151
|
Wong YL, Dali AZHM, Mohamed Rose I, Jamal R, Mokhtar NM. Potential molecular signatures in epithelial ovarian cancer by genome wide expression profiling. Asia Pac J Clin Oncol 2014; 12:e259-68. [PMID: 24673814 DOI: 10.1111/ajco.12182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2014] [Indexed: 11/29/2022]
Abstract
AIMS Ovarian cancer is the deadliest of all gynecologic cancers because of its late diagnosis and poor treatment outcomes. This study aimed to identify potential molecular signatures associated with biological processes that are implicated in epithelial ovarian cancer (EOC). METHODS Expression profiling was carried out on 16 fresh frozen EOC and normal ovarian tissue samples using the Illumina Whole Genome DASL assay (cDNA-mediated annealing, selection, extension and ligation). The differentially expressed genes were analyzed using the GeneSpring GX11.5 and Pathway Studio 8.0 software. The microarray results were validated using the immunohistochemistry analyses. RESULTS Unpaired t-test identified 652 (270 up- and 382 downregulated) significant differentially expressed genes (P < 0.001 and fold change ≥2.0). Hierarchical clustering analysis displayed a distinct separation of cancer and normal samples. Gene set enrichment analysis identified alterations in the expression of genes associated with cancer development and progression. Positive immunostaining of claudin-7, ephrin receptor A1 and Forkhead Box M1 in EOC was consistent with the upregulation of these genes in the microarray result. However, the positive immunostaining of fibroblast growth factor-7 in cancer tissues was not in accordance with the downregulation of this gene in the microarray result. CONCLUSION These results identify significant genes and their related biological processes which may contribute to the better understanding of development and progression of epithelial ovarian cancer.
Collapse
Affiliation(s)
- Yin-Ling Wong
- Department of Physiology, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | | | - Isa Mohamed Rose
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Norfilza Mohd Mokhtar
- Department of Physiology, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.,UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
152
|
Li X, Yao R, Yue L, Qiu W, Qi W, Liu S, Yao Y, Liang J. FOXM1 mediates resistance to docetaxel in gastric cancer via up-regulating Stathmin. J Cell Mol Med 2014; 18:811-23. [PMID: 24628949 PMCID: PMC4119387 DOI: 10.1111/jcmm.12216] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 11/25/2013] [Indexed: 12/28/2022] Open
Abstract
Docetaxel is commonly used as an effective chemotherapeutic drug for gastric cancer patients recently. With the increasing emergence of docetaxel resistance nowadays, identification of suitable biomarkers for predicting chemosensitivity to docetaxel may be a key role for improving therapeutic effects for gastric cancer patients. In this study, we investigated the correlation between the expression of transcription factor forkhead box protein M1 (FOXM1) and chemotherapy response to docetaxel in gastric cancer, the possible mechanism for which was further explored. As a result, FOXM1 overexpression was shown to mediate resistance to docetaxel in gastric cancers. It altered microtubule dynamics to protect tumour cells from docetaxel-induced apoptosis. Mechanistic investigations revealed that tubulin-destabilizing protein Stathmin, which mediated docetaxel resistance in FOXM1-silenced gastric cancer cells, is a direct down-stream target of FOXM1, whereas another microtubule dynamics protein mitotic centromere–associated kinesin (MCAK), shown to be related to docetaxel resistance in gastric cancer cells, is not associated with FOXM1 expression significantly. These results were further provided by immunohistochemical analysis, indicating that FOXM1 and Stathmin expression levels were correlated in 103 post-operational gastric cancer specimens. Moreover, when we attenuated FOXM1 expression with FOXM1 inhibitor thiostrepton, docetaxel resistance in gastric cancers was found to be reversed, simultaneously with the down-regulation of FOXM1 and Stathmin. Therefore, FOXM1 can be a useful marker for predicting and monitoring docetaxel response. Through the inhibition of FOXM1, docetaxel resistance can be reversed, and thus FOXM1 could be a new therapeutic target in docetaxel-resistant gastric cancer.
Collapse
Affiliation(s)
- Xiaoxiao Li
- Department of Oncology of the Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| | | | | | | | | | | | | | | |
Collapse
|
153
|
A novel function for Foxm1 in interkinetic nuclear migration in the developing telencephalon and anxiety-related behavior. J Neurosci 2014; 34:1510-22. [PMID: 24453338 DOI: 10.1523/jneurosci.2549-13.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Interkinetic nuclear migration (INM) is a key feature of cortical neurogenesis. INM functions to maximize the output of the neuroepithelium, and more importantly, balance the self-renewal and differentiation of the progenitors. Although INM has been reported to be highly correlated with the cell cycle, little is known about the effects of cell cycle regulators on INM. In this study, by crossing Foxm1(fl/fl) mice with Emx1-Cre line, we report that a conditional disruption of forkhead transcription factor M1 (Foxm1) in dorsal telencephalon results in abnormal cell cycle progression, leading to impaired INM through the downregulation of Cyclin b1 and Cdc25b. The impairment of INM disturbs the synchronization of apical progenitors (APs) and promotes the transition from APs to basal progenitors (BPs) in a cell-autonomous fashion. Moreover, ablation of Foxm1 causes anxiety-related behaviors in adulthood. Thus, this study provides evidence of linkages among the cell cycle regulator Foxm1, INM, and adult behavior.
Collapse
|
154
|
Vaidyanathan K, Durning S, Wells L. Functional O-GlcNAc modifications: implications in molecular regulation and pathophysiology. Crit Rev Biochem Mol Biol 2014; 49:140-163. [PMID: 24524620 PMCID: PMC4912837 DOI: 10.3109/10409238.2014.884535] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) is a regulatory post-translational modification of intracellular proteins. The dynamic and inducible cycling of the modification is governed by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) in response to UDP-GlcNAc levels in the hexosamine biosynthetic pathway (HBP). Due to its reliance on glucose flux and substrate availability, a major focus in the field has been on how O-GlcNAc contributes to metabolic disease. For years this post-translational modification has been known to modify thousands of proteins implicated in various disorders, but direct functional connections have until recently remained elusive. New research is beginning to reveal the specific mechanisms through which O-GlcNAc influences cell dynamics and disease pathology including clear examples of O-GlcNAc modification at a specific site on a given protein altering its biological functions. The following review intends to focus primarily on studies in the last half decade linking O-GlcNAc modification of proteins with chromatin-directed gene regulation, developmental processes, and several metabolically related disorders including Alzheimer's, heart disease and cancer. These studies illustrate the emerging importance of this post-translational modification in biological processes and multiple pathophysiologies.
Collapse
Affiliation(s)
| | - Sean Durning
- Complex Carbohydrate Research Center, University of Georgia, Athens, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, USA
| |
Collapse
|
155
|
Liu Y, Gong Z, Sun L, Li X. FOXM1 and androgen receptor co-regulate CDC6 gene transcription and DNA replication in prostate cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:297-305. [PMID: 24583551 DOI: 10.1016/j.bbagrm.2014.02.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 02/19/2014] [Accepted: 02/20/2014] [Indexed: 11/18/2022]
Abstract
CDC6 is a key component of the DNA replication initiation machinery, and its transcription is regulated by E2F or androgen receptor (AR) alone or in combination in prostate cancer (PCa) cells. Through both overexpression and knockdown approaches, we found that in addition to its effects on the E2F pathway, the cell proliferation specific transcription factor FOXM1 stimulated CDC6 transcription in cooperation with AR. We have identified a forkhead box motif in the CDC6 proximal promoter that is occupied by FOXM1 and is sufficient to drive FOXM1-regulated transcription. Indirectly, FOXM1 elevated AR protein levels and AR dependent transcription. Furthermore, FOXM1 and AR proteins physically interact. Using synchronized cultures, we observed that CDC6 expression is elevated near S phase of the cell cycle, at a time coinciding with elevated FOXM1 and AR expression and CDC6 promoter occupancy by both AR and FOXM1 proteins. Androgen increased the binding of AR protein to CDC6 promoter, and AR and FOXM1 knockdown decreased AR binding. These results provided new evidence for the regulatory mechanism of aberrant CDC6 oncogene transcription by FOXM1 and AR, two highly expressed transcription factors in PCa cells. Functionally, the cooperation of FOXM1 and AR accelerated DNA synthesis and cell proliferation by affecting CDC6 gene expression. Furthermore, siomycin A, a proteasome inhibitor known to inhibit FOXM1 expression and activity, inhibited PCa cell proliferation and its effect was additive to that of bicalutamide, an antiandrogen commonly used to treat PCa patients.
Collapse
Affiliation(s)
- Youhong Liu
- Center for Molecular Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, People's Republic of China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, People's Republic of China
| | - Lunquan Sun
- Center for Molecular Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, People's Republic of China
| | - Xiong Li
- Center for Molecular Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, People's Republic of China.
| |
Collapse
|
156
|
Huang C, Xie D, Cui J, Li Q, Gao Y, Xie K. FOXM1c promotes pancreatic cancer epithelial-to-mesenchymal transition and metastasis via upregulation of expression of the urokinase plasminogen activator system. Clin Cancer Res 2014; 20:1477-88. [PMID: 24452790 DOI: 10.1158/1078-0432.ccr-13-2311] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PURPOSE The transcription factor Forkhead box M1 (FOXM1) plays important roles in the formation of several human tumors, including pancreatic cancer. However, the molecular mechanisms by which FOXM1 promotes pancreatic tumor epithelial-to-mesenchymal transition (EMT) and metastasis are unknown. EXPERIMENTAL DESIGN The effect of altered expression of FOXM1 and urokinase-type plasminogen activator receptor (uPAR) on EMT and metastasis was examined using animal models of pancreatic cancer. Also, the underlying mechanisms of altered pancreatic cancer invasion and metastasis were analyzed using in vitro molecular biology assays. Finally, the clinical relevance of dysregulated FOXM1/uPAR signaling was investigated using pancreatic tumor and normal pancreatic tissue specimens. RESULTS Pancreatic tumor specimens and cell lines predominantly overexpressed the FOXM1 isoform FOXM1c. FOXM1c overexpression promoted EMT in and migration, invasion, and metastasis of pancreatic cancer cells, whereas downregulation of FOXM1 expression inhibited these processes. The level of FOXM1 expression correlated directly with that of uPAR expression in pancreatic cancer cell lines and tumor specimens. Moreover, FOXM1c overexpression upregulated uPAR expression in pancreatic cancer cells, whereas inhibition of FOXM1 expression suppressed uPAR expression. Furthermore, transfection of FOXM1c into pancreatic cancer cells directly activated the uPAR promoter, whereas inhibition of FOXM1 expression by FOXM1 siRNA suppressed its activation in these cells. Finally, we identified an FOXM1-binding site in the uPAR promoter and demonstrated that FOXM1 protein bound directly to it. Deletion mutation of this site significantly attenuated uPAR promoter activity. CONCLUSIONS Our findings demonstrated that FOXM1c contributes to pancreatic cancer development and progression by enhancing uPAR gene transcription, and thus, tumor EMT and metastasis.
Collapse
Affiliation(s)
- Chen Huang
- Authors' Affiliations: Shanghai Key Laboratory of Pancreatic Diseases Research; Departments of General Surgery and Oncology, Shanghai Jiaotong University Affiliated First People's Hospital; Department of Oncology and Tumor Institute, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China; and Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | | | | | | |
Collapse
|
157
|
Orthotopic mouse models for the preclinical and translational study of targeted therapies against metastatic human thyroid carcinoma with BRAF(V600E) or wild-type BRAF. Oncogene 2013; 33:5397-404. [PMID: 24362526 DOI: 10.1038/onc.2013.544] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/15/2013] [Accepted: 11/17/2013] [Indexed: 12/12/2022]
Abstract
Molecular signature of advanced and metastatic thyroid carcinoma involves deregulation of multiple fundamental pathways activated in the tumor microenvironment. They include BRAF(V600E) and AKT that affect tumor initiation, progression and metastasis. Human thyroid cancer orthotopic mouse models are based on human cell lines that generally harbor genetic alterations found in human thyroid cancers. They can reproduce in vivo and in situ (into the thyroid) many features of aggressive and refractory human advanced thyroid carcinomas, including local invasion and metastasis. Humanized orthotopic mouse models seem to be ideal and commonly used for preclinical and translational studies of compounds and therapies not only because they may mimic key aspects of human diseases (e.g. metastasis), but also for their reproducibility. In addition, they might provide the possibility to evaluate systemic effects of treatments. So far, human thyroid cancer in vivo models were mainly used to test single compounds, non selective and selective. Despite the greater antitumor activity and lower toxicity obtained with different selective drugs in respect to non-selective ones, most of them are only able to delay disease progression, which ultimately could restart with similar aggressive behavior. Aggressive thyroid tumors (for example, anaplastic or poorly differentiated thyroid carcinoma) carry several complex genetic alterations that are likely cooperating to promote disease progression and might confer resistance to single-compound approaches. Orthotopic models of human thyroid cancer also hold the potential to be good models for testing novel combinatorial therapies. In this article, we will summarize results on preclinical testing of selective and nonselective single compounds in orthotopic mouse models based on validated human thyroid cancer cell lines harboring the BRAF(V600E) mutation or with wild-type BRAF. Furthermore, we will discuss the potential use of this model also for combinatorial approaches, which are expected to take place in the upcoming human thyroid cancer basic and clinical research.
Collapse
|
158
|
Radovich M, Clare SE, Atale R, Pardo I, Hancock BA, Solzak JP, Kassem N, Mathieson T, Storniolo AMV, Rufenbarger C, Lillemoe HA, Blosser RJ, Choi MR, Sauder CA, Doxey D, Henry JE, Hilligoss EE, Sakarya O, Hyland FC, Hickenbotham M, Zhu J, Glasscock J, Badve S, Ivan M, Liu Y, Sledge GW, Schneider BP. Characterizing the heterogeneity of triple-negative breast cancers using microdissected normal ductal epithelium and RNA-sequencing. Breast Cancer Res Treat 2013; 143:57-68. [PMID: 24292813 DOI: 10.1007/s10549-013-2780-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 11/15/2013] [Indexed: 12/31/2022]
Abstract
Triple-negative breast cancers (TNBCs) are a heterogeneous set of tumors defined by an absence of actionable therapeutic targets (ER, PR, and HER-2). Microdissected normal ductal epithelium from healthy volunteers represents a novel comparator to reveal insights into TNBC heterogeneity and to inform drug development. Using RNA-sequencing data from our institution and The Cancer Genome Atlas (TCGA) we compared the transcriptomes of 94 TNBCs, 20 microdissected normal breast tissues from healthy volunteers from the Susan G. Komen for the Cure Tissue Bank, and 10 histologically normal tissues adjacent to tumor. Pathway analysis comparing TNBCs to optimized normal controls of microdissected normal epithelium versus classic controls composed of adjacent normal tissue revealed distinct molecular signatures. Differential gene expression of TNBC compared with normal comparators demonstrated important findings for TNBC-specific clinical trials testing targeted agents; lack of over-expression for negative studies and over-expression in studies with drug activity. Next, by comparing each individual TNBC to the set of microdissected normals, we demonstrate that TNBC heterogeneity is attributable to transcriptional chaos, is associated with non-silent DNA mutational load, and explains transcriptional heterogeneity in addition to known molecular subtypes. Finally, chaos analysis identified 146 core genes dysregulated in >90 % of TNBCs revealing an over-expressed central network. In conclusion, use of microdissected normal ductal epithelium from healthy volunteers enables an optimized approach for studying TNBC and uncovers biological heterogeneity mediated by transcriptional chaos.
Collapse
Affiliation(s)
- Milan Radovich
- Division of General Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Wierstra I. The transcription factor FOXM1 (Forkhead box M1): proliferation-specific expression, transcription factor function, target genes, mouse models, and normal biological roles. Adv Cancer Res 2013; 118:97-398. [PMID: 23768511 DOI: 10.1016/b978-0-12-407173-5.00004-2] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
FOXM1 (Forkhead box M1) is a typical proliferation-associated transcription factor, which stimulates cell proliferation and exhibits a proliferation-specific expression pattern. Accordingly, both the expression and the transcriptional activity of FOXM1 are increased by proliferation signals, but decreased by antiproliferation signals, including the positive and negative regulation by protooncoproteins or tumor suppressors, respectively. FOXM1 stimulates cell cycle progression by promoting the entry into S-phase and M-phase. Moreover, FOXM1 is required for proper execution of mitosis. Accordingly, FOXM1 regulates the expression of genes, whose products control G1/S-transition, S-phase progression, G2/M-transition, and M-phase progression. Additionally, FOXM1 target genes encode proteins with functions in the execution of DNA replication and mitosis. FOXM1 is a transcriptional activator with a forkhead domain as DNA binding domain and with a very strong acidic transactivation domain. However, wild-type FOXM1 is (almost) inactive because the transactivation domain is repressed by three inhibitory domains. Inactive FOXM1 can be converted into a very potent transactivator by activating signals, which release the transactivation domain from its inhibition by the inhibitory domains. FOXM1 is essential for embryonic development and the foxm1 knockout is embryonically lethal. In adults, FOXM1 is important for tissue repair after injury. FOXM1 prevents premature senescence and interferes with contact inhibition. FOXM1 plays a role for maintenance of stem cell pluripotency and for self-renewal capacity of stem cells. The functions of FOXM1 in prevention of polyploidy and aneuploidy and in homologous recombination repair of DNA-double-strand breaks suggest an importance of FOXM1 for the maintenance of genomic stability and chromosomal integrity.
Collapse
|
160
|
Grant GD, Brooks L, Zhang X, Mahoney JM, Martyanov V, Wood TA, Sherlock G, Cheng C, Whitfield ML. Identification of cell cycle-regulated genes periodically expressed in U2OS cells and their regulation by FOXM1 and E2F transcription factors. Mol Biol Cell 2013; 24:3634-50. [PMID: 24109597 PMCID: PMC3842991 DOI: 10.1091/mbc.e13-05-0264] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Characterization of the cell cycle–regulated transcripts in U2OS cells yielded 1871 unique genes. FOXM1 targets were identified via ChIP-seq, and novel targets in G2/M and S phases were verified using a real-time luciferase assay. ChIP-seq data were used to map cell cycle transcriptional regulators of cell cycle–regulated gene expression in U2OS cells. We identify the cell cycle–regulated mRNA transcripts genome-wide in the osteosarcoma-derived U2OS cell line. This results in 2140 transcripts mapping to 1871 unique cell cycle–regulated genes that show periodic oscillations across multiple synchronous cell cycles. We identify genomic loci bound by the G2/M transcription factor FOXM1 by chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) and associate these with cell cycle–regulated genes. FOXM1 is bound to cell cycle–regulated genes with peak expression in both S phase and G2/M phases. We show that ChIP-seq genomic loci are responsive to FOXM1 using a real-time luciferase assay in live cells, showing that FOXM1 strongly activates promoters of G2/M phase genes and weakly activates those induced in S phase. Analysis of ChIP-seq data from a panel of cell cycle transcription factors (E2F1, E2F4, E2F6, and GABPA) from the Encyclopedia of DNA Elements and ChIP-seq data for the DREAM complex finds that a set of core cell cycle genes regulated in both U2OS and HeLa cells are bound by multiple cell cycle transcription factors. These data identify the cell cycle–regulated genes in a second cancer-derived cell line and provide a comprehensive picture of the transcriptional regulatory systems controlling periodic gene expression in the human cell division cycle.
Collapse
Affiliation(s)
- Gavin D Grant
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755 Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Li X, Tang D, Yao Y, Qi W, Liang J. Clinical significance and positive correlation of FoxM1 and Her-2 expression in gastric cancer. Clin Exp Med 2013; 14:447-55. [PMID: 24101296 DOI: 10.1007/s10238-013-0261-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 09/16/2013] [Indexed: 12/23/2022]
Abstract
The transcription factor forkhead box protein M1 (FoxM1) and tyrosine kinase receptor Her-2, aberrantly expressing in various kinds of human malignancies, are closely related to the development of cancer. However, the correlation of them is still little explored, especially in gastric cancer. In current study, we examined FoxM1 and Her-2 levels in gastric cancers, and the clinical significance and association of them were further explored. As a result, FoxM1 and Her-2 expression were significantly higher in gastric cancer compared with para-cancer tissues and gastric cell lines (P < 0.01), while a positive association was found between the two genes at both RNA and protein levels (P = 0.007, P = 0.025). No significant association was observed between FoxM1 expression and clinic-pathological parameters (P > 0.1), whereas the positive frequency of Her-2 correlated with TNM stage significantly (P = 0.045). In addition, multivariate analysis showed Her-2 was not a prognostic predictor in gastric cancer (P = 0.625), while FoxM1 was independently associated with prognosis (P = 0.001), which especially affected the survival in patients with advanced stage (P < 0.01). These results suggest that FoxM1 and Her-2 are important diagnostic markers for gastric cancer, and FoxM1 is a favorable prognostic indicator in gastric cancer. FoxM1 may be a potential cellular target for therapeutic intervention, especially in Her2-targeted therapy-resistant cancers.
Collapse
Affiliation(s)
- Xiaoxiao Li
- Department of Oncology, Affiliated Hospital of Medical College Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | | | | | | | | |
Collapse
|
162
|
Bose A, Teh MT, Mackenzie IC, Waseem A. Keratin k15 as a biomarker of epidermal stem cells. Int J Mol Sci 2013; 14:19385-98. [PMID: 24071939 PMCID: PMC3821562 DOI: 10.3390/ijms141019385] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 09/05/2013] [Accepted: 09/10/2013] [Indexed: 01/21/2023] Open
Abstract
Keratin 15 (K15) is type I keratin protein co-expressed with the K5/K14 pair present in the basal keratinocytes of all stratified epithelia. Although it is a minor component of the cytoskeleton with a variable expression pattern, nonetheless its expression has been reported as a stem cell marker in the bulge of hair follicles. Conversely, suprabasal expression of K15 has also been reported in both normal and diseased tissues, which is inconsistent with its role as a stem cell marker. Our recently published work has given evidence of the molecular pathways that seem to control the expression of K15 in undifferentiated and differentiated cells. In this article, we have critically reviewed the published work to establish the reliability of K15 as an epidermal stem cell marker.
Collapse
Affiliation(s)
- Amrita Bose
- Centre for Clinical and Diagnostic Oral Sciences, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London E1 2AD, UK.
| | | | | | | |
Collapse
|
163
|
Li X, Qiu W, Liu B, Yao R, Liu S, Yao Y, Liang J. Forkhead box transcription factor 1 expression in gastric cancer: FOXM1 is a poor prognostic factor and mediates resistance to docetaxel. J Transl Med 2013; 11:204. [PMID: 24004449 PMCID: PMC3766246 DOI: 10.1186/1479-5876-11-204] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 09/02/2013] [Indexed: 12/29/2022] Open
Abstract
Background Forkhead box transcription factor 1 (FOXM1) has been reported to overexpress and correlate with pathogenesis in a variety of human malignancies. However, little research has been done to investigate its clinical significance in gastric cancer. Methods We examined the expression of FOXM1 in 103 postoperational gastric cancer tissues and 5 gastric cell lines by immunohistochemistry and western blot analysis respectively. Data on clinic-pathological features and relevant prognostic factors in these patients were then analyzed. Moreover, the association of FOXM1 expression and chemosensitivity to docetaxel in gastric cancer cells was further explored. Results Our study demonstrated that the level of FOXM1 expression was significantly higher in gastric cancer than in para-cancer tissues (P < 0.001) and normal gastric cell lines (P = 0.026). No significant association was found between FOXM1 expression and any clinical pathological features (P > 0.1). FOXM1 amplification was identified as an independent prognostic factor in gastric cancer (P = 0.001), and its affection is more significant in patients with tumor size larger than 5 cm (P = 0.004), pT3-4 (P = 0.003) or pIII-IV (P = 0.001). Additionally, shown to mediate docetaxel resistance in gastric cancers by our research, FOXM1 was revealed to alter microtubule dynamics in response to the treatment of docetaxel, and the drug resistance could be reversed with FOXM1 inhibitor thiostrepton treatment. Conclusions FOXM1 can be a useful marker for predicting patients’ prognosis and monitoring docetaxel response, and might be a new therapeutic target in docetaxel resistant gastric cancer.
Collapse
Affiliation(s)
- Xiaoxiao Li
- Department of Oncology, Affiliated Hospital of Medical College Qingdao University, 16 Jiangsu Road, Qingdao 266003, China.
| | | | | | | | | | | | | |
Collapse
|
164
|
miR-370 targeted FoxM1 functions as a tumor suppressor in laryngeal squamous cell carcinoma (LSCC). Biomed Pharmacother 2013; 68:149-54. [PMID: 24055400 DOI: 10.1016/j.biopha.2013.08.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 08/10/2013] [Indexed: 02/02/2023] Open
Abstract
microRNAs, a family of small non-coding RNAs, involve in the pathogenesis of several types of cancers, including laryngeal squamous cell carcinoma (LSCC). MiR-370 is frequently aberrant expressed in various types of human cancer including LSCC. However, the role for miR-370 in LSCC remains elusive. Here, we demonstrate that miR-370 was down-regulated in human LSCC tissues. Furthermore, there was an inverse relationship between Forkhead Box ml (FoxM1), which was up-regulated and miR-370 expression in LSCC tissues. FoxM1 was subsequently predicted by bioinformatics and verified to be a target of miR-370 by Luciferase reporter assay. Restored expression of miR-370 in Hep2 cells significantly inhibited cell proliferation. In conclusion, our results suggest that miR-370 may function as a tumor suppressor in LSCC through downregulation of FoxM1, suggesting that miR-370 could serve as a novel potential maker for LSCC therapy.
Collapse
|
165
|
Lin J, Zheng Y, Chen K, Huang Z, Wu X, Zhang N. Inhibition of FOXM1 by thiostrepton sensitizes medulloblastoma to the effects of chemotherapy. Oncol Rep 2013; 30:1739-44. [PMID: 23912794 DOI: 10.3892/or.2013.2654] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 07/22/2013] [Indexed: 11/06/2022] Open
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in children and is highly invasive and metastatic. Despite recent advances, most MB patients suffer significant therapy-related morbidity, and the survival rate for patients with metastatic MB remains unsatisfactory. Altered expression of FOXM1 has been detected in many types of cancers, and the inhibition of FOXM1 has been studied as a cancer therapy. In the present study, we evaluated the impact of the inhibition of FOXM1 by thiostrepton in Daoy MB cells. Cells were treated with different concentrations of thiostrepton alone or in combination with cisplatin. Cell viability was measured with CCK-8 assays, and cell cycle distribution and apoptosis were assessed by flow cytometric analysis. Changes in protein expression were examined by western blotting. RNAi experiments were performed using siRNA oligonucleotides. The invasion and migration studies were performed using 8-µm Transwell plates. Inhibition of FOXM1 by thiostrepton significantly decreased MB cell proliferation. Cell arrest at the G2/M phase and apoptosis were significantly increased in MB cell lines that were treated with thiostrepton or transfected with siRNA. Thiostrepton decreased the IC50 value of cisplatin for MB treatment by enhancing cisplatin-induced apoptosis. Thiostrepton also decreased cell invasion and migration, which are crucial steps for tumor progression. Our data suggest that targeting FOXM1 with small-molecule inhibitors results in potent antitumor activity and chemosensitizing effects in human medulloblastoma cells.
Collapse
Affiliation(s)
- Jiaping Lin
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | | | | | | | | | | |
Collapse
|
166
|
Li X, Qi W, Yao R, Tang D, Liang J. Overexpressed transcription factor FOXM1 is a potential diagnostic and adverse prognostic factor in postoperational gastric cancer patients. Clin Transl Oncol 2013; 16:307-14. [PMID: 23873251 DOI: 10.1007/s12094-013-1076-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 06/27/2013] [Indexed: 01/14/2023]
Abstract
PURPOSE In the present study, we intend to detect the expression of Forkhead box transcription (FOXM1) in gastric cancer tissues and cell lines, and analyze the correlation between FOXM1 expression and clinic-pathological features as well as their association with clinic outcomes in patients with resectable gastric cancers. METHODS We examined the expression of FOXM1 in 103 cancer tissues from patients who underwent gastrectomy during Jan 2007 to Nov 2007 and 68 randomly selected para-cancer tissues by immunohistochemistry. The expression of FOXM1 protein in the benign and malignant human gastric cell lines was simultaneously detected using Western blot analysis. Data on clinic-pathological features and relevant prognostic factors in these patients were then analyzed. RESULTS FOXM1 expression was absolutely higher in gastric cancer than para-cancer tissues (P < 0.001) and normal gastric epithelium cell lines (P = 0.022). No significant association was found between FOXM1 expression and any clinic-pathological parameters (P > 0.1). FOXM1 amplification was showed to be independently associated with prognosis in gastric cancer patients (P = 0.001), and its affection is more significant in patients with tumor size larger than 5 cm (P = 0.004), pT3-4 (P = 0.003) or pIII-IV (P = 0.001) as a result of stage-stratified analysis. CONCLUSIONS Overexpressed FOXM1 is a potential diagnostic and poor prognostic biomarker in postoperational gastric cancer patients.
Collapse
Affiliation(s)
- X Li
- Department of Oncology of the Affiliated Hospital of Medical College Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | | | | | | | | |
Collapse
|
167
|
Sengupta A, Rahman M, Mateo-Lozano S, Tirado OM, Notario V. The dual inhibitory effect of thiostrepton on FoxM1 and EWS/FLI1 provides a novel therapeutic option for Ewing's sarcoma. Int J Oncol 2013; 43:803-12. [PMID: 23857410 PMCID: PMC3787886 DOI: 10.3892/ijo.2013.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/04/2013] [Indexed: 01/08/2023] Open
Abstract
The poor prognosis of Ewing’s sarcoma (EWS), together with its high lethal recurrence rate and the side-effects of current treatments, call for novel targeted therapies with greater curative effectiveness and substantially reduced side-effects. The oncogenic chimeric protein EWS/FLI1 is the key malignancy driver in most EWSs, regulating numerous target genes, many of which influence cell cycle progression. It has often been argued that targeting proteins regulated directly or indirectly by EWS/FLI1 may provide improved therapeutic options for EWS. In this context, our study examined FoxM1, a key cell cycle regulating transcription factor, reported to be expressed in EWS and influenced by EWS/FLI1. Thiostrepton, a naturally occurring small molecule, has been shown to selectively inhibit FoxM1 expression in cancer cells. We demonstrate that in EWS, in addition to inhibiting FoxM1 expression, thiostrepton downregulates the expression of EWS/FLI1, both at the mRNA and protein levels, leading to cell cycle arrest and, ultimately, to apoptotic cell death. We also show that thiostrepton treatment reduces the tumorigenicity of EWS cells, significantly delaying the growth of nude mouse xenograft tumors. Results from this study demonstrate a novel action of thiostrepton as inhibitor of the expression of the EWS/FLI1 oncoprotein in vitro and in vivo, and that it shows greater efficacy against EWS than against other tumor types, as it is active on EWS cells and tumors at concentrations lower than those reported to have effective inhibitory activity on tumor cells derived from other cancers. Owing to the dual action of this small molecule, our findings suggest that thiostrepton may be particularly effective as a novel agent for the treatment of EWS patients.
Collapse
Affiliation(s)
- Aniruddha Sengupta
- Department of Radiation Medicine, Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | | | | | |
Collapse
|
168
|
Yung MMH, Chan DW, Liu VWS, Yao KM, Ngan HYS. Activation of AMPK inhibits cervical cancer cell growth through AKT/FOXO3a/FOXM1 signaling cascade. BMC Cancer 2013; 13:327. [PMID: 23819460 PMCID: PMC3702529 DOI: 10.1186/1471-2407-13-327] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 07/01/2013] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Although advanced-stage cervical cancer can benefit from current treatments, approximately 30% patients may fail after definitive treatment eventually. Therefore, exploring alternative molecular therapeutic approaches is imperatively needed for this disease. We have recently shown that activation of AMP-activated protein kinase (AMPK), a metabolic sensor, hampers cervical cancer cell growth through blocking the Wnt/β-catenin signaling activity. Here, we report that activated AMPK (p-AMPK) also inhibits cervical cancer cell growth by counteracting FOXM1 function. METHODS Effect of the activation of AMPK on FOXM1 expression was examined by hypoxia and glucose deprivation, as well as pharmacological AMPK activators such as A23187, AICAR and metformin. RT Q-PCR and Western blot analysis were employed to investigate the activities of AMPK, FOXM1 and AKT/FOXO3a signaling. RESULTS Consistent with our previous findings, the activation of AMPK by either AMPK activators such as AICAR, A23187, metformin, glucose deprivation or hypoxia significantly inhibited the cervical cancer cell growth. Importantly, we found that activated AMPK activity was concomitantly associated with the reduction of both the mRNA and protein levels of FOXM1. Mechanistically, we showed that activated AMPK was able to reduce AKT mediated phosphorylation of p-FOXO3a (Ser253). Interestingly, activated AMPK could not cause any significant changes in FOXM1 in cervical cancer cells in which endogenous FOXO3a levels were knocked down using siRNAs, suggesting that FOXO3a is involved in the suppression of FOXM1. CONCLUSION Taken together, our results suggest the activated AMPK impedes cervical cancer cell growth through reducing the expression of FOXM1.
Collapse
Affiliation(s)
- Mingo Ming Ho Yung
- Departments of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | | | | | | | | |
Collapse
|
169
|
Kimura Y, Arakawa F, Kiyasu J, Miyoshi H, Yoshida M, Ichikawa A, Niino D, Sugita Y, Okamura T, Doi A, Yasuda K, Tashiro K, Kuhara S, Ohshima K. The Wnt signaling pathway and mitotic regulators in the initiation and evolution of mantle cell lymphoma: Gene expression analysis. Int J Oncol 2013; 43:457-68. [PMID: 23760751 DOI: 10.3892/ijo.2013.1982] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 05/20/2013] [Indexed: 11/06/2022] Open
Abstract
For an accurate understanding of mantle cell lymphoma (MCL), molecular behavior could be staged into two major events: lymphomagenesis with the t(11;14) translocation (initiation), and evolution into a more aggressive form (transformation). Unfortunately, it is still unknown which genes contribute to each event. In this study, we performed cDNA microarray experiments designed based on the concept that morphologically heterogeneous MCL samples would provide insights into the role of aberrant gene expression for both events. A total of 15 MCLs were collected from the files, which include a total of 237 MCL patients confirmed by histology as CCND1-positive. We posited four stepwise morphological grades for MCL: MCL in situ, MCL with classical form (cMCL), MCL with aggressive form (aMCL), and MCL with intermediate morphology between classical and aggressive forms at the same site (iMCL). To identify genes involved in initiation, we compared the tumor cells of MCL in situ (n=4) with normal mantle zone B lymphocytes (n=4), which were selected by laser microdissection (LMD). To identify genes contributing to transformation, we selected the overlapping genes differentially expressed between both cMCL (n=4) vs. aMCL (n=5) and classical vs. aggressive areas in iMCL (n=2) obtained by LMD. A significant number of genes (n=23, p=0.016) belonging to the Wnt signaling pathway were differentially expressed in initiation. This specific activation was confirmed by immuno-histochemistry, as MCL in situ had nuclear localization of phosphorylated-β-catenin with high levels of cytoplasmic Wnt3 staining. For transformation, identified 60 overlapping genes included a number of members of the p53 interaction network (CDC2, BIRC5 and FOXM1), which is known to mediate cell cycle progression during the G2/M transition. Thus, we observe that the Wnt signaling pathway may play an important role in initial lymphomagenesis in addition to t(11;14) translocations, and that specific mitotic regulators facilitate transformation into more aggressive forms.
Collapse
Affiliation(s)
- Yoshizo Kimura
- Department of Pathology, School of Medicine, Kurume University, Kurume, Fukuoka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
van der Velpen V, Geelen A, Schouten EG, Hollman PC, Afman LA, van 't Veer P. Estrogen receptor-mediated effects of isoflavone supplementation were not observed in whole-genome gene expression profiles of peripheral blood mononuclear cells in postmenopausal, equol-producing women. J Nutr 2013; 143:774-80. [PMID: 23616509 DOI: 10.3945/jn.113.174037] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Isoflavones (genistein, daidzein, and glycitein) are suggested to have benefits as well as risks for human health. Approximately one-third of the Western population is able to metabolize daidzein into the more potent metabolite equol. Having little endogenous estradiol, equol-producing postmenopausal women who use isoflavone supplements to relieve their menopausal symptoms could potentially be at high risk of adverse effects of isoflavone supplementation. The current trial aimed to study the effects of intake of an isoflavone supplement rich in daidzein compared with placebo on whole-genome gene expression profiles of peripheral blood mononuclear cells (PBMCs) in equol-producing, postmenopausal women. Thirty participants received an isoflavone supplement or a placebo for 8 wk each in a double-blind, randomized cross-over design. The isoflavone supplement was rich in daidzein (60%) and provided 94 mg isoflavones (aglycone equivalents) daily. Gene expression in PBMCs was significantly changed (P < 0.05) in 357 genes after the isoflavone intervention compared with placebo. Gene set enrichment analysis revealed downregulated clusters of gene sets involved in inflammation, oxidative phosphorylation, and cell cycle. The expression of estrogen receptor (ER) target genes and gene sets related to ER signaling were not significantly altered, which may be explained by the low ERα and ERβ expression in PBMCs. The observed downregulated gene sets point toward potential beneficial effects of isoflavone supplementation with respect to prevention of cancer and cardiovascular disease. However, whether ER-related effects of isoflavones are beneficial or harmful should be studied in tissues that express ERs.
Collapse
Affiliation(s)
- Vera van der Velpen
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
171
|
Delineation of the key aspects in the regulation of epithelial monolayer formation. Mol Cell Biol 2013; 33:2535-50. [PMID: 23608536 DOI: 10.1128/mcb.01435-12] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The formation, maintenance, and repair of epithelial barriers are of critical importance for whole-body homeostasis. However, the molecular events involved in epithelial tissue maturation are not fully established. To this end, we investigated the molecular processes involved in renal epithelial proximal-tubule monolayer maturation utilizing transcriptomic, metabolomic, and functional parameters. We uncovered profound dynamic alterations in transcriptional regulation, energy metabolism, and nutrient utilization over the maturation process. Proliferating cells exhibited high glycolytic rates and high transcript levels for fatty acid synthesis genes (FASN), whereas matured cells had low glycolytic rates, increased oxidative capacity, and preferentially expressed genes for beta oxidation. There were dynamic alterations in the expression and localization of several adherens (CDH1, -4, and -16) and tight junction (TJP3 and CLDN2 and -10) proteins. Genes involved in differentiated proximal-tubule function, cilium biogenesis (BBS1), and transport (ATP1A1 and ATP1B1) exhibited increased expression during epithelial maturation. Using TransAM transcription factor activity assays, we could demonstrate that p53 and FOXO1 were highly active in matured cells, whereas HIF1A and c-MYC were highly active in proliferating cells. The data presented here will be invaluable in the further delineation of the complex dynamic cellular processes involved in epithelial cell regulation.
Collapse
|
172
|
Kong X, Li L, Li Z, Le X, Huang C, Jia Z, Cui J, Huang S, Wang L, Xie K. Dysregulated expression of FOXM1 isoforms drives progression of pancreatic cancer. Cancer Res 2013; 73:3987-96. [PMID: 23598278 DOI: 10.1158/0008-5472.can-12-3859] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The transcription factor Forkhead box M1 (FOXM1) plays important roles in oncogenesis. However, the expression statuses of FOXM1 isoforms and their impact on and molecular basis in oncogenesis are unknown. We sought to determine the identities of FOXM1 isoforms in and the impact of their expression on pancreatic cancer development and progression using human tissues, cell lines, and animal models. Overexpression of FOXM1 mRNA and protein was pronounced in human pancreatic tumors and cancer cell lines. We identified five FOXM1 isoforms present in pancreatic cancer: FOXM1a, FOXM1b, and FOXM1c along with two isoforms tentatively designated as FOXM1b1 and FOXM1b2 because they were closely related to FOXM1b. Interestingly, FOXM1c was predominantly expressed in pancreatic tumors and cancer cell lines, whereas FOXM1a expression was generally undetectable in them. Functional analysis revealed that FOXM1b, FOXM1b1, FOXM1b2, and FOXM1c, but not FOXM1a, promoted pancreatic tumor growth and metastasis. Consistently, FOXM1b, FOXM1b1, FOXM1b2, and FOXM1c activated transcription of their typical downstream genes. Also, Sp1 mechanistically activated the FOXM1 promoter, whereas Krüppel-like factor 4 (KLF4) repressed its activity. Finally, we identified an Sp1- and KLF4-binding site in the FOXM1 promoter and showed that both Sp1 and KLF4 protein bound directly to it. Deletion mutation of this binding site significantly attenuated the transcriptional regulation of the FOXM1 promoter positively by Sp1 and negatively by KLF4. We showed that overexpression of specific FOXM1 isoforms critically regulates pancreatic cancer development and progression by enhancing tumor cell invasion and metastasis. Our findings strongly suggest that targeting specific FOXM1 isoforms effectively attenuates pancreatic cancer development and progression.
Collapse
Affiliation(s)
- Xiangyu Kong
- Department of Gastroenterology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
A 3-gene proliferation score (TOP-FOX-67) can re-classify histological grade-2, ER-positive breast cancers into low- and high-risk prognostic categories. Breast Cancer Res Treat 2013; 138:691-8. [PMID: 23504136 DOI: 10.1007/s10549-013-2475-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 03/05/2013] [Indexed: 10/27/2022]
Abstract
The goal of this study was to assess the prognostic value of a 3-gene (TOP2A, FOXM1, and MKI67) proliferation score and use it to risk stratify grade-2, estrogen receptor (ER)-positive breast cancers into low- and high-risk groups. We used 4 different breast cancer gene expression datasets including two cohorts of patients who received no systemic adjuvant therapy (Mainz: n = 206, TRANSBIG: n = 134) and two other cohorts that received adjuvant tamoxifen (JBI: n = 227, MDACC/SET: n = 192). We compared individual and combined expression values of the 3 genes between grade 1, 2, and 3 tumors and plotted distant metastasis-free survival (DMFS) curves by the 3-gene score for grade-2 cancers. We compared the prognostic value of the 3-gene score to the Genomic Grade Index (GGI). The individual and combined expression of TOP2A, FOXM1, and MKI67 were significantly different between the 3 histological grade groups with the highest expression in grade-3 and the lowest in grade-1 cancers. Expression levels were variable in grade-2 cancers. Grade-2 tumors with high expression of the 3 genes (>median) showed significantly worse DMFS in one prognostic and one tamoxifen-treated set and showed a similar but non-significant trend for worse survival in the remaining two datasets. The 3-gene score performed equally well in risk stratification as the GGI. A 3-gene proliferation score shows similar prognostic value as the GGI in ER-positive, grade-2 cancers and may serve as basis for a PCR-based assay that could aid prognostic prediction for clinically intermediate-risk cancers.
Collapse
|
174
|
Calvisi DF, Frau M, Tomasi ML, Feo F, Pascale RM. Deregulation of signalling pathways in prognostic subtypes of hepatocellular carcinoma: novel insights from interspecies comparison. Biochim Biophys Acta Rev Cancer 2013; 1826:215-37. [PMID: 23393659 DOI: 10.1016/j.bbcan.2012.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma is a frequent and fatal disease. Recent researches on rodent models and human hepatocarcinogenesis contributed to unravel the molecular mechanisms of hepatocellular carcinoma dedifferentiation and progression, and allowed the discovery of several alterations underlying the deregulation of cell cycle and signalling pathways. This review provides an interpretive analysis of the results of these studies. Mounting evidence emphasises the role of up-regulation of RAS/ERK, P13K/AKT, IKK/NF-kB, WNT, TGF-ß, NOTCH, Hedgehog, and Hippo signalling pathways as well as of aberrant proteasomal activity in hepatocarcinogenesis. Signalling deregulation often occurs in preneoplastic stages of rodent and human hepatocarcinogenesis and progressively increases in carcinomas, being most pronounced in more aggressive tumours. Numerous changes in signalling cascades are involved in the deregulation of carbohydrate, lipid, and methionine metabolism, which play a role in the maintenance of the transformed phenotype. Recent studies on the role of microRNAs in signalling deregulation, and on the interplay between signalling pathways led to crucial achievements in the knowledge of the network of signalling cascades, essential for the development of adjuvant therapies of liver cancer. Furthermore, the analysis of the mechanisms involved in signalling deregulation allowed the identification of numerous putative prognostic markers and novel therapeutic targets of specific hepatocellular carcinoma subtypes associated with different biologic and clinical features. This is of prime importance for the selection of patient subgroups that are most likely to obtain clinical benefit and, hence, for successful development of targeted therapies for liver cancer.
Collapse
Affiliation(s)
- Diego F Calvisi
- Department of Clinical and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | | | | | | | | |
Collapse
|
175
|
Zhang S, Teng H, Ding Q, Fan J, Shi W, Zhou Y, Zhang C. FoxM1 involvement in astrocyte proliferation after spinal cord injury in rats. J Mol Neurosci 2013; 51:170-9. [PMID: 23386122 DOI: 10.1007/s12031-013-9972-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Accepted: 01/23/2013] [Indexed: 12/26/2022]
Abstract
The Forkhead box M1 (FoxM1) protein is a proliferation-associated transcription factor that plays a key role in controlling both the G1/S and G2/M transitions of the cell cycle and regulates transcription of cell cycle genes, including cyclin-dependent kinase inhibitors p27(kip1) and p21(waf1/cip1). The expression levels of FoxM1 directly correlated with the proliferation index, cancer survival, genomic instability rate, and microvessel density, and inversely correlated with apoptosis. Furthermore, FoxM1 is determined to play a role in tissue repair following injury in the lungs and liver. However, the signaling of FoxM1, involved in its expression and its role in central nervous system lesion and repair is poorly known. In this study, we performed a spinal cord injury (SCI) model in adult Sprague-Dawley rats and investigated the dynamic changes and role of FoxM1 expression in the spinal cord. Western blot analysis revealed that FoxM1 was lowly presented in normal spinal cord. It gradually increased, reached a peak at day 3, and then declined to basal levels at 14 days after spinal cord injury. Immunohistochemistry further confirmed that FoxM1 was expressed at low levels in gray and white matters in normal condition and increased after SCI. Double immunofluorescence staining showed that FoxM1was co-expressed with NeuN (neuronal marker) and GFAP (astrocytic marker), and FoxM1 expression was increased predominantly in astrocytes after injury, which were regenerating axons and largely proliferated after injury. Furthermore, co-immunoprecipitation studies demonstrated increased interactions among FoxM1, Skp2, and p27(kip1) in the spinal cord after injury. Taken together, these results provide new insights into the molecular mechanisms underlying astrocyte proliferation during SCI and suggest that FoxM1 might play crucial roles in CNS pathophysiology after SCI.
Collapse
Affiliation(s)
- Shuangwei Zhang
- Department of Orthopaedics, The Central Hospital of Shijiazhuang, Shijiazhuang, Hebei Province, 050011, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
176
|
Lam AKY, Ngan AWL, Leung MH, Kwok DCT, Liu VWS, Chan DW, Leung WY, Yao KM. FOXM1b, which is present at elevated levels in cancer cells, has a greater transforming potential than FOXM1c. Front Oncol 2013; 3:11. [PMID: 23386997 PMCID: PMC3560383 DOI: 10.3389/fonc.2013.00011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 01/11/2013] [Indexed: 01/06/2023] Open
Abstract
The forkhead box (FOX) M1 transcription factor is required to maintain the proliferation of cancer cells. Two transcriptionally active isoforms of FOXM1, FOXM1b and FOXM1c, have been identified, but their functional differences remain unclear. FOXM1c is distinguished from FOXM1b by an extra exon (exon Va) that contains an ERK1/2 target sequence. Based on a literature search and quantitative PCR analysis, we concluded that FOXM1b is the predominant isoform that is overexpressed in cancers. The further characterization of FOXM1b and FOXM1c revealed two interesting differences. First, FOXM1b exhibited a higher transforming ability than FOXM1c in a soft agar assay. Second, the transactivating activity of FOXM1c, but not that of FOXM1b, was sensitive to activation by RAF/MEK/MAPK signaling. Importantly, the MEK1 activation of FOXM1c was associated with proteolytic processing to generate short forms that might represent constitutively active forms missing the N-terminal inhibitory domain; in contrast, the proteolytic processing of FOXM1b did not require MEK1 activation. Our findings suggest that FOXM1b is functionally more active. These results provide novel insights into the regulation of FOXM1 activity and its role in tumorigenesis.
Collapse
Affiliation(s)
- Andy K Y Lam
- Department of Biochemistry, The Li Ka Shing Faculty of Medicine, The University of Hong Kong Hong Kong SAR, China
| | | | | | | | | | | | | | | |
Collapse
|
177
|
Christensen L, Joo J, Lee S, Wai D, Triche TJ, May WA. FOXM1 is an oncogenic mediator in Ewing Sarcoma. PLoS One 2013; 8:e54556. [PMID: 23365673 PMCID: PMC3554707 DOI: 10.1371/journal.pone.0054556] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 12/14/2012] [Indexed: 02/06/2023] Open
Abstract
Ewing Family Tumors (Ewing Sarcoma and peripheral Primitive Neuroectodermal Tumor) are common bone and soft tissue malignancies of childhood, adolescence and young adulthood. Chromosomal translocation in these tumors produces fusion oncogenes of the EWS/ETS class, with EWS/FLI1 being by far the most common. EWS/ETS chimera are the only well established driver mutations in these tumors and they function as aberrant transcription factors. Understanding the downstream genes whose expression is modified has been a central approach to the study of these tumors. FOXM1 is a proliferation associated transcription factor which has increasingly been found to play a role in the pathogenesis of a wide range of human cancers. Here we demonstrate that FOXM1 is expressed in Ewing primary tumors and cell lines. Reduction in FOXM1 expression in Ewing cell lines results in diminished potential for anchorage independent growth. FOXM1 expression is enhanced by EWS/FLI1, though, unlike other tumor systems, it is not driven by expression of the EWS/FLI1 target GLI1. Thiostrepton is a compound known to inhibit FOXM1 by direct binding. We show that Thiostrepton diminishes FOXM1 expression in Ewing cell lines and this reduction reduces cell viability through an apoptotic mechanism. FOXM1 is involved in Ewing tumor pathogenesis and may prove to be a useful therapeutic target in Ewing tumors.
Collapse
MESH Headings
- Adolescent
- Animals
- Apoptosis/drug effects
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Biopsy
- Bone Neoplasms/genetics
- Bone Neoplasms/metabolism
- Bone Neoplasms/pathology
- Cell Adhesion
- Cell Line, Tumor
- Cell Survival/drug effects
- Child
- Forkhead Box Protein M1
- Forkhead Transcription Factors/antagonists & inhibitors
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Mice
- NIH 3T3 Cells
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Proto-Oncogene Protein c-fli-1/genetics
- Proto-Oncogene Protein c-fli-1/metabolism
- RNA, Small Interfering/genetics
- RNA-Binding Protein EWS/genetics
- RNA-Binding Protein EWS/metabolism
- Sarcoma, Ewing/genetics
- Sarcoma, Ewing/metabolism
- Sarcoma, Ewing/pathology
- Signal Transduction/drug effects
- Thiostrepton/pharmacology
- Translocation, Genetic
- Young Adult
Collapse
Affiliation(s)
- Laura Christensen
- Division of Hematology-Oncology, Department of Pediatrics, Saban Research Institute, Childrens Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Jay Joo
- Division of Hematology-Oncology, Department of Pediatrics, Saban Research Institute, Childrens Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Sean Lee
- Division of Hematology-Oncology, Department of Pediatrics, Saban Research Institute, Childrens Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Daniel Wai
- Department of Pathology, Saban Research Institute, Childrens Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Timothy J. Triche
- Department of Pathology, Saban Research Institute, Childrens Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - William A. May
- Division of Hematology-Oncology, Department of Pediatrics, Saban Research Institute, Childrens Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
178
|
Wierstra I. FOXM1 (Forkhead box M1) in tumorigenesis: overexpression in human cancer, implication in tumorigenesis, oncogenic functions, tumor-suppressive properties, and target of anticancer therapy. Adv Cancer Res 2013; 119:191-419. [PMID: 23870513 DOI: 10.1016/b978-0-12-407190-2.00016-2] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
FOXM1 (Forkhead box M1) is a typical proliferation-associated transcription factor and is also intimately involved in tumorigenesis. FOXM1 stimulates cell proliferation and cell cycle progression by promoting the entry into S-phase and M-phase. Additionally, FOXM1 is required for proper execution of mitosis. In accordance with its role in stimulation of cell proliferation, FOXM1 exhibits a proliferation-specific expression pattern and its expression is regulated by proliferation and anti-proliferation signals as well as by proto-oncoproteins and tumor suppressors. Since these factors are often mutated, overexpressed, or lost in human cancer, the normal control of the foxm1 expression by them provides the basis for deregulated FOXM1 expression in tumors. Accordingly, FOXM1 is overexpressed in many types of human cancer. FOXM1 is intimately involved in tumorigenesis, because it contributes to oncogenic transformation and participates in tumor initiation, growth, and progression, including positive effects on angiogenesis, migration, invasion, epithelial-mesenchymal transition, metastasis, recruitment of tumor-associated macrophages, tumor-associated lung inflammation, self-renewal capacity of cancer cells, prevention of premature cellular senescence, and chemotherapeutic drug resistance. However, in the context of urethane-induced lung tumorigenesis, FOXM1 has an unexpected tumor suppressor role in endothelial cells because it limits pulmonary inflammation and canonical Wnt signaling in epithelial lung cells, thereby restricting carcinogenesis. Accordingly, FOXM1 plays a role in homologous recombination repair of DNA double-strand breaks and maintenance of genomic stability, that is, prevention of polyploidy and aneuploidy. The implication of FOXM1 in tumorigenesis makes it an attractive target for anticancer therapy, and several antitumor drugs have been reported to decrease FOXM1 expression.
Collapse
|
179
|
Chan DW, Hui WWY, Cai PCH, Liu MX, Yung MMH, Mak CSL, Leung THY, Chan KKL, Ngan HYS. Targeting GRB7/ERK/FOXM1 signaling pathway impairs aggressiveness of ovarian cancer cells. PLoS One 2012; 7:e52578. [PMID: 23285101 PMCID: PMC3527599 DOI: 10.1371/journal.pone.0052578] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 11/20/2012] [Indexed: 01/14/2023] Open
Abstract
Ovarian cancer is a highly lethal disease with poor prognosis and especially in high-grade tumor. Emerging evidence has reported that aberrant upregulation and activation of GRB7, ERK as well as FOXM1 are closely associated with aggresivenesss of human cancers. However, the interplay between these factors in the pathogenesis of human cancers still remains unclear. In this study, we found that GRB7 (P<0.0001), ERK phosphorylation (P<0.0001) and FOXM1 (P = 0.001) were frequently increased and associated with high-grade tumors, as well as a high tendency in association with advanced stage ovarian cancer by immunohistochemical analysis. Intriguingly, the expressions of GRB7 (P<0.0001), ERK phosphorylation (P<0.001) and FOXM1 (P<0.001) showed a significant stepwise increase pattern along Grade 1 to Grade 3 ovarian cancers. Biochemical studies using western blot analysis demonstrated that enforced expression or knockdown of GRB7 showed GRB7 could elevate the levels of ERK phosphorylation and FOXM1, whereas enforced expression of FOXM1 could not alter levels of GRB7 and ERK phosphorylation. But inhibition of ERK signaling by U0126 or PD98059 could reduce the level of FOXM1 in GRB7-overexpressing ovarian cancer cells, suggesting that GRB7, ERK and FOXM1 are regulated orderly. Moreover, inhibition of ERK activity by U0126 or PD98059, or decreased FOXM1 expression by Thiostrepton significantly inhibited cell migration/invasion, tumor growth in vitro and in vivo. Collectively, our findings confer that targeting GRB7/ERK/FOXM1 signaling cascade may be a promising molecular therapeutic choice in combating ovarian cancer.
Collapse
Affiliation(s)
- David W. Chan
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P.R.China
- * E-mail: (DC); (HN)
| | - Winnie W. Y. Hui
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P.R.China
| | - Patty C. H. Cai
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P.R.China
| | - Michelle X. Liu
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P.R.China
| | - Mingo M. H. Yung
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P.R.China
| | - Celia S. L. Mak
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P.R.China
| | - Thomas H. Y. Leung
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P.R.China
| | - Karen K. L. Chan
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P.R.China
| | - Hextan Y. S. Ngan
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P.R.China
- * E-mail: (DC); (HN)
| |
Collapse
|
180
|
FOXM1 promotes tumor cell invasion and correlates with poor prognosis in early-stage cervical cancer. Gynecol Oncol 2012; 127:601-10. [DOI: 10.1016/j.ygyno.2012.08.036] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 08/24/2012] [Accepted: 08/25/2012] [Indexed: 12/12/2022]
|
181
|
Chu XY, Zhu ZM, Chen LB, Wang JH, Su QS, Yang JR, Lin Y, Xue LJ, Liu XB, Mo XB. FOXM1 expression correlates with tumor invasion and a poor prognosis of colorectal cancer. Acta Histochem 2012; 114:755-62. [PMID: 22326401 DOI: 10.1016/j.acthis.2012.01.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 12/25/2011] [Accepted: 01/04/2012] [Indexed: 01/01/2023]
Abstract
FOXM1, a member of the Forkhead Box (Fox) family of transcription factors, plays a critical role in tumor development and metastasis. The aim of this study was to elucidate its role in colorectal cancer (CRC), particularly prognosis and metastasis. Semi-quantitative RT-PCR and Western blot assays were used to measure the expression levels of FOXM1 mRNA and protein in 15 CRC and adjacent normal mucosa tissues. Immunohistochemical assay was performed to detect FOXM1 protein expression in 112 CRC tissues and further determine its clinicopathological and prognostic significance. RNA interference (RNAi) was used to knockdown endogenous FOXM1 expression in CRC cell lines and to analyze the effects of FOXM1 knockdown on migration and invasion of CRC cells. The relative expression levels of FOXM1 mRNA and protein were significantly higher in CRC tissues than in adjacent normal mucosa tissues (P<0.01). In addition, the immunostaining of FOXM1 protein was stronger in CRC tissues than in adjacent normal mucosa tissues. By statistical analysis, we showed that high FOXM1 expression was closely correlated with the presence of lymph node metastasis, incidence of liver metastasis, and advanced TNM stage. Moreover, the cumulative 5-year survival rate of CRC patients with high FOXM1 expression was lower than that of those with low FOXM1 expression (P=0.0047). Multivariate analysis showed that the status of FOXM1 expression was an independent prognostic factor for CRC patients (P=0.025). Furthermore, RNAi-mediated FOXM1 knockdown could significantly inhibit growth, migration and invasion of CRC cells. Our results showed that FOXM1 over-expression is a molecular marker predicting increased invasive/metastatic potential of CRC and a poorer prognosis.
Collapse
|
182
|
Teh MT, Hutchison IL, Costea DE, Neppelberg E, Liavaag PG, Purdie K, Harwood C, Wan H, Odell EW, Hackshaw A, Waseem A. Exploiting FOXM1-orchestrated molecular network for early squamous cell carcinoma diagnosis and prognosis. Int J Cancer 2012; 132:2095-106. [DOI: 10.1002/ijc.27886] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 09/05/2012] [Indexed: 01/11/2023]
|
183
|
Halasi M, Gartel AL. Targeting FOXM1 in cancer. Biochem Pharmacol 2012; 85:644-652. [PMID: 23103567 DOI: 10.1016/j.bcp.2012.10.013] [Citation(s) in RCA: 369] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/15/2012] [Accepted: 10/17/2012] [Indexed: 11/28/2022]
Abstract
Oncogenic transcription factor FOXM1 is overexpressed in the majority of human cancers. In addition, FOXM1 has been implicated in cell migration, invasion, angiogenesis and metastasis. The important role of FOXM1 in cancer affirms its significance for therapeutic intervention. Current data suggest that targeting FOXM1 in mono- or combination therapy may have promising therapeutic benefits for the treatment of cancer. However, challenges with the delivery of anti-FOXM1 siRNA to tumors and the absence of small molecules, which specifically inhibit FOXM1, are delaying the development of FOXM1 inhibitors as feasible anticancer drugs. In this review, we describe and summarize the efforts that have been made to target FOXM1 in cancer and the consequences of FOXM1 suppression in human cancer cells.
Collapse
Affiliation(s)
- Marianna Halasi
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Andrei L Gartel
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America.
| |
Collapse
|
184
|
Teh MT. FOXM1 coming of age: time for translation into clinical benefits? Front Oncol 2012; 2:146. [PMID: 23087907 PMCID: PMC3471356 DOI: 10.3389/fonc.2012.00146] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 10/01/2012] [Indexed: 01/01/2023] Open
Abstract
A decade since the first evidence implicating the cell cycle transcription factor Forkhead Box M1 (FOXM1) in human tumorigenesis, a slew of subsequent studies revealed an oncogenic role of FOXM1 in the majority of human cancers including oral, nasopharynx, oropharynx, esophagus, breast, ovary, prostate, lung, liver, pancreas, kidney, colon, brain, cervix, thyroid, bladder, uterus, testis, stomach, skin, and blood. Its aberrant upregulation in almost all different cancer types suggests a fundamental role for FOXM1 in tumorigenesis. Its dose-dependent expression pattern correlated well with tumor progression starting from cancer predisposition and initiation, early premalignancy and progression, to metastatic invasion. In addition, emerging studies have demonstrated a causal link between FOXM1 and chemotherapeutic drug resistance. Despite the well-established multifaceted roles for FOXM1 in all stages of oncogenesis, its translation into clinical benefit is yet to materialize. In this contribution, I reviewed and discussed how our current knowledge on the oncogenic mechanisms of FOXM1 could be exploited for clinical use as biomarker for risk prediction, early cancer screening, molecular diagnostics/prognostics, and/or companion diagnostics for personalized cancer therapy.
Collapse
Affiliation(s)
- Muy-Teck Teh
- Centre for Clinical and Diagnostic Oral Sciences, Barts and The London School of Medicine and Dentistry, Queen Mary University of London London, UK
| |
Collapse
|
185
|
Faust D, Al-Butmeh F, Linz B, Dietrich C. Involvement of the transcription factor FoxM1 in contact inhibition. Biochem Biophys Res Commun 2012; 426:659-63. [PMID: 22982677 DOI: 10.1016/j.bbrc.2012.09.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 09/01/2012] [Indexed: 11/24/2022]
Abstract
Contact inhibition is a crucial mechanism regulating proliferation in vitro and in vivo. Although it is generally accepted that contact inhibition plays a pivotal role in maintaining tissue homeostasis, the molecular mechanisms of contact inhibition are still not fully understood. FoxM1 is known as a proliferation-associated transcription factor and is upregulated in many cancer types. Vice versa, anti-proliferative signals, such as TGF-β and differentiation signals decrease FoxM1 expression. Here we investigated the role of FoxM1 in contact inhibition in fibroblasts. We show that protein expression of FoxM1 is severely and rapidly downregulated upon contact inhibition, probably by inhibition of ERK activity, which then leads to decreased expression of cyclin A and polo-like kinase 1. Vice versa, ectopic expression of FoxM1 prevents the decrease in cyclin A and polo-like kinase 1 and causes a two-fold increase in saturation density indicating loss of contact inhibition. Hence, we show that downregulation of FoxM1 is required for contact inhibition by regulating expression of cyclin A and polo-like kinase 1.
Collapse
Affiliation(s)
- Dagmar Faust
- Institute of Toxicology, Medical Center of the Johannes Gutenberg-University, Obere Zahlbacherstr. 67, 55131 Mainz, Germany
| | | | | | | |
Collapse
|
186
|
Cytoplasmic Forkhead box M1 (FoxM1) in esophageal squamous cell carcinoma significantly correlates with pathological disease stage. World J Surg 2012; 36:90-7. [PMID: 21976009 PMCID: PMC3243851 DOI: 10.1007/s00268-011-1302-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abstract Esophageal cancer is a deadly cancer with esophageal squamous cell carcinoma (ESCC) as the major type. Until now there has been a lack of reliable prognostic markers for this malignancy. This study aims to investigate the clinical correlation between Forkhead box M1 (FoxM1) and patients’ parameters in ESCC. Methods Immunohistochemistry was performed to investigate the expression and localization of FoxM1 in 64 ESCC tissues and 10 nontumor esophageal tissues randomly selected from 64 patients before these data were used for clinical correlations. Results Cytoplasmic and nuclear expressions of FoxM1 were found in 63 and 16 of the 64 ESCC tissues, respectively. Low cytoplasmic expression of FoxM1 was correlated with early pathological stage in ESCC (P = 0.018), while patients with nuclear FoxM1 were younger in age than those without nuclear expression (P < 0.001). Upregulation of FoxM1 mRNA was found in five ESCC cell lines (HKESC-1, HKESC-2, HKESC-3, HKESC-4, and SLMT-1) when compared to non-neoplastic esophageal squamous cell line NE-1 using quantitative polymerase chain reaction (qPCR). Except for HKESC-3, all studied ESCC cell lines demonstrated a high expression of FoxM1 protein using immunoblot. A high mRNA level of FoxM1 was observed in all of the ESCC tissues examined when compared to their adjacent nontumor tissues using qPCR. Conclusion Cytoplasmic FoxM1 was correlated with pathological stage and might be a biomarker for advanced ESCC.
Collapse
|
187
|
Xiang HL, Liu F, Quan MF, Cao JG, Lv Y. 7-difluoromethoxyl-5,4’-di-n-octylgenistein inhibits growth of gastric cancer cells through downregulating forkhead box M1. World J Gastroenterol 2012; 18:4618-26. [PMID: 22969238 PMCID: PMC3435790 DOI: 10.3748/wjg.v18.i33.4618] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 03/27/2012] [Accepted: 05/26/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate whether the 7-difluoromethoxyl-5, 4’-di-n-octylgenistein (DFOG), a novel synthetic genistein analogue, affects the growth of gastric cancer cells and its mechanisms.
METHODS: A series of genistein analogues were prepared by difluoromethylation and alkylation, and human gastric cancer cell lines AGS and SGC-7901 cultured in vitro were treated with various concentrations of genistein and genistein analogues. The cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The cells were incubated by DFOG at different concentrations. The growth inhibitory effects were evaluated using MTT and clonogenic assay. The distribution of the phase in cell cycle was analyzed using flow cytometric analysis with propidium iodide staining. The expression of the transcription factor forkhead box M1 (FOXM1) was analyzed by reverse transcription-polymerase chain reaction and Western blotting. The expression levels of CDK1, Cdc25B, cyclin B and p27KIP1 protein were detected using Western blotting.
RESULTS: Nine of the genistein analogues had more effective antitumor activity than genistein. Among the tested analogues, DFOG possessed the strongest activity against AGS and SGC-7901 cells in vitro. DFOG significantly inhibited the cell viability and colony formation of AGS and SGC-7901 cells. Moreover, DFOG efficaciously arrested the cell cycle in G2/M phase. DFOG decreased the expression of FOXM1 and its downstream genes, such as CDK1, Cdc25B, cyclin B, and increased p27KIP1 at protein levels. Knockdown of FOXM1 by small interfering RNA before DFOG treatment resulted in enhanced cell growth inhibition in AGS cells. Up-regulation of FOXM1 by cDNA transfection attenuated DFOG-induced cell growth inhibition in AGS cells.
CONCLUSION: DFOG inhibits the growth of human gastric cancer cells by down-regulating the FOXM1 expression.
Collapse
|
188
|
Zhang X, Zeng J, Zhou M, Li B, Zhang Y, Huang T, Wang L, Jia J, Chen C. The tumor suppressive role of miRNA-370 by targeting FoxM1 in acute myeloid leukemia. Mol Cancer 2012; 11:56. [PMID: 22900969 PMCID: PMC3533721 DOI: 10.1186/1476-4598-11-56] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Accepted: 08/06/2012] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Recent evidence has accumulated that MicroRNA (miRNA) dysregulation occurs in the majority of human malignancies including acute myeloid leukemia (AML) and may contribute to onco-/leukemo-genesis. METHODS The expression levels of miR-370 and FoxM1 were assessed in 48 newly diagnosed AML patients, 40 AML patients in 1st complete remission (CR) and 21 healthy controls. Quantitative real-time PCR, western blots, colony formation assay, and β-Galactosidase ( SA-β-Gal) staining were used to characterize the changes induced by overexpression or inhibition of miR-370 or FoxM1. RESULTS We found that the down-regulation of miR-370 expression was a frequent event in both leukemia cell lines and primary leukemic cells from patients with de novo AML. Lower levels of miR-370 expression were found in 37 of 48 leukemic samples from AML patients compared to those in bone marrow cells derived from healthy adult individuals. Ectopic expression of miR-370 in HL60 and K562 cells led to cell growth arrest and senescence. In contrast, depletion of miR-370 expression using RNA interference enhanced the proliferation of those leukemic cells. Mechanistically, miR-370 targets the transcription factor FoxM1, a well established oncogenic factor promoting cell cycle progression. Moreover, when HL60 and K562 cells were treated with 5-aza-2'-deoxycytidine, a DNA methylation inhibitor, miR-370 expression was up-regulated, which indicates epigenetic silencing of miR-370 in leukemic cells. CONCLUSIONS Taken together, miR-370 may function as a tumor suppressor by targeting FoxM1, and the epigenetic silence of miR-370 thus leads to derepression of FoxM1 expression and consequently contributes to AML development and progression.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Department of Hematology, Qilu Hospital, Shandong University, No.107, Wenhua Xi Road, Jinan, 250012, Shandong, P. R. China
- Department of Medicine, Division of Hematology and CMM, Karolinska University Hospital Solna and Karolinska Institutet, Stockholm, Sweden
| | - Jiping Zeng
- Department of Biochemistry, Shandong University, Jinan, China
| | - Minran Zhou
- Department of Hematology, Qilu Hospital, Shandong University, No.107, Wenhua Xi Road, Jinan, 250012, Shandong, P. R. China
| | - Bingnan Li
- Department of Microbiology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan, China
- Department of Medicine, Division of Hematology and CMM, Karolinska University Hospital Solna and Karolinska Institutet, Stockholm, Sweden
| | - Yuanyuan Zhang
- Department of Hematology, Qilu Hospital, Shandong University, No.107, Wenhua Xi Road, Jinan, 250012, Shandong, P. R. China
| | - Tao Huang
- Department of Hematology, Qilu Hospital, Shandong University, No.107, Wenhua Xi Road, Jinan, 250012, Shandong, P. R. China
- Department of Microbiology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan, China
| | - Lixiang Wang
- Department of Microbiology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan, China
| | - Jihui Jia
- Department of Microbiology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan, China
| | - Chunyan Chen
- Department of Hematology, Qilu Hospital, Shandong University, No.107, Wenhua Xi Road, Jinan, 250012, Shandong, P. R. China
| |
Collapse
|
189
|
Grant GD, Gamsby J, Martyanov V, Brooks L, George LK, Mahoney JM, Loros JJ, Dunlap JC, Whitfield ML. Live-cell monitoring of periodic gene expression in synchronous human cells identifies Forkhead genes involved in cell cycle control. Mol Biol Cell 2012; 23:3079-93. [PMID: 22740631 PMCID: PMC3418304 DOI: 10.1091/mbc.e11-02-0170] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A periodic luciferase reporter system from cell cycle–regulated promoters in synchronous U2OS cells measures periodic, cell cycle–regulated gene expression in live cells. This assay is used to identify Forkhead transcription factors that control periodic gene expression, and it identifies FOXK1 as an activator of key cell cycle genes. We developed a system to monitor periodic luciferase activity from cell cycle–regulated promoters in synchronous cells. Reporters were driven by a minimal human E2F1 promoter with peak expression in G1/S or a basal promoter with six Forkhead DNA-binding sites with peak expression at G2/M. After cell cycle synchronization, luciferase activity was measured in live cells at 10-min intervals across three to four synchronous cell cycles, allowing unprecedented resolution of cell cycle–regulated gene expression. We used this assay to screen Forkhead transcription factors for control of periodic gene expression. We confirmed a role for FOXM1 and identified two novel cell cycle regulators, FOXJ3 and FOXK1. Knockdown of FOXJ3 and FOXK1 eliminated cell cycle–dependent oscillations and resulted in decreased cell proliferation rates. Analysis of genes regulated by FOXJ3 and FOXK1 showed that FOXJ3 may regulate a network of zinc finger proteins and that FOXK1 binds to the promoter and regulates DHFR, TYMS, GSDMD, and the E2F binding partner TFDP1. Chromatin immunoprecipitation followed by high-throughput sequencing analysis identified 4329 genomic loci bound by FOXK1, 83% of which contained a FOXK1-binding motif. We verified that a subset of these loci are activated by wild-type FOXK1 but not by a FOXK1 (H355A) DNA-binding mutant.
Collapse
Affiliation(s)
- Gavin D Grant
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Bose A, Teh MT, Hutchison IL, Wan H, Leigh IM, Waseem A. Two mechanisms regulate keratin K15 expression in keratinocytes: role of PKC/AP-1 and FOXM1 mediated signalling. PLoS One 2012; 7:e38599. [PMID: 22761689 PMCID: PMC3384677 DOI: 10.1371/journal.pone.0038599] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 05/08/2012] [Indexed: 01/24/2023] Open
Abstract
Background Keratin 15 (K15) is a type I keratin that is used as a marker of stem cells. Its expression is restricted to the basal layer of stratified epithelia, and the bulge in hair follicles. However, in certain clinical situations including oral lichen planus, K15 is induced in suprabasal layers, which is inconsistent with the role of a stem cell marker. This study provides insights into the mechanisms of K15 expression in the basal and differentiating keratinocytes. Methodology/Principal Findings Human keratinocytes were differentiated by three different methods; suspension in methylcellulose, high cell density and treatment with phorbol ester. The expression of mRNA was determined by quantitative PCR and protein by western blotting and immunostaining. Keratinocytes in suspension suppressed β1-integrin expression, induced differentiation-specific markers and K15, whereas FOXM1 (a cell cycle regulated protein) and K14 were downregulated. Rescuing β1-integrin by either fibronectin or the arginine-glycine-aspartate peptide suppressed K15 but induced K14 and FOXM1 expression. Specific inhibition of PKCδ, by siRNA, and AP-1 transcription factor, by TAM67 (dominant negative c-Jun), suppressed K15 expression, suggesting that PKC/AP-1 pathway plays a role in the differentiation-specific expression of K15. The basal cell-specific K15 expression may involve FOXM1 because ectopic expression of the latter is known to induce K15. Using chromatin immunoprecipitation, we have identified a single FOXM1 binding motif in the K15 promoter. Conclusions/Significance The data suggests that K15 is induced during terminal differentiation mediated by the down regulation of β1-integrin. However, this cannot be the mechanism of basal/stem cell-specific K15 expression in stratified epithelia, because basal keratinocytes do not undergo terminal differentiation. We propose that there are two mechanisms regulating K15 expression in stratified epithelia; differentiation-specific involving PKC/AP-1 pathway, and basal-specific mediated by FOXM1, and therefore the use of K15 expression as a marker of stem cells must be viewed with caution.
Collapse
Affiliation(s)
- Amrita Bose
- Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Muy-Teck Teh
- Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Iain L. Hutchison
- Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Hong Wan
- Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Irene M. Leigh
- Division of Cancer, Medical Research Institute, University of Dundee, Dundee, United Kingdom
| | - Ahmad Waseem
- Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- * E-mail:
| |
Collapse
|
191
|
Llauradó M, Majem B, Castellví J, Cabrera S, Gil-Moreno A, Reventós J, Ruiz A. Analysis of Gene Expression Regulated by the ETV5 Transcription Factor in OV90 Ovarian Cancer Cells Identifies FOXM1 Overexpression in Ovarian Cancer. Mol Cancer Res 2012; 10:914-24. [DOI: 10.1158/1541-7786.mcr-11-0449] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
192
|
Disruption of Klf4 in villin-positive gastric progenitor cells promotes formation and progression of tumors of the antrum in mice. Gastroenterology 2012; 142:531-42. [PMID: 22155367 PMCID: PMC3477581 DOI: 10.1053/j.gastro.2011.11.034] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 11/28/2011] [Accepted: 11/29/2011] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Krüppel-like factor 4 (Klf4) is a putative gastric tumor suppressor gene. Rare, villin-positive progenitor cells in the gastric antrum have multilineage potential. We investigated the function of Klf4 in these cells and in gastric carcinogenesis. METHODS We created mice with disruption of Klf4 in villin-positive antral mucosa cells (Villin-Cre(+);Klf4(fl/fl) mice). Villin-Cre(+);Klf4(fl/fl) and control mice were given drinking water with or without 240 ppm N-methyl-N-nitrosourea at 5 weeks of age and thereafter on alternating weeks for a total of 10 weeks. Gastric mucosa samples were collected at 35, 50, or 80 weeks of age from mice that were and were not given N-methyl-N-nitrosourea, and analyzed by histopathologic and molecular analyses. Findings were compared with those from human gastric tumor specimens. RESULTS Preneoplasia formed progressively in the antrum in 35- to 80-week-old Villin-Cre(+);Klf4(fl/fl) mice. Gastric tumors developed in 29% of 80-week-old Villin-Cre(+);Klf4(fl/fl) mice, which were located exclusively in the lesser curvature of the antrum. N-methyl-N-nitrosourea accelerated tumor formation, and tumors developed significantly more frequently in Villin-Cre(+);Klf4(fl/fl) mice than in control mice, at 35 and 50 weeks of age. Mouse and human gastric tumors had reduced expression of Krüppel-like factor 4 and increased expression of FoxM1 compared with healthy gastric tissue. Expression of Krüppel-like factor 4 suppressed transcription of FoxM1. CONCLUSIONS Inactivation of Klf4 in villin-positive gastric progenitor cells induces transformation of the gastric mucosa and tumorigenesis in the antrum in mice. Villin-Cre(+);Klf4(fl/fl) have greater susceptibility to chemical-induced gastric carcinogenesis and increased rates of gastric tumor progression than control mice.
Collapse
|
193
|
Suppression of FOXM1 sensitizes human cancer cells to cell death induced by DNA-damage. PLoS One 2012; 7:e31761. [PMID: 22393369 PMCID: PMC3290538 DOI: 10.1371/journal.pone.0031761] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 01/18/2012] [Indexed: 12/14/2022] Open
Abstract
Irradiation and DNA-damaging chemotherapeutic agents are commonly used in anticancer treatments. Following DNA damage FOXM1 protein levels are often elevated. In this study, we sought to investigate the potential role of FOXM1 in programmed cell death induced by DNA-damage. Human cancer cells after FOXM1 suppression were subjected to doxorubicin or γ-irradiation treatment. Our findings indicate that FOXM1 downregulation by stable or transient knockdown using RNAi or by treatment with proteasome inhibitors that target FOXM1 strongly sensitized human cancer cells of different origin to DNA-damage-induced apoptosis. We showed that FOXM1 suppresses the activation of pro-apoptotic JNK and positively regulates anti-apoptotic Bcl-2, suggesting that JNK activation and Bcl-2 down-regulation could mediate sensitivity to DNA-damaging agent-induced apoptosis after targeting FOXM1. Since FOXM1 is widely expressed in human cancers, our data further support the fact that it is a valid target for combinatorial anticancer therapy.
Collapse
|
194
|
Ha SY, Lee CH, Chang HK, Chang S, Kwon KY, Lee EH, Roh MS, Seo B. Differential expression of forkhead box M1 and its downstream cyclin-dependent kinase inhibitors p27(kip1) and p21(waf1/cip1) in the diagnosis of pulmonary neuroendocrine tumours. Histopathology 2012; 60:731-9. [PMID: 22296117 DOI: 10.1111/j.1365-2559.2011.04137.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
AIMS Pulmonary neuroendocrine (NE) tumours represent a spectrum of phenotypically distinct entities with different biological behaviours. Difficulties in classifying these tumours are frequently encountered in clinical practice. Forkhead box M1 (FoxM1) is essential for the development of various cancers and is a proliferation-specific transcription factor that regulates transcription of cell cycle genes, including cyclin-dependent kinase inhibitors p27(kip1) and p21(waf1/cip1) . This study was performed to determine the utility of FoxM1, p27(kip1) and p21(waf1/cip1) as immunomarkers for subtyping pulmonary NE tumours. METHODS AND RESULTS FoxM1, p27(kip1) and p21(waf1/cip1) expression was evaluated by immunohistochemistry in 60 pulmonary NE tumours [19 typical carcinoids (TCs), six atypical carcinoids (ACs), 17 large cell neuroendocrine carcinomas (LCNECs) and 18 small cell lung cancers (SCLCs)]. The frequencies of FoxM1 and p21(waf1/cip1) expression were significantly different between TCs and ACs (each P = 0.009), and those of FoxM1 and p27(kip1) expression were significantly different between LCNECs and SCLCs (P = 0.012 and P = 0.002, respectively). The combined FoxM1((-)) /p21(waf1/cip1(-)) and FoxM1((+)) /p27(kip1(high)) phenotypes had the best diagnostic accuracy for distinguishing TCs from ACs, and SCLCs from LCNECs, respectively. CONCLUSIONS FoxM1, p27(kip1) and p21(waf1/cip1) showed distinct immunoreactivity according to histological subtype, which may be of value as an ancillary test in the differential diagnosis of pulmonary NE tumours.
Collapse
Affiliation(s)
- Seung Yeon Ha
- Department of Pathology, Gachon University of Medicine and Science, Incheon, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
195
|
Stoyanova T, Roy N, Bhattacharjee S, Kopanja D, Valli T, Bagchi S, Raychaudhuri P. p21 cooperates with DDB2 protein in suppression of ultraviolet ray-induced skin malignancies. J Biol Chem 2011; 287:3019-28. [PMID: 22167187 DOI: 10.1074/jbc.m111.295816] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Exposure to ultraviolet rays (UV) in sunlight is the main cause of skin cancer. Here, we show that the p53-induced genes DDB2 and p21 are down-regulated in skin cancer, and in the mouse model they functionally cooperate to prevent UV-induced skin cancer. Our previous studies demonstrated an antagonistic role of DDB2 and p21 in nucleotide excision repair and apoptosis. Surprisingly, we find that the loss of p21 restores nucleotide excision repair and apoptosis in Ddb2(-/-) mice, but it does not protect from UV-mediated skin carcinogenesis. In contrast, Ddb2(-/-)p21(-/-) mice are significantly more susceptible to UV-induced skin cancer than the Ddb2(-/-) or the p21(-/-) mice. We provide evidence that p21 deletion in the Ddb2(-/-) background causes a strong increase in cell proliferation. The increased proliferation in the Ddb2(-/-)p21(-/-) background is related to a severe deficiency in UV-induced premature senescence. Also, the oncogenic pro-proliferation transcription factor FOXM1 is overexpressed in the p21(-/-) background. Our results show that the anti-proliferative and the pro-senescence pathways of DDB2 and p21 are critical protection mechanisms against skin malignancies.
Collapse
Affiliation(s)
- Tanya Stoyanova
- Department of Biochemistry and Molecular Genetics, Cancer Center, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | | | | | | | | | | | |
Collapse
|
196
|
Ladelfa MF, Toledo MF, Laiseca JE, Monte M. Interaction of p53 with tumor suppressive and oncogenic signaling pathways to control cellular reactive oxygen species production. Antioxid Redox Signal 2011; 15:1749-61. [PMID: 20919943 DOI: 10.1089/ars.2010.3652] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
p53 is a crucial transcription factor with tumor suppressive properties that elicits its function through specific target genes. It constitutes a pivotal system that integrates information received by many signaling pathways and subsequently orchestrates cell fate decisions, namely, growth-arrest, senescence, or apoptosis. Reactive oxygen species (ROS) production in cells can play a key role in signal transduction, being able to trigger different processes as cell death or cell proliferation. Sustained oxidative stress can induce genomic instability and collaborates with cancer development, whereas acute enhancement of high ROS levels leads to toxic oxidative cell damage and cell death. Here, it has been considered p53 broad potential contribution through its ability to regulate selected key cancer signaling pathways, where ROS participate as inductors or effectors of the final biological outcome. Further, we have discussed how p53 could play a role in preventing potentially harmful oxidative state and cell proliferation by pro-oncogenic pathways such as PI3K/AKT/mTOR and WNT/β-catenin or under hypoxia state. In addition, we have considered potential mechanisms by which p53 could collaborate with signal transduction pathways such as transforming growth factor-β (TGF-β) and stress-activated protein kinases (SAPK) that produce ROS, to stop or eliminate uncontrolled proliferating cells.
Collapse
Affiliation(s)
- María Fátima Ladelfa
- Laboratorio de Biología Celular y Molecular, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires , Buenos Aires, Argentina
| | | | | | | |
Collapse
|
197
|
Wierstra I. The transcription factor FOXM1c is activated by protein kinase CK2, protein kinase A (PKA), c-Src and Raf-1. Biochem Biophys Res Commun 2011; 413:230-5. [PMID: 21875579 DOI: 10.1016/j.bbrc.2011.08.075] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 08/15/2011] [Indexed: 01/04/2023]
Abstract
The transcription factor FOXM1c possesses a very strong C-terminal TAD (transactivation domain), but full-length FOXM1c is only a weak transactivator because the TAD is completely inhibited by the auto-inhibitory N-terminus. The N-terminus blocks the TAD by directly binding to the TAD. Accordingly, FOXM1c deletion mutants without N-terminus are strong transactivators. Therefore, the question arises whether signals exist, which activate full-length FOXM1c by releasing the FOXM1c-TAD from its inhibition by the N-terminus. Indeed, full-length FOXM1c is strongly activated by protein kinase CK2 and PKA (protein kinase A). Both CK2 and PKA do not activate a FOXM1c deletion mutant without N-terminus demonstrating that the activation of FOXM1c by CK2 and PKA depends on the presence of the N-terminus. Consequently, CK2 and PKA activate FOXM1c by alleviating the inhibition of FOXM1c by its N-terminus. The presence of two potential CK2 phosphorylation sites and two potential PKA phosphorylation sites in the N-terminus of FOXM1c suggests that CK2 and PKA may activate FOXM1c through phosphorylation of the FOXM1c N-terminus. Thus, CK2 and PKA strongly activate full-length FOXM1c because they alleviate the repression of FOXM1c by its own auto-inhibitory N-terminus. Also c-Src activates full-length FOXM1c by relieving the inhibition of FOXM1c by its N-terminus. In contrast, Raf-1 activates FOXM1c independently of the FOXM1c N-terminus. In summary, this study shows for the first time that FOXM1c is activated by the four kinases CK2, PKA, c-Src and Raf-1.
Collapse
Affiliation(s)
- Inken Wierstra
- Institute of Molecular Biology, Medical School Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| |
Collapse
|
198
|
Aberrant activation of ERK/FOXM1 signaling cascade triggers the cell migration/invasion in ovarian cancer cells. PLoS One 2011; 6:e23790. [PMID: 21858223 PMCID: PMC3157468 DOI: 10.1371/journal.pone.0023790] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 07/26/2011] [Indexed: 11/19/2022] Open
Abstract
Forkhead box M1 (FOXM1) is a proliferation-associated transcription factor essential for cell cycle progression. Numerous studies have documented that FOXM1 has multiple functions in tumorigenesis and its elevated levels are frequently associated with cancer progression. Here, we characterized the role of ERK/FOXM1 signaling in mediating the metastatic potential of ovarian cancer cells. Immunohistochemical (IHC), immunoblotting and semi-quantitative RT-PCR analyses found that both phospho-ERK and FOXM1 were frequently upregulated in ovarian cancers. Intriguingly, the overexpressed phospho-ERK (p<0.001) and FOXM1 (p<0.001) were significantly correlated to high-grade ovarian tumors with aggressive behavior such as metastasized lymph node (5 out of 6). Moreover, the expressions of phospho-ERK and FOXM1 had significantly positive correlation (p<0.001). Functionally, ectopic expression of FOXM1B remarkably enhanced cell migration/invasion, while FOXM1C not only increased cell proliferation but also promoted cell migration/invasion. Conversely, inhibition of FOXM1 expression by either thiostrepton or U0126 could significantly impair FOXM1 mediated oncogenic capacities. However, the down-regulation of FOXM1 by either thiostrepton or U0126 required the presence of p53 in ovarian cancer cells. Collectively, our data suggest that over-expression of FOXM1 might stem from the constitutively active ERK which confers the metastatic capabilities to ovarian cancer cells. The impairment of metastatic potential of cancer cells by FOXM1 inhibitors underscores its therapeutic value in advanced ovarian tumors.
Collapse
|
199
|
Li Y, Ligr M, McCarron JP, Daniels G, Zhang D, Zhao X, Ye F, Wang J, Liu X, Osman I, Mencher SK, Lepor H, Wang LG, Ferrari A, Lee P. Natura-alpha targets forkhead box m1 and inhibits androgen-dependent and -independent prostate cancer growth and invasion. Clin Cancer Res 2011; 17:4414-24. [PMID: 21606178 DOI: 10.1158/1078-0432.ccr-11-0431] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE The development of new effective therapeutic agents with minimal side effects for prostate cancer (PC) treatment is much needed. Indirubin, an active molecule identified in the traditional Chinese herbal medicine-Qing Dai (Indigo naturalis), has been used to treat leukemia for decades. However, the anticancer properties of Natura-alpha, an indirubin derivative, are not well studied in solid tumors, particularly in PC. EXPERIMENTAL DESIGN The growth kinetics and invasion ability of on human PC cell lines with or without Natura-alpha treatment were measured by cell proliferation and invasion assays. The antitumor effects of Natura-alpha were examined in nude mice tumor xenograft models, and in a patient with advanced hormone-refractory metastatic PC. Signal network proteins targeted by Natura-alpha were analyzed by using proteomic pathway array analysis (PPAA) on xenografts. RESULTS Natura-alpha inhibited the growth of both androgen-dependent (LNCaP) and androgen-independent (LNCaP-AI, PC-3, and DU145) PC cells with IC(50) between 4 to 10 mmol/L, and also inhibited invasion of androgen-independent PC cells. Its antitumor effects were further evident in in vivo tumor reduction in androgen-dependent and androgen-independent nude mice tumor xenograft models and reduced tumor volume in the patient with hormone refractory metastatic PC. PPAA revealed that antiproliferative and antiinvasive activities of Natura-alpha on PC might primarily be through its downregulation of Forkhead box M1 (FOXM1) protein. Forced overexpression of FOXM1 largely reversed the inhibition of growth and invasion by Natura-alpha. CONCLUSION Natura-alpha could serve as a novel and effective therapeutic agent for treatment of both hormone-sensitive and hormone-refractory PC with minimal side effects.
Collapse
Affiliation(s)
- Yirong Li
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Kretschmer C, Sterner-Kock A, Siedentopf F, Schoenegg W, Schlag PM, Kemmner W. Identification of early molecular markers for breast cancer. Mol Cancer 2011; 10:15. [PMID: 21314937 PMCID: PMC3045364 DOI: 10.1186/1476-4598-10-15] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 02/11/2011] [Indexed: 12/21/2022] Open
Abstract
Background The ductal carcinoma in situ (DCIS) of the mammary gland represents an early, pre-invasive stage in the development of invasive breast carcinoma. Since DCIS is a curable disease, it would be highly desirable to identify molecular markers that allow early detection. Mice transgenic for the WAP-SV40 early genome region were used as a model for DCIS development. Gene expression profiling was carried out on DCIS-bearing mice and control animals. Additionally, a set of human DCIS and invasive mammary tumors were analyzed in a similar fashion. Enhanced expression of these marker genes in human and murine samples was validated by quantitative RT-PCR. Besides, marker gene expression was also validated by immunohistochemistry of human samples. Furthermore in silico analyses using an online microarray database were performed. Results In DCIS-mice seven genes were identified that were significantly up-regulated in DCIS: DEPDC1, NUSAP1, EXO1, RRM2, FOXM1, MUC1 and SPP1. A similar up-regulation of homologues of the murine genes was observed in human DCIS samples. Enhanced expression of these genes in DCIS and IDC (invasive ductal carcinoma) was validated by quantitative RT-PCR and immunohistochemistry. Conclusions By comparing murine markers for the ductal carcinoma in situ (DCIS) of the mammary gland with genes up-regulated in human DCIS-samples we were able to identify a set of genes which might allow early detection of DCIS and invasive carcinomas in the future. The similarities between gene expression in DCIS and invasive carcinomas in our data suggest that the early detection and treatment of DCIS is of utmost relevance for the survival of patients who are at high risk of developing breast carcinomas.
Collapse
Affiliation(s)
- Céline Kretschmer
- Research Group Surgical Oncology, ECRC, Robert-Rössle-Str, 10, 13125 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|