151
|
Mishima T, Nagai T, Yahagi K, Akther S, Oe Y, Monai H, Kohsaka S, Hirase H. Transcranial Direct Current Stimulation (tDCS) Induces Adrenergic Receptor-Dependent Microglial Morphological Changes in Mice. eNeuro 2019; 6:ENEURO.0204-19.2019. [PMID: 31444225 PMCID: PMC6751370 DOI: 10.1523/eneuro.0204-19.2019] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/05/2019] [Accepted: 08/19/2019] [Indexed: 12/23/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) has been reported for its beneficial effects on memory formation and various brain disorders. While the electrophysiological readout of tDCS effects is subtle, astrocytes have been demonstrated to elicit Ca2+ elevations during tDCS in a rodent model. This study aimed to elucidate the effects of tDCS on another major glial cell type, microglia, by histology and in vivo imaging. tDCS performed in awake conditions induced a significant change in the pixel intensity distribution of Iba-1 immunohistochemistry, and microglial somata were enlarged when examined 3 h after tDCS. These effects were blocked by adrenergic receptor antagonists or in IP3R2 (inositol trisphosphate receptor type 2)-deficient mice, which lack large cytosolic Ca2+ elevations in astrocytes. No obvious changes were observed in isoflurane-anesthetized mice. Furthermore, in vivo two-photon imaging of microglia showed a reduction of motility that was blocked by a β2-adrenergic receptor antagonist. Our observations add support for the influence of noradrenaline in tDCS and suggest possible interactions between microglia and astrocytes to express functional changes associated with tDCS.
Collapse
Affiliation(s)
- Tsuneko Mishima
- Laboratory for Neuron-Glia Circuitry, RIKEN Center for Brain Science, Wako 351-0198, Japan
| | - Terumi Nagai
- Laboratory for Neuron-Glia Circuitry, RIKEN Center for Brain Science, Wako 351-0198, Japan
| | - Kazuko Yahagi
- Laboratory for Neuron-Glia Circuitry, RIKEN Center for Brain Science, Wako 351-0198, Japan
| | - Sonam Akther
- Laboratory for Neuron-Glia Circuitry, RIKEN Center for Brain Science, Wako 351-0198, Japan
- Brain and Body System Science Institute, Saitama University, Saitama 338-8570, Japan
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Yuki Oe
- Laboratory for Neuron-Glia Circuitry, RIKEN Center for Brain Science, Wako 351-0198, Japan
| | - Hiromu Monai
- Laboratory for Neuron-Glia Circuitry, RIKEN Center for Brain Science, Wako 351-0198, Japan
- Faculty of Core Research Natural Science Division, Ochanomizu University, Tokyo 112-8610, Japan
| | - Shinichi Kohsaka
- National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-0031, Japan
| | - Hajime Hirase
- Laboratory for Neuron-Glia Circuitry, RIKEN Center for Brain Science, Wako 351-0198, Japan
- Brain and Body System Science Institute, Saitama University, Saitama 338-8570, Japan
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
152
|
Murayama S, Kurganov E, Miyata S. Activation of microglia and macrophages in the circumventricular organs of the mouse brain during TLR2-induced fever and sickness responses. J Neuroimmunol 2019; 334:576973. [PMID: 31170673 DOI: 10.1016/j.jneuroim.2019.576973] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 05/26/2019] [Accepted: 05/27/2019] [Indexed: 01/28/2023]
Abstract
Toll-like receptor 2 (TLR2) recognizes cell wall components from Gram-positive bacteria. Until now, however, little has been known about the significance of brain TLR2 in controlling inflammation and thermoregulatory responses during systemic Gram-positive bacterial infection. In the present study, the TLR2 immunoreactivity was seen to be prominent in the microglia/macrophages of the circumventricular organs (CVOs) of the mouse brain. The intraperitoneal injection of Pam3CSK4, a TLR2 agonist, induced nuclear factor-κ B activation in the microglia/macrophages of the CVOs. The injection of Pam3CSK4 also produced the expression of Fos at astrocytes and neurons in the CVOs and the regions neighboring the CVOs. The Pam3CSK4 injection induced fever and sickness responses. Pretreatment with lipopolysaccharide, a TLR4 agonist, augmented the Pam3CSK4-induced fever together with the increased TLR2 immunoreactivity. These results indicate that the TLR2 in microglia/macrophages of the CVOs are possibly associated with initiating and transmitting inflammatory responses in the brain.
Collapse
Affiliation(s)
- Saki Murayama
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Erkin Kurganov
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Seiji Miyata
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| |
Collapse
|
153
|
Bi W, Lan X, Zhang J, Xiao S, Cheng X, Wang H, Lu D, Zhu L. USP8 ameliorates cognitive and motor impairments via microglial inhibition in a mouse model of sepsis-associated encephalopathy. Brain Res 2019; 1719:40-48. [PMID: 31075263 DOI: 10.1016/j.brainres.2019.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 02/08/2023]
Abstract
Sepsis-associated encephalopathy (SAE) is a common and serious complication of sepsis, which is thought to be caused by neuroinflammation. In our previous study, ubiquitin-specific protease 8 (USP8), was reported to regulate inflammation in vitro. In the current study, we investigated whether increased USP8 expression would ameliorate the cognitive and motor impairments induced by cecal ligation and puncture (CLP) in mice, a model of SAE. Male adult mice were randomly divided into four groups: control, sham, CLP, and CLP + USP8 groups. The CLP + USP8 mice showed reduced weight loss on day 4 post-CLP, with a slight increase noted on day 7. The mortality rate in the CLP group was 70% 48 h after CLP; however, USP8 significantly improved survival after CLP. USP8 modulated the neurobehavioral scores in CLP mice. Our results also indicate that USP8 attenuated the CLP-induced cognitive and motor impairments, based on the performance of mice in the Morris water maze (MWM), pole-climbing, and wire suspension tests. USP8 suppressed the release of pro-inflammatory mediators, including prostaglandin E2(PGE2) in the serum and nitric oxide (NO) in brain tissue, as well as levels of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) in brain tissue. Immunofluorescence experiments revealed that USP8 inhibited CLP-induced increases in microglial size and density in the hippocampus, and protected hippocampal neurons. Our findings indicate that neuroinflammation occurs in the brains of CLP mice, and that USP8 exerts protective effects against CLP-induced neuroinflammation and cognitive and motor impairments, which may aid in the development of novel therapeutic strategies for SAE.
Collapse
Affiliation(s)
- Wei Bi
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, PR China
| | - Xin Lan
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, PR China
| | - JiaWei Zhang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, PR China
| | - Shu Xiao
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, PR China
| | - XiaoFeng Cheng
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, PR China
| | - HuaDong Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, PR China
| | - DaXiang Lu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, PR China
| | - Lihong Zhu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
154
|
Zeng Y, Liang J, Weng C, Lu Z, Zhou Y. β-Arrestin 2 protects against neurological function defects in HSV-1-induced encephalitis mice. J Med Virol 2019; 92:78-85. [PMID: 31469177 DOI: 10.1002/jmv.25578] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022]
Abstract
The pathogenesis of herpes simplex encephalitis (HSE) needs to be fully explored. β-Arrestin 2 (Arrb2) is highly expressed in brain tissues and plays a key role in the regulation of systemic immune reactions by modulating various signaling pathways. However, the expression of Arrb2 in microglial cells and its influence on HSE prognosis is still undefined. We explore the pathophysiological effect of Arrb2 in the brain using experimental HSE mice. The expression of Arrb2 in microglia was decreased significantly 48 hours following HSV-1 infection. Arrb2 overexpression transgenic (TG) mice had a significantly lower mortality and survival rate was improved by 40% compared to wild-type mice. Arrb2 suppressed the generation of proinflammatory cytokines TNF-α and IL-6 and increased anti-inflammatory cytokines IL-10 and IL-4 expression. Arrb2 also inhibited the activation of the transcription factor NF-κB in microglial cells. Arrb2 TG mice attenuated the blood-brain barrier breakdown and relieved cerebral edema, meanwhile, Arrb2 improved mice neurological function compared with wild-type mice. Overall, Arrb2 favored microglia of the M2 phenotype, attenuated brain proinflammatory responses, protected the blood vessel wall integrity, reduced HSV-1-induced neurological impairment, and improved the survival rate in HSE mice.
Collapse
Affiliation(s)
- Yanping Zeng
- Department of Neurology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Jingjing Liang
- Department of Neurology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Chao Weng
- Department of Neurology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Zuneng Lu
- Department of Neurology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Yu Zhou
- Department of Neurology, Renmin Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
155
|
Ren Z, Wang X, Xu M, Frank JA, Luo J. Minocycline attenuates ethanol-induced cell death and microglial activation in the developing spinal cord. Alcohol 2019; 79:25-35. [PMID: 30529756 DOI: 10.1016/j.alcohol.2018.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 12/12/2022]
Abstract
Developmental exposure to ethanol may cause fetal alcohol spectrum disorders (FASD), and the immature central nervous system (CNS) is particularly vulnerable to ethanol. In addition to vulnerability in the developing brain, we previously showed that ethanol also caused neuroapoptosis, microglial activation, and neuroinflammation in the spinal cord. Minocycline is an antibiotic that inhibits microglial activation and alleviates neuroinflammation. We sought to determine whether minocycline could protect spinal cord neurons against ethanol-induced damage. In this study, we showed that minocycline significantly inhibited ethanol-induced caspase-3 activation, microglial activation, and the expression of pro-inflammatory cytokines in the developing spinal cord. Moreover, minocycline blocked ethanol-induced activation of glycogen synthase kinase 3 beta (GSK3β), a key regulator of microglial activation. Meanwhile, minocycline significantly restored ethanol-induced inhibition of protein kinase B (AKT), mammalian target of the rapamycin (mTOR), and ERK1/2 signaling pathways, which were important pro-survival signaling pathways for neurons. Together, minocycline may attenuate ethanol-induced damage to the developing spinal cord by inhibiting microglial activation/neuroinflammation and by restoring the pro-survival signaling.
Collapse
|
156
|
Bader S, Wolf L, Milenkovic VM, Gruber M, Nothdurfter C, Rupprecht R, Wetzel CH. Differential effects of TSPO ligands on mitochondrial function in mouse microglia cells. Psychoneuroendocrinology 2019; 106:65-76. [PMID: 30954920 DOI: 10.1016/j.psyneuen.2019.03.029] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/07/2018] [Accepted: 03/27/2019] [Indexed: 10/27/2022]
Abstract
The translocator protein 18 kDa (TSPO), initially characterized as peripheral benzodiazepine receptor, is a conserved outer mitochondrial membrane protein, implicated in cholesterol transport thereby affecting steroid hormone biosynthesis, as well as in general mitochondrial function related to bioenergetics, oxidative stress, and Ca2+ homeostasis. TSPO is highly expressed in steroidogenic tissues such as adrenal glands, but shows low expression in the central nervous system. During various disease states such as inflammation, neurodegeneration or cancer, the expression of mitochondrial TSPO in affected tissues is upregulated. The expression of TSPO can be traced for diagnostic purpose by high affinity radio-ligands. Moreover, the function of TSPO is modulated by synthetic as well as endogenous ligands with agonistic or antagonistic properties. Thus, TSPO ligands serve functions as both important biomarkers and putative therapeutic agents. In the present study, we aimed to characterize the effects of TSPO ligands on mouse BV-2 microglia cells, which express significant levels of TSPO, and analyzed the effect of XBD173, PK11195, and Ro5-4864, as well as the inflammatory reagent Lipopolysaccharides (LPS) on neurosteroid synthesis and on basic mitochondrial functions such as oxidative phosphorylation, mitochondrial membrane potential and Ca2+ homeostasis. Specific TSPO-dependent effects were separated from off-target effects by comparing lentiviral TSPO knockdown with shRNA scramble-controls and wild-type BV-2 cells. Our data demonstrate ligand-specific effects on different cellular functions in a TSPO-dependent or independent manner, providing evidence for both specific TSPO-mediated, as well as off-target effects.
Collapse
Affiliation(s)
- Stefanie Bader
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93953 Regensburg, Germany
| | - Luisa Wolf
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93953 Regensburg, Germany
| | - Vladimir M Milenkovic
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93953 Regensburg, Germany
| | - Michael Gruber
- Department of Anesthesiology, University of Regensburg, 93953 Regensburg, Germany
| | - Caroline Nothdurfter
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93953 Regensburg, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93953 Regensburg, Germany
| | - Christian H Wetzel
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93953 Regensburg, Germany.
| |
Collapse
|
157
|
Rizor A, Pajarillo E, Johnson J, Aschner M, Lee E. Astrocytic Oxidative/Nitrosative Stress Contributes to Parkinson's Disease Pathogenesis: The Dual Role of Reactive Astrocytes. Antioxidants (Basel) 2019; 8:antiox8080265. [PMID: 31374936 PMCID: PMC6719180 DOI: 10.3390/antiox8080265] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/23/2019] [Accepted: 07/30/2019] [Indexed: 12/20/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease worldwide; it is characterized by dopaminergic neurodegeneration in the substantia nigra pars compacta, but its etiology is not fully understood. Astrocytes, a class of glial cells in the central nervous system (CNS), provide critical structural and metabolic support to neurons, but growing evidence reveals that astrocytic oxidative and nitrosative stress contributes to PD pathogenesis. As astrocytes play a critical role in the production of antioxidants and the detoxification of reactive oxygen and nitrogen species (ROS/RNS), astrocytic oxidative/nitrosative stress has emerged as a critical mediator of the etiology of PD. Cellular stress and inflammation induce reactive astrogliosis, which initiates the production of astrocytic ROS/RNS and may lead to oxidative/nitrosative stress and PD pathogenesis. Although the cause of aberrant reactive astrogliosis is unknown, gene mutations and environmental toxicants may also contribute to astrocytic oxidative/nitrosative stress. In this review, we briefly discuss the physiological functions of astrocytes and the role of astrocytic oxidative/nitrosative stress in PD pathogenesis. Additionally, we examine the impact of PD-related genes such as α-synuclein, protein deglycase DJ-1( DJ-1), Parkin, and PTEN-induced kinase 1 (PINK1) on astrocytic function, and highlight the impact of environmental toxicants, such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), rotenone, manganese, and paraquat, on astrocytic oxidative/nitrosative stress in experimental models.
Collapse
Affiliation(s)
- Asha Rizor
- Department of Pharmaceutical Sciences, College of Pharmacy Florida A&M University, Tallahassee, FL 32301, USA
| | - Edward Pajarillo
- Department of Pharmaceutical Sciences, College of Pharmacy Florida A&M University, Tallahassee, FL 32301, USA
| | - James Johnson
- Department of Pharmaceutical Sciences, College of Pharmacy Florida A&M University, Tallahassee, FL 32301, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine Bronx, New York, NY 10461, USA
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, College of Pharmacy Florida A&M University, Tallahassee, FL 32301, USA.
| |
Collapse
|
158
|
DeVos SL, Corjuc BT, Commins C, Dujardin S, Bannon RN, Corjuc D, Moore BD, Bennett RE, Jorfi M, Gonzales JA, Dooley PM, Roe AD, Pitstick R, Irimia D, Frosch MP, Carlson GA, Hyman BT. Tau reduction in the presence of amyloid-β prevents tau pathology and neuronal death in vivo. Brain 2019; 141:2194-2212. [PMID: 29733334 DOI: 10.1093/brain/awy117] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/05/2018] [Indexed: 11/14/2022] Open
Abstract
Several studies have now supported the use of a tau lowering agent as a possible therapy in the treatment of tauopathy disorders, including Alzheimer's disease. In human Alzheimer's disease, however, concurrent amyloid-β deposition appears to synergize and accelerate tau pathological changes. Thus far, tau reduction strategies that have been tested in vivo have been examined in the setting of tau pathology without confounding amyloid-β deposition. To determine whether reducing total human tau expression in a transgenic model where there is concurrent amyloid-β plaque formation can still reduce tau pathology and protect against neuronal loss, we have taken advantage of the regulatable tau transgene in APP/PS1 × rTg4510 mice. These mice develop both neurofibrillary tangles as well as amyloid-β plaques throughout the cortex and hippocampus. By suppressing human tau expression for 6 months in the APP/PS1 × rTg4510 mice using doxycycline, AT8 tau pathology, bioactivity, and astrogliosis were reduced, though importantly to a lesser extent than lowering tau in the rTg4510 alone mice. Based on non-denaturing gels and proteinase K digestions, the remaining tau aggregates in the presence of amyloid-β exhibit a longer-lived aggregate conformation. Nonetheless, lowering the expression of the human tau transgene was sufficient to equally ameliorate thioflavin-S positive tangles and prevent neuronal loss equally well in both the APP/PS1 × rTg4510 mice and the rTg4510 cohort. Together, these results suggest that, although amyloid-β stabilizes tau aggregates, lowering total tau levels is still an effective strategy for the treatment of tau pathology and neuronal loss even in the presence of amyloid-β deposition.
Collapse
Affiliation(s)
- Sarah L DeVos
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Bianca T Corjuc
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Caitlin Commins
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Simon Dujardin
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Riley N Bannon
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Diana Corjuc
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Benjamin D Moore
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Rachel E Bennett
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Mehdi Jorfi
- McLaughlin Research Institute, Great Falls, Montana, USA
| | - Jose A Gonzales
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Patrick M Dooley
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Allyson D Roe
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Rose Pitstick
- McLaughlin Research Institute, Great Falls, Montana, USA
| | - Daniel Irimia
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Matthew P Frosch
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.,C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - George A Carlson
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Bradley T Hyman
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|
159
|
Zhao Y, Sharfman NM, Jaber VR, Lukiw WJ. Down-Regulation of Essential Synaptic Components by GI-Tract Microbiome-Derived Lipopolysaccharide (LPS) in LPS-Treated Human Neuronal-Glial (HNG) Cells in Primary Culture: Relevance to Alzheimer's Disease (AD). Front Cell Neurosci 2019; 13:314. [PMID: 31354434 PMCID: PMC6635554 DOI: 10.3389/fncel.2019.00314] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/26/2019] [Indexed: 12/19/2022] Open
Abstract
Trans-synaptic neurotransmission of both electrical and neurochemical information in the central nervous system (CNS) is achieved through a highly interactive network of neuron-specific synaptic proteins that include pre-synaptic and post-synaptic elements. These elements include a family of several well-characterized integral- and trans-membrane synaptic core proteins necessary for the efficient operation of this complex signaling network, and include the pre-synaptic proteins: (i) neurexin-1 (NRXN-1); (ii) the synaptosomal-associated phosphoprotein-25 (SNAP-25); (iii) the phosphoprotein synapsin-2 (SYN-2); and the post-synaptic elements: (iv) neuroligin (NLGN), a critical cell adhesion protein; and (v) the SH3-ankyrin repeat domain, proline-rich cytoskeletal scaffolding protein SHANK3. All five of these pre- and post-synaptic proteins have been found to be significantly down-regulated in primary human neuronal-glial (HNG) cell co-cultures after exposure to Bacteroides fragilis lipopolysaccharide (BF-LPS). Interestingly, LPS has also been reported to be abundant in Alzheimer's disease (AD) affected brain cells where there are significant deficits in this same family of synaptic components. This "Perspectives" paper will review current research progress and discuss the latest findings in this research area. Overall these experimental results provide evidence (i) that gastrointestinal (GI) tract-derived Gram-negative bacterial exudates such as BF-LPS express their neurotoxicity in the CNS in part through the directed down-regulation of neuron-specific neurofilaments and synaptic signaling proteins; and (ii) that this may explain the significant alterations in immune-responses and cognitive deficits observed after bacterial-derived LPS exposure to the human CNS.
Collapse
Affiliation(s)
- Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Department of Anatomy and Cell Biology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Nathan M. Sharfman
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Vivian R. Jaber
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Walter J. Lukiw
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Department of Neurology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
160
|
Mee-Inta O, Zhao ZW, Kuo YM. Physical Exercise Inhibits Inflammation and Microglial Activation. Cells 2019; 8:cells8070691. [PMID: 31324021 PMCID: PMC6678635 DOI: 10.3390/cells8070691] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/20/2022] Open
Abstract
Accumulating evidence indicates that exercise can enhance brain function and attenuate neurodegeneration. Besides improving neuroplasticity by altering the synaptic structure and function in various brain regions, exercise also modulates multiple systems that are known to regulate neuroinflammation and glial activation. Activated microglia and several pro-inflammatory cytokines play active roles in the pathogenesis of neurodegenerative diseases, such as Alzheimer’s disease and Parkinson’s disease. The purpose of this review is to highlight the impacts of exercise on microglial activation. Possible mechanisms involved in exercise-modulated microglial activation are also discussed. Undoubtedly, more studies are needed in order to disclose the detailed mechanisms, but this approach offers therapeutic potential for improving the brain health of millions of aging people where pharmacological intervention has failed.
Collapse
Affiliation(s)
- Onanong Mee-Inta
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 70101, Taiwan
| | - Zi-Wei Zhao
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yu-Min Kuo
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 70101, Taiwan.
- Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
161
|
Amorim MR, de Deus JL, Cazuza RA, Mota CMD, da Silva LEV, Borges GS, Batalhão ME, Cárnio EC, Branco LGS. Neuroinflammation in the NTS is associated with changes in cardiovascular reflexes during systemic inflammation. J Neuroinflammation 2019; 16:125. [PMID: 31221164 PMCID: PMC6587275 DOI: 10.1186/s12974-019-1512-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Lipopolysaccharide (LPS)-induced systemic inflammation (SI) is associated with neuroinflammation in the brain, hypotension, tachycardia, and multiple organs dysfunctions. Considering that during SI these important cardiovascular and inflammatory changes take place, we measured the sensitivity of the cardiovascular reflexes baroreflex, chemoreflex, and Bezold-Jarisch that are key regulators of hemodynamic function. We also evaluated neuroinflammation in the nucleus tractus solitarius (NTS), the first synaptic station that integrates peripheral signals arising from the cardiovascular and inflammatory status. METHODS We combined cardiovascular recordings, immunofluorescence, and assays of inflammatory markers in male Wistar rats that receive iv administration of LPS (1.5 or 2.5 mg kg-1) to investigate putative interactions of the neuroinflammation in the NTS and in the anteroventral preoptic region of the hypothalamus (AVPO) with the short-term regulation of blood pressure and heart rate. RESULTS LPS induced hypotension, tachycardia, autonomic disbalance, hypothermia followed by fever, and reduction in spontaneous baroreflex gain. On the other hand, during SI, the bradycardic component of Bezold-Jarisch and chemoreflex activation was increased. These changes were associated with a higher number of activated microglia and interleukin (IL)-1β levels in the NTS. CONCLUSIONS The present data are consistent with the notion that during SI and neuroinflammation in the NTS, rats have a reduced baroreflex gain, combined with an enhancement of the bradycardic component of Bezold-Jarisch and chemoreflex despite the important cardiovascular impairments (hypotension and tachycardia). These changes in the cardiac component of Bezold-Jarisch and chemoreflex may be beneficial during SI and indicate that the improvement of theses reflexes responsiveness though specific nerve stimulations may be useful in the management of sepsis.
Collapse
Affiliation(s)
- Mateus R. Amorim
- Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-904 Brazil
| | - Júnia L. de Deus
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900 Brazil
| | - Rafael A. Cazuza
- School of Philosophy, Science and Literature of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-901 Brazil
| | - Clarissa M. D. Mota
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900 Brazil
| | - Luiz E. V. da Silva
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900 Brazil
| | - Gabriela S. Borges
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900 Brazil
| | - Marcelo E. Batalhão
- Nursing School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-902 Brazil
| | - Evelin C. Cárnio
- Nursing School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-902 Brazil
| | - Luiz G. S. Branco
- Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-904 Brazil
| |
Collapse
|
162
|
The differential impact of acute microglia activation on the excitability of cholinergic neurons in the mouse medial septum. Brain Struct Funct 2019; 224:2297-2309. [DOI: 10.1007/s00429-019-01905-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 06/07/2019] [Indexed: 12/30/2022]
|
163
|
Szöllősi D, Hegedűs N, Veres DS, Futó I, Horváth I, Kovács N, Martinecz B, Dénes Á, Seifert D, Bergmann R, Lebeda O, Varga Z, Kaleta Z, Szigeti K, Máthé D. Evaluation of Brain Nuclear Medicine Imaging Tracers in a Murine Model of Sepsis-Associated Encephalopathy. Mol Imaging Biol 2019; 20:952-962. [PMID: 29736562 PMCID: PMC6244542 DOI: 10.1007/s11307-018-1201-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Purpose The purpose of this study was to evaluate a set of widely used nuclear medicine imaging agents as possible methods to study the early effects of systemic inflammation on the living brain in a mouse model of sepsis-associated encephalopathy (SAE). The lipopolysaccharide (LPS)-induced murine systemic inflammation model was selected as a model of SAE. Procedures C57BL/6 mice were used. A multimodal imaging protocol was carried out on each animal 4 h following the intravenous administration of LPS using the following tracers: [99mTc][2,2-dimethyl-3-[(3E)-3-oxidoiminobutan-2-yl]azanidylpropyl]-[(3E)-3-hydroxyiminobutan-2-yl]azanide ([99mTc]HMPAO) and ethyl-7-[125I]iodo-5-methyl-6-oxo-4H-imidazo[1,5-a][1,4]benzodiazepine-3-carboxylate ([125I]iomazenil) to measure brain perfusion and neuronal damage, respectively; 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG) to measure cerebral glucose uptake. We assessed microglia activity on another group of mice using 2-[6-chloro-2-(4-[125I]iodophenyl)-imidazo[1,2-a]pyridin-3-yl]-N-ethyl-N-methyl-acetamide ([125I]CLINME). Radiotracer uptakes were measured in different brain regions and correlated. Microglia activity was also assessed using immunohistochemistry. Brain glutathione levels were measured to investigate oxidative stress. Results Significantly reduced perfusion values and significantly enhanced [18F]FDG and [125I]CLINME uptake was measured in the LPS-treated group. Following perfusion compensation, enhanced [125I]iomazenil uptake was measured in the LPS-treated group’s hippocampus and cerebellum. In this group, both [18F]FDG and [125I]iomazenil uptake showed highly negative correlation to perfusion measured with ([99mTc]HMPAO uptake in all brain regions. No significant differences were detected in brain glutathione levels between the groups. The CD45 and P2Y12 double-labeling immunohistochemistry showed widespread microglia activation in the LPS-treated group. Conclusions Our results suggest that [125I]CLINME and [99mTc]HMPAO SPECT can be used to detect microglia activation and brain hypoperfusion, respectively, in the early phase (4 h post injection) of systemic inflammation. We suspect that the enhancement of [18F]FDG and [125I]iomazenil uptake in the LPS-treated group does not necessarily reflect neural hypermetabolism and the lack of neuronal damage. They are most likely caused by processes emerging during neuroinflammation, e.g., microglia activation and/or immune cell infiltration. Electronic supplementary material The online version of this article (10.1007/s11307-018-1201-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dávid Szöllősi
- Department of Biophysics and Radiation Biology, Semmelweis Univ, Budapest, H-1094, Hungary
| | - Nikolett Hegedűs
- Department of Biophysics and Radiation Biology, Semmelweis Univ, Budapest, H-1094, Hungary
| | - Dániel S Veres
- Department of Biophysics and Radiation Biology, Semmelweis Univ, Budapest, H-1094, Hungary
| | - Ildikó Futó
- Department of Biophysics and Radiation Biology, Semmelweis Univ, Budapest, H-1094, Hungary
| | - Ildikó Horváth
- Department of Biophysics and Radiation Biology, Semmelweis Univ, Budapest, H-1094, Hungary
| | - Noémi Kovács
- CROmed Translational Research Centers, Budapest, H-1047, Hungary
| | - Bernadett Martinecz
- Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Ádám Dénes
- Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Daniel Seifert
- Nuclear Physics Institute of the CAS, CZ 250 68, Rez, Czech Republic
| | - Ralf Bergmann
- Helmholz-Zentrum Dresden-Rossendorf, Radiopharmazie Radiopharmaceutische Biologie, Dresden, Germany
| | - Ondřej Lebeda
- Nuclear Physics Institute of the CAS, CZ 250 68, Rez, Czech Republic
| | - Zoltán Varga
- Department of Biophysics and Radiation Biology, Semmelweis Univ, Budapest, H-1094, Hungary.,Biological Nanochemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Zoltán Kaleta
- Progressio Fine Chemical Engineering Ltd, Székesfehérvár, Hungary
| | - Krisztián Szigeti
- Department of Biophysics and Radiation Biology, Semmelweis Univ, Budapest, H-1094, Hungary.
| | - Domokos Máthé
- CROmed Translational Research Centers, Budapest, H-1047, Hungary
| |
Collapse
|
164
|
Todd L, Palazzo I, Suarez L, Liu X, Volkov L, Hoang TV, Campbell WA, Blackshaw S, Quan N, Fischer AJ. Reactive microglia and IL1β/IL-1R1-signaling mediate neuroprotection in excitotoxin-damaged mouse retina. J Neuroinflammation 2019; 16:118. [PMID: 31170999 PMCID: PMC6555727 DOI: 10.1186/s12974-019-1505-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/09/2019] [Indexed: 12/12/2022] Open
Abstract
Background Microglia and inflammation have context-specific impacts upon neuronal survival in different models of central nervous system (CNS) disease. Herein, we investigate how inflammatory mediators, including microglia, interleukin 1 beta (IL1β), and signaling through interleukin 1 receptor type 1 (IL-1R1), influence the survival of retinal neurons in response to excitotoxic damage. Methods Excitotoxic retinal damage was induced via intraocular injections of NMDA. Microglial phenotype and neuronal survival were assessed by immunohistochemistry. Single-cell RNA sequencing was performed to obtain transcriptomic profiles. Microglia were ablated by using clodronate liposome or PLX5622. Retinas were treated with IL1β prior to NMDA damage and cell death was assessed in wild type, IL-1R1 null mice, and mice expressing IL-1R1 only in astrocytes. Results NMDA-induced damage included neuronal cell death, microglial reactivity, upregulation of pro-inflammatory cytokines, and genes associated with IL1β-signaling in different types of retinal neurons and glia. Expression of the IL1β receptor, IL-1R1, was evident in astrocytes, endothelial cells, some Müller glia, and OFF bipolar cells. Ablation of microglia with clodronate liposomes or Csf1r antagonist (PLX5622) resulted in elevated cell death and diminished neuronal survival in excitotoxin-damaged retinas. Exogenous IL1β stimulated the proliferation and reactivity of microglia in the absence of damage, reduced numbers of dying cells in damaged retinas, and increased neuronal survival following an insult. IL1β failed to provide neuroprotection in the IL-1R1-null retina, but IL1β-mediated neuroprotection was rescued when expression of IL-1R1 was restored in astrocytes. Conclusions We conclude that reactive microglia provide protection to retinal neurons, since the absence of microglia is detrimental to survival. We propose that, at least in part, the survival-influencing effects of microglia may be mediated by IL1β, IL-1R1, and interactions of microglia and other macroglia. Electronic supplementary material The online version of this article (10.1186/s12974-019-1505-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Levi Todd
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Isabella Palazzo
- Department of Neuroscience, College of Medicine, The Ohio State University, 3020 Graves Hall, 333 W. 10th Ave, Columbus, OH, 43210-1239, USA
| | - Lilianna Suarez
- Department of Neuroscience, College of Medicine, The Ohio State University, 3020 Graves Hall, 333 W. 10th Ave, Columbus, OH, 43210-1239, USA
| | - Xiaoyu Liu
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Leo Volkov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Thanh V Hoang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Warren A Campbell
- Department of Neuroscience, College of Medicine, The Ohio State University, 3020 Graves Hall, 333 W. 10th Ave, Columbus, OH, 43210-1239, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ning Quan
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, USA.,Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, 3020 Graves Hall, 333 W. 10th Ave, Columbus, OH, 43210-1239, USA.
| |
Collapse
|
165
|
Gao M, Hu P, Cai Z, Wu Y, Wang D, Hu W, Xu X, Zhang Y, Lu X, Chen D, Chen Z, Ma K, Wen J, Wang H, Huang C. Identification of a microglial activation-dependent antidepressant effect of amphotericin B liposome. Neuropharmacology 2019; 151:33-44. [DOI: 10.1016/j.neuropharm.2019.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/04/2019] [Accepted: 04/04/2019] [Indexed: 12/31/2022]
|
166
|
Preconditioning with toll-like receptor agonists attenuates seizure activity and neuronal hyperexcitability in the pilocarpine rat model of epilepsy. Neuroscience 2019; 408:388-399. [DOI: 10.1016/j.neuroscience.2019.04.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/06/2019] [Accepted: 04/08/2019] [Indexed: 01/24/2023]
|
167
|
Zhong S, Zhou Z, Liang Y, Cheng X, Li Y, Teng W, Zhao M, Liu C, Guan M, Zhao C. Targeting strategies for chemotherapy-induced peripheral neuropathy: does gut microbiota play a role? Crit Rev Microbiol 2019; 45:369-393. [PMID: 31106639 DOI: 10.1080/1040841x.2019.1608905] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a progressive, often irreversible condition that produces severe neurological deficits. Emerging data suggest that chemotherapy also exerts detrimental effects on gut microbiota composition and intestinal permeability, contributing to dysbiosis and inflammation. Compared with other complications associated with chemotherapy, such as diarrhoea and mucositis, CIPN is of particular concern because it is the most common reason for terminating or suspending treatment. However, specific and effective curative treatment strategies are lacking. In this review, we provide an update on current preclinical and clinical understandings about the role of gut microbiota in CIPN. The gut microbiota serves as an intersection between the microbiome-gut-brain and the neuroimmune-endocrine axis, forming a complex network that can directly or indirectly affect key components involved in the manifestations of CIPN. Herein, we discuss several potential mechanisms within the context of the networks and summarize alterations in gut microbiome induced by chemotherapeutic drugs, providing great potential for researchers to target pathways associated with the gut microbiome and overcome CIPN.
Collapse
Affiliation(s)
- Shanshan Zhong
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Zhike Zhou
- Department of Geriatrics, The First Hospital of China Medical University , Shenyang , PR China
| | - Yifan Liang
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Xi Cheng
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Yong Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University , Shenyang , PR China
| | - Weiyu Teng
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Mei Zhao
- Department of Cardiology, Shengjing Hospital of China Medical University , Shenyang , PR China
| | - Chang Liu
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Meiting Guan
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Chuansheng Zhao
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| |
Collapse
|
168
|
Uweru JO, Eyo UB. A decade of diverse microglial-neuronal physical interactions in the brain (2008-2018). Neurosci Lett 2019; 698:33-38. [PMID: 30625349 PMCID: PMC6435396 DOI: 10.1016/j.neulet.2019.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/29/2018] [Accepted: 01/01/2019] [Indexed: 12/17/2022]
Abstract
Microglia are unique cells of the central nervous system (CNS) with a distinct ontogeny and molecular profile. They are the predominant immune resident cell in the CNS. Recent studies have revealed a diversity of transient and terminal physical interactions between microglia and neurons in the vertebrate brain. In this review, we follow the historical trail of the discovery of these interactions, summarize their notable features, provide implications of these discoveries to CNS function, emphasize emerging themes along the way and peak into the future of what outstanding questions remain to move the field forward.
Collapse
Affiliation(s)
- Joseph O Uweru
- Department of Neuroscience, University of Virginia, Charlottesville, VA, United States; Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, United States; Center for Brain Immunology and Glia (BIG), University of Virginia, Charlottesville, VA, United States
| | - Ukpong B Eyo
- Department of Neuroscience, University of Virginia, Charlottesville, VA, United States; Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, United States; Center for Brain Immunology and Glia (BIG), University of Virginia, Charlottesville, VA, United States.
| |
Collapse
|
169
|
Barcelon EE, Cho WH, Jun SB, Lee SJ. Brain Microglial Activation in Chronic Pain-Associated Affective Disorder. Front Neurosci 2019; 13:213. [PMID: 30949019 PMCID: PMC6436078 DOI: 10.3389/fnins.2019.00213] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/25/2019] [Indexed: 12/23/2022] Open
Abstract
A growing body of evidence from both clinical and animal studies indicates that chronic neuropathic pain is associated with comorbid affective disorders. Spinal cord microglial activation is involved in nerve injury-induced pain hypersensitivity characterizing neuropathic pain. However, there is a lack of thorough assessments of microglial activation in the brain after nerve injury. In the present study, we characterized microglial activation in brain sub-regions of CX3CR1GFP/+ mice after chronic constriction injury (CCI) of the sciatic nerve, including observations at delayed time points when affective brain dysfunctions such as depressive-like behaviors typically develop. Mice manifested chronic mechanical hypersensitivity immediately after CCI and developed depressive-like behaviors 8 weeks post-injury. Concurrently, significant increases of soma size and microglial cell number were observed in the medial prefrontal cortex (mPFC), hippocampus, and amygdala 8 weeks post-injury. Transcripts of CD11b, and TNF-α, genes associated with microglial activation or depressive-like behaviors, are correspondingly upregulated in these brain areas. Our results demonstrate that microglia are activated in specific brain sub-regions after CCI at delayed time points and imply that brain microglial activation plays a role in chronic pain-associated affective disorders.
Collapse
Affiliation(s)
- Ellane Eda Barcelon
- Department of Neuroscience and Physiology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Woo-Hyun Cho
- Department of Neuroscience and Physiology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Sang Beom Jun
- Department of Brain & Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - Sung Joong Lee
- Department of Neuroscience and Physiology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| |
Collapse
|
170
|
Pavlov D, Bettendorff L, Gorlova A, Olkhovik A, Kalueff AV, Ponomarev ED, Inozemtsev A, Chekhonin V, Lesсh KP, Anthony DC, Strekalova T. Neuroinflammation and aberrant hippocampal plasticity in a mouse model of emotional stress evoked by exposure to ultrasound of alternating frequencies. Prog Neuropsychopharmacol Biol Psychiatry 2019; 90:104-116. [PMID: 30472146 DOI: 10.1016/j.pnpbp.2018.11.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 11/08/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023]
Abstract
Emotional stress is a form of stress evoked by processing negative mental experience rather than an organic or physical disturbance and is a frequent cause of neuropsychiatric pathologies, including depression. Susceptibility to emotional stress is commonly regarded as a human-specific trait that is challenging to model in other species. Recently, we showed that a 3-week-long exposure to ultrasound of unpredictable alternating frequencies within the ranges of 20-25 kHz and 25-45 kHz can induce depression-like characteristics in laboratory mice and rats. In an anti-depressant sensitive manner, exposure decreases sucrose preference, elevates behavioural despair, increases aggression, and alters serotonin-related gene expression. To further investigate this paradigm, we studied depression/distress-associated markers of neuroinflammation, neuroplasticity, oxidative stress and the activity of glycogen synthase kinase-3 (GSK-3) isoforms in the hippocampus of male mice. Stressed mice exhibited a decreased density of Ki67-positive and DCX-positive cells in the subgranular zone of hippocampus, and altered expression of brain-derived neurotrophic factor (BDNF), its receptor TrkB, and anti-apoptotic protein kinase B phosphorylated at serine 473 (AktpSer473). The mice also exhibited increased densities of Iba-1-positive cells, increased oxidative stress, increased levels of interleukin-1β (IL-1β), interleukin-6 (IL-6) in the hippocampus and plasma, and elevated activity of GSK-3 isoforms. Together, the results of our investigation have revealed that unpredictable alternating ultrasound evokes behavioural and molecular changes that are characteristic of the depressive syndrome and validates this new and simple method of modeling emotional stress in rodents.
Collapse
Affiliation(s)
- Dmitrii Pavlov
- Department of Neuroscience, Maastricht University, Universiteitssingel 40, NL 6229ER, Maastricht, Netherlands; Department of Biology, Lomonosov Moscow State University, Leninskie Gory1-12, Moscow 119991, Russia; Laboratory of Neurophysiology, GIGA-Neurosciences, University of Liège, Av. Hippocrate 15, Liège 4000, Belgium; Institute of General Pathology and Pathophysiology, Baltiiskaya str, 8, Moscow 125315, Russia
| | - Lucien Bettendorff
- Laboratory of Neurophysiology, GIGA-Neurosciences, University of Liège, Av. Hippocrate 15, Liège 4000, Belgium
| | - Anna Gorlova
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory1-12, Moscow 119991, Russia; Laboratory of Neurophysiology, GIGA-Neurosciences, University of Liège, Av. Hippocrate 15, Liège 4000, Belgium; Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, Trubetskaya street 8-2, 119991, Moscow, Russia
| | - Andrey Olkhovik
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory1-12, Moscow 119991, Russia
| | - Allan V Kalueff
- Institute of Translational Biomedicine, St.Petersburg State University, Universitetskaya nab. 7-9, St.-Petersburg 199034, Russia
| | - Eugene D Ponomarev
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Anatoly Inozemtsev
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory1-12, Moscow 119991, Russia
| | - Vladimir Chekhonin
- Department of Basic and Applied Neurobiology, Serbsky Federal Medical Research Center for Psychiatry and Narcology, Kropotkinsky per 23, Moscow 119034, Russia
| | - Klaus-Peter Lesсh
- Department of Neuroscience, Maastricht University, Universiteitssingel 40, NL 6229ER, Maastricht, Netherlands; Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, Trubetskaya street 8-2, 119991, Moscow, Russia; Division of Molecular Psychiatry, Center of Mental Health University of Wuerzburg, Josef-Schneider-Straße 2, Wuerzburg 97080, Germany
| | - Daniel C Anthony
- Department of Pharmacology, Oxford University, Mansfield Road, Oxford OX1 3QT, UK.
| | - Tatyana Strekalova
- Department of Neuroscience, Maastricht University, Universiteitssingel 40, NL 6229ER, Maastricht, Netherlands; Institute of General Pathology and Pathophysiology, Baltiiskaya str, 8, Moscow 125315, Russia; Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, Trubetskaya street 8-2, 119991, Moscow, Russia.
| |
Collapse
|
171
|
In Vitro Priming and Hyper-Activation of Brain Microglia: an Assessment of Phenotypes. Mol Neurobiol 2019; 56:6409-6425. [DOI: 10.1007/s12035-019-1529-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/15/2019] [Indexed: 12/27/2022]
|
172
|
Imbalance of Microglial TLR4/TREM2 in LPS-Treated APP/PS1 Transgenic Mice: A Potential Link Between Alzheimer's Disease and Systemic Inflammation. Neurochem Res 2019; 44:1138-1151. [PMID: 30756214 DOI: 10.1007/s11064-019-02748-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 02/07/2023]
Abstract
Clinically, superimposed systemic inflammation generally has significant deleterious effects on the Alzheimer's disease (AD) progression. However, the related molecular mechanisms remain poorly understood. Microglial toll-like receptor 4 (TLR4) and triggering receptor expressed on myeloid cells 2 (TREM2) are two key regulators of inflammation that may play an essential role in this complex pathophysiological process. In this study, intraperitoneal injection of lipopolysaccharide (LPS) into APP/PS1 transgenic AD model was used to mimic systemic inflammation in the development of AD. Initial results from the cortex showed that compared with wild-type mice, APP/PS1 mice exhibited elevated gene and protein expression levels of both TLR4 and TREM2 with different degree. Interestingly, after LPS treatment, TLR4 expression was persistently up-regulated, while TREM2 expression was significantly down-regulated in APP/PS1 mice, suggesting that the negative regulatory effect of TREM2 on inflammation might be suppressed by LPS-induced hyperactive TLR4. This imbalance of TLR4/TREM2 contributed to microglial over-activation, followed by increased neuronal apoptosis in the cortex of APP/PS1 mice; these changes did not alter the expression level of Aβ1-42. Similar alterations were observed in our in vitro experiment with β-amyloid1-42 (Aβ1-42)-treated N9 microglia. Further, Morris water maze (MWM) testing data indicated that LPS administration acutely aggravated cognitive impairment in APP/PS1 mice, suggesting that the addition of systemic inflammation can potentially accelerate the progression of AD. Collectively, we conclude that an imbalance of TLR4/TREM2 may be a potential link between AD and systemic inflammation. TREM2 can serve as a potential therapeutic target for treating systemic inflammation in AD progression.
Collapse
|
173
|
Ning K, Liu WW, Huang JL, Lu HT, Sun XJ. Effects of hydrogen on polarization of macrophages and microglia in a stroke model. Med Gas Res 2019; 8:154-159. [PMID: 30713668 PMCID: PMC6352575 DOI: 10.4103/2045-9912.248266] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 11/06/2018] [Indexed: 12/16/2022] Open
Abstract
It has been confirmed that inflammation plays an important role in the pathogenesis of ischemic stroke. The polarization of microglia as an important participant in the inflammation following stroke is also found to be involved in stroke. This study aimed to investigate the effects of hydrogen gas on the polarization of macrophages/microglia in vitro. Raw264.7 cells were treated with lipopolysaccharides and then exposed to hydrogen. The microglia were treated with the supernatant from oxygen and glucose deprivation-treated neurons and then exposed to hydrogen. The phenotypes of Raw 264.7 cells and microglia were determined by flow cytometry, and cell morphology was observed. Results showed lipopolysaccharides significantly increased the M1 macrophages, and the supernatant from oxygen and glucose deprivation-treated neurons dramatically elevated the proportion of M1 microglia, but both treatments had little influence on the M2 cells. In addition, hydrogen treatment significantly inhibited the increase in M1 cells, but had no influence on M2 ones. Our findings suggest that the neuroprotection of hydrogen may be related to its regulation of microglia in the nervous system after stroke.
Collapse
Affiliation(s)
- Ke Ning
- Department of Navy Aeromedicine, Faculty of Naval Medicine, Navy Medical University, Shanghai, China
| | - Wen-Wu Liu
- Department of Diving and Hyperbaric Medicine, Faculty of Naval Medicine, Navy Medical University, Shanghai, China
| | - Jun-Long Huang
- Department of Navy Aeromedicine, Faculty of Naval Medicine, Navy Medical University, Shanghai, China
| | - Hong-Tao Lu
- Department of Navy Aeromedicine, Faculty of Naval Medicine, Navy Medical University, Shanghai, China
| | - Xue-Jun Sun
- Department of Navy Aeromedicine, Faculty of Naval Medicine, Navy Medical University, Shanghai, China
| |
Collapse
|
174
|
Acute transient cognitive dysfunction and acute brain injury induced by systemic inflammation occur by dissociable IL-1-dependent mechanisms. Mol Psychiatry 2019; 24:1533-1548. [PMID: 29875474 PMCID: PMC6510649 DOI: 10.1038/s41380-018-0075-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 02/12/2018] [Accepted: 04/03/2018] [Indexed: 01/06/2023]
Abstract
Systemic inflammation can impair cognition with relevance to dementia, delirium and post-operative cognitive dysfunction. Episodes of delirium also contribute to rates of long-term cognitive decline, implying that these acute events induce injury. Whether systemic inflammation-induced acute dysfunction and acute brain injury occur by overlapping or discrete mechanisms remains unexplored. Here we show that systemic inflammation, induced by bacterial LPS, produces both working-memory deficits and acute brain injury in the degenerating brain and that these occur by dissociable IL-1-dependent processes. In normal C57BL/6 mice, LPS (100 µg/kg) did not affect working memory but impaired long-term memory consolidation. However prior hippocampal synaptic loss left mice selectively vulnerable to LPS-induced working memory deficits. Systemically administered IL-1 receptor antagonist (IL-1RA) was protective against, and systemic IL-1β replicated, these working memory deficits. Dexamethasone abolished systemic cytokine synthesis and was protective against working memory deficits, without blocking brain IL-1β synthesis. Direct application of IL-1β to ex vivo hippocampal slices induced non-synaptic depolarisation and irreversible loss of membrane potential in CA1 neurons from diseased animals and systemic LPS increased apoptosis in the degenerating brain, in an IL-1RI-dependent fashion. The data suggest that LPS induces working memory dysfunction via circulating IL-1β but direct hippocampal action of IL-1β causes neuronal dysfunction and may drive neuronal death. The data suggest that acute systemic inflammation produces both reversible cognitive deficits, resembling delirium, and acute brain injury contributing to long-term cognitive impairment but that these events are mechanistically dissociable. These data have significant implications for management of cognitive dysfunction during acute illness.
Collapse
|
175
|
Wake H, Horiuchi H, Kato D, Moorhouse AJ, Nabekura J. Physiological Implications of Microglia-Synapse Interactions. Methods Mol Biol 2019; 2034:69-80. [PMID: 31392678 DOI: 10.1007/978-1-4939-9658-2_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Microglia are the sole immune responding cells in the central nervous system. Their role as neuroimmune cells in the pathogenesis of various neurodegenerative and infectious diseases of the brain have been extensively studied. Upon brain disease and infection, they adopt an activated phenotype associated with the release of cytokines and neurotrophic factors and resulting in neuroprotective or neurotoxic outcomes. However, microglia are resident also in the healthy or physiological brain, but much less is known about their role(s) in the healthy brain, partly due to technical limitations regarding investigation of these highly reactive cells in the intact brain. Recent developments in molecular probes and in vivo optical imaging techniques has now helped to characterize microglia in the physiological or healthy brain. In vivo two-photon imaging of fluorescently labeled microglia have revealed that they are highly motile cells in the healthy brain, extending and retracting their processes that extend from a largely stationary cell soma. In this chapter, we briefly summarize some of the physiological functions of microglia in the uninjured brain, with a focus on interactions they have with synapses.
Collapse
Affiliation(s)
- Hiroaki Wake
- Division of System Neuroscience, Kobe University Graduate School of Medicine, Kobe, Japan.,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Saitama, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| | - Hiroshi Horiuchi
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, The Graduate School for Advanced Study, Hayama, Japan
| | - Daisuke Kato
- Division of System Neuroscience, Kobe University Graduate School of Medicine, Kobe, Japan.,Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Japan
| | - Andrew J Moorhouse
- School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Junichi Nabekura
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Japan. .,Department of Physiological Sciences, The Graduate School for Advanced Study, Hayama, Japan.
| |
Collapse
|
176
|
Zhang K, Luo J. Role of MCP-1 and CCR2 in alcohol neurotoxicity. Pharmacol Res 2019; 139:360-366. [PMID: 30472461 PMCID: PMC6360095 DOI: 10.1016/j.phrs.2018.11.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/22/2018] [Accepted: 11/21/2018] [Indexed: 01/08/2023]
Abstract
Alcohol abuse causes profound damage to both the developing brain and the adult brain. Prenatal exposure to alcohol results in a wide range of deficits known as fetal alcohol spectrum disorders (FASD). Alcohol abuse in adults is associated with brain shrinkage, memory and attention deficits, communication disorders and physical disabilities. Monocyte chemoattractant protein-1 (MCP-1/CCL2) is one of the key chemokines that regulate the recruitment and activation of monocytes and microglia. Both MCP-1 and its receptor C-C chemokine receptor type 2 (CCR2) expressed in the brain are involved in various neuroinflammatory disorders, such as multiple sclerosis (MS), Alzheimer's disease (AD) and Parkinson's disease (PD). However, the role of MCP-1/CCR2 in alcohol-induced brain damage is unclear. Recent evidence indicates that alcohol exposure increased the activity of MCP-1/CCR2 in both mature and developing central nervous systems (CNS). MCP-1/CCR2 signaling in the brain was involved in alcohol drinking behavior. MCP-1/CCR2 inhibition alleviated alcohol neurotoxicity by reducing microglia activation/neuroinflammation in the developing brain and spinal cord. In this review, we discussed the role of MCP-1/CCR2 signaling in alcohol-induced neuroinflammation and brain damage. We also discussed the signaling cascades that are involved in the activation of MCP-1/CCR2 in response to alcohol exposure.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Jia Luo
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Lexington VA Health Care System, Research & Development, 1101 Veterans Drive, Lexington, KY 40502, USA.
| |
Collapse
|
177
|
Paschalis EI, Lei F, Zhou C, Chen XN, Kapoulea V, Hui PC, Dana R, Chodosh J, Vavvas DG, Dohlman CH. Microglia Regulate Neuroglia Remodeling in Various Ocular and Retinal Injuries. THE JOURNAL OF IMMUNOLOGY 2018; 202:539-549. [PMID: 30541880 DOI: 10.4049/jimmunol.1800982] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/04/2018] [Indexed: 11/19/2022]
Abstract
Reactive microglia and infiltrating peripheral monocytes have been implicated in many neurodegenerative diseases of the retina and CNS. However, their specific contribution in retinal degeneration remains unclear. We recently showed that peripheral monocytes that infiltrate the retina after ocular injury in mice become permanently engrafted into the tissue, establishing a proinflammatory phenotype that promotes neurodegeneration. In this study, we show that microglia regulate the process of neuroglia remodeling during ocular injury, and their depletion results in marked upregulation of inflammatory markers, such as Il17f, Tnfsf11, Ccl4, Il1a, Ccr2, Il4, Il5, and Csf2 in the retina, and abnormal engraftment of peripheral CCR2+ CX3CR1+ monocytes into the retina, which is associated with increased retinal ganglion cell loss, retinal nerve fiber layer thinning, and pigmentation onto the retinal surface. Furthermore, we show that other types of ocular injuries, such as penetrating corneal trauma and ocular hypertension also cause similar changes. However, optic nerve crush injury-mediated retinal ganglion cell loss evokes neither peripheral monocyte response in the retina nor pigmentation, although peripheral CX3CR1+ and CCR2+ monocytes infiltrate the optic nerve injury site and remain present for months. Our study suggests that microglia are key regulators of peripheral monocyte infiltration and retinal pigment epithelium migration, and their depletion results in abnormal neuroglia remodeling that exacerbates neuroretinal tissue damage. This mechanism of retinal damage through neuroglia remodeling may be clinically important for the treatment of patients with ocular injuries, including surgical traumas.
Collapse
Affiliation(s)
- Eleftherios I Paschalis
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114; .,Massachusetts Eye and Ear/Schepens Eye Research Institute, Boston Keratoprosthesis Laboratory, Harvard Medical School, Boston, MA 02114.,Disruptive Technology Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114; and
| | - Fengyang Lei
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114.,Massachusetts Eye and Ear/Schepens Eye Research Institute, Boston Keratoprosthesis Laboratory, Harvard Medical School, Boston, MA 02114.,Disruptive Technology Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114; and
| | - Chengxin Zhou
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114.,Massachusetts Eye and Ear/Schepens Eye Research Institute, Boston Keratoprosthesis Laboratory, Harvard Medical School, Boston, MA 02114.,Disruptive Technology Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114; and
| | - Xiaohong Nancy Chen
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114.,Angiogenesis Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114
| | - Vassiliki Kapoulea
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114.,Massachusetts Eye and Ear/Schepens Eye Research Institute, Boston Keratoprosthesis Laboratory, Harvard Medical School, Boston, MA 02114
| | - Pui-Chuen Hui
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114.,Massachusetts Eye and Ear/Schepens Eye Research Institute, Boston Keratoprosthesis Laboratory, Harvard Medical School, Boston, MA 02114.,Disruptive Technology Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114; and
| | - Reza Dana
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114.,Massachusetts Eye and Ear/Schepens Eye Research Institute, Boston Keratoprosthesis Laboratory, Harvard Medical School, Boston, MA 02114
| | - James Chodosh
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114.,Massachusetts Eye and Ear/Schepens Eye Research Institute, Boston Keratoprosthesis Laboratory, Harvard Medical School, Boston, MA 02114.,Disruptive Technology Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114; and
| | - Demetrios G Vavvas
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114.,Angiogenesis Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114
| | - Claes H Dohlman
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114.,Massachusetts Eye and Ear/Schepens Eye Research Institute, Boston Keratoprosthesis Laboratory, Harvard Medical School, Boston, MA 02114
| |
Collapse
|
178
|
Khan A, Ali T, Rehman SU, Khan MS, Alam SI, Ikram M, Muhammad T, Saeed K, Badshah H, Kim MO. Neuroprotective Effect of Quercetin Against the Detrimental Effects of LPS in the Adult Mouse Brain. Front Pharmacol 2018; 9:1383. [PMID: 30618732 PMCID: PMC6297180 DOI: 10.3389/fphar.2018.01383] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 11/09/2018] [Indexed: 12/19/2022] Open
Abstract
Chronic neuroinflammation is responsible for multiple neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. Lipopolysaccharide (LPS) is an essential component of the gram-negative bacterial cell wall and acts as a potent stimulator of neuroinflammation that mediates neurodegeneration. Quercetin is a natural flavonoid that is abundantly found in fruits and vegetables and has been shown to possess multiple forms of desirable biological activity including anti-inflammatory and antioxidant properties. This study aimed to evaluate the neuroprotective effect of quercetin against the detrimental effects of LPS, such as neuroinflammation-mediated neurodegeneration and synaptic/memory dysfunction, in adult mice. LPS [0.25 mg/kg/day, intraperitoneally (I.P.) injections for 1 week]-induced glial activation causes the secretion of cytokines/chemokines and other inflammatory mediators, which further activate the mitochondrial apoptotic pathway and neuronal degeneration. Compared to LPS alone, quercetin (30 mg/kg/day, I.P.) for 2 weeks (1 week prior to the LPS and 1 week cotreated with LPS) significantly reduced activated gliosis and various inflammatory markers and prevented neuroinflammation in the cortex and hippocampus of adult mice. Furthermore, quercetin rescued the mitochondrial apoptotic pathway and neuronal degeneration by regulating Bax/Bcl2, and decreasing activated cytochrome c, caspase-3 activity and cleaving PARP-1 in the cortical and hippocampal regions of the mouse brain. The quercetin treatment significantly reversed the LPS-induced synaptic loss in the cortex and hippocampus of the adult mouse brain and improved the memory performance of the LPS-treated mice. In summary, our results demonstrate that natural flavonoids such as quercetin can be beneficial against LPS-induced neurotoxicity in adult mice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Myeong Ok Kim
- Division of Applied Life Science (BK 21), College of Natural Science, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
179
|
Zhong L, Jiang X, Zhu Z, Qin H, Dinkins MB, Kong JN, Leanhart S, Wang R, Elsherbini A, Bieberich E, Zhao Y, Wang G. Lipid transporter Spns2 promotes microglia pro-inflammatory activation in response to amyloid-beta peptide. Glia 2018; 67:498-511. [PMID: 30484906 DOI: 10.1002/glia.23558] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/31/2018] [Accepted: 10/22/2018] [Indexed: 12/29/2022]
Abstract
Accumulating evidence indicates that neuroinflammation contributes to the pathogenesis and exacerbation of neurodegenerative disorders, such as Alzheimer's disease (AD). Sphingosine-1-phosphate (S1P) is a pleiotropic bioactive lipid that regulates many pathophysiological processes including inflammation. We present evidence here that the spinster homolog 2 (Spns2), a S1P transporter, promotes microglia pro-inflammatory activation in vitro and in vivo. Spns2 knockout (Spns2KO) in primary cultured microglia resulted in significantly reduced levels of pro-inflammatory cytokines induced by lipopolysaccharide (LPS) and amyloid-beta peptide 1-42 oligomers (Aβ42) when compared with littermate controls. Fingolimod (FTY720), a S1P receptor 1 (S1PR1) functional antagonist and FDA approved drug for relapsing-remitting multiple sclerosis, partially blunted Aβ42-induced pro-inflammatory cytokine generation, suggesting that Spns2 promotes microglia pro-inflammatory activation through S1P-signaling. Spns2KO significantly reduced Aβ42-induced nuclear factor kappa B (NFκB) activity. S1P increased, while FTY720 dampened, Aβ42-induced NFκB activity, suggesting that Spns2 activates microglia inflammation through, at least partially, NFκB pathway. Spns2KO mouse brains showed significantly reduced Aβ42-induced microglia activation/accumulation and reduced levels of pro-inflammatory cytokines when compared with age-matched controls. More interestingly, Spns2KO ameliorated Aβ42-induced working memory deficit detected by Y-Maze. In summary, these results suggest that Spns2 promotes pro-inflammatory polarization of microglia and may play a crucial role in AD pathogenesis.
Collapse
Affiliation(s)
- Liansheng Zhong
- Department of Physiology, University of Kentucky, Lexington, Kentucky.,Department of Bioinformatics, Key Laboratory of Cell Biology of Ministry of Public Health, College of Life Sciences, China Medical University, Shenyang, China
| | - Xue Jiang
- Department of Physiology, University of Kentucky, Lexington, Kentucky.,Shengjing Hospital, China Medical University, Shenyang, Liaoning, China
| | - Zhihui Zhu
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Haiyan Qin
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Michael B Dinkins
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Ji-Na Kong
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Silvia Leanhart
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Rebecca Wang
- Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Ahmed Elsherbini
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Erhard Bieberich
- Department of Physiology, University of Kentucky, Lexington, Kentucky.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Yujie Zhao
- Department of Bioinformatics, Key Laboratory of Cell Biology of Ministry of Public Health, College of Life Sciences, China Medical University, Shenyang, China
| | - Guanghu Wang
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
180
|
Chae U, Kim HS, Lee HS, Lee SR, Lee DS. Drp1-dependent mitochondrial fission regulates p62-mediated autophagy in LPS-induced activated microglial cells. Biosci Biotechnol Biochem 2018; 83:409-416. [PMID: 30475154 DOI: 10.1080/09168451.2018.1549933] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Microglial activation is known to be an important event during innate immunity, but microglial inflammation is also thought to play a role in the etiology of neurodegenerative diseases. Recently, it was reported that autophagy could influence inflammation and activation of microglia. However, little is known about the regulation of autophagy during microglial activation. In this study, we demonstrated that mitochondrial fission-induced ROS can promote autophagy in microglia. Following LPS-induced autophagy, GFP-LC3 puncta were increased, and this was suppressed by inhibiting mitochondrial fission and mitochondrial ROS. Interestingly, inhibition of mitochondrial fission and mitochondrial ROS also resulted in decreased p62 expression, but Beclin1 and LC3B were unaffected. Taken together, these results indicate that ROS induction due to increased LPS-stimulated mitochondrial fission triggers p62 mediated autophagy in microglial cells. Our findings provide the first important clues towards understanding the correlation between mitochondrial ROS and autophagy. Abbreviations: Drp1; Dynamin related protein 1, LPS; Lipopolysaccharide, ROS; Reactive Oxygen Species, GFP; Green Fluorescent Protein, CNS; Central Nervous System, AD; Alzheimer's Disease, PD; Parkinson's Disease, ALIS; Aggresome-like induced structures, iNOS; inducible nitric oxide synthase, Cox-2; Cyclooxygenase-2, MAPK; Mitogen-activated protein kinase; SODs; Superoxide dismutase, GPXs; Glutathione Peroxidase, Prxs; Peroxiredoxins.
Collapse
Affiliation(s)
- Unbin Chae
- a School of Life Sciences and Biotechnology , BK21 Plus KNU Creative BioResearch Group, Kyungpook National University , Daegu , Republic of Korea
| | - Han Seop Kim
- a School of Life Sciences and Biotechnology , BK21 Plus KNU Creative BioResearch Group, Kyungpook National University , Daegu , Republic of Korea
| | - Hyun-Shik Lee
- a School of Life Sciences and Biotechnology , BK21 Plus KNU Creative BioResearch Group, Kyungpook National University , Daegu , Republic of Korea
| | - Sang-Rae Lee
- b National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Cheongju , Republic of Korea
| | - Dong-Seok Lee
- a School of Life Sciences and Biotechnology , BK21 Plus KNU Creative BioResearch Group, Kyungpook National University , Daegu , Republic of Korea
| |
Collapse
|
181
|
Dukhinova M, Kuznetsova I, Kopeikina E, Veniaminova E, Yung AWY, Veremeyko T, Levchuk K, Barteneva NS, Wing-Ho KK, Yung WH, Liu JYH, Rudd J, Yau SSY, Anthony DC, Strekalova T, Ponomarev ED. Platelets mediate protective neuroinflammation and promote neuronal plasticity at the site of neuronal injury. Brain Behav Immun 2018; 74:7-27. [PMID: 30217533 DOI: 10.1016/j.bbi.2018.09.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 09/10/2018] [Accepted: 09/10/2018] [Indexed: 01/05/2023] Open
Abstract
It is generally accepted that inflammation within the CNS contributes to neurodegeneration after traumatic brain injury (TBI), but it is not clear how inflammation is initiated in the absence of infection and whether this neuroinflammation is predominantly beneficial or detrimental. We have previously found that brain-enriched glycosphingolipids within neuronal lipid rafts (NLR) induced platelet degranulation and secretion of neurotransmitters and pro-inflammatory factors. In the present study, we compared TBI-induced inflammation and neurodegeneration in wild-type vs. St3gal5 deficient (ST3-/-) mice that lack major CNS-specific glycosphingolipids. After TBI, microglial activation and CNS macrophage infiltration were substantially reduced in ST3-/- animals. However, ST3-/- mice had a larger area of CNS damage with marked neuronal/axonal loss. The interaction of platelets with NLR stimulated neurite growth, increased the number of PSD95-positive dendritic spines, and intensified neuronal activity. Adoptive transfer and blocking experiments provide further that platelet-derived serotonin and platelet activating factor plays a key role in the regulation of sterile neuroinflammation, hemorrhage and neuronal plasticity after TBI.
Collapse
Affiliation(s)
- Marina Dukhinova
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin N.T., Hong Kong
| | - Inna Kuznetsova
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin N.T., Hong Kong
| | - Ekaterina Kopeikina
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin N.T., Hong Kong
| | - Ekaterina Veniaminova
- Department of Neuroscience, Maastricht University, Universiteitssingel 40, NL 6229ER, Maastricht, Netherlands; Institute of General Pathology and Pathophysiology, Baltiiskaya str, 8, Moscow, 125315, Russia; Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Laboratory of Psychiatric Neurobiology, Trubetskaya Street 8-2, 119991, Moscow, Russia
| | - Amanda W Y Yung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin N.T., Hong Kong
| | - Tatyana Veremeyko
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin N.T., Hong Kong
| | - Kseniia Levchuk
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin N.T., Hong Kong
| | - Natasha S Barteneva
- Program in Cellular and Molecular Medicine, Children's Hospital Boston and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Kenny Kam Wing-Ho
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin N.T., Hong Kong
| | - Wing-Ho Yung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin N.T., Hong Kong
| | - Julia Y H Liu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin N.T., Hong Kong
| | - John Rudd
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin N.T., Hong Kong; Brain and Mind Institute, The Chinese University of Hong Kong, Shatin NT, Hong Kong
| | - Sonata S Y Yau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Daniel C Anthony
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Tatyana Strekalova
- Department of Neuroscience, Maastricht University, Universiteitssingel 40, NL 6229ER, Maastricht, Netherlands; Institute of General Pathology and Pathophysiology, Baltiiskaya str, 8, Moscow, 125315, Russia; Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Laboratory of Psychiatric Neurobiology, Trubetskaya Street 8-2, 119991, Moscow, Russia
| | - Eugene D Ponomarev
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin N.T., Hong Kong; Kunming Institute of Zoology and Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunmin-Hong Kong, China.
| |
Collapse
|
182
|
Bloomfield PS, Bonsall D, Wells L, Dormann D, Howes O, De Paola V. The effects of haloperidol on microglial morphology and translocator protein levels: An in vivo study in rats using an automated cell evaluation pipeline. J Psychopharmacol 2018; 32:1264-1272. [PMID: 30126329 DOI: 10.1177/0269881118788830] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Altered microglial markers and morphology have been demonstrated in patients with schizophrenia in post-mortem and in vivo studies. However, it is unclear if changes are due to antipsychotic treatment. AIMS Here we aimed to determine whether antipsychotic medication affects microglia in vivo. METHODS To investigate this we administered two clinically relevant doses (0.05 mg n=12 and 2.5 mg n=7 slow-release pellets, placebo n=20) of haloperidol, over 2 weeks, to male Sprague Dawley rats to determine the effect on microglial cell density and morphology (area occupied by processes and microglial cell area). We developed an analysis pipeline for the automated assessment of microglial cells and used lipopolysaccharide (LPS) treatment ( n=13) as a positive control for analysis. We also investigated the effects of haloperidol ( n=9) or placebo ( n=10) on the expression of the translocator protein 18 kDa (TSPO) using autoradiography with [3H]PBR28, a TSPO ligand used in human positron emission tomography (PET) studies. RESULTS Here we demonstrated that haloperidol at either dose does not alter microglial measures compared with placebo control animals ( p > 0.05). Similarly there was no difference in [3H]PBR28 binding between placebo and haloperidol tissue ( p > 0.05). In contrast, LPS was associated with greater cell density ( p = 0.04) and larger cell size ( p = 0.01). CONCLUSION These findings suggest that haloperidol does not affect microglial cell density, morphology or TSPO expression, indicating that clinical study alterations are likely not the consequence of antipsychotic treatment. The automated cell evaluation pipeline was able to detect changes in microglial morphology induced by LPS and is made freely available for future use.
Collapse
Affiliation(s)
- Peter S Bloomfield
- 1 MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK.,2 Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - David Bonsall
- 1 MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK.,2 Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Lisa Wells
- 3 Imanova Centre for Imaging Sciences, London, UK
| | - Dirk Dormann
- 1 MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK.,2 Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Oliver Howes
- 1 MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK.,2 Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK.,4 The Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, London, UK
| | - Vincenzo De Paola
- 1 MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK.,2 Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
183
|
Chan HH, Wathen CA, Mathews ND, Hogue O, Modic JP, Kundalia R, Wyant C, Park HJ, Najm IM, Trapp BD, Machado AG, Baker KB. Lateral cerebellar nucleus stimulation promotes motor recovery and suppresses neuroinflammation in a fluid percussion injury rodent model. Brain Stimul 2018; 11:1356-1367. [PMID: 30061053 DOI: 10.1016/j.brs.2018.07.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/17/2018] [Accepted: 07/23/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Many traumatic brain injury (TBI) survivors live with persistent disability from chronic motor deficits despite contemporary rehabilitation services, underscoring the need for novel treatment. OBJECTIVE/HYPOTHESIS We have previously shown that deep brain stimulation (DBS) of the lateral cerebellar nucleus (LCN) can enhance post-stroke motor recovery and increase the expression of markers of long-term potentiation in perilesional cerebral cortex. We hypothesize that a similar beneficial effect will be for motor deficits induced by unilateral fluid percussion injury (FPI) in rodents through long-term potentiation- and anti-inflammatory based mechanisms. METHODS Male Long Evans rats with a DBS macroelectrode in the LCN underwent FPI over contralateral primary motor cortex. After 4 weeks of spontaneous recovery, DBS treatment was applied for 4 weeks, with the pasta matrix, cylinder, and horizontal ladder tests used to evaluate motor performance. All animals were euthanized and tissue harvested for further analysis by histology, immunohistochemistry, RNA microarray assay and Western Blot. RESULTS LCN DBS-treated animals experienced a significantly greater rate of motor recovery than untreated surgical controls, with treated animals showing enhanced expression of RNA and protein for excitability related genes, suppressed expression of pro-inflammatory genes, suppressed microglial and astrocytic activation, but proliferation of c-fos positive cells. Finally, our data suggest a possible role for anti-apoptotic effects with LCN DBS. CONCLUSION LCN DBS enhanced the motor recovery following TBI, possibly by elevating the neuronal excitability at the perilesional area and mediating anti-apoptotic and anti-inflammatory effects.
Collapse
Affiliation(s)
- Hugh H Chan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Connor A Wathen
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, USA
| | - Nicole D Mathews
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Olivia Hogue
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - James P Modic
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ronak Kundalia
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Cara Wyant
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Hyun-Joo Park
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, USA
| | - Imad M Najm
- Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA
| | - Bruce D Trapp
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Andre G Machado
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, USA
| | - Kenneth B Baker
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
184
|
Esen F, Ozcan PE, Tuzun E, Boone MD. Mechanisms of action of intravenous immunoglobulin in septic encephalopathy. Rev Neurosci 2018; 29:417-423. [PMID: 29232196 DOI: 10.1515/revneuro-2017-0065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/02/2017] [Indexed: 12/22/2022]
Abstract
Acute brain dysfunction associated with sepsis is a serious complication that results in morbidity and mortality. Intravenous immunoglobulin (IVIg) treatment is known to alleviate behavioral deficits in the experimentally induced model of sepsis. To delineate the mechanisms by which IVIg treatment prevents neuronal dysfunction, an array of immunological and apoptosis markers was investigated. Our results suggest that IVIgG and IgGAM administration ameliorates neuronal dysfunction and behavioral deficits by reducing apoptotic cell death and glial cell proliferation. IgGAM treatment might suppress classical complement pathway by reducing C5a activity and proapoptotic NF-κB and Bax expressions, thereby, inhibiting major inflammation and apoptosis cascades. Future animal model experiments performed with specific C5aR and NF-κB agonists/antagonists or C5aR-deficient mice might more robustly disclose the significance of these pathways. C5a, C5aR, and NF-κB, which were shown to be the key molecules in brain injury pathogenesis in sepsis, might also be utilized as potential targets for future treatment trials of septic encephalopathy.
Collapse
Affiliation(s)
- Figen Esen
- Department of Anesthesiology, Istanbul Faculty of Medicine, Istanbul University, 34393 Istanbul, Turkey
| | - Perihan Ergin Ozcan
- Department of Anesthesiology, Istanbul Faculty of Medicine, Istanbul University, 34393 Istanbul, Turkey
| | - Erdem Tuzun
- Institute of Experimental Medicine, Neuroscience, Istanbul University, 34393 Istanbul, Turkey
| | - M Dustin Boone
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, 02215 MA, USA
| |
Collapse
|
185
|
Katharesan V, Deery S, Johnson IP. Neuroprotective effect of acute prior inflammation with lipopolysaccharide for adult male rat facial motoneurones. Brain Res 2018; 1696:56-62. [DOI: 10.1016/j.brainres.2018.05.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/22/2018] [Accepted: 05/25/2018] [Indexed: 12/14/2022]
|
186
|
Lee JY, Joo B, Nam JH, Nam HY, Lee W, Nam Y, Seo Y, Kang HJ, Cho HJ, Jang YP, Kim J, We YM, Koo JW, Hoe HS. An Aqueous Extract of Herbal Medicine ALWPs Enhances Cognitive Performance and Inhibits LPS-Induced Neuroinflammation via FAK/NF-κB Signaling Pathways. Front Aging Neurosci 2018; 10:269. [PMID: 30319390 PMCID: PMC6168635 DOI: 10.3389/fnagi.2018.00269] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/22/2018] [Indexed: 12/11/2022] Open
Abstract
Recent studies have shown that Liuwei Dihuang pills (LWPs) can positively affect learning, memory and neurogenesis. However, the underlying molecular mechanisms are not understood. In the present study, we developed ALWPs, a mixture of Antler and LWPs, and investigated whether ALWPs can affect neuroinflammatory responses. We found that ALWPs (500 mg/ml) inhibited lipopolysaccharide (LPS)-induced proinflammatory cytokine IL-1β mRNA levels in BV2 microglial cells but not primary astrocytes. ALWPs significantly reduced LPS-induced cell-surface levels of TLR4 to alter neuroinflammation. An examination of the molecular mechanisms by which ALWPs regulate the LPS-induced proinflammatory response revealed that ALWPs significantly downregulated LPS-induced levels of FAK phosphorylation, suggesting that ALWPs modulate FAK signaling to alter LPS-induced IL-1β levels. In addition, treatment with ALWPs followed by LPS resulted in decreased levels of the transcription factor NF-κB in the nucleus compared with LPS alone. Moreover, ALWPs significantly suppressed LPS-induced BV2 microglial cell migration. To examine whether ALWPs modulate learning and memory in vivo, wild-type C57BL/6J mice were orally administered ALWPs (200 mg/kg) or PBS daily for 3 days, intraperitoneally injected (i.p.) with LPS (250 μg/kg) or PBS, and assessed in Y maze and NOR tests. We observed that oral administration of ALWPs to LPS-injected wild-type C57BL/6J mice significantly rescued short- and long-term memory. More importantly, oral administration of ALWPs to LPS-injected wild-type C57BL/6J mice significantly reduced microglial activation in the hippocampus and cortex. Taken together, our results suggest that ALWPs can suppress neuroinflammation-associated cognitive deficits and that ALWPs have potential as a drug for neuroinflammation/neurodegeneration-related diseases, including Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Ju-Young Lee
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, South Korea
| | - Bitna Joo
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, South Korea
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu, South Korea
| | - Jin Han Nam
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, South Korea
| | - Hye Yeon Nam
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, South Korea
| | - Wonil Lee
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, South Korea
| | - Youngpyo Nam
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, South Korea
| | - Yongtaek Seo
- Division of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, South Korea
| | - Hye-Jin Kang
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, South Korea
| | - Hyun-Ji Cho
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, South Korea
| | - Young Pyo Jang
- Division of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, South Korea
| | - Jeongyeon Kim
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, South Korea
| | - Young-Man We
- College of Korean Medicine, Wonkwang University, Iksan, South Korea
- Oriental Medical Clinic Center, Hyoo Medical Clinic, Seoul, South Korea
| | - Ja Wook Koo
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, South Korea
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu, South Korea
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, South Korea
| |
Collapse
|
187
|
Hilla AM, Fischer D. Studying the Role of Microglia in Neurodegeneration and Axonal Regeneration in the murine Visual System. Bio Protoc 2018; 8:e2979. [PMID: 34395779 DOI: 10.21769/bioprotoc.2979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/02/2018] [Accepted: 08/05/2018] [Indexed: 11/02/2022] Open
Abstract
Microglia reside in the central nervous system (CNS) and are involved in the maintenance of the physiologic state. They constantly survey their environment for pathologic alterations associated with injury or diseases. For decades, researchers have investigated the role of microglia under different pathologic conditions, using approaches aiming to inhibit or eliminate these phagocytic cells. However, until recently, methods have failed to achieve complete depletion. Moreover, treatments often affected other cells, making unequivocal conclusions from these studies difficult. Recently, we have shown that inhibition of colony stimulating factor 1 receptor (CSF1R) by oral treatment with PLX5622 containing chow enables complete depletion of retinal microglia and almost complete microglia depletion in the optic nerve without affecting peripheral macrophages or other cells. Using this approach, we investigated the role of microglia in neuroprotection in the retina and axon regeneration in the injured optic nerve under different conditions. Thus, this efficient, reliable and easy to use protocol presented here will enable researchers to unequivocally study the contribution of microglia on neurodegeneration and axon regeneration. This protocol can be also easily expanded to other paradigms of acute and chronic injury or diseases in the visual system.
Collapse
Affiliation(s)
- Alexander M Hilla
- Department of Cell Physiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany.,Division of Experimental Neurology, Department of Neurology Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Dietmar Fischer
- Department of Cell Physiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany.,Division of Experimental Neurology, Department of Neurology Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
188
|
Kuse Y, Ohuchi K, Nakamura S, Hara H, Shimazawa M. Microglia increases the proliferation of retinal precursor cells during postnatal development. Mol Vis 2018; 24:536-545. [PMID: 30090016 PMCID: PMC6066272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 07/28/2018] [Indexed: 11/07/2022] Open
Abstract
Purpose In mice, retinal development continues throughout the postnatal stage accompanied by the proliferation of retinal precursor cells. Previous reports showed that during the postnatal stage microglia increase from postnatal day 0 (P0) to P7. However, how microglia are associated with retinal development remains unknown. Methods The involvement of microglia in retinal development was investigated by two approaches, microglial activation and loss, using lipopolysaccharide (LPS) and PLX3397 (pexidartinib), respectively. Results LPS injection at 1 mg/kg, intraperitoneally (i.p.) in the neonatal mice increased the number of retinal microglia at P7. 5-Bromo-2´-deoxyuridine (BrdU)-positive proliferative cells were increased by LPS treatment compared to the control group. The proliferative cells were mainly colocalized with paired box 6 (Pax6), a marker of retinal precursor cells. However, the depletion of microglia by treatment with PLX3397 decreased the BrdU-positive proliferative cells. Moreover, progranulin deficiency decreased the number of microglia and retinal precursor cells. Conclusions These findings indicated that microglia regulate the proliferation of immature retinal cells.
Collapse
|
189
|
Boutej H, Rahimian R, Thammisetty SS, Béland LC, Lalancette-Hébert M, Kriz J. Diverging mRNA and Protein Networks in Activated Microglia Reveal SRSF3 Suppresses Translation of Highly Upregulated Innate Immune Transcripts. Cell Rep 2018; 21:3220-3233. [PMID: 29241548 DOI: 10.1016/j.celrep.2017.11.058] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/26/2017] [Accepted: 11/16/2017] [Indexed: 01/15/2023] Open
Abstract
Uncontrolled microglial activation may lead to the development of inflammation-induced brain damage. Here, we uncover a ribosome-based mechanism/checkpoint involved in control of the innate immune response and microglial activation. Using an in vivo model system for analysis of the dynamic translational state of microglial ribosomes, with mRNAs as input and newly synthesized peptides as an output, we find a marked dissociation of microglia mRNA and protein networks following innate immune challenge. Highly upregulated and ribosome-associated mRNAs were not translated, resulting in two distinct microglial molecular signatures, a highly specialized pro-inflammatory mRNA signature and an immunomodulatory/homeostatic protein signature. We find that this is due to specific translational suppression of highly expressed mRNAs through a 3' UTR-mediated mechanism involving the RNA-binding protein SRSF3. This discovery suggests avenues for therapeutic modulation of innate immune response in resident microglia.
Collapse
Affiliation(s)
- Hejer Boutej
- CERVO Brain Research Centre and Department of Psychiatry and Neuroscience, Faculty of Medicine, Laval University, Québec, QC G1J2G3, Canada
| | - Reza Rahimian
- CERVO Brain Research Centre and Department of Psychiatry and Neuroscience, Faculty of Medicine, Laval University, Québec, QC G1J2G3, Canada
| | - Sai Sampath Thammisetty
- CERVO Brain Research Centre and Department of Psychiatry and Neuroscience, Faculty of Medicine, Laval University, Québec, QC G1J2G3, Canada
| | - Louis-Charles Béland
- CERVO Brain Research Centre and Department of Psychiatry and Neuroscience, Faculty of Medicine, Laval University, Québec, QC G1J2G3, Canada
| | - Mélanie Lalancette-Hébert
- CERVO Brain Research Centre and Department of Psychiatry and Neuroscience, Faculty of Medicine, Laval University, Québec, QC G1J2G3, Canada
| | - Jasna Kriz
- CERVO Brain Research Centre and Department of Psychiatry and Neuroscience, Faculty of Medicine, Laval University, Québec, QC G1J2G3, Canada.
| |
Collapse
|
190
|
Zhang K, Wang H, Xu M, Frank JA, Luo J. Role of MCP-1 and CCR2 in ethanol-induced neuroinflammation and neurodegeneration in the developing brain. J Neuroinflammation 2018; 15:197. [PMID: 29976212 PMCID: PMC6034273 DOI: 10.1186/s12974-018-1241-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/26/2018] [Indexed: 01/06/2023] Open
Abstract
Background Neuroinflammation and microglial activation have been implicated in both alcohol use disorders (AUD) and fetal alcohol spectrum disorders (FASD). Chemokine monocyte chemoattractant protein 1 (MCP-1) and its receptor C-C chemokine receptor type 2 (CCR2) are critical mediators of neuroinflammation and microglial activation. FASD is the leading cause of mental retardation, and one of the most devastating outcomes of FASD is the loss of neurons in the central nervous system (CNS). The underlying molecular mechanisms, however, remain unclear. We hypothesize that MCP-1/CCR2 signaling mediates ethanol-induced neuroinflammation and microglial activation, which exacerbates neurodegeneration in the developing brain. Methods C57BL/6 mice and mice deficient of MCP-1 (MCP-1−/−) and CCR2 (CCR2−/−) were exposed to ethanol on postnatal day 4 (PD4). Neuroinflammation, and microglial activation, and neurodegeneration in the brain were evaluated by immunohistochemistry and immunoblotting. A neuronal and microglial co-culture system was used to evaluate the role of microglia and MCP-1/CCR2 signaling in ethanol-induced neurodegeneration. Specific inhibitors were employed to delineate the involved signaling pathways. Results Ethanol-induced microglial activation, neuroinflammation, and a drastic increase in the mRNA and protein levels of MCP-1. Treatment of Bindarit (MCP-1 synthesis inhibitor) and RS504393 (CCR2 antagonist) significantly reduced ethanol-induced microglia activation/neuroinflammation, and neuroapoptosis in the developing brain. MCP-1−/− and CCR2−/− mice were more resistant to ethanol-induced neuroapoptosis. Moreover, ethanol plus MCP-1 caused more neuronal death in a neuron/microglia co-culture system than neuronal culture alone, and Bindarit and RS504393 attenuated ethanol-induced neuronal death in the co-culture system. Ethanol activated TLR4 and GSK3β, two key mediators of microglial activation in the brain and cultured microglial cells (SIM-A9). Blocking MCP-1/CCR2 signaling attenuated ethanol-induced activation of TLR4 and GSK3β. Conclusion MCP-1/CCR2 signaling played an important role in ethanol-induced microglial activation/neuroinflammation and neurodegeneration in the developing brain. The effects may be mediated by the interaction among MCP-1/CCR2 signaling, TLR4, and GSK3β.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, 132 Health Sciences Research Building, 1095 Veterans Drive, Lexington, KY, 40536, USA
| | - Haiping Wang
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, 132 Health Sciences Research Building, 1095 Veterans Drive, Lexington, KY, 40536, USA
| | - Mei Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, 132 Health Sciences Research Building, 1095 Veterans Drive, Lexington, KY, 40536, USA
| | - Jacqueline A Frank
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, 132 Health Sciences Research Building, 1095 Veterans Drive, Lexington, KY, 40536, USA
| | - Jia Luo
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, 132 Health Sciences Research Building, 1095 Veterans Drive, Lexington, KY, 40536, USA.
| |
Collapse
|
191
|
Puntambekar SS, Saber M, Lamb BT, Kokiko-Cochran ON. Cellular players that shape evolving pathology and neurodegeneration following traumatic brain injury. Brain Behav Immun 2018; 71:9-17. [PMID: 29601944 DOI: 10.1016/j.bbi.2018.03.033] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/16/2018] [Accepted: 03/26/2018] [Indexed: 11/28/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of death and disability worldwide, and has emerged as a critical risk factor for multiple neurodegenerative diseases, particularly Alzheimer's disease (AD). How the inflammatory cascade resulting from mechanical stress, axonal shearing and the loss of neurons and glia following initial impact in TBI, contributes to the development of AD-like disease is unclear. Neuroinflammation, characterized by blood-brain barrier (BBB) dysfunction and activation of brain-resident microglia and astrocytes, resulting in secretion of inflammatory mediators and subsequent recruitment of peripheral immune cells has been the focus of extensive research in attempts to identify drug-targets towards improving functional outcomes post TBI. While knowledge of intricate cellular interactions that shape lesion pathophysiology is incomplete, a major limitation in the field is the lack of understanding of how distinct cell types differentially alter TBI pathology. The aim of this review is to highlight functional differences between populations of bone marrow derived, infiltrating monocytes/macrophages and brain-resident microglia based on differential expression of the chemokine receptors CCR2 and CX3CR1. This review will focus on how unique subsets of mononuclear phagocytes shape TBI pathophysiology, neurotoxicity and BBB function, in a disease-stage dependent manner. Additionally, this review summarizes the role of multiple microglia and macrophage receptors, namely CCR2, CX3CR1 and Triggering Receptor Expressed on Myeloid Cells-2 (TREM2) in pathological neuroinflammation and neurodegeneration vs. recovery following TBI. TREM2 has been implicated in mediating AD-related pathology, and variants in TREM2 are particularly important due to their correlation with exacerbated neurodegeneration. Finally, this review highlights behavioral outcomes associated with microglial vs. macrophage variances, the need for novel treatment strategies that target unique subpopulations of peripheral macrophages, and the importance of development of therapeutics to modulate inflammatory functions of brain-resident microglia at specific stages of TBI.
Collapse
Affiliation(s)
- Shweta S Puntambekar
- Stark Neuroscience Research Institute, Indiana University-Purdue University, Indianapolis, IN 46202, USA.
| | - Maha Saber
- Barrows Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ 85016, USA.
| | - Bruce T Lamb
- Stark Neuroscience Research Institute, Indiana University-Purdue University, Indianapolis, IN 46202, USA.
| | - Olga N Kokiko-Cochran
- Department of Neuroscience, The Ohio State University, Institute for Behavioral Medicine Research, Columbus, OH, 43210, USA.
| |
Collapse
|
192
|
Rangaraju S, Dammer EB, Raza SA, Gao T, Xiao H, Betarbet R, Duong DM, Webster JA, Hales CM, Lah JJ, Levey AI, Seyfried NT. Quantitative proteomics of acutely-isolated mouse microglia identifies novel immune Alzheimer's disease-related proteins. Mol Neurodegener 2018; 13:34. [PMID: 29954413 PMCID: PMC6025801 DOI: 10.1186/s13024-018-0266-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/18/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Microglia are innate immune cells of the brain that perform phagocytic and inflammatory functions in disease conditions. Transcriptomic studies of acutely-isolated microglia have provided novel insights into their molecular and functional diversity in homeostatic and neurodegenerative disease states. State-of-the-art mass spectrometry methods can comprehensively characterize proteomic alterations in microglia in neurodegenerative disorders, potentially providing novel functionally relevant molecular insights that are not provided by transcriptomics. However, comprehensive proteomic profiling of adult primary microglia in neurodegenerative disease conditions has not been performed. METHODS We performed quantitative mass spectrometry based proteomic analyses of purified CD11b+ acutely-isolated microglia from adult (6 mo) mice in normal, acute neuroinflammatory (LPS-treatment) and chronic neurodegenerative states (5xFAD model of Alzheimer's disease [AD]). Differential expression analyses were performed to characterize specific microglial proteomic changes in 5xFAD mice and identify overlap with LPS-induced pro-inflammatory changes. Our results were also contrasted with existing proteomic data from wild-type mouse microglia and from existing microglial transcriptomic data from wild-type and 5xFAD mice. Neuropathological validation studies of select proteins were performed in human AD and 5xFAD brains. RESULTS Of 4133 proteins identified, 187 microglial proteins were differentially expressed in the 5xFAD mouse model of AD pathology, including proteins with previously known (Apoe, Clu and Htra1) as well as previously unreported relevance to AD biology (Cotl1 and Hexb). Proteins upregulated in 5xFAD microglia shared significant overlap with pro-inflammatory changes observed in LPS-treated mice. Several proteins increased in human AD brain were also upregulated by 5xFAD microglia (Aβ peptide, Apoe, Htra1, Cotl1 and Clu). Cotl1 was identified as a novel microglia-specific marker with increased expression and strong association with AD neuropathology. Apoe protein was also detected within plaque-associated microglia in which Apoe and Aβ were highly co-localized, suggesting a role for Apoe in phagocytic clearance of Aβ. CONCLUSIONS We report a comprehensive proteomic study of adult mouse microglia derived from acute neuroinflammation and AD models, representing a valuable resource to the neuroscience research community. We highlight shared and unique microglial proteomic changes in acute neuroinflammation aging and AD mouse models and identify novel roles for microglial proteins in human neurodegeneration.
Collapse
Affiliation(s)
| | - Eric B Dammer
- Department of Biochemistry, Emory University, Atlanta, GA, 30322, USA
| | - Syed Ali Raza
- Department of Neurology, Emory University, Atlanta, GA, 30322, USA
| | - Tianwen Gao
- Department of Neurology, Emory University, Atlanta, GA, 30322, USA
| | - Hailian Xiao
- Department of Neurology, Emory University, Atlanta, GA, 30322, USA
| | - Ranjita Betarbet
- Department of Neurology, Emory University, Atlanta, GA, 30322, USA
| | - Duc M Duong
- Department of Biochemistry, Emory University, Atlanta, GA, 30322, USA
| | - James A Webster
- Department of Neurology, Emory University, Atlanta, GA, 30322, USA
| | - Chadwick M Hales
- Department of Neurology, Emory University, Atlanta, GA, 30322, USA
| | - James J Lah
- Department of Neurology, Emory University, Atlanta, GA, 30322, USA
| | - Allan I Levey
- Department of Neurology, Emory University, Atlanta, GA, 30322, USA
| | - Nicholas T Seyfried
- Department of Neurology, Emory University, Atlanta, GA, 30322, USA. .,Department of Biochemistry, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
193
|
Christensen A, Pike CJ. TSPO ligand PK11195 improves Alzheimer-related outcomes in aged female 3xTg-AD mice. Neurosci Lett 2018; 683:7-12. [PMID: 29925037 DOI: 10.1016/j.neulet.2018.06.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/15/2018] [Indexed: 11/18/2022]
Abstract
Alzheimer's disease (AD) pathogenesis is a multifactorial process that involves numerous pathways within the central nervous system. Thus, interventions that interact with several disease-related pathways may offer an increased opportunity for successful prevention and treatment of AD. Translocator protein 18 kD (TSPO) is a mitochondrial protein that is associated with regulation of many cellular processes including inflammation, steroid synthesis, apoptosis, and mitochondrial respiration. Although TSPO ligands have been shown to be protective in several neurodegenerative paradigms, little work has been done to assess their potential as treatments for AD. Female 3xTg-AD mice were administered the TSPO ligand PK11195 once weekly for 5 weeks beginning at 16 months, an age characterized by extensive β-amyloid pathology and behavioral impairments. Animals treated with PK11195 showed improvements in behavior and modest reductions of in both soluble and deposited β-amyloid. The finding that short-term PK11195 treatment was effective in improving both behavioral and pathological outcomes in a model of late-stage AD supports further investigation of TSPO ligands as potential therapeutics for the treatment of AD.
Collapse
Affiliation(s)
- Amy Christensen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA USA
| | - Christian J Pike
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA USA.
| |
Collapse
|
194
|
Tripathi AK, Karmakar S, Asthana A, Ashok A, Desai V, Baksi S, Singh N. Transport of Non-Transferrin Bound Iron to the Brain: Implications for Alzheimer's Disease. J Alzheimers Dis 2018; 58:1109-1119. [PMID: 28550259 DOI: 10.3233/jad-170097] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A direct correlation between brain iron and Alzheimer's disease (AD) raises questions regarding the transport of non-transferrin-bound iron (NTBI), a toxic but less researched pool of circulating iron that is likely to increase due to pathological and/or iatrogenic systemic iron overload. Here, we compared the distribution of radiolabeled-NTBI (59Fe-NTBI) and transferrin-bound iron (59Fe-Tf) in mouse models of iron overload in the absence or presence of inflammation. Following a short pulse, most of the 59Fe-NTBI was taken up by the liver, followed by the kidney, pancreas, and heart. Notably, a strong signal of 59Fe-NTBI was detected in the brain ventricular system after 2 h, and the brain parenchyma after 24 h. 59Fe-Tf accumulated mainly in the femur and spleen, and was transported to the brain at a much slower rate than 59Fe-NTBI. In the kidney, 59Fe-NTBI was detected in the cortex after 2 h, and outer medulla after 24 hours. Most of the 59Fe-NTBI and 59Fe-Tf from the kidney was reabsorbed; negligible amount was excreted in the urine. Acute inflammation increased the uptake of 59Fe-NTBI by the kidney and brain from 2-24 hours. Chronic inflammation, on the other hand, resulted in sequestration of iron in the liver and kidney, reducing its transport to the brain. These observations provide direct evidence for the transport of NTBI to the brain, and reveal a complex interplay between inflammation and brain iron homeostasis. Further studies are necessary to determine whether transient increase in NTBI due to systemic iron overload is a risk factor for AD.
Collapse
Affiliation(s)
- Ajai K Tripathi
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Shilpita Karmakar
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Abhishek Asthana
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Ajay Ashok
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Vilok Desai
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Shounak Baksi
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Neena Singh
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
195
|
Trépanier MO, Hopperton KE, Giuliano V, Masoodi M, Bazinet RP. Increased brain docosahexaenoic acid has no effect on the resolution of neuroinflammation following intracerebroventricular lipopolysaccharide injection. Neurochem Int 2018; 118:115-126. [PMID: 29792954 DOI: 10.1016/j.neuint.2018.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/17/2018] [Accepted: 05/21/2018] [Indexed: 12/31/2022]
Abstract
Resolution of inflammation in the periphery was once thought to be a passive process, but new research now suggests it is an active process mediated by specialized pro-resolving lipid mediators (SPM) derived from omega-3 polyunsaturated fatty acids (n-3 PUFA). However, this has yet to be illustrated in neuroinflammation. The purpose of this study was to measure resolution of neuroinflammation and to test whether increasing brain docosahexaenoic acid (DHA) affects the resolution of neuroinflammation. C57Bl/6 mice, fat-1 mice and their wildtype littermates, fed either fish oil or safflower oil, received lipopolysaccharide (LPS) in the left lateral ventricle. Animals were then euthanized at various time points for immunohistochemistry, gene expression, and lipidomic analyses. Peak microglial activation was observed at 5 days post-surgery and the resolution index was 10 days. Of the approximately 350 genes significantly changed over the 28 days post LPS injection, 130 were uniquely changed at 3 days post injection. No changes were observed in the bioactive mediator pools. However, a few lysophospholipid species were decreased at 24hr post surgery. When brain DHA is increased, microglial cell density did not resolve faster and did not alter gene expression. In conclusion, resolution of neuroinflammation appears to be independent of SPM. Increasing brain DHA had no effect in this model.
Collapse
Affiliation(s)
- Marc-Olivier Trépanier
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 3E2, Canada
| | - Kathryn E Hopperton
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 3E2, Canada
| | - Vanessa Giuliano
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 3E2, Canada
| | - Mojgan Masoodi
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 3E2, Canada; Lipid Biology, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
| | - Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 3E2, Canada.
| |
Collapse
|
196
|
Rangaraju S, Dammer EB, Raza SA, Rathakrishnan P, Xiao H, Gao T, Duong DM, Pennington MW, Lah JJ, Seyfried NT, Levey AI. Identification and therapeutic modulation of a pro-inflammatory subset of disease-associated-microglia in Alzheimer's disease. Mol Neurodegener 2018; 13:24. [PMID: 29784049 PMCID: PMC5963076 DOI: 10.1186/s13024-018-0254-8] [Citation(s) in RCA: 240] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/30/2018] [Indexed: 02/06/2023] Open
Abstract
Background Disease-associated-microglia (DAM) represent transcriptionally-distinct and neurodegeneration-specific microglial profiles with unclear significance in Alzheimer’s disease (AD). An understanding of heterogeneity within DAM and their key regulators may guide pre-clinical experimentation and drug discovery. Methods Weighted co-expression network analysis (WGCNA) was applied to existing microglial transcriptomic datasets from neuroinflammatory and neurodegenerative disease mouse models to identify modules of highly co-expressed genes. These modules were contrasted with known signatures of homeostatic microglia and DAM to reveal novel molecular heterogeneity within DAM. Flow cytometric validation studies were performed to confirm existence of distinct DAM sub-populations in AD mouse models predicted by WGCNA. Gene ontology analyses coupled with bioinformatics approaches revealed drug targets and transcriptional regulators of microglial modules predicted to favorably modulate neuroinflammation in AD. These guided in-vivo and in-vitro studies in mouse models of neuroinflammation and neurodegeneration (5xFAD) to determine whether inhibition of pro-inflammatory gene expression and promotion of amyloid clearance was feasible. We determined the human relevance of these findings by integrating our results with AD genome-wide association studies and human AD and non-disease post-mortem brain proteomes. Results WGCNA applied to microglial gene expression data revealed a transcriptomic framework of microglial activation that predicted distinct pro-inflammatory and anti-inflammatory phenotypes within DAM, which we confirmed in AD and aging models by flow cytometry. Pro-inflammatory DAM emerged earlier in mouse models of AD and were characterized by pro-inflammatory genes (Tlr2, Ptgs2, Il12b, Il1b), surface marker CD44, potassium channel Kv1.3 and regulators (NFkb, Stat1, RelA) while anti-inflammatory DAM expressed phagocytic genes (Igf1, Apoe, Myo1e), surface marker CXCR4 with distinct regulators (LXRα/β, Atf1). As neuro-immunomodulatory strategies, we validated LXRα/β agonism and Kv1.3 blockade by ShK-223 peptide that promoted anti-inflammatory DAM, inhibited pro-inflammatory DAM and augmented Aβ clearance in AD models. Human AD-risk genes were highly represented within homeostatic microglia suggesting causal roles for early microglial dysregulation in AD. Pro-inflammatory DAM proteins were positively associated with neuropathology and preceded cognitive decline confirming the therapeutic relevance of inhibiting pro-inflammatory DAM in AD. Conclusions We provide a predictive transcriptomic framework of microglial activation in neurodegeneration that can guide pre-clinical studies to characterize and therapeutically modulate neuroinflammation in AD. Electronic supplementary material The online version of this article (10.1186/s13024-018-0254-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Eric B Dammer
- Department of Biochemistry, Emory University, Atlanta, GA, 30322, USA
| | - Syed Ali Raza
- Department of Neurology, Emory University, Atlanta, GA, 30322, USA
| | | | - Hailian Xiao
- Department of Neurology, Emory University, Atlanta, GA, 30322, USA
| | - Tianwen Gao
- Department of Neurology, Emory University, Atlanta, GA, 30322, USA
| | - Duc M Duong
- Department of Biochemistry, Emory University, Atlanta, GA, 30322, USA
| | | | - James J Lah
- Department of Neurology, Emory University, Atlanta, GA, 30322, USA
| | | | - Allan I Levey
- Department of Neurology, Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
197
|
Kokiko-Cochran ON, Godbout JP. The Inflammatory Continuum of Traumatic Brain Injury and Alzheimer's Disease. Front Immunol 2018; 9:672. [PMID: 29686672 PMCID: PMC5900037 DOI: 10.3389/fimmu.2018.00672] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/19/2018] [Indexed: 12/23/2022] Open
Abstract
The post-injury inflammatory response is a key mediator in long-term recovery from traumatic brain injury (TBI). Moreover, the immune response to TBI, mediated by microglia and macrophages, is influenced by existing brain pathology and by secondary immune challenges. For example, recent evidence shows that the presence of beta-amyloid and phosphorylated tau protein, two hallmark features of AD that increase during normal aging, substantially alter the macrophage response to TBI. Additional data demonstrate that post-injury microglia are “primed” and become hyper-reactive following a subsequent acute immune challenge thereby worsening recovery. These alterations may increase the incidence of neuropsychiatric complications after TBI and may also increase the frequency of neurodegenerative pathology. Therefore, the purpose of this review is to summarize experimental studies examining the relationship between TBI and development of AD-like pathology with an emphasis on the acute and chronic microglial and macrophage response following injury. Furthermore, studies will be highlighted that examine the degree to which beta-amyloid and tau accumulation as well as pre- and post-injury immune stressors influence outcome after TBI. Collectively, the studies described in this review suggest that the brain’s immune response to injury is a key mediator in recovery, and if compromised by previous, coincident, or subsequent immune stressors, post-injury pathology and behavioral recovery will be altered.
Collapse
Affiliation(s)
- Olga N Kokiko-Cochran
- Department of Neuroscience, Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Jonathan P Godbout
- Department of Neuroscience, Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
198
|
Kurtys E, Eisel ULM, Hageman RJJ, Verkuyl JM, Broersen LM, Dierckx RAJO, de Vries EFJ. Anti-inflammatory effects of rice bran components. Nutr Rev 2018. [DOI: 10.1093/nutrit/nuy011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Ewelina Kurtys
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, RB Groningen, The Netherlands
| | - Ulrich L M Eisel
- Department of Molecular Neurobiology, GELIFES, University of Groningen, Groningen, The Netherlands
| | | | | | | | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, RB Groningen, The Netherlands
| | - Erik F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, RB Groningen, The Netherlands
| |
Collapse
|
199
|
Li L, Saiyin H, Xie J, Ma L, Xue L, Wang W, Liang W, Yu Q. Sevoflurane preconditioning induced endogenous neurogenesis against ischemic brain injury by promoting microglial activation. Oncotarget 2018; 8:28544-28557. [PMID: 28212538 PMCID: PMC5438671 DOI: 10.18632/oncotarget.15325] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/10/2017] [Indexed: 01/15/2023] Open
Abstract
Brain ischemia causes irreversible damage to functional neurons in cases of infarct. Promoting endogenous neurogenesis to replace necrotic neurons is a promising therapeutic strategy for ischemia patients. The neuroprotective role of sevoflurane preconditioning implies that it might also enhance endogenous neurogenesis and functional restoration in the infarct region. By using a transient middle cerebral artery occlusion (tMCAO) model, we discovered that endogenous neurogenesis was enhanced by sevoflurane preconditioning. This enhancement process is characterized by the promotion of neuroblast proliferation within the subventricular zone (SVZ), migration and differentiation into neurons, and the presence of astrocytes and oligodendrocytes at the site of infarct. The newborn neurons in the sevoflurane preconditioning group showed miniature excitatory postsynaptic currents (mEPSCs), increased synaptophysin and PSD95 staining density, indicating normal neuronal function. Furthermore, long-term behavioral improvement was observed in the sevoflurane preconditioning group consistent with endogenous neurogenesis. Further histological analyses showed that sevoflurane preconditioning accelerated microglial activation, including migration, phagocytosis and secretion of brain-derived neurotrophic factor (BDNF). Intraperitoneal injection of minocycline, a microglial inhibitor, suppressed microglial activation and reversed neurogenesis. Our data showed that sevoflurane preconditioning promoted microglial activities, created a favorable microenvironment for endogenous neurogenesis and accelerated functional reconstruction in the infarct region.
Collapse
Affiliation(s)
- Li Li
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Hexige Saiyin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Jingmo Xie
- Department of Anatomy, Histology & Embryology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Lixiang Ma
- Department of Anatomy, Histology & Embryology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Lei Xue
- Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Wei Wang
- Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Weimin Liang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Qiong Yu
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| |
Collapse
|
200
|
Assessing the role of hypothalamic microglia and blood vessel disruption in the development of angiotensin II-dependent hypertension in Cyp1a1-Ren2 rats. Pflugers Arch 2018; 470:883-895. [PMID: 29500668 DOI: 10.1007/s00424-018-2128-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/15/2018] [Accepted: 02/19/2018] [Indexed: 10/17/2022]
Abstract
Elevated plasma levels of the hormone vasopressin have been implicated in the pathogenesis of some forms of hypertension. Hypothalamic paraventricular and supraoptic nuclei neurons regulate vasopressin secretion into the circulation. Vasopressin neuron activity is elevated by day 7 in the development of angiotensin II-dependent hypertension in Cyp1a1-Ren2 rats. While microglial activation and blood-brain barrier (BBB) breakdown contribute to the maintenance of well-established hypertension, it is not known whether these mechanisms contribute to the early onset of hypertension. Hence, we aimed to determine whether microglia are activated and/or the BBB is compromised during the onset of hypertension. Here, we used the Cyp1a1-Ren2 rat model of hypertension and showed that ionised calcium-binding adapter molecule 1 staining of microglia does not change in the paraventricular and supraoptic nuclei on day 7 (early onset) and day 28 (well established) of hypertension, compared to the normotensive control. Endothelial transferrin receptor staining, which stains endothelia and reflects blood vessel density, was also unchanged at day 7, but was reduced at day 28, suggesting that breakdown of the BBB begins between day 7 and day 28 in the development of hypertension. Hence, this study does not support the idea that microglial activation or BBB disruption contribute to the onset of angiotensin II-dependent hypertension in Cyp1a1-Ren2 rats, although BBB disruption might contribute to the progression from the early onset to well-established hypertension.
Collapse
|