within an untargeted approach, employing a novel method for compound identification. From our discovery cohort of 835 Caucasian individuals who participated in the CoLaus study, we identified 139 suggestively significant (P<5×10(-8)) and independent associations between single nucleotide polymorphisms (SNP) and metabolome features. Fifty-six of these associations replicated in the TasteSensomics cohort, comprising 601 individuals from São Paulo of vastly diverse ethnic background. They correspond to eleven gene-metabolite associations, six of which had been previously identified in the urine metabolome and three in the serum metabolome. Our key novel findings are the associations of two SNPs with NMR spectral signatures pointing to fucose (rs492602, P = 6.9×10(-44)) and lysine (rs8101881, P = 1.2×10(-33)), respectively. Fine-mapping of the first locus pinpointed the FUT2 gene, which encodes a fucosyltransferase enzyme and has previously been associated with Crohn's disease. This implicates fucose as a potential prognostic disease marker, for which there is already published evidence from a mouse model. The second SNP lies within the SLC7A9 gene, rare mutations of which have been linked to severe kidney damage. The replication of previous associations and our new discoveries demonstrate the potential of untargeted metabolomics GWAS to robustly identify molecular disease markers.
Collapse
Affiliation(s)
- Rico Rueedi
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Mirko Ledda
- Department of Food-Consumer Interaction, Nestlé Research Center, Lausanne, Switzerland
| | - Andrew W. Nicholls
- Investigative Preclinical Toxicology, GlaxoSmithKline R&D, Ware, Herts, United Kingdom
| | - Reza M. Salek
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
- Department of Biochemistry & Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Pedro Marques-Vidal
- Institute of Social and Preventive Medicine (IUMSP), Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
| | - Edgard Morya
- Sensonomic Laboratory of Alberto Santos Dumont Research Support Association and IEP Sirio, Libanes Hospital, São Paulo, Brazil
- Edmond and Lily Safra International Institute of Neuroscience of Natal, Natal, Brazil
| | - Koichi Sameshima
- Department of Radiology and Oncology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Ivan Montoliu
- Department of Bioanalytical Sciences, Nestlé Research Center, Lausanne, Switzerland
| | - Laeticia Da Silva
- Department of Bioanalytical Sciences, Nestlé Research Center, Lausanne, Switzerland
| | - Sebastiano Collino
- Department of Bioanalytical Sciences, Nestlé Research Center, Lausanne, Switzerland
| | | | - Serge Rezzi
- Department of Bioanalytical Sciences, Nestlé Research Center, Lausanne, Switzerland
| | - Christoph Steinbeck
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Dawn M. Waterworth
- Medical Genetics, GlaxoSmithKline, Philadelphia, Pennsylvania, United States of America
| | - Gérard Waeber
- Department of Medicine, Internal Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Peter Vollenweider
- Department of Medicine, Internal Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Jacques S. Beckmann
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Johannes Le Coutre
- Department of Food-Consumer Interaction, Nestlé Research Center, Lausanne, Switzerland
- Organization for Interdisciplinary Research Projects, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Vincent Mooser
- Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Sven Bergmann
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Ulrich K. Genick
- Department of Food-Consumer Interaction, Nestlé Research Center, Lausanne, Switzerland
| | - Zoltán Kutalik
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Institute of Social and Preventive Medicine (IUMSP), Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
166
|
Calvani R, Brasili E, Praticò G, Capuani G, Tomassini A, Marini F, Sciubba F, Finamore A, Roselli M, Marzetti E, Miccheli A. Fecal and urinary NMR-based metabolomics unveil an aging signature in mice. Exp Gerontol 2014; 49:5-11. [DOI: 10.1016/j.exger.2013.10.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 09/08/2013] [Accepted: 10/23/2013] [Indexed: 02/07/2023]
|
167
|
Santoro A, Pini E, Scurti M, Palmas G, Berendsen A, Brzozowska A, Pietruszka B, Szczecinska A, Cano N, Meunier N, de Groot CPGM, Feskens E, Fairweather-Tait S, Salvioli S, Capri M, Brigidi P, Franceschi C. Combating inflammaging through a Mediterranean whole diet approach: the NU-AGE project's conceptual framework and design. Mech Ageing Dev 2013; 136-137:3-13. [PMID: 24342354 DOI: 10.1016/j.mad.2013.12.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 11/25/2013] [Accepted: 12/03/2013] [Indexed: 02/08/2023]
Abstract
The development of a chronic, low grade, inflammatory status named "inflammaging" is a major characteristic of ageing, which plays a critical role in the pathogenesis of age-related diseases. Inflammaging is both local and systemic, and a variety of organs and systems contribute inflammatory stimuli that accumulate lifelong. The NU-AGE rationale is that a one year Mediterranean whole diet (considered by UNESCO a heritage of humanity), newly designed to meet the nutritional needs of the elderly, will reduce inflammaging in fully characterized subjects aged 65-79 years of age, and will have systemic beneficial effects on health status (physical and cognitive). Before and after the dietary intervention a comprehensive set of analyses, including omics (transcriptomics, epigenetics, metabolomics and metagenomics) will be performed to identify the underpinning molecular mechanisms. NU-AGE will set up a comprehensive database as a tool for a systems biology approach to inflammaging and nutrition. NU-AGE is highly interdisciplinary, includes leading research centres in Europe on nutrition and ageing, and is complemented by EU multinational food industries and SMEs, interested in the production of functional and enriched/advanced traditional food tailored for the elderly market, and European Federations targeting policy makers and major stakeholders, from consumers to EU Food & Drink Industries.
Collapse
Affiliation(s)
- Aurelia Santoro
- University of Bologna, Department of Experimental, Diagnostic and Specialty Medicine, Via San Giacomo 12, 40126 Bologna, Italy.
| | - Elisa Pini
- C.I.G. Interdepartmental Centre "L. Galvani", University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy
| | - Maria Scurti
- University of Bologna, Department of Experimental, Diagnostic and Specialty Medicine, Via San Giacomo 12, 40126 Bologna, Italy
| | - Giustina Palmas
- C.I.G. Interdepartmental Centre "L. Galvani", University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy
| | - Agnes Berendsen
- Wageningen University, Department of Human Nutrition, Wageningen, The Netherlands
| | | | | | | | - Noël Cano
- INRA-Clermont Université, Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France
| | - Nathalie Meunier
- CHU Clermont-Ferrand, Unité d'Exploration en Nutrition, Clermont-Ferrand, France
| | - C P G M de Groot
- Wageningen University, Department of Human Nutrition, Wageningen, The Netherlands
| | - Edith Feskens
- Wageningen University, Department of Human Nutrition, Wageningen, The Netherlands
| | | | - Stefano Salvioli
- University of Bologna, Department of Experimental, Diagnostic and Specialty Medicine, Via San Giacomo 12, 40126 Bologna, Italy
| | - Miriam Capri
- University of Bologna, Department of Experimental, Diagnostic and Specialty Medicine, Via San Giacomo 12, 40126 Bologna, Italy
| | - Patrizia Brigidi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Claudio Franceschi
- University of Bologna, Department of Experimental, Diagnostic and Specialty Medicine, Via San Giacomo 12, 40126 Bologna, Italy; C.I.G. Interdepartmental Centre "L. Galvani", University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy
| | | |
Collapse
|
168
|
Musculoskeletal system in the old age and the demand for healthy ageing biomarkers. Mech Ageing Dev 2013; 134:541-7. [DOI: 10.1016/j.mad.2013.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 10/24/2013] [Accepted: 11/11/2013] [Indexed: 12/19/2022]
|
169
|
Polymorphisms in the superoxidase dismutase genes reveal no association with human longevity in Germans: a case-control association study. Biogerontology 2013; 14:719-27. [PMID: 24146173 DOI: 10.1007/s10522-013-9470-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/20/2013] [Indexed: 01/10/2023]
Abstract
The role of superoxide dismutases (SODs) in aging and oxidative stress regulation has been widely studied and there is growing evidence that imbalances in these processes influence lifespan in several species. In humans, genetic polymorphisms in SOD genes may play an important role in the development of age-related diseases and genetic variation in SOD2 is thought to be associated with longevity. These observations prompted us to perform a case-control association study using a comprehensive haplotype tagging approach for the three SOD genes (SOD1, SOD2, SOD3) by testing a total of 19 SNPs in our extensive collection of 1,612 long-lived individuals (centenarians and nonagenarians) and 1,104 younger controls. Furthermore, we intended to replicate the previous association of the SOD2 SNP rs4880 with longevity observed in a Danish cohort. In our study, no association was detected between the tested SNPs and the longevity phenotype, neither in the entire long-lived sample set nor in the centenarian subgroup analysis. Our results suggest that there is no considerable influence of sequence variation in the SOD genes on human longevity in Germans.
Collapse
|
170
|
Burcelin R, Serino M, Chabo C, Garidou L, Pomié C, Courtney M, Amar J, Bouloumié A. Metagenome and metabolism: the tissue microbiota hypothesis. Diabetes Obes Metab 2013; 15 Suppl 3:61-70. [PMID: 24003922 DOI: 10.1111/dom.12157] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 05/22/2013] [Indexed: 12/14/2022]
Abstract
Over the last decade, the research community has revealed the role of a new organ: the intestinal microbiota. It is considered as a symbiont that is part of our organism since, at birth, it educates the immune system and contributes to the development of the intestinal vasculature and most probably the nervous system. With the advent of new generation sequencing techniques, a catalogue of genes that belong to this microbiome has been established that lists more than 5 million non-redundant genes called the metagenome. Using germ free mice colonized with the microbiota from different origins, it has been formally demonstrated that the intestinal microbiota causes the onset of metabolic diseases. Further to the role of point mutations in our genome, the microbiota can explain the on-going worldwide pandemic of obesity and diabetes, its dissemination and family inheritance, as well as the diversity of the associated metabolic phenotypes. More recently, the discovery of bacterial DNA within host tissues, such as the liver, the adipose tissue and the blood, which establishes a tissue microbiota, introduces new opportunities to identify targets and predictive biomarkers based on the host to microbiota interaction, as well as to define new strategies for pharmacological, immunomodulatory vaccines and nutritional applications.
Collapse
Affiliation(s)
- Rémy Burcelin
- Institut National de Santé et de Recherche Médicale (INSERM), U1048, Toulouse, France.
| | | | | | | | | | | | | | | |
Collapse
|
171
|
Sun L, Hu CY, Shi XH, Zheng CG, Huang ZZ, Lv ZP, Huang J, Wan G, Qi KY, Liang SY, Zhou L, Yang Z. Trans-ethnical shift of the risk genotype in the CETP I405V with longevity: a Chinese case-control study and meta-analysis. PLoS One 2013; 8:e72537. [PMID: 23977315 PMCID: PMC3744487 DOI: 10.1371/journal.pone.0072537] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/10/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The I405V polymorphism of the cholesteryl ester transfer protein gene (CETP) has been suggested to be a protective factor conferring longevity in Ashkenazi Jews, although findings in other races are not supportive. This paper describes a case-control study and a meta-analysis conducted to derive a more precise estimation of the association between CETP 405V and longevity. METHODS We enrolled 1,021 ethnic Han Chinese participants (506 in the longevity group and 515 controls), then performed a meta-analysis that integrated the current study and previously published ones. Pooled odds ratios (OR) were calculated for allele contrasts, dominant and recessive inheritance models to assess the association between CETP 405V and longevity according to the ethnic stratification. RESULTS Our case-control data indicated that CETP 405V is a longevity risk allele in all genetic models (P additive =0.008; P dominant =0.008, OR(dominant)=0.673; P recessive =0.017, OR(recessive)=0.654) after adjustment for the apolipoprotein E (APOE) ε4 allele, body mass index and high-density lipoprotein cholesterol. A synergy was detected between 405V and APOE ε4 (P=0.001, OR=0.530). Eight studies were eligible for meta-analysis, which confirmed 405V is the risky allele against longevity in all genetic models: allele contrasts (OR=0.81, 95%CI=0.74-0.88), dominant model (OR=0.72, 95%CI=0.64-0.82) and recessive model (OR=0.80, 95%CI=0.67-0.96). After ethnic stratification, 405V remained a risk allele in East Asians but no significant association was found in Europeans or white Americans. CONCLUSION Our case-control study suggests CETP 405V as a risk allele against longevity in Chinese. The meta-analysis suggests the involvement of CETP 405V is protective in Ashkenazi Jews but is a risk allele against longevity in the East Asian (Chinese) population.
Collapse
Affiliation(s)
- Liang Sun
- The Key Laboratory of Geriatrics, Beijing Hospital and Beijing Institute of Geriatrics, Ministry of Health, Beijing, China
| | - Cai-you Hu
- Department of Neurology, JiangBin Hospital, Nanning, Guangxi, China
| | - Xiao-hong Shi
- The Key Laboratory of Geriatrics, Beijing Hospital and Beijing Institute of Geriatrics, Ministry of Health, Beijing, China
| | - Chen-guang Zheng
- Department of Cardiothoracic Surgery, Guangxi Maternal and Child Health Hospital, Nanning, Guangxi, China
| | - Ze-zhi Huang
- Yongfu Committee of the Chinese People’s Political Consultative Conference, Yongfu, Guangxi, China
| | - Ze-ping Lv
- Department of Neurology, JiangBin Hospital, Nanning, Guangxi, China
| | - Jin Huang
- The Key Laboratory of Geriatrics, Beijing Hospital and Beijing Institute of Geriatrics, Ministry of Health, Beijing, China
| | - Gang Wan
- The Key Laboratory of Geriatrics, Beijing Hospital and Beijing Institute of Geriatrics, Ministry of Health, Beijing, China
| | - Ke-yan Qi
- The Key Laboratory of Geriatrics, Beijing Hospital and Beijing Institute of Geriatrics, Ministry of Health, Beijing, China
| | - Si-ying Liang
- The Key Laboratory of Geriatrics, Beijing Hospital and Beijing Institute of Geriatrics, Ministry of Health, Beijing, China
| | - Lin Zhou
- Beijing Youth Science and Technology Club, Beijing, China
| | - Ze Yang
- The Key Laboratory of Geriatrics, Beijing Hospital and Beijing Institute of Geriatrics, Ministry of Health, Beijing, China
- * E-mail:
| |
Collapse
|
172
|
Huang X, Withers BR, Dickson RC. Sphingolipids and lifespan regulation. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:657-64. [PMID: 23954556 DOI: 10.1016/j.bbalip.2013.08.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/01/2013] [Accepted: 08/06/2013] [Indexed: 02/08/2023]
Abstract
Diseases including cancer, type 2 diabetes, cardiovascular and immune dysfunction and neurodegeneration become more prevalent as we age, and combined with the increase in average human lifespan, place an ever increasing burden on the health care system. In this chapter we focus on finding ways of modulating sphingolipids to prevent the development of age-associated diseases or delay their onset, both of which could improve health in elderly, fragile people. Reducing the incidence of or delaying the onset of diseases of aging has blossomed in the past decade because of advances in understanding signal transduction pathways and cellular processes, especially in model organisms, that are largely conserved in most eukaryotes and that can be modulated to reduce signs of aging and increase health span. In model organisms such interventions must also increase lifespan to be considered significant, but this is not a requirement for use in humans. The most encouraging interventions in model organisms involve lowering the concentration of one or more sphingolipids so as to reduce the activity of key signaling pathways, one of the most promising being the Target of Rapamycin Complex 1 (TORC1) protein kinase pathway. Other potential ways in which modulating sphingolipids may contribute to improving the health profile of the elderly is by reducing oxidative stresses, inflammatory responses and growth factor signaling. Lastly, perhaps the most interesting way to modulate sphingolipids and promote longevity is by lowering the activity of serine palmitoyltransferase, the first enzyme in the de novo sphingolipid biosynthesis pathway. Available data in yeasts and rodents are encouraging and as we gain insights into molecular mechanisms the strategies for improving human health by modulating sphingolipids will become more apparent. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.
Collapse
Affiliation(s)
- Xinhe Huang
- Department of Molecular and Cellular Biochemistry and the Lucille Markey Cancer Center, University of Kentucky College of Medicine, 741 S. Limestone, Lexington, KY 40536, USA
| | - Bradley R Withers
- Department of Molecular and Cellular Biochemistry and the Lucille Markey Cancer Center, University of Kentucky College of Medicine, 741 S. Limestone, Lexington, KY 40536, USA
| | - Robert C Dickson
- Department of Molecular and Cellular Biochemistry and the Lucille Markey Cancer Center, University of Kentucky College of Medicine, 741 S. Limestone, Lexington, KY 40536, USA.
| |
Collapse
|