151
|
Bezu L, Wu Chuang A, Liu P, Kroemer G, Kepp O. Immunological Effects of Epigenetic Modifiers. Cancers (Basel) 2019; 11:cancers11121911. [PMID: 31805711 PMCID: PMC6966579 DOI: 10.3390/cancers11121911] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/23/2022] Open
Abstract
Epigenetic alterations are associated with major pathologies including cancer. Epigenetic dysregulation, such as aberrant histone acetylation, altered DNA methylation, or modified chromatin organization, contribute to oncogenesis by inactivating tumor suppressor genes and activating oncogenic pathways. Targeting epigenetic cancer hallmarks can be harnessed as an immunotherapeutic strategy, exemplified by the use of pharmacological inhibitors of DNA methyltransferases (DNMT) and histone deacetylases (HDAC) that can result in the release from the tumor of danger-associated molecular patterns (DAMPs) on one hand and can (re-)activate the expression of tumor-associated antigens on the other hand. This finding suggests that epigenetic modifiers and more specifically the DNA methylation status may change the interaction of chromatin with chaperon proteins including HMGB1, thereby contributing to the antitumor immune response. In this review, we detail how epigenetic modifiers can be used for stimulating therapeutically relevant anticancer immunity when used as stand-alone treatments or in combination with established immunotherapies.
Collapse
Affiliation(s)
- Lucillia Bezu
- Service anesthésie-réanimation, Hôpital européen Georges Pompidou, AP-HP, 75015 Paris, France;
- Faculty of Medicine, University of Paris Sud, 94270 Kremlin-Bicêtre, France;
- Equipe labellisée par la Ligue contre le cancer, 75000, Paris, France;
- Université de Paris, Sorbonne, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
| | - Alejandra Wu Chuang
- Faculty of Medicine, University of Paris Sud, 94270 Kremlin-Bicêtre, France;
- Equipe labellisée par la Ligue contre le cancer, 75000, Paris, France;
- Université de Paris, Sorbonne, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
| | - Peng Liu
- Equipe labellisée par la Ligue contre le cancer, 75000, Paris, France;
- Université de Paris, Sorbonne, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, 75000, Paris, France;
- Université de Paris, Sorbonne, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, 215123 Suzhou, China
- Department of Women’s and Children’s Health, Karolinska Institute, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Correspondence: (G.K.); (O.K.)
| | - Oliver Kepp
- Equipe labellisée par la Ligue contre le cancer, 75000, Paris, France;
- Université de Paris, Sorbonne, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
- Correspondence: (G.K.); (O.K.)
| |
Collapse
|
152
|
Aspeslagh S, Morel D, Soria JC, Postel-Vinay S. Epigenetic modifiers as new immunomodulatory therapies in solid tumours. Ann Oncol 2019; 29:812-824. [PMID: 29432557 DOI: 10.1093/annonc/mdy050] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Immune therapies have revolutionized cancer treatment over the last few years by allowing improvements in overall survival. However, the majority of patients is still primary or secondary resistant to such therapies, and enhancing sensitivity to immune therapies is therefore crucial to improve patient outcome. Several recent lines of evidence suggest that epigenetic modifiers have intrinsic immunomodulatory properties, which could be of therapeutic interest. Material and methods We reviewed preclinical evidence and clinical studies which describe or exploit immunomodulatory properties of epigenetic agents. Experimental approaches, clinical applicability and corresponding ongoing clinical trials are described. Results Several epigenetic modifiers, such as histone deacetylase inhibitors, DNA methyl transferase inhibitors, bromodomain inhibitors, lysine-specific histone demethylase 1 inhibitors and enhancer of zeste homolog 2 inhibitors, display intrinsic immunomodulatory properties. The latter can be achieved through the action of these drugs either on cancer cells (e.g. presentation and generation of neoantigens, induction of immunogenic cell death, modulation of cytokine secretion), on immune cells (e.g. linage, differentiation, activation status and antitumor capability), or on components of the microenvironment (e.g. regulatory T cells and macrophages). Several promising combinations, notably with immune checkpoint blockers or adoptive T-cell therapy, can be envisioned. Dedicated clinically relevant approaches for patient selection and trial design will be required to optimally develop such combinations. Conclusion In an era where immune therapies are becoming a treatment backbone in many tumour types, epigenetic modifiers could play a crucial role in modulating tumours' immunogenicity and sensitivity to immune agents. Optimal trial design, including window of opportunity trials, will be key in the success of this approach, and clinical evaluation is ongoing.
Collapse
Affiliation(s)
- S Aspeslagh
- Department of Medical Oncology, Institut Jules Bordet - ULB, Brussels, Belgium
| | - D Morel
- INSERM, UMR981, Villejuif, France
| | - J-C Soria
- INSERM, UMR981, Villejuif, France; Drug Development Department (DITEP, Gustave Roussy Cancer Campus, Paris-Saclay University, Villejuif, France
| | - S Postel-Vinay
- INSERM, UMR981, Villejuif, France; Drug Development Department (DITEP, Gustave Roussy Cancer Campus, Paris-Saclay University, Villejuif, France.
| |
Collapse
|
153
|
PTEN in Colorectal Cancer: Shedding Light on Its Role as Predictor and Target. Cancers (Basel) 2019; 11:cancers11111765. [PMID: 31717544 PMCID: PMC6896095 DOI: 10.3390/cancers11111765] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/31/2019] [Accepted: 11/06/2019] [Indexed: 12/11/2022] Open
Abstract
Molecular assessment of colorectal cancer (CRC) is receiving growing attention, beyond RAS and BRAF, because of its influence on prognosis and prediction in cancer treatment. PTEN (phosphatase and tensin homologue), a tumor suppressor, regulating cell division and apoptosis, has been explored, and significant evidence suggests a role in cetuximab and panitumumab resistance linked to the epidermal growth factor receptor (EGFR) signal transduction pathway. Factors influencing PTEN activity should be analyzed to develop strategies to maximize the tumor suppressor role and to improve tumor response to cancer treatment. Therefore, an in-depth knowledge of the PI3K-Akt pathway—one of the major cancer survival pathways—and the role of PTEN—a major brake of this pathway—is essential in the era of precision medicine. The purpose of this literature review is to summarize the role of PTEN as a predictive factor and possible therapeutic target in CRC, focusing on ongoing studies and the possible implications in clinical practice.
Collapse
|
154
|
Molecular and Functional Characterization of the Somatic PIWIL1/piRNA Pathway in Colorectal Cancer Cells. Cells 2019; 8:cells8111390. [PMID: 31694219 PMCID: PMC6912267 DOI: 10.3390/cells8111390] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/01/2019] [Accepted: 11/03/2019] [Indexed: 02/07/2023] Open
Abstract
PIWI-like (PIWIL) proteins and small non-coding piRNAs, involved in genome regulation in germline cells, are found aberrantly expressed in human tumors. Gene expression data from The Cancer Genome Atlas (TCGA), the Genotype-Tissue Expression (GTEx) project, and the European Genome-Phenome Archive (EGA) indicate that the PIWIL1 gene is ectopically activated in a significant fraction of colorectal cancers (CRCs), where this is accompanied by promoter demethylation, together with germline factors required for piRNA production. Starting from this observation, the PIWIL/piRNA pathway was studied in detail in COLO 205 CRC cells, which express significant levels of this protein, to investigate role and significance of ectopic PIWIL1 expression in human tumors. RNA sequencing and cell and computational biology led to the demonstration that PIWIL1 localizes in a nuage-like structure located in the perinuclear region of the cell and that a significant fraction of the piRNAs expressed in these cells are methylated, and, therefore, present in an active form. This was further supported by RNA immunoprecipitation, which revealed how several piRNAs can be found loaded into PIWIL1 to form complexes also comprising their target mRNAs. The mature transcripts associated with the PIWIL-piRNA complex encode key regulatory proteins involved in the molecular mechanisms sustaining colorectal carcinogenesis, suggesting that the PIWI/piRNA pathway may actively contribute to the establishment and/or maintenance of clinico-pathological features of CRCs.
Collapse
|
155
|
The emerging role of epigenetic therapeutics in immuno-oncology. Nat Rev Clin Oncol 2019; 17:75-90. [PMID: 31548600 DOI: 10.1038/s41571-019-0266-5] [Citation(s) in RCA: 252] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2019] [Indexed: 02/07/2023]
Abstract
The past decade has seen the emergence of immunotherapy as a prime approach to cancer treatment, revolutionizing the management of many types of cancer. Despite the promise of immunotherapy, most patients do not have a response or become resistant to treatment. Thus, identifying combinations that potentiate current immunotherapeutic approaches will be crucial. The combination of immune-checkpoint inhibition with epigenetic therapy is one such strategy that is being tested in clinical trials, encompassing a variety of cancer types. Studies have revealed key roles of epigenetic processes in regulating immune cell function and mediating antitumour immunity. These interactions make combined epigenetic therapy and immunotherapy an attractive approach to circumvent the limitations of immunotherapy alone. In this Review, we highlight the basic dynamic mechanisms underlying the synergy between immunotherapy and epigenetic therapies and detail current efforts to translate this knowledge into clinical benefit for patients.
Collapse
|
156
|
Chovanec M, Taza F, Kalra M, Hahn N, Nephew KP, Spinella MJ, Albany C. Incorporating DNA Methyltransferase Inhibitors (DNMTis) in the Treatment of Genitourinary Malignancies: A Systematic Review. Target Oncol 2019; 13:49-60. [PMID: 29230671 DOI: 10.1007/s11523-017-0546-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Inhibition of DNA methyltransferases (DNMTs) has emerged as a novel treatment strategy in solid tumors. Aberrant hypermethylation in promoters of critical tumor suppressor genes is the basis for the idea that treatment with hypomethylating agents may lead to the restoration of a "normal" epigenome and produce clinically meaningful therapeutic outcomes. The aim of this review article is to summarize the current state of knowledge of DNMT inhibitors in the treatment of genitourinary malignancies. The efficacy of these agents in genitourinary malignancies was reported in a number of studies and suggests a role of induced DNA hypomethylation in overcoming resistance to conventional cytotoxic treatments. The clinical significance of these findings should be further investigated.
Collapse
Affiliation(s)
- Michal Chovanec
- Division of Hematology/Oncology, Indiana University Simon Cancer Center, Indianapolis, IN, USA.
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia.
| | - Fadi Taza
- Division of Hematology/Oncology, Indiana University Simon Cancer Center, Indianapolis, IN, USA
| | - Maitri Kalra
- Division of Hematology/Oncology, Indiana University Simon Cancer Center, Indianapolis, IN, USA
| | - Noah Hahn
- The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenneth P Nephew
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN, USA
| | - Michael J Spinella
- Department of Comparative Biosciences, the University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Costantine Albany
- Division of Hematology/Oncology, Indiana University Simon Cancer Center, Indianapolis, IN, USA
| |
Collapse
|
157
|
Lee D, Seo Y, Kim YW, Kim S, Choi J, Moon SH, Bae H, Kim HS, Kim H, Kim JH, Kim TY, Kim E, Yim S, Lim I, Bang H, Kim JH, Ko JH. Profiling of remote skeletal muscle gene changes resulting from stimulation of atopic dermatitis disease in NC/Nga mouse model. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2019; 23:367-379. [PMID: 31496874 PMCID: PMC6717787 DOI: 10.4196/kjpp.2019.23.5.367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/07/2019] [Accepted: 07/09/2019] [Indexed: 01/22/2023]
Abstract
Although atopic dermatitis (AD) is known to be a representative skin disorder, it also affects the systemic immune response. In a recent study, myoblasts were shown to be involved in the immune regulation, but the roles of muscle cells in AD are poorly understood. We aimed to identify the relationship between mitochondria and atopy by genome-wide analysis of skeletal muscles in mice. We induced AD-like symptoms using house dust mite (HDM) extract in NC/Nga mice. The transcriptional profiles of the untreated group and HDM-induced AD-like group were analyzed and compared using microarray, differentially expressed gene and functional pathway analyses, and protein interaction network construction. Our microarray analysis demonstrated that immune response-, calcium handling-, and mitochondrial metabolism-related genes were differentially expressed. In the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology pathway analyses, immune response pathways involved in cytokine interaction, nuclear factor-kappa B, and T-cell receptor signaling, calcium handling pathways, and mitochondria metabolism pathways involved in the citrate cycle were significantly upregulated. In protein interaction network analysis, chemokine family-, muscle contraction process-, and immune response-related genes were identified as hub genes with many interactions. In addition, mitochondrial pathways involved in calcium signaling, cardiac muscle contraction, tricarboxylic acid cycle, oxidation-reduction process, and calcium-mediated signaling were significantly stimulated in KEGG and Gene Ontology analyses. Our results provide a comprehensive understanding of the genome-wide transcriptional changes of HDM-induced AD-like symptoms and the indicated genes that could be used as AD clinical biomarkers.
Collapse
Affiliation(s)
- Donghee Lee
- Department of Physiology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Yelim Seo
- Department of Physiology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Young-Won Kim
- Department of Physiology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Seongtae Kim
- Department of Physiology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Jeongyoon Choi
- Department of Physiology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Sung-Hee Moon
- Department of Physiology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Hyemi Bae
- Department of Physiology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Hui-Sok Kim
- Department of Medicine, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Hangyeol Kim
- Department of Medicine, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Jae-Hyun Kim
- Department of Medicine, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Tae-Young Kim
- Department of Medicine, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Eunho Kim
- Department of Medicine, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Suemin Yim
- Department of Medicine, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Inja Lim
- Department of Physiology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Hyoweon Bang
- Department of Physiology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Jung-Ha Kim
- Department of Family Medicine, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul 06973, Korea
| | - Jae-Hong Ko
- Department of Physiology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| |
Collapse
|
158
|
Duchmann M, Itzykson R. Clinical update on hypomethylating agents. Int J Hematol 2019; 110:161-169. [PMID: 31020568 DOI: 10.1007/s12185-019-02651-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 12/19/2022]
Abstract
Hypomethylating agents (HMAs), azacitidine and decitabine, are standards of care in higher-risk myelodysplastic syndromes and in acute myeloid leukemia patients ineligible for intensive therapy. Over the last 10 years, research efforts have sought to better understand their mechanism of action, both at the molecular and cellular level. These efforts have yet to robustly identify biomarkers for these agents. The clinical activity of HMAs in myeloid neoplasms has been firmly established now but still remains of limited magnitude. Besides optimized use at different stages of the disease, most of the expected clinical progress with HMAs will come from the development of second-generation compounds orally available and/or with improved pharmacokinetics, and from the search, so far mostly empirical, of HMA-based synergistic drug combinations.
Collapse
MESH Headings
- Antimetabolites, Antineoplastic/administration & dosage
- Antimetabolites, Antineoplastic/pharmacology
- Antimetabolites, Antineoplastic/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Azacitidine/administration & dosage
- Azacitidine/analogs & derivatives
- Azacitidine/pharmacology
- Azacitidine/therapeutic use
- Clinical Trials as Topic
- DNA Methylation/drug effects
- Decitabine/chemistry
- Decitabine/pharmacology
- Decitabine/therapeutic use
- Drug Administration Schedule
- Drug Combinations
- Gene Expression Regulation, Leukemic/drug effects
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myelomonocytic, Chronic/drug therapy
- Leukemia, Myelomonocytic, Chronic/genetics
- Myelodysplastic Syndromes/drug therapy
- Myelodysplastic Syndromes/genetics
- Uridine/administration & dosage
- Uridine/analogs & derivatives
- Uridine/pharmacology
- Uridine/therapeutic use
Collapse
Affiliation(s)
- Matthieu Duchmann
- INSERM/CNRS UMR 944/7212, Saint-Louis Research Institute, Paris Diderot University, Paris, France
- Hematology Laboratory, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Raphael Itzykson
- INSERM/CNRS UMR 944/7212, Saint-Louis Research Institute, Paris Diderot University, Paris, France.
- Clinical Hematology Department, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, Avenue Claude Vellefaux, 75010, Paris, France.
| |
Collapse
|
159
|
Maiuri AR, Savant SS, Podicheti R, Rusch DB, O'Hagan HM. DNA methyltransferase inhibition reduces inflammation-induced colon tumorigenesis. Epigenetics 2019; 14:1209-1223. [PMID: 31240997 DOI: 10.1080/15592294.2019.1634986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Chronic inflammation is strongly associated with an increased risk of developing colorectal cancer. DNA hypermethylation of CpG islands alters the expression of genes in cancer cells and plays an important role in carcinogenesis. Chronic inflammation is also associated with DNA methylation alterations and in a mouse model of inflammation-induced colon tumorigenesis, we previously demonstrated that inflammation-induced tumours have 203 unique regions with DNA hypermethylation compared to uninflamed epithelium. To determine if altering inflammation-induced DNA hypermethylation reduces tumorigenesis, we used the same mouse model and treated mice with the DNA methyltransferase (DNMT) inhibitor decitabine (DAC) throughout the tumorigenesis time frame. DAC treatment caused a significant reduction in colon tumorigenesis. The tumours that did form after DAC treatment had reduced inflammation-specific DNA hypermethylation and alteration of expression of associated candidate genes. When compared, inflammation-induced tumours from control (PBS-treated) mice were enriched for cell proliferation associated gene expression pathways whereas inflammation-induced tumours from DAC-treated mice were enriched for interferon gene signatures. To further understand the altered tumorigenesis, we derived tumoroids from the different tumour types. Interestingly, tumoroids derived from inflammation-induced tumours from control mice maintained many of the inflammation-induced DNA hypermethylation alterations and had higher levels of DNA hypermethylation at these regions than tumoroids from DAC-treated mice. Importantly, tumoroids derived from inflammation-induced tumours from the DAC-treated mice proliferated more slowly than those derived from the inflammation-induced tumours from control mice. These studies suggest that inhibition of inflammation-induced DNA hypermethylation may be an effective strategy to reduce inflammation-induced tumorigenesis.
Collapse
Affiliation(s)
- Ashley R Maiuri
- Medical Sciences, Indiana University School of Medicine , Bloomington , IN , USA
| | - Sudha S Savant
- Medical Sciences, Indiana University School of Medicine , Bloomington , IN , USA
| | - Ram Podicheti
- School of Informatics, Computing and Engineering, Indiana University , Bloomington , IN , USA.,Center for Genomics and Bioinformatics, Indiana University , Bloomington , IN , USA
| | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University , Bloomington , IN , USA
| | - Heather M O'Hagan
- Medical Sciences, Indiana University School of Medicine , Bloomington , IN , USA.,Indiana University Melvin and Bren Simon Cancer Center , Indianapolis , IN , USA
| |
Collapse
|
160
|
Coscia F, Lengyel E, Duraiswamy J, Ashcroft B, Bassani-Sternberg M, Wierer M, Johnson A, Wroblewski K, Montag A, Yamada SD, López-Méndez B, Nilsson J, Mund A, Mann M, Curtis M. Multi-level Proteomics Identifies CT45 as a Chemosensitivity Mediator and Immunotherapy Target in Ovarian Cancer. Cell 2019; 175:159-170.e16. [PMID: 30241606 DOI: 10.1016/j.cell.2018.08.065] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 05/23/2018] [Accepted: 08/29/2018] [Indexed: 12/14/2022]
Abstract
Most high-grade serous ovarian cancer (HGSOC) patients develop resistance to platinum-based chemotherapy and recur, but 15% remain disease free over a decade. To discover drivers of long-term survival, we quantitatively analyzed the proteomes of platinum-resistant and -sensitive HGSOC patients from minute amounts of formalin-fixed, paraffin-embedded tumors. This revealed cancer/testis antigen 45 (CT45) as an independent prognostic factor associated with a doubling of disease-free survival in advanced-stage HGSOC. Phospho- and interaction proteomics tied CT45 to DNA damage pathways through direct interaction with the PP4 phosphatase complex. In vitro, CT45 regulated PP4 activity, and its high expression led to increased DNA damage and platinum sensitivity. CT45-derived HLA class I peptides, identified by immunopeptidomics, activate patient-derived cytotoxic T cells and promote tumor cell killing. This study highlights the power of clinical cancer proteomics to identify targets for chemo- and immunotherapy and illuminate their biological roles.
Collapse
Affiliation(s)
- Fabian Coscia
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Clinical Proteomics Group, Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Ernst Lengyel
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, University of Chicago, Chicago, IL 60637, USA.
| | | | - Bradley Ashcroft
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Michal Bassani-Sternberg
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Michael Wierer
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Alyssa Johnson
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Kristen Wroblewski
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Anthony Montag
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - S Diane Yamada
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Blanca López-Méndez
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jakob Nilsson
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Andreas Mund
- Clinical Proteomics Group, Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Clinical Proteomics Group, Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Marion Curtis
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
161
|
Abstract
Epigenetic reprogramming plays a crucial role in the tumorigenicity and maintenance of tumor-specific gene expression that especially occurs through DNA methylation and/or histone modifications. It has well-defined mechanisms. It is known that alterations in the DNA methylation pattern and/or the loss of specific histone acetylation/methylation markers are related to several hallmarks of cancer, such as drug resistance, stemness, epithelial-mesenchymal transition, and metastasis. It has also recently been highlighted that epigenetic alterations are critical for the regulation of the stemlike properties of cancer cells (tumor-initiating cells; cancer stem cells). Cancer stem cells are thought to be responsible for the recurrence of cancer which makes the patient return to the clinic with metastatic tumor tissue. Hence, the dysregulation of epigenetic machinery represents potential new therapeutic targets. Therefore, compounds with epigenetic activities have become crucial for developing new therapy regimens (e.g., antimetastatic agents) in the fight against cancer. Here, we review the epigenetic modifiers that have already been used in the clinic and/or in clinical trials, related preclinical studies in cancer therapy, and the smart combination strategies that target cancer stem cells along with the other cancer cells. The emerging role of epitranscriptome (RNA epigenetic) in cancer therapy has also been included in this review as a new avenue and potential target for the better management of cancer-beneficial epigenetic machinery.
Collapse
Affiliation(s)
- Remzi Okan Akar
- Department of Cancer Biology and Pharmacology, Institute of Health Sciences, İstinye University, İstanbul, Turkey
| | - Selin Selvi
- Department of Cancer Biology and Pharmacology, Institute of Health Sciences, İstinye University, İstanbul, Turkey
| | - Engin Ulukaya
- Department of Medical Biochemistry, Faculty of Medicine, İstinye University, İstanbul, Turkey
| | - Nazlıhan Aztopal
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, İstinye University, İstanbul, Turkey
| |
Collapse
|
162
|
Dangaj D, Bruand M, Grimm AJ, Ronet C, Barras D, Duttagupta PA, Lanitis E, Duraiswamy J, Tanyi JL, Benencia F, Conejo-Garcia J, Ramay HR, Montone KT, Powell DJ, Gimotty PA, Facciabene A, Jackson DG, Weber JS, Rodig SJ, Hodi SF, Kandalaft LE, Irving M, Zhang L, Foukas P, Rusakiewicz S, Delorenzi M, Coukos G. Cooperation between Constitutive and Inducible Chemokines Enables T Cell Engraftment and Immune Attack in Solid Tumors. Cancer Cell 2019; 35:885-900.e10. [PMID: 31185212 PMCID: PMC6961655 DOI: 10.1016/j.ccell.2019.05.004] [Citation(s) in RCA: 482] [Impact Index Per Article: 96.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 03/05/2019] [Accepted: 05/13/2019] [Indexed: 01/05/2023]
Abstract
We investigated the role of chemokines in regulating T cell accumulation in solid tumors. CCL5 and CXCL9 overexpression was associated with CD8+ T cell infiltration in solid tumors. T cell infiltration required tumor cell-derived CCL5 and was amplified by IFN-γ-inducible, myeloid cell-secreted CXCL9. CCL5 and CXCL9 coexpression revealed immunoreactive tumors with prolonged survival and response to checkpoint blockade. Loss of CCL5 expression in human tumors was associated with epigenetic silencing through DNA methylation. Reduction of CCL5 expression caused tumor-infiltrating lymphocyte (TIL) desertification, whereas forced CCL5 expression prevented Cxcl9 expression and TILs loss, and attenuated tumor growth in mice through IFN-γ. The cooperation between tumor-derived CCL5 and IFN-γ-inducible CXCR3 ligands secreted by myeloid cells is key for orchestrating T cell infiltration in immunoreactive and immunoresponsive tumors.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Immunological/pharmacology
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Line, Tumor
- Chemokine CCL5/genetics
- Chemokine CCL5/immunology
- Chemokine CCL5/metabolism
- Chemokine CXCL9/genetics
- Chemokine CXCL9/immunology
- Chemokine CXCL9/metabolism
- Chemotaxis, Leukocyte/drug effects
- Coculture Techniques
- Cytokines/genetics
- Cytokines/immunology
- Cytokines/metabolism
- DNA Methylation
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Epigenesis, Genetic
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Immunotherapy/methods
- Interferon-gamma/genetics
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Lymphocyte Activation/drug effects
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/metabolism
- Mice, Inbred C57BL
- Ovarian Neoplasms/immunology
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/therapy
- Paracrine Communication
- Receptors, CXCR3/genetics
- Receptors, CXCR3/immunology
- Receptors, CXCR3/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Denarda Dangaj
- Ludwig Institute for Cancer Research and Department of Oncology, University of Lausanne, Lausanne 1066, Switzerland
| | - Marine Bruand
- Ludwig Institute for Cancer Research and Department of Oncology, University of Lausanne, Lausanne 1066, Switzerland
| | - Alizée J Grimm
- Ludwig Institute for Cancer Research and Department of Oncology, University of Lausanne, Lausanne 1066, Switzerland
| | - Catherine Ronet
- Ludwig Institute for Cancer Research and Department of Oncology, University of Lausanne, Lausanne 1066, Switzerland
| | - David Barras
- Ludwig Institute for Cancer Research and Department of Oncology, University of Lausanne, Lausanne 1066, Switzerland; SIB Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Priyanka A Duttagupta
- Ovarian Cancer Research Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; University of Chicago, Knapp Center for Biomedical Discovery, Department of Hematology & Oncology, Chicago, IL 60637, USA
| | - Evripidis Lanitis
- Ludwig Institute for Cancer Research and Department of Oncology, University of Lausanne, Lausanne 1066, Switzerland
| | - Jaikumar Duraiswamy
- Ovarian Cancer Research Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Division of Cell and Gene Therapy, OTAT/CBER/FDA, Silver Spring, MD 20993, USA
| | - Janos L Tanyi
- Ovarian Cancer Research Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Fabian Benencia
- Russ College of Engineering and Technology, Ohio University, Athens, OH 45701, USA
| | - Jose Conejo-Garcia
- Department of Immunology and Gynecologic Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Hena R Ramay
- SIB Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland; International Microbiome Centre, University of Calgary, Calgary, AB, Canada
| | - Kathleen T Montone
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Daniel J Powell
- Ovarian Cancer Research Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Phyllis A Gimotty
- Department of Biostatistics and Epidemiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Andrea Facciabene
- Ovarian Cancer Research Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | | | - Jeffrey S Weber
- Laura and Isaac Perlmutter Cancer Center, New York University, 522 First Avenue, Room 1310 Smilow Building, New York, NY 10016, USA
| | - Scott J Rodig
- Department of Pathology, Brigham & Women's Hospital, Boston, MA 02215, USA; Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Stephen F Hodi
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Lana E Kandalaft
- Ludwig Institute for Cancer Research and Department of Oncology, University of Lausanne, Lausanne 1066, Switzerland
| | - Melita Irving
- Ludwig Institute for Cancer Research and Department of Oncology, University of Lausanne, Lausanne 1066, Switzerland
| | - Lin Zhang
- Ovarian Cancer Research Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Periklis Foukas
- Ludwig Institute for Cancer Research and Department of Oncology, University of Lausanne, Lausanne 1066, Switzerland; 2nd Department of Pathology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens 12464, Greece
| | - Sylvie Rusakiewicz
- Ludwig Institute for Cancer Research and Department of Oncology, University of Lausanne, Lausanne 1066, Switzerland
| | - Mauro Delorenzi
- Ludwig Institute for Cancer Research and Department of Oncology, University of Lausanne, Lausanne 1066, Switzerland; SIB Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - George Coukos
- Ludwig Institute for Cancer Research and Department of Oncology, University of Lausanne, Lausanne 1066, Switzerland.
| |
Collapse
|
163
|
Travers M, Brown SM, Dunworth M, Holbert CE, Wiehagen KR, Bachman KE, Foley JR, Stone ML, Baylin SB, Casero RA, Zahnow CA. DFMO and 5-Azacytidine Increase M1 Macrophages in the Tumor Microenvironment of Murine Ovarian Cancer. Cancer Res 2019; 79:3445-3454. [PMID: 31088836 DOI: 10.1158/0008-5472.can-18-4018] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/25/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022]
Abstract
Although ovarian cancer has a low incidence rate, it remains the most deadly gynecologic malignancy. Previous work has demonstrated that the DNMTi 5-Azacytidine (5AZA-C) activates type I interferon signaling to increase IFNγ+ T cells and natural killer (NK) cells and reduce the percentage of macrophages in the tumor microenvironment. To improve the efficacy of epigenetic therapy, we hypothesized that the addition of α-difluoromethylornithine (DFMO), an ornithine decarboxylase inhibitor, may further decrease immunosuppressive cell populations improving outcome. We tested this hypothesis in an immunocompetent mouse model for ovarian cancer and found that in vivo, 5AZA-C and DFMO, either alone or in combination, significantly increased survival, decreased tumor burden, and caused recruitment of activated (IFNγ+) CD4+ T cells, CD8+ T cells, and NK cells. The combination therapy had a striking increase in survival when compared with single-agent treatment, despite a smaller difference in recruited lymphocytes. Instead, combination therapy led to a significant decrease in immunosuppressive cells such as M2 polarized macrophages and an increase in tumor-killing M1 macrophages. In this model, depletion of macrophages with a CSF1R-blocking antibody reduced the efficacy of 5AZA-C + DFMO treatment and resulted in fewer M1 macrophages in the tumor microenvironment. These observations suggest our novel combination therapy modifies macrophage polarization in the tumor microenvironment, recruiting M1 macrophages and prolonging survival. SIGNIFICANCE: Combined epigenetic and polyamine-reducing therapy stimulates M1 macrophage polarization in the tumor microenvironment of an ovarian cancer mouse model, resulting in decreased tumor burden and prolonged survival.
Collapse
Affiliation(s)
- Meghan Travers
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Stephen M Brown
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Matthew Dunworth
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Cassandra E Holbert
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | | | | | - Jackson R Foley
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Meredith L Stone
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland.,Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephen B Baylin
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Robert A Casero
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland.
| | - Cynthia A Zahnow
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland.
| |
Collapse
|
164
|
Nguyen HP, Stewart S, Kukwikila MN, Jones SF, Offenbartl‐Stiegert D, Mao S, Balasubramanian S, Beck S, Howorka S. A Photo-responsive Small-Molecule Approach for the Opto-epigenetic Modulation of DNA Methylation. Angew Chem Int Ed Engl 2019; 58:6620-6624. [PMID: 30773767 PMCID: PMC7027477 DOI: 10.1002/anie.201901139] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Indexed: 12/12/2022]
Abstract
Controlling the functional dynamics of DNA within living cells is essential in biomedical research. Epigenetic modifications such as DNA methylation play a key role in this endeavour. DNA methylation can be controlled by genetic means. Yet there are few chemical tools available for the spatial and temporal modulation of this modification. Herein, we present a small-molecule approach to modulate DNA methylation with light. The strategy uses a photo-tuneable version of a clinically used drug (5-aza-2'-deoxycytidine) to alter the catalytic activity of DNA methyltransferases, the enzymes that methylate DNA. After uptake by cells, the photo-regulated molecule can be light-controlled to reduce genome-wide DNA methylation levels in proliferating cells. The chemical tool complements genetic, biochemical, and pharmacological approaches to study the role of DNA methylation in biology and medicine.
Collapse
Affiliation(s)
- Ha Phuong Nguyen
- Department of ChemistryInstitute for Structural and Molecular BiologyUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | | | - Mikiembo N. Kukwikila
- Department of ChemistryInstitute for Structural and Molecular BiologyUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Sioned Fôn Jones
- Department of ChemistryInstitute for Structural and Molecular BiologyUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Daniel Offenbartl‐Stiegert
- Department of ChemistryInstitute for Structural and Molecular BiologyUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Shiqing Mao
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeUK
- Cancer Research (UK) Cambridge InstituteUniversity of CambridgeRobinson WayCambridgeUK
| | - Shankar Balasubramanian
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeUK
- Cancer Research (UK) Cambridge InstituteUniversity of CambridgeRobinson WayCambridgeUK
| | | | - Stefan Howorka
- Department of ChemistryInstitute for Structural and Molecular BiologyUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| |
Collapse
|
165
|
Nahas MR, Stroopinsky D, Rosenblatt J, Cole L, Pyzer AR, Anastasiadou E, Sergeeva A, Ephraim A, Washington A, Orr S, McMasters M, Weinstock M, Jain S, Leaf RK, Ghiasuddin H, Rahimian M, Liegel J, Molldrem JJ, Slack F, Kufe D, Avigan D. Hypomethylating agent alters the immune microenvironment in acute myeloid leukaemia (AML) and enhances the immunogenicity of a dendritic cell/AML vaccine. Br J Haematol 2019; 185:679-690. [PMID: 30828801 PMCID: PMC6590084 DOI: 10.1111/bjh.15818] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/02/2019] [Indexed: 02/06/2023]
Abstract
Acute myeloid leukaemia (AML) is a lethal haematological malignancy characterized by an immunosuppressive milieu in the tumour microenvironment (TME) that fosters disease growth and therapeutic resistance. Hypomethylating agents (HMAs) demonstrate clinical efficacy in AML patients and exert immunomodulatory activities. In the present study, we show that guadecitabine augments both antigen processing and presentation, resulting in increased AML susceptibility to T cell-mediated killing. Exposure to HMA results in the activation of the endogenous retroviral pathway with concomitant downstream amplification of critical mediators of inflammation. In an immunocompetent murine leukaemia model, guadecitabine negatively regulates inhibitory accessory cells in the TME by decreasing PD-1 (also termed PDCD1) expressing T cells and reducing AML-mediated expansion of myeloid-derived suppressor cells. Therapy with guadecitabine results in enhanced leukaemia-specific immunity, as manifested by increased CD4 and CD8 cells targeting syngeneic leukaemia cells. We have previously reported that vaccination with AML/dendritic cell fusions elicits the expansion of leukaemia-specific T cells and protects against disease relapse. In the present study, we demonstrate that vaccination in conjunction with HMA therapy results in enhanced anti-leukaemia immunity and survival. The combination of a novel personalized dendritic cell/AML fusion vaccine and an HMA has therapeutic potential, and a clinical trial investigating this combination is planned.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Immunological/immunology
- Antineoplastic Agents, Immunological/pharmacology
- Azacitidine/analogs & derivatives
- Azacitidine/immunology
- Azacitidine/pharmacology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cancer Vaccines/immunology
- Cell Line, Tumor
- DNA Methylation/drug effects
- Dendritic Cells/immunology
- Disease Models, Animal
- Down-Regulation/drug effects
- Down-Regulation/immunology
- Humans
- Immunity, Cellular/drug effects
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/immunology
- Mice, Inbred C57BL
- Neoplasm Transplantation
- Programmed Cell Death 1 Receptor/metabolism
- Retroviridae/immunology
- Tumor Microenvironment/immunology
- Virus Activation/immunology
Collapse
Affiliation(s)
- Myrna R Nahas
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Dina Stroopinsky
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jacalyn Rosenblatt
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Leandra Cole
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Athalia R Pyzer
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Eleni Anastasiadou
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Anna Sergeeva
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Adam Ephraim
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Abigail Washington
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Shira Orr
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Matthew Weinstock
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Salvia Jain
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Rebecca K Leaf
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Haider Ghiasuddin
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Maryam Rahimian
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jessica Liegel
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Frank Slack
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Donald Kufe
- Dana-Farber Cancer Institute, Department of Medical Oncology, Boston, MA
| | - David Avigan
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
166
|
Giri AK, Aittokallio T. DNMT Inhibitors Increase Methylation in the Cancer Genome. Front Pharmacol 2019; 10:385. [PMID: 31068808 PMCID: PMC6491738 DOI: 10.3389/fphar.2019.00385] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/27/2019] [Indexed: 01/16/2023] Open
Abstract
DNA methyltransferase inhibitors (DNMTi) decitabine and azacytidine are approved therapies for myelodysplastic syndrome and acute myeloid leukemia, and their combinations with other anticancer agents are being tested as therapeutic options for multiple solid cancers such as colon, ovarian, and lung cancer. However, the current therapeutic challenges of DNMTis include development of resistance, severe side effects and no or partial treatment responses, as observed in more than half of the patients. Therefore, there is a critical need to better understand the mechanisms of action of these drugs. In order to discover molecular targets of DNMTi therapy, we identified 638 novel CpGs with an increased methylation in response to decitabine treatment in HCT116 cell lines and validated the findings in multiple cancer types (e.g., bladder, ovarian, breast, and lymphoma) cell lines, bone marrow mononuclear cells from primary leukemia patients, as well as peripheral blood mononuclear cells and ascites from platinum resistance epithelial ovarian cancer patients. Azacytidine treatment also increased methylation of these CpGs in colon, ovarian, breast, and lymphoma cancer cell lines. Methylation at 166 identified CpGs strongly correlated (|r|≥ 0.80) with corresponding gene expression in HCT116 cell line. Differences in methylation at some of the identified CpGs and expression changes of the corresponding genes was observed in TCGA colon cancer tissue as compared to adjacent healthy tissue. Our analysis revealed that hypermethylated CpGs are involved in cancer cell proliferation and apoptosis by P53 and olfactory receptor pathways, hence influencing DNMTi responses. In conclusion, we showed hypermethylation of CpGs as a novel mechanism of action for DNMTi agents and identified 638 hypermethylated molecular targets (CpGs) common to decitabine and azacytidine therapy. These novel results suggest that hypermethylation of CpGs should be considered when predicting the DNMTi responses and side effects in cancer patients.
Collapse
Affiliation(s)
- Anil K Giri
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland.,Helsinki Institute for Information Technology, Department of Computer Science, Aalto University, Espoo, Finland.,Department of Mathematics and Statistics, University of Turku, Turku, Finland
| |
Collapse
|
167
|
Kong X, Chen J, Xie W, Brown SM, Cai Y, Wu K, Fan D, Nie Y, Yegnasubramanian S, Tiedemann RL, Tao Y, Chiu Yen RW, Topper MJ, Zahnow CA, Easwaran H, Rothbart SB, Xia L, Baylin SB. Defining UHRF1 Domains that Support Maintenance of Human Colon Cancer DNA Methylation and Oncogenic Properties. Cancer Cell 2019; 35:633-648.e7. [PMID: 30956060 PMCID: PMC6521721 DOI: 10.1016/j.ccell.2019.03.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/22/2019] [Accepted: 03/07/2019] [Indexed: 12/13/2022]
Abstract
UHRF1 facilitates the establishment and maintenance of DNA methylation patterns in mammalian cells. The establishment domains are defined, including E3 ligase function, but the maintenance domains are poorly characterized. Here, we demonstrate that UHRF1 histone- and hemimethylated DNA binding functions, but not E3 ligase activity, maintain cancer-specific DNA methylation in human colorectal cancer (CRC) cells. Disrupting either chromatin reader activity reverses DNA hypermethylation, reactivates epigenetically silenced tumor suppressor genes (TSGs), and reduces CRC oncogenic properties. Moreover, an inverse correlation between high UHRF1 and low TSG expression tracks with CRC progression and reduced patient survival. Defining critical UHRF1 domain functions and its relationship with CRC prognosis suggests directions for, and value of, targeting this protein to develop therapeutic DNA demethylating agents.
Collapse
Affiliation(s)
- Xiangqian Kong
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jie Chen
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, China; State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi Province 710032, China
| | - Wenbing Xie
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Stephen M Brown
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Yi Cai
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Kaichun Wu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi Province 710032, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi Province 710032, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi Province 710032, China
| | - Srinivasan Yegnasubramanian
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Rochelle L Tiedemann
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Yong Tao
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ray-Whay Chiu Yen
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Michael J Topper
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Cynthia A Zahnow
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hariharan Easwaran
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Scott B Rothbart
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA.
| | - Limin Xia
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, China; State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi Province 710032, China.
| | - Stephen B Baylin
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
168
|
Nguyen HP, Stewart S, Kukwikila MN, Jones SF, Offenbartl‐Stiegert D, Mao S, Balasubramanian S, Beck S, Howorka S. A Photo‐responsive Small‐Molecule Approach for the Opto‐epigenetic Modulation of DNA Methylation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ha Phuong Nguyen
- Department of ChemistryInstitute for Structural and Molecular BiologyUniversity College London 20 Gordon Street London WC1H 0AJ UK
| | | | - Mikiembo N. Kukwikila
- Department of ChemistryInstitute for Structural and Molecular BiologyUniversity College London 20 Gordon Street London WC1H 0AJ UK
| | - Sioned Fôn Jones
- Department of ChemistryInstitute for Structural and Molecular BiologyUniversity College London 20 Gordon Street London WC1H 0AJ UK
| | - Daniel Offenbartl‐Stiegert
- Department of ChemistryInstitute for Structural and Molecular BiologyUniversity College London 20 Gordon Street London WC1H 0AJ UK
| | - Shiqing Mao
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge UK
- Cancer Research (UK) Cambridge InstituteUniversity of Cambridge Robinson Way Cambridge UK
| | - Shankar Balasubramanian
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge UK
- Cancer Research (UK) Cambridge InstituteUniversity of Cambridge Robinson Way Cambridge UK
| | | | - Stefan Howorka
- Department of ChemistryInstitute for Structural and Molecular BiologyUniversity College London 20 Gordon Street London WC1H 0AJ UK
| |
Collapse
|
169
|
Ruan H, Hu Q, Wen D, Chen Q, Chen G, Lu Y, Wang J, Cheng H, Lu W, Gu Z. A Dual-Bioresponsive Drug-Delivery Depot for Combination of Epigenetic Modulation and Immune Checkpoint Blockade. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806957. [PMID: 30856290 DOI: 10.1002/adma.201806957] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/20/2019] [Indexed: 06/09/2023]
Abstract
Patients with advanced melanoma that is of low tumor-associated antigen (TAA) expression often respond poorly to PD-1/PD-L1 blockade therapy. Epigenetic modulators, such as hypomethylation agents (HMAs), can enhance the antitumor immune response by inducing TAA expression. Here, a dual bioresponsive gel depot that can respond to the acidic pH and reactive oxygen species (ROS) within the tumor microenvironment (TME) for codelivery of anti-PD1 antibody (aPD1) and Zebularine (Zeb), an HMA, is engineered. aPD1 is first loaded into pH-sensitive calcium carbonate nanoparticles (CaCO3 NPs), which are then encapsulated in the ROS-responsive hydrogel together with Zeb (Zeb-aPD1-NPs-Gel). It is demonstrated that this combination therapy increases the immunogenicity of cancer cells, and also plays roles in reversing immunosuppressive TME, which contributes to inhibiting the tumor growth and prolonging the survival time of B16F10-melanoma-bearing mice.
Collapse
Affiliation(s)
- Huitong Ruan
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Fudan University, Shanghai, 201203, China
- California NanoSystems Institute, Jonsson Comprehensive Cancer Center and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA, 90095, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Quanyin Hu
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, Jonsson Comprehensive Cancer Center and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA, 90095, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Di Wen
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, Jonsson Comprehensive Cancer Center and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA, 90095, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Qian Chen
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, Jonsson Comprehensive Cancer Center and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA, 90095, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Guojun Chen
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, Jonsson Comprehensive Cancer Center and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA, 90095, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Yifei Lu
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, Jonsson Comprehensive Cancer Center and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA, 90095, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Jinqiang Wang
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, Jonsson Comprehensive Cancer Center and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA, 90095, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Hao Cheng
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Fudan University, Shanghai, 201203, China
| | - Zhen Gu
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, Jonsson Comprehensive Cancer Center and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA, 90095, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
170
|
Puccini A, Loupakis F, Stintzing S, Cao S, Battaglin F, Togunaka R, Naseem M, Berger MD, Soni S, Zhang W, Mancao C, Salhia B, Mumenthaler SM, Weisenberger DJ, Liang G, Cremolini C, Heinemann V, Falcone A, Millstein J, Lenz HJ. Impact of polymorphisms within genes involved in regulating DNA methylation in patients with metastatic colorectal cancer enrolled in three independent, randomised, open-label clinical trials: a meta-analysis from TRIBE, MAVERICC and FIRE-3. Eur J Cancer 2019; 111:138-147. [PMID: 30852420 DOI: 10.1016/j.ejca.2019.01.105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/19/2019] [Accepted: 01/25/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND CpG island DNA hypermethylation and global DNA hypomethylation are hallmark characteristics of colorectal cancer (CRC). Therefore, we aim to explore the effect of genetic variations within the genes that regulate the DNA methylation and demethylation pathways on outcomes in patients with metastatic CRC (mCRC) treated with first-line therapy and enrolled in three independent, randomised, open-label clinical trials. METHODS A total of 884 patients with mCRC enrolled in TRIBE, MAVERICC and FIRE-3 trials were included. Single-nucleotide polymorphisms (SNPs) within genes involved in DNA methylation and demethylation pathways were analysed. The prognostic value of each SNP across all treatment arms was quantified using the inverse-variance-weighted effect size, a meta-analysis approach implemented in the METASOFT software. RESULTS In the meta-analysis, DNMT3A rs11681717 was significantly associated with overall survival (hazard ratio = 1.26; 95% confidence interval [CI] 1.08-1.46; P = 0.002; false discovery rate [FDR] = 0.016), accounting for seven tests in the DNA methylation pathway. In addition, there was suggestive evidence of association for ten-eleven translocation (TET) genes variance with tumour response (TET1 rs3814177, odds ratio [OR] = 0.76, 95% CI 0.59-0.97, P = 0.025, FDR = 0.087; TET3 rs7560668, OR = 1.44; 95% CI 1.10-1.89; P = 0.009; FDR = 0.062). CONCLUSIONS We showed that polymorphisms within the genes responsible for the DNA methylation and demethylation machineries are correlated with outcomes in patients with mCRC who were enrolled in three independent, randomised, open-label, phase II/III clinical trials. In addition, we demonstrated the feasibility of a meta-analysis approach to identify stronger and more convincing association between gene polymorphisms and outcome, potentially leading the way to a new method of analysis for similar data set.
Collapse
Affiliation(s)
- Alberto Puccini
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Fotios Loupakis
- Clinical and Experimental Oncology Department, Medical Oncology Unit 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Sebastian Stintzing
- Comprehensive Cancer Center, Ludwig-Maximilian-University of Munich, Munich, Germany
| | - Shu Cao
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Francesca Battaglin
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Clinical and Experimental Oncology Department, Medical Oncology Unit 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Ryuma Togunaka
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Madiha Naseem
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Martin D Berger
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shivani Soni
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Wu Zhang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Christoph Mancao
- Oncology Biomarker Development, Genentech Inc., Basel, Switzerland
| | - Bodour Salhia
- Department of Translational Genomics, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shannon M Mumenthaler
- Lawrence J. Ellison Institute for Transformative Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Daniel J Weisenberger
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Gangning Liang
- Department of Urology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | | | - Volker Heinemann
- Comprehensive Cancer Center, Ludwig-Maximilian-University of Munich, Munich, Germany
| | - Alfredo Falcone
- Department of Medical Oncology, University of Pisa, Pisa, Italy
| | - Joshua Millstein
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA.
| |
Collapse
|
171
|
Targeting DNA Methylation and EZH2 Activity to Overcome Melanoma Resistance to Immunotherapy. Trends Immunol 2019; 40:328-344. [PMID: 30853334 DOI: 10.1016/j.it.2019.02.004] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 02/06/2023]
Abstract
Methylation of DNA at CpG sites is the most common and stable of epigenetic changes in cancer. Hypermethylation acts to limit immune checkpoint blockade immunotherapy by inhibiting endogenous interferon responses needed for recognition of cancer cells. By contrast, global hypomethylation results in the expression of programmed death ligand 1 (PD-L1) and inhibitory cytokines, accompanied by epithelial-mesenchymal changes that can contribute to immunosuppression. The drivers of these contrasting methylation states are not well understood. DNA methylation also plays a key role in cytotoxic T cell 'exhaustion' associated with tumor progression. We present an updated exploratory analysis of how DNA methylation may define patient subgroups and can be targeted to develop tailored treatment combinations to help improve patient outcomes.
Collapse
|
172
|
Abstract
DNA methylation inhibitors have become the mainstay for treatment of certain haematological malignancies. In addition to their abilities to reactivate genes, including tumour suppressors, that have acquired DNA methylation during carcinogenesis, they induce the expression of thousands of transposable elements including endogenous retroviruses and latent cancer testis antigens normally silenced by DNA methylation in most somatic cells. This results in a state of viral mimicry in which treated cells mount an innate immune response by turning on viral defence genes and potentially expressing neoantigens. Furthermore, these changes mediated by DNA methylation inhibitors can also alter the function of immune cells relevant to acquired immunity. Additionally, other inhibitors of epigenetic processes, such as histone deacetylases, methylases and demethylases, can elicit similar effects either individually or in combinations with DNA methylation inhibitors. These findings together with rapid development of immunotherapies open new avenues for cancer treatment.
Collapse
Affiliation(s)
- Peter A Jones
- Van Andel Research Institute (VARI), Grand Rapids, MI, USA
| | - Hitoshi Ohtani
- Van Andel Research Institute (VARI), Grand Rapids, MI, USA
| | - Ankur Chakravarthy
- Princess Margaret Cancer Centre, University Health Network (UHN), Toronto, Ontario, Canada
| | - Daniel D De Carvalho
- Princess Margaret Cancer Centre, University Health Network (UHN), Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.
| |
Collapse
|
173
|
Deng S, Hu Q, Zhang H, Yang F, Peng C, Huang C. HDAC3 Inhibition Upregulates PD-L1 Expression in B-Cell Lymphomas and Augments the Efficacy of Anti-PD-L1 Therapy. Mol Cancer Ther 2019; 18:900-908. [PMID: 30824609 DOI: 10.1158/1535-7163.mct-18-1068] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/29/2019] [Accepted: 02/22/2019] [Indexed: 11/16/2022]
Abstract
Programmed cell-death protein 1 (PD-1) and programmed death-ligand 1 (PD-L1) pathway blockade is a promising therapy for the treatment of advanced cancers, including B-cell lymphoma. The clinical response to PD-1/PD-L1 immunotherapy correlates with PD-L1 levels on tumor cells and other cells in the tumor microenvironment. Hence, it is important to understand the molecular mechanisms that regulate PD-L1 expression. Here, we report that histone deacetylase 3 (HDAC3) is a crucial repressor of PD-L1 transcription in B-cell lymphoma. Pan-HDACs or selective HDAC3 inhibitors could rapidly increase histone acetylation and recruitment of bromodomain protein BRD4 at the promoter region of PD-L1 gene, leading to activation of its transcription. Mechanically, HDAC3 and its putative associated corepressor SMRT were recruited to the PD-L1 promoter by the transcriptional repressor BCL6. In addition, HDAC3 inhibition reduced DNA methyltransferase 1 protein levels to indirectly activate PD-L1 transcription. Finally, HDAC3 inhibition increased PD-L1 expression on dendritic cells in the tumor microenvironment. Combining selective HDAC3 inhibitor with anti-PD-L1 immunotherapy enhanced tumor regression in syngeneic murine lymphoma model. Our findings identify HDAC3 as an important epigenetic regulator of PD-L1 expression and implicate combination of HDAC3 inhibition with PD-1/PD-L1 blockade in the treatment of B-cell lymphomas.
Collapse
Affiliation(s)
- Siyu Deng
- Shanghai Institute of Immunology and Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianwen Hu
- Shanghai Institute of Immunology and Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Heng Zhang
- Shanghai Institute of Immunology and Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Yang
- Shanghai Institute of Immunology and Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng Peng
- Shanghai Institute of Immunology and Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Chuanxin Huang
- Shanghai Institute of Immunology and Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
174
|
Zhao J, Gray SG, Greene CM, Lawless MW. Unmasking the pathological and therapeutic potential of histone deacetylases for liver cancer. Expert Rev Gastroenterol Hepatol 2019; 13:247-256. [PMID: 30791763 DOI: 10.1080/17474124.2019.1568870] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer, currently ranking as one of the highest neoplastic-related mortalities in the world. Due to the difficulty in early diagnosis and lack of effective treatment options, the 5-year survival rate of HCC remains extremely low. Histone deacetylation is one of the most important epigenetic mechanisms, regulating cellular events such as differentiation, proliferation and cell cycle. Histone deacetylases (HDACs), the chief mediators of this epigenetic mechanism, are often aberrantly expressed in various tumours including HCC. Areas covered: This review focuses on the most up-to-date findings of HDACs and their associated molecular mechanisms in HCC onset and progression. In addition, a potential network between HDACs and non-coding RNAs including microRNAs and long noncoding RNAs underlying hepatocarcinogenesis is considered. Expert opinion: Unmasking the role of HDACs and their association with HCC pathogenesis could have implications for future personalized therapeutic and diagnostic targeting.
Collapse
Affiliation(s)
- Jun Zhao
- a Experimental Medicine, UCD School of Medicine and Medical Science , Mater Misericordiae University Hospital , Dublin , Ireland
| | - Steven G Gray
- b Department of Clinical Medicine , Trinity Centre for Health Sciences, Trinity Translational Medicine Institute, St. James's Hospital & Trinity College , Dublin , Ireland
| | - Catherine M Greene
- c Clinical Microbiology , Royal College of Surgeons in Ireland, Beaumont Hospital , Dublin , Ireland
| | - Matthew W Lawless
- a Experimental Medicine, UCD School of Medicine and Medical Science , Mater Misericordiae University Hospital , Dublin , Ireland
| |
Collapse
|
175
|
Ediriweera MK, Tennekoon KH, Samarakoon SR. Emerging role of histone deacetylase inhibitors as anti-breast-cancer agents. Drug Discov Today 2019; 24:685-702. [DOI: 10.1016/j.drudis.2019.02.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 01/05/2019] [Accepted: 02/12/2019] [Indexed: 12/20/2022]
|
176
|
OAS-RNase L innate immune pathway mediates the cytotoxicity of a DNA-demethylating drug. Proc Natl Acad Sci U S A 2019; 116:5071-5076. [PMID: 30814222 PMCID: PMC6421468 DOI: 10.1073/pnas.1815071116] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Drugs that cause epigenetic modification of DNA, such as 5-azacytidine (AZA), are used clinically to treat myelodysplastic syndromes and acute myeloid leukemia. In addition, AZA is being investigated for use against a range of different types of solid tumors, including lung and colorectal cancers. Treatment with AZA causes demethylation of DNA, thus increasing RNA synthesis, including the synthesis of double-stranded RNA, which is otherwise produced in virus-infected cells. We determined that cell death in response to AZA requires the antiviral enzyme RNase L. The results identify a drug target for enhancing the anticancer activity and reducing the toxicity of AZA and related drugs. Drugs that reverse epigenetic silencing, such as the DNA methyltransferase inhibitor (DNMTi) 5-azacytidine (AZA), have profound effects on transcription and tumor cell survival. AZA is an approved drug for myelodysplastic syndromes and acute myeloid leukemia, and is under investigation for different solid malignant tumors. AZA treatment generates self, double-stranded RNA (dsRNA), transcribed from hypomethylated repetitive elements. Self dsRNA accumulation in DNMTi-treated cells leads to type I IFN production and IFN-stimulated gene expression. Here we report that cell death in response to AZA treatment occurs through the 2′,5′-oligoadenylate synthetase (OAS)-RNase L pathway. OASs are IFN-induced enzymes that synthesize the RNase L activator 2-5A in response to dsRNA. Cells deficient in RNase L or OAS1 to 3 are highly resistant to AZA, as are wild-type cells treated with a small-molecule inhibitor of RNase L. A small-molecule inhibitor of c-Jun NH2-terminal kinases (JNKs) also antagonizes RNase L-dependent cell death in response to AZA, consistent with a role for JNK in RNase L-induced apoptosis. In contrast, the rates of AZA-induced and RNase L-dependent cell death were increased by transfection of 2-5A, by deficiencies in ADAR1 (which edits and destabilizes dsRNA), PDE12 or AKAP7 (which degrade 2-5A), or by ionizing radiation (which induces IFN-dependent signaling). Finally, OAS1 expression correlates with AZA sensitivity in the NCI-60 set of tumor cell lines, suggesting that the level of OAS1 can be a biomarker for predicting AZA sensitivity of tumor cells. These studies may eventually lead to pharmacologic strategies for regulating the antitumor activity and toxicity of AZA and related drugs.
Collapse
|
177
|
PD-L1 Expression in Human Breast Cancer Stem Cells Is Epigenetically Regulated through Posttranslational Histone Modifications. JOURNAL OF ONCOLOGY 2019; 2019:3958908. [PMID: 30915120 PMCID: PMC6409026 DOI: 10.1155/2019/3958908] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/15/2019] [Accepted: 02/05/2019] [Indexed: 12/14/2022]
Abstract
Tumor progression through immune evasion is a major challenge in cancer therapy. Recent studies revealed that enhanced PD-L1 expression in cancer stem cells is linked to immune evasion. Understanding the mechanisms behind this PD-L1 overexpression in cancer stem cells is critical for developing more effective strategies for preventing immune evasion and increasing the efficacy of anti-PD-1/PD-L1 therapy. Tumorsphere formation in breast cancer cells enhanced epithelial to mesenchymal transition (EMT), which is evident by increased expression of mesenchymal markers. In this study, we analyzed CpG methylation of PD-L1 promoter in MCF-7 and BT-549 breast cancer cells and tumorspheres derived from them. PD-L1 promoter was significantly hypomethylated in MCF-7 tumorspheres, but not from BT-549 tumorspheres, compared with their cell line counterparts. The active demethylation of PD-L1 promoter was confirmed by the increase in the distribution of 5hmC and decrease in 5mC levels and the upregulation of TET3 and downregulation of DNMTs enzymes in MCF-7 tumorspheres, compared with the cell line. Additionally, we checked the distribution of repressive histones H3K9me3, H3K27me3, and active histone H3K4me3 in the PD-L1 promoter. We found that distribution of repressive histones to the PD-L1 promoter was lower in tumorspheres, compared with cell lines. Moreover, an overexpression of histone acetylation enzymes was observed in tumorspheres suggesting the active involvement of histone modifications in EMT-induced PD-L1 expression. In summary, EMT-associated overexpression of PD-L1 was partially independent of promoter CpG methylation and more likely to be dependent on posttranslational histone modifications.
Collapse
|
178
|
Basile MS, Fagone P, Mangano K, Mammana S, Magro G, Salvatorelli L, Li Destri G, La Greca G, Nicoletti F, Puleo S, Pesce A. KCNMA1 Expression is Downregulated in Colorectal Cancer via Epigenetic Mechanisms. Cancers (Basel) 2019; 11:cancers11020245. [PMID: 30791468 PMCID: PMC6406553 DOI: 10.3390/cancers11020245] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/14/2019] [Accepted: 02/16/2019] [Indexed: 02/07/2023] Open
Abstract
KCNMA1 is a gene located at 10q22 that encodes the pore-forming α-subunit of the large-conductance Ca2+-activated K⁺ channel. KCNMA1 is down-regulated in gastric carcinoma tumors, through hypermethylation of its promoter. In the present study, we have evaluated the expression levels of KCNMA1 both in a mouse model of Colorectal Cancer (CRC) and in human CRC samples. Additionally, epigenetic mechanisms of KCNMA1 gene regulation were investigated. We observed a significant down-regulation of KCNMA1 both in a human and mouse model of CRC. No differences in KCNMA1 levels were, however, observed at different TNM stages. We also wanted to determine whether the modulation in KCNMA1 was dependent on epigenetic mechanisms. A statistically significant inverse correlation between KCNMA1 expression and mir-17-5p levels was observed in patients with CRC. Furthermore, in the tumor samples, we found a significant hypermethylation of the promoter, in the loci cg24113782 and cg25655799, compared to healthy tissue. Overall, our data suggest the possible use of KCNMA1 as a therapeutic target in the early stages of CRC.
Collapse
Affiliation(s)
- Maria Sofia Basile
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy.
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy.
| | - Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy.
| | - Santa Mammana
- IRCCS Centro Neurolesi "Bonino-Pulejo", Strada Statale 113, C.da Casazza, 98124 Messina, Italy.
| | - Gaetano Magro
- Department of Medical and Surgical Sciences and Advanced Technology "G.F. Ingrassia", University of Catania, Via Santa Sofia 86, 95123 Catania, Italy.
| | - Lucia Salvatorelli
- Department of Medical and Surgical Sciences and Advanced Technology "G.F. Ingrassia", University of Catania, Via Santa Sofia 86, 95123 Catania, Italy.
| | - Giovanni Li Destri
- Department of Medical and Surgical Sciences and Advanced Technology "G.F. Ingrassia", University of Catania, Via Santa Sofia 86, 95123 Catania, Italy.
| | - Gaetano La Greca
- Department of Medical and Surgical Sciences and Advanced Technology "G.F. Ingrassia", University of Catania, Via Santa Sofia 86, 95123 Catania, Italy.
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy.
| | - Stefano Puleo
- Department of Medical and Surgical Sciences and Advanced Technology "G.F. Ingrassia", University of Catania, Via Santa Sofia 86, 95123 Catania, Italy.
| | - Antonio Pesce
- Department of Medical and Surgical Sciences and Advanced Technology "G.F. Ingrassia", University of Catania, Via Santa Sofia 86, 95123 Catania, Italy.
| |
Collapse
|
179
|
Overcoming immune suppression with epigenetic modification in ovarian cancer. Transl Res 2019; 204:31-38. [PMID: 30048638 DOI: 10.1016/j.trsl.2018.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 06/12/2018] [Accepted: 06/18/2018] [Indexed: 12/14/2022]
Abstract
The impressive successes of immunotherapy have yet to be reliably translated to treatment of ovarian cancer, which may be a consequence of the unique barriers to T cell migration and tumor engagement in the peritoneal cavity and omentum. Epigenetic alterations contribute to establishment of these barriers and other mechanisms of immune subversion; therefore, epigenetic modifying agents represent an opportunity to mount effective antitumor immune responses by disrupting this finely tuned tumor epigenetic framework. Here, we discuss how epigenetic modifiers might permit and stimulate de novo antitumor immune responses in ovarian cancer, focusing largely on 2 common classes, DNA methyltransferase and histone deacetylase inhibitors. Specifically, increasing T and NK cell trafficking to the tumor microenvironment as well as induction of altered tumor cell phenotypes that promote immune engagement and cytotoxicity may provide a platform upon which to elaborate existing immunotherapeutic strategies. Indeed, promising combination of epigenetic modifying agents with checkpoint blockade antibodies or cellular therapies in preclinical models has led to a burgeoning number of clinical trials. Therefore, rather than implementation as a monotherapy, epigenetic modifiers may well be best suited as adjuvants in combinatorial strategies, potentiating antitumor immune responses and unleashing the promise of immunotherapy in ovarian cancer.
Collapse
|
180
|
Azacitidine is effective for targeting leukemia-initiating cells in juvenile myelomonocytic leukemia. Leukemia 2019; 33:1805-1810. [DOI: 10.1038/s41375-018-0343-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/15/2018] [Accepted: 10/24/2018] [Indexed: 02/05/2023]
|
181
|
Leung KK, Nguyen A, Shi T, Tang L, Ni X, Escoubet L, MacBeth KJ, DiMartino J, Wells JA. Multiomics of azacitidine-treated AML cells reveals variable and convergent targets that remodel the cell-surface proteome. Proc Natl Acad Sci U S A 2019; 116:695-700. [PMID: 30584089 PMCID: PMC6329958 DOI: 10.1073/pnas.1813666116] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) are diseases of abnormal hematopoietic differentiation with aberrant epigenetic alterations. Azacitidine (AZA) is a DNA methyltransferase inhibitor widely used to treat MDS and AML, yet the impact of AZA on the cell-surface proteome has not been defined. To identify potential therapeutic targets for use in combination with AZA in AML patients, we investigated the effects of AZA treatment on four AML cell lines representing different stages of differentiation. The effect of AZA treatment on these cell lines was characterized at three levels: the DNA methylome, the transcriptome, and the cell-surface proteome. Untreated AML cell lines showed substantial overlap at all three omics levels; however, while AZA treatment globally reduced DNA methylation in all cell lines, changes in the transcriptome and surface proteome were subtle and differed among the cell lines. Transcriptome analysis identified five commonly up-regulated coding genes upon AZA treatment in all four cell lines, TRPM4 being the only gene encoding a surface protein, and surface proteome analysis found no commonly regulated proteins. Gene set enrichment analysis of differentially regulated RNA and surface proteins showed a decrease in metabolic pathways and an increase in immune defense response pathways. As such, AZA treatment led to diverse effects at the individual gene and protein levels but converged to common responses at the pathway level. Given the heterogeneous responses in the four cell lines, we discuss potential therapeutic strategies for AML in combination with AZA.
Collapse
Affiliation(s)
- Kevin K Leung
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143
| | - Aaron Nguyen
- Epigenetics Thematic Center of Excellence, Celgene Corporation, San Francisco, CA 94158
| | - Tao Shi
- Department of Informatics and Predictive Sciences, Celgene Corporation, San Diego, CA 92121
| | - Lin Tang
- Department of Informatics and Predictive Sciences, Celgene Corporation, San Diego, CA 92121
| | - Xiaochun Ni
- Department of Informatics and Predictive Sciences, Celgene Corporation, Cambridge, MA 02140
| | - Laure Escoubet
- Department of Informatics and Predictive Sciences, Celgene Corporation, San Diego, CA 92121
| | - Kyle J MacBeth
- Epigenetics Thematic Center of Excellence, Celgene Corporation, San Francisco, CA 94158
| | - Jorge DiMartino
- Epigenetics Thematic Center of Excellence, Celgene Corporation, San Francisco, CA 94158
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143;
| |
Collapse
|
182
|
Zhang M, Liang JQ, Zheng S. Expressional activation and functional roles of human endogenous retroviruses in cancers. Rev Med Virol 2019; 29:e2025. [PMID: 30614117 PMCID: PMC6590502 DOI: 10.1002/rmv.2025] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 10/26/2018] [Accepted: 11/05/2018] [Indexed: 12/26/2022]
Abstract
Human endogenous retroviruses (HERVs) are widely believed to be remnants of ancestral germ line infections by exogenous retroviruses. Although HERVs are deemed as “nonfunctional DNAs” due to loss of most of their viral protein coding capacity during evolution as part of the human genome, cumulative evidences are showing the expressional activation and potential roles of HERVs in diseases especially cancers. Work by other researchers and us has observed the dysregulation of HERVs in cancers, identified new HERV‐related genes, and revealed their potential importance in cancer development. Here, we summarized the current knowledge on the mechanisms of the expressional activation and functional roles of HERVs, with a focus on the H family HERV (HERV‐H), in carcinogenesis. HERV expression is regulated by external chemical or physical substances and exogenous virus infection, as well as host factors such as epigenetic DNA methylation, transcription factors, cytokines, and small RNAs. Diverse roles of HERVs have been proposed by acting in the forms of noncoding RNAs, proteins, and transcriptional regulators during carcinogenesis. However, much remains to be learnt about the contributions of HERVs to human cancers. More investigation is warranted to elucidate the functions of these “fossil remnants” yet important viral DNAs in the human genome.
Collapse
Affiliation(s)
- Mengwen Zhang
- The Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute, Second Affiliated Hospital, and Ministry of Education Key Laboratory of Cancer Prevention and Intervention, Zhejiang University School of Medicine, Hangzhou, China
| | - Jessie Qiaoyi Liang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Shu Zheng
- Cancer Institute, Second Affiliated Hospital, and Ministry of Education Key Laboratory of Cancer Prevention and Intervention, Zhejiang University School of Medicine, Hangzhou, China.,The Department of surgical oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
183
|
Fluctuations of epigenetic regulations in human gastric Adenocarcinoma: How does it affect? Biomed Pharmacother 2019; 109:144-156. [DOI: 10.1016/j.biopha.2018.10.094] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/15/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022] Open
|
184
|
Pudlarz T, Naoun N, Beinse G, Grazziotin-Soares D, Lotz JP. AACR 2019 — Congrès de l’association américaine de recherche contre le cancer. ONCOLOGIE 2019. [DOI: 10.3166/onco-2019-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dans ce numéro spécial de la revueOncologie, les principaux points discutés au congrès de l’Association américaine pour la recherche sur le cancer (AACR) sont rapportés. L’objectif ici est de présenter de manière concise des exposés qui méritent une attention toute particulière. Le programme de la réunion de l’AACR de cette année, qui a eu lieu à Atlanta, a couvert les dernières découvertes de tout le spectre de la recherche sur le cancer — des sciences de la population à la prévention ; biologie du cancer, études translationnelles et cliniques ; à la survie et à la défense des droits — et souligne le travail des meilleurs esprits en matière de recherche et de médecine d’institutions du monde entier. Le congrès qui a duré cinq jours a proposé un programme multidisciplinaire couvrant tous les aspects de la recherche sur le cancer depuis ses bases fondamentales jusqu’à ses applications translationnelles et cliniques. Grâce à notre compréhension accrue des bases moléculaires du cancer, de nombreuses thérapies ciblées nouvelles ont émergé. Ainsi, notre compréhension sur la façon dont les tumeurs échappent aux attaques du système immunitaire a conduit au développement de nouvelles thérapies. Compte tenu de l’importance accrue de l’immunothérapie dans le traitement du cancer, nous présentons ici les dernières avancées dans ce domaine. Enfin, d’autres approches telles que l’étude du microbiome, l’épigénétique et l’intelligence artificielle comme un outil dans la recherche sur le cancer ont aussi été discutées au congrès de l’AACR 2019.
Collapse
|
185
|
Loo Yau H, Ettayebi I, De Carvalho DD. The Cancer Epigenome: Exploiting Its Vulnerabilities for Immunotherapy. Trends Cell Biol 2019; 29:31-43. [DOI: 10.1016/j.tcb.2018.07.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/27/2018] [Accepted: 07/31/2018] [Indexed: 01/06/2023]
|
186
|
Immune checkpoint blockade and its combination therapy with small-molecule inhibitors for cancer treatment. Biochim Biophys Acta Rev Cancer 2018; 1871:199-224. [PMID: 30605718 DOI: 10.1016/j.bbcan.2018.12.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 02/05/2023]
Abstract
Initially understood for its physiological maintenance of self-tolerance, the immune checkpoint molecule has recently been recognized as a promising anti-cancer target. There has been considerable interest in the biology and the action mechanism of the immune checkpoint therapy, and their incorporation with other therapeutic regimens. Recently the small-molecule inhibitor (SMI) has been identified as an attractive combination partner for immune checkpoint inhibitors (ICIs) and is becoming a novel direction for the field of combination drug design. In this review, we provide a systematic discussion of the biology and function of major immune checkpoint molecules, and their interactions with corresponding targeting agents. With both preclinical studies and clinical trials, we especially highlight the ICI + SMI combination, with its recent advances as well as its application challenges.
Collapse
|
187
|
Fabrizio FP, Trombetta D, Rossi A, Sparaneo A, Castellana S, Muscarella LA. Gene code CD274/PD-L1: from molecular basis toward cancer immunotherapy. Ther Adv Med Oncol 2018; 10:1758835918815598. [PMID: 30574211 PMCID: PMC6299305 DOI: 10.1177/1758835918815598] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/31/2018] [Indexed: 12/18/2022] Open
Abstract
The programmed death 1 receptor (PD-1) and its ligand (PD-L1) are key molecules of immune checkpoint mechanisms in cancer and actually represent one of the main targets of immunotherapy. The predictive and prognostic values of PD-L1 expression alone in cancer patients is currently under debate due to the methodological assessment of PD-L1 expression and its temporal variations. Better detailed studies about the molecular basis of immunotherapy biomarkers are necessary. Here we summarize the current knowledge of PD-L1 gene modifications at genetic and epigenetic levels in different tumors, thus highlighting their reported correlation with cellular processes and potential impact on patient outcomes.
Collapse
Affiliation(s)
- Federico Pio Fabrizio
- Laboratory of Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Domenico Trombetta
- Laboratory of Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Antonio Rossi
- Department of Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Angelo Sparaneo
- Laboratory of Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Stefano Castellana
- Bioinformatic Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Lucia Anna Muscarella
- Laboratory of Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| |
Collapse
|
188
|
Loss of ADAR1 in tumours overcomes resistance to immune checkpoint blockade. Nature 2018; 565:43-48. [PMID: 30559380 DOI: 10.1038/s41586-018-0768-9] [Citation(s) in RCA: 419] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 11/08/2018] [Indexed: 12/30/2022]
Abstract
Most patients with cancer either do not respond to immune checkpoint blockade or develop resistance to it, often because of acquired mutations that impair antigen presentation. Here we show that loss of function of the RNA-editing enzyme ADAR1 in tumour cells profoundly sensitizes tumours to immunotherapy and overcomes resistance to checkpoint blockade. In the absence of ADAR1, A-to-I editing of interferon-inducible RNA species is reduced, leading to double-stranded RNA ligand sensing by PKR and MDA5; this results in growth inhibition and tumour inflammation, respectively. Loss of ADAR1 overcomes resistance to PD-1 checkpoint blockade caused by inactivation of antigen presentation by tumour cells. Thus, effective anti-tumour immunity is constrained by inhibitory checkpoints such as ADAR1 that limit the sensing of innate ligands. The induction of sufficient inflammation in tumours that are sensitized to interferon can bypass the therapeutic requirement for CD8+ T cell recognition of cancer cells and may provide a general strategy to overcome immunotherapy resistance.
Collapse
|
189
|
Lee V, Wang J, Zahurak M, Gootjes E, Verheul HM, Parkinson R, Kerner Z, Sharma A, Rosner G, De Jesus-Acosta A, Laheru D, Le DT, Oganesian A, Lilly E, Brown T, Jones P, Baylin S, Ahuja N, Azad N. A Phase I Trial of a Guadecitabine (SGI-110) and Irinotecan in Metastatic Colorectal Cancer Patients Previously Exposed to Irinotecan. Clin Cancer Res 2018; 24:6160-6167. [PMID: 30097434 DOI: 10.1158/1078-0432.ccr-18-0421] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/29/2018] [Accepted: 08/07/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE Chemotherapeutic resistance eventually develops in all patients with metastatic colorectal cancer (mCRC). Gene silencing through promoter demethylation is one potential reversible mechanism of resistance with administration of hypomethylating agents. We evaluated the safety and tolerability of guadecitabine and irinotecan in patients with mCRC previously treated with irinotecan. PATIENTS AND METHODS In this 3+3 dose-escalation study, patients with mCRC previously exposed to irinotecan received guadecitabine days 1 to 5 of a 28-day cycle and irinotecan 125 mg/m2 days 8 and 15 [dose level (DL) 1, guadecitabine 45 mg/m2; DL -1: guadecitabine 30 mg/m2; DL -1G: guadecitabine 30 mg/m2 with growth factor support (GFS); DL 1G: guadecitabine 45 mg/m2 with GFS]. RESULTS Twenty-two patients were treated across four DLs. Dose-limiting toxicities were neutropenic fever (DL 1 and -1G), biliary drain infection (DL -1), colonic obstruction (DL -1), and severe dehydration (DL 1G). Most common toxicities were neutropenia (82% any grade, 77% Grade 3/4), neutropenic fever (23%), leukopenia (73% any grade, 50% Grade 3/4), and injection site reactions (64% total, 0% Grade 3/4). Patients received a median of 4.5 cycles of treatment; 12/17 evaluable patients had stable disease as best response, with one having initial disease progression but subsequently durable partial response. Circulating tumor DNA showed decrease in global demethylation by LINE-1 after treatment. CONCLUSIONS We report the first study of chemo-priming with epigenetic therapy in gastrointestinal cancers. Guadecitabine 45 mg/m2 and irinotecan 125 mg/m2 with GFS was safe and tolerable in patients with mCRC, with early indication of benefit. These data have provided the basis for an ongoing phase II randomized, multicenter trial.
Collapse
Affiliation(s)
- Valerie Lee
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Judy Wang
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Marianna Zahurak
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elske Gootjes
- Cancer Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Henk M Verheul
- Cancer Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Rose Parkinson
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Zachary Kerner
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Anup Sharma
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Gary Rosner
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Daniel Laheru
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Dung T Le
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Ellen Lilly
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Thomas Brown
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Stephen Baylin
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nita Ahuja
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nilofer Azad
- Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
190
|
Liu Z, Gao Y, Li X. Cancer epigenetics and the potential of epigenetic drugs for treating solid tumors. Expert Rev Anticancer Ther 2018; 19:139-149. [PMID: 30470148 DOI: 10.1080/14737140.2019.1552139] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Epigenetic modification without DNA sequence mutation plays an important role in cancer development. Some small molecular inhibitors targeting key epigenetic molecules have been approved by the Food and Drug Administration to treat hematological malignancies. However, the anticancer effects of these drugs on solid tumors are not satisfactory, and the mechanisms of action remain largely unknown. Areas covered: The review summarizes the latest research on cancer epigenetics and discusses the potentials and limitations of using epigenetic drugs to treat solid tumors. An analysis of possible reasons for epigenetic drug treatment failure in solid tumors in some clinical trials is discussed along with prospects for future development. Expert commentary: Next-generation small molecule inhibitors will target novel epigenetic regulators with high cancer specificity. Combined modalities exploiting epigenetic drugs with chemo-/radiotherapy, molecular-targeting drugs, and immunotherapy will be able to effectively treat solid tumors in the near future.
Collapse
Affiliation(s)
- Zhenghui Liu
- a Xiangya Hospital, Central South University , Changsha , Hunan , China
| | - Yingxue Gao
- a Xiangya Hospital, Central South University , Changsha , Hunan , China
| | - Xiong Li
- a Xiangya Hospital, Central South University , Changsha , Hunan , China
| |
Collapse
|
191
|
Abstract
Cutaneous T-cell lymphomas (CTCLs) are a heterogeneous group of lymphomas that are characterized by primary skin involvement. Mycosis fungoides (MF) and Sézary syndrome (SS), the two most common subtypes of CTCL, can be difficult to manage clinically as there are few effective treatment options available. Recently, histone deacetylase inhibitors (HDACi) have emerged as promising therapies with favorable adverse effect profiles, compared with traditional chemotherapies. In this article, we review the published literature to evaluate the role of HDACi in the treatment of CTCL. Specifically, we (1) briefly discuss the molecular rationale for the use of HDACi in CTCL; (2) compare the efficacy, tolerability, and adverse effects of HDACi; (3) review the cardiac safety data; and (4) discuss optimization of therapy with HDACi in the treatment of CTCL.
Collapse
|
192
|
Conway JR, Kofman E, Mo SS, Elmarakeby H, Van Allen E. Genomics of response to immune checkpoint therapies for cancer: implications for precision medicine. Genome Med 2018; 10:93. [PMID: 30497521 PMCID: PMC6264032 DOI: 10.1186/s13073-018-0605-7] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Immune checkpoint blockade (ICB) therapies, which potentiate the body's natural immune response against tumor cells, have shown immense promise in the treatment of various cancers. Currently, tumor mutational burden (TMB) and programmed death ligand 1 (PD-L1) expression are the primary biomarkers evaluated for clinical management of cancer patients across histologies. However, the wide range of responses has demonstrated that the specific molecular and genetic characteristics of each patient's tumor and immune system must be considered to maximize treatment efficacy. Here, we review the various biological pathways and emerging biomarkers implicated in response to PD-(L)1 and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) therapies, including oncogenic signaling pathways, human leukocyte antigen (HLA) variability, mutation and neoantigen burden, microbiome composition, endogenous retroviruses (ERV), and deficiencies in chromatin remodeling and DNA damage repair (DDR) machinery. We also discuss several mechanisms that have been observed to confer resistance to ICB, such as loss of phosphatase and tensin homolog (PTEN), loss of major histocompatibility complex (MHC) I/II expression, and activation of the indoleamine 2,3-dioxygenase 1 (IDO1) and transforming growth factor beta (TGFβ) pathways. Clinical trials testing the combination of PD-(L)1 or CTLA-4 blockade with molecular mediators of these pathways are becoming more common and may hold promise for improving treatment efficacy and response. Ultimately, some of the genes and molecular mechanisms highlighted in this review may serve as novel biological targets or therapeutic vulnerabilities to improve clinical outcomes in patients.
Collapse
Affiliation(s)
- Jake R Conway
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, 02142, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02215, USA
| | - Eric Kofman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, 02142, USA
| | - Shirley S Mo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, 02142, USA
| | - Haitham Elmarakeby
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, 02142, USA
- Department of System and Computer Engineering, Al-Azhar University, Cairo, 11751, Egypt
| | - Eliezer Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, 02142, USA.
| |
Collapse
|
193
|
Merino VF, Cho S, Nguyen N, Sadik H, Narayan A, Talbot C, Cope L, Zhou XC, Zhang Z, Győrffy B, Sukumar S. Induction of cell cycle arrest and inflammatory genes by combined treatment with epigenetic, differentiating, and chemotherapeutic agents in triple-negative breast cancer. Breast Cancer Res 2018; 20:145. [PMID: 30486871 PMCID: PMC6263070 DOI: 10.1186/s13058-018-1068-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/24/2018] [Indexed: 12/21/2022] Open
Abstract
Background A combination of entinostat, all-trans retinoic acid, and doxorubicin (EAD) induces cell death and differentiation and causes significant regression of xenografts of triple-negative breast cancer (TNBC). Methods We investigated the mechanisms underlying the antitumor effects of each component of the EAD combination therapy by high-throughput gene expression profiling of drug-treated cells. Results Microarray analysis showed that entinostat and doxorubicin (ED) altered expression of genes related to growth arrest, inflammation, and differentiation. ED downregulated MYC, E2F, and G2M cell cycle genes. Accordingly, entinostat sensitized the cells to doxorubicin-induced growth arrest at G2. ED induced interferon genes, which correlated with breast tumors containing a higher proportion of tumor-infiltrating lymphocytes. ED also increased the expression of immune checkpoint agonists and cancer testis antigens. Analysis of TNBC xenografts showed that EAD enhanced the inflammation score in nude mice. Among the genes differentially regulated between the EAD and ED groups, an all-trans retinoic acid (ATRA)-regulated gene, DHRS3, was induced in EAD-treated xenografts. DHRS3 was expressed at lower levels in human TNBC metastases compared to normal breast or primary tumors. High expression of ED-induced growth arrest and inflammatory genes was associated with better prognosis in TNBC patients. Conclusions Entinostat potentiated doxorubicin-mediated cell death and the combination induced inflammatory signatures. The ED-induced immunomodulation may improve immunotherapy. Addition of ATRA to ED may potentiate inflammation and contribute to TNBC regression. Electronic supplementary material The online version of this article (10.1186/s13058-018-1068-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vanessa F Merino
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Soonweng Cho
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nguyen Nguyen
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Helen Sadik
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Athira Narayan
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Conover Talbot
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Leslie Cope
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xian C Zhou
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhe Zhang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Budapest, Hungary.,2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Saraswati Sukumar
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
194
|
Combination treatment of acute myeloid leukemia cells with DNMT and HDAC inhibitors: predominant synergistic gene downregulation associated with gene body demethylation. Leukemia 2018; 33:945-956. [PMID: 30470836 DOI: 10.1038/s41375-018-0293-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 06/21/2018] [Accepted: 09/06/2018] [Indexed: 12/20/2022]
Abstract
DNA methyltransferase inhibitors (DNMTi) approved for older AML patients are clinically tested in combination with histone deacetylase inhibitors (HDACi). The mechanism of action of these drugs is still under debate. In colon cancer cells, 5-aza-2'-deoxycytidine (DAC) can downregulate oncogenes and metabolic genes by reversing gene body DNA methylation, thus implicating gene body methylation as a novel drug target. We asked whether DAC-induced gene body demethylation in AML cells is also associated with gene repression, and whether the latter is enhanced by HDACi.Transcriptome analyses revealed that a combined treatment with DAC and the HDACi panobinostat or valproic acid affected significantly more transcripts than the sum of the genes regulated by either treatment alone, demonstrating a quantitative synergistic effect on genome-wide expression in U937 cells. This effect was particularly striking for downregulated genes. Integrative methylome and transcriptome analyses showed that a massive downregulation of genes, including oncogenes (e.g., MYC) and epigenetic modifiers (e.g., KDM2B, SUV39H1) often overexpressed in cancer, was associated predominantly with gene body DNA demethylation and changes in acH3K9/27. These findings have implications for the mechanism of action of combined epigenetic treatments, and for a better understanding of responses in trials where this approach is clinically tested.
Collapse
|
195
|
Bormann F, Stinzing S, Tierling S, Morkel M, Markelova MR, Walter J, Weichert W, Roßner F, Kuhn N, Perner J, Dietz J, Ispasanie S, Dietel M, Schäfer R, Heinemann V, Sers C. Epigenetic regulation of Amphiregulin and Epiregulin in colorectal cancer. Int J Cancer 2018; 144:569-581. [PMID: 30252132 DOI: 10.1002/ijc.31892] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/05/2018] [Accepted: 08/20/2018] [Indexed: 12/23/2022]
Abstract
Expression of the epidermal growth factor ligands amphiregulin (AREG) and epiregulin (EREG) is positively correlated with a response to EGFR-targeted therapies in colorectal cancer. Gene-body methylation sites, which show a strong inverse correlation with AREG and EREG gene expression, were identified in cell lines using targeted 454 FLX-bisulfite sequencing and SIRPH analyses for AREG/EREG promoters and intragenic CpGs. Upon treatment of colorectal cancer cells with 5-aza-2'-desoxycytidine, methylation decreases at specific intragenic CpGs accompanied by upregulation of AREG and EREG gene expression. The same AREG gene-body methylation was also found in human colorectal cancer samples and is independent of KRAS and NRAS mutations. Methylation is specifically decreased in the tumor epithelial compartment as compared to stromal tissue and normal epithelium. Investigation of a promoter/enhancer function of the AREG exon 2 region revealed a potential promoter function in reverse orientation. Retrospective comparison of the predictive power of AREG gene-body methylation versus AREG gene expression using samples from colorectal cancer patients treated with anti-EGFR inhibitors with complete clinical follow-up revealed that AREG expression is superior to AREG gene methylation. AREG and EREG genes undergo a complex regulation involving both intragenic methylation and promoter-dependent control.
Collapse
Affiliation(s)
- Felix Bormann
- Charité Universitätsmedizin Berlin, Institute of Pathology, Laboratory of Molecular Tumor Pathology and Systems Biology, Berlin, Germany
| | - Sebastian Stinzing
- Department of Hematology and Medical Oncology, Klinikum der Universität München (LMU); German Cancer Consortium site Munich (DKTK); German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Sascha Tierling
- Department of Genetics/Epigenetics, FR8.3 Life Sciences, Saarland University, Saarbrücken
| | - Markus Morkel
- Charité Universitätsmedizin Berlin, Institute of Pathology, Laboratory of Molecular Tumor Pathology and Systems Biology, Berlin, Germany.,DKTK, German Consortium for Translational Cancer Research, Partner Site Berlin and DKFZ, German Cancer Research Center, Heidelberg, Germany
| | | | - Jörn Walter
- Department of Genetics/Epigenetics, FR8.3 Life Sciences, Saarland University, Saarbrücken
| | - Wilko Weichert
- DKTK, German Consortium for Translational Cancer Research, Partner Site Berlin and DKFZ, German Cancer Research Center, Heidelberg, Germany.,Institute of Pathology, Technical University Munich, Germany and Munich German Cancer Consortium (DKTK), German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Florian Roßner
- Charité Universitätsmedizin Berlin, Institute of Pathology, Laboratory of Molecular Tumor Pathology and Systems Biology, Berlin, Germany
| | - Natalia Kuhn
- Charité Universitätsmedizin Berlin, Institute of Pathology, Laboratory of Molecular Tumor Pathology and Systems Biology, Berlin, Germany
| | - Juliane Perner
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Johanna Dietz
- Charité Universitätsmedizin Berlin, Institute of Pathology, Laboratory of Molecular Tumor Pathology and Systems Biology, Berlin, Germany
| | - Sylvia Ispasanie
- Charité Universitätsmedizin Berlin, Institute of Pathology, Laboratory of Molecular Tumor Pathology and Systems Biology, Berlin, Germany.,BSIO Berlin School of Integrative Oncology, University Medicine Charité, Berlin, Germany
| | - Manfred Dietel
- Charité Universitätsmedizin Berlin, Institute of Pathology, Laboratory of Molecular Tumor Pathology and Systems Biology, Berlin, Germany.,DKTK, German Consortium for Translational Cancer Research, Partner Site Berlin and DKFZ, German Cancer Research Center, Heidelberg, Germany
| | - Reinhold Schäfer
- Charité Universitätsmedizin Berlin, Institute of Pathology, Laboratory of Molecular Tumor Pathology and Systems Biology, Berlin, Germany.,DKTK, German Consortium for Translational Cancer Research, Partner Site Berlin and DKFZ, German Cancer Research Center, Heidelberg, Germany
| | - Volker Heinemann
- Department of Hematology and Medical Oncology, Klinikum der Universität München (LMU); German Cancer Consortium site Munich (DKTK); German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Christine Sers
- Charité Universitätsmedizin Berlin, Institute of Pathology, Laboratory of Molecular Tumor Pathology and Systems Biology, Berlin, Germany.,DKTK, German Consortium for Translational Cancer Research, Partner Site Berlin and DKFZ, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
196
|
Attermann A, Bjerregaard AM, Saini S, Grønbæk K, Hadrup S. Human endogenous retroviruses and their implication for immunotherapeutics of cancer. Ann Oncol 2018; 29:2183-2191. [DOI: 10.1093/annonc/mdy413] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
197
|
Arenas-Ramirez N, Sahin D, Boyman O. Epigenetic mechanisms of tumor resistance to immunotherapy. Cell Mol Life Sci 2018; 75:4163-4176. [PMID: 30140960 PMCID: PMC11105392 DOI: 10.1007/s00018-018-2908-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/10/2018] [Accepted: 08/16/2018] [Indexed: 12/14/2022]
Abstract
The recent impact of cancer immunotherapies has firmly established the ability and importance of the immune system to fight malignancies. However, the intimate interaction between the highly dynamic tumor and immune cells leads to a selection process driven by genetic and epigenetic processes. As the molecular pathways of cancer resistance mechanisms to immunotherapy become increasingly known, novel therapeutic targets are being tested in combination with immune-stimulating approaches. We here review recent insights into the molecular mechanisms of tumor resistance with particular emphasis on epigenetic processes and place these in the context of previous models.
Collapse
Affiliation(s)
| | - Dilara Sahin
- Department of Immunology, University Hospital Zurich, 8091, Zurich, Switzerland
| | - Onur Boyman
- Department of Immunology, University Hospital Zurich, 8091, Zurich, Switzerland.
- Faculty of Medicine, University of Zurich, 8006, Zurich, Switzerland.
| |
Collapse
|
198
|
Rahmé R, Adès L. An update on treatment of higher risk myelodysplastic syndromes. Expert Rev Hematol 2018; 12:61-70. [PMID: 30334467 DOI: 10.1080/17474086.2018.1537777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Myelodysplastic syndromes (MDS) are clonal stem cell disorders mostly affecting the elderly. They are classified into lower and higher risk MDS according to prognostic scoring systems. In higher risk patients, treatments should aim to modify the disease course by avoiding progression to acute myeloid leukemia and, therefore, to improve survival. Areas covered: Stem cell transplantation remains the only curative treatment when feasible, but this concerns a small minority of patients. Treatment is principally based on hypomethylating agents (HMAs). Our understanding of MDS biology has led to the development of drugs targeting key cellular processes such as apoptosis or posttranslational protein changes, microenvironment-like immunotherapy, and gene mutations. Currently, new drugs are mainly being tested in combination with HMAs in several clinical trials. Expert commentary: Significant advances have been made in the field of MDS, especially in molecular typing, which are improving our ability to offer patients risk-adapted therapies. The current challenge in the management of higher risk MDS is to improve outcome by combining classical HMAs with novel drugs.
Collapse
Affiliation(s)
- Ramy Rahmé
- a Service Hématologie Séniors, Hôpital Saint Louis , Université Paris Diderot, Assistance Publique-Hôpitaux de Paris , Paris , France
| | - Lionel Adès
- a Service Hématologie Séniors, Hôpital Saint Louis , Université Paris Diderot, Assistance Publique-Hôpitaux de Paris , Paris , France
| |
Collapse
|
199
|
Liu M, Zhang L, Li H, Hinoue T, Zhou W, Ohtani H, El-Khoueiry A, Daniels J, O’Connell C, Dorff TB, Lu Q, Weisenberger DJ, Liang G. Integrative Epigenetic Analysis Reveals Therapeutic Targets to the DNA Methyltransferase Inhibitor Guadecitabine (SGI-110) in Hepatocellular Carcinoma. Hepatology 2018; 68:1412-1428. [PMID: 29774579 PMCID: PMC6173644 DOI: 10.1002/hep.30091] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/28/2018] [Indexed: 12/14/2022]
Abstract
UNLABELLED There is an urgent need to develop more effective therapies for hepatocellular carcinoma (HCC) because of its aggressiveness. Guadecitabine (SGI-110) is a second-generation DNA methyltransferase inhibitor (DNMTi), which is currently in clinical trials for HCC and shows greater stability and performance over first-generation DNMTis. In order to identify potential therapeutic targets of SGI-110 for clinical trials, HCC cell lines (SNU398, HepG2, and SNU475) were used to evaluate the effects of transient SGI-110 treatment by an integrative analysis of DNA methylation, nucleosome accessibility, gene expression profiles, and its clinical relevance by comparison to The Cancer Genome Atlas (TCGA) HCC clinical data. Each HCC cell line represents a different DNA methylation subtype of primary HCC tumors based on TCGA data. After SGI-110 treatment, all cell lines were sensitive to SGI-110 with prolonged antiproliferation effects. Expression of up-regulated genes, including tumor suppressors, was positively correlated with nucleosome accessibility and negatively correlated with gene promoter DNA methylation. Alternatively, expression of down-regulated genes, such as oncogenes, was negatively correlated with nucleosome accessibility and positively correlated with gene body DNA methylation. SGI-110 can also act as a dual inhibitor to down-regulate polycomb repressive complex 2 (PRC2) genes by demethylating their gene bodies, resulting in reactivation of PRC2 repressed genes without involvement of DNA methylation. Furthermore, it can up-regulate endogenous retroviruses to reactivate immune pathways. Finally, about 48% of frequently altered genes in primary HCC tumors can be reversed by SGI-110 treatment. CONCLUSION Our integrative analysis has successfully linked the antitumor effects of SGI-110 to detailed epigenetic alterations in HCC cells, identified potential therapeutic targets, and provided a rationale for combination treatments of SGI-110 with immune checkpoint therapies.
Collapse
Affiliation(s)
- Minmin Liu
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA,Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Lian Zhang
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA,Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongtao Li
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | | | - Wanding Zhou
- Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Hitoshi Ohtani
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA,Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Anthony El-Khoueiry
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - John Daniels
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Casey O’Connell
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Tanya B. Dorff
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Daniel J. Weisenberger
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Gangning Liang
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA,Corresponding author: Gangning Liang, , 1441 Eastlake Ave. NOR7344, Los Angeles, CA 90089, Tel: 323-865-0470
| |
Collapse
|
200
|
Olney KC, Nyer DB, Vargas DA, Wilson Sayres MA, Haynes KA. The synthetic histone-binding regulator protein PcTF activates interferon genes in breast cancer cells. BMC SYSTEMS BIOLOGY 2018; 12:83. [PMID: 30253781 PMCID: PMC6156859 DOI: 10.1186/s12918-018-0608-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/12/2018] [Indexed: 02/06/2023]
Abstract
Background Mounting evidence from genome-wide studies of cancer shows that chromatin-mediated epigenetic silencing at large cohorts of genes is strongly linked to a poor prognosis. This mechanism is thought to prevent cell differentiation and enable evasion of the immune system. Drugging the cancer epigenome with small molecule inhibitors to release silenced genes from the repressed state has emerged as a powerful approach for cancer research and drug development. Targets of these inhibitors include chromatin-modifying enzymes that can acquire drug-resistant mutations. In order to directly target a generally conserved feature, elevated trimethyl-lysine 27 on histone H3 (H3K27me3), we developed the Polycomb-based Transcription Factor (PcTF), a fusion activator that targets methyl-histone marks via its N-terminal H3K27me3-binding motif, and co-regulates sets of silenced genes. Results Here, we report transcriptome profiling analyses of PcTF-treated breast cancer model cell lines. We identified a set of 19 PcTF-upregulated genes, or PUGs, that were consistent across three distinct breast cancer cell lines. These genes are associated with the interferon response pathway. Conclusions Our results demonstrate for the first time a chromatin-mediated interferon-related transcriptional response driven by an engineered fusion protein that physically links repressive histone marks with active transcription. Electronic supplementary material The online version of this article (10.1186/s12918-018-0608-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kimberly C Olney
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, 85287-4501, AZ, USA
| | - David B Nyer
- School of Biological and Health Systems Engineering, Arizona State University, 501 E Tyler Mall, Tempe, AZ, 85287-9709, USA
| | - Daniel A Vargas
- School of Biological and Health Systems Engineering, Arizona State University, 501 E Tyler Mall, Tempe, AZ, 85287-9709, USA
| | - Melissa A Wilson Sayres
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, 85287-4501, AZ, USA.,Center for Evolution and Medicine, Arizona State University, 427 E Tyler Mall, Tempe, 85287-1701, AZ, USA
| | - Karmella A Haynes
- School of Biological and Health Systems Engineering, Arizona State University, 501 E Tyler Mall, Tempe, AZ, 85287-9709, USA.
| |
Collapse
|