151
|
Induction of Immune Tolerance to Dietary Antigens. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 850:93-118. [DOI: 10.1007/978-3-319-15774-0_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
152
|
Geginat J, Paroni M, Maglie S, Alfen JS, Kastirr I, Gruarin P, De Simone M, Pagani M, Abrignani S. Plasticity of human CD4 T cell subsets. Front Immunol 2014; 5:630. [PMID: 25566245 PMCID: PMC4267263 DOI: 10.3389/fimmu.2014.00630] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 11/25/2014] [Indexed: 12/23/2022] Open
Abstract
Human beings are exposed to a variety of different pathogens, which induce tailored immune responses and consequently generate highly diverse populations of pathogen-specific T cells. CD4(+) T cells have a central role in adaptive immunity, since they provide essential help for both cytotoxic T cell- and antibody-mediated responses. In addition, CD4(+) regulatory T cells are required to maintain self-tolerance and to inhibit immune responses that could damage the host. Initially, two subsets of CD4(+) helper T cells were identified that secrete characteristic effector cytokines and mediate responses against different types of pathogens, i.e., IFN-γ secreting Th1 cells that fight intracellular pathogens, and IL-4 producing Th2 cells that target extracellular parasites. It is now well established that this dichotomy is insufficient to describe the complexity of CD4(+) T cell differentiation, and in particular the human CD4 compartment contains a myriad of T cell subsets with characteristic capacities to produce cytokines and to home to involved tissues. Moreover, it has become increasingly clear that these T cell subsets are not all terminally differentiated cells, but that the majority is plastic and that in particular central memory T cells can acquire different properties and functions in secondary immune responses. In addition, there is compelling evidence that helper T cells can acquire regulatory functions upon chronic stimulation in inflamed tissues. The plasticity of antigen-experienced human T cell subsets is highly relevant for translational medicine, since it opens new perspectives for immune-modulatory therapies for chronic infections, autoimmune diseases, and cancer.
Collapse
Affiliation(s)
- Jens Geginat
- Fondazione Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" INGM , Milan , Italy
| | - Moira Paroni
- Fondazione Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" INGM , Milan , Italy
| | - Stefano Maglie
- Fondazione Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" INGM , Milan , Italy
| | - Johanna Sophie Alfen
- Fondazione Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" INGM , Milan , Italy
| | - Ilko Kastirr
- Fondazione Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" INGM , Milan , Italy
| | - Paola Gruarin
- Fondazione Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" INGM , Milan , Italy
| | - Marco De Simone
- Fondazione Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" INGM , Milan , Italy
| | - Massimiliano Pagani
- Fondazione Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" INGM , Milan , Italy
| | - Sergio Abrignani
- Fondazione Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" INGM , Milan , Italy
| |
Collapse
|
153
|
McPherson SW, Heuss ND, Pierson MJ, Gregerson DS. Retinal antigen-specific regulatory T cells protect against spontaneous and induced autoimmunity and require local dendritic cells. J Neuroinflammation 2014; 11:205. [PMID: 25498509 PMCID: PMC4268905 DOI: 10.1186/s12974-014-0205-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 11/20/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND We previously reported that the peripheral regulatory T cells (pTregs) generated 'on-demand' in the retina were crucial to retinal immune privilege, and in vitro analysis of retinal dendritic cells (DC) showed they possessed antigen presenting cell (APC) activity that promoted development of the Tregs and effector T cells (Teffs). Here, we expanded these findings by examining whether locally generated, locally acting pTregs were protective against spontaneous autoimmunity and autoimmunity mediated by interphotoreceptor retinoid-binding protein (IRBP). We also examined the APC capacity of retinal DC in vivo. METHODS Transgenic (Tg) mice expressing diphtheria toxin receptor (DTR) and/or green fluorescent protein (GFP) under control of the endogenous FoxP3 promoter (GFP only in FG mice, GFP and DTR in FDG mice) or the CD11c promoter (GFP and DTR in CDG mice) were used in conjunction with Tg mice expressing beta-galactosidase (βgal) as retinal neo-self antigen and βgal-specific TCR Tg mice (BG2). Retinal T cell responses were assayed by flow cytometry and retinal autoimmune disease assessed by histological examination. RESULTS Local depletion of the Tregs enhanced actively induced experimental autoimmune uveoretinitis to the highly expressed retinal self-antigen IRBP in FDG mice and spontaneous autoimmunity in βgal-FDG-BG2 mice, but not in mice lacking autoreactive T cells or their target antigen in the retina. The presence of retinal βgal downregulated the generation of antigen-specific Teffs and pTregs within the retina in response to local βgal challenge. Retinal DC depletion prevented generation of Tregs and Teffs within retina after βgal injection. Microglia remaining after DC depletion did not make up for loss of DC-dependent antigen presentation. CONCLUSIONS Our results suggest that local retinal Tregs protect against spontaneous organ-specific autoimmunity and that T cell responses within the retina require the presence of local DC.
Collapse
Affiliation(s)
- Scott W McPherson
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Rm, 310, Lion's Research Bldg,,2001 6th St, SE,, Minneapolis 55455-3007, Minnesota, USA.
| | | | | | | |
Collapse
|
154
|
Petzold C, Steinbronn N, Gereke M, Strasser RH, Sparwasser T, Bruder D, Geffers R, Schallenberg S, Kretschmer K. Fluorochrome-based definition of naturally occurring Foxp3(+) regulatory T cells of intra- and extrathymic origin. Eur J Immunol 2014; 44:3632-45. [PMID: 25159127 DOI: 10.1002/eji.201444750] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/23/2014] [Accepted: 08/20/2014] [Indexed: 11/06/2022]
Abstract
Under physiological conditions, studies on the biology of naturally induced Foxp3(+) Treg cells of intra- and extrathymic origin have been hampered by the lack of unambiguous markers to discriminate the mature progeny of such developmental Treg-cell sublineages. Here, we report on experiments in double-transgenic mice, in which red fluorescent protein (RFP) is expressed in all Foxp3(+) Treg cells, whereas Foxp3-dependent GFP expression is exclusively confined to intrathymically induced Foxp3(+) Treg cells. This novel molecular genetic tool enabled us to faithfully track and characterize naturally induced Treg cells of intrathymic (RFP(+) GFP(+) ) and extrathymic (RFP(+) GFP(-) ) origin in otherwise unmanipulated mice. These experiments directly demonstrate that extrathymically induced Treg cells substantially contribute to the overall pool of mature Foxp3(+) Treg cells residing in peripheral lymphoid tissues of steady-state mice. Furthermore, we provide evidence that intra- and extrathymically induced Foxp3(+) Treg cells represent distinct phenotypic and functional sublineages.
Collapse
Affiliation(s)
- Cathleen Petzold
- Molecular and Cellular Immunology/Immune Regulation, DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Baptista AP, Roozendaal R, Reijmers RM, Koning JJ, Unger WW, Greuter M, Keuning ED, Molenaar R, Goverse G, Sneeboer MMS, den Haan JMM, Boes M, Mebius RE. Lymph node stromal cells constrain immunity via MHC class II self-antigen presentation. eLife 2014; 3. [PMID: 25407678 PMCID: PMC4270074 DOI: 10.7554/elife.04433] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/19/2014] [Indexed: 12/16/2022] Open
Abstract
Non-hematopoietic lymph node stromal cells shape immunity by inducing MHC-I-dependent deletion of self-reactive CD8+ T cells and MHC-II-dependent anergy of CD4+ T cells. In this study, we show that MHC-II expression on lymph node stromal cells is additionally required for homeostatic maintenance of regulatory T cells (Tregs) and maintenance of immune quiescence. In the absence of MHC-II expression in lymph node transplants, i.e. on lymph node stromal cells, CD4+ as well as CD8+ T cells became activated, ultimately resulting in transplant rejection. MHC-II self-antigen presentation by lymph node stromal cells allowed the non-proliferative maintenance of antigen-specific Tregs and constrained antigen-specific immunity. Altogether, our results reveal a novel mechanism by which lymph node stromal cells regulate peripheral immunity. DOI:http://dx.doi.org/10.7554/eLife.04433.001 In vertebrates, the immune response that protects against infection and disease is made up of two systems. The body's first line of defense is the innate immune system that attacks invaders rapidly but indiscriminately. If this fails to stop disease progression, the adaptive immune system is activated. Although the adaptive immune response is relatively slow compared with the innate immune response, it is more deliberate and produces cells that specifically target and destroy the pathogen or diseased cells present. The adaptive immune system also produces cells that ‘remember’ the pathogen so that it can be destroyed more quickly if it invades again. A special type of white blood cell, called a T cell, is key to the adaptive immune response. To activate T cells, fragments of molecules that provoke an immune response—called antigens—must be bound to a ‘major histocompatibility complex’ (MHC) and presented to these cells. This process often occurs in lymph nodes, organs that filter the fluid moving from the body's tissues back into the blood. Particular cells in the lymph node, called lymph node stromal cells, are essential for the organ's structure; recently, these cells have also been found to play roles in regulating the immune response. For example, lymph node stromal cells can help to destroy self-reactive T cells that attack the host's normal, healthy cells. In addition, some types of lymph node stromal cells produce major histocompatibility complexes, although exactly what these complexes do on these cells was unknown. Baptista, Roozendaal et al. investigated the role of the major histocompatibility complexes expressed by lymph node stromal cells by transplanting mutant cells that could not produce these complexes into otherwise normal mice. In these mice, T cells became more activated than normal and the transplant was rejected after several weeks. On further investigation, Baptista, Roozendaal et al. discovered that the major histocompatibility complexes produced by the lymph node stromal cells help to maintain an active population of regulatory T cells. These cells are responsible for shutting down the immune response. This work therefore improves our understanding of how the immune response is regulated and could help to develop new strategies for preventing donor organs being rejected after transplantation. DOI:http://dx.doi.org/10.7554/eLife.04433.002
Collapse
Affiliation(s)
- Antonio P Baptista
- Department of Molecular Cell Biology and Immunology, Vrije Universiteit Medical Center, Amsterdam, Netherlands
| | - Ramon Roozendaal
- Department of Molecular Cell Biology and Immunology, Vrije Universiteit Medical Center, Amsterdam, Netherlands
| | - Rogier M Reijmers
- Department of Molecular Cell Biology and Immunology, Vrije Universiteit Medical Center, Amsterdam, Netherlands
| | - Jasper J Koning
- Department of Molecular Cell Biology and Immunology, Vrije Universiteit Medical Center, Amsterdam, Netherlands
| | - Wendy W Unger
- Department of Molecular Cell Biology and Immunology, Vrije Universiteit Medical Center, Amsterdam, Netherlands
| | - Mascha Greuter
- Department of Molecular Cell Biology and Immunology, Vrije Universiteit Medical Center, Amsterdam, Netherlands
| | - Eelco D Keuning
- Department of Molecular Cell Biology and Immunology, Vrije Universiteit Medical Center, Amsterdam, Netherlands
| | - Rosalie Molenaar
- Department of Molecular Cell Biology and Immunology, Vrije Universiteit Medical Center, Amsterdam, Netherlands
| | - Gera Goverse
- Department of Molecular Cell Biology and Immunology, Vrije Universiteit Medical Center, Amsterdam, Netherlands
| | - Marlous M S Sneeboer
- Department of Molecular Cell Biology and Immunology, Vrije Universiteit Medical Center, Amsterdam, Netherlands
| | - Joke M M den Haan
- Department of Molecular Cell Biology and Immunology, Vrije Universiteit Medical Center, Amsterdam, Netherlands
| | - Marianne Boes
- Department of Pediatric Immunology, Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Reina E Mebius
- Department of Molecular Cell Biology and Immunology, Vrije Universiteit Medical Center, Amsterdam, Netherlands
| |
Collapse
|
156
|
Abstract
Although intestinal bacteria live deep within the body, they are topographically on the exterior surface and thus outside the host. According to the classic notion that the immune system targets non-self rather than self, these intestinal bacteria should be considered foreign and therefore attacked and eliminated. While this appears to be true for some commensal bacterial species, recent data suggest that the immune system actively becomes tolerant to many bacterial organisms. The induction or activation of regulatory T (Treg) cells that inhibit, rather than promote, inflammatory responses to commensal bacteria appears to be a central component of mucosal tolerance. Loss of this mechanism can lead to inappropriate immune reactivity toward commensal organisms, perhaps contributing to mucosal inflammation characteristic of disorders such as inflammatory bowel disease.
Collapse
Affiliation(s)
- Teresa L Ai
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA
| | | | | |
Collapse
|
157
|
Jacobo P, Guazzone VA, Pérez CV, Lustig L. CD4+ Foxp3+ regulatory T cells in autoimmune orchitis: phenotypic and functional characterization. Am J Reprod Immunol 2014; 73:109-25. [PMID: 25164316 DOI: 10.1111/aji.12312] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 08/01/2014] [Indexed: 12/17/2022] Open
Abstract
PROBLEM The phenotype and function of regulatory T (Treg) cells in rats with experimental autoimmune orchitis (EAO) was evaluated. METHOD OF STUDY Distribution of Treg cells in draining lymph nodes from the testis (TLN) and from the site of immunization (ILN) was analysed by immunohistochemistry. The number, phenotype and proliferative response (5-bromo-2'-deoxyuridine incorporation) of Treg cells were evaluated by flow cytometry and Treg cell suppressive activity by in vitro experiments. TGF-β expression was evaluated by immunofluorescence. RESULTS Absolute numbers of Treg cells and BrdU+ Treg cells were increased in LN from experimental compared to normal and control rats. These cells displayed a CD45RC(-), CD62L(-), Helios(+) phenotype. CD4(+) CD25(bright) T cells from TLN of experimental rats were able to suppress T cell-proliferation more efficiently than those derived from normal and control rats. Cells isolated from TLN and ILN expressed TGF-β. CONCLUSION Our results suggest that Treg cells with a memory/activated phenotype proliferate extensively in the inflamed testis and LN of rats with EAO exhibiting an enhanced suppressive capacity. TGF-β may be involved in their suppressive mechanism.
Collapse
Affiliation(s)
- Patricia Jacobo
- Instituto de Investigaciones Biomédicas UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
158
|
Mayer CT, Ghorbani P, Kühl AA, Stüve P, Hegemann M, Berod L, Gershwin ME, Sparwasser T. Few Foxp3⁺ regulatory T cells are sufficient to protect adult mice from lethal autoimmunity. Eur J Immunol 2014; 44:2990-3002. [PMID: 25042334 DOI: 10.1002/eji.201344315] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 06/03/2014] [Accepted: 07/11/2014] [Indexed: 12/12/2022]
Abstract
Foxp3 specifies the Treg cell lineage and is indispensable for immune tolerance. Accordingly, rare Foxp3 mutations cause lethal autoimmunity. The mechanisms precipitating more prevalent human autoimmune diseases are poorly understood, but involve a combination of genetic and environmental factors. Many autoimmune diseases associate with a partial Treg-cell dysfunction, yet mouse models reflecting such complex pathophysiological processes are rare. Around 95% of Foxp3(+) Treg cells can be specifically depleted in bacterial artifical chromosome (BAC)-transgenic Depletion of REGulatory T cells (DEREG) mice through diphtheria toxin (DT) treatment. However, Treg-cell depletion fails to cause autoimmunity in adult DEREG mice for unclear reasons. By crossing Foxp3(GFP) knock-in mice to DEREG mice, we introduced additional genetic susceptibility that does not affect untreated mice. Strikingly, DT treatment of DEREG × Foxp3(GFP) mice rapidly causes autoimmunity characterized by blepharitis, tissue damage, and autoantibody production. This inflammatory disease is associated with augmented T-cell activation, increased Th2 cytokine production and myeloproliferation, and is caused by defective Treg-cell homeostasis, preventing few DT-insensitive Treg cells from repopulating the niche after Treg-cell depletion. Our study provides important insights into self-tolerance. We further highlight DEREG × Foxp3(GFP) mice as a model to investigate the role of environmental factors in precipitating autoimmunity. This may help to better understand and treat human autoimmunity.
Collapse
Affiliation(s)
- Christian T Mayer
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
159
|
Spasova DS, Surh CD. Blowing on embers: commensal microbiota and our immune system. Front Immunol 2014; 5:318. [PMID: 25120539 PMCID: PMC4112811 DOI: 10.3389/fimmu.2014.00318] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 06/24/2014] [Indexed: 12/19/2022] Open
Abstract
Vertebrates have co-evolved with microorganisms resulting in a symbiotic relationship, which plays an important role in health and disease. Skin and mucosal surfaces are colonized with a diverse population of commensal microbiota, over 1000 species, outnumbering the host cells by 10-fold. In the past 40 years, studies have built on the idea that commensal microbiota is in constant contact with the host immune system and thus influence immune function. Recent studies, focusing on mutualism in the gut, have shown that commensal microbiota seems to play a critical role in the development and homeostasis of the host immune system. In particular, the gut microbiota appears to direct the organization and maturation of lymphoid tissues and acts both locally and systemically to regulate the recruitment, differentiation, and function of innate and adaptive immune cells. While the pace of research in the area of the mucosal–immune interface has certainly intensified over the last 10 years, we are still in the early days of this field. Illuminating the mechanisms of how gut microbes shape host immunity will enhance our understanding of the causes of immune-mediated pathologies and improve the design of next-generation vaccines. This review discusses the recent advances in this field, focusing on the close relationship between the adaptive immune system and commensal microbiota, a constant and abundant source of foreign antigens.
Collapse
Affiliation(s)
- Darina S Spasova
- Kellog School of Science and Technology Doctoral Program in Chemical and Biological Sciences and the Department of Immunology and Microbial Science, The Scripps Research Institute , La Jolla, CA , USA ; Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology , La Jolla, CA , USA
| | - Charles D Surh
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology , La Jolla, CA , USA ; Academy of Immunology and Microbiology, Institute of Basic Science , Pohang , South Korea ; Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology , Pohang , South Korea
| |
Collapse
|
160
|
Chai JN, Zhou YW, Hsieh CS. T cells and intestinal commensal bacteria--ignorance, rejection, and acceptance. FEBS Lett 2014; 588:4167-75. [PMID: 24997344 DOI: 10.1016/j.febslet.2014.06.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 06/23/2014] [Accepted: 06/24/2014] [Indexed: 02/01/2023]
Abstract
Trillions of commensal bacteria cohabit our bodies to mutual benefit. In the past several years, it has become clear that the adaptive immune system is not ignorant of intestinal commensal bacteria, but is constantly interacting with them. For T cells, the response to commensal bacteria does not appear uniform, as certain commensal bacterial species appear to trigger effector T cells to reject and control them, whereas other species elicit Foxp3(+) regulatory T (Treg) cells to accept and be tolerant of them. Here, we review our current knowledge of T cell differentiation in response to commensal bacteria, and how this process leads to immune homeostasis in the intestine.
Collapse
Affiliation(s)
- Jiani N Chai
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63132, United States
| | - You W Zhou
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63132, United States
| | - Chyi-Song Hsieh
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63132, United States.
| |
Collapse
|
161
|
KLF2 is a rate-limiting transcription factor that can be targeted to enhance regulatory T-cell production. Proc Natl Acad Sci U S A 2014; 111:9579-84. [PMID: 24979767 DOI: 10.1073/pnas.1323493111] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulatory T cells (Tregs) are a specialized subset of CD4(+) T cells that maintain self-tolerance by functionally suppressing autoreactive lymphocytes. The Treg compartment is composed of thymus-derived Tregs (tTregs) and peripheral Tregs (pTregs) that are generated in secondary lymphoid organs after exposure to antigen and specific cytokines, such as TGF-β. With regard to this latter lineage, pTregs [and their ex vivo generated counterparts, induced Tregs (iTregs)] offer particular therapeutic potential because these cells can be raised against specific antigens to limit autoimmunity. We now report that transcription factor Krüppel-like factor 2 (KLF2) is necessary for the generation of iTregs but not tTregs. Moreover, drugs that limit KLF2 proteolysis during T-cell activation enhance iTreg development. To the authors' knowledge, this study identifies the first transcription factor to distinguish between i/pTreg and tTreg ontogeny and demonstrates that KLF2 is a therapeutic target for the production of regulatory T cells.
Collapse
|
162
|
Ross EM, Bourges D, Hogan TV, Gleeson PA, van Driel IR. Helios defines T cells being driven to tolerance in the periphery and thymus. Eur J Immunol 2014; 44:2048-58. [PMID: 24740292 DOI: 10.1002/eji.201343999] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 03/04/2014] [Accepted: 04/11/2014] [Indexed: 01/04/2023]
Abstract
The expression of the Ikaros transcription factor family member, Helios, has been shown to be associated with T-cell tolerance in both the thymus and the periphery. To better understand the importance of Helios in tolerance pathways, we have examined the expression of Helios in TCR-transgenic T cells specific for the gastric H(+) /K(+) ATPase, the autoantigen target in autoimmune gastritis. Analysis of H(+) /K(+) ATPase-specific T cells in mice with different patterns of H(+) /K(+) ATPase expression revealed that, in addition to the expression of Helios in CD4(+) Foxp3(+) regulatory T (Treg) cells, Helios is expressed by a large proportion of CD4(+) Foxp3(-) T cells in both the thymus and the paragastric lymph node (PgLN), which drains the stomach. In the thymus, Helios was expressed by H(+) /K(+) ATPase-specific thymocytes that were undergoing negative selection. In the periphery, Helios was expressed in H(+) /K(+) ATPase-specific CD4(+) T cells following H(+) /K(+) ATPase presentation and was more highly expressed when T-cell activation occurred in the absence of inflammation. Analysis of purified H(+) /K(+) ATPase-specific CD4(+) Foxp3(-) Helios(+) T cells demonstrated that they were functionally anergic. These results demonstrate that Helios is expressed by thymic and peripheral T cells that are being driven to tolerance in response to a genuine autoantigen.
Collapse
Affiliation(s)
- Ellen M Ross
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Australia
| | | | | | | | | |
Collapse
|
163
|
Attridge K, Walker LSK. Homeostasis and function of regulatory T cells (Tregs) in vivo: lessons from TCR-transgenic Tregs. Immunol Rev 2014; 259:23-39. [PMID: 24712457 PMCID: PMC4237543 DOI: 10.1111/imr.12165] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The identification of CD25 and subsequently Forkhead box protein 3 (Foxp3) as markers for regulatory T cells (Tregs) has revolutionized our ability to explore this population experimentally. In a similar vein, our understanding of antigen-specific Treg responses in vivo owes much to the fortuitous generation of T-cell receptor (TCR)-transgenic Tregs. This has permitted tracking of Tregs with a defined specificity in vivo, facilitating analysis of how encounter with cognate antigen shapes Treg homeostasis and function. Here, we review the key lessons learned from a decade of analysis of TCR-transgenic Tregs and set this in the broader context of general progress in the field. Use of TCR-transgenic Tregs has led to an appreciation that Tregs are a highly dynamic proliferative population in vivo, rather than an anergic population as they were initially portrayed. It is now clear that Treg homeostasis is positively regulated by encounter with self-antigen expressed on peripheral tissues, which is likely to be relevant to the phenomenon of peripheral repertoire reshaping that has been described for Tregs and the observation that the Treg TCR specificities vary by anatomical location. Substantial evidence has also accumulated to support the role of CD28 costimulation and interleukin-2 in Treg homeostasis. The availability of TCR-transgenic Tregs has enabled analysis of Treg populations that are sufficient or deficient in particular genes, without the comparison being confounded by repertoire alterations. This approach has yielded insights into genes required for Treg function in vivo, with particular progress being made on the role of ctla-4 in this context. As the prospect of manipulating Treg populations in the clinic becomes reality, a full appreciation of the rules governing their homeostasis will prove increasingly important.
Collapse
Affiliation(s)
- Kesley Attridge
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | | |
Collapse
|
164
|
Yuan X, Cheng G, Malek TR. The importance of regulatory T-cell heterogeneity in maintaining self-tolerance. Immunol Rev 2014; 259:103-14. [PMID: 24712462 PMCID: PMC3983566 DOI: 10.1111/imr.12163] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
CD4(+) Forkhead box protein 3 (Foxp3)(+) regulatory T cells (Tregs) are the major cell type that mediates dominant tolerance in the periphery. Over the past decade, extensive study of Tregs has revealed that these cells express substantial heterogeneity to maintain tolerance and regulate immune responses. Tregs possess heterogeneity with respect to their origin and processes for development, functional activity, migratory pattern, and activation status. Some of the same environmental cues and molecular pathways utilized to generate specialized T-effector cells are also integrated by Tregs to colocalize and fine-tune suppressive mechanisms to optimally regulate and restrain distinctive self and antigen-specific T-cell responses. Here, we review our current understanding and significance of Treg heterogeneity in maintaining peripheral immune tolerance. We also highlight recent work from our laboratory that has studied the extent phenotypically distinct Treg subsets are related to each other and expand in an ordered fashion to give rise to highly activated short-lived Klrg1(+) suppressor cells to optimize immune regulation and maintain homeostasis of the Treg compartment.
Collapse
Affiliation(s)
- Xiaomei Yuan
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | | |
Collapse
|
165
|
Bouvy AP, Klepper M, Kho MML, Boer K, Betjes MGH, Weimar W, Baan CC. The impact of induction therapy on the homeostasis and function of regulatory T cells in kidney transplant patients. Nephrol Dial Transplant 2014; 29:1587-97. [DOI: 10.1093/ndt/gfu079] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
166
|
Whibley N, Maccallum DM, Vickers MA, Zafreen S, Waldmann H, Hori S, Gaffen SL, Gow NAR, Barker RN, Hall AM. Expansion of Foxp3(+) T-cell populations by Candida albicans enhances both Th17-cell responses and fungal dissemination after intravenous challenge. Eur J Immunol 2014; 44:1069-83. [PMID: 24435677 PMCID: PMC3992851 DOI: 10.1002/eji.201343604] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 11/15/2013] [Accepted: 01/09/2014] [Indexed: 01/01/2023]
Abstract
Candida albicans remains the fungus most frequently associated with nosocomial bloodstream infection. In disseminated candidiasis, the role of Foxp3(+) regulatory T (Treg) cells remains largely unexplored. Our aims were to characterize Foxp3(+) Treg-cell activation in a murine intravenous challenge model of disseminated C. albicans infection, and determine the contribution to disease. Flow cytometric analyses demonstrated that C. albicans infection drove in vivo expansion of a splenic CD4(+) Foxp3(+) population that correlated positively with fungal burden. Depletion from Foxp3(hCD2) reporter mice in vivo confirmed that Foxp3(+) cells exacerbated fungal burden and inflammatory renal disease. The CD4(+) Foxp3(+) population expanded further after in vitro stimulation with C. albicans antigens (Ags), and included at least three cell types. These arose from proliferation of the natural Treg-cell subset, together with conversion of Foxp3(-) cells to the induced Treg-cell form, and to a cell type sharing effector Th17-cell characteristics, expressing ROR-γt, and secreting IL-17A. The expanded Foxp3(+) T cells inhibited Th1 and Th2 responses, but enhanced Th17-cell responses to C. albicans Ags in vitro, and in vivo depletion confirmed their ability to enhance the Th17-cell response. These data lead to a model for disseminated candidiasis whereby expansion of Foxp3(+) T cells promotes Th17-cell responses that drive pathology.
Collapse
Affiliation(s)
- Natasha Whibley
- Division of Applied Medicine, University of Aberdeen, Aberdeen, UK; Aberdeen Fungal Group, University of Aberdeen, Aberdeen, UK; Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
The phenotype and activation status of regulatory T cells during Friend retrovirus infection. Virol Sin 2014; 29:48-60. [PMID: 24452537 DOI: 10.1007/s12250-014-3396-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 01/03/2014] [Indexed: 02/07/2023] Open
Abstract
The suppressive capacity of regulatory T cells (Tregs) has been extensively studied and is well established for many diseases. The expansion, accumulation, and activation of Tregs in viral infections are of major interest in order to find ways to alter Treg functions for therapeutic benefit. Tregs are able to dampen effector T cell responses to viral infections and thereby contribute to the establishment of a chronic infection. In the Friend retrovirus (FV) mouse model, Tregs are known to expand in all infected organs. To better understand the characteristics of these Treg populations, their phenotype was analyzed in detail. During acute FV-infection, Tregs became activated in the spleen and bone marrow, as indicated by various T cell activation markers, such as CD43 and CD103. Interestingly, Tregs in the bone marrow, which contains the highest viral loads during acute infection, displayed greater levels of activation than Tregs from the spleen. Treg expansion was driven by proliferation but no FV-specific Tregs could be detected. Activated Tregs in FV-infection did not produce Granzyme B (GzmB) or tumor necrosis factor α (TNFα), which are thought to be a potential mechanism for their suppressive activity. Furthermore, Tregs expressed inhibitory markers, such as TIM3, PD-1 and PD-L1. Blocking TIM3 and PD-L1 with antibodies during chronic FV-infection increased the numbers of activated Tregs. These data may have important implications for the understanding of Treg functions during chronic viral infections.
Collapse
|
168
|
Hall LS, Hall AM, Pickford W, Vickers MA, Urbaniak SJ, Barker RN. Combination peptide immunotherapy suppresses antibody and helper T-cell responses to the RhD protein in HLA-transgenic mice. Haematologica 2014; 99:588-96. [PMID: 24441145 DOI: 10.3324/haematol.2012.082081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The offspring from pregnancies of women who have developed anti-D blood group antibodies are at risk of hemolytic disease of the newborn. We have previously mapped four peptides containing immunodominant T-helper cell epitopes from the RhD protein and the purpose of the work was to develop these into a product for suppression of established anti-D responses. A panel of each of the four immunodominant RhD peptides was synthesized with modifications to improve manufacturability and solubility, and screened for retention of recognition by human T-helper cells. A selected version of each sequence was combined in a mixture (RhDPmix), which was tested for suppressive ability in a humanized murine model of established immune responses to RhD protein. After HLA-DR15 transgenic mice had been immunized with RhD protein, a single dose of RhDPmix, given either intranasally (P=0.008, Mann-Whitney rank sum test) or subcutaneously (P=0.043), rapidly and significantly suppressed the ongoing antibody response. This was accompanied by reduced T-helper cell responsiveness, although this change was less marked for subcutaneous RhDPmix delivery, and by the recruitment of cells with a regulatory T-cell phenotype. The results support human trials of RhDPmix peptide immunotherapy in women with established antibody responses to the RhD blood group.
Collapse
|
169
|
Hamano R, Baba T, Sasaki S, Tomaru U, Ishizu A, Kawano M, Yamagishi M, Mukaida N. Ag and IL-2 immune complexes efficiently expand Ag-specific Treg cells that migrate in response to chemokines and reduce localized immune responses. Eur J Immunol 2014; 44:1005-15. [DOI: 10.1002/eji.201343434] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 11/09/2013] [Accepted: 12/10/2013] [Indexed: 01/27/2023]
Affiliation(s)
- Ryoko Hamano
- Division of Rheumatology; Department of Internal Medicine; Kanazawa University Hospital; Kanazawa Ishikawa Japan
| | - Tomohisa Baba
- Division of Molecular Bioregulation; Cancer Research Institute; Kanazawa University; Kanazawa Ishikawa Japan
| | - Soichiro Sasaki
- Division of Molecular Bioregulation; Cancer Research Institute; Kanazawa University; Kanazawa Ishikawa Japan
| | - Utano Tomaru
- Department of Pathology/Pathophysiology; Graduate School of Medicine; Hokkaido University; Sapporo Hokkaido Japan
| | - Akihiro Ishizu
- Faculty of Health Science; Hokkaido University; Sapporo Hokkaido Japan
| | - Mitsuhiro Kawano
- Division of Rheumatology; Department of Internal Medicine; Kanazawa University Hospital; Kanazawa Ishikawa Japan
| | - Masakazu Yamagishi
- Division of Cardiology; Department of Internal Medicine; Kanazawa University Hospital; Kanazawa Ishikawa Japan
| | - Naofumi Mukaida
- Division of Molecular Bioregulation; Cancer Research Institute; Kanazawa University; Kanazawa Ishikawa Japan
| |
Collapse
|
170
|
Ulivieri C, Baldari CT. T-cell-based immunotherapy of autoimmune diseases. Expert Rev Vaccines 2014; 12:297-310. [DOI: 10.1586/erv.12.146] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
171
|
Abstract
In recent years, there have been many new developments in the field of regulatory T cells (Treg), challenging the consensus on their behaviour, classification and role(s) in disease. The role Treg might play in autoimmune disease appears to be more complex than previously thought. Here, we discuss the current knowledge of regulatory T cells through animal and human research and illustrate the recent developments in childhood autoimmune arthritis (juvenile idiopathic arthritis (JIA)). Furthermore, this review summarises our understanding of the fields and assesses current and future implications for Treg in the treatment of JIA.
Collapse
|
172
|
Quintana FJ. Regulation of central nervous system autoimmunity by the aryl hydrocarbon receptor. Semin Immunopathol 2013; 35:627-35. [PMID: 23999753 PMCID: PMC3819215 DOI: 10.1007/s00281-013-0397-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 08/22/2013] [Indexed: 12/22/2022]
Abstract
The ligand-activated transcription factor aryl hydrocarbon receptor controls the activity of several components of the immune system, many of which play an important role in neuroinflammation. This review discusses the role of AhR in T cells and dendritic cells, its relevance for the control of autoimmunity in the central nervous system, and its potential as a therapeutic target for immune-mediated disorders.
Collapse
Affiliation(s)
- Francisco J Quintana
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA,
| |
Collapse
|
173
|
Pinelli DF, Wagener ME, Liu D, Yamniuk A, Tamura J, Grant S, Larsen CP, Suri A, Nadler SG, Ford ML. An anti-CD154 domain antibody prolongs graft survival and induces Foxp3(+) iTreg in the absence and presence of CTLA-4 Ig. Am J Transplant 2013; 13:3021-30. [PMID: 24007441 PMCID: PMC4287239 DOI: 10.1111/ajt.12417] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/14/2013] [Accepted: 07/01/2013] [Indexed: 01/25/2023]
Abstract
The use of monoclonal antibodies targeting the CD154 molecule remains one of the most effective means of promoting graft tolerance in animal models, but thromboembolic complications during early clinical trials have precluded their use in humans. Furthermore, the role of Fc-mediated deletion of CD154-expressing cells in the observed efficacy of these reagents remains controversial. Therefore, determining the requirements for anti-CD154-induced tolerance will instruct the development of safer but equally efficacious treatments. To investigate the mechanisms of action of anti-CD154 therapy, two alternative means of targeting the CD40-CD154 pathway were used: a nonagonistic anti-CD40 antibody and an Fc-silent anti-CD154 domain antibody. We compared these therapies to an Fc-intact anti-CD154 antibody in both a fully allogeneic model and a surrogate minor antigen model in which the fate of alloreactive cells could be tracked. Results indicated that anti-CD40 mAbs as well as Fc-silent anti-CD154 domain antibodies were equivalent to Fc-intact anti-CD154 mAbs in their ability to inhibit alloreactive T cell expansion, attenuate cytokine production of antigen-specific T cells and promote the conversion of Foxp3(+) iTreg. Importantly, iTreg conversion observed with Fc-silent anti-CD154 domain antibodies was preserved in the presence of CTLA4-Ig, suggesting that this therapy is a promising candidate for translation to clinical use.
Collapse
Affiliation(s)
- D F Pinelli
- Emory Transplant Center, Department of Surgery, Emory University School of Medicine, Atlanta, GA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Geginat J, Paroni M, Facciotti F, Gruarin P, Kastirr I, Caprioli F, Pagani M, Abrignani. S. The CD4-centered universe of human T cell subsets. Semin Immunol 2013; 25:252-62. [DOI: 10.1016/j.smim.2013.10.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
175
|
Olson BM, Sullivan JA, Burlingham WJ. Interleukin 35: a key mediator of suppression and the propagation of infectious tolerance. Front Immunol 2013; 4:315. [PMID: 24151492 PMCID: PMC3798782 DOI: 10.3389/fimmu.2013.00315] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 09/18/2013] [Indexed: 12/31/2022] Open
Abstract
The importance of regulatory T cells (Tregs) in balancing the effector arm of the immune system is well documented, playing a central role in preventing autoimmunity, facilitating graft tolerance following organ transplantation, and having a detrimental impact on the development of anti-tumor immunity. These regulatory responses use a variety of mechanisms to mediate suppression, including soluble factors. While IL-10 and TGF-β are the most commonly studied immunosuppressive cytokines, the recently identified IL-35 has been shown to have potent suppressive function in vitro and in vivo. Furthermore, not only does IL-35 have the ability to directly suppress effector T cell responses, it is also able to expand regulatory responses by propagating infectious tolerance and generating a potent population of IL-35-expressing inducible Tregs. In this review, we summarize research characterizing the structure and function of IL-35, examine its role in disease, and discuss how it can contribute to the induction of a distinct population of inducible Tregs.
Collapse
Affiliation(s)
- Brian M Olson
- Department of Medicine, Carbone Cancer Center, University of Wisconsin , Madison, WI , USA
| | | | | |
Collapse
|
176
|
Peters C, Oberg HH, Kabelitz D, Wesch D. Phenotype and regulation of immunosuppressive Vδ2-expressing γδ T cells. Cell Mol Life Sci 2013; 71:1943-60. [PMID: 24091816 PMCID: PMC3997799 DOI: 10.1007/s00018-013-1467-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 08/09/2013] [Accepted: 08/29/2013] [Indexed: 02/06/2023]
Abstract
The proliferation and interleukin-2 production of CD4(+)CD25(-) αβ T cells were inhibited in a cell-contact manner by Vδ2 γδ T cells. The transcription factor Helios was constitutively expressed in about one-third of circulating γδ T cells and was upregulated by CD28-signaling. Our data suggest that Helios could serve as a marker for differential activation status rather than for regulatory T cells (Treg). Our findings also indicate that the interaction of CD86 on activated Vδ2 T cells and cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) on activated αβ T cells mediated the suppression because the suppressive effect was abolished by blocking the CD86:CTLA-4 interaction. Pre-treatment of Vδ2 T cells with Toll-like receptor 2 ligands enhanced phosphorylation of MAPKs, Akt, and NF-κB and partially abrogated the suppressive capacity, whereas on co-cultured responder T cells inhibitory molecules were downregulated and Akt and NF-κB phosphorylation was restored. Our results suggest that the regulation of αβ T cell proliferation by activated Vδ2 T cells might contribute to fine-tuning of αβ T cell responses.
Collapse
Affiliation(s)
- Christian Peters
- Institute of Immunology, Christian-Albrechts University of Kiel, Arnold-Heller Strasse 3, Haus 17, 24105, Kiel, Germany,
| | | | | | | |
Collapse
|
177
|
Raffin C, Pignon P, Celse C, Debien E, Valmori D, Ayyoub M. Human memory Helios- FOXP3+ regulatory T cells (Tregs) encompass induced Tregs that express Aiolos and respond to IL-1β by downregulating their suppressor functions. THE JOURNAL OF IMMUNOLOGY 2013; 191:4619-27. [PMID: 24068664 DOI: 10.4049/jimmunol.1301378] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
FOXP3(+) regulatory T cells (Tregs) are critical regulators of self-tolerance and immune homeostasis. In mice and humans, two subsets of FOXP3(+) Tregs have been defined based on their differential expression of Helios, a transcription factor of the Ikaros family. Whereas the origin, specificity, and differential function of the two subsets are as yet a source of controversy, their characterization thus far has been limited by the absence of surface markers to distinguish them. In this article, we show that human memory Helios(+) and Helios(-) Tregs are phenotypically distinct and can be separated ex vivo based on their differential expression of IL-1RI, which is restricted to Helios(-) Tregs, in combination with CCR7. The two populations isolated using this strategy are distinct with respect to the expression of other Ikaros family members. Namely, whereas Eos, which has been reported to mediate FOXP3-dependent gene silencing, is expressed in Helios(+) Tregs, Aiolos, which is involved in the differentiation of TH17 and induced Tregs, is instead expressed in Helios(-) Tregs. In addition, whereas both subsets are suppressive ex vivo, Helios(-) Tregs display increased suppressive capacity in comparison to Helios(+) Tregs, but respond to IL-1β by downregulating their suppressive activity. Together, these data support the concept that human Helios(-) memory Tregs encompass induced Tregs that can readily respond to changes in the environment by modulating their suppressive capacity.
Collapse
Affiliation(s)
- Caroline Raffin
- INSERM, Unité 1102, Equipe Labellisée Ligue Contre le Cancer, Institut de Cancérologie de l'Ouest, 44800 Nantes-Saint Herblain, France
| | | | | | | | | | | |
Collapse
|
178
|
Yamamoto-Taguchi N, Satou Y, Miyazato P, Ohshima K, Nakagawa M, Katagiri K, Kinashi T, Matsuoka M. HTLV-1 bZIP factor induces inflammation through labile Foxp3 expression. PLoS Pathog 2013; 9:e1003630. [PMID: 24068936 PMCID: PMC3777874 DOI: 10.1371/journal.ppat.1003630] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 08/01/2013] [Indexed: 01/01/2023] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) causes both a neoplastic disease and inflammatory diseases, including HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The HTLV-1 basic leucine zipper factor (HBZ) gene is encoded in the minus strand of the proviral DNA and is constitutively expressed in infected cells and ATL cells. HBZ increases the number of regulatory T (Treg) cells by inducing the Foxp3 gene transcription. Recent studies have revealed that some CD4+Foxp3+ T cells are not terminally differentiated but have a plasticity to convert to other T-cell subsets. Induced Treg (iTreg) cells tend to lose Foxp3 expression, and may acquire an effector phenotype accompanied by the production of inflammatory cytokines, such as interferon-γ (IFN-γ). In this study, we analyzed a pathogenic mechanism of chronic inflammation related with HTLV-1 infection via focusing on HBZ and Foxp3. Infiltration of lymphocytes was observed in the skin, lung and intestine of HBZ-Tg mice. As mechanisms, adhesion and migration of HBZ-expressing CD4+ T cells were enhanced in these mice. Foxp3−CD4+ T cells produced higher amounts of IFN-γ compared to those from non-Tg mice. Expression of Helios was reduced in Treg cells from HBZ-Tg mice and HAM/TSP patients, indicating that iTreg cells are predominant. Consistent with this finding, the conserved non-coding sequence 2 region of the Foxp3 gene was hypermethylated in Treg cells of HBZ-Tg mice, which is a characteristic of iTreg cells. Furthermore, Treg cells in the spleen of HBZ-transgenic mice tended to lose Foxp3 expression and produced an excessive amount of IFN-γ, while Foxp3 expression was stable in natural Treg cells of the thymus. HBZ enhances the generation of iTreg cells, which likely convert to Foxp3−T cells producing IFN-γ. The HBZ-mediated proinflammatory phenotype of CD4+ T cells is implicated in the pathogenesis of HTLV-1-associated inflammation. Viral infection frequently induces tissue inflammation in the host. HTLV-1 infection is associated with chronic inflammation in the CNS, skin, and lung, but the inflammatory mechanism is not fully understood yet. Since HTLV-1 directly infects CD4+ T cells, central player of the host immune regulation, HTLV-1 should modulate the host immune response not only via viral antigen stimulation but also via CD4+ T-cell-mediated immune deregulation. It has been reported that Foxp3+CD4+ T cells are increased in HTLV-1 infection. It remains a central question in HTLV-1 pathogenesis why HTLV-1 induces inflammation despite of increase of FoxP3+ cells, which generally possess immune suppressive function. We have elucidated here that most of the increased Foxp3+ cells in HBZ-Tg mice or HAM/TSP patients is not thymus-derived naturally occurring Treg cells but induced Treg cells. Since the iTreg cells are prone to lose FoxP3 expression and then become cytokine-producing cells, the increase of iTreg cells could serve as a source of proinflammatory CD4+ T cells. Thus HTLV-1 causes abnormal CD4+ T-cell differentiation by expressing HBZ, which should play a crucial role in chronic inflammation related with HTLV-1. This study has provided new insights into the mechanism of chronic inflammation accompanied with viral infection.
Collapse
MESH Headings
- Animals
- Basic-Leucine Zipper Transcription Factors/genetics
- Basic-Leucine Zipper Transcription Factors/metabolism
- Cell Adhesion
- Cell Movement
- Cells, Cultured
- DNA Methylation
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/metabolism
- HTLV-I Infections/immunology
- HTLV-I Infections/pathology
- HTLV-I Infections/physiopathology
- HTLV-I Infections/virology
- Human T-lymphotropic virus 1/immunology
- Human T-lymphotropic virus 1/metabolism
- Humans
- Interferon-gamma/metabolism
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/pathology
- Leukocytes, Mononuclear/virology
- Lymphocyte Activation
- Male
- Mice, Transgenic
- Paraparesis, Tropical Spastic/etiology
- Recombinant Proteins/metabolism
- Retroviridae Proteins
- Spleen/immunology
- Spleen/metabolism
- Spleen/pathology
- Spleen/virology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/pathology
- T-Lymphocytes, Regulatory/virology
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Thymus Gland/pathology
- Thymus Gland/virology
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Nanae Yamamoto-Taguchi
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Yorifumi Satou
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Paola Miyazato
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Koichi Ohshima
- Department of Pathology, School of Medicine, Kurume University, Fukuoka, Japan
| | - Masanori Nakagawa
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Koko Katagiri
- Department of Biosciences, School of Science, Kitasato University, Kanagawa, Japan
| | - Tatsuo Kinashi
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Masao Matsuoka
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
179
|
Zeng Z, Kong X, Li F, Wei H, Sun R, Tian Z. IL-12-based vaccination therapy reverses liver-induced systemic tolerance in a mouse model of hepatitis B virus carrier. THE JOURNAL OF IMMUNOLOGY 2013; 191:4184-93. [PMID: 24048897 DOI: 10.4049/jimmunol.1203449] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Liver-induced systemic immune tolerance that occurs during chronic hepadnavirus infection is the biggest obstacle for effective viral clearance. Immunotherapeutic reversal of this tolerance is a promising strategy in the clinic but remains to be explored. In this study, using a hepatitis B virus (HBV)-carrier mouse model, we report that IL-12-based vaccination therapy can efficiently reverse systemic tolerance toward HBV. HBV-carrier mice lost responsiveness to hepatitis B surface Ag (HBsAg) vaccination, and IL-12 alone could not reverse this liver-induced immune tolerance. However, after IL-12-based vaccination therapy, the majority of treated mice became HBsAg(-) in serum; hepatitis B core Ag was also undetectable in hepatocytes. HBV clearance was dependent on HBsAg vaccine-induced anti-HBV immunity. Further results showed that IL-12-based vaccination therapy strongly enhanced hepatic HBV-specific CD8(+) T cell responses, including proliferation and IFN-γ secretion. Systemic HBV-specific CD4(+) T cell responses were also restored in HBV-carrier mice, leading to the arousal of HBsAg-specific follicular Th-germinal center B cell responses and anti-hepatitis B surface Ag Ab production. Recovery of HBsAg-specific responses also correlated with both reduced CD4(+)Foxp3(+) regulatory T cell frequency and an enhanced capacity of effector T cells to overcome inhibition by regulatory T cells. In conclusion, IL-12-based vaccination therapy may reverse liver-induced immune tolerance toward HBV by restoring systemic HBV-specific CD4(+) T cell responses, eliciting robust hepatic HBV-specific CD8(+) T cell responses, and facilitating the generation of HBsAg-specific humoral immunity; thus, this therapy may become a viable approach to treating patients with chronic hepatitis B.
Collapse
Affiliation(s)
- Zhutian Zeng
- Department of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | | | | | | | | | | |
Collapse
|
180
|
Multiparameter single-cell profiling of human CD4+FOXP3+ regulatory T-cell populations in homeostatic conditions and during graft-versus-host disease. Blood 2013; 122:1802-12. [DOI: 10.1182/blood-2013-02-482539] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Key Points
Single-cell heterogeneity, rather than lineage reprogramming, explains the remarkable complexity and functional diversity of human Tregs. Altered homeostasis of Treg subpopulations in patients developing acute graft-versus-host disease.
Collapse
|
181
|
Engela AU, Hoogduijn MJ, Boer K, Litjens NHR, Betjes MGH, Weimar W, Baan CC. Human adipose-tissue derived mesenchymal stem cells induce functional de-novo regulatory T cells with methylated FOXP3 gene DNA. Clin Exp Immunol 2013; 173:343-54. [PMID: 23607314 DOI: 10.1111/cei.12120] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2013] [Indexed: 12/15/2022] Open
Abstract
Due to their immunomodulatory properties, mesenchymal stem cells (MSC) are interesting candidates for cellular therapy for autoimmune disorders, graft-versus-host disease and allograft rejection. MSC inhibit the proliferation of effector T cells and induce T cells with a regulatory phenotype. So far it is unknown whether human MSC-induced CD4(+) CD25(+) CD127(-) forkhead box P3 (FoxP3)(+) T cells are functional and whether they originate from effector T cells or represent expanded natural regulatory T cells (nT(reg)). Perirenal adipose-tissue derived MSC (ASC) obtained from kidney donors induced a 2·1-fold increase in the percentage of CD25(+) CD127(-) FoxP3(+) cells within the CD4(+) T cell population from allostimulated CD25(-/dim) cells. Interleukin (IL)-2 receptor blocking prevented this induction. The ASC-induced T cells (iT(reg)) inhibited effector cell proliferation as effectively as nT(reg). The vast majority of cells within the iT(reg) fraction had a methylated FOXP3 gene T(reg)-specific demethylated region (TSDR) indicating that they were not of nT(reg) origin. In conclusion, ASC induce T(reg) from effector T cells. These iT(reg) have immunosuppressive capacities comparable to those of nT(reg). Their induction is IL-2 pathway-dependent. The dual effect of MSC of inhibiting immune cell proliferation while generating de-novo immunosuppressive cells emphasizes their potential as cellular immunotherapeutic agent.
Collapse
Affiliation(s)
- A U Engela
- Department of Internal Medicine, Section Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, the Netherlands.
| | | | | | | | | | | | | |
Collapse
|
182
|
Dhamne C, Chung Y, Alousi AM, Cooper LJN, Tran DQ. Peripheral and thymic foxp3(+) regulatory T cells in search of origin, distinction, and function. Front Immunol 2013; 4:253. [PMID: 23986762 PMCID: PMC3753660 DOI: 10.3389/fimmu.2013.00253] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/12/2013] [Indexed: 12/15/2022] Open
Abstract
Over the past decade, much has been learnt and much more to discover about Foxp3(+) regulatory T cells (Tregs). Initially, it was thought that Tregs were a unique entity that originates in the thymus. It is now recognized that there is a fraternal twin sibling that is generated in the periphery. The difficulty is in the distinction between these two subsets. The ability to detect, monitor, and analyze these two subsets in health and disease will provide invaluable insights into their functions and purposes. The plasticity and mechanisms of action can be unique and not overlapping within these subsets. Therefore, the therapeutic targeting of a particular subset of Tregs might be more efficacious. In the past couple of years, a vast amount of data have provided a better understanding of the cellular and molecular components essential for their development and stability. Many studies are implicating their preferential involvement in certain diseases and immunologic tolerance. However, it remains controversial as to whether any phenotypic markers have been identified that can differentiate thymic versus peripheral Tregs. This review will address the validity and controversy regarding Helios, Lap/Garp and Neuropilin-1 as markers of thymic Tregs. It also will discuss updated information on distinguishing features of these two subsets and their critical roles in maternal-fetal tolerance and transplantation.
Collapse
Affiliation(s)
- Chetan Dhamne
- Department of Paediatrics, University Children’s Medical Institute, National University Hospital, Singapore
| | - Yeonseok Chung
- Institute of Molecular Medicine, Center for Immunology and Autoimmune Diseases, UTHealth, Houston, TX, USA
| | - Amin Majid Alousi
- Department of Pediatrics Patient Care, Division of Pediatrics, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Laurence J. N. Cooper
- Department of Stem Cell Transplant and Cellular Therapy, Division of Cancer Medicine, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Dat Quoc Tran
- Department of Pediatrics, Divisions of Allergy/Immunology, Pediatric Research Center, UTHealth, Houston, TX, USA
| |
Collapse
|
183
|
Burocchi A, Colombo MP, Piconese S. Convergences and divergences of thymus- and peripherally derived regulatory T cells in cancer. Front Immunol 2013; 4:247. [PMID: 23986759 PMCID: PMC3753661 DOI: 10.3389/fimmu.2013.00247] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/08/2013] [Indexed: 12/18/2022] Open
Abstract
The expansion of regulatory T cells (Treg) is a common event characterizing the vast majority of human and experimental tumors and it is now well established that Treg represent a crucial hurdle for a successful immunotherapy. Treg are currently classified, according to their origin, into thymus-derived Treg (tTreg) or peripherally induced Treg (pTreg) cells. Controversy exists over the prevalent mechanism accounting for Treg expansion in tumors, since both tTreg proliferation and de novo pTreg differentiation may occur. Since tTreg and pTreg are believed as preferentially self-specific or broadly directed to non-self and tumor-specific antigens, respectively, the balance between tTreg and pTreg accumulation may impact on the repertoire of antigen specificities recognized by Treg in tumors. The prevalence of tTreg or pTreg may also affect the outcome of immunotherapies based on tumor-antigen vaccination or Treg depletion. The mechanisms dictating pTreg induction or tTreg expansion/stability are a matter of intense investigation and the most recent results depict a complex landscape. Indeed, selected Treg subsets may display peculiar characteristics in terms of stability, suppressive function, and cytokine production, depending on microenvironmental signals. These features may be differentially distributed between pTreg and tTreg and may significantly affect the possibility of manipulating Treg in cancer therapy. We propose here that innovative immunotherapeutic strategies may be directed at diverting unstable/uncommitted Treg, mostly enriched in the pTreg pool, into tumor-specific effectors, while preserving systemic immune tolerance ensured by self-specific tTreg.
Collapse
Affiliation(s)
- Alessia Burocchi
- Molecular Immunology Unit, Department of Experimental Medicine, Fondazione IRCCS "Istituto Nazionale Tumori," Milan , Italy
| | | | | |
Collapse
|
184
|
Liu D, Ferrer IR, Konomos M, Ford ML. Inhibition of CD8+ T cell-derived CD40 signals is necessary but not sufficient for Foxp3+ induced regulatory T cell generation in vivo. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:1957-64. [PMID: 23858029 PMCID: PMC3735715 DOI: 10.4049/jimmunol.1300267] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Current models of CD4(+) T cell help suggest a major role for CD154 binding to CD40 expressed on dendritic cells, with a lesser role for direct T:T interactions via CD40 expressed on CD8(+) T cells. However, the contribution of CD8(+) T cell-derived CD40 signals during the donor-reactive T cell response to a transplant has never been studied. In this study, we examined the graft-rejection kinetics and CD4(+) and CD8(+) donor-reactive T cell responses under conditions in which CD40 was genetically ablated only on APC, as well as under conditions in which CD40 was genetically ablated only on donor-reactive CD8(+) T cells. Our results revealed a significant role for CD8(+) T cell-expressed CD40 in the augmentation of donor-reactive CD8(+) T cell responses following transplantation and showed that CD40 expressed on CD8(+) T cells must be inhibited to allow conversion of CD4(+) T cells into induced regulatory T cells. Thus, this study identifies a major role for CD8(+) T cell-derived CD40 signals as a critical switch factor that both promotes optimal differentiation of cytokine-producing CD8(+) effector T cell responses and inhibits the differentiation of Ag-specific Foxp3(+) induced regulatory T cells in vivo.
Collapse
Affiliation(s)
- Danya Liu
- Emory Transplant Center and Department of Surgery, Atlanta GA 30322
| | - Ivana R. Ferrer
- Emory Transplant Center and Department of Surgery, Atlanta GA 30322
| | - Michael Konomos
- Emory Transplant Center and Department of Surgery, Atlanta GA 30322
| | - Mandy L. Ford
- Emory Transplant Center and Department of Surgery, Atlanta GA 30322
| |
Collapse
|
185
|
Yadav M, Stephan S, Bluestone JA. Peripherally induced tregs - role in immune homeostasis and autoimmunity. Front Immunol 2013; 4:232. [PMID: 23966994 PMCID: PMC3736167 DOI: 10.3389/fimmu.2013.00232] [Citation(s) in RCA: 194] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 07/22/2013] [Indexed: 12/16/2022] Open
Abstract
Thymically derived Foxp3(+) regulatory T cells (tTregs) constitute a unique T cell lineage that is essential for maintaining immune tolerance to self and immune homeostasis. However, Foxp3 can also be turned on in conventional T cells as a consequence of antigen exposure in the periphery, under both non-inflammatory and inflammatory conditions. These so-called peripheral Tregs (pTregs) participate in the control of immunity at sites of inflammation, especially at the mucosal surfaces. Although numerous studies have assessed in vitro generated Tregs (termed induced or iTregs), these cells most often do not recapitulate the functional or phenotypic characteristics of in vivo generated pTregs. Thus, there are still many unanswered questions regarding the T cell receptor (TCR) repertoire and function of pTregs as well as conditions under which they are generated in vivo, and the degree to which these characteristics identify specialized features of pTregs versus features that are shared with tTregs. In this review, we summarize the current state of our understanding of pTregs and their relationship to the tTreg subset. We describe the recent discovery of unique cell surface markers and transcription factors (including Neuropilin-1 and Helios) that can be used to distinguish tTreg and pTreg subsets in vivo. Additionally, we discuss how the improved ability to distinguish these subsets provided new insights into the biology of tTregs versus pTregs and suggested differences in their function and TCR repertoire, consistent with a unique role of pTregs in certain inflammatory settings. Finally, these recent advances will be used to speculate on the role of individual Treg subsets in both tolerance and autoimmunity.
Collapse
Affiliation(s)
- Mahesh Yadav
- Diabetes Center, University of California San Francisco , San Francisco, CA , USA
| | | | | |
Collapse
|
186
|
Quintana FJ, Sherr DH. Aryl hydrocarbon receptor control of adaptive immunity. Pharmacol Rev 2013; 65:1148-61. [PMID: 23908379 DOI: 10.1124/pr.113.007823] [Citation(s) in RCA: 250] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that belongs to the family of basic helix-loop-helix transcription factors. Although the AhR was initially recognized as the receptor mediating the pathologic effects of dioxins and other pollutants, the activation of AhR by endogenous and environmental factors has important physiologic effects, including the regulation of the immune response. Thus, the AhR provides a molecular pathway through which environmental factors modulate the immune response in health and disease. In this review, we discuss the role of AhR in the regulation of the immune response, the source and chemical nature of AhR ligands, factors controlling production and degradation of AhR ligands, and the potential to target the AhR for therapeutic immunomodulation.
Collapse
Affiliation(s)
- Francisco J Quintana
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
187
|
Simonetta F, Bourgeois C. CD4+FOXP3+ Regulatory T-Cell Subsets in Human Immunodeficiency Virus Infection. Front Immunol 2013; 4:215. [PMID: 23908654 PMCID: PMC3727053 DOI: 10.3389/fimmu.2013.00215] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 07/13/2013] [Indexed: 01/29/2023] Open
Abstract
The role of CD4+FOXP3+ regulatory T cells (Treg) in human immunodeficiency virus (HIV) infection has been an area of intensive investigation and remains a matter of ardent debate. Investigation and interpretation suffered from uncertainties concerning Treg quantification. Firstly, Treg quantification and function in HIV infection remain controversial in part because of the lack of reliable and specific markers to identify human Tregs. Secondly, analyzing Treg percentages or absolute numbers led to apparent discrepancies that are now solved: it is now commonly accepted that Treg are targets of HIV infection, but are preferentially preserved compared to conventional CD4 T cells. Moreover, the duality of immune defects associated to HIV infection, i.e., low grade chronic inflammation and defects in HIV-specific responses also casts doubts on the potential impact of Treg on HIV infection. Tregs may be beneficial or/and detrimental to the control of HIV infection by suppressing chronic inflammation or HIV-specific responses respectively. Indeed both effects of Treg suppression have been described in HIV infection. The discovery in recent years of the existence of phenotypically and functionally distinct human CD4+FOXP3+ Treg subsets may provide a unique opportunity to reconcile these contrasting results. It is tempting to speculate that different Treg subsets exert these different suppressive effects. This review summarizes available data concerning Treg fate during HIV infection when considering Treg globally or as subsets. We discuss how the identification of naïve and effector Treg subsets modulates our understanding of Treg biology during HIV infection and the potential impact of HIV infection on mechanisms governing peripheral differentiation of adaptive Tregs.
Collapse
Affiliation(s)
- Federico Simonetta
- INSERM, U1012 , Le Kremlin-Bicêtre , France ; Université Paris-SUD, UMR-S1012 , Le Kremlin-Bicêtre , France ; Division of Immunology and Allergy, Department of Internal Medicine, Geneva University Hospitals , Geneva , Switzerland
| | | |
Collapse
|
188
|
Föhse L, Reinhardt A, Oberdörfer L, Schmitz S, Förster R, Malissen B, Prinz I. Differential postselection proliferation dynamics of αβ T cells, Foxp3+ regulatory T cells, and invariant NKT cells monitored by genetic pulse labeling. THE JOURNAL OF IMMUNOLOGY 2013; 191:2384-92. [PMID: 23894200 DOI: 10.4049/jimmunol.1301359] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The thymus generates two divergent types of lymphocytes, innate and adaptive T cells. Innate T cells such as invariant NKT cells provide immediate immune defense, whereas adaptive T cells require a phase of expansion and functional differentiation outside the thymus. Naive adaptive T lymphocytes should not proliferate much after positive selection in the thymus to ensure a highly diverse TCR repertoire. In contrast, oligoclonal innate lymphocyte populations are efficiently expanded through intrathymic proliferation. For CD4(+)Foxp3(+) regulatory T cells (Tregs), which are thought to be generated by agonist recognition, it is not clear whether they proliferate upon thymic selection. In this study, we investigated thymic and peripheral T cell proliferation by genetic pulse labeling. To this end, we used a mouse model in which all developing αβ thymocytes were marked by expression of a histone 2B-enhanced GFP (H2BeGFP) fusion-protein located within the Tcrd locus (TcrdH2BeGFP). This reporter gene was excised during TCR α-chain VJ-recombination, and the retained H2BeGFP signal was thus diluted upon cell proliferation. We found that innate T cells such as CD1d-restricted invariant NKT cells all underwent a phase of intense intrathymic proliferation, whereas adaptive CD4(+) and CD8(+) single-positive thymocytes including thymic Tregs cycled, on average, only once after final selection. After thymic exit, retention or loss of very stable H2BeGFP signal indicated the proliferative history of peripheral αβ T cells. There, peripheral Tregs showed lower levels of H2BeGFP compared with CD4(+)Foxp3(-) T cells. This further supports the hypothesis that the Treg repertoire is shaped by self-Ag recognition in the steady-state.
Collapse
Affiliation(s)
- Lisa Föhse
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
189
|
Whiteside TL, Jackson EK. Adenosine and prostaglandin e2 production by human inducible regulatory T cells in health and disease. Front Immunol 2013; 4:212. [PMID: 23898333 PMCID: PMC3722515 DOI: 10.3389/fimmu.2013.00212] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/11/2013] [Indexed: 12/20/2022] Open
Abstract
Regulatory T cells (Treg) play a key role in maintaining the balance of immune responses in human health and in disease. Treg come in many flavors and can utilize a variety of mechanisms to modulate immune responses. In cancer, inducible (i) or adaptive Treg expand, accumulate in tissues and peripheral blood of patients, and represent a functionally prominent component of CD4+ T lymphocytes. Phenotypically and functionally, iTreg are distinct from natural (n) Treg. A subset of iTreg expressing ectonucleotidases CD39 and CD73 is able to hydrolyze ATP to 5′-AMP and adenosine (ADO) and thus mediate suppression of those immune cells which express ADO receptors. iTreg can also produce prostaglandin E2 (PGE2). The mechanisms responsible for iTreg-mediated suppression involve binding of ADO and PGE2 produced by iTreg to their respective receptors expressed on T effector cells (Teff), leading to the up-regulation of adenylate cyclase and cAMP activities in Teff and to their functional inhibition. The potential for regulating these mechanisms by the use of pharmacologic inhibitors to relieve iTreg-mediated suppression in cancer suggests the development of therapeutic strategies targeting the ADO and PGE2 pathways.
Collapse
Affiliation(s)
- Theresa L Whiteside
- Department of Pathology, University of Pittsburgh Cancer Institute , Pittsburgh, PA , USA
| | | |
Collapse
|
190
|
Abstract
CD4+Foxp3+ T regulatory (Treg) cells control many facets of immune responses ranging from autoimmune diseases, to inflammatory conditions, and cancer in an attempt to maintain immune homeostasis. Natural Treg (nTreg) cells develop in the thymus and constitute a critical arm of active mechanisms of peripheral tolerance particularly to self antigens. A growing body of knowledge now supports the existence of induced Treg (iTreg) cells which may derive from a population of conventional CD4+ T cells. The fork-head transcription factor (Foxp3) typically is expressed by natural CD4+ Treg cells, and thus serves as a marker to definitively identify these cells. On the contrary, there is less consensus on what constitutes iTreg cells as their precise definition has been somewhat elusive. This is in part due to their distinct phenotypes which are shaped by exposure to certain inflammatory or "assault" signals stemming from the underlying immune disorder. The "policing" activity of Treg cells tends to be uni-directional in several pathological conditions. On one end of the spectrum, Treg cell suppressive activity is beneficial by curtailing T cell response against self-antigens and allergens thus preventing autoimmune diseases and allergies. On the other end however, their inhibitory roles in limiting immune response against pseudo-self antigens as in tumors often culminates into negative outcomes. In this review, we focus on this latter aspect of Treg cell immunobiology by highlighting the involvement of nTreg cells in various animal models and human tumors. We further discuss iTreg cells, relationship with their natural counterpart, and potential co-operation between the two in modulating immune response against tumors. Lastly, we discuss studies focusing on these cells as targets for improving anti-tumor immunity.
Collapse
Affiliation(s)
- Dennis O Adeegbe
- Experimental Immunology, Immunology Frontier Research Center, Osaka University , Suita , Japan
| | | |
Collapse
|
191
|
Jamin C, Achour A, Youinou P, Pers JO. [Regulatory lymphocytes: a new cooperation between T and B cells for a better control of the immune response]. Presse Med 2013; 43:18-26. [PMID: 23871608 DOI: 10.1016/j.lpm.2013.02.332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 02/21/2013] [Accepted: 02/26/2013] [Indexed: 01/17/2023] Open
Abstract
Mechanims of peripheral tolerance include molecular controls and the presence of regulatory lymphocytes. Regulatory T lymphocytes (Tregs) correspond to different sub-populations of T cells that control immune responses due to the production of cytokines, such as IL-10 and with direct cell-to-cell contacts. Tregs targets are antigen presenting cells, such as dendritic cells, effector CD4(+) and CD8(+) lymphocytes but also effector antibody-producing B lymphocytes. Regulatory B lymphocytes (Bregs) have been more recently described and likely represent different sub-populations of B cells that control the development of autoimmune and inflammatory diseases due to the production of IL-10 and using intercellular contacts. Bregs targets encompass all the cells involved in the immune responses which are thus under a dual control by regulatory lymphocytes. Development and efficient activity of Tregs appear dependent of Bregs for a better regulation of autoimmune reactions, of anti-infectious reactions, but also of anti-tumor reactions.
Collapse
Affiliation(s)
- Christophe Jamin
- Centre hospitalier regional universitaire, université européenne de Bretagne, université de Bretagne Occidentale, Brest, France.
| | - Achouak Achour
- Centre hospitalier regional universitaire, université européenne de Bretagne, université de Bretagne Occidentale, Brest, France
| | - Pierre Youinou
- Centre hospitalier regional universitaire, université européenne de Bretagne, université de Bretagne Occidentale, Brest, France
| | - Jacques-Olivier Pers
- Centre hospitalier regional universitaire, université européenne de Bretagne, université de Bretagne Occidentale, Brest, France
| |
Collapse
|
192
|
Ondondo B, Jones E, Godkin A, Gallimore A. Home sweet home: the tumor microenvironment as a haven for regulatory T cells. Front Immunol 2013; 4:197. [PMID: 23874342 PMCID: PMC3712544 DOI: 10.3389/fimmu.2013.00197] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/03/2013] [Indexed: 01/28/2023] Open
Abstract
CD4+Foxp3+ regulatory T cells (Tregs) have a fundamental role in maintaining immune balance by preventing autoreactivity and immune-mediated pathology. However this role of Tregs extends to suppression of anti-tumor immune responses and remains a major obstacle in the development of anti-cancer vaccines and immunotherapies. This feature of Treg activity is exacerbated by the discovery that Treg frequencies are not only elevated in the blood of cancer patients, but are also significantly enriched within tumors in comparison to other sites. These observations have sparked off the quest to understand the processes through which Tregs become elevated in cancer-bearing hosts and to identify the specific mechanisms leading to their accumulation within the tumor microenvironment. This manuscript reviews the evidence for specific mechanisms of intra-tumoral Treg enrichment and will discuss how this information may be utilized for the purpose of manipulating the balance of tumor-infiltrating T cells in favor of anti-tumor effector cells.
Collapse
Affiliation(s)
- Beatrice Ondondo
- Nuffield Department of Medicine, The Jenner Institute (ORCRB), University of Oxford , Oxford , UK
| | | | | | | |
Collapse
|
193
|
Adeegbe DO, Nishikawa H. Natural and induced T regulatory cells in cancer. Front Immunol 2013; 4:190. [PMID: 23874336 PMCID: PMC3708155 DOI: 10.3389/fimmu.2013.00190] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 06/27/2013] [Indexed: 12/13/2022] Open
Abstract
CD4+Foxp3+ T regulatory (Treg) cells control many facets of immune responses ranging from autoimmune diseases, to inflammatory conditions, and cancer in an attempt to maintain immune homeostasis. Natural Treg (nTreg) cells develop in the thymus and constitute a critical arm of active mechanisms of peripheral tolerance particularly to self antigens. A growing body of knowledge now supports the existence of induced Treg (iTreg) cells which may derive from a population of conventional CD4+ T cells. The fork-head transcription factor (Foxp3) typically is expressed by natural CD4+ Treg cells, and thus serves as a marker to definitively identify these cells. On the contrary, there is less consensus on what constitutes iTreg cells as their precise definition has been somewhat elusive. This is in part due to their distinct phenotypes which are shaped by exposure to certain inflammatory or “assault” signals stemming from the underlying immune disorder. The “policing” activity of Treg cells tends to be uni-directional in several pathological conditions. On one end of the spectrum, Treg cell suppressive activity is beneficial by curtailing T cell response against self-antigens and allergens thus preventing autoimmune diseases and allergies. On the other end however, their inhibitory roles in limiting immune response against pseudo-self antigens as in tumors often culminates into negative outcomes. In this review, we focus on this latter aspect of Treg cell immunobiology by highlighting the involvement of nTreg cells in various animal models and human tumors. We further discuss iTreg cells, relationship with their natural counterpart, and potential co-operation between the two in modulating immune response against tumors. Lastly, we discuss studies focusing on these cells as targets for improving anti-tumor immunity.
Collapse
Affiliation(s)
- Dennis O Adeegbe
- Experimental Immunology, Immunology Frontier Research Center, Osaka University , Suita , Japan
| | | |
Collapse
|
194
|
FoxP3, Helios, and SATB1: Roles and relationships in regulatory T cells. Int Immunopharmacol 2013; 16:343-7. [DOI: 10.1016/j.intimp.2013.02.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 02/01/2013] [Indexed: 11/19/2022]
|
195
|
Katzman PJ, Oble DA. Eosinophilic/T-cell chorionic vasculitis and chronic villitis involve regulatory T cells and often occur together. Pediatr Dev Pathol 2013; 16:278-91. [PMID: 23600955 DOI: 10.2350/12-10-1258-oa.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Eosinophilic/T-cell chorionic vasculitis (ETCV) is characterized by mixed T-cell, eosinophilic, and histiocytic infiltrates within the chorionic vessel wall. We sought to better characterize this lesion with respect to other pathologic correlates and the T-cell populations involved. Epidemiologic data and other pathologic diagnoses, including concurrent chronic villitis (CV), were tabulated for each case of ETCV diagnosed at our institution over a 6-year period. CD3, CD25, FOXP3, and dual FOXP3-CD3 immunostains were used to identify regulatory T-cell populations in ETCV and CV. Cells positive for CD3, FOXP3, and CD25 were quantitated by manual counts of ×40 fields at the sites of ETCV and CV, and FOXP3∶CD3 and CD25∶CD3 ratios were calculated. Digital analysis of ETCV and CV using the dual FOXP3-CD3 immunostain was also performed on select cases. Of 31 ETCV cases, 10 (32%) were accompanied by CV and 13 (42%) by a thrombus in the vessel affected by ETCV. The mean Treg cell marker∶CD3 ratios in ETCV ranged from 0.18 to 0.26 by manual count and digital analysis, but the counts did not statistically differ by method. The mean Treg cell marker∶CD3 ratios in CV ranged from 0.37 to 0.39 by manual count and 0.19 by digital analysis, but these counts also did not statistically differ by method. Chronic villitis was seen in one-third of ETCV cases. FOXP3+ and CD25+ regulatory T cells represent a significant subpopulation of T cells in ETCV and CV, suggesting that they may play a role in these entities.
Collapse
Affiliation(s)
- Philip J Katzman
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | | |
Collapse
|
196
|
Huang H, Ma Y, Dawicki W, Zhang X, Gordon JR. Comparison of induced versus natural regulatory T cells of the same TCR specificity for induction of tolerance to an environmental antigen. THE JOURNAL OF IMMUNOLOGY 2013; 191:1136-43. [PMID: 23817420 DOI: 10.4049/jimmunol.1201899] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recent evidence shows that natural CD25(+)Foxp3(+) regulatory T cells (nTreg) and induced CD25(+)Foxp3(+) regulatory T cells (iTreg) both contribute to tolerance in mouse models of colitis and asthma, but there is little evidence regarding their relative contributions to this tolerance. We compared the abilities of nTreg and iTreg, both from OVA-TCR-transgenic OTII mice, to mediate tolerance in OVA-asthmatic C57BL/6 mice. The iTreg were differentiated from Th2 effector T cells by exposure to IL-10-differentiated dendritic cells (DC10) in vitro or in vivo, whereas we purified nTreg from allergen-naive mice and exposed them to DC10 before use. Each Treg population was subsequently repurified and tested for its therapeutic efficacy in vitro and in vivo. DC10 engaged the nTreg in a cognate fashion in Forster (or fluorescence) resonance energy transfer assays, and these nTreg reduced in vitro OVA-asthmatic Th2 effector T cell responses by 41-56%, whereas the comparator iTreg reduced these responses by 72-86%. Neutralization of IL-10, but not TGF-β, eliminated the suppressive activities of iTreg but not nTreg. Delivery of 5 × 10(5) purified nTreg reduced allergen challenge-induced airway IL-4 (p ≤ 0.03) and IL-5 (p ≤ 0.001) responses of asthmatic recipients by ≤ 23% but did not affect airway hyperresponsiveness or IgE levels, whereas equal numbers of iTreg of identical TCR specificity reduced all airway responses to allergen challenge by 82-96% (p ≤ 0.001) and fully normalized airway hyperresponsiveness. These data confirm that allergen-specific iTreg and nTreg have active roles in asthma tolerance and that iTreg are substantially more tolerogenic in this setting.
Collapse
Affiliation(s)
- Hui Huang
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
| | | | | | | | | |
Collapse
|
197
|
Harrison OJ, Powrie FM. Regulatory T cells and immune tolerance in the intestine. Cold Spring Harb Perspect Biol 2013; 5:5/7/a018341. [PMID: 23818502 DOI: 10.1101/cshperspect.a018341] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A fundamental role of the mammalian immune system is to eradicate pathogens while minimizing immunopathology. Instigating and maintaining immunological tolerance within the intestine represents a unique challenge to the mucosal immune system. Regulatory T cells are critical for continued immune tolerance in the intestine through active control of innate and adaptive immune responses. Dynamic adaptation of regulatory T-cell populations to the intestinal tissue microenvironment is key in this process. Here, we discuss specialization of regulatory T-cell responses in the intestine, and how a breakdown in these processes can lead to chronic intestinal inflammation.
Collapse
Affiliation(s)
- Oliver J Harrison
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | |
Collapse
|
198
|
Yamazaki S, Morita A. Dendritic cells in the periphery control antigen-specific natural and induced regulatory T cells. Front Immunol 2013; 4:151. [PMID: 23801989 PMCID: PMC3689032 DOI: 10.3389/fimmu.2013.00151] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/04/2013] [Indexed: 12/20/2022] Open
Abstract
Dendritic cells (DCs) are specialized antigen-presenting cells that regulate both immunity and tolerance. DCs in the periphery play a key role in expanding naturally occurring Foxp3+ CD25+ CD4+ regulatory T cells (Natural T-regs) and inducing Foxp3 expression (Induced T-regs) in Foxp3− CD4+ T cells. DCs are phenotypically and functionally heterogeneous, and further classified into several subsets depending on distinct marker expression and their location. Recent findings indicate the presence of specialized DC subsets that act to expand Natural T-regs or induce Foxp3+ T-regs from Foxp3− CD4+ T cells. For example, two major subsets of DCs in lymphoid organs act differentially in inducing Foxp3+ T-regs from Foxp3− cells or expanding Natural T-regs with model-antigen delivery by anti-DC subset monoclonal antibodies in vivo. Furthermore, DCs expressing CD103 in the intestine induce Foxp3+ T-regs from Foxp3− CD4+ T cells with endogenous TGF-β and retinoic acid. In addition, antigen-presenting DCs have a capacity to generate Foxp3+ T-regs in the oral cavity where many antigens and commensals exist, similar to intestine and skin. In skin and skin-draining lymph nodes, at least six DC subsets have been identified, suggesting a complex DC-T-reg network. Here, we will review the specific activity of DCs in expanding Natural T-regs and inducing Foxp3+ T-regs from Foxp3− precursors, and further discuss the critical function of DCs in maintaining tolerance at various locations including skin and oral cavity.
Collapse
Affiliation(s)
- Sayuri Yamazaki
- Department of Geriatric and Environmental Dermatology, Graduate School of Medical Sciences, Nagoya City University , Nagoya , Japan
| | | |
Collapse
|
199
|
Chen YG, Mordes JP, Blankenhorn EP, Kashmiri H, Kaldunski ML, Jia S, Geoffrey R, Wang X, Hessner MJ. Temporal induction of immunoregulatory processes coincides with age-dependent resistance to viral-induced type 1 diabetes. Genes Immun 2013; 14:387-400. [PMID: 23739610 PMCID: PMC4027975 DOI: 10.1038/gene.2013.31] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 04/24/2013] [Accepted: 04/25/2013] [Indexed: 12/20/2022]
Abstract
The dilute plasma cytokine milieu associated with type 1 diabetes (T1D), while difficult to measure directly, is sufficient to drive transcription in a bioassay that uses healthy leukocytes as reporters. Previously, we reported disease-associated, partially IL-1 dependent, transcriptional signatures in both T1D patients and the BioBreeding (BB) rat model. Here, we examine temporal signatures in congenic BBDR.lyp/lyp rats that develop spontaneous T1D, and BBDR rats where T1D progresses only after immunological perturbation in young animals. After weaning, the BBDR temporal signature showed early coincident induction of transcription related to innate inflammation as well as IL-10- and TGF-β-mediated regulation. BBDR plasma cytokine levels mirrored the signatures showing early inflammation, followed by induction of a regulated state that correlated with failure of virus to induce T1D in older rats. In contrast, the BBDR.lyp/lyp temporal signature exhibited asynchronous dynamics, with delayed induction of inflammatory transcription and later, weaker induction of regulatory transcription, consistent with their deficiency in regulatory T cells. Through longitudinal analyses of plasma-induced signatures in BB rats and a human T1D progressor, we have identified changes in immunoregulatory processes that attenuate a preexisting innate inflammatory state in BBDR rats, suggesting a mechanism underlying the decline in T1D susceptibility with age.
Collapse
Affiliation(s)
- Y G Chen
- The Max McGee National Research Center for Juvenile Diabetes, Children's Research Institute, Children's Hospital of Wisconsin, Milwaukee, WI, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Ng THS, Britton GJ, Hill EV, Verhagen J, Burton BR, Wraith DC. Regulation of adaptive immunity; the role of interleukin-10. Front Immunol 2013; 4:129. [PMID: 23755052 PMCID: PMC3668291 DOI: 10.3389/fimmu.2013.00129] [Citation(s) in RCA: 236] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 05/15/2013] [Indexed: 12/13/2022] Open
Abstract
Since the discovery of interleukin-10 (IL-10) in the 1980s, a large body of work has led to its recognition as a pleiotropic immunomodulatory cytokine that affects both the innate and adaptive immune systems. IL-10 is produced by a wide range of cell types, but for the purposes of this review we shall focus on IL-10 secreted by CD4(+) T cells. Here we describe the importance of IL-10 as a mediator of suppression used by both FoxP3(+) and FoxP3(-) T regulatory cells. Moreover, we discuss the molecular events leading to the induction of IL-10 secretion in T helper cell subsets, where it acts as a pivotal negative feedback mechanism. Finally we discuss how a greater understanding of this principle has allowed for the design of more efficient, antigen-specific immunotherapy strategies to exploit this natural phenomenon clinically.
Collapse
Affiliation(s)
- T H Sky Ng
- School of Cellular and Molecular Medicine, University of Bristol , Bristol , UK
| | | | | | | | | | | |
Collapse
|