151
|
Yang J, Ren Z, Du X, Hao M, Zhou W. The role of mesenchymal stem/progenitor cells in sarcoma: update and dispute. Stem Cell Investig 2014; 1:18. [PMID: 27358864 DOI: 10.3978/j.issn.2306-9759.2014.10.01] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 10/10/2014] [Indexed: 12/26/2022]
Abstract
Sarcoma is the collective name for a relatively rare, yet heterogeneous group of cancers, most probably derived from mesenchymal tissues. There are currently over 50 sarcoma subtypes described underscoring the clinical and biologic diversity of this group of malignant cancers. This wide lineage range might suggest that sarcomas originate from either many committed different cell types or from a multipotent cell. Mesenchymal stem/progenitor cells (MSCs) are able to differentiate into many cell types and these multipotent cells have been isolated from several adult human tumors, making them available for research as well as potential beneficial therapeutical agents. Recent accomplishments in the field have broadened our knowledge of MSCs in relation to sarcoma origin and sarcoma treatment in therapeutic settings. However, numerous concerns and disputes have been raised about whether they are the putative originating cells of sarcoma and their questionable role in sarcomagenesis and progression. We summarize the update and dispute about MSC investigations in sarcomas including the definition, cell origin hypothesis, functional and descriptive assays, roles in sarcomagenesis and targeted therapy, with the purpose to give a comprehensive view of the role of MSCs in sarcomas.
Collapse
Affiliation(s)
- Jilong Yang
- 1 Departments of Bone and Soft Tissue Tumor, 2 National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China ; 3 Departments of Diagnostics, Tianjin Medical University, Tianjin 30060, China
| | - Zhiwu Ren
- 1 Departments of Bone and Soft Tissue Tumor, 2 National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China ; 3 Departments of Diagnostics, Tianjin Medical University, Tianjin 30060, China
| | - Xiaoling Du
- 1 Departments of Bone and Soft Tissue Tumor, 2 National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China ; 3 Departments of Diagnostics, Tianjin Medical University, Tianjin 30060, China
| | - Mengze Hao
- 1 Departments of Bone and Soft Tissue Tumor, 2 National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China ; 3 Departments of Diagnostics, Tianjin Medical University, Tianjin 30060, China
| | - Wenya Zhou
- 1 Departments of Bone and Soft Tissue Tumor, 2 National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China ; 3 Departments of Diagnostics, Tianjin Medical University, Tianjin 30060, China
| |
Collapse
|
152
|
Nanduri LSY, Baanstra M, Faber H, Rocchi C, Zwart E, de Haan G, van Os R, Coppes RP. Purification and ex vivo expansion of fully functional salivary gland stem cells. Stem Cell Reports 2014; 3:957-64. [PMID: 25448065 PMCID: PMC4264052 DOI: 10.1016/j.stemcr.2014.09.015] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 12/15/2022] Open
Abstract
Hyposalivation often leads to irreversible and untreatable xerostomia. Salivary gland (SG) stem cell therapy is an attractive putative option to salvage these patients but is impeded by the limited availability of adult human tissue. Here, using murine SG cells, we demonstrate single-cell self-renewal, differentiation, enrichment of SG stem cells, and robust in vitro expansion. Dependent on stem cell marker expression, SG sphere-derived single cells could be differentiated in vitro into distinct lobular or ductal/lobular organoids, suggestive of progenitor or stem cell potency. Expanded cells were able to form miniglands/organoids containing multiple SG cell lineages. Expansion of these multipotent cells through serial passaging resulted in selection of a cell population, homogenous for stem cell marker expression (CD24hi/CD29hi). Cells highly expressing CD24 and CD29 could be prospectively isolated and were able to efficiently restore radiation-damaged SG function. Our approach will facilitate the use of adult SG stem cells for a variety of scientific and therapeutic purposes. Single-cell-based in vitro self-renewal and differentiation of salivary gland stem cells Functional rescue of hyposalivation with in vitro expanded salivary gland stem cells Single-cell-derived organoids that contain salivary gland cell types
Collapse
Affiliation(s)
- Lalitha S Y Nanduri
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, the Netherlands
| | - Mirjam Baanstra
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, the Netherlands; Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Hette Faber
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, the Netherlands; Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Cecilia Rocchi
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, the Netherlands; Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Erik Zwart
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Aging (ERIBA), University Medical Center Groningen, University of Groningen, Building 3226, Antonius Deusinglaan 1, 9713AV Groningen, the Netherlands
| | - Gerald de Haan
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Aging (ERIBA), University Medical Center Groningen, University of Groningen, Building 3226, Antonius Deusinglaan 1, 9713AV Groningen, the Netherlands
| | - Ronald van Os
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Aging (ERIBA), University Medical Center Groningen, University of Groningen, Building 3226, Antonius Deusinglaan 1, 9713AV Groningen, the Netherlands
| | - Robert P Coppes
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, the Netherlands; Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands.
| |
Collapse
|
153
|
Liu L, Aleksandrowicz E, Fan P, Schönsiegel F, Zhang Y, Sähr H, Gladkich J, Mattern J, Depeweg D, Lehner B, Fellenberg J, Herr I. Enrichment of c-Met+ tumorigenic stromal cells of giant cell tumor of bone and targeting by cabozantinib. Cell Death Dis 2014; 5:e1471. [PMID: 25321478 PMCID: PMC4237261 DOI: 10.1038/cddis.2014.440] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 08/21/2014] [Accepted: 09/05/2014] [Indexed: 11/09/2022]
Abstract
Giant cell tumor of bone (GCTB) is a very rare tumor entity, which is little examined owing to the lack of established cell lines and mouse models and the restriction of available primary cell lines. The stromal cells of GCTB have been made responsible for the aggressive growth and metastasis, emphasizing the presence of a cancer stem cell population. To identify and target such tumor-initiating cells, stromal cells were isolated from eight freshly resected GCTB tissues. Tumorigenic properties were examined by colony and spheroid formation, differentiation, migration, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, immunohistochemistry, antibody protein array, Alu in situ hybridization, FACS analysis and xenotransplantation into fertilized chicken eggs and mice. A sub-population of the neoplastic stromal cells formed spheroids and colonies, differentiated to osteoblasts, migrated to wounded regions and expressed the metastasis marker CXC-chemokine receptor type 4, indicating self-renewal, invasion and differentiation potential. Compared with adherent-growing cells, markers for pluripotency, stemness and cancer progression, including the CSC surface marker c-Met, were enhanced in spheroidal cells. This c-Met-enriched sub-population formed xenograft tumors in fertilized chicken eggs and mice. Cabozantinib, an inhibitor of c-Met in phase II trials, eliminated CSC features with a higher therapeutic effect than standard chemotherapy. This study identifies a c-Met+ tumorigenic sub-population within stromal GCTB cells and suggests the c-Met inhibitor cabozantinib as a new therapeutic option for targeted elimination of unresectable or recurrent GCTB.
Collapse
Affiliation(s)
- L Liu
- Department of Molecular OncoSurgery, General, Visceral and Transplantation Surgery, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - E Aleksandrowicz
- Department of Molecular OncoSurgery, General, Visceral and Transplantation Surgery, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - P Fan
- Department of Molecular OncoSurgery, General, Visceral and Transplantation Surgery, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - F Schönsiegel
- Department of Molecular OncoSurgery, General, Visceral and Transplantation Surgery, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Y Zhang
- Department of Molecular OncoSurgery, General, Visceral and Transplantation Surgery, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - H Sähr
- Department of Experimental Orthopedics, Orthopedic University Hospital, Heidelberg, Germany
| | - J Gladkich
- Department of Molecular OncoSurgery, General, Visceral and Transplantation Surgery, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - J Mattern
- Department of Molecular OncoSurgery, General, Visceral and Transplantation Surgery, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - D Depeweg
- Department of Experimental Orthopedics, Orthopedic University Hospital, Heidelberg, Germany
| | - B Lehner
- Department of Experimental Orthopedics, Orthopedic University Hospital, Heidelberg, Germany
| | - J Fellenberg
- Department of Experimental Orthopedics, Orthopedic University Hospital, Heidelberg, Germany
| | - I Herr
- Department of Molecular OncoSurgery, General, Visceral and Transplantation Surgery, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
154
|
Othman SF, Wartella K, Sharghi VK, Xu H. The e-incubator: a magnetic resonance imaging-compatible mini incubator. Tissue Eng Part C Methods 2014; 21:347-55. [PMID: 25190214 DOI: 10.1089/ten.tec.2014.0273] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The tissue engineering community has been vocal regarding the need for noninvasive instruments to assess the development of tissue-engineered constructs. Medical imaging has helped fulfill this role. However, specimens allocated to a test tube for imaging cannot be tested for a prolonged period or returned to the incubator. Therefore, samples are essentially wasted due to potential contamination and transfer in a less than optimal growth environment. In turn, we present a standalone, miniature, magnetic resonance imaging-compatible incubator, termed the e-incubator. This incubator uses a microcontroller unit to automatically sense and regulate physiological conditions for tissue culture, thus allowing for concurrent tissue culture and evaluation. The e-incubator also offers an innovative scheme to study underlying mechanisms related to the structural and functional evolution of tissues. Importantly, it offers a key step toward enabling real-time testing of engineered tissues before human transplantation. For validation purposes, we cultured tissue-engineered bone constructs for 4 weeks to test the e-incubator. Importantly, this technology allows for visualizing the evolution of temporal and spatial morphogenesis. In turn, the e-incubator can filter deficient constructs, thereby increasing the success rate of implantation of tissue-engineered constructs, especially as construct design grows in levels of complexity to match the geometry and function of patients' unique needs.
Collapse
Affiliation(s)
- Shadi F Othman
- Department of Biological Systems Engineering, University of Nebraska-Lincoln , Lincoln, Nebraska
| | | | | | | |
Collapse
|
155
|
Lee S, Yoon YS. Revisiting cardiovascular regeneration with bone marrow-derived angiogenic and vasculogenic cells. Br J Pharmacol 2014; 169:290-303. [PMID: 22250888 DOI: 10.1111/j.1476-5381.2012.01857.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cell-based therapy has emerged as a promising therapy for cardiovascular disease. Particularly, bone marrow (BM)-derived cells have been most extensively investigated and have shown encouraging results in preclinical studies. Clinical trials, however, have demonstrated split results in post-myocardial infarction cardiac repair. Mechanistically, transdifferentiation of BM-derived cells into cardiovascular tissue demonstrated by earlier studies is now known to play a minor role in functional recovery, and humoral and paracrine effects turned out to be main mechanisms responsible for tissue regeneration and functional recovery. With this advancement in the mechanistic insight of BM-derived cells, new efforts have been made to identify cell population, which can be readily isolated and obtained in sufficient quantity without mobilization and have higher therapeutic potential. Recently, haematopoietic CD31(+) cells, which are more prevalent in bone marrow and peripheral blood, have been revealed to have angiogenic and vasculogenic activities and strong potential for therapeutic neovascularization in ischaemic tissues. This article will cover the recent advances in BM-derived cell-based therapy and implication of CD31(+) cells.
Collapse
Affiliation(s)
- Sangho Lee
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | | |
Collapse
|
156
|
Raza K, Larsen T, Samaratunga N, Price AP, Meyer C, Matson A, Ehrhardt MJ, Fogas S, Tolar J, Hertz MI, Panoskaltsis-Mortari A. MSC therapy attenuates obliterative bronchiolitis after murine bone marrow transplant. PLoS One 2014; 9:e109034. [PMID: 25272285 PMCID: PMC4182803 DOI: 10.1371/journal.pone.0109034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 09/03/2014] [Indexed: 12/18/2022] Open
Abstract
RATIONALE Obliterative bronchiolitis (OB) is a significant cause of morbidity and mortality after lung transplant and hematopoietic cell transplant. Mesenchymal stromal cells (MSCs) have been shown to possess immunomodulatory properties in chronic inflammatory disease. OBJECTIVE Administration of MSCs was evaluated for the ability to ameliorate OB in mice using our established allogeneic bone marrow transplant (BMT) model. METHODS Mice were lethally conditioned and received allogeneic bone marrow without (BM) or with spleen cells (BMS), as a source of OB-causing T-cells. Cell therapy was started at 2 weeks post-transplant, or delayed to 4 weeks when mice developed airway injury, defined as increased airway resistance measured by pulmonary function test (PFT). BM-derived MSC or control cells [mouse pulmonary vein endothelial cells (PVECs) or lung fibroblasts (LFs)] were administered. Route of administration [intratracheally (IT) and IV] and frequency (every 1, 2 or 3 weeks) were compared. Mice were evaluated at 3 months post-BMT. MEASUREMENTS AND MAIN RESULTS No ectopic tissue formation was identified in any mice. When compared to BMS mice receiving control cells or no cells, those receiving MSCs showed improved resistance, compliance and inspiratory capacity. Interim PFT analysis showed no difference in route of administration. Improvements in PFTs were found regardless of dose frequency; but once per week worked best even when administration began late. Mice given MSC also had decreased peribronchiolar inflammation, lower levels of hydroxyproline (collagen) and higher frequencies of macrophages staining for the alternatively activated macrophage (AAM) marker CD206. CONCLUSIONS These results warrant study of MSCs as a potential management option for OB in lung transplant and BMT recipients.
Collapse
Affiliation(s)
- Kashif Raza
- Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Trevor Larsen
- Breck High School, Edina, Minnesota, United States of America
| | | | - Andrew P Price
- Pediatric Blood and Bone Marrow Transplant Program, University of Minnesota Cancer Center, Minneapolis, Minnesota, United States of America
| | - Carolyn Meyer
- Pediatric Blood and Bone Marrow Transplant Program, University of Minnesota Cancer Center, Minneapolis, Minnesota, United States of America
| | - Amy Matson
- Pediatric Blood and Bone Marrow Transplant Program, University of Minnesota Cancer Center, Minneapolis, Minnesota, United States of America
| | - Michael J Ehrhardt
- Pediatric Blood and Bone Marrow Transplant Program, University of Minnesota Cancer Center, Minneapolis, Minnesota, United States of America
| | - Samuel Fogas
- Pediatric Blood and Bone Marrow Transplant Program, University of Minnesota Cancer Center, Minneapolis, Minnesota, United States of America
| | - Jakub Tolar
- Pediatric Blood and Bone Marrow Transplant Program, University of Minnesota Cancer Center, Minneapolis, Minnesota, United States of America
| | - Marshall I Hertz
- Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Angela Panoskaltsis-Mortari
- Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America; Pediatric Blood and Bone Marrow Transplant Program, University of Minnesota Cancer Center, Minneapolis, Minnesota, United States of America
| |
Collapse
|
157
|
Haarer J, Johnson CL, Soeder Y, Dahlke MH. Caveats of mesenchymal stem cell therapy in solid organ transplantation. Transpl Int 2014; 28:1-9. [PMID: 25082213 DOI: 10.1111/tri.12415] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 05/26/2014] [Accepted: 07/26/2014] [Indexed: 12/13/2022]
Abstract
In the past decade, therapeutic use of mesenchymal stem cells (MSCs) has increased dramatically. The weight of existing evidence supports that the short-term application of MSCs is safe and feasible; however, concerns remain over the possibility of unwanted long-term effects. One fundamental difference between MSCs and pharmacotherapy is that, once applied, the effects of cell products cannot be easily reversed. Therefore, a carefully considered decision process is indispensable before cell infusion. In addition to unwanted interactions of MSCs with the host immune system, there are concerns that MSCs may promote tumor progression or even give rise to cancer themselves. As animal models and first-in-man clinical studies have provided conflicting results, it is challenging to estimate the long-term risk of individual patients. In addition, most animal models, especially rodents, are ill-suited to adequately address questions over long-term side effects. Based on the available evidence, we address the potential pitfalls for the use of MSCs as a therapeutic agent to control alloimmune effects. The aim of this review was not to discourage investigators from clinical studies, but to raise awareness of the intrinsic risks of MSC therapy.
Collapse
Affiliation(s)
- Jan Haarer
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | | | | | | |
Collapse
|
158
|
Fransson M, Piras E, Wang H, Burman J, Duprez I, Harris RA, LeBlanc K, Magnusson PU, Brittebo E, Loskog ASI. Intranasal delivery of central nervous system-retargeted human mesenchymal stromal cells prolongs treatment efficacy of experimental autoimmune encephalomyelitis. Immunology 2014; 142:431-41. [PMID: 24588452 DOI: 10.1111/imm.12275] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/17/2014] [Accepted: 02/17/2014] [Indexed: 12/17/2022] Open
Abstract
Treatment with mesenchymal stromal cells (MSCs) is currently of interest for a number of diseases including multiple sclerosis. MSCs are known to target inflamed tissues, but in a therapeutic setting their systemic administration will lead to few cells reaching the brain. We hypothesized that MSCs may target the brain upon intranasal administration and persist in central nervous system (CNS) tissue if expressing a CNS-targeting receptor. To demonstrate proof of concept, MSCs were genetically engineered to express a myelin oligodendrocyte glycoprotein-specific receptor. Engineered MSCs retained their immunosuppressive capacity, infiltrated into the brain upon intranasal cell administration, and were able to significantly reduce disease symptoms of experimental autoimmune encephalomyelitis (EAE). Mice treated with CNS-targeting MSCs were resistant to further EAE induction whereas non-targeted MSCs did not give such persistent effects. Histological analysis revealed increased brain restoration in engineered MSC-treated mice. In conclusion, MSCs can be genetically engineered to target the brain and prolong therapeutic efficacy in an EAE model.
Collapse
Affiliation(s)
- Moa Fransson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Abstract
Endoglin is a homodimeric cell membrane glycoprotein receptor for transforming growth factor β and bone morphogenetic proteins. Endoglin is essential for angiogenesis, being densely expressed on proliferating endothelial cells and upregulated during hypoxia. Its expression is implicated in development of resistance to vascular endothelial growth factor (VEGF) inhibition. TRC105 is an antibody that binds endoglin and prevents endothelial cell activation. Targeting endoglin and the VEGF pathway concurrently improves treatment in vitro and appears to reverse resistance to bevacizumab in some refractory cancer patients. Randomized trials are under way to assess the clinical benefit of adding TRC105 therapy to bevacizumab therapy. Further trials are under way to assess the activity of TRC105 with small-molecule inhibitors of the VEGF pathway in renal cell carcinoma, hepatocellular carcinoma, and soft tissue sarcoma. Stratification of soft tissue sarcomas based on endoglin expression levels is proposed to identify patients most likely to benefit from TRC105 treatment. The development of a TRC105 antibody-drug conjugate is also described.
Collapse
Affiliation(s)
- Lee S Rosen
- Hematology-Oncology, UCLA Medical Center Santa Monica, 2020 Santa Monica Blvd, Ste 600, Santa Monica, CA, 90404, USA,
| | | | | | | |
Collapse
|
160
|
Ruan ZB, Zhu L, Yin YG, Chen GC. Karyotype stability of human umbilical cord-derived mesenchymal stem cells during in vitro culture. Exp Ther Med 2014; 8:1508-1512. [PMID: 25289050 PMCID: PMC4186357 DOI: 10.3892/etm.2014.1977] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 07/23/2014] [Indexed: 12/14/2022] Open
Abstract
The aim of this study was to investigate whether the chromosomes of human umbilical cord-derived mesenchymal stem cells (hUCMSCs) change following in vitro culture for several generations. In the present study, umbilical cords from two healthy infants following cesarean delivery were collected aseptically and hUCMSCs were isolated by digestion with collagenase and trypsin, and then cultured in vitro. hUCMSCs with fibroblastic morphology were presented from the human umbilical cord tissue after 7 days of adherent culture. When cultured for 6 passages in vitro, the hUCMSCs maintained a stable spindle-shaped morphology. Cells reached the logarithmic growth phase after 3–4 days of culture. In addition, CD13, CD29, CD44, CD90 and CD105 were highly expressed in generations P3-P6. The expression of CD31, CD34, CD45 and HLA-DR was negative. Furthermore, karyotype analysis revealed a normal diploid karyotype with 46 chromosomes and no abnormal changes were found in chromosome structure. These findings suggest that when cultured for 6 passages in vitro, hUCMSCs maintain a stable immunophenotype and chromosome structure, which provides an experimental basis for the safety of hUCMSC cytotherapy.
Collapse
Affiliation(s)
- Zhong-Bao Ruan
- Department of Cardiology, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Li Zhu
- Department of Cardiology, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Yi-Gang Yin
- Department of Cardiology, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Ge-Cai Chen
- Department of Cardiology, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| |
Collapse
|
161
|
Jose S, Tan SW, Ooi YY, Ramasamy R, Vidyadaran S. Mesenchymal stem cells exert anti-proliferative effect on lipopolysaccharide-stimulated BV2 microglia by reducing tumour necrosis factor-α levels. J Neuroinflammation 2014; 11:149. [PMID: 25182840 PMCID: PMC4156657 DOI: 10.1186/s12974-014-0149-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/09/2014] [Indexed: 12/29/2022] Open
Abstract
Background Progression of neurodegenerative diseases occurs when microglia, upon persistent activation, perpetuate a cycle of damage in the central nervous system. Use of mesenchymal stem cells (MSC) has been suggested as an approach to manage microglia activation based on their immunomodulatory functions. In the present study, we describe the mechanism through which bone marrow-derived MSC modulate the proliferative responses of lipopolysaccharide-stimulated BV2 microglia. Methods BV2 microglia were cultured with MSC and stimulated with 1 μg/ml lipopolysaccharide. Using an inducible nitric oxide synthase inhibitor, tritiated thymidine (3H-TdR) incorporation assay was performed to determine the role of nitric oxide in the anti-proliferative effect of MSC. We also studied apoptosis and the cell cycle of both cell types using flow cytometry and explored their cytokine profile using protein and cytometric arrays. Moreover, the role of IL-6 and TNF-α in immunomodulation was deduced using specific blocking antibodies and recombinant proteins. Results MSC reduces microglia proliferation upon lipopolysaccharide stimulation by 21 to 28% and modulates the levels of nitric oxide, IL-6 and TNF-α. The role of nitric oxide in conferring the anti-proliferative effect of MSC was ruled out. Furthermore, we found that MSC exert their anti-proliferative effect by restoring the percentage of BV2 cells at S and G2/M phase to levels similar to unstimulated cells. MSC undergo a G0/G1 arrest while exerting this effect. We have also identified that MSC-mediated modulation of microglia is independent of IL-6, whilst reduction of TNF-α in co-culture is critical for inhibition of microglia proliferation. Conclusions Our study demonstrates that MSC inhibit microglia proliferation independent of nitric oxide and IL-6, although reduction of TNF-α is critical for this effect. The inhibition of proliferation is through cell cycle modulation. These findings shed light on the mechanisms of microglial immunomodulation by MSC. Electronic supplementary material The online version of this article (doi:10.1186/s12974-014-0149-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Sharmili Vidyadaran
- Neuroinflammation Group, Immunology Laboratory, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
| |
Collapse
|
162
|
Wang Y, Chen F, Gu B, Chen G, Chang H, Wu D. Mesenchymal stromal cells as an adjuvant treatment for severe late-onset hemorrhagic cystitis after allogeneic hematopoietic stem cell transplantation. Acta Haematol 2014; 133:72-7. [PMID: 25139500 DOI: 10.1159/000362530] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/30/2014] [Indexed: 12/14/2022]
Abstract
The management of severe late-onset hemorrhagic cystitis (LO-HC) after allogeneic hematopoietic stem cell transplantation (HSCT) is still challenging. Because mesenchymal stromal cells (MSCs) possess anti-inflammatory and tissue repair-promoting properties, we retrospectively analyzed the efficacy and safety of MSC infusions in 7 of 33 patients with severe LO-HC after allogeneic HSCT. During treatment, each patient received at least one MSC infusion of Wharton's jelly derived from the umbilical cord of a third-party donor. In 6 patients, MSC treatment was initiated within 3 days of gross hematuria onset, while the 7th patient received an infusion 40 days later. The median dose was 1.0 (0.8-1.6) × 10(6)/kg. Five of 7 patients responded to treatment. Notably, gross hematuria promptly disappeared in 3 patients after 1 infusion, with a time to remission not seen in patients without MSC infusion. Two patients showed no response even after several infusions. No acute or late complications were recorded. Our findings indicate that MSC transfusion might be a feasible and safe supplemental therapy for patients with severe LO-HC after allogeneic HSCT.
Collapse
Affiliation(s)
- Ying Wang
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, PR China
| | | | | | | | | | | |
Collapse
|
163
|
Nagao-Kitamoto H, Nagata M, Nagano S, Kitamoto S, Ishidou Y, Yamamoto T, Nakamura S, Tsuru A, Abematsu M, Fujimoto Y, Yokouchi M, Kitajima S, Yoshioka T, Maeda S, Yonezawa S, Komiya S, Setoguchi T. GLI2 is a novel therapeutic target for metastasis of osteosarcoma. Int J Cancer 2014; 136:1276-84. [PMID: 25082385 DOI: 10.1002/ijc.29107] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 06/27/2014] [Indexed: 11/05/2022]
Abstract
Aberrant activation of the Hedgehog (Hh) pathway has been reported in several malignancies. We previously demonstrated that knockdown of GLI2 inhibited proliferation of osteosarcoma cells through regulation of the cell cycle. In this study, we analyzed the function of GLI2 in the pathogenesis of osteosarcoma metastasis. Immunohistochemical studies showed that GLI2 was overexpressed in patient osteosarcoma specimens. Knockdown of GLI2 inhibited migration and invasion of osteosarcoma cells. In contrast, the forced expression of constitutively active GLI2 in mesenchymal stem cells promoted invasion. In addition, xenograft models showed that knockdown of GLI2 decreased lung metastasis of osteosarcomas. To examine clinical applications, we evaluated the efficacy of arsenic trioxide (ATO), which is a Food and Drug Administration-approved antitumor drug, on osteosarcoma cells. ATO treatment suppressed the invasiveness of osteosarcoma cells by inhibiting the transcriptional activity of GLI2. In addition, the combination of Hh inhibitors including ATO, vismodegib and GANT61 prevented migration and metastasis of osteosarcoma cells. Consequently, our findings suggested that GLI2 regulated metastasis as well as the progression of osteosarcomas. Inhibition of the GLI2 transcription may be an effective therapeutic method for preventing osteosarcoma metastasis.
Collapse
Affiliation(s)
- Hiroko Nagao-Kitamoto
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Intraperitoneal infusion of mesenchymal stem/stromal cells prevents experimental autoimmune uveitis in mice. Mediators Inflamm 2014; 2014:624640. [PMID: 25136147 PMCID: PMC4127236 DOI: 10.1155/2014/624640] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 06/23/2014] [Accepted: 06/25/2014] [Indexed: 02/06/2023] Open
Abstract
Autoimmune uveitis is one of the leading causes of blindness. We here investigated whether intraperitoneal administration of human mesenchymal stem/stromal cells (hMSCs) might prevent development of experimental autoimmune uveitis (EAU) in mice. Time course study showed that the number of IFN-γ- or IL-17-expressing CD4+ T cells was increased in draining lymph nodes (DLNs) on the postimmunization day 7 and decreased thereafter. The retinal structure was severely disrupted on day 21. An intraperitoneal injection of hMSCs at the time of immunization protected the retina from damage and suppressed the levels of proinflammatory cytokines in the eye. Analysis of DLNs on day 7 showed that hMSCs decreased the number of Th1 and Th17 cells. The hMSCs did not reduce the levels of IL-1β, IL-6, IL-12, and IL-23 which are the cytokines that drive Th1/Th17 differentiation. Also, hMSCs did not induce CD4+CD25+Foxp3+ cells. However, hMSCs increased the level of an immunoregulatory cytokine IL-10 and the population of IL-10-expressing B220+CD19+ cells. Together, data demonstrate that hMSCs attenuate EAU by suppressing Th1/Th17 cells and induce IL-10-expressing B220+CD19+ cells. Our results support suggestions that hMSCs may offer a therapy for autoimmune diseases mediated by Th1/Th17 responses.
Collapse
|
165
|
Abstract
Chronic renal failure is an important clinical problem with significant socioeconomic impact worldwide. Despite advances in renal replacement therapies and organ transplantation, poor quality of life for dialysis patients and long transplant waiting lists remain major concerns for nephrologists treating this condition. There is therefore a pressing need for novel therapies to promote renal cellular repair and tissue remodeling. Over the past decade, advances in the field of regenerative medicine allowed development of cell therapies suitable for kidney repair. Mesenchymal stem cells (MSCs) are undifferentiated cells that possess immunomodulatory and tissue trophic properties and the ability to differentiate into multiple cell types. Studies in animal models of chronic renal failure have uncovered a unique potential of these cells for improving function and regenerating the damaged kidney. Nevertheless, several limitations pertaining to inadequate engraftment, difficulty to monitor, and untoward effects of MSCs remain to be addressed. Adverse effects observed following intravascular administration of MSCs include immune rejection, adipogenic differentiation, malignant transformation, and prothrombotic events. Nonetheless, most studies indicate a remarkable capability of MSCs to achieve kidney repair. This review summarizes the regenerative potential of MSCs to provide functional recovery from renal failure, focusing on their application and the current challenges facing clinical translation.
Collapse
|
166
|
Shinozuka K, Dailey T, Tajiri N, Ishikawa H, Kaneko Y, Borlongan CV. Stem cell transplantation for neuroprotection in stroke. Brain Sci 2014; 3:239-61. [PMID: 24147217 PMCID: PMC3800120 DOI: 10.3390/brainsci3010239] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Stem cell-based therapies for stroke have expanded substantially over the last decade. The diversity of embryonic and adult tissue sources provides researchers with the ability to harvest an ample supply of stem cells. However, the optimal conditions of stem cell use are still being determined. Along this line of the need for optimization studies, we discuss studies that demonstrate effective dose, timing, and route of stem cells. We recognize that stem cell derivations also provide uniquely individual difficulties and limitations in their therapeutic applications. This review will outline the current knowledge, including benefits and challenges, of the many current sources of stem cells for stroke therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Cesar V. Borlongan
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-813-974-3988; Fax: +1-813-974-3078
| |
Collapse
|
167
|
Regenerative therapy with mesenchymal stem cells at the site of malignant primary bone tumour resection: what are the risks of early or late local recurrence? INTERNATIONAL ORTHOPAEDICS 2014; 38:1825-35. [PMID: 24906983 DOI: 10.1007/s00264-014-2384-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 05/12/2014] [Indexed: 12/11/2022]
Abstract
PURPOSE There is concern that regenerative cell-based therapies at the site of malignant primary bone tumours could result in increased risk of local tumour recurrence. We therefore investigated the long-term risks for site-specific recurrences in patients who had received an autologous bone marrow derived mesenchymal stem cell suspension to improve healing at the host-to-allograft bone junction of the reconstruction after bone tumour resection. METHODS A total of 92 patients were treated from 1993 to 2003 with bone marrow-derived mesenchymal stem cells after bone tumour resection. Patients were monitored for cancer incidence from the date of first operation (1993) until death, or until 31 December 2013. The mean follow-up time was 15.4 years (range ten to 20 years). The average number of MSCs returned to the patient was 234,000 MSCs ± 215,000. The primary outcome was to evaluate the risk of tumorigenesis recurrence at the cell therapy treatment sites with radiographs and/or MRIs. The relative risk of cancer recurrence was expressed as the ratio of observed and expected number of cases according to three different control populations. RESULTS Thirteen recurrences were found at the treatment sites among the 92 patients. The expected number of recurrences based on incidence in the three cohort populations was between 15 and 20 for the same cancer, age and sex distribution. The standardized incidence ratio (equal to observed cancers divided by expected cancers) for the entire follow-up period and for all recurrences was between 0.65 and 0.86 (95 % CI 0.60-1.20). CONCLUSION This study found no increased cancer local recurrence risk in patients after application of autologous cell-based therapy using bone marrow-derived mesenchymal stem cells at the treatment site after an average follow-up period of 15.4 years, ranging from ten to 20 years.
Collapse
|
168
|
Thakker R, Yang P. Mesenchymal stem cell therapy for cardiac repair. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2014; 16:323. [PMID: 24898315 DOI: 10.1007/s11936-014-0323-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OPINION STATEMENT Owing to the prevalence of heart disease and the lack of effective long-term solutions for managing cardiac injury, research has turned to cell therapy as a potential mechanism for myocardial repair. Mesenchymal stem cells (MSC) in particular have become popular because their differentiative ability and their angiogenic and immunomodulatory properties make them attractive candidates for transplantation. However, there is still debate regarding the optimal strategy for the delivery of these cells. Recent clinical studies have isolated MSCs from a variety of tissue origins and have also tested the benefits of pretreatment with cardiogenic growth factors. Meanwhile, a newer school of thought instead supports the utilization of cardiomyocytes generated from MSC-derived induced pluripotent stem cells. This review will examine the promise of MSC therapy, discuss the results of past work, and propose steps that must be taken in the future.
Collapse
Affiliation(s)
- Rahul Thakker
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, USA,
| | | |
Collapse
|
169
|
Chen G, Yue A, Ruan Z, Yin Y, Wang R, Ren Y, Zhu L. Human umbilical cord-derived mesenchymal stem cells do not undergo malignant transformation during long-term culturing in serum-free medium. PLoS One 2014; 9:e98565. [PMID: 24887492 PMCID: PMC4041760 DOI: 10.1371/journal.pone.0098565] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/05/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) are in the foreground as a preferable application for treating diseases. However, the safety of hUC-MSCs after long-term culturing in vitro in serum-free medium remains unclear. METHODS hUC-MSCs were separated by adherent tissue culture. hUC-MSCs were cultured in serum-free MesenCult-XF medium and FBS-bases DMEM complete medium. At the 1st, 3rd, 5th, 8th, 10th, and 15th passage, the differentiation of MSCs into osteogenic, chondrogenic, and adipogenic cells was detected, and MTT, surface antigens were measured. Tumorigenicity was analyzed at the 15th passage. Conventional karyotyping was performed at passage 0, 8, and 15. The telomerase activity of hUC-MSCs at passage 1-15 was analyzed. RESULTS Flow cytometry analysis showed that very high expression was detected for CD105, CD73, and CD90 and very low expression for CD45, CD34, CD14, CD79a, and HLA-DR. MSCs could differentiate into osteocytes, chondrocytes, and adipocytes in vitro. There was no obvious chromosome elimination, displacement, or chromosomal imbalance as determined from the guidelines of the International System for Human Cytogenetic Nomenclature. Telomerase activity was down-regulated significantly when the culture time was prolonged. Further, no tumors formed in rats injected with hUC-MSCs (P15) cultured in serum-free and in serum-containing conditions. CONCLUSION Our data showed that hUC-MSCs met the International Society for Cellular Therapy standards for conditions of long-term in vitro culturing at P15. Since hUC-MSCs can be safely expanded in vitro and are not susceptible to malignant transformation in serum-free medium, these cells are suitable for cell therapy.
Collapse
Affiliation(s)
- Gecai Chen
- Department of Cardiology, Taizhou People's Hospital, Taizhou, Jiangsu province, China
| | - Aihuan Yue
- Jiangsu Beike Bio-Technology Co., Ltd, Taizhou, Jiangsu province, China
| | - Zhongbao Ruan
- Department of Cardiology, Taizhou People's Hospital, Taizhou, Jiangsu province, China
| | - Yigang Yin
- Department of Cardiology, Taizhou People's Hospital, Taizhou, Jiangsu province, China
| | - RuZhu Wang
- Department of Cardiology, Taizhou People's Hospital, Taizhou, Jiangsu province, China
| | - Yin Ren
- Department of Cardiology, Taizhou People's Hospital, Taizhou, Jiangsu province, China
| | - Li Zhu
- Department of Cardiology, Taizhou People's Hospital, Taizhou, Jiangsu province, China
- * E-mail:
| |
Collapse
|
170
|
Lee JY, Jeong HJ, Kim MK, Wee WR. Bone marrow-derived mesenchymal stem cells affect immunologic profiling of interleukin-17-secreting cells in a chemical burn mouse model. KOREAN JOURNAL OF OPHTHALMOLOGY 2014; 28:246-56. [PMID: 24882959 PMCID: PMC4038731 DOI: 10.3341/kjo.2014.28.3.246] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/14/2013] [Indexed: 12/18/2022] Open
Abstract
PURPOSE This study investigated interleukin (IL)-17-secreting cell involvement in sterile inflammation, and evaluated the effect of mesenchymal stem cells (MSCs) on IL-17-secreting cell immunologic profiling. METHODS Twenty mice were sacrificed at time points of 6 hours, 1 day, 1 week, and 3 weeks (each group, n = 5) after the cornea was chemically injured with 0.5N NaOH; IL-17 changes in the cornea were evaluated using enzyme-linked immunosorbent assay. Further, IL-17 secreting cells were assessed in the cervical lymph nodes by a flow cytometer. Rat MSCs were applied intraperitoneally in a burn model (n = 10), IL-17-secreting T helper 17 (Th17) cell and non-Th17 cell changes were checked using a flow cytometer in both cornea and cervical lymph nodes at 1 week, and compared with those in the positive control (n = 10). RESULTS IL-17 was highest in the cornea at 1 week, while, in the cervical lymph nodes, IL-17-secreting cells showed early increase at 6 hours, and maintained the increase through 1 day to 1 week, and levels returned to the basal level at 3 weeks. Specifically, the non-Th17 cells secreted IL-17 earlier than the Th17 cells. When the MSCs were applied, IL-17 secretion was reduced in CD3(+)CD4(-)CD8(-), CD3(+)CD4(+)CD8(-), and CD3(+) CD4(-)CD8(+) cells of the cervical lymph nodes by 53.7%, 43.8%, and 50.8%, respectively. However, in the cornea, IL-17 secretion of CD3(+)CD4(-)CD8(-) cells was completely blocked. CONCLUSIONS The results indicated that both IL-17-secreting non-Th17 and Th17 cells were involved in the chemical burn model, and MSCs appeared to mainly modulate non-Th17 cells and also partially suppress the Th17 cells.
Collapse
Affiliation(s)
- Ja Young Lee
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea. ; Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea
| | - Hyun Jeong Jeong
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea
| | - Mee Kum Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea. ; Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea
| | - Won Ryang Wee
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea. ; Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea
| |
Collapse
|
171
|
Battiwalla M, Barrett AJ. Bone marrow mesenchymal stromal cells to treat complications following allogeneic stem cell transplantation. TISSUE ENGINEERING PART B-REVIEWS 2014; 20:211-7. [PMID: 24410434 DOI: 10.1089/ten.teb.2013.0566] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is a technologically complicated procedure that represents the only cure for many hematologic malignancies. However, HSCT is often complicated by life-threatening toxicities related to the chemo-radiation conditioning regimen, poor engraftment of donor HSCs, the hyperinflammatory syndrome of graft-versus-host disease (GVHD), infection risks from immunosuppression, and end-organ damage. Bone marrow stromal cells (MSCs), also known as "mesenchymal stromal cells," not only play a nurturing role in the hematopoietic microenvironment but also can differentiate into other cell types of mesenchymal origin. MSCs are poorly immunogenic, and they can modulate immunological responses through interactions with a wide range of innate and adaptive immune cells to reduce inflammation. They are easily expanded ex vivo and after infusion, home to sites of injury and inflammation to promote tissue repair. Despite promising early trial results in HSCT with significant responses that have translated into survival benefits, there have been significant barriers to successful commercialization as an off-the-shelf therapy. Current efforts with MSCs in the HSCT setting are geared toward determining the factors determining potency, understanding the precise mechanisms of action in human HSCT, knowing their kinetics and fate, optimizing dose and schedule, incorporating biomarkers as response surrogates, addressing concerns about safety, optimizing clinical trial design, and negotiating the uncharted regulatory landscape for licensable cellular therapy.
Collapse
Affiliation(s)
- Minoo Battiwalla
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland
| | | |
Collapse
|
172
|
Zhou J, Wang D, Liang T, Guo Q, Zhang G. Amniotic fluid-derived mesenchymal stem cells: characteristics and therapeutic applications. Arch Gynecol Obstet 2014; 290:223-31. [DOI: 10.1007/s00404-014-3231-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 03/24/2014] [Indexed: 12/26/2022]
|
173
|
Im W, Ban JJ, Lim J, Lee M, Chung JY, Bhattacharya R, Kim SH. Adipose-derived stem cells extract has a proliferative effect on myogenic progenitors. In Vitro Cell Dev Biol Anim 2014; 50:740-6. [PMID: 24719183 DOI: 10.1007/s11626-014-9752-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 03/20/2014] [Indexed: 12/19/2022]
Abstract
Finding an effective method to regenerate muscle is a growing issue in the orthopedic field. Platelet-rich plasma (PRP) has recently been considered for therapeutic use due to its capacity to induce proliferation of myogenic progenitor cells (MPCs). Adipose-derived stem cells (ASCs) and its extract are regarded as a promising treatment for various disorders within the orthopedic field but their therapeutic relevance in the muscle regeneration is poorly investigated. In this study, rabbit MPCs were cultured from the supraspinatus of rabbit and characterized by myogenic markers. To investigate the paracrine effect of ASCs on MPCs, coculture experiments were performed. In order to see the anabolic effect of ASC-extracts (ASC-ex) in MPCs, cell proliferation assays were performed and compared with the PRP-added condition. Coculture experiment showed ASCs had an anabolic paracrine effect on proliferation of MPCs. PRP had a positive effect on proliferation of MPCs when compared to the control (100 ± 7.4% vs 195.2 ± 19.2%, p < 0.001); however, ASC-ex promoted greater proliferation than the PRP condition (467.3 ± 38.7%, p < 0.001 compared with PRP). Similarly, in C2C12 cells, PRP showed an increased rate when compared to the control (100 ± 5.9% vs 205.1 ± 45.4%, p < 0.001), and treatment of ASC-ex showed dramatic increase in proliferation (335.9 ± 37.8%, p < 0.001 compared with PRP). ASC-ex had positive effect on expanding MPCs of rabbit and myoblast cell line, and its capacity to induce proliferation was notably stronger than that of PRP. In conclusion, the study suggests that rabbit ASC-ex have stronger proliferative effect on MPCs than rabbit PRP. Thus, ASC-ex could be a therapeutic candidate for muscle regeneration by activation of endogenous MPCs.
Collapse
Affiliation(s)
- Wooseok Im
- Department of Neurology, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
174
|
Lucarelli E, Bellotti C, Mantelli M, Avanzini MA, Maccario R, Novara F, Arrigo G, Zuffardi O, Zuntini M, Pandolfi M, Sangiorgi L, Lisini D, Donati D, Duchi S. In vitro biosafety profile evaluation of multipotent mesenchymal stem cells derived from the bone marrow of sarcoma patients. J Transl Med 2014; 12:95. [PMID: 24716831 PMCID: PMC4022272 DOI: 10.1186/1479-5876-12-95] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 03/31/2014] [Indexed: 11/30/2022] Open
Abstract
Background In osteosarcoma (OS) and most Ewing sarcoma (EWS) patients, the primary tumor originates in the bone. Although tumor resection surgery is commonly used to treat these diseases, it frequently leaves massive bone defects that are particularly difficult to be treated. Due to the therapeutic potential of mesenchymal stem cells (MSCs), OS and EWS patients could benefit from an autologous MSCs-based bone reconstruction. However, safety concerns regarding the in vitro expansion of bone marrow-derived MSCs have been raised. To investigate the possible oncogenic potential of MSCs from OS or EWS patients (MSC-SAR) after expansion, this study focused on a biosafety assessment of MSC-SAR obtained after short- and long-term cultivation compared with MSCs from healthy donors (MSC-CTRL). Methods We initially characterized the morphology, immunophenotype, and differentiation multipotency of isolated MSC-SAR. MSC-SAR and MSC-CTRL were subsequently expanded under identical culture conditions. Cells at the early (P3/P4) and late (P10) passages were collected for the in vitro analyses including: sequencing of genes frequently mutated in OS and EWS, evaluation of telomerase activity, assessment of the gene expression profile and activity of major cancer pathways, cytogenetic analysis on synchronous MSCs, and molecular karyotyping using a comparative genomic hybridization (CGH) array. Results MSC-SAR displayed comparable morphology, immunophenotype, proliferation rate, differentiation potential, and telomerase activity to MSC-CTRL. Both cell types displayed signs of senescence in the late stages of culture with no relevant changes in cancer gene expression. However, cytogenetic analysis detected chromosomal anomalies in the early and late stages of MSC-SAR and MSC-CTRL after culture. Conclusions Our results demonstrated that the in vitro expansion of MSCs does not influence or favor malignant transformation since MSC-SAR were not more prone than MSC-CTRL to deleterious changes during culture. However, the presence of chromosomal aberrations supports rigorous phenotypic, functional and genetic evaluation of the biosafety of MSCs, which is important for clinical applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Serena Duchi
- Osteoarticolar Regeneration Laboratory, Rizzoli Orthopaedic Institute, Bologna, Italy.
| |
Collapse
|
175
|
Reger RL, Prockop DJ. Should publications on mesenchymal stem/progenitor cells include in-process data on the preparation of the cells? Stem Cells Transl Med 2014; 3:632-5. [PMID: 24692588 DOI: 10.5966/sctm.2013-0203] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
There has been great interest in research and clinical trials with the adult stem/progenitor cells referred to as mesenchymal stem/stromal cells (MSCs). However, there are no definitive markers for the cells and no assays that would reflect the therapeutic efficacy of the cells in vivo. There are in effect no adequate release criteria that define the quality or efficacy of the cells. The problems are compounded by the fact that a variety of different protocols has been used to isolate the cells and expand them in culture. The result is that many publications have used MSCs with different properties, frequently without the investigators being aware of the differences. As a partial solution to these problems, we have devised a simple table to record in-process data on the preparation of MSCs. We suggest that comparisons of data generated by different laboratories would be facilitated if similar in-process data, probably as supplemental materials, were included in publications using MSCs.
Collapse
Affiliation(s)
- Roxanne L Reger
- Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine, Temple, Texas, USA
| | | |
Collapse
|
176
|
Honoki K, Tsujiuchi T. Senescence bypass in mesenchymal stem cells: a potential pathogenesis and implications of pro-senescence therapy in sarcomas. Expert Rev Anticancer Ther 2014; 13:983-96. [PMID: 23984899 DOI: 10.1586/14737140.2013.820010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cellular senescence is a mechanism that limits the lifespan of somatic cells as the results of replicative proliferation and response to stresses, and that prevents undesired oncogenic changes constituting a barrier against immortalization and tumorigenesis. Mesenchymal stem cells (MSCs) reside in a variety of tissues, and participates in tissue maintenance with their multipotent differentiation ability. MSCs are also considered to be as cells of origin for certain type of sarcomas. We reviewed the mechanisms of cellular senescence in MSCs and hypothesized senescence bypass as the potential pathogenesis for sarcoma development, and proposed the possibility of senescence induction therapy for an alternative treatment strategy against sarcomas, especially cells with the resistance to conventional chemo and radiotherapy including sarcoma stem cells.
Collapse
Affiliation(s)
- Kanya Honoki
- Department of Orthopedic Surgery, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan.
| | | |
Collapse
|
177
|
Rajamani K, Li YS, Hsieh DK, Lin SZ, Harn HJ, Chiou TW. Genetic and epigenetic instability of stem cells. Cell Transplant 2014; 23:417-33. [PMID: 24622296 DOI: 10.3727/096368914x678472] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Recently, research on stem cells has been receiving an increasing amount of attention, both for its advantages and disadvantages. Genetic and epigenetic instabilities among stem cells have been a recurring obstacle to progress in regenerative medicine using stem cells. Various reports have stated that these instabilities can transform stem cells when transferred in vivo and thus have the potential to develop tumors. Previous research has shown that various extrinsic and intrinsic factors can contribute to the stability of stem cells. The extrinsic factors include growth supplements, growth factors, oxygen tension, passage technique, and cryopreservation. Controlling these factors based on previous reports may assist researchers in developing strategies for the production and clinical application of "safe" stem cells. On the other hand, the intrinsic factors can be unpredictable and uncontrollable; therefore, to ensure the successful use of stem cells in regenerative medicine, it is imperative to develop and implement appropriate strategies and technique for culturing stem cells and to confirm the genetic and epigenetic safety of these stem cells before employing them in clinical trials.
Collapse
Affiliation(s)
- Karthyayani Rajamani
- Department of Life Science and Graduate Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| | | | | | | | | | | |
Collapse
|
178
|
Freire AG, Nascimento DS, Forte G, Valente M, Resende TP, Pagliari S, Abreu C, Carvalho I, Di Nardo P, Pinto-do-Ó P. Stable phenotype and function of immortalized Lin-Sca-1+ cardiac progenitor cells in long-term culture: a step closer to standardization. Stem Cells Dev 2014; 23:1012-26. [PMID: 24367889 DOI: 10.1089/scd.2013.0305] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Putative cardiac progenitor cells (CPCs) have been identified in the myocardium and are regarded as promising candidates for cardiac cell-based therapies. Although two distinct populations of CPCs reached the clinical setting, more detailed studies are required to portray the optimal cell type and therapeutic setting to drive robust cell engraftment and cardiomyogenesis after injury. Owing to the scarcity of the CPCs and the need for reproducibility, the generation of faithful cellular models would facilitate this scrutiny. Here, we evaluate whether immortalized Lin(-)Sca-1(+) CPCs (iCPC(Sca-1)) represent their native-cell counterpart, thereby constituting a robust in vitro model system for standardized investigation in the cardiac field. iCPC(Sca-1) were established in vitro as plastic adherent cells endowed with robust self-renewal capacity while preserving a stable phenotype in long-term culture. iCPC(Sca-1) differentiated into cardiomyocytic-, endothelial-, and smooth muscle-like cells when subjected to appropriate stimuli. The cell line consistently displayed features of Lin(-)Sca-1(+) CPCs in vitro, as well as in vivo after intramyocardial delivery in the onset of myocardial infarction (MI). Transplanted iCPC(Sca-1) significantly attenuated the functional and anatomical alterations caused by MI while promoting neovascularization. iCPC(Sca-1) are further shown to engraft, establish functional connections, and differentiate in loco into cardiomyocyte- and vasculature-like cells. These data validate iCPC(Sca-1) as an in vitro model system for Lin(-)Sca-1(+) progenitors and for systematic dissection of mechanisms underlying CPC subsets engraftment/differentiation in vivo. Moreover, iCPC(Sca-1) can be regarded as a ready-to-use CPCs source for pre-clinical bioengineering studies toward the development of novel strategies for restoration of the damaged myocardium.
Collapse
Affiliation(s)
- Ana G Freire
- 1 INEB-Instituto de Engenharia Biomédica, Universidade do Porto , Porto, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Identification of three molecular and functional subtypes in canine hemangiosarcoma through gene expression profiling and progenitor cell characterization. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:985-995. [PMID: 24525151 DOI: 10.1016/j.ajpath.2013.12.025] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 12/11/2013] [Accepted: 12/16/2013] [Indexed: 01/06/2023]
Abstract
Canine hemangiosarcomas have been ascribed to an endothelial origin based on histologic appearance; however, recent findings suggest that these tumors may arise instead from hematopoietic progenitor cells. To clarify this ontogenetic dilemma, we used genome-wide expression profiling of primary hemangiosarcomas and identified three distinct tumor subtypes associated with angiogenesis (group 1), inflammation (group 2), and adipogenesis (group 3). Based on these findings, we hypothesized that a common progenitor may differentiate into the three tumor subtypes observed in our gene profiling experiment. To investigate this possibility, we cultured hemangiosarcoma cell lines under normal and sphere-forming culture conditions to enrich for tumor cell progenitors. Cells from sphere-forming cultures displayed a robust self-renewal capacity and exhibited genotypic, phenotypic, and functional properties consistent with each of the three molecular subtypes seen in primary tumors, including expression of endothelial progenitor cell (CD133 and CD34) and endothelial cell (CD105, CD146, and αvβ3 integrin) markers, expression of early hematopoietic (CD133, CD117, and CD34) and myeloid (CD115 and CD14) differentiation markers in parallel with increased phagocytic capacity, and acquisition of adipogenic potential. Collectively, these results suggest that canine hemangiosarcomas arise from multipotent progenitors that differentiate into distinct subtypes. Improved understanding of the mechanisms that determine the molecular and phenotypic differentiation of tumor cells in vivo could change paradigms regarding the origin and progression of endothelial sarcomas.
Collapse
|
180
|
Cornélio DA, Tavares JCM, Pimentel TVCDA, Cavalcanti GB, Batistuzzo de Medeiros SR. Cytokinesis-block micronucleus assay adapted for analyzing genomic instability of human mesenchymal stem cells. Stem Cells Dev 2014; 23:823-38. [PMID: 24328548 DOI: 10.1089/scd.2013.0383] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Human mesenchymal stem cells (hMSCs) are multipotent cells used in cell therapy research. One of the problems involving hMSCs is the possibility of genetic instability during in vitro expansion required to obtain a suitable number of cells for clinical applications. The cytokinesis-block micronucleus (CBMN) assay measures genetic instability by analyzing the presence of micronucleus (MN), nucleoplasmic bridges (NPBs), and nuclear buds (NBUDs) in binucleated cells. The present study describes modifications in the CBMN assay methodology to analyze genetic instability in hMSCs isolated from the umbilical vein and in vitro expanded. The best protocol to achieve binucleated hMSCs with preserved cytoplasm was as follows: cytochalasin B concentration (4.0 μg/mL), use of hypotonic treatment (3 min), and the fixative solution (9 methanol:1 acetic acid). These adaptations were reproduced in three hMSC primary cell cultures and also in XP4PA and A549 cell lines. The frequency of hMSCs treated with mitomycin-C presenting MN was lower than that with other nuclear alterations, indicating that the hMSCs contain mechanisms to avoid a high level of chromosomal breaks. However, a high frequency of cells with NPBs was detected and spontaneous anaphase bridges under normal hMSC in vitro culture were observed. Considering that anaphase bridges are characteristic alterations in tumor cells, the CBMN assay is indicated as an important tool associated with other genetic analyses in order to ensure the safe clinical use of hMSCs in cell therapy.
Collapse
Affiliation(s)
- Déborah Afonso Cornélio
- 1 Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte , Natal, Brazil
| | | | | | | | | |
Collapse
|
181
|
Kaipe H, Erkers T, Sadeghi B, Ringdén O. Stromal cells–are they really useful for GVHD? Bone Marrow Transplant 2014; 49:737-43. [DOI: 10.1038/bmt.2013.237] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/19/2013] [Indexed: 12/29/2022]
|
182
|
Stavely R, Sakkal S, Stojanovska V, Nurgali K. Mesenchymal stem cells for the treatment of inflammatory bowel disease: from experimental models to clinical application. Inflamm Regen 2014. [DOI: 10.2492/inflammregen.34.184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
183
|
Mohseny AB, Hogendoorn PCW. Zebrafish as a model for human osteosarcoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 804:221-36. [PMID: 24924177 DOI: 10.1007/978-3-319-04843-7_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
For various reasons involving biological comparativeness, expansive technological possibilities, accelerated experimental speed, and competitive costs, zebrafish has become a comprehensive model for cancer research. Hence, zebrafish embryos and full-grown fish have been instrumental for studies of leukemia, melanoma, pancreatic cancer, bone tumors, and other malignancies. Although because of its similarities to human osteogenesis zebrafish appears to be an appealing model to investigate osteosarcoma, only a few osteosarcoma specific studies have been accomplished yet. Here, we review interesting related and unrelated reports of which the findings might be extrapolated to osteosarcoma. More importantly, rational but yet unexplored applications of zebrafish are debated to expand the window of opportunities for future establishment of osteosarcoma models. Accordingly technological advances of zebrafish based cancer research, such as robotic high-throughput multicolor injection systems and advanced imaging methods are discussed. Furthermore, various use of zebrafish embryos for screening drug regimens by combinations of chemotherapy, novel drug deliverers, and immune system modulators are suggested. Concerning the etiology, the high degree of genetic similarity between zebrafish and human cancers indicates that affected regions are evolutionarily conserved. Therefore, zebrafish as a swift model system that allows for the investigation of multiple candidate gene-defects is presented.
Collapse
Affiliation(s)
- A B Mohseny
- Department of Pathology, Leiden University Medical Center, 9600, H1-Q, Leiden, The Netherlands
| | | |
Collapse
|
184
|
Davey GC, Patil SB, O'Loughlin A, O'Brien T. Mesenchymal stem cell-based treatment for microvascular and secondary complications of diabetes mellitus. Front Endocrinol (Lausanne) 2014; 5:86. [PMID: 24936198 PMCID: PMC4047679 DOI: 10.3389/fendo.2014.00086] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 05/23/2014] [Indexed: 12/22/2022] Open
Abstract
The worldwide increase in the prevalence of Diabetes mellitus (DM) has highlighted the need for increased research efforts into treatment options for both the disease itself and its associated complications. In recent years, mesenchymal stromal cells (MSCs) have been highlighted as a new emerging regenerative therapy due to their multipotency but also due to their paracrine secretion of angiogenic factors, cytokines, and immunomodulatory substances. This review focuses on the potential use of MSCs as a regenerative medicine in microvascular and secondary complications of DM and will discuss the challenges and future prospects of MSCs as a regenerative therapy in this field. MSCs are believed to have an important role in tissue repair. Evidence in recent years has demonstrated that MSCs have potent immunomodulatory functions resulting in active suppression of various components of the host immune response. MSCs may also have glucose lowering properties providing another attractive and unique feature of this therapeutic approach. Through a combination of the above characteristics, MSCs have been shown to exert beneficial effects in pre-clinical models of diabetic complications prompting initial clinical studies in diabetic wound healing and nephropathy. Challenges that remain in the clinical translation of MSC therapy include issues of MSC heterogeneity, optimal mode of cell delivery, homing of these cells to tissues of interest with high efficiency, clinically meaningful engraftment, and challenges with cell manufacture. An issue of added importance is whether an autologous or allogeneic approach will be used. In summary, MSC administration has significant potential in the treatment of diabetic microvascular and secondary complications but challenges remain in terms of engraftment, persistence, tissue targeting, and cell manufacture.
Collapse
Affiliation(s)
- Grace C Davey
- Regenerative Medicine Institute (REMEDI) and Biosciences Building, National University of Ireland , Galway , Ireland
| | - Swapnil B Patil
- Regenerative Medicine Institute (REMEDI) and Biosciences Building, National University of Ireland , Galway , Ireland
| | - Aonghus O'Loughlin
- Department of Medicine, Galway University Hospital (GUH) , Galway , Ireland
| | - Timothy O'Brien
- Regenerative Medicine Institute (REMEDI) and Biosciences Building, National University of Ireland , Galway , Ireland ; Department of Medicine, Galway University Hospital (GUH) , Galway , Ireland
| |
Collapse
|
185
|
Mao H, Cai R, Kawazoe N, Chen G. Long-term stem cell labeling by collagen-functionalized single-walled carbon nanotubes. NANOSCALE 2014; 6:1552-1559. [PMID: 24322340 DOI: 10.1039/c3nr05273g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The monitoring of grafted stem cells is crucial to assess the efficiency, effectiveness and safety of such stem cell-based therapies. In this regard, a reliable and cytocompatible labeling method for stem cells is critically needed. In this study, the collagen-functionalized single-walled carbon nanotubes (Col-SWCNTs) were used as imaging probes for labeling of human mesenchymal stem cells (hMSCs) and the inherent Raman scattering of SWCNTs was used to image the SWCNT-labeled cells. The results showed that the Col-SWCNTs exhibit efficient cellular internalization by hMSCs without affecting their proliferation and differentiation. The prolonged dwell time of Col-SWCNTs in cells ensured the long-term labeling for up to 2 weeks. This work reveals the potential of Col-SWCNTs as probes for long-term stem cell labeling.
Collapse
Affiliation(s)
- Hongli Mao
- Tissue Regeneration Materials Unit, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | | | | | | |
Collapse
|
186
|
Safety assessment of myogenic stem cell transplantation and resulting tumor formation. Female Pelvic Med Reconstr Surg 2013; 19:362-8. [PMID: 24165451 DOI: 10.1097/spv.0000000000000035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVES To assess for stem cell migration to liver and lung after transplantation in injured rat anal sphincters. To evaluate histological findings of unanticipated ectopic foci of growth. METHODS This is a prospective study involving 33 female virginal Sprague-Dawley rats. Anal sphincters were transected and repaired under sterile technique. Animals received injections of 5.0 × 10 myogenic stem cells (24 rats) or sham control (9 rats) and were killed on day 30. Liver and lung samples were obtained. Upon encountering abnormal foci of growth, further staining protocols were employed. Enzyme-linked immunosorbent assay studies evaluated stem cell media for in vitro growth factor secretion. RESULTS No evidence of cell migration to liver or lung was found at the time of euthanasia in any study animal. Ectopic foci of growth were noted in 2 transplant rats. Further histological evaluations of these growths were consistent with benign tumors: no nuclear abnormalities and no evidence of proliferation at day 30. Enzyme-linked immunosorbent assay studies demonstrated positive secretion of vascular endothelial growth factor and insulin growth factor into the media of cultured rat myogenic stem cells. CONCLUSIONS Whereas distant migration was not encountered in the liver or lung, 2 transplanted rats developed abnormal foci of growth, that is, tumors, from the external anal sphincter-raising further safety questions. Additional evaluation of these foci seemed benign. Possible explanations include cell trapping, stem cell overgrowth, and/or paracrine factors. The lack of cell migration supports that future investigation of safety parameters could focus locally.
Collapse
|
187
|
Lavasani M, Pollett JB, Usas A, Thompson SD, Pollett AF, Huard J. The microenvironment-specific transformation of adult stem cells models malignant triton tumors. PLoS One 2013; 8:e82173. [PMID: 24349213 PMCID: PMC3857244 DOI: 10.1371/journal.pone.0082173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 10/31/2013] [Indexed: 11/25/2022] Open
Abstract
Here, we demonstrated the differentiation potential of murine muscle-derived stem/progenitor cells (MDSPCs) toward myogenic, neuronal, and glial lineages. MDSPCs, following transplantation into a critical-sized sciatic nerve defect in mice, showed full regeneration with complete functional recovery of the injured peripheral nerve at 6 weeks post-implantation. However, several weeks after regeneration of the sciatic nerve, neoplastic growths were observed. The resulting tumors were malignant peripheral nerve sheath tumors (MPNSTs) with rhabdomyoblastic differentiation, expressing myogenic, neurogenic, and glial markers, common markers of human malignant triton tumors (MTTs). No signs of tumorigenesis were observed 17 weeks post-implantation of MDSPCs into the gastrocnemius muscles of dystrophic/mdx mice, or 1 year following subcutaneous or intravenous injection. While MDSPCs were not oncogenic in nature, the neoplasias were composed almost entirely of donor cells. Furthermore, cells isolated from the tumors were serially transplantable, generating tumors when reimplanted into mice. However, this transformation could be abrogated by differentiation of the cells toward the neurogenic lineage prior to implantation. These results establish that MDSPCs participated in the regeneration of the injured peripheral nerve but transformed in a microenvironment- and time-dependent manner, when they likely received concomitant neurogenic and myogenic differentiation signals. This microenvironment-specific transformation provides a useful mouse model for human MTTs and potentially some insight into the origins of this disease.
Collapse
Affiliation(s)
- Mitra Lavasani
- Stem Cell Research Center, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (JH); (ML)
| | - Jonathan B. Pollett
- Stem Cell Research Center, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Allegheny-Singer Research Institute, Pittsburgh, Pennsylvania, United States of America
| | - Arvydas Usas
- Stem Cell Research Center, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Seth D. Thompson
- Stem Cell Research Center, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Aaron F. Pollett
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Johnny Huard
- Stem Cell Research Center, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (JH); (ML)
| |
Collapse
|
188
|
Meleshko A, Prakharenia I, Kletski S, Isaikina Y. Chimerism of allogeneic mesenchymal cells in bone marrow, liver, and spleen after mesenchymal stem cells infusion. Pediatr Transplant 2013; 17:E189-94. [PMID: 24164832 DOI: 10.1111/petr.12168] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2013] [Indexed: 12/17/2022]
Abstract
Although an infusion of culture-expanded MSCs is applied in clinic to improve results of HSCs transplantation and for a treatment of musculoskeletal disorders, homing, and engraftment potential of culture-expanded MSC in humans is still obscure. We report two female patients who received allogeneic BM transplantation as a treatment of hematological diseases and a transplantation of MSCs from third-party male donors. Both patients died within one yr of infectious complications. Specimens of paraffin-embedded blocks of tissues from transplanted patients were taken. The aim of the study was to estimate possible homing and engraftment of allogeneic BM-derived MSCs in some tissues/organs of recipient. Sensitive real-time quantitative PCR analysis was applied with SRY gene as a target. MSC chimerism was found in BM, liver, and spleen of both patients. We conclude that sensitive RQ-PCR analysis is acceptable for low-level chimerism evaluation even in paraffin-embedded tissue specimens.
Collapse
Affiliation(s)
- Alexander Meleshko
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | | | | | | |
Collapse
|
189
|
Yagi H, Kitagawa Y. The role of mesenchymal stem cells in cancer development. Front Genet 2013; 4:261. [PMID: 24348516 PMCID: PMC3842093 DOI: 10.3389/fgene.2013.00261] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 11/13/2013] [Indexed: 12/13/2022] Open
Abstract
The role of mesenchymal stem cells (MSCs) in cancer development is still controversial. MSCs may promote tumor progression through immune modulation, but other tumor suppressive effects of MSCs have also beendescribed. The discrepancy between these results may arise from issues related to different tissue sources, individual donor variability, and injection timing of MSCs. The expression of critical receptors such as Toll-like receptor is variable a teach time point of treatment, which may also determine the effects of MSCs on tumor progression. However, factors released from malignant cells, as well as surrounding tissues and the vasculature, are still regarded as a “black box. ” Thus, it is still difficult to clarify the specific role of MSCs in cancer development. Whether MSCs support or suppress tumor progression is currently unclear, but it is clear that systemically administered MSCs can be recruited and migrate toward tumors. These findings are important because they can be used as a basis for initiating studies to explore the incorporation of engineered MSCs as novel anti-tumor carriers, for the development of tumor-targeted therapies.
Collapse
Affiliation(s)
- Hiroshi Yagi
- Department of Surgery, School of Medicine, Keio University Tokyo, Japan
| | - Yuko Kitagawa
- Department of Surgery, School of Medicine, Keio University Tokyo, Japan
| |
Collapse
|
190
|
Developing stem cell therapeutics for the heart also requires targeting non-myocytes. Heart Lung Circ 2013; 22:975-9. [PMID: 24231432 DOI: 10.1016/j.hlc.2013.10.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
191
|
Pan Q, Fouraschen SMG, de Ruiter PE, Dinjens WNM, Kwekkeboom J, Tilanus HW, van der Laan LJW. Detection of spontaneous tumorigenic transformation during culture expansion of human mesenchymal stromal cells. Exp Biol Med (Maywood) 2013; 239:105-15. [PMID: 24227633 DOI: 10.1177/1535370213506802] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human mesenchymal stem/stromal cells (MSCs) have been explored in a number of clinical trials as a possible method of treating various diseases. However, the effect of long-term cell expansion in vitro on physiological function and genetic stability is still poorly understood. In this study, MSC cultures derived from bone marrow and liver were evaluated for the presence of aberrant cells following long-term expansion. In 46 independent cultures, four batches of transformed MSCs (TMCs) were found, which were all beyond the culture period of five weeks. These aberrant cells were first identified based on the appearance of abnormal cytology and the acquirement of growth advantage. Despite common MSC markers being diminished or absent, TMCs remain highly susceptible to lysis by allogenic natural killer (NK) cells. When transplanted into immunodeficient mice, TMCs formed sarcoma-like tumors, whereas parental MSCs did not form tumors in mice. Using a combination of high-resolution genome-wide DNA array and short-tandem repeat profiling, we confirmed the origin of TMCs and excluded the possibility of human cell line contamination. Additional genomic duplication and deletions were observed in TMCs, which may be associated with the transformation event. Using gene and microRNA expression arrays, a number of genes were identified that were differentially expressed between TMCs and their normal parental counterparts, which may potentially serve as biomarkers to screen cultures for evidence of early transformation events. In conclusion, the spontaneous transformation of MSCs resulting in tumorigenesis is rare and occurs after relatively long-term (beyond five weeks) culture. However, as an added safety measure, cultures of MSCs can potentially be screened based on a novel gene expression signature.
Collapse
Affiliation(s)
- Qiuwei Pan
- Department of Gastroenterology & Hepatology, Erasmus MC-University Medical Center and Postgraduate School Molecular Medicine, Rotterdam NL-3015 CE, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
192
|
Culture expansion induces non-tumorigenic aneuploidy in adipose tissue-derived mesenchymal stromal cells. Cytotherapy 2013; 15:1352-61. [DOI: 10.1016/j.jcyt.2013.07.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 07/03/2013] [Accepted: 07/08/2013] [Indexed: 01/30/2023]
|
193
|
Abstract
With a constellation of stem cell sources available, researchers hope to utilize their potential for cellular repair as a therapeutic target for disease. However, many lab-to-clinic translational considerations must be given in determining their efficacy, variables such as the host response, effects on native tissue, and potential for generating tumors. This review will discuss the current knowledge of stem cell research in neurological disease, mainly stroke, with a focus on the benefits, limitations, and clinical potential.
Collapse
|
194
|
Taubert H, Magdolen V, Kotzsch M. Impact of expression of the uPA system in sarcomas. Biomark Med 2013; 7:473-80. [PMID: 23734810 DOI: 10.2217/bmm.12.105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The uPA system mainly comprises the urokinase-type plasminogen activator uPA, the cell-surface receptor uPA receptor and the inhibitor PAI-1. Its clinical and prognostic impact especially in breast cancer is well investigated. In this short report, we summarize the published data describing expression of uPA, PAI-1 and uPA receptor and their relevance to clinical and survival data in sarcomas underlining their impact as tumor biomarkers in this tumor type as well.
Collapse
Affiliation(s)
- Helge Taubert
- Clinic of Urology, Division of Molecular Urology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| | | | | |
Collapse
|
195
|
Opiela J, Samiec M, Bochenek M, Lipiński D, Romanek J, Wilczek P. DNA Aneuploidy in Porcine Bone Marrow–Derived Mesenchymal Stem Cells Undergoing Osteogenic and AdipogenicIn VitroDifferentiation. Cell Reprogram 2013; 15:425-34. [DOI: 10.1089/cell.2012.0099] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Jolanta Opiela
- Department of Biotechnology of Animal Reproduction, National Research Institute of Animal Production, 32-083 Balice n. Kraków, Poland
| | - Marcin Samiec
- Department of Biotechnology of Animal Reproduction, National Research Institute of Animal Production, 32-083 Balice n. Kraków, Poland
| | - Michał Bochenek
- Department of Biotechnology of Animal Reproduction, National Research Institute of Animal Production, 32-083 Balice n. Kraków, Poland
| | - Daniel Lipiński
- Poznań University of Life Sciences, Department of Biochemistry and Biotechnology, 60-632 Poznan, Poland
| | - Joanna Romanek
- Department of Biotechnology of Animal Reproduction, National Research Institute of Animal Production, 32-083 Balice n. Kraków, Poland
| | - Piotr Wilczek
- Foundation of Cardiac Surgery Development, 41-800 Zabrze, Poland
| |
Collapse
|
196
|
Mesenchymal stem cells migration homing and tracking. Stem Cells Int 2013; 2013:130763. [PMID: 24194766 PMCID: PMC3806396 DOI: 10.1155/2013/130763] [Citation(s) in RCA: 284] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/08/2013] [Indexed: 02/06/2023] Open
Abstract
In this review, we discuss the migration and homing ability of mesenchymal stem cells (MSCs) and MSC-like cells and factors influencing this. We also discuss studies related to the mechanism of migration and homing and the approaches undertaken to enhance it. Finally, we describe the different methods available and frequently used to track and identify the injected cells in vivo.
Collapse
|
197
|
Transplantation of mesenchymal stem cells for the treatment of liver diseases, is there enough evidence? Stem Cell Res 2013; 11:1348-64. [PMID: 24090934 DOI: 10.1016/j.scr.2013.08.011] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 08/18/2013] [Accepted: 08/21/2013] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells or multipotent mesenchymal stromal cells (MSCs) have been extensively investigated in small animal models to treat both acute and chronic liver injuries. Mechanisms of action are not clearly elucidated but may include their ability to differentiate into hepatocyte-like cells, to reduce inflammation, and to enhance tissue repair at the site of injury. This approach is controversial and evidence in large animals is missing. Side effects of MSC infusion such as the contribution to a fibrotic process have been reported in experimental settings. Nevertheless, MSCs moved quickly from bench to bedside and over 280 clinical trials are registered, of which 28 focus on the treatment of liver diseases. If no severe side-effects were observed so far, long-term benefits remain uncertain. More preclinical data regarding mechanisms of action, long term safety and efficacy are warranted before initiating large scale clinical application. The proposal of this review is to visit the current state of knowledge regarding mechanisms behind the therapeutic effects of MSCs in the treatment of experimental liver diseases, to address questions about efficacy and risk, and to discuss recent clinical advances involving MSC-based therapies.
Collapse
|
198
|
Scheers I, Lombard C, Paganelli M, Campard D, Najimi M, Gala JL, Decottignies A, Sokal E. Human umbilical cord matrix stem cells maintain multilineage differentiation abilities and do not transform during long-term culture. PLoS One 2013; 8:e71374. [PMID: 23951150 PMCID: PMC3739759 DOI: 10.1371/journal.pone.0071374] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 07/04/2013] [Indexed: 12/15/2022] Open
Abstract
Umbilical cord matrix stem cells (UCMSC) have generated great interest in various therapeutic approaches, including liver regeneration. This article aims to analyze the specific characteristics and the potential occurrence of premalignant alterations of UCMSC during long-term expansion, which are important issues for clinical applications. UCMSC were isolated from the umbilical cord of 14 full-term newborns and expanded in vitro until senescence. We examined the long-term growth potential, senescence characteristics, immunophenotype and multilineage differentiation capacity of these cells. In addition, their genetic stability was assessed through karyotyping, telomerase maintenance mechanisms and analysis of expression and functionality of cell cycle regulation genes. The tumorigenic potential was also studied in immunocompromised mice. In vitro, UCMSC reached up to 33.7±2.1 cumulative population doublings before entering replicative senescence. Their immunophenotype and differentiation potential, notably into hepatocyte-like cells, remained stable over time. Cytogenetic analyses did not reveal any chromosomal abnormality and the expression of oncogenes was not induced. Telomere maintenance mechanisms were not activated. Just as UCMSC lacked transformed features in vitro, they could not give rise to tumors in vivo. UCMSC could be expanded in long-term cultures while maintaining stable genetic features and endodermal differentiation potential. UCMSC therefore represent safe candidates for liver regenerative medicine.
Collapse
Affiliation(s)
- Isabelle Scheers
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Laboratory of Pediatric Hepatology and Cell Therapy, Brussels, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
199
|
Xiao W, Mohseny AB, Hogendoorn PCW, Cleton-Jansen AM. Mesenchymal stem cell transformation and sarcoma genesis. Clin Sarcoma Res 2013; 3:10. [PMID: 23880362 PMCID: PMC3724575 DOI: 10.1186/2045-3329-3-10] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 07/01/2013] [Indexed: 01/27/2023] Open
Abstract
MSCs are hypothesized to potentially give rise to sarcomas after transformation and therefore serve as a good model to study sarcomagenesis. Both spontaneous and induced transformation of MSCs have been reported, however, spontaneous transformation has only been convincingly shown in mouse MSCs while induced transformation has been demonstrated in both mouse and human MSCs. Transformed MSCs of both species can give rise to pleomorphic sarcomas after transplantation into mice, indicating the potential MSC origin of so-called non-translocation induced sarcomas. Comparison of expression profiles and differentiation capacities between MSCs and sarcoma cells further supports this. Deregulation of P53- Retinoblastoma-, PI3K-AKT-and MAPK pathways has been implicated in transformation of MSCs. MSCs have also been indicated as cell of origin in several types of chromosomal translocation associated sarcomas. In mouse models the generated sarcoma type depends on amongst others the tissue origin of the MSCs, the targeted pathways and genes and the differentiation commitment status of MSCs. While some insights are glowing, it is clear that more studies are needed to thoroughly understand the molecular mechanism of sarcomagenesis from MSCs and mechanisms determining the sarcoma type, which will potentially give directions for targeted therapies.
Collapse
Affiliation(s)
- Wei Xiao
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333ZA, the Netherlands.
| | | | | | | |
Collapse
|
200
|
Abstract
Cell therapy with Multipotent Mesenchymal Stromal Cells (MSC) holds enormous promise for the treatment of a large number of degenerative and immune/inflammatory diseases. Their multilineage differentiation potential, immunoprivilege and capacity of promoting recovery of damaged tissues coupled with anti-inflammatory and immunosuppressive properties are the focus of a multitude of clinical studies currently underway. The recognized clinical potential of MSC repairing/immunomodulatory effects now encompasses graft-versus-host disease, hematologic malignancies, cardiovascular diseases, neurologic and inherited diseases, autoimmune diseases, organ transplantation, refractory wounds, and bone/cartilage defects among others. However, it has been suggested that both the need of extensive ex vivo culture for MSC clinical use, and their proangiogenic, anti-apoptotic and immunomodulatory properties may act together as tumor promoters, raising significant safety concerns. This paper will review the available data on in vitro MSC maldifferentiation and the ability of MSC to sustain tumor growth in vivo, with the aim to clarify whether MSC-based therapeutic approaches may carry actual risk of malignancies.
Collapse
|