151
|
Burbank MG, Burban A, Sharanek A, Weaver RJ, Guguen-Guillouzo C, Guillouzo A. Early Alterations of Bile Canaliculi Dynamics and the Rho Kinase/Myosin Light Chain Kinase Pathway Are Characteristics of Drug-Induced Intrahepatic Cholestasis. Drug Metab Dispos 2016; 44:1780-1793. [PMID: 27538918 DOI: 10.1124/dmd.116.071373] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/11/2016] [Indexed: 01/01/2023] Open
Abstract
Intrahepatic cholestasis represents 20%-40% of drug-induced injuries from which a large proportion remains unpredictable. We aimed to investigate mechanisms underlying drug-induced cholestasis and improve its early detection using human HepaRG cells and a set of 12 cholestatic drugs and six noncholestatic drugs. In this study, we analyzed bile canaliculi dynamics, Rho kinase (ROCK)/myosin light chain kinase (MLCK) pathway implication, efflux inhibition of taurocholate [a predominant bile salt export pump (BSEP) substrate], and expression of the major canalicular and basolateral bile acid transporters. We demonstrated that 12 cholestatic drugs classified on the basis of reported clinical findings caused disturbances of both bile canaliculi dynamics, characterized by either dilatation or constriction, and alteration of the ROCK/MLCK signaling pathway, whereas noncholestatic compounds, by contrast, had no effect. Cotreatment with ROCK inhibitor Y-27632 [4-(1-aminoethyl)-N-(4-pyridyl) cyclohexanecarboxamide dihydrochloride] and MLCK activator calmodulin reduced bile canaliculi constriction and dilatation, respectively, confirming the role of these pathways in drug-induced intrahepatic cholestasis. By contrast, inhibition of taurocholate efflux and/or human BSEP overexpressed in membrane vesicles was not observed with all cholestatic drugs; moreover, examples of noncholestatic compounds were reportedly found to inhibit BSEP. Transcripts levels of major bile acid transporters were determined after 24-hour treatment. BSEP, Na+-taurocholate cotransporting polypeptide, and organic anion transporting polypeptide B were downregulated with most cholestatic and some noncholestatic drugs, whereas deregulation of multidrug resistance-associated proteins was more variable, probably mainly reflecting secondary effects. Together, our results show that cholestatic drugs consistently cause an early alteration of bile canaliculi dynamics associated with modulation of ROCK/MLCK and these changes are more specific than efflux inhibition measurements alone as predictive nonclinical markers of drug-induced cholestasis.
Collapse
Affiliation(s)
- Matthew G Burbank
- INSERM UMR991, Foie, Métabolismes et Cancer, Rennes, France (M.G.B., A.B., A.S., C.G.-G., A.G.); Université Rennes 1, Rennes, France (M.G.B., A.B., A.S., C.G.-G., A.G.); Biologie Servier, Gidy, France (M.G.B.); Institut de Recherches Internationales Servier, Suresnes, France (R.J.W.); and Biopredic International, St. Grégoire, Rennes, France (C.G.-G.)
| | - Audrey Burban
- INSERM UMR991, Foie, Métabolismes et Cancer, Rennes, France (M.G.B., A.B., A.S., C.G.-G., A.G.); Université Rennes 1, Rennes, France (M.G.B., A.B., A.S., C.G.-G., A.G.); Biologie Servier, Gidy, France (M.G.B.); Institut de Recherches Internationales Servier, Suresnes, France (R.J.W.); and Biopredic International, St. Grégoire, Rennes, France (C.G.-G.)
| | - Ahmad Sharanek
- INSERM UMR991, Foie, Métabolismes et Cancer, Rennes, France (M.G.B., A.B., A.S., C.G.-G., A.G.); Université Rennes 1, Rennes, France (M.G.B., A.B., A.S., C.G.-G., A.G.); Biologie Servier, Gidy, France (M.G.B.); Institut de Recherches Internationales Servier, Suresnes, France (R.J.W.); and Biopredic International, St. Grégoire, Rennes, France (C.G.-G.)
| | - Richard J Weaver
- INSERM UMR991, Foie, Métabolismes et Cancer, Rennes, France (M.G.B., A.B., A.S., C.G.-G., A.G.); Université Rennes 1, Rennes, France (M.G.B., A.B., A.S., C.G.-G., A.G.); Biologie Servier, Gidy, France (M.G.B.); Institut de Recherches Internationales Servier, Suresnes, France (R.J.W.); and Biopredic International, St. Grégoire, Rennes, France (C.G.-G.)
| | - Christiane Guguen-Guillouzo
- INSERM UMR991, Foie, Métabolismes et Cancer, Rennes, France (M.G.B., A.B., A.S., C.G.-G., A.G.); Université Rennes 1, Rennes, France (M.G.B., A.B., A.S., C.G.-G., A.G.); Biologie Servier, Gidy, France (M.G.B.); Institut de Recherches Internationales Servier, Suresnes, France (R.J.W.); and Biopredic International, St. Grégoire, Rennes, France (C.G.-G.)
| | - André Guillouzo
- INSERM UMR991, Foie, Métabolismes et Cancer, Rennes, France (M.G.B., A.B., A.S., C.G.-G., A.G.); Université Rennes 1, Rennes, France (M.G.B., A.B., A.S., C.G.-G., A.G.); Biologie Servier, Gidy, France (M.G.B.); Institut de Recherches Internationales Servier, Suresnes, France (R.J.W.); and Biopredic International, St. Grégoire, Rennes, France (C.G.-G.)
| |
Collapse
|
152
|
Kang SWS, Haydar G, Taniane C, Farrell G, Arias IM, Lippincott-Schwartz J, Fu D. AMPK Activation Prevents and Reverses Drug-Induced Mitochondrial and Hepatocyte Injury by Promoting Mitochondrial Fusion and Function. PLoS One 2016; 11:e0165638. [PMID: 27792760 PMCID: PMC5085033 DOI: 10.1371/journal.pone.0165638] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 10/14/2016] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial damage is the major factor underlying drug-induced liver disease but whether conditions that thwart mitochondrial injury can prevent or reverse drug-induced liver damage is unclear. A key molecule regulating mitochondria quality control is AMP activated kinase (AMPK). When activated, AMPK causes mitochondria to elongate/fuse and proliferate, with mitochondria now producing more ATP and less reactive oxygen species. Autophagy is also triggered, a process capable of removing damaged/defective mitochondria. To explore whether AMPK activation could potentially prevent or reverse the effects of drug-induced mitochondrial and hepatocellular damage, we added an AMPK activator to collagen sandwich cultures of rat and human hepatocytes exposed to the hepatotoxic drugs, acetaminophen or diclofenac. In the absence of AMPK activation, the drugs caused hepatocytes to lose polarized morphology and have significantly decreased ATP levels and viability. At the subcellular level, mitochondria underwent fragmentation and had decreased membrane potential due to decreased expression of the mitochondrial fusion proteins Mfn1, 2 and/or Opa1. Adding AICAR, a specific AMPK activator, at the time of drug exposure prevented and reversed these effects. The mitochondria became highly fused and ATP production increased, and hepatocytes maintained polarized morphology. In exploring the mechanism responsible for this preventive and reversal effect, we found that AMPK activation prevented drug-mediated decreases in Mfn1, 2 and Opa1. AMPK activation also stimulated autophagy/mitophagy, most significantly in acetaminophen-treated cells. These results suggest that activation of AMPK prevents/reverses drug-induced mitochondrial and hepatocellular damage through regulation of mitochondrial fusion and autophagy, making it a potentially valuable approach for treatment of drug-induced liver injury.
Collapse
Affiliation(s)
| | - Ghada Haydar
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW, Australia
| | - Caitlin Taniane
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW, Australia
| | - Geoffrey Farrell
- Liver Research Group, Australian National University Medical School, Canberra, Australia
| | - Irwin M. Arias
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | - Dong Fu
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW, Australia
- * E-mail:
| |
Collapse
|
153
|
Funk C, Roth A. Current limitations and future opportunities for prediction of DILI from in vitro. Arch Toxicol 2016; 91:131-142. [DOI: 10.1007/s00204-016-1874-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 10/10/2016] [Indexed: 01/07/2023]
|
154
|
Hepatic 3D spheroid models for the detection and study of compounds with cholestatic liability. Sci Rep 2016; 6:35434. [PMID: 27759057 PMCID: PMC5069690 DOI: 10.1038/srep35434] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/29/2016] [Indexed: 01/23/2023] Open
Abstract
Drug-induced cholestasis (DIC) is poorly understood and its preclinical prediction is mainly limited to assessing the compound's potential to inhibit the bile salt export pump (BSEP). Here, we evaluated two 3D spheroid models, one from primary human hepatocytes (PHH) and one from HepaRG cells, for the detection of compounds with cholestatic liability. By repeatedly co-exposing both models to a set of compounds with different mechanisms of hepatotoxicity and a non-toxic concentrated bile acid (BA) mixture for 8 days we observed a selective synergistic toxicity of compounds known to cause cholestatic or mixed cholestatic/hepatocellular toxicity and the BA mixture compared to exposure to the compounds alone, a phenomenon that was more pronounced after extending the exposure time to 14 days. In contrast, no such synergism was observed after both 8 and 14 days of exposure to the BA mixture for compounds that cause non-cholestatic hepatotoxicity. Mechanisms behind the toxicity of the cholestatic compound chlorpromazine were accurately detected in both spheroid models, including intracellular BA accumulation, inhibition of ABCB11 expression and disruption of the F-actin cytoskeleton. Furthermore, the observed synergistic toxicity of chlorpromazine and BA was associated with increased oxidative stress and modulation of death receptor signalling. Combined, our results demonstrate that the hepatic spheroid models presented here can be used to detect and study compounds with cholestatic liability.
Collapse
|
155
|
Lauschke VM, Hendriks DFG, Bell CC, Andersson TB, Ingelman-Sundberg M. Novel 3D Culture Systems for Studies of Human Liver Function and Assessments of the Hepatotoxicity of Drugs and Drug Candidates. Chem Res Toxicol 2016; 29:1936-1955. [DOI: 10.1021/acs.chemrestox.6b00150] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Volker M. Lauschke
- Section
of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Delilah F. G. Hendriks
- Section
of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Catherine C. Bell
- Section
of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Tommy B. Andersson
- Section
of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, SE-17177 Stockholm, Sweden
- Cardiovascular
and Metabolic Diseases, Innovative Medicines and Early Development
Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden
| | - Magnus Ingelman-Sundberg
- Section
of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| |
Collapse
|
156
|
Key Challenges and Opportunities Associated with the Use of In Vitro Models to Detect Human DILI: Integrated Risk Assessment and Mitigation Plans. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9737920. [PMID: 27689095 PMCID: PMC5027328 DOI: 10.1155/2016/9737920] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/22/2016] [Indexed: 01/10/2023]
Abstract
Drug-induced liver injury (DILI) is a major cause of late-stage clinical drug attrition, market withdrawal, black-box warnings, and acute liver failure. Consequently, it has been an area of focus for toxicologists and clinicians for several decades. In spite of considerable efforts, limited improvements in DILI prediction have been made and efforts to improve existing preclinical models or develop new test systems remain a high priority. While prediction of intrinsic DILI has improved, identifying compounds with a risk for idiosyncratic DILI (iDILI) remains extremely challenging because of the lack of a clear mechanistic understanding and the multifactorial pathogenesis of idiosyncratic drug reactions. Well-defined clinical diagnostic criteria and risk factors are also missing. This paper summarizes key data interpretation challenges, practical considerations, model limitations, and the need for an integrated risk assessment. As demonstrated through selected initiatives to address other types of toxicities, opportunities exist however for improvement, especially through better concerted efforts at harmonization of current, emerging and novel in vitro systems or through the establishment of strategies for implementation of preclinical DILI models across the pharmaceutical industry. Perspectives on the incorporation of newer technologies and the value of precompetitive consortia to identify useful practices are also discussed.
Collapse
|
157
|
Chang SY, Weber EJ, Ness KV, Eaton DL, Kelly EJ. Liver and Kidney on Chips: Microphysiological Models to Understand Transporter Function. Clin Pharmacol Ther 2016; 100:464-478. [PMID: 27448090 DOI: 10.1002/cpt.436] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/13/2016] [Accepted: 07/15/2016] [Indexed: 12/19/2022]
Abstract
Because of complex cellular microenvironments of both the liver and kidneys, accurate modeling of transport function has remained a challenge, leaving a dire need for models that can faithfully recapitulate both the architecture and cell-cell interactions observed in vivo. The study of hepatic and renal transport function is a fundamental component of understanding the metabolic fate of drugs and xenobiotics; however, there are few in vitro systems conducive for these types of studies. For both the hepatic and renal systems, we provide an overview of the location and function of the most significant phase I/II/III (transporter) of enzymes, and then review current in vitro systems for the suitability of a transporter function study and provide details on microphysiological systems that lead the field in these investigations. Microphysiological modeling of the liver and kidneys using "organ-on-a-chip" technologies is rapidly advancing in transport function assessment and has emerged as a promising method to evaluate drug and xenobiotic metabolism. Future directions for the field are also discussed along with technical challenges encountered in complex multiple-organs-on-chips development.
Collapse
Affiliation(s)
- S Y Chang
- Department of Occupational and Environmental Health Sciences, University of Washington, Seattle, Washington, USA
| | - E J Weber
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Kp Van Ness
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - D L Eaton
- Department of Occupational and Environmental Health Sciences, University of Washington, Seattle, Washington, USA
| | - E J Kelly
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
158
|
Guo C, Yang K, Brouwer KR, St Claire RL, Brouwer KLR. Prediction of Altered Bile Acid Disposition Due to Inhibition of Multiple Transporters: An Integrated Approach Using Sandwich-Cultured Hepatocytes, Mechanistic Modeling, and Simulation. J Pharmacol Exp Ther 2016; 358:324-33. [PMID: 27233294 PMCID: PMC4959093 DOI: 10.1124/jpet.116.231928] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 05/26/2016] [Indexed: 01/11/2023] Open
Abstract
Transporter-mediated alterations in bile acid disposition may have significant toxicological implications. Current methods to predict interactions are limited by the interplay of multiple transporters, absence of protein in the experimental system, and inaccurate estimates of inhibitor concentrations. An integrated approach was developed to predict altered bile acid disposition due to inhibition of multiple transporters using the model bile acid taurocholate (TCA). TCA pharmacokinetic parameters were estimated by mechanistic modeling using sandwich-cultured human hepatocyte data with protein in the medium. Uptake, basolateral efflux, and biliary clearance estimates were 0.63, 0.034, and 0.074 mL/min/g liver, respectively. Cellular total TCA concentrations (Ct,Cells) were selected as the model output based on sensitivity analysis. Monte Carlo simulations of TCA Ct,Cells in the presence of model inhibitors (telmisartan and bosentan) were performed using inhibition constants for TCA transporters and inhibitor concentrations, including cellular total inhibitor concentrations ([I]t,cell) or unbound concentrations, and cytosolic total or unbound concentrations. For telmisartan, the model prediction was accurate with an average fold error (AFE) of 0.99-1.0 when unbound inhibitor concentration ([I]u) was used; accuracy dropped when total inhibitor concentration ([I]t) was used. For bosentan, AFE was 1.2-1.3 using either [I]u or [I]t This difference was evaluated by sensitivity analysis of the cellular unbound fraction of inhibitor (fu,cell,inhibitor), which revealed higher sensitivity of fu,cell,inhibitor for predicting TCA Ct,Cells when inhibitors exhibited larger ([I]t,cell/IC50) values. In conclusion, this study demonstrated the applicability of a framework to predict hepatocellular bile acid concentrations due to drug-mediated inhibition of transporters using mechanistic modeling and cytosolic or cellular unbound concentrations.
Collapse
Affiliation(s)
- Cen Guo
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.G., K.Y., K.L.R.B.); and Qualyst Transporter Solutions, Durham, North Carolina (K.R.B., R.L.S.C.)
| | - Kyunghee Yang
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.G., K.Y., K.L.R.B.); and Qualyst Transporter Solutions, Durham, North Carolina (K.R.B., R.L.S.C.)
| | - Kenneth R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.G., K.Y., K.L.R.B.); and Qualyst Transporter Solutions, Durham, North Carolina (K.R.B., R.L.S.C.)
| | - Robert L St Claire
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.G., K.Y., K.L.R.B.); and Qualyst Transporter Solutions, Durham, North Carolina (K.R.B., R.L.S.C.)
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.G., K.Y., K.L.R.B.); and Qualyst Transporter Solutions, Durham, North Carolina (K.R.B., R.L.S.C.)
| |
Collapse
|
159
|
Bohnert T, Patel A, Templeton I, Chen Y, Lu C, Lai G, Leung L, Tse S, Einolf HJ, Wang YH, Sinz M, Stearns R, Walsky R, Geng W, Sudsakorn S, Moore D, He L, Wahlstrom J, Keirns J, Narayanan R, Lang D, Yang X. Evaluation of a New Molecular Entity as a Victim of Metabolic Drug-Drug Interactions-an Industry Perspective. Drug Metab Dispos 2016; 44:1399-423. [PMID: 27052879 DOI: 10.1124/dmd.115.069096] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/31/2016] [Indexed: 12/15/2022] Open
Abstract
Under the guidance of the International Consortium for Innovation and Quality in Pharmaceutical Development (IQ), scientists from 20 pharmaceutical companies formed a Victim Drug-Drug Interactions Working Group. This working group has conducted a review of the literature and the practices of each company on the approaches to clearance pathway identification (fCL), estimation of fractional contribution of metabolizing enzyme toward metabolism (fm), along with modeling and simulation-aided strategy in predicting the victim drug-drug interaction (DDI) liability due to modulation of drug metabolizing enzymes. Presented in this perspective are the recommendations from this working group on: 1) strategic and experimental approaches to identify fCL and fm, 2) whether those assessments may be quantitative for certain enzymes (e.g., cytochrome P450, P450, and limited uridine diphosphoglucuronosyltransferase, UGT enzymes) or qualitative (for most of other drug metabolism enzymes), and the impact due to the lack of quantitative information on the latter. Multiple decision trees are presented with stepwise approaches to identify specific enzymes that are involved in the metabolism of a given drug and to aid the prediction and risk assessment of drug as a victim in DDI. Modeling and simulation approaches are also discussed to better predict DDI risk in humans. Variability and parameter sensitivity analysis were emphasized when applying modeling and simulation to capture the differences within the population used and to characterize the parameters that have the most influence on the prediction outcome.
Collapse
Affiliation(s)
- Tonika Bohnert
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Aarti Patel
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Ian Templeton
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Yuan Chen
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Chuang Lu
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - George Lai
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Louis Leung
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Susanna Tse
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Heidi J Einolf
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Ying-Hong Wang
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Michael Sinz
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Ralph Stearns
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Robert Walsky
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Wanping Geng
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Sirimas Sudsakorn
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - David Moore
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Ling He
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Jan Wahlstrom
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Jim Keirns
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Rangaraj Narayanan
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Dieter Lang
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Xiaoqing Yang
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| |
Collapse
|
160
|
Bile canaliculi formation and biliary transport in 3D sandwich-cultured hepatocytes in dependence of the extracellular matrix composition. Arch Toxicol 2016; 90:2497-511. [PMID: 27325308 DOI: 10.1007/s00204-016-1758-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 06/09/2016] [Indexed: 01/09/2023]
Abstract
Primary human hepatocytes (PHH) are still considered as gold standard for investigation of in vitro metabolism and hepatotoxicity in pharmaceutical research. It has been shown that the three-dimensional (3D) cultivation of PHH in a sandwich configuration between two layers of extracellular matrix (ECM) enables the hepatocytes to adhere three dimensionally leading to formation of in vivo like cell-cell contacts and cell-matrix interactions. The aim of the present study was to investigate the influence of different ECM compositions on morphology, cellular arrangement and bile canaliculi formation as well as bile excretion processes in PHH sandwich cultures systematically. Freshly isolated PHH were cultured for 6 days between two ECM layers made of collagen and/or Matrigel in four different combinations. The cultures were investigated by phase contrast microscopy and immunofluorescence analysis with respect to cell-cell connections, repolarization as well as bile canaliculi formation. The influence of the ECM composition on cell activity and viability was measured using the XTT assay and a fluorescent dead or alive assay. Finally, the bile canalicular transport was analyzed by live cell imaging to monitor the secretion and accumulation of the fluorescent substance CDF in bile canaliculi. Using collagen and Matrigel in different compositions in sandwich cultures of hepatocytes, we observed differences in morphology, cellular arrangement and cell activity of PHH in dependence of the ECM composition. Sandwich-cultured hepatocytes with an underlay of collagen seem to represent the best in vivo tissue architecture in terms of formation of trabecular cell arrangement. Cultures overlaid with collagen were characterized by the formation of abundant bile canaliculi, while the bile canaliculi network in hepatocytes cultured on a layer of Matrigel and overlaid with collagen showed the most branched and stable canalicular network. All cultures showed a time-dependent leakage of CDF from the bile canaliculi into the culture supernatant with variations in dependence on the used matrix combination. In conclusion, the results of this study show that the choice of ECM has an impact on the morphology, cell assembly and bile canaliculi formation in PHH sandwich cultures. The morphology and the multicellular arrangement were essentially influenced by the underlaying matrix, while bile excretion and leakage of sandwich-cultured hepatocytes were mainly influenced by the overlay matrix. Leaking and damaged bile canaliculi could be a limitation of the investigated sandwich culture models in long-term excretion studies.
Collapse
|
161
|
Kunze A, Poller B, Huwyler J, Camenisch G. Application of the extended clearance concept classification system (ECCCS) to predict the victim drug-drug interaction potential of statins. Drug Metab Pers Ther 2016; 30:175-88. [PMID: 25996489 DOI: 10.1515/dmdi-2015-0003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/08/2015] [Indexed: 02/05/2023]
Abstract
BACKGROUND During drug development, it is an important safety factor to identify the potential of new molecular entities to become a victim of drug-drug interactions (DDIs). In preclinical development, however, anticipation of clinical DDIs remains challenging due to the lack of in vivo human pharmacokinetic data. METHODS We applied a recently developed in vitro-in vivo extrapolation method, including hepatic metabolism and transport processes, herein referred to as the Extended Clearance Concept Classification System (ECCCS). The human hepatic clearances and the victim DDI potentials were predicted for atorvastatin, cerivastatin, fluvastatin, lovastatin acid, pitavastatin, pravastatin, rosuvastatin, and simvastatin acid. RESULTS Hepatic statin clearances were well-predicted by the ECCCS with six out of eight clearances projected within a two-fold deviation to reported values. In addition, worst-case DDI predictions were projected for each statin. Based on the ECCCS class assignment (4 classes), the mechanistic interplay of metabolic and transport processes, resulting in different DDI risks, was well-reflected by our model. Furthermore, predictions of clinically observed statins DDIs in combination with relevant perpetrator drugs showed good quantitative correlations with clinical observations. CONCLUSIONS The ECCCS represents a powerful tool to anticipate the DDI potential of victim drugs based on in vitro drug metabolism and transport data.
Collapse
|
162
|
Lu Y, Slizgi JR, Brouwer KR, Claire RLS, Freeman KM, Pan M, Brock WJ, Brouwer KL. Hepatocellular Disposition and Transporter Interactions with Tolvaptan and Metabolites in Sandwich-Cultured Human Hepatocytes. Drug Metab Dispos 2016; 44:dmd.115.067629. [PMID: 27013400 PMCID: PMC4885486 DOI: 10.1124/dmd.115.067629] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 03/21/2016] [Indexed: 11/22/2022] Open
Abstract
Tolvaptan is a selective V2-receptor antagonist primarily metabolized by CYP3A. The present study investigated the hepatocellular disposition of tolvaptan and the generated tolvaptan metabolites, DM-4103 and DM-4107, as well as the potential for drug-drug interaction (DDIs) with metabolic and transport proteins in sandwich-cultured human hepatocytes (SCHH). Tolvaptan was incubated with SCHH and quantified by LC-MS/MS. Pioglitazone, verapamil, MK-571 and elacridar were used as inhibitors to investigate mechanisms of transport and metabolism of tolvaptan and metabolites. Taurocholate (TCA), pravastatin, digoxin, and metformin were used as transporter probes to investigate which transport proteins were inhibited by tolvaptan and metabolites. Cellular accumulation of tolvaptan (0.15-50 μM), DM-4103 and DM-4107 in SCHH was concentration dependent. Tolvaptan accumulation (15 μM) in SCHH was not altered markedly by 50 μM pioglitazone, verapamil or MK-571, or 10 μM elacridar. Co-incubation of tolvaptan with pioglitazone, verapamil, MK-571 and elacridar reduced DM-4107 accumulation by 45.6, 79.8, 94.5 and 23.0%, respectively, relative to control. Co-incubation with increasing tolvaptan concentrations (0.15-50 μM) decreased TCA (2.5 μM) cell+bile accumulation and the TCA biliary excretion index (BEI; from 76% to 51%), consistent with inhibition of the bile salt export pump (BSEP). Tolvaptan (15 μM) had no effect on the cellular accumulation of 2.5 μM pravastatin or metformin. Digoxin cellular accumulation increased and the BEI of digoxin decreased from 23.9% to 8.1% in the presence of 15 μM tolvaptan, consistent with inhibition of P-glycoprotein (P-gp). In summary, SCHH studies revealed potential metabolic- and transporter-mediated DDIs involving tolvaptan and metabolites.
Collapse
Affiliation(s)
- Yang Lu
- University of North Carolina at Chapel Hill
| | | | | | | | | | | | | | | |
Collapse
|
163
|
Takemura A, Izaki A, Sekine S, Ito K. Inhibition of bile canalicular network formation in rat sandwich cultured hepatocytes by drugs associated with risk of severe liver injury. Toxicol In Vitro 2016; 35:121-30. [PMID: 27256767 DOI: 10.1016/j.tiv.2016.05.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 04/05/2016] [Accepted: 05/27/2016] [Indexed: 01/21/2023]
Abstract
Idiosyncratic drug-induced liver injury is a clinical concern with serious consequences. Although many preclinical screening methods have been proposed, it remains difficult to identify compounds associated with this rare but potentially fatal liver condition. Here, we propose a novel assay system to assess the risk of liver injury. Rat primary hepatocytes were cultured in a sandwich configuration, which enables the formation of a typical bile canalicular network. From day 2 to 3, test drugs, mostly selected from a list of cholestatic drugs, were administered, and the length of the network was semi-quantitatively measured by immunofluorescence. Liver injury risk information was collected from drug labels and was compared with in vitro measurements. Of 23 test drugs examined, 15 exhibited potent inhibition of bile canalicular network formation (<60% of control). Effects on cell viability were negligible or minimal as confirmed by lactate dehydrogenase leakage and cellular ATP content assays. For the potent 15 drugs, IC50 values were determined. Finally, maximum daily dose divided by the inhibition constant gave good separation of the highest risk of severe liver toxicity drugs such as troglitazone, benzbromarone, flutamide, and amiodarone from lower risk drugs. In conclusion, inhibitory effect on the bile canalicular network formation observed in in vitro sandwich cultured hepatocytes evaluates a new aspect of drug toxicity, particularly associated with aggravation of liver injury.
Collapse
Affiliation(s)
- Akinori Takemura
- The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, 260-8675, Japan
| | - Aya Izaki
- The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, 260-8675, Japan
| | - Shuichi Sekine
- The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, 260-8675, Japan
| | - Kousei Ito
- The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, 260-8675, Japan.
| |
Collapse
|
164
|
Fan PW, Chen JZ, Allan Jaochico M, La H, Liu N, Mulder T, Cass RT, Durk M, Messick K, Valle N, Liu S, Lee W, Crawford JJ, Rudolf J, Murray LJ, Cyrus Khojasteh S, Wright M. Rate-Determining and Rate-Limiting Steps in the Clearance and Excretion of a Potent and Selective p21-Activated Kinase Inhibitor: A Case Study of Rapid Hepatic Uptake and Slow Elimination in Rat. Drug Metab Lett 2016; 10:91-100. [PMID: 27063863 PMCID: PMC5405622 DOI: 10.2174/1872312810666160411144358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 01/11/2023]
Abstract
BACKGROUND Significant under-prediction of in vivo clearance in rat was observed for a potent p21-activated kinase (PAK1) inhibitor, GNE1. OBJECTIVE Rate-determining (rapid uptake) and rate-limiting (slow excretion) steps in systemic clearance and elimination of GNE1, respectively, were evaluated to better understand the cause of the in vitro-in vivo (IVIV) disconnect. METHODS A series of in vivo, ex vivo, and in vitro experiments were carried out: 1) the role of organic cation transporters (Oct or Slc22a) was investigated in transporter knock-out and wild-type animals with or without 1-aminobenzotriazole (ABT) pretreatment; 2) the concentration-dependent hepatic extraction ratio was determined in isolated perfused rat liver; and 3) excreta were collected from both bile duct cannulated and non-cannulated rats after intravenous injection. RESULTS After intravenous dosing, the rate-determining step in clearance was found to be mediated by the active uptake transporter, Oct1. In cannulated rats, biliary and renal clearance of GNE1 accounted for only approximately 14 and 16% of the total clearance, respectively. N-acetylation, an important metabolic pathway, accounted for only about 10% of the total dose. In non-cannulated rats, the majority of the dose was recovered in feces as unchanged parent (up to 91%) overnight following intravenous administration. CONCLUSION Because the clearance of GNE1 is mediated through uptake transporters rather than metabolism, the extrahepatic expression of Oct1 in kidney and intestine in rat likely plays an important role in the IVIV disconnect in hepatic clearance prediction. The slow process of intestinal secretion is the rate-limiting step for in vivo clearance of GNE1.
Collapse
Affiliation(s)
- Peter W Fan
- Genentech, Inc. 1 DNA Way, MS 412a, South San Francisco, CA 94080, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Establishment of a Drug-Induced, Bile Acid–Dependent Hepatotoxicity Model Using HepaRG Cells. J Pharm Sci 2016; 105:1550-60. [DOI: 10.1016/j.xphs.2016.01.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/04/2016] [Accepted: 01/08/2016] [Indexed: 01/29/2023]
|
166
|
Kalashnikova I, Albekairi N, Ali S, Al Enazy S, Rytting E. Cell Culture Models for Drug Transport Studies. Drug Deliv 2016. [DOI: 10.1002/9781118833322.ch7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
167
|
Alam K, Pahwa S, Wang X, Zhang P, Ding K, Abuznait AH, Li L, Yue W. Downregulation of Organic Anion Transporting Polypeptide (OATP) 1B1 Transport Function by Lysosomotropic Drug Chloroquine: Implication in OATP-Mediated Drug-Drug Interactions. Mol Pharm 2016; 13:839-51. [PMID: 26750564 PMCID: PMC4970216 DOI: 10.1021/acs.molpharmaceut.5b00763] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Organic anion transporting polypeptide (OATP) 1B1 mediates the hepatic uptake of many drugs including lipid-lowering statins. Decreased OATP1B1 transport activity is often associated with increased systemic exposure of statins and statin-induced myopathy. Antimalarial drug chloroquine (CQ) is also used for long-term treatment of rheumatoid arthritis and systemic lupus erythematosus. CQ is lysosomotropic and inhibits protein degradation in lysosomes. The current studies were designed to determine the effects of CQ on OATP1B1 protein degradation, OATP1B1-mediated transport in OATP1B1-overexpressing cell line, and statin uptake in human sandwich-cultured hepatocytes (SCH). Treatment with lysosome inhibitor CQ increased OATP1B1 total protein levels in HEK293-OATP1B1 cells and in human SCH as determined by OATP1B1 immunoblot. In HEK293-FLAG-tagged OATP1B1 stable cell line, co-immunofluorescence staining indicated that intracellular FLAG-OATP1B1 is colocalized with lysosomal associated membrane glycoprotein (LAMP)-2, a marker protein of late endosome/lysosome. Enlarged LAMP-2-positive vacuoles with FLAG-OATP1B1 protein retained inside were readily detected in CQ-treated cells, consistent with blocking lysosomal degradation of OATP1B1 by CQ. In HEK293-OATP1B1 cells, without pre-incubation, CQ concentrations up to 100 μM did not affect OATP1B1-mediated [(3)H]E217G accumulation. However, pre-incubation with CQ at clinically relevant concentration(s) significantly decreased [(3)H]E217G and [(3)H]pitavastatin accumulation in HEK293-OATP1B1 cells and [(3)H]pitavastatin accumulation in human SCH. CQ pretreatment (25 μM, 2 h) resulted in ∼1.9-fold decrease in Vmax without affecting Km of OATP1B1-mediated [(3)H]E217G transport in HEK293-OATP1B1 cells. Pretreatment with monensin and bafilomycin A1, which also have lysosome inhibition activity, significantly decreased OATP1B1-mediated transport in HEK293-OATP1B1 cells. Pharmacoepidemiologic studies using data from the U.S. Food and Drug Administration Adverse Event Reporting System indicated that CQ plus pitavastatin, rosuvastatin, and pravastatin, which are minimally metabolized by the cytochrome P450 enzymes, led to higher myopathy risk than these statins alone. In summary, the present studies report novel findings that lysosome is involved in degradation of OATP1B1 protein and that pre-incubation with lysosomotropic drug CQ downregulates OATP1B1 transport activity. Our in vitro data in combination with pharmacoepidemiologic studies support that CQ has potential to cause OATP-mediated drug-drug interactions.
Collapse
Affiliation(s)
- Khondoker Alam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117, United States
| | - Sonia Pahwa
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117, United States
| | - Xueying Wang
- Center for Computational Biology and Bioinformatics, Indiana Institute of Personalized Medicine, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Pengyue Zhang
- Center for Computational Biology and Bioinformatics, Indiana Institute of Personalized Medicine, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Kai Ding
- Department of Biostatistics and Epidemiology, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73126, United States
| | - Alaa H. Abuznait
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117, United States
| | - Lang Li
- Center for Computational Biology and Bioinformatics, Indiana Institute of Personalized Medicine, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Wei Yue
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117, United States
| |
Collapse
|
168
|
Ma LL, Wu ZT, Wang L, Zhang XF, Wang J, Chen C, Ni X, Lin YF, Cao YY, Luan Y, Pan GY. Inhibition of hepatic cytochrome P450 enzymes and sodium/bile acid cotransporter exacerbates leflunomide-induced hepatotoxicity. Acta Pharmacol Sin 2016; 37:415-24. [PMID: 26806301 DOI: 10.1038/aps.2015.157] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/03/2015] [Indexed: 11/09/2022]
Abstract
AIM Leflunomide is an immunosuppressive agent marketed as a disease-modifying antirheumatic drug. But it causes severe side effects, including fatal hepatitis and liver failure. In this study we investigated the contributions of hepatic metabolism and transport of leflunomide and its major metabolite teriflunomide to leflunomide induced hepatotoxicity in vitro and in vivo. METHODS The metabolism and toxicity of leflunomide and teriflunomide were evaluated in primary rat hepatocytes in vitro. Hepatic cytochrome P450 reductase null (HRN) mice were used to examine the PK profiling and hepatotoxicity of leflunomide in vivo. The expression and function of sodium/bile acid cotransporter (NTCP) were assessed in rat and human hepatocytes and NTCP-transfected HEK293 cells. After Male Sprague-Dawley (SD) rats were administered teriflunomide (1,6, 12 mg · kg(-1) · d(-1), ig) for 4 weeks, their blood samples were analyzed. RESULTS A nonspecific CYPs inhibitor aminobenzotriazole (ABT, 1 mmol/L) decreased the IC50 value of leflunomide in rat hepatocytes from 409 to 216 μmol/L, whereas another nonspecific CYPs inhibitor proadifen (SKF, 30 μmol/L) increased the cellular accumulation of leflunomide to 3.68-fold at 4 h. After oral dosing (15 mg/kg), the plasma exposure (AUC0-t) of leflunomide increased to 3-fold in HRN mice compared with wild type mice. Administration of leflunomide (25 mg·kg(-1) · d(-1)) for 7 d significantly increased serum ALT and AST levels in HRN mice; when the dose was increased to 50 mg·kg(-1) · d(-1), all HRN mice died on d 6. Teriflunomide significantly decreased the expression of NTCP in human hepatocytes, as well as the function of NTCP in rat hepatocytes and NTCP-transfected HEK293 cells. Four-week administration of teriflunomide significantly increased serum total bilirubin and direct bilirubin levels in female rats, but not in male rats. CONCLUSION Hepatic CYPs play a critical role in detoxification process of leflunomide, whereas the major metabolite teriflunomide suppresses the expression and function of NTCP, leading to potential cholestasis.
Collapse
|
169
|
Generation and characterization of rat liver stem cell lines and their engraftment in a rat model of liver failure. Sci Rep 2016; 6:22154. [PMID: 26915950 PMCID: PMC4768167 DOI: 10.1038/srep22154] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/08/2016] [Indexed: 02/07/2023] Open
Abstract
The rat is an important model for liver regeneration. However, there is no in vitro culture system that can capture the massive proliferation that can be observed after partial hepatectomy in rats. We here describe the generation of rat liver stem cell lines. Rat liver stem cells, which grow as cystic organoids, were characterized by high expression of the stem cell marker Lgr5, by the expression of liver progenitor and duct markers, and by low expression of hepatocyte markers, oval cell markers, and stellate cell markers. Prolonged cultures of rat liver organoids depended on high levels of WNT-signalling and the inhibition of BMP-signaling. Upon transplantation of clonal lines to a Fah(-/-) Il2rg(-/-) rat model of liver failure, the rat liver stem cells engrafted into the host liver where they differentiated into areas with FAH and Albumin positive hepatocytes. Rat liver stem cell lines hold potential as consistent reliable cell sources for pharmacological, toxicological or metabolic studies. In addition, rat liver stem cell lines may contribute to the development of regenerative medicine in liver disease. To our knowledge, the here described liver stem cell lines represent the first organoid culture system in the rat.
Collapse
|
170
|
Evaluation of Time Dependent Inhibition Assays for Marketed Oncology Drugs: Comparison of Human Hepatocytes and Liver Microsomes in the Presence and Absence of Human Plasma. Pharm Res 2016; 33:1204-19. [DOI: 10.1007/s11095-016-1865-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 01/21/2016] [Indexed: 01/29/2023]
|
171
|
De Bruyn T, Augustijns PF, Annaert PP. Hepatic Clearance Prediction of Nine Human Immunodeficiency Virus Protease Inhibitors in Rat. J Pharm Sci 2016. [PMID: 26202434 DOI: 10.1002/jps.24559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This study aimed to determine the rate-limiting step in the overall hepatic clearance of the marketed human immunodeficiency virus (HIV) protease inhibitors (PI) in rats by predicting the experimentally determined hepatic in vivo clearance of these drugs based on in vitro clearance values for uptake and/or metabolism. In vitro uptake and metabolic clearance values were determined in suspended rat hepatocytes and rat liver microsomes, respectively. In vivo hepatic clearance was determined after intravenous bolus administration in rats. Excellent in vitro-in vivo correlation (IVIVC; R(2) = 0.80) was observed when metabolic intrinsic Cl values were used, which were determined in vitro at a single concentration corresponding to the blood concentration observed in rats in vivo at the mean residence time. On the contrary, poor IVIVC was observed when in vitro metabolic Cl values based on full Michaelis-Menten profiles were used. In addition, the use of uptake Cl values or a combination of both uptake and metabolic clearance data led to poor predictions of in vivo clearance. Although our findings indicate a key role for metabolism in the hepatic clearance of several HIV PI in rats, subsequent simulations revealed that inhibition of hepatic uptake can lead to altered hepatic clearance for several of these drugs.
Collapse
Affiliation(s)
- Tom De Bruyn
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, O&N2, Leuven 3000, Belgium
| | - Patrick F Augustijns
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, O&N2, Leuven 3000, Belgium
| | - Pieter P Annaert
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, O&N2, Leuven 3000, Belgium.
| |
Collapse
|
172
|
Roe AL, Paine MF, Gurley BJ, Brouwer KR, Jordan S, Griffiths JC. Assessing Natural Product-Drug Interactions: An End-to-End Safety Framework. Regul Toxicol Pharmacol 2016; 76:1-6. [PMID: 26776752 DOI: 10.1016/j.yrtph.2016.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 01/07/2016] [Indexed: 11/28/2022]
Abstract
The use of natural products (NPs), including herbal medicines and other dietary supplements, by North Americans continues to increase across all age groups. This population has access to conventional medications, with significant polypharmacy observed in older adults. Thus, the safety of the interactions between multi-ingredient NPs and drugs is a topic of paramount importance. Considerations such as history of safe use, literature data from animal toxicity and human clinical studies, and NP constituent characterization would provide guidance on whether to assess NP-drug interactions experimentally. The literature is replete with reports of various NP extracts and constituents as potent inhibitors of drug metabolizing enzymes, and transporters. However, without standard methods for NP characterization or in vitro testing, extrapolating these reports to clinically-relevant NP-drug interactions is difficult. This lack of a clear definition of risk precludes clinicians and consumers from making informed decisions about the safety of taking NPs with conventional medications. A framework is needed that describes an integrated robust approach for assessing NP-drug interactions; and, translation of the data into formulation alterations, dose adjustment, labelling, and/or post-marketing surveillance strategies. A session was held at the 41st Annual Summer Meeting of the Toxicology Forum in Colorado Springs, CO, to highlight the challenges and critical components that should be included in a framework approach.
Collapse
Affiliation(s)
- Amy L Roe
- Product Safety & Regulatory Affairs, The Procter & Gamble Company, Cincinnati, OH 45040, United States.
| | - Mary F Paine
- Experimental and Systems Pharmacology, College of Pharmacy, Washington State University, Spokane, WA 99210, United States.
| | - Bill J Gurley
- College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| | | | - Scott Jordan
- Marketed Biologicals, Biotechnology and Natural Health Products Bureau, Marketed Health Products Directorate, Health Canada, Ottawa, Ontario, Canada.
| | - James C Griffiths
- Council for Responsible Nutrition, Washington, DC 20036, United States.
| |
Collapse
|
173
|
Izumi S, Nozaki Y, Komori T, Takenaka O, Maeda K, Kusuhara H, Sugiyama Y. Investigation of Fluorescein Derivatives as Substrates of Organic Anion Transporting Polypeptide (OATP) 1B1 To Develop Sensitive Fluorescence-Based OATP1B1 Inhibition Assays. Mol Pharm 2016; 13:438-48. [DOI: 10.1021/acs.molpharmaceut.5b00664] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Saki Izumi
- Drug Metabolism
and Pharmacokinetics Japan, Tsukuba Research Laboratories, Eisai Co.
Ltd., 5-1-3 Tokodai, Tsukuba-shi, Ibaraki 300-2635, Japan
| | - Yoshitane Nozaki
- Drug Metabolism
and Pharmacokinetics Japan, Tsukuba Research Laboratories, Eisai Co.
Ltd., 5-1-3 Tokodai, Tsukuba-shi, Ibaraki 300-2635, Japan
| | - Takafumi Komori
- Drug Metabolism
and Pharmacokinetics Japan, Tsukuba Research Laboratories, Eisai Co.
Ltd., 5-1-3 Tokodai, Tsukuba-shi, Ibaraki 300-2635, Japan
| | - Osamu Takenaka
- Modeling & Simulation, Clinical Pharmacology, Eisai Co., Ltd., 4-6-10 Koishikawa, Bunkyo-ku, Tokyo 112-8088, Japan
| | - Kazuya Maeda
- Laboratory
of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroyuki Kusuhara
- Laboratory
of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuichi Sugiyama
- Sugiyama
Laboratory, RIKEN Innovation Center, Research Cluster for Innovation, RIKEN, 1-6 Suehiro-cho, Tsurumi-ku, Yokohama-shi, Kanagawa 230-0045, Japan
| |
Collapse
|
174
|
Matsunaga N, Kaneko N, Staub AY, Nakanishi T, Nunoya KI, Imawaka H, Tamai I. Analysis of the Metabolic Pathway of Bosentan and of the Cytotoxicity of Bosentan Metabolites Based on a Quantitative Modeling of Metabolism and Transport in Sandwich-Cultured Human Hepatocytes. Drug Metab Dispos 2016; 44:16-27. [PMID: 26502773 DOI: 10.1124/dmd.115.067074] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/23/2015] [Indexed: 11/22/2022] Open
Abstract
To quantitatively understand the events in the human liver, we modeled a hepatic disposition of bosentan and its three known metabolites (Ro 48-5033, Ro 47-8634, and Ro 64-1056) in sandwich-cultured human hepatocytes based on the known metabolic pathway. In addition, the hepatotoxicity of Ro 47-8634 and Ro 64-1056 was investigated because bosentan is well known as a hepatotoxic drug. A model illustrating the hepatic disposition of bosentan and its three metabolites suggested the presence of a novel metabolic pathway(s) from the three metabolites. By performing in vitro metabolism studies on human liver microsomes, a novel metabolite (M4) was identified in Ro 47-8634 metabolism, and its structure was determined. Moreover, by incorporating the metabolic pathway of Ro 47-8634 to M4 into the model, the hepatic disposition of bosentan and its three metabolites was successfully estimated. In hepatocyte toxicity studies, the cell viability of human hepatocytes decreased after exposure to Ro 47-8634, and the observed hepatotoxicity was diminished by pretreatment with tienilic acid (CYP2C9-specific inactivator). Pretreatment with 1-aminobenzotriazole (broad cytochrome P450 inactivator) also tended to maintain the cell viability. Furthermore, Ro 64-1056 showed hepatotoxicity in a concentration-dependent manner. These results suggest that Ro 64-1056 is directly involved in bosentan-induced liver injury partly because CYP2C9 specifically mediates hydroxylation of the t-butyl group of Ro 47-8634. Our findings demonstrate the usefulness of a quantitative modeling of hepatic disposition of drugs and metabolites in sandwich-cultured hepatocytes. In addition, the newly identified metabolic pathway may be an alternative route that can avoid Ro 64-1056-induced liver injury.
Collapse
Affiliation(s)
- Norikazu Matsunaga
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (N.M., A.Y.S., T.N., I.T.); and Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Tsukuba, Japan (N.M., N.K., K.N., H.I.)
| | - Naomi Kaneko
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (N.M., A.Y.S., T.N., I.T.); and Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Tsukuba, Japan (N.M., N.K., K.N., H.I.)
| | - Angelina Yukiko Staub
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (N.M., A.Y.S., T.N., I.T.); and Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Tsukuba, Japan (N.M., N.K., K.N., H.I.)
| | - Takeo Nakanishi
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (N.M., A.Y.S., T.N., I.T.); and Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Tsukuba, Japan (N.M., N.K., K.N., H.I.)
| | - Ken-ichi Nunoya
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (N.M., A.Y.S., T.N., I.T.); and Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Tsukuba, Japan (N.M., N.K., K.N., H.I.)
| | - Haruo Imawaka
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (N.M., A.Y.S., T.N., I.T.); and Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Tsukuba, Japan (N.M., N.K., K.N., H.I.)
| | - Ikumi Tamai
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (N.M., A.Y.S., T.N., I.T.); and Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Tsukuba, Japan (N.M., N.K., K.N., H.I.)
| |
Collapse
|
175
|
Richter M, Fairhall EA, Hoffmann SA, Tröbs S, Knöspel F, Probert PME, Oakley F, Stroux A, Wright MC, Zeilinger K. Pancreatic progenitor-derived hepatocytes are viable and functional in a 3D high density bioreactor culture system. Toxicol Res (Camb) 2016; 5:278-290. [PMID: 30090344 PMCID: PMC6062372 DOI: 10.1039/c5tx00187k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 11/12/2015] [Indexed: 01/15/2023] Open
Abstract
The rat pancreatic progenitor cell line B-13 is of interest for research on drug metabolism and toxicity since the cells trans-differentiate into functional hepatocyte-like cells (B-13/H) when treated with glucocorticoids. In this study we investigated the trans-differentiation and liver-specific functions of B-13/H cells in a three-dimensional (3D) multi-compartment bioreactor, which has already been successfully used for primary liver cell culture. Undifferentiated B-13 cells were inoculated into the bioreactor system and exposed to dexamethasone to promote hepatic trans-differentiation (B-13/HT). In a second approach, pre-differentiated B-13 cells were cultured in bioreactors for 15 days to evaluate the maintenance of liver-typical functions (B-13/HP). During trans-differentiation of B-13 cells into hepatocyte-like cells in the 3D bioreactor system (approach B-13/HT), an increase in glucose metabolism and in liver-specific functions (urea and albumin synthesis; cytochrome P450 [CYP] enzyme activity) was observed, whereas amylase - characteristic for exocrine pancreas and undifferentiated B-13 cells - decreased over time. In bioreactors with pre-differentiated cells (approach B-13/HP), the above liver-specific functions were maintained over the whole culture period. Results were confirmed by gene expression and protein analysis showing increased expression of carbamoyl-phosphate synthase 1 (CPS-1), albumin, CYP2E1, CYP2C11 and CYP3A1 with simultaneous loss of amylase. Immunohistochemical studies showed the formation of 3D structures with expression of liver-specific markers, including albumin, cytokeratin (CK) 18, CCAAT/enhancer-binding protein beta (CEBP-β), CYP2E1 and multidrug resistance protein 2 (MRP2). In conclusion, successful culture and trans-differentiation of B-13 cells in the 3D bioreactor was demonstrated. The requirement for only one hormone and simple culture conditions to generate liver-like cells makes this cell type useful for in vitro research using 3D high-density culture systems.
Collapse
Affiliation(s)
- M Richter
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT) , Charité-Universitätsmedizin Berlin , Berlin , Germany .
| | - E A Fairhall
- Newcastle University , Institute Cellular Medicine , Newcastle Upon Tyne , UK
| | - S A Hoffmann
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT) , Charité-Universitätsmedizin Berlin , Berlin , Germany .
| | - S Tröbs
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT) , Charité-Universitätsmedizin Berlin , Berlin , Germany .
| | - F Knöspel
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT) , Charité-Universitätsmedizin Berlin , Berlin , Germany .
| | - P M E Probert
- Newcastle University , Institute Cellular Medicine , Newcastle Upon Tyne , UK
| | - F Oakley
- Newcastle University , Institute Cellular Medicine , Newcastle Upon Tyne , UK
| | - A Stroux
- Institute for Biometry and Clinical Epidemiology , Charité-Universitätsmedizin Berlin , Berlin , Germany
| | - M C Wright
- Newcastle University , Institute Cellular Medicine , Newcastle Upon Tyne , UK
| | - K Zeilinger
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT) , Charité-Universitätsmedizin Berlin , Berlin , Germany .
| |
Collapse
|
176
|
Brinkmann M, Preuss TG, Hollert H. Advancing In Vitro-In Vivo Extrapolations of Mechanism-Specific Toxicity Data Through Toxicokinetic Modeling. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 157:293-317. [PMID: 27619489 DOI: 10.1007/10_2015_5015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
International legislation, such as the European REACH regulation (registration, evaluation, authorization, and restriction of chemicals), mandates the assessment of potential risks of an ever-growing number of chemicals to the environment and human health. Although this legislation is considered one of the most important investments in consumer safety ever, the downside is that the current testing strategies within REACH rely on extensive animal testing. To address the ethical conflicts arising from these increased testing requirements, decision-makers, such as the European Chemicals Agency (ECHA), are committed to Russel and Burch's 3R principle (i.e., reduction, replacement, refinement) by demanding that animal experiments should be substituted with appropriate alternatives whenever possible. A potential solution of this dilemma might be the application of in vitro bioassays to estimate toxic effects using cells or cellular components instead of whole organisms. Although such assays are particularly useful to assess potential mechanisms of toxic action, scientists require appropriate methods to extrapolate results from the in vitro level to the situation in vivo. Toxicokinetic models are a straightforward means of bridging this gap. The present chapter describes different available options for in vitro-in vivo extrapolation (IVIVE) of mechanism-specific effects focused on fish species and also reviews the implications of confounding factors during the conduction of in vitro bioassays and their influence on the optimal choice of different dose metrics.
Collapse
Affiliation(s)
- Markus Brinkmann
- Department of Ecosystem Analysis, Institute for Environmental Research, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | | | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
- College of Resources and Environmental Science, Chongqing University, 1 Tiansheng Road Beibei, Chongqing, 400715, China.
- College of Environmental Science and Engineering and State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, China.
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China.
| |
Collapse
|
177
|
Cheng Y, Woolf TF, Gan J, He K. In vitro model systems to investigate bile salt export pump (BSEP) activity and drug interactions: A review. Chem Biol Interact 2015; 255:23-30. [PMID: 26683212 DOI: 10.1016/j.cbi.2015.11.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/10/2015] [Accepted: 11/26/2015] [Indexed: 01/04/2023]
Abstract
The bile salt export pump protein (BSEP), expressed on the canalicular membranes of hepatocytes, is primarily responsible for the biliary excretion of bile salts. The inhibition of BSEP transport activity can lead to an increase in intracellular bile salt levels and liver injury. This review discusses the various in vitro assays currently available for assessing the effect of drugs or other chemical entities to modulate BSEP transport activity. BSEP transporter assays use one of the following platforms: Xenopus laevis oocytes; canalicular membrane vesicles (CMV); BSEP-expressed membrane vesicles; cell lines expressing BSEP; sandwich cultured hepatocytes (SCH); and hepatocytes in suspension. Two of these, BSEP-expressed insect membrane vesicles and sandwich cultured hepatocytes, are the most commonly used assays. BSEP membrane vesicles prepared from transfected insect cells are useful for assessing BSEP inhibition or substrate specificity and exploring mechanisms of BSEP-associated genetic diseases. This model can be applied in a high-throughput format for discovery-drug screening. However, experimental results from use of membrane vesicles may lack physiological relevance and the model does not allow for investigation of in situ metabolism in modulation of BSEP activity. Hepatocyte-based assays that use the SCH format provide results that are generally more physiologically relevant than membrane assays. The SCH model is useful in detailed studies of the biliary excretion of drugs and BSEP inhibition, but due to the complexity of SCH preparation, this model is used primarily for determining biliary clearance and BSEP inhibition in a limited number of compounds. The newly developed hepatocyte in suspension assay avoids many of the complexities of the SCH method. The use of pooled cryopreserved hepatocytes in suspension minimizes genetic variance and individual differences in BSEP activity and also provides the opportunity for higher throughput screening and cross-species comparisons.
Collapse
Affiliation(s)
- Yaofeng Cheng
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, NJ 08543, USA
| | | | - Jinping Gan
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, NJ 08543, USA
| | - Kan He
- Biotranex LLC, Monmouth Junction, NJ 08852, USA.
| |
Collapse
|
178
|
Oshikata-Miyazaki A, Takezawa T. Development of an oxygenation culture method for activating the liver-specific functions of HepG2 cells utilizing a collagen vitrigel membrane chamber. Cytotechnology 2015; 68:1801-11. [PMID: 26660096 PMCID: PMC5023555 DOI: 10.1007/s10616-015-9934-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 11/17/2015] [Indexed: 01/07/2023] Open
Abstract
We recently developed a collagen vitrigel membrane (CVM) chamber possessing a scaffold composed of high-density collagen fibrils. In this study, we first confirmed that the advantage of CVM chamber in comparison to the traditional culture chamber with porous polyethylene terephthalate membrane is to preserve a culture medium poured in its inside even though the under side is not a liquid phase but solid and gas phases. Subsequently, we designed three different culture systems to grow HepG2 cells in a culture medium (liquid phase) on the CVM which the under side is a culture medium, a plastic surface (solid phase) or 5 % CO2 in air (gas phase) and aimed to develop a brief culture method useful for activating the liver-specific functions and analyzing the pharmacokinetics of fluorescein diacetate. HepG2 cells cultured for 2 days on the liquid–solid interface and subsequently for 1 day on the liquid–gas interface represented excellent cell viability and morphology in comparison to the others, and remarkably improved albumin secretion and urea synthesis to almost the same level of freshly isolated human hepatocytes and CYP3A4 activity to about half the level of differentiated HepaRG cells. Also, the cells rapidly absorbed fluorescein diacetate, distributed it in cytosol, metabolized it into fluorescein, and speedily excreted fluorescein into both bile canaliculus-like networks and extracellular solution. These data suggest that hepatic structure and functions of monolayered HepG2 cells can be induced within a day after the oxygenation from beneath the CVM.
Collapse
Affiliation(s)
- Ayumi Oshikata-Miyazaki
- Division of Animal Sciences, National Institute of Agrobiological Sciences, Ohwashi 1-2, Tsukuba, Ibaraki, 305-8634, Japan
| | - Toshiaki Takezawa
- Division of Animal Sciences, National Institute of Agrobiological Sciences, Ohwashi 1-2, Tsukuba, Ibaraki, 305-8634, Japan.
| |
Collapse
|
179
|
Molyneux PC, Pyle LA, Dillon M, Harrington ME. A Mouse Primary Hepatocyte Culture Model for Studies of Circadian Oscillation. ACTA ACUST UNITED AC 2015; 5:311-329. [DOI: 10.1002/9780470942390.mo150101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Lorna A. Pyle
- Neuroscience Program, Smith College; Northampton Massachusetts
| | - Martha Dillon
- Neuroscience Program, Smith College; Northampton Massachusetts
| | | |
Collapse
|
180
|
Susukida T, Sekine S, Nozaki M, Tokizono M, Ito K. Prediction of the Clinical Risk of Drug-Induced Cholestatic Liver Injury Using an In Vitro Sandwich Cultured Hepatocyte Assay. Drug Metab Dispos 2015; 43:1760-8. [PMID: 26329788 DOI: 10.1124/dmd.115.065425] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/31/2015] [Indexed: 12/12/2022] Open
Abstract
Drug-induced liver injury (DILI) is of concern to the pharmaceutical industry, and reliable preclinical screens are required. Previously, we established an in vitro bile acid-dependent hepatotoxicity assay that mimics cholestatic DILI in vivo. Here, we confirmed that this assay can predict cholestatic DILI in clinical situations by comparing in vitro cytotoxicity data with in vivo risk. For 38 drugs, the frequencies of abnormal increases in serum alkaline phosphatase (ALP), transaminases, gamma glutamyltranspeptidase (γGT), and bilirubin were collected from interview forms. Drugs with frequencies of serum marker increases higher than 1% were classified as high DILI risk compounds. In vitro cytotoxicity was assessed by monitoring lactate dehydrogenase release from rat and human sandwich-cultured hepatocytes (SCRHs and SCHHs) incubated with the test drugs (50 μM) for 24 hours in the absence or presence of a bile acids mixture. Receiver operating characteristic analyses gave optimal cutoff toxicity values of 19.5% and 9.2% for ALP and transaminases in SCRHs, respectively. Using this cutoff, high- and low-risk drugs were separated with 65.4-78.6% sensitivity and 66.7-79.2% specificity. Good separation was also achieved using SCHHs. In conclusion, cholestatic DILI risk can be successfully predicted using a sandwich-cultured hepatocyte-based assay.
Collapse
Affiliation(s)
- Takeshi Susukida
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba, Japan
| | - Shuichi Sekine
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba, Japan
| | - Mayuka Nozaki
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba, Japan
| | - Mayuko Tokizono
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba, Japan
| | - Kousei Ito
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba, Japan
| |
Collapse
|
181
|
Volpe DA. Transporter assays as useful in vitro tools in drug discovery and development. Expert Opin Drug Discov 2015; 11:91-103. [DOI: 10.1517/17460441.2016.1101064] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Donna A. Volpe
- Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, MD, USA
| |
Collapse
|
182
|
Slizgi JR, Lu Y, Brouwer KR, St Claire RL, Freeman KM, Pan M, Brock WJ, Brouwer KLR. Inhibition of Human Hepatic Bile Acid Transporters by Tolvaptan and Metabolites: Contributing Factors to Drug-Induced Liver Injury? Toxicol Sci 2015; 149:237-50. [PMID: 26507107 DOI: 10.1093/toxsci/kfv231] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Tolvaptan is a vasopressin V(2)-receptor antagonist that has shown promise in treating Autosomal Dominant Polycystic Kidney Disease (ADPKD). Tolvaptan was, however, associated with liver injury in some ADPKD patients. Inhibition of bile acid transporters may be contributing factors to drug-induced liver injury. In this study, the ability of tolvaptan and two metabolites, DM-4103 and DM-4107, to inhibit human hepatic transporters (NTCP, BSEP, MRP2, MRP3, and MRP4) and bile acid transport in sandwich-cultured human hepatocytes (SCHH) was explored. IC(50) values were determined for tolvaptan, DM-4103 and DM-4107 inhibition of NTCP (∼41.5, 16.3, and 95.6 μM, respectively), BSEP (31.6, 4.15, and 119 μM, respectively), MRP2 (>50, ∼51.0, and >200 μM, respectively), MRP3 (>50, ∼44.6, and 61.2 μM, respectively), and MRP4 (>50, 4.26, and 37.9 μM, respectively). At the therapeutic dose of tolvaptan (90 mg), DM-4103 exhibited a C(max)/IC(50) value >0.1 for NTCP, BSEP, MRP2, MRP3, and MRP4. Tolvaptan accumulation in SCHH was extensive and not sodium-dependent; intracellular concentrations were ∼500 μM after a 10-min incubation duration with tolvaptan (15 μM). The biliary clearance of taurocholic acid (TCA) decreased by 43% when SCHH were co-incubated with tolvaptan (15 μM) and TCA (2.5 μM). When tolvaptan (15 μM) was co-incubated with 2.5 μM of chenodeoxycholic acid, taurochenodeoxycholic acid, or glycochenodeoxycholic acid in separate studies, the cellular accumulation of these bile acids increased by 1.30-, 1.68-, and 2.16-fold, respectively. Based on these data, inhibition of hepatic bile acid transport may be one of the biological mechanisms underlying tolvaptan-associated liver injury in patients with ADPKD.
Collapse
Affiliation(s)
- Jason R Slizgi
- *Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599;
| | - Yang Lu
- *Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | | | | | | | - Maxwell Pan
- Otsuka Pharmaceutical Development and Commercialization, Inc., Rockville, Maryland 20850
| | - William J Brock
- Otsuka Pharmaceutical Development and Commercialization, Inc., Rockville, Maryland 20850
| | - Kim L R Brouwer
- *Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599;
| |
Collapse
|
183
|
Basal efflux of bile acids contributes to drug-induced bile acid-dependent hepatocyte toxicity in rat sandwich-cultured hepatocytes. Toxicol In Vitro 2015; 29:1454-63. [DOI: 10.1016/j.tiv.2015.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/22/2015] [Accepted: 06/04/2015] [Indexed: 11/22/2022]
|
184
|
Torres FM, Sáfár Z, Vázquez-Sánchez MA, Kurunczi A, Kis E, Magnan R, Jani M, Nicolás O, Krajcsi P. Pre-Plated Cell Lines for ADMETox Applications in the Pharmaceutical Industry. ACTA ACUST UNITED AC 2015; 65:23.8.1-23.8.23. [PMID: 26250397 DOI: 10.1002/0471140856.tx2308s65] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Membrane transporters significantly modulate membrane permeability of endobiotics and xenobiotics, such as bile acids and drugs, respectively. Various in vitro methods have been established for both ATP-binding cassette (ABC) transporters to examine cellular efflux and uptake, and for solute carriers (SLC) to examine cellular uptake of substrates. Cell-based systems are the models of choice to test drug-transporter interactions as well as drug-drug interactions for research and regulatory purposes, albeit, for low passive permeability substrates of ABC transporters, vesicular uptake assays are also recommended. Commercially available pre-plated cells (e.g., immortalized or transfected) offer a useful alternative to in-house cell culture. Three main methods are known to manufacture pre-plated cultures: regular culture medium with vacuum seal, cryopreserved delivery, and the solid shipping media technology. The regular culture medium and the solid shipping media technologies provide ready-to-use models for end users. Models expressing a broad selection of transporters are available in pre-plated formats for absorption, distribution, metabolism, excretion, and toxicity (ADMETox) studies. Conversely, the application and utility of pre-plated cultures coupled with personal experiences have not been extensively covered in published research papers or reviews, despite availability and significant use of pre-plated products in the pharmaceutical industry. In this overview, we will briefly describe: 1) in vitro tools commonly used for ADMETox testing; 2) methods employed in manufacturing, shipment and preparation of pre-plated cell lines; 3) cell-membrane barrier models currently available in pre-plated format to reproduce passage restriction of physiological barriers to certain compounds; and 4) recommended pre-plated cell lines overexpressing uptake transporters for ADMETox applications.
Collapse
Affiliation(s)
| | - Zsolt Sáfár
- Solvo Biotechnology, Budaörs, Hungary.,shared first authorship
| | | | | | - Emese Kis
- Solvo Biotechnology, Budaörs, Hungary
| | | | | | - Oriol Nicolás
- ReadyCell S. L., Barcelona, Spain.,shared senior authorship
| | - Péter Krajcsi
- Solvo Biotechnology, Budaörs, Hungary.,shared senior authorship
| |
Collapse
|
185
|
Jiang J, Wolters JEJ, van Breda SG, Kleinjans JC, de Kok TM. Development of novel tools for the in vitro investigation of drug-induced liver injury. Expert Opin Drug Metab Toxicol 2015; 11:1523-37. [PMID: 26155718 DOI: 10.1517/17425255.2015.1065814] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Due to its complex mechanisms and unpredictable occurrence, drug-induced liver injury (DILI) complicates drug identification and classification. Since species-specific differences in metabolism and pharmacokinetics exist, data obtained from animal studies may not be sufficient to predict DILI in humans. AREAS COVERED Over the last few decades, numerous in vitro models have been developed to replace animal testing. The advantages and disadvantages of commonly used liver-derived in vitro models (e.g., cell lines, hepatocyte models, liver slices, three-dimensional (3D) hepatospheres, etc.) are discussed. Toxicogenomics-based methodologies (genomics, epigenomics, transcriptomics, proteomics and metabolomics) and next-generation sequencing have also been used to enhance the reliability of DILI prediction. This review presents an overview of the currently used alternative toxicological models and of the most advanced approaches in the field of DILI research. EXPERT OPINION It seems unlikely that a single in vitro system will be able to mimic the complex interactions in the human liver. Three-dimensional multicellular systems may bridge the gap between conventional 2D models and in vivo clinical studies in humans and provide a reliable basis for hepatic toxicity assay development. Next-generation sequencing technologies, in comparison to microarray-based technologies, may overcome the current limitations and are promising for the development of predictive models in the near future.
Collapse
Affiliation(s)
- Jian Jiang
- a 1 Maastricht University, GROW School for Oncology and Developmental Biology, Department of Toxicogenomics , Maastricht, The Netherlands +31 43 3881090 ; +31 43 3884146 ;
| | - Jarno E J Wolters
- b 2 Maastricht University, GROW School for Oncology and Developmental Biology, Department of Toxicogenomics , Maastricht, The Netherlands
| | - Simone G van Breda
- b 2 Maastricht University, GROW School for Oncology and Developmental Biology, Department of Toxicogenomics , Maastricht, The Netherlands
| | - Jos C Kleinjans
- b 2 Maastricht University, GROW School for Oncology and Developmental Biology, Department of Toxicogenomics , Maastricht, The Netherlands
| | - Theo M de Kok
- b 2 Maastricht University, GROW School for Oncology and Developmental Biology, Department of Toxicogenomics , Maastricht, The Netherlands
| |
Collapse
|
186
|
Predicting Clearance Mechanism in Drug Discovery: Extended Clearance Classification System (ECCS). Pharm Res 2015; 32:3785-802. [DOI: 10.1007/s11095-015-1749-4] [Citation(s) in RCA: 236] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/29/2015] [Indexed: 12/15/2022]
|
187
|
Lu J, Einhorn S, Venkatarangan L, Miller M, Mann DA, Watkins PB, LeCluyse E. Morphological and Functional Characterization and Assessment of iPSC-Derived Hepatocytes for In Vitro Toxicity Testing. Toxicol Sci 2015; 147:39-54. [PMID: 26092927 DOI: 10.1093/toxsci/kfv117] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Drug-induced liver injury (DILI) remains a great challenge and a major concern during late-stage drug development. Induced pluripotent stem cells (iPSC) represent an exciting alternative in vitro model system to explore the role of genetic diversity in DILI, especially when derived from patients who have experienced drug-induced hepatotoxicity. The development and validation of the iPSC-derived hepatocytes as an in vitro cell-based model of DILI is an essential first step in creating more predictive tools for understanding patient-specific hepatotoxic responses to drug treatment. In this study, we performed extensive morphological and functional analyses on iPSC-derived hepatocytes from a commercial source. iPSC-derived hepatocytes exhibit many of the key morphological and functional features of primary hepatocytes, including membrane polarity and production of glycogen, lipids, and key hepatic proteins, such as albumin, asialoglycoprotein receptor and α1-antitrypsin. They maintain functional activity for many drug-metabolizing enzyme pathways and possess active efflux capacity of marker substrates into bile canalicular compartments. Whole genome-wide array analysis of multiple batches of iPSC-derived cells showed that their transcriptional profiles are more similar to those from neonatal and adult hepatocytes than those from fetal liver. Results from experiments using prototype DILI compounds, such as acetaminophen and trovafloxacin, indicate that these cells are able to reproduce key characteristic metabolic and adaptive responses attributed to the drug-induced hepatotoxic effects in vivo. Overall, this novel system represents a promising new tool for understanding the underlying mechanisms of idiosyncratic DILI and for screening new compounds for DILI-related liabilities.
Collapse
Affiliation(s)
- Jingtao Lu
- *The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709
| | | | - Lata Venkatarangan
- QPS Hepatic Biosciences, Research Triangle Park, North Carolina 27709; and
| | - Manda Miller
- *The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709
| | - David A Mann
- QPS Hepatic Biosciences, Research Triangle Park, North Carolina 27709; and
| | - Paul B Watkins
- *The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709; Schools of Medicine, Pharmacy and Public Health, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599
| | - Edward LeCluyse
- *The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709;
| |
Collapse
|
188
|
Mohamed LA, Kaddoumi A. Tacrine sinusoidal uptake and biliary excretion in sandwich-cultured primary rat hepatocytes. JOURNAL OF PHARMACY AND PHARMACEUTICAL SCIENCES 2015; 17:427-38. [PMID: 25224352 DOI: 10.18433/j3801t] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE. The knowledge of hepatic disposition kinetics of tacrine, a first cholinesterase inhibitor was approved by FDA for the treatment of Alzheimer's disease (AD), would help to understand its hepatotoxicity, its therapeutic effect, and improve the management of patients with AD. The current study aims to characterize tacrine hepatic transport kinetics and study the role of organic cation transporters (OCTs), P-glycoprotein (P-gp) and multidrug resistance-associated protein (MRP2) in tacrine sinusoidal uptake and biliary excretion. METHODS. Modulation of tacrine hepatic uptake and efflux, biliary excretion index (BEI%), were performed in sandwich-cultured primary rat hepatocytes (SCHs) using transporters inhibitors. Conformation of the integrity of SCHs model was established by capturing images with light-contrast and fluorescence microscopy. RESULTS. Tacrine uptake in SCHs was carrier-mediated process and saturable with apparent Km of 31.5±9.6 µM and Vmax of 908±72 pmol/min/mg protein. Tetraethyl ammonium (TEA), cimetidine and verapamil significantly reduced tacrine uptake with more pronounced effect observed with verapamil which caused 3-fold reduction in tacrine uptake, indicating role for OCTs. Tacrine has a biliary excretion in SCHs with maximum BEI% value of 22.9±1.9% at 10 min of incubation. Addition of MK571 and valspodar decreased the BEI% of tacrine by 40 and 60% suggesting roles for canalicular MRP2 and P-gp, respectively. CONCLUSIONS. Our results show that in addition to metabolism, tacrine hepatic disposition is carrier-mediated process mediated by sinusoidal OCTs, and canalicular MRP2 and P-gp.
Collapse
Affiliation(s)
| | - Amal Kaddoumi
- Department of Basic Pharmaceutical Science, School of Pharmacy, University of Louisiana at Monroe. 1800 Bienville Dr., Monroe, LA
| |
Collapse
|
189
|
Gao Y, Liang J, Luo Y, Gong Y. Structural optimization design of perfusion bioreactors with multilayer circular parallel plates scaffold. BIOTECHNOL BIOTEC EQ 2015. [DOI: 10.1080/13102818.2015.1021279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
190
|
Yang K, Pfeifer ND, Köck K, Brouwer KLR. Species differences in hepatobiliary disposition of taurocholic acid in human and rat sandwich-cultured hepatocytes: implications for drug-induced liver injury. J Pharmacol Exp Ther 2015; 353:415-23. [PMID: 25711339 PMCID: PMC4407722 DOI: 10.1124/jpet.114.221564] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 02/20/2015] [Indexed: 12/28/2022] Open
Abstract
The bile salt export pump (BSEP) plays an important role in bile acid excretion. Impaired BSEP function may result in liver injury. Bile acids also undergo basolateral efflux, but the relative contributions of biliary (CLBile) versus basolateral efflux (CLBL) clearance to hepatocellular bile acid excretion have not been determined. In the present study, taurocholic acid (TCA; a model bile acid) disposition was characterized in human and rat sandwich-cultured hepatocytes (SCH) combined with pharmacokinetic modeling. In human SCH, biliary excretion of TCA predominated (CLBile = 0.14 ± 0.04 ml/min per g liver; CLBL = 0.042 ± 0.019 ml/min per g liver), whereas CLBile and CLBL contributed approximately equally to TCA hepatocellular excretion in rat SCH (CLBile = 0.34 ± 0.07 ml/min per g liver; CLBL = 0.26 ± 0.07 ml/min per g liver). Troglitazone decreased TCA uptake, CLBile, and CLBL; membrane vesicle assays revealed for the first time that the major metabolite, troglitazone sulfate, was a noncompetitive inhibitor of multidrug resistance-associated protein 4, a basolateral bile acid efflux transporter. Simulations revealed that decreased CLBile led to a greater increase in hepatic TCA exposure in human than in rat SCH. A decrease in both excretory pathways (CLBile and CLBL) exponentially increased hepatic TCA in both species, suggesting that 1) drugs that inhibit both pathways may have a greater risk for hepatotoxicity, and 2) impaired function of an alternate excretory pathway may predispose patients to hepatotoxicity when drugs that inhibit one pathway are administered. Simulations confirmed the protective role of uptake inhibition, suggesting that a drug's inhibitory effects on bile acid uptake also should be considered when evaluating hepatotoxic potential. Overall, the current study precisely characterized basolateral efflux of TCA, revealed species differences in hepatocellular TCA efflux pathways, and provided insights about altered hepatic bile acid exposure when multiple transport pathways are impaired.
Collapse
Affiliation(s)
- Kyunghee Yang
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Nathan D Pfeifer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kathleen Köck
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
191
|
Regulation of Liver Enriched Transcription Factors in Rat Hepatocytes Cultures on Collagen and EHS Sarcoma Matrices. PLoS One 2015; 10:e0124867. [PMID: 25901575 PMCID: PMC4406752 DOI: 10.1371/journal.pone.0124867] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 03/13/2015] [Indexed: 02/07/2023] Open
Abstract
Liver-enriched transcription factors (LETF) play a crucial role in the control of liver-specific gene expression and for hepatocytes to retain their molecular and cellular functions complex interactions with extra cellular matrix (ECM) are required However, during cell isolation ECM interactions are disrupted and for hepatocytes to regain metabolic competency cells are cultured on ECM substrata. The regulation of LETFs in hepatocytes cultured on different ECM has not been studied in detail. We therefore compared two common sources of ECM and evaluated cellular morphology and hepatocyte differentiation by investigating DNA binding activity of LETFs at gene specific promoters and marker genes of hepatic metabolism. Furthermore, we studied testosterone metabolism and albumin synthesis to assess the metabolic competence of cell cultures. Despite significant difference in morphological appearance and except for HNF1β (p<0.001) most LETFs and several of their target genes did not differ in transcript expression after Bonferroni adjustment when cultured on collagen or Matrigel. Nonetheless, Western blotting revealed HNF1β, HNF3α, HNF3γ, HNF4α, HNF6 and the smaller subunits of C/EBPα and C/EBPβ to be more abundant on Matrigel cultured cells. Likewise, DNA binding activity of HNF3α, HNF3β, HNF4α, HNF6 and gene expression of hepatic lineage markers were increased on Matrigel cultured hepatocytes. To further investigate hepatic gene regulation, the effects of Aroclor 1254 treatment, e.g. a potent inducer of xenobiotic defense were studied in vivo and in vitro. The gene expression of C/EBP-α increased in rat liver and hepatocytes cultured on collagen and this treatment induced DNA binding activity of HNF4α, C/EBPα and C/EBPβ and gene expression of CYP1A1 and CYP1A2 in vivo and in vitro. Taken collectively, two sources of ECM greatly affected hepatocyte morphology, activity of liver enriched transcription factors, hepatic gene expression and metabolic competency that should be considered when used in cell biology studies and drug toxicity testing.
Collapse
|
192
|
Le Vee M, Jouan E, Noel G, Stieger B, Fardel O. Polarized location of SLC and ABC drug transporters in monolayer-cultured human hepatocytes. Toxicol In Vitro 2015; 29:938-46. [PMID: 25862123 DOI: 10.1016/j.tiv.2015.03.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 02/16/2015] [Accepted: 03/25/2015] [Indexed: 12/31/2022]
Abstract
Human hepatocytes cultured in a monolayer configuration represent a well-established in vitro model in liver toxicology, notably used in drug transporter studies. Polarized status of drug transporters, i.e., their coordinated location at sinusoidal or canalicular membranes, remains however incompletely documented in these cultured hepatocytes. The present study was therefore designed to analyze transporter expression and location in such cells. Most of drug transporters were first shown to be present at notable mRNA levels in monolayer-cultured human hepatocytes. Cultured human hepatocytes, which morphologically exhibited bile canaliculi-like structures, were next demonstrated, through immunofluorescence staining, to express the influx transporters organic anion transporting polypeptide (OATP) 1B1, OATP2B1 and organic cation transporter (OCT) 1 and the efflux transporter multidrug resistance-associated protein (MRP) 3 at their sinusoidal pole. In addition, the efflux transporters P-glycoprotein and MRP2 were detected at the canalicular pole of monolayer-cultured human hepatocytes. Moreover, canalicular secretion of reference substrates for the efflux transporters bile salt export pump, MRP2 and P-glycoprotein as well as sinusoidal drug transporter activities were observed. This polarized and functional expression of drug transporters in monolayer-cultured human hepatocytes highlights the interest of using this human in vitro cell model in xenobiotic transport studies.
Collapse
Affiliation(s)
- Marc Le Vee
- Institut de Recherches en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France
| | - Elodie Jouan
- Institut de Recherches en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France
| | - Gregory Noel
- Institut de Recherches en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Olivier Fardel
- Institut de Recherches en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France; Pôle Biologie, Centre Hospitalier Universitaire, 2 rue Henri Le Guilloux, 35033 Rennes, France.
| |
Collapse
|
193
|
Modeling approach for multiple transporters-mediated drug–drug interactions in sandwich-cultured human hepatocytes: Effect of cyclosporin A on hepatic disposition of mycophenolic acid phenyl-glucuronide. Drug Metab Pharmacokinet 2015; 30:142-8. [DOI: 10.1016/j.dmpk.2014.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/25/2014] [Accepted: 10/11/2014] [Indexed: 12/31/2022]
|
194
|
Yang K, Pfeifer ND, Köck K, Brouwer KLR. Species differences in hepatobiliary disposition of taurocholic acid in human and rat sandwich-cultured hepatocytes: implications for drug-induced liver injury. J Pharmacol Exp Ther 2015. [PMID: 25711339 DOI: 10.1124/jpet.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The bile salt export pump (BSEP) plays an important role in bile acid excretion. Impaired BSEP function may result in liver injury. Bile acids also undergo basolateral efflux, but the relative contributions of biliary (CLBile) versus basolateral efflux (CLBL) clearance to hepatocellular bile acid excretion have not been determined. In the present study, taurocholic acid (TCA; a model bile acid) disposition was characterized in human and rat sandwich-cultured hepatocytes (SCH) combined with pharmacokinetic modeling. In human SCH, biliary excretion of TCA predominated (CLBile = 0.14 ± 0.04 ml/min per g liver; CLBL = 0.042 ± 0.019 ml/min per g liver), whereas CLBile and CLBL contributed approximately equally to TCA hepatocellular excretion in rat SCH (CLBile = 0.34 ± 0.07 ml/min per g liver; CLBL = 0.26 ± 0.07 ml/min per g liver). Troglitazone decreased TCA uptake, CLBile, and CLBL; membrane vesicle assays revealed for the first time that the major metabolite, troglitazone sulfate, was a noncompetitive inhibitor of multidrug resistance-associated protein 4, a basolateral bile acid efflux transporter. Simulations revealed that decreased CLBile led to a greater increase in hepatic TCA exposure in human than in rat SCH. A decrease in both excretory pathways (CLBile and CLBL) exponentially increased hepatic TCA in both species, suggesting that 1) drugs that inhibit both pathways may have a greater risk for hepatotoxicity, and 2) impaired function of an alternate excretory pathway may predispose patients to hepatotoxicity when drugs that inhibit one pathway are administered. Simulations confirmed the protective role of uptake inhibition, suggesting that a drug's inhibitory effects on bile acid uptake also should be considered when evaluating hepatotoxic potential. Overall, the current study precisely characterized basolateral efflux of TCA, revealed species differences in hepatocellular TCA efflux pathways, and provided insights about altered hepatic bile acid exposure when multiple transport pathways are impaired.
Collapse
Affiliation(s)
- Kyunghee Yang
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Nathan D Pfeifer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kathleen Köck
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
195
|
Bachour-El Azzi P, Sharanek A, Burban A, Li R, Guével RL, Abdel-Razzak Z, Stieger B, Guguen-Guillouzo C, Guillouzo A. Comparative Localization and Functional Activity of the Main Hepatobiliary Transporters in HepaRG Cells and Primary Human Hepatocytes. Toxicol Sci 2015; 145:157-68. [PMID: 25690737 DOI: 10.1093/toxsci/kfv041] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The role of hepatobiliary transporters in drug-induced liver injury remains poorly understood. Various in vivo and in vitro biological approaches are currently used for studying hepatic transporters; however, appropriate localization and functional activity of these transporters are essential for normal biliary flow and drug transport. Human hepatocytes (HHs) are considered as the most suitable in vitro cell model but erratic availability and inter-donor functional variations limit their use. In this work, we aimed to compare localization of influx and efflux transporters and their functional activity in differentiated human HepaRG hepatocytes with fresh HHs in conventional (CCHH) and sandwich (SCHH) cultures. All tested influx and efflux transporters were correctly localized to canalicular [bile salt export pump (BSEP), multidrug resistance-associated protein 2 (MRP2), multidrug resistance protein 1 (MDR1), and MDR3] or basolateral [Na(+)-taurocholate co-transporting polypeptide (NTCP) and MRP3] membrane domains and were functional in all models. Contrary to other transporters, NTCP and BSEP were less abundant and active in HepaRG cells, cellular uptake of taurocholate was 2.2- and 1.4-fold and bile excretion index 2.8- and 2.6-fold lower, than in SCHHs and CCHHs, respectively. However, when taurocholate canalicular efflux was evaluated in standard and divalent cation-free conditions in buffers or cell lysates, the difference between the three models did not exceed 9.3%. Interestingly, cell imaging showed higher bile canaliculi contraction/relaxation activity in HepaRG hepatocytes and larger bile canaliculi networks in SCHHs. Altogether, our results bring new insights in mechanisms involved in bile acids accumulation and excretion in HHs and suggest that HepaRG cells represent a suitable model for studying hepatobiliary transporters and drug-induced cholestasis.
Collapse
Affiliation(s)
- Pamela Bachour-El Azzi
- *Inserm UMR991, Foie, Métabolismes et Cancer, Rennes, France; Université de Rennes 1, Rennes, France, Université Libanaise, EDST-PRASE and EDST-AZM-center-LBA3B, Beirut, Lebanon, Biopredic International, Saint Grégoire, France, ImPACcell, SFR Biosit, Université de Rennes 1, Rennes, France and Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland *Inserm UMR991, Foie, Métabolismes et Cancer, Rennes, France; Université de Rennes 1, Rennes, France, Université Libanaise, EDST-PRASE and EDST-AZM-center-LBA3B, Beirut, Lebanon, Biopredic International, Saint Grégoire, France, ImPACcell, SFR Biosit, Université de Rennes 1, Rennes, France and Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland *Inserm UMR991, Foie, Métabolismes et Cancer, Rennes, France; Université de Rennes 1, Rennes, France, Université Libanaise, EDST-PRASE and EDST-AZM-center-LBA3B, Beirut, Lebanon, Biopredic International, Saint Grégoire, France, ImPACcell, SFR Biosit, Université de Rennes 1, Rennes, France and Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland
| | - Ahmad Sharanek
- *Inserm UMR991, Foie, Métabolismes et Cancer, Rennes, France; Université de Rennes 1, Rennes, France, Université Libanaise, EDST-PRASE and EDST-AZM-center-LBA3B, Beirut, Lebanon, Biopredic International, Saint Grégoire, France, ImPACcell, SFR Biosit, Université de Rennes 1, Rennes, France and Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland *Inserm UMR991, Foie, Métabolismes et Cancer, Rennes, France; Université de Rennes 1, Rennes, France, Université Libanaise, EDST-PRASE and EDST-AZM-center-LBA3B, Beirut, Lebanon, Biopredic International, Saint Grégoire, France, ImPACcell, SFR Biosit, Université de Rennes 1, Rennes, France and Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland
| | - Audrey Burban
- *Inserm UMR991, Foie, Métabolismes et Cancer, Rennes, France; Université de Rennes 1, Rennes, France, Université Libanaise, EDST-PRASE and EDST-AZM-center-LBA3B, Beirut, Lebanon, Biopredic International, Saint Grégoire, France, ImPACcell, SFR Biosit, Université de Rennes 1, Rennes, France and Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland *Inserm UMR991, Foie, Métabolismes et Cancer, Rennes, France; Université de Rennes 1, Rennes, France, Université Libanaise, EDST-PRASE and EDST-AZM-center-LBA3B, Beirut, Lebanon, Biopredic International, Saint Grégoire, France, ImPACcell, SFR Biosit, Université de Rennes 1, Rennes, France and Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland
| | - Ruoya Li
- *Inserm UMR991, Foie, Métabolismes et Cancer, Rennes, France; Université de Rennes 1, Rennes, France, Université Libanaise, EDST-PRASE and EDST-AZM-center-LBA3B, Beirut, Lebanon, Biopredic International, Saint Grégoire, France, ImPACcell, SFR Biosit, Université de Rennes 1, Rennes, France and Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland
| | - Rémy Le Guével
- *Inserm UMR991, Foie, Métabolismes et Cancer, Rennes, France; Université de Rennes 1, Rennes, France, Université Libanaise, EDST-PRASE and EDST-AZM-center-LBA3B, Beirut, Lebanon, Biopredic International, Saint Grégoire, France, ImPACcell, SFR Biosit, Université de Rennes 1, Rennes, France and Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland
| | - Ziad Abdel-Razzak
- *Inserm UMR991, Foie, Métabolismes et Cancer, Rennes, France; Université de Rennes 1, Rennes, France, Université Libanaise, EDST-PRASE and EDST-AZM-center-LBA3B, Beirut, Lebanon, Biopredic International, Saint Grégoire, France, ImPACcell, SFR Biosit, Université de Rennes 1, Rennes, France and Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland
| | - Bruno Stieger
- *Inserm UMR991, Foie, Métabolismes et Cancer, Rennes, France; Université de Rennes 1, Rennes, France, Université Libanaise, EDST-PRASE and EDST-AZM-center-LBA3B, Beirut, Lebanon, Biopredic International, Saint Grégoire, France, ImPACcell, SFR Biosit, Université de Rennes 1, Rennes, France and Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland *Inserm UMR991, Foie, Métabolismes et Cancer, Rennes, France; Université de Rennes 1, Rennes, France, Université Libanaise, EDST-PRASE and EDST-AZM-center-LBA3B, Beirut, Lebanon, Biopredic International, Saint Grégoire, France, ImPACcell, SFR Biosit, Université de Rennes 1, Rennes, France and Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland
| | - Christiane Guguen-Guillouzo
- *Inserm UMR991, Foie, Métabolismes et Cancer, Rennes, France; Université de Rennes 1, Rennes, France, Université Libanaise, EDST-PRASE and EDST-AZM-center-LBA3B, Beirut, Lebanon, Biopredic International, Saint Grégoire, France, ImPACcell, SFR Biosit, Université de Rennes 1, Rennes, France and Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland
| | - André Guillouzo
- *Inserm UMR991, Foie, Métabolismes et Cancer, Rennes, France; Université de Rennes 1, Rennes, France, Université Libanaise, EDST-PRASE and EDST-AZM-center-LBA3B, Beirut, Lebanon, Biopredic International, Saint Grégoire, France, ImPACcell, SFR Biosit, Université de Rennes 1, Rennes, France and Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland *Inserm UMR991, Foie, Métabolismes et Cancer, Rennes, France; Université de Rennes 1, Rennes, France, Université Libanaise, EDST-PRASE and EDST-AZM-center-LBA3B, Beirut, Lebanon, Biopredic International, Saint Grégoire, France, ImPACcell, SFR Biosit, Université de Rennes 1, Rennes, France and Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland
| |
Collapse
|
196
|
Gao YB, Liang JX, Luo YX, Yan J. A tracer liquid image velocimetry for multi-layer radial flow in bioreactors. Biomed Eng Online 2015; 14:10. [PMID: 25888748 PMCID: PMC4339657 DOI: 10.1186/s12938-015-0002-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/21/2015] [Indexed: 01/05/2023] Open
Abstract
Background This paper presents a Tracer Liquid Image Velocimetry (TLIV) for multi-layer radial flow in bioreactors used for cells cultivation of tissue engineering. The goal of this approach is to use simple devices to get good measuring precision, specialized for the case in which the uniform level of fluid shear stress was required while fluid velocity varied smoothly. Methods Compared to the widely used Particles Image Velocimetry (PIV), this method adopted a bit of liquid as tracer, without the need of laser source. Sub-pixel positioning algorithm was used to overcome the adverse effects of the tracer liquid deformation. In addition, a neighborhood smoothing algorithm was used to restrict the measurement perturbation caused by diffusion. Experiments were carried out in a parallel plates flow chamber. And mathematical models of the flow chamber and Computational Fluid Dynamics (CFD) simulation were separately employed to validate the measurement precision of TLIV. Results The mean relative error between the simulated and measured data can be less than 2%, while in similar validations using PIV, the error was around 8.8%. Conclusions TLIV avoided the contradiction between the particles’ visibility and following performance with tested fluid, which is difficult to overcome in PIV. And TLIV is easier to popularize for its simple experimental condition and low cost.
Collapse
Affiliation(s)
- Yu-Bao Gao
- School of Engineering, Sun Yat-sen University, Guangdong, China.
| | - Jiu-Xing Liang
- School of Engineering, Sun Yat-sen University, Guangdong, China.
| | - Yu-Xi Luo
- School of Engineering, Sun Yat-sen University, Guangdong, China.
| | - Jia Yan
- School of Engineering, Sun Yat-sen University, Guangdong, China.
| |
Collapse
|
197
|
Gouliarmou V, Pelkonen O, Coecke S. Differentiation-Promoting Medium Additives for Hepatocyte Cultivation and Cryopreservation. Methods Mol Biol 2015; 1250:143-159. [PMID: 26272140 DOI: 10.1007/978-1-4939-2074-7_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Isolated primary hepatocytes are considered as the reference system for in vitro hepatic methods. Following the isolation of primary hepatocytes from liver tissue, an unfavorable process named dedifferentiation is initiated leading to the attenuation of the hepatocellular phenotype both at the morphological and functional level. Freshly isolated hepatocytes can be used immediately or can be cryopreserved for future purposes. Currently, a number of antidedifferentiation strategies exist to extend the life span of isolated hepatocytes. The addition of differentiation-promoting compounds to the hepatocyte culture medium is the oldest and simplest antidedifferentiation approach applied. In the present chapter, the most commonly used medium additives for cultivation and cryopreservation of primary hepatocytes are reviewed.
Collapse
Affiliation(s)
- Varvara Gouliarmou
- EURL ECVAM, Systems Toxicology Unit, Institute for Health and Consumer Protection, European Commission, Joint Research Center, Via Fermi 2749, Ispra, 21027, Italy
| | | | | |
Collapse
|
198
|
Quantification of drug transport function across the multiple resistance-associated protein 2 (Mrp2) in rat livers. Int J Mol Sci 2014; 16:135-47. [PMID: 25547484 PMCID: PMC4307239 DOI: 10.3390/ijms16010135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/03/2014] [Indexed: 01/13/2023] Open
Abstract
To understand the transport function of drugs across the canalicular membrane of hepatocytes, it would be important to measure concentrations in hepatocytes and bile. However, these concentration gradients are rarely provided. The aim of the study is then to measure these concentrations and define parameters to quantify the canalicular transport of drugs through the multiple resistance associated-protein 2 (Mrp2) in entire rat livers. Besides drug bile excretion rates, we measured additional parameters to better define transport function across Mrp2: (1) Concentration gradients between hepatocyte and bile concentrations over time; and (2) a unique parameter (canalicular concentration ratio) that represents the slope of the non-linear regression curve between hepatocyte and bile concentrations. This information was obtained in isolated rat livers perfused with gadobenate dimeglumine (BOPTA) and mebrofenin (MEB), two hepatobiliary drugs used in clinical liver imaging. Interestingly, despite different transport characteristics including excretion rates into bile and hepatocyte clearance into bile, BOPTA and MEB have a similar canalicular concentration ratio. In contrast, the ratio was null when BOPTA was not excreted in bile in hepatocytes lacking Mrp2. The canalicular concentration ratio is more informative than bile excretion rates because it is independent of time, bile flows, and concentrations perfused in portal veins. It would be interesting to apply such information in human liver imaging where hepatobiliary compounds are increasingly investigated.
Collapse
|
199
|
Murray JW, Han D, Wolkoff AW. Hepatocytes maintain greater fluorescent bile acid accumulation and greater sensitivity to drug-induced cell death in three-dimensional matrix culture. Physiol Rep 2014; 2:2/12/e12198. [PMID: 25524275 PMCID: PMC4332201 DOI: 10.14814/phy2.12198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Primary hepatocytes undergo phenotypic dedifferentiation upon isolation from liver that typically includes down regulation of uptake transporters and up regulation of efflux transporters. Culturing cells between layers of collagen in a three‐dimensional (3D) “sandwich” is reported to restore hepatic phenotype. This report examines how 3D culturing affects accumulation of fluorophores, the cytotoxic response to bile acids and drugs, and whether cell to cell differences in fluorescent anion accumulation correlate with differences in cytotoxicity. Hepatocytes were found to accumulate fluorescent bile acid (FBA) at significantly higher levels than the related fluorophores, carboxyfluorescein diacetate, (4.4‐fold), carboxyfluorescein succinimidyl ester (4.8‐fold), and fluorescein (30‐fold). In 2D culture, FBA accumulation decreased to background levels by 32 h, Hoechst nuclear accumulation strongly decreased, and nuclear diameter increased, indicative of an efflux phenotype. In 3D culture, FBA accumulation was maintained through 168 h but at 1/3 the original intensity. Cell to cell differences in accumulated FBA did not correlate with levels of liver zonal markers L‐FBAP (zone 1) or glutamine synthetase (zone 3). Cytotoxic response to hydrophobic bile acids, acetaminophen, and phalloidin was maintained in 3D culture, and cells with higher FBA accumulation showed 12–18% higher toxicity than the total population toward hydrophobic bile acids (P < 0.05). Long‐term imaging showed oscillations in the accumulation of FBA over periods of hours. Overall, the studies suggest that high accumulation of FBA can indicate the sensitivity of cultured hepatocytes to hydrophobic bile acids and other toxins. These studies use automated image analysis and fluorescent dye accumulation to demonstrate that 3D culturing enhances organic anion accumulation and cytotoxic response in long‐term hepatocyte cultures. The level of anion accumulation was found to vary through days in culture and also between single cells, and higher fluorescent bile acid accumulation correlated with higher toxic response to hydrophobic bile acids.
Collapse
Affiliation(s)
- John W Murray
- Department of Anatomy and Structural Biology, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| | - Dennis Han
- Department of Anatomy and Structural Biology, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| | - Allan W Wolkoff
- Department of Anatomy and Structural Biology, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| |
Collapse
|
200
|
Mann DA. Human induced pluripotent stem cell-derived hepatocytes for toxicology testing. Expert Opin Drug Metab Toxicol 2014; 11:1-5. [DOI: 10.1517/17425255.2015.981523] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- David A Mann
- Cellular Dynamics International, Inc., 525 Science Drive, Madison, WI 53711, USA
| |
Collapse
|