151
|
Patankar HV, Al-Harrasi I, Al-Yahyai R, Yaish MW. Identification of Candidate Genes Involved in the Salt Tolerance of Date Palm (Phoenix dactylifera L.) Based on a Yeast Functional Bioassay. DNA Cell Biol 2018; 37:524-534. [DOI: 10.1089/dna.2018.4159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Himanshu V. Patankar
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Ibtisam Al-Harrasi
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Rashid Al-Yahyai
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Mahmoud W. Yaish
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
152
|
Öztürk SE, Göktay M, Has C, Babaoğlu M, Allmer J, Doğanlar S, Frary A. Transcriptomic analysis of boron hyperaccumulation mechanisms in Puccinellia distans. CHEMOSPHERE 2018; 199:390-401. [PMID: 29453065 DOI: 10.1016/j.chemosphere.2018.02.070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 02/07/2018] [Accepted: 02/09/2018] [Indexed: 06/08/2023]
Abstract
Puccinellia distans, common alkali grass, is found throughout the world and can survive in soils with boron concentrations that are lethal for other plant species. Indeed, P. distans accumulates very high levels of this element. Despite these interesting features, very little research has been performed to elucidate the boron tolerance mechanism in this species. In this study, P. distans samples were treated for three weeks with normal (0.5 mg L-1) and elevated (500 mg L-1) boron levels in hydroponic solution. Expressed sequence tags (ESTs) derived from shoot tissue were analyzed by RNA sequencing to identify genes up and down-regulated under boron stress. In this way, 3312 differentially expressed transcripts were detected, 67.7% of which were up-regulated and 32.3% of which were down-regulated in boron-treated plants. To partially confirm the RNA sequencing results, 32 randomly selected transcripts were analyzed for their expression levels in boron-treated plants. The results agreed with the expected direction of change (up or down-regulation). A total of 1652 transcripts had homologs in A. thaliana and/or O. sativa and mapped to 1107 different proteins. Functional annotation of these proteins indicated that the boron tolerance and hyperaccumulation mechanisms of P. distans involve many transcriptomic changes including: alterations in the malate pathway, changes in cell wall components that may allow sequestration of excess boron without toxic effects, and increased expression of at least one putative boron transporter and two putative aquaporins. Elucidation of the boron accumulation mechanism is important in developing approaches for bioremediation of boron contaminated soils.
Collapse
Affiliation(s)
- Saniye Elvan Öztürk
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir 35430, Turkey
| | - Mehmet Göktay
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir 35430, Turkey
| | - Canan Has
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir 35430, Turkey
| | - Mehmet Babaoğlu
- Department of Field Crops, Selcuk University, Selçuklu, Konya, 42030, Turkey
| | - Jens Allmer
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir 35430, Turkey
| | - Sami Doğanlar
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir 35430, Turkey
| | - Anne Frary
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir 35430, Turkey.
| |
Collapse
|
153
|
Meng LS. Compound Synthesis or Growth and Development of Roots/Stomata Regulate Plant Drought Tolerance or Water Use Efficiency/Water Uptake Efficiency. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3595-3604. [PMID: 29589939 DOI: 10.1021/acs.jafc.7b05990] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Water is crucial to plant growth and development because it serves as a medium for all cellular functions. Thus, the improvement of plant drought tolerance or water use efficiency/water uptake efficiency is important in modern agriculture. In this review, we mainly focus on new genetic factors for ameliorating drought tolerance or water use efficiency/water uptake efficiency of plants and explore the involvement of these genetic factors in the regulation of improving plant drought tolerance or water use efficiency/water uptake efficiency, which is a result of altered stomata density and improving root systems (primary root length, hair root growth, and lateral root number) and enhanced production of osmotic protectants, which is caused by transcription factors, proteinases, and phosphatases and protein kinases. These results will help guide the synthesis of a model for predicting how the signals of genetic and environmental stress are integrated at a few genetic determinants to control the establishment of either water use efficiency or water uptake efficiency. Collectively, these insights into the molecular mechanism underpinning the control of plant drought tolerance or water use efficiency/water uptake efficiency may aid future breeding or design strategies to increase crop yield.
Collapse
Affiliation(s)
- Lai-Sheng Meng
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science , Jiangsu Normal University , Xuzhou , Jiangsu 221116 , People's Republic of China
| |
Collapse
|
154
|
Hussain HA, Hussain S, Khaliq A, Ashraf U, Anjum SA, Men S, Wang L. Chilling and Drought Stresses in Crop Plants: Implications, Cross Talk, and Potential Management Opportunities. FRONTIERS IN PLANT SCIENCE 2018; 9:393. [PMID: 29692787 PMCID: PMC5902779 DOI: 10.3389/fpls.2018.00393] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/12/2018] [Indexed: 05/18/2023]
Abstract
Plants face a combination of different abiotic stresses under field conditions which are lethal to plant growth and production. Simultaneous occurrence of chilling and drought stresses in plants due to the drastic and rapid global climate changes, can alter the morphological, physiological and molecular responses. Both these stresses adversely affect the plant growth and yields due to physical damages, physiological and biochemical disruptions, and molecular changes. In general, the co-occurrence of chilling and drought combination is even worse for crop production rather than an individual stress condition. Plants attain various common and different physiological and molecular protective approaches for tolerance under chilling and drought stresses. Nevertheless, plant responses to a combination of chilling and drought stresses are unique from those to individual stress. In the present review, we summarized the recent evidence on plant responses to chilling and drought stresses on shared as well as unique basis and tried to find a common thread potentially underlying these responses. We addressed the possible cross talk between plant responses to these stresses and discussed the potential management strategies for regulating the mechanisms of plant tolerance to drought and/or chilling stresses. To date, various novel approaches have been tested in minimizing the negative effects of combine stresses. Despite of the main improvements there is still a big room for improvement in combination of drought and chilling tolerance. Thus, future researches particularly using biotechnological and molecular approaches should be carried out to develop genetically engineered plants with enhanced tolerance against these stress factors.
Collapse
Affiliation(s)
- Hafiz A. Hussain
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Abdul Khaliq
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Umair Ashraf
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Shakeel A. Anjum
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Shengnan Men
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Longchang Wang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| |
Collapse
|
155
|
Feng ZJ, Xu SC, Liu N, Zhang GW, Hu QZ, Xu ZS, Gong YM. Identification of the AQP members involved in abiotic stress responses from Arabidopsis. Gene 2018; 646:64-73. [DOI: 10.1016/j.gene.2017.12.048] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 12/22/2017] [Indexed: 11/26/2022]
|
156
|
Kumar RMS, Ji G, Guo H, Zhao L, Zheng B. Over-expression of a grafting-responsive gene from hickory increases abiotic stress tolerance in Arabidopsis. PLANT CELL REPORTS 2018; 37:541-552. [PMID: 29335788 DOI: 10.1007/s00299-018-2250-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 01/05/2018] [Indexed: 05/12/2023]
Abstract
A grafting response gene CcPIP1;2 was cloned from hickory plant, further functional characterization of the gene for water transport activity and abiotic stress tolerances were carried out through heterologous expression in Xenopus and Arabidopsis. Plasma membrane intrinsic proteins (PIPs) are multifunctional channel proteins belonging to the membrane intrinsic protein (MIP) family. In this study, a grafting-responsive gene from hickory (CcPIP1;2) was cloned and functionally characterized. Application of non-selective water inhibitors (HgCl2 and phloretin) led to the death of grafted hickory plants at 30 days after grafting (DAG). Furthermore, the transcript accumulation of the selected CcPIP1;2 gene was gradually decreased from 0 to 14 DAG in the grafted samples under inhibitor treatment conditions. Transient expression analysis of the GFP-CcPIP1;2 fusion protein showed that CcPIP1;2 was located at plasma membrane. Heterologous expression of CcPIP1;2 protein in the Xenopus oocyte system helped the access of water into the cells. Over-expression of CcPIP1;2 in Arabidopsis improved the percentage of seed germination when the seeds were grown in H2O2-, ABA-, and mannitol-containing media, but had no effect when grown in the salt containing media. CcPIP1;2 transgenic plants grew better under drought conditions. The expression of various ABA-related stress marker genes as well as cell wall expansin marker genes was significantly higher in CcPIP1;2 over-expression Arabidopsis lines than in the wild type (WT).
Collapse
Affiliation(s)
- R M Saravana Kumar
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, People's Republic of China
| | - Guocun Ji
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, People's Republic of China
| | - Haipeng Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Liang Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, People's Republic of China
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, People's Republic of China.
| |
Collapse
|
157
|
Pang Y, Li J, Qi B, Tian M, Sun L, Wang X, Hao F. Aquaporin AtTIP5;1 as an essential target of gibberellins promotes hypocotyl cell elongation in Arabidopsis thaliana under excess boron stress. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:305-314. [PMID: 32290954 DOI: 10.1071/fp16444] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 08/29/2017] [Indexed: 06/11/2023]
Abstract
Aquaporins play essential roles in growth and development including stem elongation in plants. Tonoplast aquaporin AtTIP5;1 has been proposed to positively regulate hypocotyl elongation under high concentrations of boron (high-B) in Arabidopsis thaliana (L.) Heynh. However, the mechanism underlying this process remains unanswered. Here, we show that paclobatrazol, an inhibitor of GA biosynthesis, significantly suppressed the hypocotyl cell elongation of wild-type (WT) seedlings, and more strongly suppressed that of AtTIP5;1 overexpressors under high-B stress. Two AtTIP5;1 null mutants displayed arrested elongation of cells in the upper part of hypocotyls compared with the WT in the presence of high-B or GA3. Moreover, paclobatrazol treatment completely inhibited the increases in AtTIP5;1 transcripts induced by high-B, whereas GA3 application upregulated AtTIP5;1 expression in the WT. In addition, treatment with high-B remarkably elevated the expression levels of GA3ox1, GA20ox1 and GA20ox2 - key biosynthesis genes of GAs - in WT seedlings. The GA3 and GA4 content also increased in WT seedlings grown in MS medium containing high-B. Additionally, application of high-B failed to enhance AtTIP5;1 expression in the double mutant rga-24-gai-t6 of DELLA genes. Together, these results suggest that AtTIP5;1 is an essential downstream target of GAs. High-B induces the accumulation of GAs, which activates AtTIP5;1 through modulation of the DELLA proteins Repressor of ga1-3 and GA-insensitive, further promoting hypocotyl elongation in A. thaliana.
Collapse
Affiliation(s)
- Yongqi Pang
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Jintong Li
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Bishu Qi
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Agricultural University of Hebei, Baoding 071000, P.R. China
| | - Mi Tian
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Lirong Sun
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Xuechen Wang
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Fushun Hao
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan University, Kaifeng 475004, P.R. China
| |
Collapse
|
158
|
Morris H, Plavcová L, Gorai M, Klepsch MM, Kotowska M, Jochen Schenk H, Jansen S. Vessel-associated cells in angiosperm xylem: Highly specialized living cells at the symplast-apoplast boundary. AMERICAN JOURNAL OF BOTANY 2018; 105:151-160. [PMID: 29578292 DOI: 10.1002/ajb2.1030] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/13/2017] [Indexed: 05/13/2023]
Abstract
BACKGROUND Vessel-associated cells (VACs) are highly specialized, living parenchyma cells that are in direct contact with water-conducting, dead vessels. The contact may be sparse or in large tight groups of parenchyma that completely surrounds vessels. VACs differ from vessel distant parenchyma in physiology, anatomy, and function and have half-bordered pits at the vessel-parenchyma juncture. The distinct anatomy of VACs is related to the exchange of substances to and from the water-transport system, with the cells long thought to be involved in water transport in woody angiosperms, but where direct experimental evidence is lacking. SCOPE This review focuses on our current knowledge of VACs regarding anatomy and function, including hydraulic capacitance, storage of nonstructural carbohydrates, symplastic and apoplastic interactions, defense against pathogens and frost, osmoregulation, and the novel hypothesis of surfactant production. Based on microscopy, we visually represent how VACs vary in dimensions and general appearance between species, with special attention to the protoplast, amorphous layer, and the vessel-parenchyma pit membrane. CONCLUSIONS An understanding of the relationship between VACs and vessels is crucial to tackling questions related to how water is transported over long distances in xylem, as well as defense against pathogens. New avenues of research show how parenchyma-vessel contact is related to vessel diameter and a new hypothesis may explain how surfactants arising from VAC can allow water to travel under negative pressure. We also reinforce the message of connectivity between VAC and other cells between xylem and phloem.
Collapse
Affiliation(s)
- Hugh Morris
- Ulm University, Institute of Systematic Botany and Ecology, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- Laboratory for Applied Wood Materials, Empa-Swiss Federal Laboratories for Materials Testing and Research, St. Gallen, Switzerland
| | - Lenka Plavcová
- University of Hradec Králové, Department of Biology, Faculty of Science, Rokitanského 62, 500 03, Hradec Králové, Czech Republic
| | - Mustapha Gorai
- University of Gabes, Higher Institute of Applied Biology of Medenine, Medenine, 4119, Tunisia
| | - Matthias M Klepsch
- Ulm University, Institute of Systematic Botany and Ecology, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Martyna Kotowska
- Ulm University, Institute of Systematic Botany and Ecology, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- Macquarie University, Department of Biological Sciences, North Ryde, NSW, 2109, Australia
| | - H Jochen Schenk
- California State University Fullerton, Department of Biological Science, 800 N. State College Blvd., Fullerton, CA, 92831-3599, USA
| | - Steven Jansen
- Ulm University, Institute of Systematic Botany and Ecology, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| |
Collapse
|
159
|
Jha UC, Jha R, Bohra A, Parida SK, Kole PC, Thakro V, Singh D, Singh NP. Population structure and association analysis of heat stress relevant traits in chickpea ( Cicer arietinum L.). 3 Biotech 2018; 8:43. [PMID: 29354354 PMCID: PMC5750240 DOI: 10.1007/s13205-017-1057-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 12/19/2017] [Indexed: 12/27/2022] Open
Abstract
Understanding genetic diversity and population structure is prerequisite to broaden the cultivated base of any crop. In the current investigation, we report discovery of a total of 319 alleles by assaying 81 SSRs on 71 chickpea genotypes. The cluster analysis based on Jaccard coefficient and unweighted neighbor joining algorithm categorized all genotypes into two major clusters. Cultivars grown within the same agro-climatic zones were clustered together, whereas the remaining genotypes particularly advanced breeding lines and accessions assigned to another cluster. Population structure analysis separated the entire collection into two subpopulations (K = 2) and the clustering pattern remained in close agreement with those of distance-based methods. Importantly, we also discovered marker trait association for membrane stability index (MSI) and leaf chlorophyll content measured as SPAD chlorophyll meter reading (SCMR), the two important physiological parameters indicative of heat stress (HS) tolerance in chickpea. Association analysis using both general linear and mixed linear models of the mean phenotypic data of traits recorded in 2016 and 2017 uncovered significant association of NCPGR206 and H2L102 with the MSI trait. Likewise, SSR markers GA9, TR31 and TA113 exhibited significant association with SCMR trait. The genomic regions putatively linked with two traits may be investigated in greater detail to further improve knowledge about the genetic architecture of HS tolerance in chickpea.
Collapse
Affiliation(s)
- Uday Chand Jha
- Indian Institute of Pulses Research (IIPR), Kanpur, UP 208 024 India
| | - Rintu Jha
- Indian Institute of Pulses Research (IIPR), Kanpur, UP 208 024 India
| | - Abhishek Bohra
- Indian Institute of Pulses Research (IIPR), Kanpur, UP 208 024 India
| | - Swarup Kumar Parida
- National Institute of Plant Genome Research (NIPGR), New Delhi, 110067 India
| | - Paresh Chandra Kole
- Department of Genetics & Plant Breeding and Crop Physiology, Institute of Agriculture, Visva Bharati University, Sriniketan, Bolpur, West Bengal 731236 India
| | - Virevol Thakro
- National Institute of Plant Genome Research (NIPGR), New Delhi, 110067 India
| | - Deepak Singh
- Indian Agricultural Statistical Research Institute (IASRI), New Delhi, India
| | | |
Collapse
|
160
|
Jha UC, Jha R, Bohra A, Parida SK, Kole PC, Thakro V, Singh D, Singh NP. Population structure and association analysis of heat stress relevant traits in chickpea ( Cicer arietinum L.). 3 Biotech 2018. [PMID: 29354354 DOI: 10.1007/s1320] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Understanding genetic diversity and population structure is prerequisite to broaden the cultivated base of any crop. In the current investigation, we report discovery of a total of 319 alleles by assaying 81 SSRs on 71 chickpea genotypes. The cluster analysis based on Jaccard coefficient and unweighted neighbor joining algorithm categorized all genotypes into two major clusters. Cultivars grown within the same agro-climatic zones were clustered together, whereas the remaining genotypes particularly advanced breeding lines and accessions assigned to another cluster. Population structure analysis separated the entire collection into two subpopulations (K = 2) and the clustering pattern remained in close agreement with those of distance-based methods. Importantly, we also discovered marker trait association for membrane stability index (MSI) and leaf chlorophyll content measured as SPAD chlorophyll meter reading (SCMR), the two important physiological parameters indicative of heat stress (HS) tolerance in chickpea. Association analysis using both general linear and mixed linear models of the mean phenotypic data of traits recorded in 2016 and 2017 uncovered significant association of NCPGR206 and H2L102 with the MSI trait. Likewise, SSR markers GA9, TR31 and TA113 exhibited significant association with SCMR trait. The genomic regions putatively linked with two traits may be investigated in greater detail to further improve knowledge about the genetic architecture of HS tolerance in chickpea.
Collapse
Affiliation(s)
- Uday Chand Jha
- 1Indian Institute of Pulses Research (IIPR), Kanpur, UP 208 024 India
| | - Rintu Jha
- 1Indian Institute of Pulses Research (IIPR), Kanpur, UP 208 024 India
| | - Abhishek Bohra
- 1Indian Institute of Pulses Research (IIPR), Kanpur, UP 208 024 India
| | - Swarup Kumar Parida
- 2National Institute of Plant Genome Research (NIPGR), New Delhi, 110067 India
| | - Paresh Chandra Kole
- 3Department of Genetics & Plant Breeding and Crop Physiology, Institute of Agriculture, Visva Bharati University, Sriniketan, Bolpur, West Bengal 731236 India
| | - Virevol Thakro
- 2National Institute of Plant Genome Research (NIPGR), New Delhi, 110067 India
| | - Deepak Singh
- Indian Agricultural Statistical Research Institute (IASRI), New Delhi, India
| | | |
Collapse
|
161
|
Comprehensive Analysis of the Cork Oak (Quercus suber) Transcriptome Involved in the Regulation of Bud Sprouting. FORESTS 2017. [DOI: 10.3390/f8120486] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
162
|
Dhakarey R, Raorane ML, Treumann A, Peethambaran PK, Schendel RR, Sahi VP, Hause B, Bunzel M, Henry A, Kohli A, Riemann M. Physiological and Proteomic Analysis of the Rice Mutant cpm2 Suggests a Negative Regulatory Role of Jasmonic Acid in Drought Tolerance. FRONTIERS IN PLANT SCIENCE 2017; 8:1903. [PMID: 29250082 PMCID: PMC5715382 DOI: 10.3389/fpls.2017.01903] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/20/2017] [Indexed: 05/18/2023]
Abstract
It is widely known that numerous adaptive responses of drought-stressed plants are stimulated by chemical messengers known as phytohormones. Jasmonic acid (JA) is one such phytohormone. But there are very few reports revealing its direct implication in drought related responses or its cross-talk with other phytohormones. In this study, we compared the morpho-physiological traits and the root proteome of a wild type (WT) rice plant with its JA biosynthesis mutant coleoptile photomorphogenesis 2 (cpm2), disrupted in the allene oxide cyclase (AOC) gene, for insights into the role of JA under drought. The mutant had higher stomatal conductance, higher water use efficiency and higher shoot ABA levels under severe drought as compared to the WT. Notably, roots of cpm2 were better developed compared to the WT under both, control and drought stress conditions. Root proteome was analyzed using the Tandem Mass Tag strategy to better understand this difference at the molecular level. Expectedly, AOC was unique but notably highly abundant under drought in the WT. Identification of other differentially abundant proteins (DAPs) suggested increased energy metabolism (i.e., increased mobilization of resources) and reactive oxygen species scavenging in cpm2 under drought. Additionally, various proteins involved in secondary metabolism, cell growth and cell wall synthesis were also more abundant in cpm2 roots. Proteome-guided transcript, metabolite, and histological analyses provided further insights into the favorable adaptations and responses, most likely orchestrated by the lack of JA, in the cpm2 roots. Our results in cpm2 are discussed in the light of JA crosstalk to other phytohormones. These results together pave the path for understanding the precise role of JA during drought stress in rice.
Collapse
Affiliation(s)
- Rohit Dhakarey
- Molecular Cell Biology, Institute of Botany, Karlsruhe Institute of Technology, Karlsruhe, Germany
- International Rice Research Institute, Los Baños, Philippines
| | - Manish L. Raorane
- Molecular Cell Biology, Institute of Botany, Karlsruhe Institute of Technology, Karlsruhe, Germany
- International Rice Research Institute, Los Baños, Philippines
| | - Achim Treumann
- Newcastle University Protein and Proteome Analysis, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | | | - Rachel R. Schendel
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Vaidurya P. Sahi
- Molecular Cell Biology, Institute of Botany, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Bettina Hause
- Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Mirko Bunzel
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Amelia Henry
- International Rice Research Institute, Los Baños, Philippines
| | - Ajay Kohli
- International Rice Research Institute, Los Baños, Philippines
| | - Michael Riemann
- Molecular Cell Biology, Institute of Botany, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
163
|
Samad‐Zamini M, Schweiger W, Nussbaumer T, Mayer KF, Buerstmayr H. Time-course expression QTL-atlas of the global transcriptional response of wheat to Fusarium graminearum. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1453-1464. [PMID: 28332274 PMCID: PMC5633761 DOI: 10.1111/pbi.12729] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/11/2017] [Accepted: 03/16/2017] [Indexed: 05/09/2023]
Abstract
Fusarium head blight is a devastating disease of small grain cereals such as bread wheat (Triticum aestivum). The pathogen switches from a biotrophic to a nectrotrophic lifestyle in course of disease development forcing its host to adapt its defence strategies. Using a genetical genomics approach, we illustrate genome-wide reconfigurations of genetic control over transcript abundances between two decisive time points after inoculation with the causative pathogen Fusarium graminearum. Whole transcriptome measurements have been recorded for 163 lines of a wheat doubled haploid population segregating for several resistance genes yielding 15 552 at 30 h and 15 888 eQTL at 50 h after inoculation. The genetic map saturated with transcript abundance-derived markers identified of a novel QTL on chromosome 6A, besides the previously reported QTL Fhb1 and Qfhs.ifa-5A. We find a highly different distribution of eQTL between time points with about 40% of eQTL being unique for the respective assessed time points. But also for more than 20% of genes governed by eQTL at either time point, genetic control changes in time. These changes are reflected in the dynamic compositions of three major regulatory hotspots on chromosomes 2B, 4A and 5A. In particular, control of defence-related biological mechanisms concentrated in the hotspot at 4A shift to hotspot 2B as the disease progresses. Hotspots do not colocalize with phenotypic QTL, and within their intervals no higher than expected number of eQTL was detected. Thus, resistance conferred by either QTL is mediated by few or single genes.
Collapse
Affiliation(s)
- Mina Samad‐Zamini
- Institute for Biotechnology in Plant Production (IFA‐Tulln)BOKU ‐ University of Natural Resources and Life SciencesTullnAustria
| | - Wolfgang Schweiger
- Institute for Biotechnology in Plant Production (IFA‐Tulln)BOKU ‐ University of Natural Resources and Life SciencesTullnAustria
- Present address:
BIOMIN Research CenterTulln3430Austria
| | - Thomas Nussbaumer
- Plant Genome and Systems BiologyHelmholtz Zentrum MünchenNeuherbergGermany
- Present address:
Division of Computational System BiologyDepartment of Microbiology and Ecosystem ScienceUniversity of ViennaVienna1090Austria
| | - Klaus F.X. Mayer
- Plant Genome and Systems BiologyHelmholtz Zentrum MünchenNeuherbergGermany
| | - Hermann Buerstmayr
- Institute for Biotechnology in Plant Production (IFA‐Tulln)BOKU ‐ University of Natural Resources and Life SciencesTullnAustria
| |
Collapse
|
164
|
Fox AR, Maistriaux LC, Chaumont F. Toward understanding of the high number of plant aquaporin isoforms and multiple regulation mechanisms. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 264:179-187. [PMID: 28969798 DOI: 10.1016/j.plantsci.2017.07.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/14/2017] [Accepted: 07/21/2017] [Indexed: 05/20/2023]
Abstract
Since the discovery of the first plant aquaporin (AQP) in 1993, our conception of the way plants control cell water homeostasis as well as their global water balance has been revisited. Plant AQPs constitute a large family of evolutionarily related channels that, in addition to water, can also facilitate the membrane diffusion of a number of small solutes, such as urea, CO2, H2O2, ammonia, metalloids, and even ions, indicating a wide range of cellular functions. At the cellular level, AQPs are subject to various regulation mechanisms leading to active/inactive channels in their target membranes. In this review, we discuss several specific questions that need to be addressed in future research. Why are so many different AQPs simultaneously expressed in specific cellular types? How is their selectivity to different solutes controlled (in particular in the case of multiple permeation properties)? What does the molecular interaction between AQPs and other molecules tell us about their regulation and their involvement in specific cellular and physiological processes? Resolving these questions will definitely help us better understand the physiological advantages that plants have to express and regulate so many AQP isoforms.
Collapse
Affiliation(s)
- Ana Romina Fox
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, B-1348 Louvain-la-Neuve, Belgium
| | - Laurie C Maistriaux
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, B-1348 Louvain-la-Neuve, Belgium
| | - François Chaumont
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, B-1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
165
|
Zhang DY, Kumar M, Xu L, Wan Q, Huang YH, Xu ZL, He XL, Ma JB, Pandey GK, Shao HB. Genome-wide identification of Major Intrinsic Proteins in Glycine soja and characterization of GmTIP2;1 function under salt and water stress. Sci Rep 2017; 7:4106. [PMID: 28646139 PMCID: PMC5482899 DOI: 10.1038/s41598-017-04253-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 05/18/2017] [Indexed: 02/06/2023] Open
Abstract
In different plant species, aquaporins (AQPs) facilitate water movement by regulating root hydraulic conductivity under diverse stress conditions such as salt and water stresses. To improve survival and yield of crop plants, a detailed understanding of stress responses is imperative and required. We used Glycine soja genome as a tool to study AQPs, considering it shows abundant genetic diversity and higher salt environment tolerance features and identified 62 Gs AQP genes. Additionally, this study identifies major aquaporins responsive to salt and drought stresses in soybean and elucidates their mode of action through yeast two-hybrid assay and BiFC. Under stress condition, the expression analysis of AQPs in roots and leaves of two contrasting ecotypes of soybean revealed diverse expression patterns suggesting complex regulation at transcriptional level. Based on expression analysis, we identify GmTIP2;1 as a potential candidate involved in salinity and drought responses. The overexpression of GmTIP2;1 in Saccharomyces cerevisiae as well as in-planta enhanced salt and drought tolerance. We identified that GmTIP2;1 forms homodimers as well as interacts with GmTIP1;7 and GmTIP1;8. This study augments our knowledge of stress responsive pathways and also establishes GmTIP2;1 as a new stress responsive gene in imparting salt stress tolerance in soybean.
Collapse
Affiliation(s)
- Da-Yong Zhang
- Salt-soil Agricultural Center, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Zhongling Street No.50, Nanjing, 210014, China
| | - Manoj Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ling Xu
- Salt-soil Agricultural Center, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Zhongling Street No.50, Nanjing, 210014, China
| | - Qun Wan
- Salt-soil Agricultural Center, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Zhongling Street No.50, Nanjing, 210014, China
| | - Yi-Hong Huang
- Salt-soil Agricultural Center, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Zhongling Street No.50, Nanjing, 210014, China
| | - Zhao-Long Xu
- Salt-soil Agricultural Center, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Zhongling Street No.50, Nanjing, 210014, China
| | - Xiao-Lan He
- Salt-soil Agricultural Center, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Zhongling Street No.50, Nanjing, 210014, China
| | - Jin-Biao Ma
- Key Laboratory of Biogeography and Bioresources in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences Urumqi, Urumqi, China
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India.
| | - Hong-Bo Shao
- Salt-soil Agricultural Center, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Zhongling Street No.50, Nanjing, 210014, China.
- JLCBE, Yancheng Teachers University, Xiwang Avenue 1, Yancheng, 224002, China.
| |
Collapse
|
166
|
Sonah H, Deshmukh RK, Labbé C, Bélanger RR. Analysis of aquaporins in Brassicaceae species reveals high-level of conservation and dynamic role against biotic and abiotic stress in canola. Sci Rep 2017; 7:2771. [PMID: 28584277 PMCID: PMC5459863 DOI: 10.1038/s41598-017-02877-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/19/2017] [Indexed: 01/11/2023] Open
Abstract
Aquaporins (AQPs) are of vital importance in the cellular transport system of all living organisms. In this study, genome-wide identification, distribution, and characterization of AQPs were determined in Arabidopsis lyrata, Capsella grandiflora, C. rubella, Eutrema salsugineum, Brassica rapa, B. oleracea, and B. napus (canola). Classification and phylogeny of AQPs revealed the loss of XIPs and NIP-IIIs in all species. Characterization of distinctive AQP features showed a high level of conservation in spacing between NPA-domains, and selectivity filters. Interestingly, TIP3s were found to be highly expressed in developing seeds, suggesting their role in seed desiccation. Analysis of available RNA-seq data obtained under biotic and abiotic stresses led to the identification of AQPs involved in stress tolerance mechanisms in canola. In addition, analysis of the effect of ploidy level, and resulting gene dose effect performed with the different combinations of Brassica A and C genomes revealed that more than 70% of AQPs expression were dose-independent, thereby supporting their role in stress alleviation. This first in-depth characterization of Brassicaceae AQPs highlights transport mechanisms and related physiological processes that could be exploited in breeding programs of stress-tolerant cultivars.
Collapse
Affiliation(s)
- Humira Sonah
- Département de phytologie-Faculté des Sciences de l'agriculture et de l'alimentation, Université Laval, Québec City, QC, Canada
| | - Rupesh K Deshmukh
- Département de phytologie-Faculté des Sciences de l'agriculture et de l'alimentation, Université Laval, Québec City, QC, Canada
| | - Caroline Labbé
- Département de phytologie-Faculté des Sciences de l'agriculture et de l'alimentation, Université Laval, Québec City, QC, Canada
| | - Richard R Bélanger
- Département de phytologie-Faculté des Sciences de l'agriculture et de l'alimentation, Université Laval, Québec City, QC, Canada.
| |
Collapse
|
167
|
Groszmann M, Osborn HL, Evans JR. Carbon dioxide and water transport through plant aquaporins. PLANT, CELL & ENVIRONMENT 2017; 40:938-961. [PMID: 27739588 DOI: 10.1111/pce.12844] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/01/2016] [Accepted: 09/22/2016] [Indexed: 05/25/2023]
Abstract
Aquaporins are channel proteins that function to increase the permeability of biological membranes. In plants, aquaporins are encoded by multigene families that have undergone substantial diversification in land plants. The plasma membrane intrinsic proteins (PIPs) subfamily of aquaporins is of particular interest given their potential to improve plant water relations and photosynthesis. Flowering plants have between 7 and 28 PIP genes. Their expression varies with tissue and cell type, through development and in response to a variety of factors, contributing to the dynamic and tissue specific control of permeability. There are a growing number of PIPs shown to act as water channels, but those altering membrane permeability to CO2 are more limited. The structural basis for selective substrate specificities has not yet been resolved, although a few key amino acid positions have been identified. Several regions important for dimerization, gating and trafficking are also known. PIP aquaporins assemble as tetramers and their properties depend on the monomeric composition. PIPs control water flux into and out of veins and stomatal guard cells and also increase membrane permeability to CO2 in mesophyll and stomatal guard cells. The latter increases the effectiveness of Rubisco and can potentially influence transpiration efficiency.
Collapse
Affiliation(s)
- Michael Groszmann
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| | - Hannah L Osborn
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| | - John R Evans
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| |
Collapse
|
168
|
Lloret A, Conejero A, Leida C, Petri C, Gil-Muñoz F, Burgos L, Badenes ML, Ríos G. Dual regulation of water retention and cell growth by a stress-associated protein (SAP) gene in Prunus. Sci Rep 2017; 7:332. [PMID: 28336950 PMCID: PMC5428470 DOI: 10.1038/s41598-017-00471-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 02/27/2017] [Indexed: 01/21/2023] Open
Abstract
We have identified a gene (PpSAP1) of Prunus persica coding for a stress-associated protein (SAP) containing Zn-finger domains A20 and AN1. SAPs have been described as regulators of the abiotic stress response in plant species, emerging as potential candidates for improvement of stress tolerance in plants. PpSAP1 was highly expressed in leaves and dormant buds, being down-regulated before bud dormancy release. PpSAP1 expression was moderately induced by water stresses and heat in buds. In addition, it was found that PpSAP1 strongly interacts with polyubiquitin proteins in the yeast two-hybrid system. The overexpression of PpSAP1 in transgenic plum plants led to alterations in leaf shape and an increase of water retention under drought stress. Moreover, we established that leaf morphological alterations were concomitant with a reduced cell size and down-regulation of genes involved in cell growth, such as GROWTH-REGULATING FACTOR (GRF)1-like, TONOPLAST INTRINSIC PROTEIN (TIP)-like, and TARGET OF RAPAMYCIN (TOR)-like. Especially, the inverse expression pattern of PpSAP1 and TOR-like in transgenic plum and peach buds suggests a role of PpSAP1 in cell expansion through the regulation of TOR pathway.
Collapse
Affiliation(s)
- Alba Lloret
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain
| | - Ana Conejero
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain
| | - Carmen Leida
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain
| | - César Petri
- Department of Plant Production, Instituto de Biotecnología Vegetal-Universidad Politécnita de Cartagena (IBV-UPCT), 30202, Cartagena, Murcia, Spain
| | - Francisco Gil-Muñoz
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain
| | - Lorenzo Burgos
- Group of Fruit Tree Biotechnology, Department of Plant Breeding, CEBAS-CSIC, 30100, Murcia, Spain
| | - María Luisa Badenes
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain
| | - Gabino Ríos
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain.
| |
Collapse
|
169
|
Kayum MA, Park JI, Nath UK, Biswas MK, Kim HT, Nou IS. Genome-wide expression profiling of aquaporin genes confer responses to abiotic and biotic stresses in Brassica rapa. BMC PLANT BIOLOGY 2017; 17:23. [PMID: 28122509 PMCID: PMC5264328 DOI: 10.1186/s12870-017-0979-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/17/2017] [Indexed: 05/20/2023]
Abstract
BACKGROUND Plants contain a range of aquaporin (AQP) proteins, which act as transporter of water and nutrient molecules through living membranes. AQPs also participate in water uptake through the roots and contribute to water homeostasis in leaves. RESULTS In this study, we identified 59 AQP genes in the B. rapa database and Br135K microarray dataset. Phylogenetic analysis revealed four distinct subfamilies of AQP genes: plasma membrane intrinsic proteins (PIPs), tonoplast intrinsic proteins (TIPs), NOD26-like intrinsic proteins (NIPs) and small basic intrinsic proteins (SIPs). Microarray analysis showed that the majority of PIP subfamily genes had differential transcript abundance between two B. rapa inbred lines Chiifu and Kenshin that differ in their susceptibility to cold. In addition, all BrPIP genes showed organ-specific expression. Out of 22 genes, 12, 7 and 17 were up-regulated in response to cold, drought and salt stresses, respectively. In addition, 18 BrPIP genes were up-regulated under ABA treatment and 4 BrPIP genes were up-regulated upon F. oxysporum f. sp. conglutinans infection. Moreover, all BrPIP genes showed down-regulation under waterlogging stress, reflecting likely the inactivation of AQPs controlling symplastic water movement. CONCLUSIONS This study provides a comprehensive analysis of AQPs in B. rapa and details the expression of 22 members of the BrPIP subfamily. These results provide insight into stress-related biological functions of each PIP gene of the AQP family, which will promote B. rapa breeding programs.
Collapse
Affiliation(s)
- Md. Abdul Kayum
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922 South Korea
| | - Jong-In Park
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922 South Korea
| | - Ujjal Kumar Nath
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922 South Korea
| | - Manosh Kumar Biswas
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922 South Korea
| | - Hoy-Taek Kim
- University-Industry Cooperation Foundation, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922 South Korea
| | - Ill-Sup Nou
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922 South Korea
| |
Collapse
|
170
|
|
171
|
Quiroga G, Erice G, Aroca R, Chaumont F, Ruiz-Lozano JM. Enhanced Drought Stress Tolerance by the Arbuscular Mycorrhizal Symbiosis in a Drought-Sensitive Maize Cultivar Is Related to a Broader and Differential Regulation of Host Plant Aquaporins than in a Drought-Tolerant Cultivar. FRONTIERS IN PLANT SCIENCE 2017; 8:1056. [PMID: 28674550 DOI: 10.1007/s,00122-015-2453-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/31/2017] [Indexed: 05/23/2023]
Abstract
The arbuscular mycorrhizal (AM) symbiosis has been shown to improve maize tolerance to different drought stress scenarios by regulating a wide range of host plants aquaporins. The objective of this study was to highlight the differences in aquaporin regulation by comparing the effects of the AM symbiosis on root aquaporin gene expression and plant physiology in two maize cultivars with contrasting drought sensitivity. This information would help to identify key aquaporin genes involved in the enhanced drought tolerance by the AM symbiosis. Results showed that when plants were subjected to drought stress the AM symbiosis induced a higher improvement of physiological parameters in drought-sensitive plants than in drought-tolerant plants. These include efficiency of photosystem II, membrane stability, accumulation of soluble sugars and plant biomass production. Thus, drought-sensitive plants obtained higher physiological benefit from the AM symbiosis. In addition, the genes ZmPIP1;1, ZmPIP1;3, ZmPIP1;4, ZmPIP1;6, ZmPIP2;2, ZmPIP2;4, ZmTIP1;1, and ZmTIP2;3 were down-regulated by the AM symbiosis in the drought-sensitive cultivar and only ZmTIP4;1 was up-regulated. In contrast, in the drought-tolerant cultivar only three of the studied aquaporin genes (ZmPIP1;6, ZmPIP2;2, and ZmTIP4;1) were regulated by the AM symbiosis, resulting induced. Results in the drought-sensitive cultivar are in line with the hypothesis that down-regulation of aquaporins under water deprivation could be a way to minimize water loss, and the AM symbiosis could be helping the plant in this regulation. Indeed, during drought stress episodes, water conservation is critical for plant survival and productivity, and is achieved by an efficient uptake and stringently regulated water loss, in which aquaporins participate. Moreover, the broader and contrasting regulation of these aquaporins by the AM symbiosis in the drought-sensitive than the drought-tolerant cultivar suggests a role of these aquaporins in water homeostasis or in the transport of other solutes of physiological importance in both cultivars under drought stress conditions, which may be important for the AM-induced tolerance to drought stress.
Collapse
Affiliation(s)
- Gabriela Quiroga
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín - Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Gorka Erice
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín - Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Ricardo Aroca
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín - Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - François Chaumont
- Institut des Sciences de la Vie, Université catholique de LouvainLouvain-la-Neuve, Belgium
| | - Juan M Ruiz-Lozano
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín - Consejo Superior de Investigaciones CientíficasGranada, Spain
| |
Collapse
|
172
|
Quiroga G, Erice G, Aroca R, Chaumont F, Ruiz-Lozano JM. Enhanced Drought Stress Tolerance by the Arbuscular Mycorrhizal Symbiosis in a Drought-Sensitive Maize Cultivar Is Related to a Broader and Differential Regulation of Host Plant Aquaporins than in a Drought-Tolerant Cultivar. FRONTIERS IN PLANT SCIENCE 2017; 8:1056. [PMID: 28674550 PMCID: PMC5474487 DOI: 10.3389/fpls.2017.01056] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/31/2017] [Indexed: 05/03/2023]
Abstract
The arbuscular mycorrhizal (AM) symbiosis has been shown to improve maize tolerance to different drought stress scenarios by regulating a wide range of host plants aquaporins. The objective of this study was to highlight the differences in aquaporin regulation by comparing the effects of the AM symbiosis on root aquaporin gene expression and plant physiology in two maize cultivars with contrasting drought sensitivity. This information would help to identify key aquaporin genes involved in the enhanced drought tolerance by the AM symbiosis. Results showed that when plants were subjected to drought stress the AM symbiosis induced a higher improvement of physiological parameters in drought-sensitive plants than in drought-tolerant plants. These include efficiency of photosystem II, membrane stability, accumulation of soluble sugars and plant biomass production. Thus, drought-sensitive plants obtained higher physiological benefit from the AM symbiosis. In addition, the genes ZmPIP1;1, ZmPIP1;3, ZmPIP1;4, ZmPIP1;6, ZmPIP2;2, ZmPIP2;4, ZmTIP1;1, and ZmTIP2;3 were down-regulated by the AM symbiosis in the drought-sensitive cultivar and only ZmTIP4;1 was up-regulated. In contrast, in the drought-tolerant cultivar only three of the studied aquaporin genes (ZmPIP1;6, ZmPIP2;2, and ZmTIP4;1) were regulated by the AM symbiosis, resulting induced. Results in the drought-sensitive cultivar are in line with the hypothesis that down-regulation of aquaporins under water deprivation could be a way to minimize water loss, and the AM symbiosis could be helping the plant in this regulation. Indeed, during drought stress episodes, water conservation is critical for plant survival and productivity, and is achieved by an efficient uptake and stringently regulated water loss, in which aquaporins participate. Moreover, the broader and contrasting regulation of these aquaporins by the AM symbiosis in the drought-sensitive than the drought-tolerant cultivar suggests a role of these aquaporins in water homeostasis or in the transport of other solutes of physiological importance in both cultivars under drought stress conditions, which may be important for the AM-induced tolerance to drought stress.
Collapse
Affiliation(s)
- Gabriela Quiroga
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín – Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Gorka Erice
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín – Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Ricardo Aroca
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín – Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - François Chaumont
- Institut des Sciences de la Vie, Université catholique de LouvainLouvain-la-Neuve, Belgium
| | - Juan M. Ruiz-Lozano
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín – Consejo Superior de Investigaciones CientíficasGranada, Spain
- *Correspondence: Juan M. Ruiz-Lozano,
| |
Collapse
|
173
|
Rodrigues MI, Takeda AAS, Bravo JP, Maia IG. The Eucalyptus Tonoplast Intrinsic Protein (TIP) Gene Subfamily: Genomic Organization, Structural Features, and Expression Profiles. FRONTIERS IN PLANT SCIENCE 2016; 7:1810. [PMID: 27965702 PMCID: PMC5127802 DOI: 10.3389/fpls.2016.01810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
Plant aquaporins are water channels implicated in various physiological processes, including growth, development and adaptation to stress. In this study, the Tonoplast Intrinsic Protein (TIP) gene subfamily of Eucalyptus, an economically important woody species, was investigated and characterized. A genome-wide survey of the Eucalyptus grandis genome revealed the presence of eleven putative TIP genes (referred as EgTIP), which were individually assigned by phylogeny to each of the classical TIP1-5 groups. Homology modeling confirmed the presence of the two highly conserved NPA (Asn-Pro-Ala) motifs in the identified EgTIPs. Residue variations in the corresponding selectivity filters, that might reflect differences in EgTIP substrate specificity, were observed. All EgTIP genes, except EgTIP5.1, were transcribed and the majority of them showed organ/tissue-enriched expression. Inspection of the EgTIP promoters revealed the presence of common cis-regulatory elements implicated in abiotic stress and hormone responses pointing to an involvement of the identified genes in abiotic stress responses. In line with these observations, additional gene expression profiling demonstrated increased expression under polyethylene glycol-imposed osmotic stress. Overall, the results obtained suggest that these novel EgTIPs might be functionally implicated in eucalyptus adaptation to stress.
Collapse
Affiliation(s)
- Marcela I. Rodrigues
- Department of Genetics, Institute of Biosciences of Botucatu, São Paulo State UniversityBotucatu, Brazil
| | - Agnes A. S. Takeda
- Department of Physics and Biophysics, Institute of Biosciences of Botucatu, São Paulo State UniversityBotucatu, Brazil
- Institute of Biotechnology, São Paulo State UniversityBotucatu, Brazil
| | - Juliana P. Bravo
- Department of Genetics, Institute of Biosciences of Botucatu, São Paulo State UniversityBotucatu, Brazil
| | - Ivan G. Maia
- Department of Genetics, Institute of Biosciences of Botucatu, São Paulo State UniversityBotucatu, Brazil
| |
Collapse
|
174
|
Wang M, Ding L, Gao L, Li Y, Shen Q, Guo S. The Interactions of Aquaporins and Mineral Nutrients in Higher Plants. Int J Mol Sci 2016; 17:E1229. [PMID: 27483251 PMCID: PMC5000627 DOI: 10.3390/ijms17081229] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/21/2016] [Accepted: 07/26/2016] [Indexed: 12/21/2022] Open
Abstract
Aquaporins, major intrinsic proteins (MIPs) present in the plasma and intracellular membranes, facilitate the transport of small neutral molecules across cell membranes in higher plants. Recently, progress has been made in understanding the mechanisms of aquaporin subcellular localization, transport selectivity, and gating properties. Although the role of aquaporins in maintaining the plant water status has been addressed, the interactions between plant aquaporins and mineral nutrients remain largely unknown. This review highlights the roles of various aquaporin orthologues in mineral nutrient uptake and transport, as well as the regulatory effects of mineral nutrients on aquaporin expression and activity, and an integrated link between aquaporins and mineral nutrient metabolism was identified.
Collapse
Affiliation(s)
- Min Wang
- Jiangsu Key Lab for Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Lei Ding
- Institut des Sciences de la Vie, Université Catholique de Louvain, Louvain-la-Neuve B-1348, Belgium.
| | - Limin Gao
- Jiangsu Key Lab for Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yingrui Li
- Jiangsu Key Lab for Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qirong Shen
- Jiangsu Key Lab for Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shiwei Guo
- Jiangsu Key Lab for Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
175
|
Alavilli H, Awasthi JP, Rout GR, Sahoo L, Lee BH, Panda SK. Overexpression of a Barley Aquaporin Gene, HvPIP2;5 Confers Salt and Osmotic Stress Tolerance in Yeast and Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:1566. [PMID: 27818670 PMCID: PMC5073208 DOI: 10.3389/fpls.2016.01566] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 10/05/2016] [Indexed: 05/19/2023]
Abstract
We characterized an aquaporin gene HvPIP2;5 from Hordeum vulgare and investigated its physiological roles in heterologous expression systems, yeast and Arabidopsis, under high salt and high osmotic stress conditions. In yeast, the expression of HvPIP2;5 enhanced abiotic stress tolerance under high salt and high osmotic conditions. Arabidopsis plants overexpressing HvPIP2;5 also showed better stress tolerance in germination and root growth under high salt and high osmotic stresses than the wild type (WT). HvPIP2;5 overexpressing plants were able to survive and recover after a 3-week drought period unlike the control plants which wilted and died during stress treatment. Indeed, overexpression of HvPIP2;5 caused higher retention of chlorophylls and water under salt and osmotic stresses than did control. We also observed lower accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA), an end-product of lipid peroxidation in HvPIP2;5 overexpressing plants than in WT. These results suggest that HvPIP2;5 overexpression brought about stress tolerance, at least in part, by reducing the secondary oxidative stress caused by salt and osmotic stresses. Consistent with these stress tolerant phenotypes, HvPIP2;5 overexpressing Arabidopsis lines showed higher expression and activities of ROS scavenging enzymes such as catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), and ascorbate peroxidase (APX) under salt and osmotic stresses than did WT. In addition, the proline biosynthesis genes, Δ 1-Pyrroline-5-Carboxylate Synthase 1 and 2 (P5CS1 and P5CS2) were up-regulated in HvPIP2;5 overexpressing plants under salt and osmotic stresses, which coincided with increased levels of the osmoprotectant proline. Together, these results suggested that HvPIP2;5 overexpression enhanced stress tolerance to high salt and high osmotic stresses by increasing activities and/or expression of ROS scavenging enzymes and osmoprotectant biosynthetic genes.
Collapse
Affiliation(s)
| | - Jay Prakash Awasthi
- Plant Molecular Biotechnology Laboratory, Department of Life Science and Bioinformatics, Assam UniversitySilchar, India
| | - Gyana R. Rout
- Department of Agricultural Biotechnology, Orissa University of Agriculture and TechnologyBhubaneswar, India
| | - Lingaraj Sahoo
- Department of Bioscience and Biotechnology, Indian Institute of TechnologyGuwahati, India
| | - Byeong-ha Lee
- Department of Life Science, Sogang UniversitySeoul, Korea
- *Correspondence: Byeong-ha Lee
| | - Sanjib Kumar Panda
- Plant Molecular Biotechnology Laboratory, Department of Life Science and Bioinformatics, Assam UniversitySilchar, India
- Sanjib Kumar Panda
| |
Collapse
|
176
|
Galindo-González L, Deyholos MK. RNA-seq Transcriptome Response of Flax ( Linum usitatissimum L.) to the Pathogenic Fungus Fusarium oxysporum f. sp. lini. FRONTIERS IN PLANT SCIENCE 2016; 7:1766. [PMID: 27933082 PMCID: PMC5121121 DOI: 10.3389/fpls.2016.01766] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/09/2016] [Indexed: 05/19/2023]
Abstract
Fusarium oxysporum f. sp. lini is a hemibiotrophic fungus that causes wilt in flax. Along with rust, fusarium wilt has become an important factor in flax production worldwide. Resistant flax cultivars have been used to manage the disease, but the resistance varies, depending on the interactions between specific cultivars and isolates of the pathogen. This interaction has a strong molecular basis, but no genomic information is available on how the plant responds to attempted infection, to inform breeding programs on potential candidate genes to evaluate or improve resistance across cultivars. In the current study, disease progression in two flax cultivars [Crop Development Center (CDC) Bethune and Lutea], showed earlier disease symptoms and higher susceptibility in the later cultivar. Chitinase gene expression was also divergent and demonstrated and earlier molecular response in Lutea. The most resistant cultivar (CDC Bethune) was used for a full RNA-seq transcriptome study through a time course at 2, 4, 8, and 18 days post-inoculation (DPI). While over 100 genes were significantly differentially expressed at both 4 and 8 DPI, the broadest deployment of plant defense responses was evident at 18 DPI with transcripts of more than 1,000 genes responding to the treatment. These genes evidenced a reception and transduction of pathogen signals, a large transcriptional reprogramming, induction of hormone signaling, activation of pathogenesis-related genes, and changes in secondary metabolism. Among these, several key genes that consistently appear in studies of plant-pathogen interactions, had increased transcript abundance in our study, and constitute suitable candidates for resistance breeding programs. These included: an induced RPMI-induced protein kinase; transcription factors WRKY3, WRKY70, WRKY75, MYB113, and MYB108; the ethylene response factors ERF1 and ERF14; two genes involved in auxin/glucosinolate precursor synthesis (CYP79B2 and CYP79B3); the flavonoid-related enzymes chalcone synthase, dihydroflavonol reductase and multiple anthocyanidin synthases; and a peroxidase implicated in lignin formation (PRX52). Additionally, regulation of some genes indicated potential pathogen manipulation to facilitate infection; these included four disease resistance proteins that were repressed, indole acetic acid amido/amino hydrolases which were upregulated, activated expansins and glucanases, amino acid transporters and aquaporins, and finally, repression of major latex proteins.
Collapse
Affiliation(s)
| | - Michael K. Deyholos
- IK Barber School of Arts and Sciences, University of British Columbia, KelownaBC, Canada
- *Correspondence: Michael K. Deyholos,
| |
Collapse
|
177
|
Aroca R, Ferrante A, Vernieri P, Chrispeels MJ. Drought, abscisic acid and transpiration rate effects on the regulation of PIP aquaporin gene expression and abundance in Phaseolus vulgaris plants. ANNALS OF BOTANY 2006; 130:735-745. [PMID: 28303406 DOI: 10.1007/s10265-017-0920-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/23/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND AIMS Drought causes a decline of root hydraulic conductance, which aside from embolisms, is governed ultimately by aquaporins. Multiple factors probably regulate aquaporin expression, abundance and activity in leaf and root tissues during drought; among these are the leaf transpiration rate, leaf water status, abscisic acid (ABA) and soil water content. Here a study is made of how these factors could influence the response of aquaporin to drought. METHODS Three plasma membrane intrinsic proteins (PIPs) or aquaporins were cloned from Phaseolus vulgaris plants and their expression was analysed after 4 d of water deprivation and also 1 d after re-watering. The effects of ABA and of methotrexate (MTX), an inhibitor of stomatal opening, on gene expression and protein abundance were also analysed. Protein abundance was examined using antibodies against PIP1 and PIP2 aquaporins. At the same time, root hydraulic conductance (L), transpiration rate, leaf water status and ABA tissue concentration were measured. KEY RESULTS None of the treatments (drought, ABA or MTX) changed the leaf water status or tissue ABA concentration. The three treatments caused a decline in the transpiration rate and raised PVPIP2;1 gene expression and PIP1 protein abundance in the leaves. In the roots, only the drought treatment raised the expression of the three PIP genes examined, while at the same time diminishing PIP2 protein abundance and L. On the other hand, ABA raised both root PIP1 protein abundance and L. CONCLUSIONS The rise of PvPIP2;1 gene expression and PIP1 protein abundance in the leaves of P. vulgaris plants subjected to drought was correlated with a decline in the transpiration rate. At the same time, the increase in the expression of the three PIP genes examined caused by drought and the decline of PIP2 protein abundance in the root tissues were not correlated with any of the parameters measured.
Collapse
Affiliation(s)
- Ricardo Aroca
- Division of Biological Sciences, University of California San Diego La Jolla, CA 92093-0116, USA.
| | | | | | | |
Collapse
|