151
|
Hošek J, Kos J, Strhársky T, Černá L, Štarha P, Vančo J, Trávníček Z, Devínsky F, Jampílek J. Investigation of Anti-Inflammatory Potential of N-Arylcinnamamide Derivatives. Molecules 2019; 24:E4531. [PMID: 31835703 PMCID: PMC6943612 DOI: 10.3390/molecules24244531] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 01/22/2023] Open
Abstract
A series of sixteen ring-substituted N-arylcinnamanilides, previously described as highly antimicrobially effective against a wide spectrum of bacteria and fungi, together with two new derivatives from this group were prepared and characterized. Moreover, the molecular structure of (2E)-N-(2-bromo-5-fluorophenyl)-3-phenylprop-2-enamide as a model compound was determined using single-crystal X-ray analysis. All the compounds were tested for their anti-inflammatory potential, and most tested compounds significantly attenuated the lipopolysaccharide-induced NF-κB activation and were more potent than the parental cinnamic acid. (2E)-N-[2-Chloro-5-(trifluoromethyl)phenyl]-3-phenylprop-2-enamide, (2E)-N-(2,6-dibromophenyl)- 3-phenylprop-2-enamide, and (2E)-N-(2,5-dichlorophenyl)-3-phenylprop-2-enamide demonstrated the highest inhibition effect on transcription factor NF-κB at the concentration of 2 µM and showed a similar effectiveness as the reference drug prednisone. Several compounds also decreased the level of TNF-α. Nevertheless, subsequent tests showed that the investigated compounds affect neither IκBα level nor MAPKs activity, which suggests that the N-arylcinnamanilides may have a different mode of action to prednisone. The modification of the C(2,5)' or C(2,6)' positions of the anilide core by rather lipophilic and bulky moieties seems to be preferable for the anti-inflammatory potential of these compounds.
Collapse
Affiliation(s)
- Jan Hošek
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic; (J.H.); (J.K.); (T.S.); (L.Č.); (P.Š.); (J.V.); (Z.T.)
| | - Jiří Kos
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic; (J.H.); (J.K.); (T.S.); (L.Č.); (P.Š.); (J.V.); (Z.T.)
| | - Tomáš Strhársky
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic; (J.H.); (J.K.); (T.S.); (L.Č.); (P.Š.); (J.V.); (Z.T.)
| | - Lucie Černá
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic; (J.H.); (J.K.); (T.S.); (L.Č.); (P.Š.); (J.V.); (Z.T.)
| | - Pavel Štarha
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic; (J.H.); (J.K.); (T.S.); (L.Č.); (P.Š.); (J.V.); (Z.T.)
| | - Ján Vančo
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic; (J.H.); (J.K.); (T.S.); (L.Č.); (P.Š.); (J.V.); (Z.T.)
| | - Zdeněk Trávníček
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic; (J.H.); (J.K.); (T.S.); (L.Č.); (P.Š.); (J.V.); (Z.T.)
| | - Ferdinand Devínsky
- Faculty of Pharmacy, Comenius University, Odbojárov 10, 83232 Bratislava, Slovakia
| | - Josef Jampílek
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic; (J.H.); (J.K.); (T.S.); (L.Č.); (P.Š.); (J.V.); (Z.T.)
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 84215 Bratislava, Slovakia
| |
Collapse
|
152
|
Otto M, Wynands B, Lenzen C, Filbig M, Blank LM, Wierckx N. Rational Engineering of Phenylalanine Accumulation in Pseudomonas taiwanensis to Enable High-Yield Production of Trans-Cinnamate. Front Bioeng Biotechnol 2019; 7:312. [PMID: 31824929 PMCID: PMC6882275 DOI: 10.3389/fbioe.2019.00312] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/23/2019] [Indexed: 12/31/2022] Open
Abstract
Microbial biocatalysis represents a promising alternative for the production of a variety of aromatic chemicals, where microorganisms are engineered to convert a renewable feedstock under mild production conditions into a valuable chemical building block. This study describes the rational engineering of the solvent-tolerant bacterium Pseudomonas taiwanensis VLB120 toward accumulation of L-phenylalanine and its conversion into the chemical building block t-cinnamate. We recently reported rational engineering of Pseudomonas toward L-tyrosine accumulation by the insertion of genetic modifications that allow both enhanced flux and prevent aromatics degradation. Building on this knowledge, three genes encoding for enzymes involved in the degradation of L-phenylalanine were deleted to allow accumulation of 2.6 mM of L-phenylalanine from 20 mM glucose. The amino acid was subsequently converted into the aromatic model compound t-cinnamate by the expression of a phenylalanine ammonia-lyase (PAL) from Arabidopsis thaliana. The engineered strains produced t-cinnamate with yields of 23 and 39% Cmol Cmol−1 from glucose and glycerol, respectively. Yields were improved up to 48% Cmol Cmol−1 from glycerol when two enzymes involved in the shikimate pathway were additionally overexpressed, however with negative impact on strain performance and reproducibility. Production titers were increased in fed-batch fermentations, in which 33.5 mM t-cinnamate were produced solely from glycerol, in a mineral medium without additional complex supplements. The aspect of product toxicity was targeted by the utilization of a streamlined, genome-reduced strain, which improves upon the already high tolerance of P. taiwanensis VLB120 toward t-cinnamate.
Collapse
Affiliation(s)
- Maike Otto
- Institute of Bio- and Geosciences (IBG-1: Biotechnology), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Benedikt Wynands
- Institute of Bio- and Geosciences (IBG-1: Biotechnology), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Christoph Lenzen
- Institute of Applied Microbiology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Melanie Filbig
- Institute of Applied Microbiology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Lars M Blank
- Institute of Applied Microbiology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Nick Wierckx
- Institute of Bio- and Geosciences (IBG-1: Biotechnology), Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
153
|
Zhang Y, Wei J, Qiu Y, Niu C, Song Z, Yuan Y, Yue T. Structure-Dependent Inhibition of Stenotrophomonas maltophilia by Polyphenol and Its Impact on Cell Membrane. Front Microbiol 2019; 10:2646. [PMID: 31798564 PMCID: PMC6863799 DOI: 10.3389/fmicb.2019.02646] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/30/2019] [Indexed: 11/16/2022] Open
Abstract
As natural occurring antimicrobial substances, phenolic compounds have been used to inhibit various bacteria. Stenotrophomonas maltophilia 4–1, a strain isolated from food, exhibited spoilage potential in vitro with proteolysis and lipolysis at 25°C. The present study evaluated the antibacterial properties of 13 polyphenols on S. maltophilia 4–1, and selected 6 compounds (ferulic acid, p-coumaric acid, caffeic acid, chlorogenic acid, (−)-epigallocatechin, and phloretin) for binary combination treatments. The results revealed that antibacterial activities of polyphenols were structure-dependent, and cinnamic acid showed strong inhibitory effects, with a minimum inhibitory concentration (MIC) of 0.125 mg/mL. Importantly, we did not observe any obvious synergistic effects across all binary combinations. The antibacterial mechanism of cinnamic acid was related to membrane damage, caused by the loss of cell membrane integrity and alteration of cell morphology. These findings suggest that cinnamic acid is a promising candidate for the control of spoilage bacteria in food.
Collapse
Affiliation(s)
- Yuxiang Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products, Ministry of Agriculture, Yangling, China.,National Engineering Research Center of Agriculture Integration Test, Yangling, China
| | - Jianping Wei
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products, Ministry of Agriculture, Yangling, China.,National Engineering Research Center of Agriculture Integration Test, Yangling, China
| | - Yue Qiu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products, Ministry of Agriculture, Yangling, China.,National Engineering Research Center of Agriculture Integration Test, Yangling, China
| | - Chen Niu
- College of Food Science and Technology, Northwest University, Xi'an, China
| | - Zihan Song
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products, Ministry of Agriculture, Yangling, China.,National Engineering Research Center of Agriculture Integration Test, Yangling, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products, Ministry of Agriculture, Yangling, China.,National Engineering Research Center of Agriculture Integration Test, Yangling, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products, Ministry of Agriculture, Yangling, China.,National Engineering Research Center of Agriculture Integration Test, Yangling, China.,College of Food Science and Technology, Northwest University, Xi'an, China
| |
Collapse
|
154
|
Doyle AA, Stephens JC. A review of cinnamaldehyde and its derivatives as antibacterial agents. Fitoterapia 2019; 139:104405. [PMID: 31707126 DOI: 10.1016/j.fitote.2019.104405] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 02/05/2023]
Abstract
There is a continuing rise in the occurrence of multidrug-resistant bacterial infections. Antibiotic resistance to currently available antibiotics has become a global health issue leading to an urgent need for alternative antibacterial strategies. There has been a renewed interest in the development of antibacterial agents from natural sources, and trans-cinnamaldehyde is an example of a naturally occurring compound that has received significant attention in recent years. Trans-Cinnamaldehyde has been shown to possess substantial antimicrobial activity, as well as an array of other medicinal properties, and represents an intriguing hit compound from which a number of derivatives have been developed. In some cases, these derivatives have been shown to possess improved activity, not only compared to trans-cinnamaldehyde but also to commonly used antibiotics. Therefore, understanding the antibacterial mechanisms of action that these compounds elicit is imperative in order to facilitate their development and the development of new antibacterial agents that could exploit similar mechanistic approaches. The purpose of this review is to provide an overview of current knowledge on the antibacterial activity and mechanisms of action of cinnamaldehyde and its derivatives, and to highlight significant contributions made in this research area. It is hoped that the findings presented in this work will aid the future development of new antibacterial agents.
Collapse
Affiliation(s)
- Amanda A Doyle
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - John C Stephens
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland; The Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
155
|
Tran TN, Pasetto P, Pichon C, Bruant D, Brotons G, Nourry A. Natural rubber based films integrating Zosteric acid analogues as bioactive monomers. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.104343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
156
|
Mishra S, Singh S, Ali A, Gupta AC, Shanker K, Bawankule DU, Luqman S. Microwave-assisted Single Step Cinnamic Acid Derivatization and Evaluation for Cytotoxic Potential. Curr Pharm Biotechnol 2019; 21:236-243. [PMID: 31613725 DOI: 10.2174/1389201020666191015161429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 07/19/2019] [Accepted: 09/20/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Phenylpropylene biosynthesis pathway plays a crucial role in the vanillin and their derivative(s) production in the plants. The intermediate of vanillin synthesis i.e. cinnamic acid (CA) is converted into 2-Hydroxy 4-MethoxyBenzaldehyde (HMB) in Decalepis arayalpathra having a number of therapeutic value. OBJECTIVE Microwave-assisted modifications in cinnamic acid were planned for potential anticancer properties with better yield and efficiency. The present study also confirms the presence of HMB and its precursor i.e. cinnamic acid in D. arayalpathra tubers. METHODS We used a single step Microwave Assisted Synthesis (MAS) to modify cinnamic acid, and then examined the synthetic and natural cinnamic acid derivatives anticancer potential against six human cancer (K-562, WRL-68, A549, A431, MCF-7, and COLO-201) and two normal (L-132 and HEK-293) cell lines at 2, 10 and 50 µg/ml concentrations. RESULTS β-bromostyrene and β -nitrostyrene have shown inhibition with IC50 values ranging 0.10-21 µM and 0.03-0.06 µM, respectively to the cancer cell lines. β-bromostyrene was the most potent anticancer derivative of CA with better cellular safety and biocompatibility. CONCLUSION The present study of microwave-assisted synthesis demonstrates a single-step modification in cinnamic acid. MAS is a fast, reliable, and robust method. The resultant compounds have shown in-vitro anticancer activity against human lung carcinoma and breast adenocarcinoma.
Collapse
Affiliation(s)
- Sonali Mishra
- Analytical Chemistry Department, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow- 226015, India
| | - Shilpi Singh
- Molecular Bioprospection Department, CSIR-CIMAP, Lucknow-226015, India
| | - Arif Ali
- Analytical Chemistry Department, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow- 226015, India
| | - Amit C Gupta
- Molecular Bioprospection Department, CSIR-CIMAP, Lucknow-226015, India
| | - Karuna Shanker
- Analytical Chemistry Department, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow- 226015, India
| | | | - Suaib Luqman
- 2Molecular Bioprospection Department, CSIR-CIMAP, Lucknow-226015, India
| |
Collapse
|
157
|
Buravlev EV, Dvornikova IA, Schevchenko OG, Kutchin AV. Synthesis and Antioxidant Ability of Novel Derivatives Based on
para
‐Coumaric Acid Containing Isobornyl Groups. Chem Biodivers 2019; 16:e1900362. [DOI: 10.1002/cbdv.201900362] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 08/10/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Evgeny V. Buravlev
- Institute of Chemistry, Komi Scientific CenterUral Branch of the Russian Academy of Sciences, 48 Pervomayskaya St. 167000 Syktyvkar, Komi Republic Russian Federation
| | - Irina A. Dvornikova
- Institute of Chemistry, Komi Scientific CenterUral Branch of the Russian Academy of Sciences, 48 Pervomayskaya St. 167000 Syktyvkar, Komi Republic Russian Federation
| | - Oksana G. Schevchenko
- Institute of Biology, Komi Scientific CenterUral Branch of the Russian Academy of Sciences, 28 Kommunisticheskaya St. 167982 Syktyvkar, Komi Republic Russian Federation
| | - Aleksandr V. Kutchin
- Institute of Chemistry, Komi Scientific CenterUral Branch of the Russian Academy of Sciences, 48 Pervomayskaya St. 167000 Syktyvkar, Komi Republic Russian Federation
| |
Collapse
|
158
|
Alber AV, Renault H, Basilio-Lopes A, Bassard JE, Liu Z, Ullmann P, Lesot A, Bihel F, Schmitt M, Werck-Reichhart D, Ehlting J. Evolution of coumaroyl conjugate 3-hydroxylases in land plants: lignin biosynthesis and defense. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:924-936. [PMID: 31038800 DOI: 10.1111/tpj.14373] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/03/2019] [Accepted: 04/17/2019] [Indexed: 05/16/2023]
Abstract
Multiple adaptations were necessary when plants conquered the land. Among them were soluble phenylpropanoids related to plant protection and lignin necessary for upright growth and long-distance water transport. Cytochrome P450 monooxygenase 98 (CYP98) catalyzes a rate-limiting step in phenylpropanoid biosynthesis. Phylogenetic reconstructions suggest that a single copy of CYP98 founded each major land plant lineage (bryophytes, lycophytes, monilophytes, gymnosperms and angiosperms), and was maintained as a single copy in all lineages but the angiosperms. In angiosperms, a series of independent gene duplications and losses occurred. Biochemical assays in four angiosperm species tested showed that 4-coumaroyl-shikimate, a known intermediate in lignin biosynthesis, was the preferred substrate of one member in each species, while independent duplicates in Populus trichocarpa and Amborella trichopoda each showed broad substrate ranges, accepting numerous 4-coumaroyl-esters and -amines, and were thus capable of producing a wide range of hydroxycinnamoyl conjugates. The gymnosperm CYP98 from Pinus taeda showed a broad substrate range, but preferred 4-coumaroyl-shikimate as its best substrate. In contrast, CYP98s from the lycophyte Selaginella moellendorffii and the fern Pteris vittata converted 4-coumaroyl-shikimate poorly in vitro, but were able to use alternative substrates, in particular 4-coumaroyl-anthranilate. Thus, caffeoyl-shikimate appears unlikely to be an intermediate in monolignol biosynthesis in non-seed vascular plants, including ferns. The best substrate for CYP98A34 from the moss Physcomitrella patens was also 4-coumaroyl-anthranilate, while 4-coumaroyl-shikimate was converted to lower extents. Despite having in vitro activity with 4-coumaroyl-shikimate, CYP98A34 was unable to complement the Arabidopsis thaliana cyp98a3 loss-of-function phenotype, suggesting distinct properties also in vivo.
Collapse
Affiliation(s)
- Annette V Alber
- Institute of Plant Molecular Biology, CNRS, University of Strasbourg, Strasbourg, France
- Department of Biology and Centre for Forest Biology, University of Victoria, Victoria, BC, Canada
| | - Hugues Renault
- Institute of Plant Molecular Biology, CNRS, University of Strasbourg, Strasbourg, France
| | | | - Jean-Etienne Bassard
- Institute of Plant Molecular Biology, CNRS, University of Strasbourg, Strasbourg, France
| | - Zhenhua Liu
- Institute of Plant Molecular Biology, CNRS, University of Strasbourg, Strasbourg, France
| | - Pascaline Ullmann
- Institute of Plant Molecular Biology, CNRS, University of Strasbourg, Strasbourg, France
| | - Agnès Lesot
- Institute of Plant Molecular Biology, CNRS, University of Strasbourg, Strasbourg, France
| | - Frédéric Bihel
- Laboratoire d'Innovation Thérapeutique, UMR CNRS 7200, Illkirch, France
| | - Martine Schmitt
- Laboratoire d'Innovation Thérapeutique, UMR CNRS 7200, Illkirch, France
| | | | - Jürgen Ehlting
- Department of Biology and Centre for Forest Biology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
159
|
Collins W, Lowen N, Blake DJ. Caffeic Acid Esters Are Effective Bactericidal Compounds Against Paenibacillus larvae by Altering Intracellular Oxidant and Antioxidant Levels. Biomolecules 2019; 9:biom9080312. [PMID: 31357646 PMCID: PMC6722690 DOI: 10.3390/biom9080312] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 12/12/2022] Open
Abstract
American Foulbrood (AFB) is a deadly bacterial disease affecting pupal and larval honey bees. AFB is caused by the endospore-forming bacterium Paenibacillus larvae (PL). Propolis, which contains a variety of organic compounds, is a product of bee foraging and is a resinous substance derived from botanical substances found primarily in trees. Several compounds from the class of caffeic acid esters, which are commonly found in propolis, have been shown to have antibacterial activity against PL. In this study, six different caffeic acid esters were synthesized, purified, spectroscopically analyzed, and tested for their activity against PL to determine the minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs). Caffeic acid isopropenyl ester (CAIE), caffeic acid benzyl ester (CABE), and caffeic acid phenethyl ester (CAPE) were the most effective in inhibiting PL growth and killing PL cell with MICs and MBCs of 125 µg/mL when used individually, and a MIC and MBC of 31.25 µg/mL for each compound alone when CAIE, CABE, and CAPE are used in combination against PL. These compounds inhibited bacterial growth through a bactericidal effect, which revealed cell killing but no lysis of PL cells after 18 h. Incubation with CAIE, CABE, and CAPE at their MICs significantly increased reactive oxygen species levels and significantly changed glutathione levels within PL cells. Caffeic acid esters are potent bactericidal compounds against PL and eliminate bacterial growth through an oxidative stress mechanism.
Collapse
Affiliation(s)
- William Collins
- Department of Biochemistry and Chemistry, Fort Lewis College, 1000 Rim Dr., Durango, CO 81301, USA.
| | - Noah Lowen
- Department of Biology, Fort Lewis College, 1000 Rim Dr., Durango, CO 81301, USA
| | - David J Blake
- Department of Biology, Fort Lewis College, 1000 Rim Dr., Durango, CO 81301, USA
| |
Collapse
|
160
|
|
161
|
Przybyłek I, Karpiński TM. Antibacterial Properties of Propolis. Molecules 2019; 24:molecules24112047. [PMID: 31146392 PMCID: PMC6600457 DOI: 10.3390/molecules24112047] [Citation(s) in RCA: 240] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/25/2019] [Accepted: 05/26/2019] [Indexed: 11/16/2022] Open
Abstract
Researchers are continuing to discover all the properties of propolis due to its complex composition and associated broad spectrum of activities. This review aims to characterize the latest scientific reports in the field of antibacterial activity of this substance. The results of studies on the influence of propolis on more than 600 bacterial strains were analyzed. The greater activity of propolis against Gram-positive bacteria than Gram-negative was confirmed. Moreover, the antimicrobial activity of propolis from different regions of the world was compared. As a result, high activity of propolis from the Middle East was found in relation to both, Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) strains. Simultaneously, the lowest activity was demonstrated for propolis samples from Germany, Ireland and Korea.
Collapse
Affiliation(s)
- Izabela Przybyłek
- Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland.
| | - Tomasz M Karpiński
- Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland.
| |
Collapse
|
162
|
Mancilla-Montelongo G, Castañeda-Ramírez GS, Torres-Acosta JFDJ, Sandoval-Castro CA, Borges-Argáez R. Evaluation of cinnamic acid and six analogues against eggs and larvae of Haemonchus contortus. Vet Parasitol 2019; 270:25-30. [PMID: 31213238 DOI: 10.1016/j.vetpar.2019.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 10/26/2022]
Abstract
This study evaluated the in vitro anthelmintic (AH) activity of cinnamic acid and six analogues against eggs and larvae of Haemonchus contortus. Stock solutions of each compound (trans-cinnamic acid, p-coumaric acid, caffeic acid, trans-ferulic acid, trans-sinapic acid, 3,4-dimethoxycinnamic acid, and chlorogenic acid) were prepared in PBS:Tween-20 (1%) for use in the egg hatch test (EHT) and larval exsheathment inhibition test (LEIT) at different concentrations (25-400 μg/mL). The respective effective concentration 50% (EC50) values with 95% confidence intervals were estimated. Mixtures made of all cinnamic acid and its analogues as well as some selected individual compounds were also tested in the EHT. Only ferulic and chlorogenic acids showed AH activity in the EHT (EC50: 245.2 μg/mL (1.26 mM) and 520.8 μg/mL (1.47 mM), respectively) (P < 0.05). A higher EC50 (1628.10 μg/mL) of the mixture of cinnamic acid and its analogues was required to observe activity against eggs mostly blocking the larvae hatching. The analogues' mixtures tested were less active than ferulic or chlorogenic acid alone. The activity of ferulic and chlorogenic acids against eggs was associated with larvae failing to hatch, and the two compounds exhibited antagonistic effects when evaluated together. All standards had an EC50 lower than 0.42 mM in the LEIT. Caffeic acid had the best activity in the LEIT (EC50 0.04 mM), followed by ferulic acid (EC50 0.11 mM) (P < 0.05). There was no clear, definitive structure-activity relationship for these non-flavonoid polyphenols against eggs or larvae of H. contortus in vitro. This study is the first to directly evaluate cinnamic acid and its derivatives as active compounds against eggs and larvae of H. contortus.
Collapse
Affiliation(s)
- Gabriela Mancilla-Montelongo
- CONACYT - Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Km 15.5 Carretera Mérida-Xmatkuil, CP 97100, Mérida, Yucatán, Mexico.
| | - Gloria Sarahi Castañeda-Ramírez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Km 15.5 Carretera Mérida-Xmatkuil, CP 97100, Mérida, Yucatán, Mexico.
| | - Juan Felipe de Jesús Torres-Acosta
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Km 15.5 Carretera Mérida-Xmatkuil, CP 97100, Mérida, Yucatán, Mexico.
| | - Carlos Alfredo Sandoval-Castro
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Km 15.5 Carretera Mérida-Xmatkuil, CP 97100, Mérida, Yucatán, Mexico.
| | - Rocío Borges-Argáez
- Centro de Investigación Científica de Yucatán, Calle 43 No. 130 × 32 Colonia Chuburná de Hidalgo, CP 97205, Mérida, Yucatán, Mexico.
| |
Collapse
|
163
|
Matlou GG, Managa M, Nyokong T. Effect of symmetry and metal nanoparticles on the photophysicochemical and photodynamic therapy properties of cinnamic acid zinc phthalocyanine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 214:49-57. [PMID: 30763918 DOI: 10.1016/j.saa.2019.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/31/2019] [Accepted: 02/03/2019] [Indexed: 06/09/2023]
Abstract
In this study, a novel asymmetric cinnamic acid zinc phthalocyanine (ZnPc, 1) containing three tert-butyl substituents is reported. The asymmetric ZnPc (1) is further linked to amino functionalized magnetic nanoparticles (AMNPs) (1-AMNPs) and to cysteine functionalized silver nanoparticles (cys-AgNPs) (1-cys-AgNPs) through an amide bond. 1-AMNPs and 1-cys-AgNPs improved the triplet and singlet oxygen quantum yields of complex 1, this was also observed with the previously reported 2-AMNPs when compared to 2 while 3-AMNPs yielded an unexpected decrease in triplet quantum yield as compared to 3. The silver nanoparticles (1-cys-AgNPs) had a better effect on improving the singlet oxygen quantum yield of complex 1 than the magnetic nanoparticles (1-AMNPs). The Pcs and conjugates recorded low cell cytotoxicity in the dark and high photocytotoxicity against MCF-7 cells in-vitro. MCF-7 cell viabilities of less than 50% were recorded at 80 μg/mL making the Pcs and conjugates under study potential candidates for use as photosensitizers in cancer therapy.
Collapse
Affiliation(s)
- Gauta Gold Matlou
- Centre for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa
| | - Muthumuni Managa
- Centre for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa
| | - Tebello Nyokong
- Centre for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa.
| |
Collapse
|
164
|
Ali MA, Kaneko T. Syntheses of Aromatic/Heterocyclic Derived Bioplastics with High Thermal/Mechanical Performance. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00830] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mohammad Asif Ali
- Graduate School of Advanced Science and Technology, Energy and Environment Area, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923 1292, Japan
- Soft Matter Sciences and Engineering Laboratory, ESPCI Paris, PSL University, CNRS, 10 Rue Vauquelin, 75005 Paris, France
| | - Tatsuo Kaneko
- Graduate School of Advanced Science and Technology, Energy and Environment Area, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923 1292, Japan
| |
Collapse
|
165
|
Bugatti V, Vertuccio L, Zara S, Fancello F, Scanu B, Gorrasi G. Green pesticides based on cinnamate anion incorporated in layered double hydroxides and dispersed in pectin matrix. Carbohydr Polym 2019; 209:356-362. [DOI: 10.1016/j.carbpol.2019.01.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 10/27/2022]
|
166
|
Zvarych V, Nakonechna A, Marchenko M, Khudyi O, Lubenets V, Khuda L, Kushniryk O, Novikov V. Hydrogen Peroxide Oxygenation of Furan-2-carbaldehyde via an Easy, Green Method. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3114-3117. [PMID: 30811195 DOI: 10.1021/acs.jafc.8b06284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Derivatives of 2(5 H)-furanone (γ-crotonolactone) are important intermediate synthetic products with a wide range of biological effects that have become widely used in the pharmaceutical industry, medicine, and veterinary medicine, in particular in the prevention and treatment of fish diseases. However, the environmental issue of obtaining these compounds while reducing the negative impact on the surrounding environment remains relevant. This article describes for the first time a method of γ-crotonolactone synthesis that is based on the concept of green chemistry. Synthesis is carried out under mild conditions using nontoxic reagents by furfural oxidation. For the first time, a mixture of hydrogen peroxide and acetic acid was used for the oxidation of furfural in a ratio of 1:0.05. A mixture of organic acids (succinic, maleic, fumaric, formic, and cinnamic acids), obtained as a byproduct in the synthesis of γ-crotonolactone, can be used as a highly effective, ecofriendly organic fertilizer or in a preparation with a stimulating effect.
Collapse
Affiliation(s)
- Viktor Zvarych
- Department of Technology of Biologically Active Substances, Pharmacy and Biotechnology , Lviv Polytechnic National University , Stepan Bandera Street 12 , Lviv 79013 , Ukraine
| | - Anna Nakonechna
- Department of Technology of Biologically Active Substances, Pharmacy and Biotechnology , Lviv Polytechnic National University , Stepan Bandera Street 12 , Lviv 79013 , Ukraine
| | - Mykhailo Marchenko
- Department of Biochemistry and Biotechnology , Yuriy Fedkovych Chernivtsi National University , Kotsyubynsky Street 2 , Chernivtsi 58012 , Ukraine
| | - Oleksii Khudyi
- Department of Biochemistry and Biotechnology , Yuriy Fedkovych Chernivtsi National University , Kotsyubynsky Street 2 , Chernivtsi 58012 , Ukraine
| | - Vira Lubenets
- Department of Technology of Biologically Active Substances, Pharmacy and Biotechnology , Lviv Polytechnic National University , Stepan Bandera Street 12 , Lviv 79013 , Ukraine
| | - Lidiia Khuda
- Department of Biochemistry and Biotechnology , Yuriy Fedkovych Chernivtsi National University , Kotsyubynsky Street 2 , Chernivtsi 58012 , Ukraine
| | - Olga Kushniryk
- Department of Biochemistry and Biotechnology , Yuriy Fedkovych Chernivtsi National University , Kotsyubynsky Street 2 , Chernivtsi 58012 , Ukraine
| | - Volodymyr Novikov
- Department of Technology of Biologically Active Substances, Pharmacy and Biotechnology , Lviv Polytechnic National University , Stepan Bandera Street 12 , Lviv 79013 , Ukraine
| |
Collapse
|
167
|
Synthesis and structure-activity relationship studies of parthenolide derivatives as potential anti-triple negative breast cancer agents. Eur J Med Chem 2019; 166:445-469. [DOI: 10.1016/j.ejmech.2019.01.058] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/23/2019] [Accepted: 01/23/2019] [Indexed: 12/12/2022]
|
168
|
Anand S, Deighton M, Livanos G, Morrison PD, Pang ECK, Mantri N. Antimicrobial Activity of Agastache Honey and Characterization of Its Bioactive Compounds in Comparison With Important Commercial Honeys. Front Microbiol 2019; 10:263. [PMID: 30858831 PMCID: PMC6397887 DOI: 10.3389/fmicb.2019.00263] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 01/31/2019] [Indexed: 12/24/2022] Open
Abstract
There is an urgent need for new effective antimicrobial agents since acquired resistance of bacteria to currently available agents is increasing. The antimicrobial activity of Mono-floral Agastache honey produced from Australian grown Agastache rugosa was compared with the activity of commercially available honeys derived from Leptospermum species and with Jarrah honey for activity against clinical and non-clinical strains of Staphylococcus aureus (methicillin-susceptible and methicillin-resistant strains), Pseudomonas aeruginosa, and Escherichia coli. The minimum inhibitory concentration (MIC) for Agastache honey was in the range of 6-25% (w/v) for all species examined. The MICs for Leptospermum honeys were generally similar to those of Agastache honey, but MICs were higher for Super manuka and Jarrah honeys and lower for Tea tree honey. Staphylococci were more susceptible to all honeys than Pseudomonas aeruginosa and Escherichia coli. Pretreatment of honey with catalase increased the bacterial growth at MIC of Tea tree honey (35%), Super Manuka (15%), Jarrah honeys (12%), and Agastache honey (10%), indicating variable contributions of hydrogen peroxide to antimicrobial activity. Manuka and Jelly bush honeys retained their antimicrobial activity in the presence of catalase, indicating the presence of other antimicrobial compounds in the honey. An LC-MS/MS method was developed and used to identify possible antimicrobial phenolic compounds in Agastache honey and flowers, and five commercial honeys. The chemical markers characteristic of Agastache honey and honeys of Leptospermum origin were phenyllactic acid and methyl syringate. Overall, the bioactive compounds with antimicrobial and antioxidant activity in Agastache honey suggested a possible use for topical application and in wound care.
Collapse
Affiliation(s)
- Sushil Anand
- The Pangenomics Group, School of Science, RMIT University, Melbourne, VIC, Australia
| | - Margaret Deighton
- The Pangenomics Group, School of Science, RMIT University, Melbourne, VIC, Australia
| | - George Livanos
- Kenkay Pharmaceuticals Pty Ltd., Smeaton Grange, NSW, Australia
| | - Paul D. Morrison
- The Pangenomics Group, School of Science, RMIT University, Melbourne, VIC, Australia
| | - Edwin C. K. Pang
- The Pangenomics Group, School of Science, RMIT University, Melbourne, VIC, Australia
| | - Nitin Mantri
- The Pangenomics Group, School of Science, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
169
|
Shi YG, Bian LQ, Zhu YJ, Zhang RR, Shao SY, Wu Y, Chen YW, Dang YL, Ding Y, Sun H. Multifunctional alkyl ferulate esters as potential food additives: Antibacterial activity and mode of action against Listeria monocytogenes and its application on American sturgeon caviar preservation. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.09.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
170
|
Therapeutic Properties of Stingless Bee Honey in Comparison with European Bee Honey. Adv Pharmacol Sci 2018; 2018:6179596. [PMID: 30687402 PMCID: PMC6327266 DOI: 10.1155/2018/6179596] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/30/2018] [Accepted: 11/21/2018] [Indexed: 12/14/2022] Open
Abstract
Both honeybees (Apis spp.) and stingless bees (Trigona spp.) produce honeys with high nutritional and therapeutics value. Until recently, the information regarding potential health benefits of stingless bee honey (SBH) in medical databases is still scarce as compared to the common European bee honey (EBH) which is well known for their properties as therapeutic agents. Although there have been very few reports on SBH, empirically these products would have similar therapeutic quality as the EBH. In addition, due to the structure of the nest, few studies reported that the antimicrobial activity of SBH is a little bit stronger than EBH. Therefore, the composition of both the types of honey as well as the traditional uses and clinical applications were compared. The results of various studies on EBH and SBH from tissue culture research to randomised control clinical trials were collated in this review. Interestingly, there are many therapeutic properties that are unique to SBH. Therefore, SBH has a great potential to be developed for modern medicinal uses.
Collapse
|
171
|
Chandra S, Roy A, Jana M, Pahan K. Cinnamic acid activates PPARα to stimulate Lysosomal biogenesis and lower Amyloid plaque pathology in an Alzheimer's disease mouse model. Neurobiol Dis 2018; 124:379-395. [PMID: 30578827 PMCID: PMC6382282 DOI: 10.1016/j.nbd.2018.12.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/04/2018] [Accepted: 12/11/2018] [Indexed: 12/20/2022] Open
Abstract
The response of the lysosomes, the waste clearance machinery of the cell, to different environmental stimuli is coordinated by a gene network with a master regulator Transcription factor EB (TFEB) at the core. Disruption of multiple facets of the lysosomal and autophagic network has been linked to various neurodegenerative and lysosomal storage disorders, making TFEB an attractive therapeutic target to rescue or augment lysosomal function under pathological scenario. In this study, we demonstrate that cinnamic acid, a naturally occurring plant-based product, induces lysosomal biogenesis in mouse primary brain cells via upregulation of TFEB. We delineate that cinnamic acid activates the nuclear hormone receptor PPARα to transcriptionally upregulate TFEB and stimulate lysosomal biogenesis. Moreover, using in-silico and biochemical approaches we established that cinnamic acid serves as a potent ligand for peroxisome proliferator-activated receptor α (PPARα). Finally, cinnamic acid treatment in male and female 5× Familial Alzheimer’s disease (5XFAD) mice remarkably reduced cerebral amyloid-beta plaque burden and improved memory via PPARα. Therefore, stimulation of lysosomal biogenesis by cinnamic acid may have therapeutic implications for treatment of Alzheimer’s disease and other lysosomal disorders originating from accumulation of toxic protein aggregates.
Collapse
Affiliation(s)
- Sujyoti Chandra
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
| | - Avik Roy
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA; Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, USA
| | - Malabendu Jana
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA; Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, USA
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA; Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, USA.
| |
Collapse
|
172
|
Shi YG, Zhu YJ, Shao SY, Zhang RR, Wu Y, Zhu CM, Liang XR, Cai WQ. Alkyl Ferulate Esters as Multifunctional Food Additives: Antibacterial Activity and Mode of Action against Escherichia coli in Vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12088-12101. [PMID: 30360622 DOI: 10.1021/acs.jafc.8b04429] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This work aims to prepare ferulic acid alkyl esters (FAEs) through the lipase-catalyzed reaction between methyl ferulate and various fatty alcohols in deep eutectic solvents and ascertain their antibacterial activities and mechanisms. Screens of antibacterial effects of FAEs against Escherichia coli ATCC 25922 ( E. coli) and Listeria monocytogenes ATCC 19115 ( L. monocytogenes) revealed that hexyl ferulate (FAC6) exerted excellent bacteriostatic and bactericidal effects on E. coli and L. monocytogenes (minimum inhibitory concentration (MIC): 1.6 and 0.1 mM, minimum bactericidal concentration (MBC): 25.6 and 0.2 mM, respectively). The antibacterial mechanism of FAC6 against E. coli was systematically studied to facilitate its practical use as a food additive with multifunctionalities. The growth and time-kill curves implied the partial cell lysis and inhibition of the growth of E. coli caused by FAC6. The result related to propidium iodide uptake and cell constituents' leakage (K+, proteins, nucleotides, and β-galactosidase) implied that bacterial cytomembranes were substantially compromised by FAC6. Variations on morphology and cardiolipin microdomains and membrane hyperpolarization of cells visually verified that FAC6 induced cell elongation and destructed the cell membrane with cell wall perforation. SDS-PAGE analysis and alterations of fluorescence spectra of bacterial membrane proteins manifested that FAC6 caused significant changes in constitutions and conformation of membrane proteins. Furthermore, it also could bind to minor grooves of E. coli DNA to form complexes. Meanwhile, FAC6 exhibited antibiofilm formation activity. These findings indicated that that FAC6 has promising potential to be developed as a multifunctional food additive.
Collapse
Affiliation(s)
- Yu-Gang Shi
- School of Food Science and Biotechnology , Zhejiang Gongshang University , Hangzhou , Zhejiang 310035 , China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition , Zhejiang Gongshang University , Hangzhou , Zhejiang 310035 , China
| | - Yun-Jie Zhu
- School of Food Science and Biotechnology , Zhejiang Gongshang University , Hangzhou , Zhejiang 310035 , China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition , Zhejiang Gongshang University , Hangzhou , Zhejiang 310035 , China
| | - Shi-Yin Shao
- School of Food Science and Biotechnology , Zhejiang Gongshang University , Hangzhou , Zhejiang 310035 , China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition , Zhejiang Gongshang University , Hangzhou , Zhejiang 310035 , China
| | - Run-Run Zhang
- School of Food Science and Biotechnology , Zhejiang Gongshang University , Hangzhou , Zhejiang 310035 , China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition , Zhejiang Gongshang University , Hangzhou , Zhejiang 310035 , China
| | - Yu Wu
- School of Food Science and Biotechnology , Zhejiang Gongshang University , Hangzhou , Zhejiang 310035 , China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition , Zhejiang Gongshang University , Hangzhou , Zhejiang 310035 , China
| | - Chen-Min Zhu
- School of Food Science and Biotechnology , Zhejiang Gongshang University , Hangzhou , Zhejiang 310035 , China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition , Zhejiang Gongshang University , Hangzhou , Zhejiang 310035 , China
| | - Xian-Rui Liang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , China
| | - Wen-Qiang Cai
- School of Food Science and Biotechnology , Zhejiang Gongshang University , Hangzhou , Zhejiang 310035 , China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition , Zhejiang Gongshang University , Hangzhou , Zhejiang 310035 , China
| |
Collapse
|
173
|
Spórna-Kucab A, Bernaś K, Grzegorczyk A, Malm A, Skalicka-Woźniak K, Wybraniec S. Liquid chromatographic techniques in betacyanin isomers separation from Gomphrena globosa L. flowers for the determination of their antimicrobial activities. J Pharm Biomed Anal 2018; 161:83-93. [DOI: 10.1016/j.jpba.2018.08.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 08/10/2018] [Accepted: 08/10/2018] [Indexed: 12/25/2022]
|
174
|
Câmara CRS, Shi Q, Pedersen M, Zbasnik R, Nickerson KW, Schlegel V. Histone acetylation increases in response to ferulic, gallic, and sinapic acids acting synergistically in vitro to inhibit Candida albicans
yeast-to-hyphae transition. Phytother Res 2018; 33:319-326. [DOI: 10.1002/ptr.6222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 09/03/2018] [Accepted: 09/28/2018] [Indexed: 11/11/2022]
Affiliation(s)
| | - Qinyin Shi
- Department of Food Science and Technology; University of Nebraska-Lincoln; Lincoln Nebraska USA
| | - Matthew Pedersen
- Department of Agronomy and Horticulture; University of Nebraska-Lincoln; Lincoln Nebraska USA
| | - Richard Zbasnik
- Department of Food Science and Technology; University of Nebraska-Lincoln; Lincoln Nebraska USA
| | - Kenneth W. Nickerson
- School of Biological Sciences; University of Nebraska-Lincoln; Lincoln Nebraska USA
| | - Vicki Schlegel
- Department of Food Science and Technology; University of Nebraska-Lincoln; Lincoln Nebraska USA
| |
Collapse
|
175
|
Egan PA, Adler LS, Irwin RE, Farrell IW, Palmer-Young EC, Stevenson PC. Crop Domestication Alters Floral Reward Chemistry With Potential Consequences for Pollinator Health. FRONTIERS IN PLANT SCIENCE 2018; 9:1357. [PMID: 30319666 PMCID: PMC6169423 DOI: 10.3389/fpls.2018.01357] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/28/2018] [Indexed: 05/29/2023]
Abstract
Crop domestication can lead to weakened expression of plant defences, with repercussions for herbivore and pathogen susceptibility. However, little is known about how domestication alters traits that mediate other important ecological interactions in crops, such as pollination. Secondary metabolites, which underpin many defence responses in plants, also occur widely in nectar and pollen and influence plant-pollinator interactions. Thus, domestication may also affect secondary compounds in floral rewards, with potential consequences for pollinators. To test this hypothesis, we chemically analysed nectar and pollen from wild and cultivated plants of highbush blueberry (Vaccinium corymbosum L.), before conducting an artificial diet bioassay to examine pollinator-pathogen interactions. Our results indicated that domestication has significantly altered the chemical composition of V. corymbosum nectar and pollen, and reduced pollen chemical diversity in cultivated plants. Of 20 plant metabolites identified in floral rewards, 13 differed significantly between wild and cultivated plants, with a majority showing positive associations with wild compared to cultivated plants. These included the amino acid phenylalanine (4.5 times higher in wild nectar, 11 times higher in wild pollen), a known bee phagostimulant and essential nutrient; and the antimicrobial caffeic acid ester 4-O-caffeoylshikimic acid (two times higher in wild nectar). We assessed the possible biological relevance of variation in caffeic acid esters in bioassays, using the commercially available 3-O-caffeoylquinic acid. This compound reduced Bombus impatiens infection by a prominent gut pathogen (Crithidia) at concentrations that occurred in wild but not cultivated plants, suggesting that domestication may influence floral traits with consequences for bee health. Appreciable levels of genetic variation and heritability were found for most floral reward chemical traits, indicating good potential for selective breeding. Our study provides the first assessment of plant domestication effects on floral reward chemistry and its potential repercussions for pollinator health. Given the central importance of pollinators for agriculture, we discuss the need to extend such investigations to pollinator-dependent crops more generally and elaborate on future research directions to ascertain wider trends, consequences for pollinators, mechanisms, and breeding solutions.
Collapse
Affiliation(s)
- Paul A. Egan
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Lynn S. Adler
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, United States
| | - Rebecca E. Irwin
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States
| | | | - Evan C. Palmer-Young
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, United States
| | - Philip C. Stevenson
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Natural Resources Institute, University of Greenwich, London, United Kingdom
| |
Collapse
|
176
|
Martelli G, Giacomini D. Antibacterial and antioxidant activities for natural and synthetic dual-active compounds. Eur J Med Chem 2018; 158:91-105. [PMID: 30205261 DOI: 10.1016/j.ejmech.2018.09.009] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 01/11/2023]
Abstract
Antimicrobial resistance is widely recognized as a grave threat to global health in the 21st century, since the past decades have seen a dramatic increase in human-pathogenic bacteria that are resistant to one or multiple antibiotics. New antimicrobial agents are urgently required, particularly in the treatment of chronic infections such as cystic fibrosis, often associated with persistent colonization by drug-resistant pathogens and epithelial damage by pulmonary oxidative stress. In such events, it would be favourable to find agents that could have antioxidant and antibacterial activities combined in one molecule. The discovery of compounds that can show a dual-target activity considerably increased in the last years, reflecting the growing confidence that this new approach could lead to better therapeutic solutions for complex multigenic diseases. The aim of this review is to report those natural and synthetic compounds displaying significant antioxidant and antibacterial activities. In recent years there has been a growing attention on plant-derived antimicrobials as an alternative to antibiotics, for their efficacy and low tendency in developing bacterial resistance. Moreover, it was found that some natural products could enhance the activity of common antibiotics displaying a synergistic effect. We then report some selected synthetic compounds with an in-built capacity to act on two targets or with the combination in a single structure of two pharmacophores with antioxidant and antibacterial activities. Recent literature instances were screened and the most promising examples of dual-active antibacterial-antioxidant molecules were highlighted.
Collapse
Affiliation(s)
- Giulia Martelli
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Daria Giacomini
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy.
| |
Collapse
|
177
|
Insights into the mechanism of antiproliferative effects of primaquine-cinnamic acid conjugates on MCF-7 cells. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2018; 68:337-348. [PMID: 31259699 DOI: 10.2478/acph-2018-0021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/29/2018] [Indexed: 11/21/2022]
Abstract
In our previous paper, we showed that three primaquine-cinnamic acid conjugates composed of primaquine (PQ) residue and cinnamic acid derivatives (CADs) bound directly by an amide linkage (1) or through an acylsemicarbazide spacer (2 and 3) had significant growth inhibitory effects on some cancer cell lines. Compound 1 induced significant growth inhibition in the colorectal adenocarcinoma (SW620), human breast adenocarcinoma (MCF-7) and cervical carcinoma (HeLa) cell lines, while compounds 2 and 3 selectively inhibited the growth of MCF-7 cells. To better understand the underlying mechanisms of action of these PQ-CADs, morphological studies of the effects of test compounds on MCF-7 cells were undertaken using haematoxylin and eosin stain. Further analysis to determine the effects of test compounds on caspase activity and on the levels of apoptosis proteins were undertaken using the enzyme-linked immunosorbent assay (ELISA). Haematoxylin and eosin staining revealed that compounds 1 and 3 induced morphological changes in MCF-7 cells characteristic of apoptosis, while 2-treated cells were in interphase. Cell cycle analysis showed that cells treated with 1 and 3 were in sub-G1, while cells treated with 2 were mainly in interphase (G1 phase). Further, the study showed that the treatment of MCF-7 cells with 1 and 3 resulted in poly ADP ribose polymerase (PARP) cleavage as well as caspase-9 activation, indicating that they induced apoptotic cell death. We further investigated their effects on two important processes during metastasis, namely, migration and invasion. Compounds 1 and 3 inhibited the migration and invasion of MCF-7 cells, while compound 2 had a marginal effect.
Collapse
|
178
|
Sathish M, Chetan Dushantrao S, Nekkanti S, Tokala R, Thatikonda S, Tangella Y, Srinivas G, Cherukommu S, Hari Krishna N, Shankaraiah N, Nagesh N, Kamal A. Synthesis of DNA interactive C3-trans-cinnamide linked β-carboline conjugates as potential cytotoxic and DNA topoisomerase I inhibitors. Bioorg Med Chem 2018; 26:4916-4929. [PMID: 30172625 DOI: 10.1016/j.bmc.2018.08.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/22/2018] [Accepted: 08/25/2018] [Indexed: 01/25/2023]
Abstract
A series of new C3-trans-cinnamide linked β-carboline conjugates has been synthesized by coupling between various β-carboline amines and substituted cinnamic acids. Evaluation of their anti-proliferative activity against a panel of selected human cancer cell lines such as A549 (lung cancer), MCF-7 (breast cancer), B16 (melanoma), HeLa (cervical cancer) and a normal cell line NIH3T3 (mouse embryonic fibroblast cell line), suggested that the newly designed conjugates are considerably active against all the tested cancer cell lines with IC50 values 13-45 nM. Moreover, the conjugates 8v and 8x were the most active against MCF-7 cells (14.05 nM and 13.84 nM respectively) and also even potent on other cell lines tested. Further, detailed investigations such as cell cycle analysis, apoptosis induction study, topoisomerase I inhibition assay, DNA binding affinity and docking studies revealed that these new conjugates are DNA interactive topoisomerase I inhibitors.
Collapse
Affiliation(s)
- Manda Sathish
- Medicinal Chemistry & Biotechnology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Sabanis Chetan Dushantrao
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Shalini Nekkanti
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Ramya Tokala
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Soujanya Thatikonda
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Yellaiah Tangella
- Medicinal Chemistry & Biotechnology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Gunda Srinivas
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | | | - Namballa Hari Krishna
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India.
| | - Narayana Nagesh
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500 007, India.
| | - Ahmed Kamal
- Medicinal Chemistry & Biotechnology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi 110 062, India.
| |
Collapse
|
179
|
Gunia-Krzyżak A, Słoczyńska K, Popiół J, Koczurkiewicz P, Marona H, Pękala E. Cinnamic acid derivatives in cosmetics: current use and future prospects. Int J Cosmet Sci 2018; 40:356-366. [PMID: 29870052 DOI: 10.1111/ics.12471] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 06/03/2018] [Indexed: 01/11/2023]
Abstract
Cinnamic acid derivatives are widely used in cosmetics and possess various functions. This group of compounds includes both naturally occurring and synthetic substances. On the basis of the Cosmetic Ingredient Database (CosIng) and available literature, this review summarizes their functions in cosmetics, including their physicochemical and biological properties as well as reported adverse effects. A perfuming function is typical of many derivatives of cinnamaldehyde, cinnamyl alcohol, dihydrocinnamyl alcohol and cinnamic acid itself; these substances are commonly used in cosmetics all over the world. Some of them show allergic and photoallergic potential, resulting in restrictions in maximum concentrations and/or a requirement to indicate the presence of some substances in the list of ingredients when their concentrations exceed certain fixed values in a cosmetic product. Another important function of cinnamic acid derivatives in cosmetics is UV protection. Ester derivatives such as ethylhexyl methoxycinnamate (octinoxate), isoamyl p-methoxycinnamte (amiloxiate), octocrylene and cinoxate are used in cosmetics all over the world as UV filters. However, their maximum concentrations in cosmetic products are restricted due to their adverse effects, which include contact and a photocontact allergies, phototoxic contact dermatitis, contact dermatitis, estrogenic modulation and generation of reactive oxygen species. Other rarely utilized functions of cinnamic acid derivatives are as an antioxidant, in skin conditioning, hair conditioning, as a tonic and in antimicrobial activities. Moreover, some currently investigated natural and synthetic derivatives of cinnamic acid have shown skin lightening and anti-ageing properties. Some of them may become new cosmetic ingredients in the future. In particular, 4-hydroxycinnamic acid, which is currently indexed as a skin-conditioning cosmetics ingredient, has been widely tested in vitro and in vivo as a new drug candidate for the treatment of hyperpigmentation.
Collapse
Affiliation(s)
- A Gunia-Krzyżak
- Faculty of Pharmacy, Department of Bioorganic Chemistry, Chair of Organic Chemistry, Jagiellonian University Medical College, Medyczna 9, Kraków, Poland
| | - K Słoczyńska
- Faculty of Pharmacy, Department of Pharmaceutical Biochemistry, Jagiellonian University Medical College, Medyczna 9, Kraków, Poland
| | - J Popiół
- Faculty of Pharmacy, Department of Bioorganic Chemistry, Chair of Organic Chemistry, Jagiellonian University Medical College, Medyczna 9, Kraków, Poland
| | - P Koczurkiewicz
- Faculty of Pharmacy, Department of Pharmaceutical Biochemistry, Jagiellonian University Medical College, Medyczna 9, Kraków, Poland
| | - H Marona
- Faculty of Pharmacy, Department of Bioorganic Chemistry, Chair of Organic Chemistry, Jagiellonian University Medical College, Medyczna 9, Kraków, Poland
| | - E Pękala
- Faculty of Pharmacy, Department of Pharmaceutical Biochemistry, Jagiellonian University Medical College, Medyczna 9, Kraków, Poland
| |
Collapse
|
180
|
Gumbo M, Beteck RM, Mandizvo T, Seldon R, Warner DF, Hoppe HC, Isaacs M, Laming D, Tam CC, Cheng LW, Liu N, Land KM, Khanye SD. Cinnamoyl-Oxaborole Amides: Synthesis and Their in Vitro Biological Activity. Molecules 2018; 23:E2038. [PMID: 30111695 PMCID: PMC6222898 DOI: 10.3390/molecules23082038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 11/19/2022] Open
Abstract
Due to the increased interest in their application in the treatment of infectious diseases, boron-containing compounds have received a significant coverage in the literature. Herein, a small set of novel cinnamoly-oxaborole amides were synthesized and screened against nagana Trypanosoma brucei brucei for antitrypanosomal activity. Compound 5g emerged as a new hit with an in vitro IC50 value of 0.086 μM against T. b. brucei without obvious inhibitory activity against HeLa cell lines. The same series was also screened against other human pathogens, including Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), for which moderate to weak activity (10 to >125 μM) was observed. Similarly, these compounds exhibited moderate activity against the human protozoal pathogen Trichomonas vaginalis with no observed effect on common microbiome bacterial species. The cross-species inhibitory activity presents the possibility of these compounds serving as broad-spectrum antibiotics for these prevalent three human pathogens.
Collapse
Affiliation(s)
- Maureen Gumbo
- Faculty of Science, Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa.
| | - Richard M Beteck
- Faculty of Science, Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa.
| | - Tawanda Mandizvo
- Faculty of Science, Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa.
| | - Ronnett Seldon
- Drug Discovery and Development Centre (H3-D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa.
| | - Digby F Warner
- MRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology, University of Cape Town, Rondebosch 7701, South Africa.
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa.
| | - Heinrich C Hoppe
- Faculty of Science, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa.
- Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown 6140, South Africa.
| | - Michelle Isaacs
- Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown 6140, South Africa.
| | - Dustin Laming
- Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown 6140, South Africa.
| | - Christina C Tam
- Foodborne Toxin Detection and Prevention Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA.
| | - Luisa W Cheng
- Foodborne Toxin Detection and Prevention Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA.
| | - Nicole Liu
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA.
| | - Kirkwood M Land
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA.
| | - Setshaba D Khanye
- Faculty of Science, Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa.
- Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown 6140, South Africa.
| |
Collapse
|
181
|
Synthesis and Spectrum of Biological Activities of Novel N-arylcinnamamides. Int J Mol Sci 2018; 19:ijms19082318. [PMID: 30087309 PMCID: PMC6121455 DOI: 10.3390/ijms19082318] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 01/17/2023] Open
Abstract
A series of sixteen ring-substituted N-arylcinnamamides was prepared and characterized. Primary in vitro screening of all the synthesized compounds was performed against Staphylococcus aureus, three methicillin-resistant S. aureus strains, Mycobacterium tuberculosis H37Ra, Fusarium avenaceum, and Bipolaris sorokiniana. Several of the tested compounds showed antistaphylococcal, antitubercular, and antifungal activities comparable with or higher than those of ampicillin, isoniazid, and benomyl. (2E)-N-[3,5-bis(trifluoromethyl)phenyl]-3-phenylprop-2-enamide and (2E)-3-phenyl-N-[3-(trifluoromethyl)phenyl]prop-2-enamide showed the highest activities (MICs = 22.27 and 27.47 µM, respectively) against all four staphylococcal strains and against M. tuberculosis. These compounds showed an activity against biofilm formation of S. aureus ATCC 29213 in concentrations close to MICs and an ability to increase the activity of clinically used antibiotics with different mechanisms of action (vancomycin, ciprofloxacin, and tetracycline). In time-kill studies, a decrease of CFU/mL of >99% after 8 h from the beginning of incubation was observed. (2E)-N-(3,5-Dichlorophenyl)- and (2E)-N-(3,4-dichlorophenyl)-3-phenylprop-2-enamide had a MIC = 27.38 µM against M. tuberculosis, while a significant decrease (22.65%) of mycobacterial cell metabolism determined by the MTT assay was observed for the 3,5-dichlorophenyl derivative. (2E)-N-(3-Fluorophenyl)- and (2E)-N-(3-methylphenyl)-3-phenylprop-2-enamide exhibited MICs = 16.58 and 33.71 µM, respectively, against B. sorokiniana. The screening of the cytotoxicity of the most effective antimicrobial compounds was performed using THP-1 cells, and these chosen compounds did not shown any significant lethal effect. The compounds were also evaluated for their activity related to the inhibition of photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. (2E)-N-(3,5-dichlorophenyl)-3-phenylprop-2-enamide (IC50 = 5.1 µM) was the most active PET inhibitor. Compounds with fungicide potency did not show any in vivo toxicity against Nicotiana tabacum var. Samsun. The structure–activity relationships are discussed.
Collapse
|
182
|
Analysis of the Active Constituents and Evaluation of the Biological Effects of Quercus acuta Thunb. (Fagaceae) Extracts. Molecules 2018; 23:molecules23071772. [PMID: 30029475 PMCID: PMC6099636 DOI: 10.3390/molecules23071772] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/15/2018] [Accepted: 07/17/2018] [Indexed: 12/20/2022] Open
Abstract
We evaluated the antioxidant and antibacterial activity of hexnane, ethyl acetate, acetone, methanol, ethanol, and water extracts of the Quercus acuta leaf. The antioxidant properties were evaluated by 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity, reducing power, and total phenolic content. Antibacterial activity was assessed against general infectious pathogens, including antibiotic-resistant clinical isolates. The methanolic extract showed the highest DPPH radical scavenging activity and total phenolic content, while the reducing power was the highest in the water extract. The ethyl acetate extract showed the best antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) strains. Additionally, it displayed antibacterial activity against Staphylococcus aureus KCTC1928, Micrococcus luteus ATCC 9341, Salmonella typhimurium KCTC 1925, Escherichia coli KCTC 1923, and eight MRSA strains. These results present basic information for the possible uses of the ethanolic and ethyl acetate extracts from Q. acuta leaf in the treatment of diseases that are caused by oxidative imbalance and antibiotic-resistant bacterial infections. Six active compounds, including vitamin E, which are known to possess antioxidant and antibacterial activity, were identified from the extracts. To the best of our knowledge, this is the first study that reports the chemical profiling and antibacterial effects of the various QA leaf extracts, suggesting their potential use in food therapy or alternative medicine.
Collapse
|
183
|
Rajić Z, Beus M, Michnová H, Vlainić J, Persoons L, Kosalec I, Jampílek J, Schols D, Keser T, Zorc B. Asymmetric Primaquine and Halogenaniline Fumardiamides as Novel Biologically Active Michael Acceptors. Molecules 2018; 23:E1724. [PMID: 30011922 PMCID: PMC6100582 DOI: 10.3390/molecules23071724] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 11/17/2022] Open
Abstract
Novel primaquine (PQ) and halogenaniline asymmetric fumardiamides 4a⁻f, potential Michael acceptors, and their reduced analogues succindiamides 5a⁻f were prepared by simple three-step reactions: coupling reaction between PQ and mono-ethyl fumarate (1a) or mono-methyl succinate (1b), hydrolysis of PQ-dicarboxylic acid mono-ester conjugates 2a,b to corresponding acids 3a,b, and a coupling reaction with halogenanilines. 1-[bis(Dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxide hexafluorophosphate (HATU) was used as a coupling reagent along with Hünig's base. Compounds 4 and 5 were evaluated against a panel of bacteria, several Mycobacterium strains, fungi, a set of viruses, and nine different human tumor cell lines. p-Chlorofumardiamide 4d showed significant activity against Staphylococcus aureus,Streptococcus pneumoniae and Acinetobacter baumannii, but also against Candida albicans (minimum inhibitory concentration (MIC) 6.1⁻12.5 µg/mL). Together with p-fluoro and p-CF₃ fumardiamides 4b,f, compound 4d showed activity against Mycobacterium marinum and 4b,f against M. tuberculosis. In biofilm eradication assay, most of the bacteria, particularly S. aureus, showed susceptibility to fumardiamides. m-CF₃ and m-chloroaniline fumardiamides 4e and 4c showed significant antiviral activity against reovirus-1, sindbis virus and Punta Toro virus (EC50 = 3.1⁻5.5 µM), while 4e was active against coxsackie virus B4 (EC50 = 3.1 µM). m-Fluoro derivative 4a exerted significant cytostatic activity (IC50 = 5.7⁻31.2 μM). Acute lymphoblastic leukemia cells were highly susceptible towards m-substituted derivatives 4a,c,e (IC50 = 6.7⁻8.9 μM). Biological evaluations revealed that fumardiamides 4 were more active than succindiamides 5 indicating importance of Michael conjugated system.
Collapse
Affiliation(s)
- Zrinka Rajić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia.
| | - Maja Beus
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia.
| | - Hana Michnová
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University, Odbojárov 10, 83232 Bratislava, Slovakia.
| | - Josipa Vlainić
- Laboratory for Advanced Genomics, Division of Molecular Medicine, Rudjer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Leentje Persoons
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Ivan Kosalec
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia.
| | - Josef Jampílek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University, Odbojárov 10, 83232 Bratislava, Slovakia.
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Toma Keser
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia.
| | - Branka Zorc
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia.
| |
Collapse
|
184
|
Gao Y, Liu W, Wang X, Yang L, Han S, Chen S, Strasser RJ, Valverde BE, Qiang S. Comparative phytotoxicity of usnic acid, salicylic acid, cinnamic acid and benzoic acid on photosynthetic apparatus of Chlamydomonas reinhardtii. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 128:1-12. [PMID: 29751250 DOI: 10.1016/j.plaphy.2018.04.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/12/2018] [Accepted: 04/26/2018] [Indexed: 05/22/2023]
Abstract
The effects of four phytotoxins usnic acid (UA), salicylic acid (SA), cinnamic acid (CA) and benzoic acid (BA) on photosynthesis of Chlamydomonas reinhardtii were studied in vivo to identify and localise their initial action sites on two photosystems. Our experimental evidence shows that the four phytotoxins have multiple targets in chloroplasts, which mainly lie in photosystem II (PSII), not photosystem I (PSI). They share an original action site by blocking electron transport beyond QA (primary plastoquinone acceptor) at PSII acceptor side since a fast increase of the J-step level is the greatest change in chlorophyll a fluorescence induction kinetics OJIP in C. reinhardtii cells treated with the phytotoxins. UA decreases photosynthetic activity by reducing O2 evolution rate, interrupting PSII electron transport at both the donor and acceptor sides, inactivating the PSII reaction centers (RCs), reducing the content of chlorophylls and carotenoids, destroying the conformation of antenna pigment assemblies, and casuing the degradation of D1/D2 proteins. SA damage to photosynthetic machinery is mainly attributed to inhibition of PSII electron transport beyond QA at the acceptor side, inactivation of the PSII RCs, reduction of chlorophyll content, digestion of thylakoid ploypeptides and destabilization of thylakoid membranes. Both CA and BA affect the photosynthetic process by decreasing PSII electron transport efficiency at the acceptor side and the amount of active PSII RCs. Besides, the initial cause of BA-inhibiting photosynthesis is also assocaited with the O2 evolution rate and the disconnection of some antenna molecules from PSII RCs.
Collapse
Affiliation(s)
- Yazhi Gao
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Liu
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoxiong Wang
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Lihua Yang
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Su Han
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Shiguo Chen
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| | - Reto Jörg Strasser
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China; Bioenergetics Laboratory, University of Geneva, CH-1254 Jussy/Geneva, Switzerland
| | - Bernal E Valverde
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China; Investigaciòn y Desarrollo en Agricultura Tropical, Alajuela 4050, Costa Rica
| | - Sheng Qiang
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
185
|
Gackowska A, Studziński W, Kudlek E, Dudziak M, Gaca J. Estimation of physicochemical properties of 2-ethylhexyl-4-methoxycinnamate (EHMC) degradation products and their toxicological evaluation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:16037-16049. [PMID: 29594898 PMCID: PMC5984635 DOI: 10.1007/s11356-018-1796-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/19/2018] [Indexed: 05/16/2023]
Abstract
The organic UV filters, commonly used in personal protection products, are of concern because of their potential risk to aquatic ecosystems and living organisms. One of UV filters is ethylhexyl-4-methoxycinnamate (EHMC) acid. Studies have shown that, in the presence of oxidizing and chlorinating factors, EHMC forms a series of products with different properties than the substrate. In this study, the toxicities of EHMC and its transformation/degradation products formed under the influence of NaOCl/UV and H2O2/UV systems in the water medium were tested using Microtox® bioassay and by observation of mortality of juvenile crustaceans Daphnia magna and Artemia Salina. We have observed that oxidation and chlorination products of EHMC show significantly higher toxicity than EHMC alone. The toxicity of chemicals is related to their physicochemical characteristic such as lipophilicity and substituent groups. With the increase in lipophilicity of products, expressed as log KOW, the toxicity (EC50) increases. On the basis of physicochemical properties such as vapour pressure (VP), solubility (S), octanol-water partition coefficient (KOW), bioconcentration factor (BCF) and half-lives, the overall persistence (POV) and long-range transport potential (LRTP) of all the products and EHMC were calculated. It was shown that the most persistent and traveling on the long distances in environment are methoxyphenol chloroderivatives, then methoxybenzene chloroderivatives, EHMC chloroderivatives, methoxybenzaldehyde chloroderivatives and methoxycinnamate acid chloroderivatives. These compounds are also characterised by high toxicity.
Collapse
Affiliation(s)
- Alicja Gackowska
- Faculty of Chemical Technology and Engineering, UTP University of Science and Technology, Seminaryjna 3, 85-326, Bydgoszcz, Poland.
| | - Waldemar Studziński
- Faculty of Chemical Technology and Engineering, UTP University of Science and Technology, Seminaryjna 3, 85-326, Bydgoszcz, Poland
| | - Edyta Kudlek
- Institute of Water and Wastewater Engineering, Silesian University of Technology, Konarskiego 18, 44-100, Gliwice, Poland
| | - Mariusz Dudziak
- Institute of Water and Wastewater Engineering, Silesian University of Technology, Konarskiego 18, 44-100, Gliwice, Poland
| | - Jerzy Gaca
- Faculty of Chemical Technology and Engineering, UTP University of Science and Technology, Seminaryjna 3, 85-326, Bydgoszcz, Poland
| |
Collapse
|
186
|
Jabir NR, Khan FR, Tabrez S. Cholinesterase targeting by polyphenols: A therapeutic approach for the treatment of Alzheimer's disease. CNS Neurosci Ther 2018; 24:753-762. [PMID: 29770579 DOI: 10.1111/cns.12971] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/05/2018] [Accepted: 04/07/2018] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive irreversible neurodegenerative disorder characterized by excessive deposition of β-amyloid (Aβ) oligomers, and neurofibrillary tangles (NFTs), comprising of hyperphosphorylated tau proteins. The cholinergic system has been suggested as the earliest and most affected molecular mechanism that describes AD pathophysiology. Moreover, cholinesterase inhibitors (ChEIs) are the potential class of drugs that can amplify cholinergic activity to improve cognition and global performance and reduce psychiatric and behavioral disturbances. Approximately, 60%-80% of all cases of dementia in the world are patients with AD. In view of the continuous rise of this disease especially in the aged population, there is a dire need to come up with a novel compound and/or mixture that could work against this devastating disease. In this regard, the best is to rely on natural compounds rather than synthetic ones, because natural compounds are easily available, cost-effective, and comparatively less toxic. To serve this purpose, lately, scientific community has started exploring the possibility of using different polyphenols either solitary or in combination that can serve as therapeutics against AD. In the current article, we have summarized the role of various polyphenols, namely quercetin, resveratrol, curcumin, gallocatechins, cinnamic acid, caffeine, and caffeic acid as an inhibitor of cholinesterase for the treatment of AD. We have also tried to uncover the mechanistic insight on the action of these polyphenols against AD pathogenicity.
Collapse
Affiliation(s)
- Nasimudeen R Jabir
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fayaz Rahman Khan
- Department of Physical Therapy, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
187
|
Silveira GR, Campelo KA, Lima GRS, Carvalho LP, Samarão SS, Vieira-da-Motta O, Mathias L, Matos CRR, Vieira IJC, Melo EJTD, Maria EJ. In Vitro Anti-Toxoplasma gondii and Antimicrobial Activity of Amides Derived from Cinnamic Acid. Molecules 2018; 23:molecules23040774. [PMID: 29597255 PMCID: PMC6017938 DOI: 10.3390/molecules23040774] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/19/2018] [Accepted: 03/23/2018] [Indexed: 12/31/2022] Open
Abstract
Most cinnamic acids, their esters, amides, aldehydes, and alcohols present several therapeutic actions through anti-inflammatory, antitumor, and inhibitory activity against a great variety of microorganisms. In this work, eight amines derived from cinnamic acid were synthesized and tested against host cells infected with Toxoplasma gondii and the bacteria Escherichia coli, Pseudomonas aeruginosa, Staphylococcus epidermidis, and three strains of Staphylococcus aureus. Compounds 3 and 4 showed the best result against intracellular T. gondii, presenting antiparasitic activity at low concentrations (0.38 and 0.77 mM). The antibacterial activity of these compounds was also evaluated by the agar microdilution method, and amides 2 and 5 had a minimum inhibitory concentration of 250 µg mL−1 against two strains of S. aureus (ATCC 25923 and bovine strain LSA 88). These also showed synergistic action along with a variety of antibiotics, demonstrating that amines derived from cinnamic acid have potential as pharmacological agents.
Collapse
Affiliation(s)
- Graziela Rangel Silveira
- Laboratório de Ciências Químicas, Centro de Ciências e Tecnologia, Universidade Estadual do Norte Fluminense-Darcy Ribeiro, Av. Alberto Lamego, 2000-Parque Califórnia, 28013-602 Campos dos Goytacazes/RJ, Brazil.
| | - Karoline Azerêdo Campelo
- Laboratório de Ciências Químicas, Centro de Ciências e Tecnologia, Universidade Estadual do Norte Fluminense-Darcy Ribeiro, Av. Alberto Lamego, 2000-Parque Califórnia, 28013-602 Campos dos Goytacazes/RJ, Brazil.
| | - Gleice Rangel Silveira Lima
- Laboratório de Ciências Químicas, Centro de Ciências e Tecnologia, Universidade Estadual do Norte Fluminense-Darcy Ribeiro, Av. Alberto Lamego, 2000-Parque Califórnia, 28013-602 Campos dos Goytacazes/RJ, Brazil.
| | - Lais Pessanha Carvalho
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense-Darcy Ribeiro, Av. Alberto Lamego, 2000-Parque Califórnia, 28013-602 Campos dos Goytacazes/RJ, Brazil.
| | - Solange Silva Samarão
- Laboratório de Sanidade Animal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense-Darcy Ribeiro, Av. Alberto Lamego, 2000-Parque Califórnia, 28013-602 Campos dos Goytacazes/RJ, Brazil.
| | - Olney Vieira-da-Motta
- Laboratório de Sanidade Animal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense-Darcy Ribeiro, Av. Alberto Lamego, 2000-Parque Califórnia, 28013-602 Campos dos Goytacazes/RJ, Brazil.
| | - Leda Mathias
- Laboratório de Ciências Químicas, Centro de Ciências e Tecnologia, Universidade Estadual do Norte Fluminense-Darcy Ribeiro, Av. Alberto Lamego, 2000-Parque Califórnia, 28013-602 Campos dos Goytacazes/RJ, Brazil.
| | - Carlos Roberto Ribeiro Matos
- Laboratório de Ciências Químicas, Centro de Ciências e Tecnologia, Universidade Estadual do Norte Fluminense-Darcy Ribeiro, Av. Alberto Lamego, 2000-Parque Califórnia, 28013-602 Campos dos Goytacazes/RJ, Brazil.
| | - Ivo José Curcino Vieira
- Laboratório de Ciências Químicas, Centro de Ciências e Tecnologia, Universidade Estadual do Norte Fluminense-Darcy Ribeiro, Av. Alberto Lamego, 2000-Parque Califórnia, 28013-602 Campos dos Goytacazes/RJ, Brazil.
| | - Edesio José Tenório de Melo
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense-Darcy Ribeiro, Av. Alberto Lamego, 2000-Parque Califórnia, 28013-602 Campos dos Goytacazes/RJ, Brazil.
| | - Edmilson José Maria
- Laboratório de Ciências Químicas, Centro de Ciências e Tecnologia, Universidade Estadual do Norte Fluminense-Darcy Ribeiro, Av. Alberto Lamego, 2000-Parque Califórnia, 28013-602 Campos dos Goytacazes/RJ, Brazil.
| |
Collapse
|
188
|
Anti-Helicobacter pylori activities of selected N-substituted cinnamamide derivatives evaluated on reference and clinical bacterial strains. J Antibiot (Tokyo) 2018; 71:543-548. [DOI: 10.1038/s41429-018-0027-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/19/2017] [Accepted: 12/28/2017] [Indexed: 02/06/2023]
|
189
|
Yakub G, Ignatova M, Manolova N, Rashkov I, Toshkova R, Georgieva A, Markova N. Chitosan/ferulic acid-coated poly(ε-caprolactone) electrospun materials with antioxidant, antibacterial and antitumor properties. Int J Biol Macromol 2018; 107:689-702. [DOI: 10.1016/j.ijbiomac.2017.08.183] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/19/2017] [Accepted: 08/29/2017] [Indexed: 12/12/2022]
|
190
|
Indupalli M, Muvva V, Mangamuri U, Munaganti RK, Naragani K. Bioactive compounds from mangrove derived rare actinobacterium Saccharomonospora oceani VJDS-3. 3 Biotech 2018; 8:103. [PMID: 29430365 PMCID: PMC5796933 DOI: 10.1007/s13205-018-1093-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/04/2018] [Indexed: 12/20/2022] Open
Abstract
A rare actinobacterium was isolated from Nizampatnam mangrove ecosystem of Andhra Pradesh, India, and was screened for its ability to produce bioactive compounds. The potential strain was identified as Saccharomonospora oceani VJDS-3 by polyphasic taxonomy. Purification of the biologically active compounds by column chromatography led to the isolation of three compounds, namely methoxy ethyl cinnamate (ethyl(E)-3-(4-methoxyphenyl)acrylate) (R1), 4-hydroxy methyl cinnamate (methyl(E)-3-(4-hydroxyphenyl)acrylate) (R2) and 4-methylbenzoic acid (R3). The structure of the compounds was elucidated on the basis of spectroscopic analysis including FTIR, EIMS, 1HNMR and 13CNMR spectroscopies. The antimicrobial activity of the bioactive compounds produced by the strain was tested against a panel of bacteria and fungi, and expressed in terms of minimum inhibitory concentration. Compound (R1) exhibited higher antimicrobial potential (50 µg/ml) against Staphylococcus aureus, Bacillus megaterium and Candida albicans compared to R2 and R3. Antioxidant activity of compounds was determined by DPPH and ABTS radical scavenging activities. The results revealed that compound R3 effectively scavenged DPPH (73.08 ± 1.29) and ABTS (99.74 ± 0.00) radicals at a concentration of 25 and 50 µg/ml, respectively. Antidiabetic and anti-obesity activities were evaluated by inhibitory potential of compounds against alpha-glucosidase, alpha-amylase and pancreatic lipase by spectrophotometric assays. Compound R1 showed effective inhibition against alpha-glucosidase (66.8 ± 1.2) at 20 µg/ml while moderate to weak activities were found against alpha-amylase and pancreatic lipase. To the best of our knowledge, this is the first report on the isolation of supra said compounds from the genus Saccharomonospora.
Collapse
Affiliation(s)
- Manideepa Indupalli
- Department of Botany and Microbiology, Acharya Nagarjuna University, Nagarjunanagar, Guntur, Andhra Pradesh 522510 India
| | - Vijayalakshmi Muvva
- Department of Botany and Microbiology, Acharya Nagarjuna University, Nagarjunanagar, Guntur, Andhra Pradesh 522510 India
| | - Ushakiranmayi Mangamuri
- Department of Botany and Microbiology, Acharya Nagarjuna University, Nagarjunanagar, Guntur, Andhra Pradesh 522510 India
| | - Rajesh Kumar Munaganti
- Department of Botany and Microbiology, Acharya Nagarjuna University, Nagarjunanagar, Guntur, Andhra Pradesh 522510 India
| | - Krishna Naragani
- Department of Botany and Microbiology, Acharya Nagarjuna University, Nagarjunanagar, Guntur, Andhra Pradesh 522510 India
| |
Collapse
|
191
|
Abstract
The benefits of vaporization by laser ablation and the high resolution and sensitivity attained by the chirped pulse Fourier transform microwave spectroscopy CP-FTMW have provided the first conformational map of the simplest phenolic acids of trans-cinnamic and p-coumaric. Two conformers of trans-cinnamic acid and four conformers of trans-p-coumaric acid have been characterized under the isolation conditions of a supersonic expansion. The spectroscopic constants derived from the analysis of the rotational spectra compared with those predicted theoretically provide an unmatched means to achieve an unambiguous identification of the observed species.
Collapse
Affiliation(s)
- Vanessa Cortijo
- Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Laboratorios de Espectroscopia y Bioespectroscopia, Parque Cientı́fico UVa, Unidad Asociada CSIC, Universidad de Valladolid , 47011, Valladolid, Spain
| | - Elena R Alonso
- Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Laboratorios de Espectroscopia y Bioespectroscopia, Parque Cientı́fico UVa, Unidad Asociada CSIC, Universidad de Valladolid , 47011, Valladolid, Spain
| | - Santiago Mata
- Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Laboratorios de Espectroscopia y Bioespectroscopia, Parque Cientı́fico UVa, Unidad Asociada CSIC, Universidad de Valladolid , 47011, Valladolid, Spain
| | - José L Alonso
- Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Laboratorios de Espectroscopia y Bioespectroscopia, Parque Cientı́fico UVa, Unidad Asociada CSIC, Universidad de Valladolid , 47011, Valladolid, Spain
| |
Collapse
|
192
|
Novak I, Klasinc L, McGlynn SP. Photoelectron spectra and biological activity of cinnamic acid derivatives revisited. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 189:129-132. [PMID: 28806697 DOI: 10.1016/j.saa.2017.08.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/07/2017] [Accepted: 08/09/2017] [Indexed: 06/07/2023]
Abstract
The electronic structures of several derivatives of cinnamic acid have been studied by UV photoelectron spectroscopy (UPS) and Green's function quantum chemical calculations. The spectra reveal the presence of dimers in the gas phase for p-coumaric and ferulic acids. The electronic structure analysis has been related to the biological properties of these compounds through the analysis of some structure-activity relationships (SAR).
Collapse
Affiliation(s)
- Igor Novak
- Charles Sturt University, POB 883, Orange, NSW 2800, Australia.
| | - Leo Klasinc
- Physical Chemistry Department, Ruđer Bošković Institute, HR-10002 Zagreb, Croatia.
| | | |
Collapse
|
193
|
Tripathi S, Yadav LDS. Visible-light-enabled denitrative carboxylation of β-nitrostyrenes: a direct photocatalytic approach to cinnamic acids. NEW J CHEM 2018. [DOI: 10.1039/c7nj04578f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A novel, highly stereoselective synthesis of (E)-cinnamic acids from β-nitrostyrenes and CBr4employing visible light photoredox catalysis has been developed.
Collapse
Affiliation(s)
- Shubhangi Tripathi
- Green Synthesis Lab
- Department of Chemistry
- University of Allahabad
- Allahabad – 211002
- India
| | - Lal Dhar S. Yadav
- Green Synthesis Lab
- Department of Chemistry
- University of Allahabad
- Allahabad – 211002
- India
| |
Collapse
|
194
|
Adhikari D, Panthi VK, Pangeni R, Kim HJ, Park JW. Preparation, Characterization, and Biological Activities of Topical Anti-Aging Ingredients in a Citrus junos Callus Extract. Molecules 2017; 22:molecules22122198. [PMID: 29232889 PMCID: PMC6149992 DOI: 10.3390/molecules22122198] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/08/2017] [Accepted: 12/09/2017] [Indexed: 02/07/2023] Open
Abstract
In this study, we prepared and characterized a callus extract from Citrus junos and assessed its utility as a source of topical anti-aging ingredients. Callus extract was produced by aqueous extraction from Citrus junos grown on Murashige and Skoog medium with picloram as a growth regulator. After measuring the total phenolic and flavonoid contents, the major phenolic compound in calli was identified as p-hydroxycinnamoylmalic acid (1) by spectroscopic analysis. The total phenol content in the extract was determined to be 24.50 ± 0.43 mg/g of gallic acid equivalents; however, the total flavonoid content of the extract was not determined. The biological activities of the callus extract, in terms of skin anti-aging, were assessed by measuring the anti-tyrosinase activity in, and melanogenesis by, melanoma cells; and proliferation of, and procollagen synthesis by, human fibroblasts. The callus extract was incorporated into nanoliposomes (NLs) to improve its percutaneous absorption. Addition of the callus extract resulted in a 1.85-fold decrease in the melanin content of melanocytes compared with that with arbutin. The extract (500 μg/mL) significantly promoted the proliferation of, and procollagen synthesis by, fibroblasts (by 154% and 176%, respectively). In addition, the flux through the human epidermis of Citrus junos callus extract incorporated into NLs was 17.67-fold higher than that of the callus extract alone. These findings suggest that Citrus junos callus extract-loaded NLs have promise as an anti-aging cosmetic, as well as having a skin-lightening effect.
Collapse
Affiliation(s)
- Deepak Adhikari
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam 58554, Korea.
| | - Vijay Kumar Panthi
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam 58554, Korea.
| | - Rudra Pangeni
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam 58554, Korea.
| | - Hyun Jung Kim
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam 58554, Korea.
| | - Jin Woo Park
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam 58554, Korea.
| |
Collapse
|
195
|
Friedman M. Chemistry, Antimicrobial Mechanisms, and Antibiotic Activities of Cinnamaldehyde against Pathogenic Bacteria in Animal Feeds and Human Foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10406-10423. [PMID: 29155570 DOI: 10.1021/acs.jafc.7b04344] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cinnamaldehyde is a major constituent of cinnamon essential oils produced by aromatic cinnamon plants. This compound has been reported to exhibit antimicrobial properties in vitro in laboratory media and in animal feeds and human foods contaminated with disease-causing bacteria including Bacillus cereus, Campylobacter jejuni, Clostridium perfringens, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. This integrated review surveys and interprets our current knowledge of the chemistry, analysis, safety, mechanism of action, and antibiotic activities of cinnamaldehyde in food animal (cattle, lambs, calves, pigs, poultry) diets and in widely consumed liquid (apple, carrot, tomato, and watermelon juices, milk) and solid foods. Solid foods include various fruits (bayberries, blueberries, raspberries, and strawberries), vegetables (carrots, celery, lettuce, spinach, cucumbers, and tomatoes), meats (beef, ham, pork, and frankfurters), poultry (chickens and turkeys), seafood (oysters and shrimp), bread, cheese, eggs, infant formula, and peanut paste. The described findings are not only of fundamental interest but also have practical implications for food safety, nutrition, and animal and human health. The collated information and suggested research needs will hopefully facilitate and guide further studies needed to optimize the use of cinnamaldehyde alone and in combination with other natural antimicrobials and medicinal antibiotics to help prevent and treat food animal and human diseases.
Collapse
Affiliation(s)
- Mendel Friedman
- Healthy Processed Foods Research, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture , Albany, California 94710, United States
| |
Collapse
|
196
|
Pavić K, Perković I, Pospíšilová Š, Machado M, Fontinha D, Prudêncio M, Jampilek J, Coffey A, Endersen L, Rimac H, Zorc B. Primaquine hybrids as promising antimycobacterial and antimalarial agents. Eur J Med Chem 2017; 143:769-779. [PMID: 29220797 DOI: 10.1016/j.ejmech.2017.11.083] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 10/18/2022]
Abstract
Four series of primaquine (PQ) derivatives were screened for antitubercular and antiplasmodial activity: amides 1a-k, ureas 2a-s, semicarbazides 3a-c and bis-ureas 4a-u. Antimycobacterial activity of PQ derivatives against Mycobacterium tuberculosis (MTB), M. avium complex (MAC) and M. avium subsp. paratuberculosis (MAP) were evaluated in vitro and compared with PQ and the standard antitubercular drugs. In general, the PQ derivatives showed higher potency than the parent compound. Most of the compounds of series 1 and 2 showed high activity against MAP, comparable or even higher than the relevant drug ciprofloxacin, and weak or no activity against MTB and MAC. bis-Trifluoromethylated cinnamamide 1k showed low cytotoxicity and high activity against all three Mycobacterium species and their activities were comparable or slightly higher than those of the reference drugs. PQ urea derivatives with hydroxyl, halogen and trifluoromethyl substituents on benzene ring 2f-p exerted very strong antimycobacterial activity towards all tested mycobacteria, stronger than PQ and the relevant standard drug(s). Unfortunately, these compounds had relatively high cytotoxicity, except bromo 2l and trifluoromethyl 2m, 2n derivatives. In general, meta-substituted derivatives were more active than analogues para-derivatives. Phenyl ureas were also more active than cycloalkyl or hydroxyalkyl ureas. Semicarbazide 3a showed similar activity as PQ, while the other two semicarbazides were inactive. Bis-urea derivatives 4 were generally less active than the urea derivatives sharing the same scaffold, differing only in the spacer type. Out of 21 evaluated bis-urea derivatives, only p-Cl/m-CF3 phenyl derivative 4p, benzhydryl derivatives 4t and 4u and bis-PQ derivative 4s showed high activity, higher than all three reference drugs. After comparison of activity and cytotoxicity, urea 2m and bis-urea 4u could be considered as the most promising agents. Antimalarial potential of PQ derivatives in vitro against the liver stage of P. berghei was evaluated as well. 3-(4-Chlorophenyl)-1-[({4-[(6-methoxyquinolin-8-yl)amino]pentyl}carbamoyl)amino]urea (4l) was the most active compound (IC50 = 42 nM; cytotoxicity/activity ratio >2000). Our results bring new insights into development of novel anti-TB and antimalarial compounds.
Collapse
Affiliation(s)
- Kristina Pavić
- University of Zagreb, Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10 000 Zagreb, Croatia
| | - Ivana Perković
- University of Zagreb, Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10 000 Zagreb, Croatia
| | - Šárka Pospíšilová
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University, Odbojárov 10, 83232 Bratislava, Slovakia
| | - Marta Machado
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Diana Fontinha
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Miguel Prudêncio
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Josef Jampilek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University, Odbojárov 10, 83232 Bratislava, Slovakia.
| | - Aidan Coffey
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland
| | - Lorraine Endersen
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland
| | - Hrvoje Rimac
- University of Zagreb, Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10 000 Zagreb, Croatia
| | - Branka Zorc
- University of Zagreb, Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10 000 Zagreb, Croatia.
| |
Collapse
|
197
|
Oussaid S, Chibane M, Madani K, Amrouche T, Achat S, Dahmoune F, Houali K, Rendueles M, Diaz M. Optimization of the extraction of phenolic compounds from Scirpus holoschoenus using a simplex centroid design for antioxidant and antibacterial applications. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.08.064] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
198
|
Vilas-Boas C, Sousa E, Pinto M, Correia-da-Silva M. An antifouling model from the sea: a review of 25 years of zosteric acid studies. BIOFOULING 2017; 33:927-942. [PMID: 29171304 DOI: 10.1080/08927014.2017.1391951] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/09/2017] [Indexed: 06/07/2023]
Abstract
Many studies have shown that natural marine compounds can prevent biofouling by a broad spectrum of organisms without toxic effects, encouraging their use in antifouling (AF) coatings. Studies over the past 25 years of the natural product zosteric acid (ZA) are systematically organized in this review. ZA is a sulfated phenolic acid produced by the seagrass Zostera marina that has very promising AF potential against several micro- and macrofouling organisms. ZA was shown to have appropriate environmental fate parameters such as high water solubility, a low log P, low bioaccumulation, and no ecotoxicity, which demonstrated the potential of ZA as a safe AF agent. This review also highlights that ZA has been successfully incorporated into several types of coatings. The synthesis of analogs is also considered in this review, and it has allowed a better understanding of ZA structure-AF activity relationships and clarified the mechanism of action of ZA.
Collapse
Affiliation(s)
- Cátia Vilas-Boas
- a Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy , University of Porto , Porto , Portugal
| | - Emília Sousa
- a Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy , University of Porto , Porto , Portugal
- b CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research , University of Porto , Porto , Portugal
| | - Madalena Pinto
- a Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy , University of Porto , Porto , Portugal
- b CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research , University of Porto , Porto , Portugal
| | - Marta Correia-da-Silva
- a Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy , University of Porto , Porto , Portugal
- b CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research , University of Porto , Porto , Portugal
| |
Collapse
|
199
|
Giacomini D, Musumeci R, Galletti P, Martelli G, Assennato L, Sacchetti G, Guerrini A, Calaresu E, Martinelli M, Cocuzza C. 4-Alkyliden-azetidinones modified with plant derived polyphenols: Antibacterial and antioxidant properties. Eur J Med Chem 2017; 140:604-614. [DOI: 10.1016/j.ejmech.2017.09.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 12/01/2022]
|
200
|
Majouli K, Hamdi A, Hlila MB. Phytochemical analysis and biological activities of Hertia cheirifolia L. roots extracts. ASIAN PAC J TROP MED 2017; 10:1134-1139. [PMID: 29268968 DOI: 10.1016/j.apjtm.2017.10.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/26/2017] [Accepted: 10/25/2017] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVE To test the antioxidant, antimicrobial and α-glucosidase inhibitory activities of the roots extracts from Hertia cheirifolia (H. cheirifolia) L. METHODS Total phenolics and total flavonoids content of the different extracts were determined by colorimetric methods and reverse phase high-performance liquid chromatography (RP-HPLC) was performed to identify various chemical components. The different extracts were evaluated for antioxidant activities by 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azino-bis-3-ethylenebenzothiozoline-6-sulfonic acid (ABTS+) and β-carotene bleaching tests and α-glucosidase inhibitory properties. The antimicrobial activity was carried out in vitro by the broth dilution method. RESULTS Trans-cinnamic acid, rutin hydrate, naringin and quercetin were the main compounds of the ethyl acetate extract from H. cheirifolia L. This extract has significant scavenging activity to decrease free radicals especially for DPPH and ABTS radicals. As well as, the ethyl acetate extract exhibited an antimicrobial property against bacterial strains. Bacillus licheniformis and Salmonella enterica were the most sensitive strains with minimum inhibitory concentration values of 0.156 mg/mL. CONCLUSION The ethyl acetate extract was found to be selectively antioxidant and antimicrobial.
Collapse
Affiliation(s)
- Kaouther Majouli
- Laboratory of Biochemistry, Research Unit: UR 12ES08 "Cell Signaling and Pathologies", Faculty of Medicine, University of Monastir, Tunisia.
| | - Assia Hamdi
- Laboratory of Chemical, Galenic and Pharmacological Development of Drugs, Faculty of Pharmacy, University of Monastir, Tunisia
| | - Malek Besbes Hlila
- Laboratory of Transmissible Diseases and of Biologically Active Substances, MDT01, Faculty of Pharmacy, University of Monastir, Tunisia
| |
Collapse
|