151
|
Jee B, Yadav R, Pankaj S, Shahi SK. Immunology of HPV-mediated cervical cancer: current understanding. Int Rev Immunol 2020; 40:359-378. [PMID: 32853049 DOI: 10.1080/08830185.2020.1811859] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human papilloma virus (HPV) has emerged as a primary cause of cervical cancer worldwide. HPV is a relatively small (55 nm in diameter) and non-enveloped virus containing approximately 8 kb long double stranded circular DNA genome. To date, 228 genotypes of HPV have been identified. Although all HPV infections do not lead to the development of malignancy of cervix, only persistent infection of high-risk types of HPV (mainly with HPV16 and HPV18) results in the disease. In addition, the immunity of the patients also acts as a key determinant in the carcinogenesis. Since, no HPV type specific medication is available for the patient suffering with cervical cancer, hence, a deep understanding of the disease etiology may be vital for developing an effective strategy for its prevention and management. From the immunological perspectives, the entire mechanisms of disease progression still remain unclear despite continuous efforts. In the present review, the recent developments in immunology of HPV-mediated cervix carcinoma were discussed. At the end, the prevention of disease using HPV type specific recombinant vaccines was also highlighted.
Collapse
Affiliation(s)
- Babban Jee
- Department of Health Research, Ministry of Health and Family Welfare, Government of India, New Delhi, India
| | - Renu Yadav
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, India
| | - Sangeeta Pankaj
- Department of Gynecological Oncology, Regional Cancer Centre, Indira Gandhi Institute of Medical Sciences, Patna, India
| | - Shivendra Kumar Shahi
- Department of Microbiology, Indira Gandhi Institute of Medical Sciences, Patna, India
| |
Collapse
|
152
|
Goshen-Lago T, Szwarcwort-Cohen M, Benguigui M, Almog R, Turgeman I, Zaltzman N, Halberthal M, Shaked Y, Ben-Aharon I. The Potential Role of Immune Alteration in the Cancer-COVID19 Equation-A Prospective Longitudinal Study. Cancers (Basel) 2020; 12:E2421. [PMID: 32859016 PMCID: PMC7563644 DOI: 10.3390/cancers12092421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/22/2022] Open
Abstract
Background: The risk of cancer patients to develop COVID19 infection is unclear. We aimed to prospectively study cancer patients and oncology healthcare workers for COVID19 serology. In IgG+ cases, immune profile was determined to portray the pattern of immune response to SARS-CoV2. Methods: Cancer patients on active treatment and healthcare workers were enrolled. During the study period (3/2020-6/2020), demographic data and blood were collected at three time points. Expression of IgG, IgM, and IgA were assessed. In SARS-CoV-2 IgG+ cases and matched negative cases, we performed mass cytometry time of flight (CyTOF) analysis on the basis of the expression of surface markers. Results: The study included 164 cancer patients on active intravenous treatment and 107 healthcare workers at the cancer center. No symptomatic cases were reported during the study period. Serology analysis revealed four IgG+ patients (2.4%) and two IgG+ healthcare workers (1.9%)-all were asymptomatic. CyTOF analysis demonstrated substantial reduction in myeloid cells in healthcare workers who were SARS-CoV-2 IgG+ compared to those who were SARS-CoV-2 IgG-, whereas in cancer patients, the reduction was relatively milder (≈50% reduction in SARS-CoV-2 IgG+ cancer patients compared with ≈90% reduction in SARS-CoV-2 IgG+ workers). Conclusion: Our results indicate a similar rate of asymptomatic COVID19 infection in cancer patients and healthcare workers in a longitudinal study throughout the pandemic time. Due to differential immune cell profiles of cancer patients who are treated with immunomodulatory agents, the host response to the SARS-COV2 may play a role in COVID19 course and representation. The immunological perspective of cancer treatments on the risk for COVID19 infection should be further explored.
Collapse
Affiliation(s)
- Tal Goshen-Lago
- Division of Oncology, Rambam Health Care Campus, Haifa 31096, Israel
| | | | | | - Ronit Almog
- Rappaport Faculty of Medicine, Technion, Haifa 3525428, Israel
- Epidemiology Department and Biobank, Rambam Health Care Campus, Haifa 31096, Israel
| | - Ilit Turgeman
- Division of Oncology, Rambam Health Care Campus, Haifa 31096, Israel
| | - Nelly Zaltzman
- Virology Laboratory, Rambam Health Care Campus, Haifa 31096, Israel
| | - Michael Halberthal
- Rappaport Faculty of Medicine, Technion, Haifa 3525428, Israel
- General Management, Rambam Health Care Campus, Haifa 31096, Israel
| | - Yuval Shaked
- Rappaport Faculty of Medicine, Technion, Haifa 3525428, Israel
- Technion-Integrated Cancer Center, Technion, Haifa 3525428, Israel
| | - Irit Ben-Aharon
- Division of Oncology, Rambam Health Care Campus, Haifa 31096, Israel
- Rappaport Faculty of Medicine, Technion, Haifa 3525428, Israel
- Technion-Integrated Cancer Center, Technion, Haifa 3525428, Israel
| |
Collapse
|
153
|
Saka D, Gökalp M, Piyade B, Cevik NC, Arik Sever E, Unutmaz D, Ceyhan GO, Demir IE, Asimgil H. Mechanisms of T-Cell Exhaustion in Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12082274. [PMID: 32823814 PMCID: PMC7464444 DOI: 10.3390/cancers12082274] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
T-cell exhaustion is a phenomenon that represents the dysfunctional state of T cells in chronic infections and cancer and is closely associated with poor prognosis in many cancers. The endogenous T-cell immunity and genetically edited cell therapies (CAR-T) failed to prevent tumor immune evasion. The effector T-cell activity is perturbed by an imbalance between inhibitory and stimulatory signals causing a reprogramming in metabolism and the high levels of multiple inhibitory receptors like programmed cell death protein-1 (PD-1), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), T cell immunoglobulin and mucin domain-containing protein 3 (TIM-3), and Lymphocyte-activation gene 3 (Lag-3). Despite the efforts to neutralize inhibitory receptors by a single agent or combinatorial immune checkpoint inhibitors to boost effector function, PDAC remains unresponsive to these therapies, suggesting that multiple molecular mechanisms play a role in stimulating the exhaustion state of tumor-infiltrating T cells. Recent studies utilizing transcriptomics, mass cytometry, and epigenomics revealed a critical role of Thymocyte selection-associated high mobility group box protein (TOX) genes and TOX-associated pathways, driving T-cell exhaustion in chronic infection and cancer. Here, we will review recently defined molecular, genetic, and cellular factors that drive T-cell exhaustion in PDAC. We will also discuss the effects of available immune checkpoint inhibitors and the latest clinical trials targeting various molecular factors mediating T-cell exhaustion in PDAC.
Collapse
Affiliation(s)
- Didem Saka
- Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey; (D.S.); (M.G.); (B.P.); (N.C.C.); (E.A.S.); (H.A.)
| | - Muazzez Gökalp
- Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey; (D.S.); (M.G.); (B.P.); (N.C.C.); (E.A.S.); (H.A.)
| | - Betül Piyade
- Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey; (D.S.); (M.G.); (B.P.); (N.C.C.); (E.A.S.); (H.A.)
| | - Nedim Can Cevik
- Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey; (D.S.); (M.G.); (B.P.); (N.C.C.); (E.A.S.); (H.A.)
| | - Elif Arik Sever
- Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey; (D.S.); (M.G.); (B.P.); (N.C.C.); (E.A.S.); (H.A.)
| | - Derya Unutmaz
- Jackson Laboratory of Genomic Medicine, Farmington, CT 06032, USA;
| | - Güralp O. Ceyhan
- Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey; (D.S.); (M.G.); (B.P.); (N.C.C.); (E.A.S.); (H.A.)
- Correspondence: (G.O.C.); (I.E.D.); Tel.: +90-5320514424 (G.O.C.); +49-8941405868 (I.E.D.)
| | - Ihsan Ekin Demir
- Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey; (D.S.); (M.G.); (B.P.); (N.C.C.); (E.A.S.); (H.A.)
- Department of Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- Correspondence: (G.O.C.); (I.E.D.); Tel.: +90-5320514424 (G.O.C.); +49-8941405868 (I.E.D.)
| | - Hande Asimgil
- Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey; (D.S.); (M.G.); (B.P.); (N.C.C.); (E.A.S.); (H.A.)
- Department of Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| |
Collapse
|
154
|
Abstract
Chronic liver injury due to viral hepatitis, alcohol abuse, and metabolic disorders is a worldwide health concern. Insufficient treatment of chronic liver injury leads to fibrosis, causing liver dysfunction and carcinogenesis. Most cases of hepatocellular carcinoma (HCC) develop in the fibrotic liver. Pathological features of liver fibrosis include extracellular matrix (ECM) accumulation, mesenchymal cell activation, immune deregulation, and angiogenesis, all of which contribute to the precancerous environment, supporting tumor development. Among liver cells, hepatic stellate cells (HSCs) and macrophages play critical roles in fibrosis and HCC. These two cell types interplay and remodel the ECM and immune microenvironment in the fibrotic liver. Once HCC develops, HCC-derived factors influence HSCs and macrophages to switch to protumorigenic cell populations, cancer-associated fibroblasts and tumor-associated macrophages, respectively. This review aims to summarize currently available data on the roles of HSCs and macrophages in liver fibrosis and HCC, with a focus on their interaction.
Collapse
Affiliation(s)
- Michitaka Matsuda
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Ekihiro Seki
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
155
|
Díaz-Montero CM, Rini BI, Finke JH. The immunology of renal cell carcinoma. Nat Rev Nephrol 2020; 16:721-735. [PMID: 32733094 DOI: 10.1038/s41581-020-0316-3] [Citation(s) in RCA: 245] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2020] [Indexed: 12/21/2022]
Abstract
Renal cell carcinoma (RCC) is the most common type of kidney cancer and comprises several subtypes with unique characteristics. The most common subtype (~70% of cases) is clear-cell RCC. RCC is considered to be an immunogenic tumour but is known to mediate immune dysfunction in large part by eliciting the infiltration of immune-inhibitory cells, such as regulatory T cells and myeloid-derived suppressor cells, into the tumour microenvironment. Several possible mechanisms have been proposed to explain how these multiple tumour-infiltrating cell types block the development of an effective anti-tumour immune response, including inhibition of the activity of effector T cells and of antigen presenting cells via upregulation of suppressive factors such as checkpoint molecules. Targeting immune suppression using checkpoint inhibition has resulted in clinical responses in some patients with RCC and combinatorial approaches involving checkpoint blockade are now standard of care in patients with advanced RCC. However, a substantial proportion of patients do not benefit from checkpoint blockade. The identification of reliable biomarkers of response to checkpoint blockade is crucial to facilitate improvements in the clinical efficacy of these therapies. In addition, there is a need for the development of other immune-based strategies that address the shortcomings of checkpoint blockade, such as adoptive cell therapies.
Collapse
Affiliation(s)
- C Marcela Díaz-Montero
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Brian I Rini
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - James H Finke
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
156
|
Stem cell factor produced by tumor cells expands myeloid-derived suppressor cells in mice. Sci Rep 2020; 10:11257. [PMID: 32647215 PMCID: PMC7347545 DOI: 10.1038/s41598-020-68061-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/16/2020] [Indexed: 12/30/2022] Open
Abstract
Immunotherapy is a novel treatment approach for cancers; however, its therapeutic effects are impeded by myeloid-derived suppressor cells (MDSCs). This study aimed to determine how MDSCs are expanded in cancer hosts. MDSCs were positive for Gr-1 and CD11b. Hepa1-6 hepatoma cells, EL4 lymphoma cells, and mice bearing Hepa1-6 hepatoma or lymphoma were examined. Following the inoculation of Hepa1-6 cells into the flanks of mice, a linear correlation was evident between the frequency of MDSCs in the spleen and tumor sizes. MDSC numbers diminished gradually and returned to the normal level within 3 weeks if the tumors were excised. To identify the cytokines produced by tumor cells that allowed expansion of MDSCs, cytokines in Hepa1-6 cell culture medium and murine serum were examined using a cytokine array. Stem cell factor (SCF) was implicated as the relevant cytokine. When recombinant SCF was added to the spleen cell culture medium, MDSC expansion could occur. In the presence of c-kit blockade, this effect of SCF was partially reversed. In conclusion, MDSCs can be expanded in tumor cells in a process that involves SCF released by tumor cells.
Collapse
|
157
|
Rébé C, Ghiringhelli F. Interleukin-1β and Cancer. Cancers (Basel) 2020; 12:E1791. [PMID: 32635472 PMCID: PMC7408158 DOI: 10.3390/cancers12071791] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
Within a tumor, IL-1β is produced and secreted by various cell types, such as immune cells, fibroblasts, or cancer cells. The IL1B gene is induced after "priming" of the cells and a second signal is required to allow IL-1β maturation by inflammasome-activated caspase-1. IL-1β is then released and leads to transcription of target genes through its ligation with IL-1R1 on target cells. IL-1β expression and maturation are guided by gene polymorphisms and by the cellular context. In cancer, IL-1β has pleiotropic effects on immune cells, angiogenesis, cancer cell proliferation, migration, and metastasis. Moreover, anti-cancer treatments are able to promote IL-1β production by cancer or immune cells, with opposite effects on cancer progression. This raises the question of whether or not to use IL-1β inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Cédric Rébé
- Platform of Transfer in Cancer Biology, Centre Georges François Leclerc, INSERM LNC UMR1231, University of Bourgogne Franche-Comté, F-21000 Dijon, France
| | - François Ghiringhelli
- Platform of Transfer in Cancer Biology, Centre Georges François Leclerc, INSERM LNC UMR1231, University of Bourgogne Franche-Comté, F-21000 Dijon, France
| |
Collapse
|
158
|
Oh MH, Sun IH, Zhao L, Leone RD, Sun IM, Xu W, Collins SL, Tam AJ, Blosser RL, Patel CH, Englert JM, Arwood ML, Wen J, Chan-Li Y, Tenora L, Majer P, Rais R, Slusher BS, Horton MR, Powell JD. Targeting glutamine metabolism enhances tumor-specific immunity by modulating suppressive myeloid cells. J Clin Invest 2020; 130:3865-3884. [PMID: 32324593 PMCID: PMC7324212 DOI: 10.1172/jci131859] [Citation(s) in RCA: 246] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 04/15/2020] [Indexed: 12/14/2022] Open
Abstract
Myeloid cells comprise a major component of the tumor microenvironment (TME) that promotes tumor growth and immune evasion. By employing a small-molecule inhibitor of glutamine metabolism, not only were we able to inhibit tumor growth, but we markedly inhibited the generation and recruitment of myeloid-derived suppressor cells (MDSCs). Targeting tumor glutamine metabolism led to a decrease in CSF3 and hence recruitment of MDSCs as well as immunogenic cell death, leading to an increase in inflammatory tumor-associated macrophages (TAMs). Alternatively, inhibiting glutamine metabolism of the MDSCs themselves led to activation-induced cell death and conversion of MDSCs to inflammatory macrophages. Surprisingly, blocking glutamine metabolism also inhibited IDO expression of both the tumor and myeloid-derived cells, leading to a marked decrease in kynurenine levels. This in turn inhibited the development of metastasis and further enhanced antitumor immunity. Indeed, targeting glutamine metabolism rendered checkpoint blockade-resistant tumors susceptible to immunotherapy. Overall, our studies define an intimate interplay between the unique metabolism of tumors and the metabolism of suppressive immune cells.
Collapse
Affiliation(s)
- Min-Hee Oh
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, and
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Im-Hong Sun
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, and
| | - Liang Zhao
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, and
| | - Robert D. Leone
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, and
| | - Im-Meng Sun
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, and
| | - Wei Xu
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, and
| | - Samuel L. Collins
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, and
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ada J. Tam
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, and
| | - Richard L. Blosser
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, and
| | - Chirag H. Patel
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, and
| | | | - Matthew L. Arwood
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, and
| | - Jiayu Wen
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, and
| | - Yee Chan-Li
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lukáš Tenora
- Institute of Organic Chemistry and Biochemistry, Prague, Czech Republic
| | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry, Prague, Czech Republic
| | - Rana Rais
- Department of Neuroscience, Johns Hopkins Drug Discovery, Baltimore, Maryland, USA
| | - Barbara S. Slusher
- Department of Neuroscience, Johns Hopkins Drug Discovery, Baltimore, Maryland, USA
| | - Maureen R. Horton
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jonathan D. Powell
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, and
| |
Collapse
|
159
|
Wondergem NE, Nauta IH, Muijlwijk T, Leemans CR, van de Ven R. The Immune Microenvironment in Head and Neck Squamous Cell Carcinoma: on Subsets and Subsites. Curr Oncol Rep 2020; 22:81. [PMID: 32602047 PMCID: PMC7324425 DOI: 10.1007/s11912-020-00938-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE To understand why some patients respond to immunotherapy but many do not, a clear picture of the tumor microenvironment (TME) of head and neck squamous cell carcinoma (HNSCC) is key. Here we review the current understanding on the immune composition per HNSCC subsite, the importance of the tumor's etiology and the prognostic power of specific immune cells. RECENT FINDINGS Large cohort data are mostly based on deconvolution of transcriptional databases. Studies focusing on infiltrate localization often entail small cohorts, a mixture of HNSCC subsites, or focus on a single immune marker rather than the interaction between cells within the TME. Conclusions on the prognostic impact of specific immune cells in HNSCC are hampered by the use of heterogeneous or small cohorts. To move forward, the field should focus on deciphering the immune composition per HNSCC subsite, in powered cohorts and considering the molecular diversity in this disease.
Collapse
Affiliation(s)
- Niels E Wondergem
- Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam, Amsterdam UMC, VU University medical center, De Boelelaan, 1117, Amsterdam, The Netherlands
| | - Irene H Nauta
- Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam, Amsterdam UMC, VU University medical center, De Boelelaan, 1117, Amsterdam, The Netherlands
| | - Tara Muijlwijk
- Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam, Amsterdam UMC, VU University medical center, De Boelelaan, 1117, Amsterdam, The Netherlands
| | - C René Leemans
- Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam, Amsterdam UMC, VU University medical center, De Boelelaan, 1117, Amsterdam, The Netherlands
| | - Rieneke van de Ven
- Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam, Amsterdam UMC, VU University medical center, De Boelelaan, 1117, Amsterdam, The Netherlands.
| |
Collapse
|
160
|
Hou A, Hou K, Huang Q, Lei Y, Chen W. Targeting Myeloid-Derived Suppressor Cell, a Promising Strategy to Overcome Resistance to Immune Checkpoint Inhibitors. Front Immunol 2020. [PMID: 32508809 DOI: 10.3389/fimmu.2020.00783.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) are starting to transform the treatment for patients with advanced cancer. The extensive application of these antibodies for various cancer obtains exciting anti-tumor immune response by activating T cells. Although the encouraging clinical benefit in patients receiving these immunostimulatory agents are observed, numbers of patients still derive limited response or even none for reasons unknown, sometimes at the cost of adverse reactions. Myeloid-derived suppressor cells (MDSCs) is a heterogeneous immature population of myeloid cells partly influencing the efficacy of immunotherapies. These cells not only directly suppress T cell but mediate a potently immunosuppressive network within tumor microenvironment to attenuate the anti-tumor response. The crosstalk between MDSCs and immune cells/non-immune cells generates several positive feedbacks to negatively modulate the tumor microenvironment. As such, the recruitment of immunosuppressive cells, upregulation of immune checkpoints, angiogenesis and hypoxia are induced and contributing to the acquired resistance to ICIs. Targeting MDSCs could be a potential therapy to overcome the limitation. In this review, we focus on the role of MDSCs in resistance to ICIs and summarize the therapeutic strategies targeting them to enhance ICIs efficiency in cancer patients.
Collapse
Affiliation(s)
- Aohan Hou
- Faculty of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Kaiyu Hou
- Department of Bone and Trauma, The Second People's Hospital of Yunnan Province, Kunming, China
| | - Qiubo Huang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University and Yunnan Cancer Center, Kunming, China
| | - Yujie Lei
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University and Yunnan Cancer Center, Kunming, China
| | - Wanling Chen
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University and Yunnan Cancer Center, Kunming, China
| |
Collapse
|
161
|
Wu C, Hua Q, Zheng L. Generation of Myeloid Cells in Cancer: The Spleen Matters. Front Immunol 2020; 11:1126. [PMID: 32582203 PMCID: PMC7291604 DOI: 10.3389/fimmu.2020.01126] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/07/2020] [Indexed: 02/06/2023] Open
Abstract
Myeloid cells are key components of the tumor microenvironment and critical regulators of disease progression. These innate immune cells are usually short-lived and require constant replenishment. Emerging evidence indicates that tumors alter the host hematopoietic system and induce the biased differentiation of myeloid cells to tip the balance of the systemic immune activities toward tumor-promoting functions. Altered myelopoiesis is not restricted to the bone marrow and also occurs in extramedullary organs. In this review, we outline the recent advances in the field of cancer-associated myelopoiesis, with a focus on the spleen, the major site of extramedullary hematopoiesis in the cancer setting. We discuss the functional specialization, distinct mechanisms, and clinical relevance of cancer-associated myeloid cell generation from early progenitors in the spleen and its potential as a novel therapeutic target.
Collapse
Affiliation(s)
- Chong Wu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qiaomin Hua
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Limin Zheng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
162
|
Biswas BK, Guru SA, Sumi MP, Jamatia E, Gupta RK, Lali P, Konar BC, Saxena A, Mir R. Natural Killer Cells Expanded and Preactivated Exhibit Enhanced Antitumor Activity against Different Tumor Cells in Vitro. Asian Pac J Cancer Prev 2020; 21:1595-1605. [PMID: 32592353 PMCID: PMC7568895 DOI: 10.31557/apjcp.2020.21.6.1595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Indexed: 11/25/2022] Open
Abstract
One of the emerging treatment strategies for cancer particularly for haematological malignancies is natural killer (NK) cell therapy. However, the availability of a best approach to maximize NK cell anticancer potential is still awaited. It is well established that cytokine-induced memory-like NK cells have the potential to differentiate after a short period of preactivation with interleukins-IL-12, IL-15, and IL-18 and exhibit increased responses to cytokine or activating receptor restimulation for weeks to months after preactivation. We demonstrated that NK cells differentiated from CD34+ cells isolated from cord blood show increased antitumor potential in vitro against different cancer cells. Using flow cytometry, we found that NK cells were able to induce apoptosis in cancer cells in vitro. We further analysed surviving gene expression by quantitative real time PCR and reported that NK cells cause down regulation of survivin gene expression in tumor cells. Therefore, NK cell therapy represents a promising immunotherapy for cancers like AML and other haematological malignancies. It concluded that NK cells can be differentiated from CD34+ cells isolated from cord blood ,are able to induce apoptosis and induce increased antitumor potential in vitro against different cancer cells besides cause downregulation of survivin gene expression in tumor cells. Therefore, NK cell therapy represents a promising immunotherapy for different cancer types and haematological malignancies. Furthers studies are necessary to confirm our findings.
Collapse
Affiliation(s)
- Biplob Kumar Biswas
- Department of Biochemistry, Maulana Azad Medical College (MAMC) and Associated Hospitals, New Delhi, India
| | - Sameer Ahmad Guru
- Multidisciplinary Research Unit (MRU), Maulana Azad Medical College and Associated Hospitals, Bahadur Shah Zafar Marg, New Delhi, 110002, India
| | - Mamta Pervin Sumi
- Department of Gastroinstestinal Surgery G B Pant Postgraduate Institute of Medical Education and Research (GIPMER), New Delhi, India
| | - Elvia Jamatia
- Department of Biochemistry, Maulana Azad Medical College (MAMC) and Associated Hospitals, New Delhi, India
| | - Rohit Kumar Gupta
- Department of Biochemistry, Maulana Azad Medical College (MAMC) and Associated Hospitals, New Delhi, India
| | - Pramod Lali
- Department of Biochemistry, Maulana Azad Medical College (MAMC) and Associated Hospitals, New Delhi, India
| | - Bidhan Chandra Konar
- Department of Biochemistry, Maulana Azad Medical College (MAMC) and Associated Hospitals, New Delhi, India
| | - Alpana Saxena
- Department of Biochemistry, Maulana Azad Medical College (MAMC) and Associated Hospitals, New Delhi, India
| | - Rashid Mir
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, Prince Fahd Bin Sultan Research chair, University of Tabuk, Saudi Arabia
| |
Collapse
|
163
|
Shukla VC, Duarte-Sanmiguel S, Panic A, Senthilvelan A, Moore J, Bobba C, Benner B, Carson WE, Ghadiali SN, Gallego-Perez D. Reciprocal Signaling between Myeloid Derived Suppressor and Tumor Cells Enhances Cellular Motility and is Mediated by Structural Cues in the Microenvironment. ADVANCED BIOSYSTEMS 2020; 4:e2000049. [PMID: 32419350 PMCID: PMC7489303 DOI: 10.1002/adbi.202000049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/10/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022]
Abstract
Myeloid derived suppressor cells (MDSCs) have gained significant attention for their immunosuppressive role in cancer and their ability to contribute to tumor progression and metastasis. Understanding the role of MDSCs in driving cancer cell migration, a process fundamental to metastasis, is essential to fully comprehend and target MDSC-tumor cell interactions. This study employs microfabricated platforms, which simulate the structural cues present in the tumor microenvironment (TME) to elucidate the effects of MDSCs on the migratory phenotype of cancer cells at the single cell level. The results indicate that the presence of MDSCs enhances the motility of cancer-epithelial cells when directional cues (either topographical or spatial) are present. This behavior appears to be independent of cell-cell contact and driven by soluble byproducts from heterotypic interactions between MDSCs and cancer cells. Moreover, MDSC cell-motility is also impacted by the presence of cancer cells and the cancer cell secretome in the presence of directional cues. Epithelial dedifferentiation is the likely mechanism for changes in cancer cell motility in response to MDSCs. These results highlight the biochemical and biostructural conditions under which MDSCs can support cancer cell migration, and could therefore provide new avenues of research and therapy aimed at stemming cancer progression.
Collapse
Affiliation(s)
- Vasudha C. Shukla
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Silvia Duarte-Sanmiguel
- Department of Biomedical Engineering, OSU Nutrition, The Ohio State University, Columbus, OH, 43210, USA
| | - Ana Panic
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Abirami Senthilvelan
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Jordan Moore
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Christopher Bobba
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Brooke Benner
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, 43210, USA
| | - William E. Carson
- Department of Surgery, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Samir N. Ghadiali
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Dorothy M. Davis Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Daniel Gallego-Perez
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Dorothy M. Davis Heart and lung Research Institute, Department of Surgery, The Ohio State Wexner Medical Center, Columbus, OH, 43210, USA
| |
Collapse
|
164
|
Khan ANH, Emmons TR, Wong JT, Alqassim E, Singel KL, Mark J, Smith BE, Tario JD, Eng KH, Moysich KB, Odunsi K, Abrams SI, Segal BH. Quantification of Early-Stage Myeloid-Derived Suppressor Cells in Cancer Requires Excluding Basophils. Cancer Immunol Res 2020; 8:819-828. [PMID: 32238380 PMCID: PMC7269807 DOI: 10.1158/2326-6066.cir-19-0556] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 01/17/2020] [Accepted: 03/25/2020] [Indexed: 12/20/2022]
Abstract
Myeloid derived suppressor cells (MDSC) are a heterogeneous group of immature cells that accumulate in the peripheral blood and tumor microenvironment and are barriers to cancer therapy. MDSCs serve as prognostic biomarkers and are targets for therapy. On the basis of surface markers, three subsets of MDSCs have been defined in humans: granulocytic, monocytic, and early stage (e-MDSC). The markers attributed to e-MDSCs overlap with those of basophils, which are rare circulating myeloid cells with unrecognized roles in cancer. Thus, we asked whether e-MDSCs in circulation and the tumor microenvironment include basophils. On average, 58% of cells with e-MDSC surface markers in blood and 36% in ascites from patients with ovarian cancer were basophils based on CD123high expression and cytology, whereas cells with immature features were rare. Circulating and ascites basophils did not suppress proliferation of stimulated T cells, a key feature of MDSCs. Increased accumulation of basophils and basogranulin, a marker of basophil degranulation, were observed in ascites compared to serum in patients with newly diagnosed ovarian cancer. Basophils recruited to the tumor microenvironment may exacerbate fluid accumulation by their release of proinflammatory granular constituents that promote vascular leakage. No significant correlation was observed between peripheral basophil counts and survival in patients with ovarian cancer. Our results suggest that studies in which e-MDSCs were defined solely by surface markers should be reevaluated to exclude basophils. Both immaturity and suppression are criteria to define e-MDSCs in future studies.
Collapse
Affiliation(s)
- Anm Nazmul H Khan
- Department of Internal Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Tiffany R Emmons
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Jerry T Wong
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Emad Alqassim
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Kelly L Singel
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Jaron Mark
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Brandon E Smith
- Department of Internal Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Joseph D Tario
- Department of Flow Cytometry, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Kevin H Eng
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Kirsten B Moysich
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Kunle Odunsi
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Scott I Abrams
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Brahm H Segal
- Department of Internal Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York.
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| |
Collapse
|
165
|
Hypoxia: Turning vessels into vassals of cancer immunotolerance. Cancer Lett 2020; 487:74-84. [PMID: 32470491 DOI: 10.1016/j.canlet.2020.05.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/27/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022]
Abstract
Hypoxia is a universal feature of solid cancers caused by a mismatch between cellular oxygen supply and consumption. To meet the increased demand for oxygen, hypoxic cancer cells (CCs) induce a multifaceted process known as angiogenesis, wherein new vessels are formed by the sprouting of pre-existing ones. In addition to providing oxygen for growth and an exit route for dissemination, angiogenic vessels and factors are co-opted by CCs to enable the generation of an immunotolerant, hypoxic tumor microenvironment, leading to therapeutic failure and mortality. In this review, we discuss how hypoxia-inducible factors (HIFs), the mechanistic target of rapamycin (mTOR), and the unfolded protein response (UPR) control angiogenic factors serving both vascular and immunomodulatory functions in the tumor microenvironment. Possible therapeutic strategies, wherein targeting oxygen sensing might enhance anti-angiogenic and immunologically-mediated anti-cancer responses, are suggested.
Collapse
|
166
|
Chaib M, Chauhan SC, Makowski L. Friend or Foe? Recent Strategies to Target Myeloid Cells in Cancer. Front Cell Dev Biol 2020; 8:351. [PMID: 32509781 PMCID: PMC7249856 DOI: 10.3389/fcell.2020.00351] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) is a complex network of epithelial and stromal cells, wherein stromal components provide support to tumor cells during all stages of tumorigenesis. Among these stromal cell populations are myeloid cells, which are comprised mainly of tumor-associated macrophages (TAM), dendritic cells (DC), myeloid-derived suppressor cells (MDSC), and tumor-associated neutrophils (TAN). Myeloid cells play a major role in tumor growth through nurturing cancer stem cells by providing growth factors and metabolites, increasing angiogenesis, as well as promoting immune evasion through the creation of an immune-suppressive microenvironment. Immunosuppression in the TME is achieved by preventing critical anti-tumor immune responses by natural killer and T cells within the primary tumor and in metastatic niches. Therapeutic success in targeting myeloid cells in malignancies may prove to be an effective strategy to overcome chemotherapy and immunotherapy limitations. Current therapeutic approaches to target myeloid cells in various cancers include inhibition of their recruitment, alteration of function, or functional re-education to an antitumor phenotype to overcome immunosuppression. In this review, we describe strategies to target TAMs and MDSCs, consisting of single agent therapies, nanoparticle-targeted approaches and combination therapies including chemotherapy and immunotherapy. We also summarize recent molecular targets that are specific to myeloid cell populations in the TME, while providing a critical review of the limitations of current strategies aimed at targeting a single subtype of the myeloid cell compartment. The goal of this review is to provide the reader with an understanding of the critical role of myeloid cells in the TME and current therapeutic approaches including ongoing or recently completed clinical trials.
Collapse
Affiliation(s)
- Mehdi Chaib
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Subhash C Chauhan
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, United States.,Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Liza Makowski
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States.,Division of Hematology Oncology, Department of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States.,Center for Cancer Research, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
167
|
Hou A, Hou K, Huang Q, Lei Y, Chen W. Targeting Myeloid-Derived Suppressor Cell, a Promising Strategy to Overcome Resistance to Immune Checkpoint Inhibitors. Front Immunol 2020; 11:783. [PMID: 32508809 PMCID: PMC7249937 DOI: 10.3389/fimmu.2020.00783] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/06/2020] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) are starting to transform the treatment for patients with advanced cancer. The extensive application of these antibodies for various cancer obtains exciting anti-tumor immune response by activating T cells. Although the encouraging clinical benefit in patients receiving these immunostimulatory agents are observed, numbers of patients still derive limited response or even none for reasons unknown, sometimes at the cost of adverse reactions. Myeloid-derived suppressor cells (MDSCs) is a heterogeneous immature population of myeloid cells partly influencing the efficacy of immunotherapies. These cells not only directly suppress T cell but mediate a potently immunosuppressive network within tumor microenvironment to attenuate the anti-tumor response. The crosstalk between MDSCs and immune cells/non-immune cells generates several positive feedbacks to negatively modulate the tumor microenvironment. As such, the recruitment of immunosuppressive cells, upregulation of immune checkpoints, angiogenesis and hypoxia are induced and contributing to the acquired resistance to ICIs. Targeting MDSCs could be a potential therapy to overcome the limitation. In this review, we focus on the role of MDSCs in resistance to ICIs and summarize the therapeutic strategies targeting them to enhance ICIs efficiency in cancer patients.
Collapse
Affiliation(s)
- Aohan Hou
- Faculty of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Kaiyu Hou
- Department of Bone and Trauma, The Second People's Hospital of Yunnan Province, Kunming, China
| | - Qiubo Huang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University and Yunnan Cancer Center, Kunming, China
| | - Yujie Lei
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University and Yunnan Cancer Center, Kunming, China
| | - Wanling Chen
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University and Yunnan Cancer Center, Kunming, China
| |
Collapse
|
168
|
Ren W, Zhang X, Li W, Feng Q, Feng H, Tong Y, Rong H, Wang W, Zhang D, Zhang Z, Tu S. Circulating and tumor-infiltrating arginase 1-expressing cells in gastric adenocarcinoma patients were mainly immature and monocytic Myeloid-derived suppressor cells. Sci Rep 2020; 10:8056. [PMID: 32415175 PMCID: PMC7229115 DOI: 10.1038/s41598-020-64841-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/18/2020] [Indexed: 01/11/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a group of heterogeneous cells derived from immature myeloid cells (IMCs). MDSCs are known to play important roles in tumor immune evasion. While we know that there are a large number of circulating and tumor-infiltrating MDSCs existing in gastric cancer (GC) patients, the phenotypic characteristics and arginase 1 (ARG1) expression levels of these MDSCs remain very unclear. In our study, flow cytometric analysis of circulating MDSCs from 20 gastric adenocarcinoma (GAC) patients found that ≥80% ARG1-expressing MDSCs were mainly early-stage MDSCs (HLA-DR-CD33+CD14-CD15-MDSCs). In addition, our investigation showed that tumor-infiltrating MDSCs from 6 GAC patients consisted of >35% ARG1-expressing naïve MDSCs (HLA-DR-CD33-CD11b-CD14-CD15-MDSCs), >15% early-stage MDSCs and >40% monocytic MDSCs (HLA-DR-CD14+MDSCs). This preliminary study describes the phenotypic characteristics and ARG1 expression levels of MDSCs from GAC patients and shows that circulating and tumor-infiltrating ARG1-expressing cells were mainly immature and monocytic MDSCs, which provides information to better understand the mechanisms that allow gastric cancer cells to evade the immune system.
Collapse
Affiliation(s)
- WeiHong Ren
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, No.19 Renmin Road, Zhengzhou, Henan Province, China.
| | - XuRan Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, No.19 Renmin Road, Zhengzhou, Henan Province, China
| | - WenBo Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, No.19 Renmin Road, Zhengzhou, Henan Province, China
| | - Qian Feng
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, No.19 Renmin Road, Zhengzhou, Henan Province, China
| | - HuiJie Feng
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, No.19 Renmin Road, Zhengzhou, Henan Province, China
| | - Yan Tong
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, No.19 Renmin Road, Zhengzhou, Henan Province, China
| | - Hao Rong
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, No.19 Renmin Road, Zhengzhou, Henan Province, China
| | - Wei Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, No.19 Renmin Road, Zhengzhou, Henan Province, China
| | - Dai Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, No.19 Renmin Road, Zhengzhou, Henan Province, China
| | - ZhenQiang Zhang
- Immunology Laboratory of Chinese Medicine, Henan University of Chinese Medicine, No.156 Jinshui East Road, Zhengzhou, Henan Province, China
| | - ShiChun Tu
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, 92121, USA
| |
Collapse
|
169
|
de Almeida Nagata DE, Chiang EY, Jhunjhunwala S, Caplazi P, Arumugam V, Modrusan Z, Chan E, Merchant M, Jin L, Arnott D, Romero FA, Magnuson S, Gascoigne KE, Grogan JL. Regulation of Tumor-Associated Myeloid Cell Activity by CBP/EP300 Bromodomain Modulation of H3K27 Acetylation. Cell Rep 2020; 27:269-281.e4. [PMID: 30943407 DOI: 10.1016/j.celrep.2019.03.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/16/2018] [Accepted: 02/27/2019] [Indexed: 01/01/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are found in most cancer malignancies and support tumorigenesis by suppressing immunity and promoting tumor growth. Here we identify the bromodomain (BRD) of CBP/EP300 as a critical regulator of H3K27 acetylation (H3K27ac) in MDSCs across promoters and enhancers of pro-tumorigenic target genes. In preclinical tumor models, in vivo administration of a CBP/EP300-BRD inhibitor (CBP/EP300-BRDi) alters intratumoral MDSCs and attenuates established tumor growth in immunocompetent tumor-bearing mice, as well as in MDSC-dependent xenograft models. Inhibition of CBP/EP300-BRD redirects tumor-associated MDSCs from a suppressive to an inflammatory phenotype through downregulation of STAT pathway-related genes and inhibition of Arg1 and iNOS. Similarly, CBP/EP300-BRDi decreases differentiation and suppressive function of human MDSCs in vitro. Our findings uncover a role of CBP/EP300-BRD in intratumoral MDSCs that may be targeted therapeutically to boost anti-tumor immunity.
Collapse
Affiliation(s)
| | - Eugene Y Chiang
- Department of Cancer Immunology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Suchit Jhunjhunwala
- Department of Bioinformatics, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Patrick Caplazi
- Department of Pathology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Vidhyalakshmi Arumugam
- Department of Cancer Immunology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Zora Modrusan
- Department of Micro Array Lab, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Emily Chan
- Department of Translational Oncology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Mark Merchant
- Department of Translational Oncology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Lingyan Jin
- Department of Discovery Oncology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - David Arnott
- Department of Technology, Proteomics & Biological Resources, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - F Anthony Romero
- Discovery Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Steven Magnuson
- Discovery Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Karen E Gascoigne
- Department of Discovery Oncology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jane L Grogan
- Department of Cancer Immunology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
170
|
Peng M, Zhang Q, Liu Y, Guo X, Ju J, Xu L, Gao Y, Chen D, Mu D, Zhang R. Apolipoprotein A-I Mimetic Peptide L-4F Suppresses Granulocytic-Myeloid-Derived Suppressor Cells in Mouse Pancreatic Cancer. Front Pharmacol 2020; 11:576. [PMID: 32425796 PMCID: PMC7204910 DOI: 10.3389/fphar.2020.00576] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/15/2020] [Indexed: 01/04/2023] Open
Abstract
L-4F is an apolipoprotein A-I (ApoA-I) mimetic peptide, it was engineered to imitate the anti-inflammatory and anti-oxidative activity of ApoA-I. In this paper, H7 cell was used to construct a mouse model of pancreatic cancer in situ, and the mice were treated with L-4F. Then, the development of pancreatic cancer and myeloid-derived suppressor cells (MDSCs) infiltration were investigated in vivo. After L-4F treatment, the differentiation, proliferation and apoptosis of MDSCs were detected in vitro. Moreover, we test its effects on the immunosuppressive function of MDSCs ex vivo. The results show that L-4F significantly reduced the tumorigenicity of H7 cells. L-4F suppressed granulocytic myeloid-derived suppressor cells (PMN-MDSCs) differentiation and inhibited the accumulation of PMN-MDSCs in the mouse spleen and tumor tissue. L-4F weakened the immunosuppressive function of MDSCs, resulting in decreased production of ROS and H2O2 by MDSCs, and increased T cell proliferation, interferon γ and tumor necrosis factor β secretion, and CD3+CD4+ T and CD3+CD8+ T cell infiltration into the mouse spleen and pancreatic cancer tissue. Furthermore, L-4F significantly down regulated the STAT3 signaling pathway in PMN-MDSCs. These results indicated that L-4F exerts an effective anti-tumor and immunomodulatory effect in pancreatic cancer by inhibiting PMN-MDSCs.
Collapse
Affiliation(s)
- Meiyu Peng
- Department of Immunology, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Qi Zhang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Yanqing Liu
- Department of Breast Surgery, Yantai Yuhuangding Hospital, Yantai, China
| | - Xiangdong Guo
- Laboratory of Immunology and Inflammation, Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Medical University, Tianjin, China
| | - Jiyu Ju
- Department of Immunology, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Lingzhi Xu
- Department of Immunology, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Yuanyuan Gao
- Department of Pharmaceutics, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Daquan Chen
- School of Pharmacy, Yantai University, Yantai, China
| | - Dongzhen Mu
- Department of Immunology, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Rongxin Zhang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
171
|
Zhang H, Xia W, Liang C, Wang X, Zhi L, Guo C, Niu Z, Zhu W. VEGF165b and its mutant demonstrate immunomodulatory, not merely anti-angiogenic functions, in tumor-bearing mice. Mol Immunol 2020; 122:132-140. [PMID: 32353584 DOI: 10.1016/j.molimm.2020.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/21/2022]
Abstract
A great deal of evidence has shown that anti-angiogenic molecules and antibodies targeting the VEGF-A/VEGFRs signal pathway can also reverse tumor-induced immunosuppression to an extent. VEGF165b, an anti-angiogenic VEGF-A isoform, has demonstrated capacity as an efficacious anti-tumor therapy in mice as an anti-angiogenic agent. However, whether VEGF165b also plays an immunomodulatory role in anti-tumor field remains unclear. mVEGF165b effect on regulatory T cells (Tregs) in vitro were evaluated using flow cytometry and Cell Counting Kit-8 (CCK-8) methods. Its effects on Tregs (or Foxp3 expressing cells) and myeloid-derived suppressor cells (MDSCs) were analyzed in vivo using flow cytometry and immunostaining techniques. In this study, we found VEGF165b and its mutant (its half-life in plasma was extended 10 times while retaining its bioactivity; the VEGF165b mutant is called mVEGF165b for short) inhibited the proliferation of Tregs in vitro. In addition, mVEGF165b dramatically inhibited the accumulation of MDSCs and Tregs (or Foxp3 expressing cells) in the spleen and tumor in tumor-bearing mice. In conclusion, our findings demonstrated for the first time that VEGF165b and its mutant has immunoregulatory functions. It may be used as a potential immunomodulatory agent, beyond its anti-angiogenic capacities, in cancer therapies.
Collapse
Affiliation(s)
- Huiyong Zhang
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, 453003, PR China.
| | - Wenjiao Xia
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, 453003, PR China
| | - Chen Liang
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, 453003, PR China
| | - Xiaoyin Wang
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, 453003, PR China
| | - Lingtong Zhi
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, 453003, PR China
| | - Changjiang Guo
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, 453003, PR China
| | - Zhiyuan Niu
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, 453003, PR China
| | - Wuling Zhu
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, 453003, PR China.
| |
Collapse
|
172
|
Geng F, Bao X, Dong L, Guo QQ, Guo J, Xie Y, Zhou Y, Yu B, Wu H, Wu JX, Zhang HH, Yu XH, Kong W. Doxorubicin pretreatment enhances FAPα/survivin co-targeting DNA vaccine anti-tumor activity primarily through decreasing peripheral MDSCs in the 4T1 murine breast cancer model. Oncoimmunology 2020; 9:1747350. [PMID: 32363118 PMCID: PMC7185204 DOI: 10.1080/2162402x.2020.1747350] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/25/2020] [Accepted: 02/29/2020] [Indexed: 01/06/2023] Open
Abstract
The tumor microenvironment (TME) provides necessary nutrition for tumor growth and recruits immunosuppressive factors including regulatory T cells and myeloid-derived suppressor cells (MDSCs) to inhibit the anti-tumor immune response induced by immunotherapy. As a main TME component, cancer associated fibroblasts (CAFs) can restrain T cell infiltration and activity through extracellular matrix remodeling. Vaccines targeting fibroblast-activating protein α (FAPα), which is mainly expressed on the CAF surface, can eliminate CAFs in tumors and regulate the TME, enhancing the potency of T cell-mediated anti-tumor effects. However, the anti-tumor effects were not fully realized as the tumor induces a large number of peripheral MDSCs during its growth, rendering the body of mice in an immunosuppressive state and preventing the vaccine from inducing effective anti-tumor immune responses. Here, we developed a dual-targeted DNA vaccine OsFS, targeting tumor matrix antigen FAPα and tumor cell antigen survivin simultaneously, exhibited enhanced antineoplastic effects in an established breast cancer model. Moreover, doxorubicin (Dox) pretreatment to remove the peripheral MDSCs induced to regulate the peripheral immune environment could further facilitate the anti-tumor activity of the vaccine. These results indicated that combination treatment of the tumor cells and the TME dual-targeting vaccine plus Dox could effectively realize the anti-tumor activity of the vaccine by decreasing immunosuppressive factors and inducing more tumor-infiltrating lymphocytes, which may offer important guidance for clinical research regarding the combination of the DNA vaccine with low-dose Dox.
Collapse
Affiliation(s)
- Fei Geng
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, P. R. China
| | - Xin Bao
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, P. R. China
| | - Ling Dong
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, P. R. China
| | - Qian-Qian Guo
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, P. R. China
| | - Jie Guo
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, P. R. China
| | - Yu Xie
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, P. R. China
| | - Yi Zhou
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, P. R. China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, P. R. China
| | - Hui Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, P. R. China
| | - Jia-Xin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, P. R. China
| | - Hai-Hong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, P. R. China.,Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, P. R. China
| | - Xiang-Hui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, P. R. China.,Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, P. R. China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, P. R. China.,Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, P. R. China
| |
Collapse
|
173
|
Rapoport BL, Steel HC, Theron AJ, Smit T, Anderson R. Role of the Neutrophil in the Pathogenesis of Advanced Cancer and Impaired Responsiveness to Therapy. Molecules 2020; 25:molecules25071618. [PMID: 32244751 PMCID: PMC7180559 DOI: 10.3390/molecules25071618] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 02/07/2023] Open
Abstract
Notwithstanding the well-recognized involvement of chronic neutrophilic inflammation in the initiation phase of many types of epithelial cancers, a growing body of evidence has also implicated these cells in the pathogenesis of the later phases of cancer development, specifically progression and spread. In this setting, established tumors have a propensity to induce myelopoiesis and to recruit neutrophils to the tumor microenvironment (TME), where these cells undergo reprogramming and transitioning to myeloid-derived suppressor cells (MDSCs) with a pro-tumorigenic phenotype. In the TME, these MDSCs, via the production of a broad range of mediators, not only attenuate the anti-tumor activity of tumor-infiltrating lymphocytes, but also exclude these cells from the TME. Realization of the pro-tumorigenic activities of MDSCs of neutrophilic origin has resulted in the development of a range of adjunctive strategies targeting the recruitment of these cells and/or the harmful activities of their mediators of immunosuppression. Most of these are in the pre-clinical or very early clinical stages of evaluation. Notable exceptions, however, are several pharmacologic, allosteric inhibitors of neutrophil/MDSC CXCR1/2 receptors. These agents have entered late-stage clinical assessment as adjuncts to either chemotherapy or inhibitory immune checkpoint-targeted therapy in patients with various types of advanced malignancy. The current review updates the origins and identities of MDSCs of neutrophilic origin and their spectrum of immunosuppressive mediators, as well as current and pipeline MDSC-targeted strategies as potential adjuncts to cancer therapies. These sections are preceded by a consideration of the carcinogenic potential of neutrophils.
Collapse
Affiliation(s)
- Bernardo L. Rapoport
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (A.J.T.); (R.A.)
- The Medical Oncology Centre of Rosebank, Johannesburg 2196, South Africa;
- Correspondence: ; Tel.: +27-11-880-4169
| | - Helen C. Steel
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (A.J.T.); (R.A.)
| | - Annette J. Theron
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (A.J.T.); (R.A.)
| | - Teresa Smit
- The Medical Oncology Centre of Rosebank, Johannesburg 2196, South Africa;
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (A.J.T.); (R.A.)
| |
Collapse
|
174
|
Hou Z, Liang X, Wang X, Zhou Z, Shi G. Myeloid-derived suppressor cells infiltration in non-small-cell lung cancer tumor and MAGE-A4 and NY-ESO-1 expression. Oncol Lett 2020; 19:3982-3992. [PMID: 32382343 PMCID: PMC7202317 DOI: 10.3892/ol.2020.11497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 01/14/2020] [Indexed: 12/22/2022] Open
Abstract
Cancer/testis antigens melanoma-associated antigen 4 (MAGE-A4) and New York esophageal squamous cell carcinoma-1 (NY-ESO-1) are of clinical interest as biomarkers and present valuable targets for immunotherapy; however, they are poor prognostic markers in non-small cell lung cancer (NSCLC). In addition, myeloid derived suppressor cells (MDSCs) are recognized as a key element in tumor escape and progression. The aim of the present study was to investigate the diagnostic and prognostic value of MAGE-A4 and NY-ESO-1, and their association with MDSCs in NSCLC samples. The expression levels of MAGE-A4 and NY-ESO-1, and the infiltration of MDSCs (CD33+), were analyzed by immunohistochemistry of 67 tissue samples from patients with NSCLC. Overall, 58.33% of the NSCLC squamous cell carcinoma tissues and 94.7% of adenocarcinoma tissues were positive for MAGE-A4. NY-ESO-1 expression was observed in 52.78% of the squamous cell carcinoma tissues and 80% of the adenocarcinoma tissues. In primary adenocarcinoma tumor tissues, MAGE-A4 and NY-ESO-1 demonstrated a higher intensity of expression compared with the squamous cell carcinoma tissues. A total of 33 (91.7%) squamous cell carcinoma and 19 (95.0%) adenocarcinoma specimens were positive for CD33. The expression of MAGE-A4 and NY-ESO-1 antigens and infiltration of MDSCs was associated with poor prognosis of patients with NSCLC. Further studies investigating the association between these findings and underlying molecular mechanisms are required.
Collapse
Affiliation(s)
- Zhenbo Hou
- Department of Pathology, Zibo Central Hospital, Zibo, Shandong 255000, P.R. China
| | - Xiao Liang
- Department of Thoracic Surgery, Zibo Central Hospital, Zibo, Shandong 255000, P.R. China
| | - Xinmei Wang
- Department of Pathology, Zibo Central Hospital, Zibo, Shandong 255000, P.R. China
| | - Ziqiang Zhou
- Department of Pathology, Zibo Central Hospital, Zibo, Shandong 255000, P.R. China
| | - Guilan Shi
- Department of Immunology, School of Nursing, Zibo Vocational Institute, Zibo, Shandong 255314, P.R. China.,Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| |
Collapse
|
175
|
Cao P, Sun Z, Feng C, Zhang J, Zhang F, Wang W, Zhao Y. Myeloid-derived suppressor cells in transplantation tolerance induction. Int Immunopharmacol 2020; 83:106421. [PMID: 32217462 DOI: 10.1016/j.intimp.2020.106421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/29/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a group of heterogeneous cells derived from bone marrow. These cells are developed from immature myeloid cells and have strong negative immunomodulatory effects. In the context of pathology (such as tumor, autoimmune disease, trauma, and burns), MDSCs accumulate around tumor and inflammatory tissues, where their main role is to inhibit the function of effector T cells and promote the recruitment of regulatory T cells. MDSCs can be used in organ transplantation to regulate the immune responses that participate in rejection of the transplanted organ. This effect is achieved by increasing the production of MDSCs in vivo or transfusion of MDSCs induced in vitro to establish immune tolerance and prolong the survival of the graft. In this review, we discuss the efficacy of MDSCs in a variety of transplantation studies as well as the induction of immune tolerance to prevent transplant rejection through the use of common clinical immunosuppressants combined with MDSCs.
Collapse
Affiliation(s)
- Peng Cao
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Zejia Sun
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Chang Feng
- Transplantation Biology Research Division, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Jiandong Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Feilong Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Wei Wang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
| | - Yong Zhao
- Transplantation Biology Research Division, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
176
|
Takaku S, Shimizu M, Takahashi H. Japanese Kampo Medicine Juzentaihoto Enhances Antitumor Immunity in CD1d -/- Mice Lacking NKT Cells. Integr Cancer Ther 2020; 19:1534735419900798. [PMID: 31959018 PMCID: PMC6974754 DOI: 10.1177/1534735419900798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Although the Japanese traditional herbal medicine (Kampo), Juzentaihoto (JTT),
has been reported to have antitumor effects in several tumor models, its role in
tumor immunology remains controversial. In the present study, we tested whether
oral administration of JTT enhances antitumor immunity in CD1d−/−
mice, in which immunosuppression was partially relieved due to the lack of NKT
cells. In a subcutaneous murine syngeneic CT26 colorectal tumor model, JTT had
no impact on tumor growth in wild type (WT) BALB/c mice. However, the growth
rate of tumors was significantly slower in CD1d−/− mice than in WT
mice. Surprisingly, JTT significantly delayed tumor growth in such
CD1d−/− mice. In vivo depletion of CD8+ T cells
revealed that CD8+ T cells are required for JTT’s antitumor activity.
Moreover, tumor-reactive cytotoxic T-lymphocytes were detected exclusively in
JTT-treated mice with well-controlled tumors. JTT did not affect the number of
tumor-infiltrating CD4+ regulatory T cells. On the contrary, JTT
increased the degranulation marker CD107a+ CD8+ T cells
and decreased Ly6G+ Ly6Clo polymorphonuclear
myeloid-derived suppressor cells in tumor-infiltrating lymphocytes, most
probably contributing to the suppression of tumor growth in JTT-treated mice.
Nonetheless, JTT had no impact on the proportion of monocytic myeloid-derived
suppressor cells. In conclusion, our results indicate that in the absence of NKT
cells, JTT augments antitumor immunity by CD8+ T cells, suggesting
that this Kampo medicine is a promising anticancer adjuvant when negative immune
regulation is partially relieved.
Collapse
Affiliation(s)
- Shun Takaku
- Department of Microbiology and Immunology, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Masumi Shimizu
- Department of Microbiology and Immunology, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Hidemi Takahashi
- Department of Microbiology and Immunology, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
177
|
Huang Y, Hakamivala A, Li S, Nair A, Saxena R, Hsieh JT, Tang L. Chemokine releasing particle implants for trapping circulating prostate cancer cells. Sci Rep 2020; 10:4433. [PMID: 32157115 PMCID: PMC7064596 DOI: 10.1038/s41598-020-60696-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 02/04/2020] [Indexed: 12/19/2022] Open
Abstract
Prostate cancer (PCa) is the most prevalent cancer in U.S. men and many other countries. Although primary PCa can be controlled with surgery or radiation, treatment options of preventing metastatic PCa are still limited. To develop a new treatment of eradicating metastatic PCa, we have created an injectable cancer trap that can actively recruit cancer cells in bloodstream. The cancer trap is composed of hyaluronic acid microparticles that have good cell and tissue compatibility and can extend the release of chemokines to 4 days in vitro. We find that erythropoietin (EPO) and stromal derived factor-1α can attract PCa in vitro. Animal results show that EPO-releasing cancer trap attracted large number of circulating PCa and significantly reduced cancer spreading to other organs compared with controls. These results support that cancer trap may serve as a unique device to sequester circulating PCa cells and subsequently reduce distant metastasis.
Collapse
Affiliation(s)
- YiHui Huang
- Department of Bioengineering, the University of Texas at Arlington, Arlington, Texas, 76019, USA
| | - Amirhossein Hakamivala
- Department of Bioengineering, the University of Texas at Arlington, Arlington, Texas, 76019, USA
| | - Shuxin Li
- Department of Bioengineering, the University of Texas at Arlington, Arlington, Texas, 76019, USA
| | - Ashwin Nair
- Department of Bioengineering, the University of Texas at Arlington, Arlington, Texas, 76019, USA
| | - Ramesh Saxena
- Division of Nephrology, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Liping Tang
- Department of Bioengineering, the University of Texas at Arlington, Arlington, Texas, 76019, USA.
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
178
|
Liu L, Liu Y, Yan X, Zhou C, Xiong X. The role of granulocyte colony‑stimulating factor in breast cancer development: A review. Mol Med Rep 2020; 21:2019-2029. [PMID: 32186767 PMCID: PMC7115204 DOI: 10.3892/mmr.2020.11017] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/25/2020] [Indexed: 12/17/2022] Open
Abstract
Granulocyte-colony-stimulating factor (G-CSF) is a member of the hematopoietic growth factor family that primarily affects the neutrophil lineage. G-CSF serves as a powerful mobilizer of peripheral blood stem cells and recombinant human G-CSF (rhG-CSF) has been used to treat granulocytopenia and neutropenia after chemotherapy for cancer patients. However, recent studies have found that G-CSF plays an important role in cancer progression. G-CSF expression is increased in different types of cancer cells, such as lung cancer, gastric cancer, colorectal cancer, invasive bladder carcinoma, glioma and breast cancer. However, it is unclear whether treatment with G-CSF has an adverse effect. The current review provides an overview of G-CSF in malignant breast cancer development and the data presented in this review are expected to provide new ideas for cancer therapy.
Collapse
Affiliation(s)
- Li Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yangyang Liu
- Department of Anesthesiology, First Clinical Medical College, School of Medicine, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaohua Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Chong Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiangyang Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
179
|
Yin J, Cao Y, Zhou JF, Zhang YC. [Prediction of acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation by the level of galectin-9 in peripheral blood]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2020; 41:23-27. [PMID: 32023750 PMCID: PMC7357916 DOI: 10.3760/cma.j.issn.0253-2727.2020.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Objective: To evaluate possible effects of Gelctin-9 on acute graft versus host disease (aGVHD) development and clinical outcomes in patients before and afer allogeneic hematopoietic stem cell transplantation (allo-HSCT) . Methods: Peripheral blood samples were obtained from 29 patients and 15 healthy volunteers with heparin anticoagulant tubes. Samples were analyzed using ELISA kits to measure the serum concentrations of Galectin-9. Results: Patients developing aGVHD had significantly lower level of Galectin-9 [ (7.96±1.18) μg/L] before allo-HSCT compared with those not developing aGVHD [ (12.37±0.97) μg/L, P<0.001]. And after allo-HSCT, the consentration of Galectin-9 increased markedly in patients developing aGVHD [ (17.78±1.78) μg/L] compared with those not developing aGVHD [ (9.45±0.80) μg/L, P<0.001]. Patients developing 3-4 grade aGVHD had significantly higher level of Galectin-9 [ (23.25±2.59) μg/L] compared with those developing 1-2 grade aGVHD [ (14.37±1.45) μg/L, P=0.008] and those without aGVHD [ (9.45±0.80) μg/L, P<0.001]. The patients with lower level of Galectin-9 after allo-HSCT (<13.61 μg/L) showed more favorable clinical outcomes compared with those with higher level of Galectin-9 (≥13.61 μg/L) . The 3-year overall survival rates were (100.00±6.05) % and (69.23±12.80) %, respectively (P=0.009) . The cumulative incidence of non-relapse mortality was significantly higher in high Galectin-9 group [ (23.08±11.69) %] in comparison with low Gaelctin-9 group [ (0.00±7.39) %] (P=0.023) . There was no significant difference between the two groups in terms of the cumulative incidence of relapse. The cumulative incidence of relapse at 3 years were (8.33±7.98) % and (12.50±8.27) % in high and low Galectin-9 groups, respectively (P=0.708) . Conclusions: The serum concentration of Galectin-9 at the time of engraftment after allo-HSCT may be used as a predictor for the development and severity of aGVHD. Galectin-9 might be considered as a potential new approach to regulate transplant rejection to achieve desirable survival.
Collapse
Affiliation(s)
- J Yin
- Department of Hematology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Y Cao
- Department of Hematology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - J F Zhou
- Department of Hematology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Y C Zhang
- Department of Hematology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
180
|
Zhao Y, Lu F, Ye J, Ji M, Pang Y, Wang Y, Wang L, Li G, Sun T, Li J, Ma D, Ji C. Myeloid-Derived Suppressor Cells and γδT17 Cells Contribute to the Development of Gastric MALT Lymphoma in H. felis-Infected Mice. Front Immunol 2020; 10:3104. [PMID: 32063899 PMCID: PMC6998799 DOI: 10.3389/fimmu.2019.03104] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 12/19/2019] [Indexed: 01/15/2023] Open
Abstract
Helicobacter-induced chronic inflammation and immune disorders are closely associated with the development of gastric mucosa-associated lymphoid tissue (MALT) lymphoma. Myeloid-derived suppressor cells (MDSCs) exhibit strong immunosuppressive properties and promote the growth of various solid tumors. However, the role of MDSCs in the development of MALT lymphoma has not been elucidated so far. We detected significant infiltration and enrichment of MDSCs in patients with MALT lymphoma, as well in Helicobacter felis-infected mouse model of gastric MALT lymphoma. In addition, the expression of arginase-1 and inducible nitric oxide synthase was significantly elevated both in gastric MALT lymphoma tissues and H. felis-infected stomach. Persistent H. felis infection closely reproduced the development of gastric MALT lymphoma and was accompanied by increased numbers of γδT17 cells. Accumulation of γδT17 cells was also validated in the human gastric MALT lymphoma tissues. Furthermore, the elevated cytokines interleukin-23 and interleukin-1β, as well as chemokines CCL20/CCR6, may be involved in the accumulation of γδT17 cells and the subsequent immunosuppression. These findings highlight the role of MDSCs and γδT17 cells in immune dysregulation during gastric MALT lymphoma development and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Yanan Zhao
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Fei Lu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Jingjing Ye
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Min Ji
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Yihua Pang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Yan Wang
- Department of Hematology, Taian Central Hospital, Taian, China
| | - Lingbo Wang
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Guosheng Li
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Tao Sun
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Jingxin Li
- Department of Physiology, Medicine School of Shandong University, Jinan, China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
181
|
Navashenaq JG, Zamani P, Nikpoor AR, Tavakkol-Afshari J, Jaafari MR. Doxil chemotherapy plus liposomal P5 immunotherapy decreased myeloid-derived suppressor cells in murine model of breast cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 24:102150. [PMID: 31931230 DOI: 10.1016/j.nano.2020.102150] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 12/15/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) play a pivotal role in cancer. To overcome the problem of the MDSCs in the tumor microenvironment in this study, a combination of immunotherapy and chemotherapy was used. For this purpose, a liposomal formulation of P5 peptide and PEGylated liposomal doxorubicin (Doxil®) was utilized to treat mice bearing HER2+ tumor model. The results revealed that Doxil® administration before immunotherapy had not only reduced the population and functions of the MDSCs in the spleen (P < 0.001) and the tumor microenvironment (P < 0.05) but had also supported further immunotherapy including enhanced CD4+ (P < 0.01) and CD8+ lymphocyte (P < 0.001) population and IFN-γ production (P < 0.001). This effect was also more pronounced with a liposomal P5 and Doxil® compared with free peptide and doxorubicin. In conclusion, the results demonstrated that Doxil® plus liposomal P5 could have a decreasing effect on MDSCs and tumor growth, and it could be beneficial in breast cancer treatment.
Collapse
Affiliation(s)
- Jamshid Gholizadeh Navashenaq
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvin Zamani
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Reza Nikpoor
- Department of Immunology, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Mahmoud Reza Jaafari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
182
|
Soeno T, Katoh H, Ishii S, Ushiku H, Hosoda K, Hiki N, Watanabe M, Yamashita K. CD33+ Immature Myeloid Cells Critically Predict Recurrence in Advanced Gastric Cancer. J Surg Res 2020; 245:552-563. [DOI: 10.1016/j.jss.2019.07.095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 02/09/2023]
|
183
|
Febrile Neutropenia in Acute Leukemia. Epidemiology, Etiology, Pathophysiology and Treatment. Mediterr J Hematol Infect Dis 2020; 12:e2020009. [PMID: 31934319 PMCID: PMC6951355 DOI: 10.4084/mjhid.2020.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/17/2019] [Indexed: 12/11/2022] Open
Abstract
Acute leukemias are a group of aggressive malignant diseases associated with a high degree of morbidity and mortality. An important cause of both the latter is infectious complications. Patients with acute leukemia are highly susceptible to infectious diseases due to factors related to the disease itself, factors attributed to treatment, and specific individual risk factors in each patient. Patients with chemotherapy-induced neutropenia are at particularly high risk, and microbiological agents include viral, bacterial, and fungal agents. The etiology is often unknown in infectious complications, although adequate patient evaluation and sampling have diagnostic, prognostic and treatment-related consequences. Bacterial infections include a wide range of potential microbes, both Gram-negative and Gram-positive species, while fungal infections include both mold and yeast. A recurring problem is increasing resistance to antimicrobial agents, and in particular, this applies to extended-spectrum beta-lactamase resistance (ESBL), Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE) and even carbapenemase-producing Enterobacteriaceae (CPE). International guidelines for the treatment of sepsis in leukemia patients include the use of broad-spectrum Pseudomonas-acting antibiotics. However, one should implant the knowledge of local microbiological epidemiology and resistance conditions in treatment decisions. In this review, we discuss infectious diseases in acute leukemia with a major focus on febrile neutropenia and sepsis, and we problematize the diagnostic, prognostic, and therapeutic aspects of infectious complications in this patient group. Meticulously and thorough clinical and radiological examination combined with adequate microbiology samples are cornerstones of the examination. Diagnostic and prognostic evaluation includes patient review according to the multinational association for supportive care in cancer (MASCC) and sequential organ failure assessment (SOFA) scoring system. Antimicrobial treatments for important etiological agents are presented. The main challenge for reducing the spread of resistant microbes is to avoid unnecessary antibiotic treatment, but without giving to narrow treatment to the febrile neutropenic patient that reduce the prognosis.
Collapse
|
184
|
Dysthe M, Parihar R. Myeloid-Derived Suppressor Cells in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1224:117-140. [DOI: 10.1007/978-3-030-35723-8_8] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
185
|
Rébé C, Demontoux L, Pilot T, Ghiringhelli F. Platinum Derivatives Effects on Anticancer Immune Response. Biomolecules 2019; 10:E13. [PMID: 31861811 PMCID: PMC7022223 DOI: 10.3390/biom10010013] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022] Open
Abstract
Along with surgery and radiotherapy, chemotherapeutic agents belong to the therapeutic arsenal in cancer treatment. In addition to their direct cytotoxic effects, these agents also impact the host immune system, which might enhance or counteract their antitumor activity. The platinum derivative compounds family, mainly composed of carboplatin, cisplatin and oxaliplatin, belongs to the chemotherapeutical arsenal used in numerous cancer types. Here, we will focus on the effects of these molecules on antitumor immune response. These compounds can induce or not immunogenic cell death (ICD), and some strategies have been found to induce or further enhance it. They also regulate immune cells' fate. Platinum derivatives can lead to their activation. Additionally, they can also dampen immune cells by selective killing or inhibiting their activity, particularly by modulating immune checkpoints' expression.
Collapse
Affiliation(s)
- Cédric Rébé
- Platform of Transfer in Cancer Biology, Centre Georges-François Leclerc, F-21000 Dijon, France
- University of Bourgogne-Franche-Comté, F-21000 Dijon, France; (L.D.); (T.P.); (F.G.)
- INSERM LNC-UMR1231, F-21000 Dijon, France
| | - Lucie Demontoux
- University of Bourgogne-Franche-Comté, F-21000 Dijon, France; (L.D.); (T.P.); (F.G.)
- INSERM LNC-UMR1231, F-21000 Dijon, France
| | - Thomas Pilot
- Platform of Transfer in Cancer Biology, Centre Georges-François Leclerc, F-21000 Dijon, France
- University of Bourgogne-Franche-Comté, F-21000 Dijon, France; (L.D.); (T.P.); (F.G.)
- INSERM LNC-UMR1231, F-21000 Dijon, France
| | - François Ghiringhelli
- Platform of Transfer in Cancer Biology, Centre Georges-François Leclerc, F-21000 Dijon, France
- University of Bourgogne-Franche-Comté, F-21000 Dijon, France; (L.D.); (T.P.); (F.G.)
- INSERM LNC-UMR1231, F-21000 Dijon, France
| |
Collapse
|
186
|
Singh N, Orlando E, Xu J, Xu J, Binder Z, Collins MA, O'Rourke DM, Melenhorst JJ. Mechanisms of resistance to CAR T cell therapies. Semin Cancer Biol 2019; 65:91-98. [PMID: 31866478 DOI: 10.1016/j.semcancer.2019.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/26/2019] [Accepted: 12/11/2019] [Indexed: 12/23/2022]
Abstract
Chimeric antigen receptor (CAR)-engineered T cells have demonstrated remarkable success in the treatment of B cell malignancies. FDA approval of these therapies represents a watershed moment in the development of therapies for cancer. Despite the successes of the last decade, many patients will unfortunately not experience durable responses to CAR therapy. Emerging research has shed light on the biology responsible for these failures, and further highlighted the hurdles to broader success. Here, we review the recent research identifying how interactions between cancer cells and engineered immune cells result in resistance to CAR therapies.
Collapse
Affiliation(s)
- Nathan Singh
- Division of Oncology, Section of Stem Cell Biology, Washington University School of Medicine, St. Louis, MO, 63105, United States
| | - Elena Orlando
- Novartis Institutes for Biomedical Research, Cambridge, MA, 02139, United States
| | - Jun Xu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Jie Xu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Zev Binder
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - McKensie A Collins
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Donald M O'Rourke
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - J Joseph Melenhorst
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, United States.
| |
Collapse
|
187
|
Could Increased Expression of Hsp27, an "Anti-Inflammatory" Chaperone, Contribute to the Monocyte-Derived Dendritic Cell Bias towards Tolerance Induction in Breast Cancer Patients? Mediators Inflamm 2019; 2019:8346930. [PMID: 31827382 PMCID: PMC6885848 DOI: 10.1155/2019/8346930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/22/2019] [Accepted: 10/01/2019] [Indexed: 02/06/2023] Open
Abstract
Dendritic cells (DCs) are the most efficient antigen-presenting cells and link the innate immune sensing of the environment to the initiation of adaptive immune responses, which may be directed to either acceptance or elimination of the recognized antigen. In cancer patients, though DCs would be expected to present tumor antigens to T lymphocytes and induce tumor-eliminating responses, this is frequently not the case. The complex tumor microenvironment subverts the immune response, blocks some effector mechanisms, and drives others to support tumor growth. Chronic inflammation in a tumor microenvironment is believed to contribute to the induction of such regulatory/tolerogenic response. Among the various mediators of the modulatory switch in chronic inflammation is the “antidanger signal” chaperone, heat shock protein 27 (Hsp27), that has been described, interestingly, to be associated with cell migration and drug resistance of breast cancer cells. Thus, here, we investigated the expression of Hsp27 during the differentiation of monocyte-derived DCs (Mo-DCs) from healthy donors and breast cancer patients and evaluated their surface phenotype, cytokine secretion pattern, and lymphostimulatory activity. Surface phenotype and lymphocyte proliferation were evaluated by flow cytometry, interferon- (IFN-) γ, and interleukin- (IL-) 10 secretion, by ELISA and Hsp27 expression, by quantitative polymerase chain reaction (qPCR). Mo-DCs from cancer patients presented decreased expression of DC maturation markers, decreased ability to induce allogeneic lymphocyte proliferation, and increased IL-10 secretion. In coculture with breast cancer cell lines, healthy donors' Mo-DCs showed phenotype changes similar to those found in patients' cells. Interestingly, patients' monocytes expressed less GM-CSF and IL-4 receptors than healthy donors' monocytes and Hsp27 expression was significantly higher in patients' Mo-DCs (and in tumor samples). Both phenomena could contribute to the phenotypic bias of breast cancer patients' Mo-DCs and might prove potential targets for the development of new immunotherapeutic approaches for breast cancer.
Collapse
|
188
|
Sanaei M, Salimzadeh L, Bagheri N. Crosstalk between myeloid‐derived suppressor cells and the immune system in prostate cancer. J Leukoc Biol 2019; 107:43-56. [DOI: 10.1002/jlb.4ru0819-150rr] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/23/2019] [Accepted: 10/05/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Mohammad‐Javad Sanaei
- Cellular and Molecular Research Center, Basic Health Sciences InstituteShahrekord University of Medical Sciences Shahrekord Iran
| | - Loghman Salimzadeh
- Department of MedicineNational University of Singapore Singapore Singapore
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences InstituteShahrekord University of Medical Sciences Shahrekord Iran
| |
Collapse
|
189
|
Wang X, Gu Y, Zhang S, Li G, Liu T, Wang T, Qin H, Jiang B, Zhu L, Li Y, Lei H, Li M, Zhang Q, Yang R, Fang F, Guo H. Unbiased enrichment of urine exfoliated cells on nanostructured substrates for sensitive detection of urothelial tumor cells. Cancer Med 2019; 9:290-301. [PMID: 31709750 PMCID: PMC6943141 DOI: 10.1002/cam4.2655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/14/2019] [Accepted: 10/14/2019] [Indexed: 12/19/2022] Open
Abstract
Background Early detection of urothelial carcinoma (UC) by noninvasive diagnostic methods with high accuracy is still underscored. This study aimed to develop a noninvasive assay incorporating both enrichment of urine exfoliated cells and immunoassays for UC detection. Methods Polystyrene dishes were exposed to oxygen plasma and modified with 3‐aminopropyltriethoxysilane to prepare amine‐functionalized nanostructured substrates (NS). Performance characterization of NS was evaluated by atomic force microscope and X‐ray photoelectron spectroscopy. Urine exfoliated cells were captured by NS and then immunostained to detect urinary tumor cells (UTCs), which was called UTC assay. The receiver operating characteristic (ROC) curve, area under ROC curve (AUC), and Youden index were used to find the cutoff value of UTC assay. ROC analysis and McNemar test were used to compare the diagnostic accuracy of UTC assay with cytology. Kappa test was used to analyze the agreement of UTC assay and cytology with pathological diagnosis. Results Nanostructured substrates had good cell binding yields of nucleated cells and tumor cells. CK20+CD45−CD11b− cells were considered as UTCs. UTC number ≥ 1 per sample could be considered as a positive result. By AUC and Kappa analysis, UTC assay showed good performance in UC detection. McNemar test demonstrated that UTC assay had a superior sensitivity even in low‐grade subgroup and a similar specificity compared to cytology in UC diagnosis. Conclusions Nanostructured substrates could be used to enrich the exfoliated cells from urine samples. UTC assay with NS has the potential to play a role in UC detection. The value of this assay still needs additional validation by large, multi‐center studies.
Collapse
Affiliation(s)
- Xin Wang
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, China
| | - Yuanyuan Gu
- PerMed Biomedicine Institute, Shanghai, China
| | - Shiwei Zhang
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, China
| | - Gangqiang Li
- Department of Pathology, Naval Characteristic Medical Center, Shanghai, China
| | - Tianyao Liu
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, China
| | - Tianwei Wang
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, China
| | - Haixiang Qin
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, China
| | - Bo Jiang
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, China
| | - Lin Zhu
- PerMed Biomedicine Institute, Shanghai, China
| | - Yajun Li
- PerMed Biomedicine Institute, Shanghai, China
| | - Haozhi Lei
- PerMed Biomedicine Institute, Shanghai, China
| | - Ming Li
- Department of Pathology, The Affiliated Suzhou Municipal Hospital of Nanjing Medical University, Suzhou, China
| | - Qun Zhang
- PerMed Biomedicine Institute, Shanghai, China
| | - Rong Yang
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, China
| | - Feng Fang
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Hongqian Guo
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, China
| |
Collapse
|
190
|
Metzger P, Kirchleitner SV, Kluge M, Koenig LM, Hörth C, Rambuscheck CA, Böhmer D, Ahlfeld J, Kobold S, Friedel CC, Endres S, Schnurr M, Duewell P. Immunostimulatory RNA leads to functional reprogramming of myeloid-derived suppressor cells in pancreatic cancer. J Immunother Cancer 2019; 7:288. [PMID: 31694706 PMCID: PMC6836385 DOI: 10.1186/s40425-019-0778-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022] Open
Abstract
Background The tumor microenvironment (TME) combines features of regulatory cytokines and immune cell populations to evade the recognition by the immune system. Myeloid-derived suppressor cells (MDSC) comprise populations of immature myeloid cells in tumor-bearing hosts with a highly immunosuppressive capacity. We could previously identify RIG-I-like helicases (RLH) as targets for the immunotherapy of pancreatic cancer inducing immunogenic tumor cell death and type I interferons (IFN) as key mediators linking innate with adaptive immunity. Methods Mice with orthotopically implanted KrasG12D p53fl/R172H Ptf1a-Cre (KPC) pancreatic tumors were treated intravenously with the RLH ligand polyinosinic-polycytidylic acid (poly(I:C)), and the immune cell environment in tumor and spleen was characterized. A comprehensive analysis of the suppressive capacity as well as the whole transcriptomic profile of isolated MDSC subsets was performed. Antigen presentation capability of MDSC from mice with ovalbumin (OVA)-expressing tumors was investigated in T cell proliferation assays. The role of IFN in MDSC function was investigated in Ifnar1−/− mice. Results MDSC were strongly induced in orthotopic KPC-derived pancreatic cancer, and frequencies of MDSC subsets correlated with tumor weight and G-CSF serum levels, whereas other immune cell populations decreased. Administration of the RLH-ligand induced a IFN-driven immune response, with increased activation of T cells and dendritic cells (DC), and a reduced suppressive capacity of both polymorphonuclear (PMN)-MDSC and monocytic (M)-MDSC fractions. Whole transcriptomic analysis confirmed an IFN-driven gene signature of MDSC, a switch from a M2/G2- towards a M1/G1-polarized phenotype, and the induction of genes involved in the antigen presentation machinery. Nevertheless, MDSC failed to present tumor antigen to T cells. Interestingly, we found MDSC with reduced suppressive function in Ifnar1-deficient hosts; however, there was a common flaw in immune cell activation, which was reflected by defective immune cell activation and tumor control. Conclusions We provide evidence that the treatment with immunostimulatory RNA reprograms the TME of pancreatic cancer by reducing the suppressive activity of MDSC, polarizing myeloid cells into a M1-like state and recruiting DC. We postulate that tumor cell-targeting combination strategies may benefit from RLH-based TME remodeling. In addition, we provide novel insights into the dual role of IFN signaling in MDSC’s suppressive function and provide evidence that host-intrinsic IFN signaling may be critical for MDSC to gain suppressive function during tumor development.
Collapse
Affiliation(s)
- Philipp Metzger
- Center of Integrated Protein Science Munich (CIPSM) and Division of Clinical Pharmacology, Klinikum der Universität München, Lindwurmstrasse 2a, 80337, Munich, Germany
| | - Sabrina V Kirchleitner
- Center of Integrated Protein Science Munich (CIPSM) and Division of Clinical Pharmacology, Klinikum der Universität München, Lindwurmstrasse 2a, 80337, Munich, Germany.,Department of Neurosurgery, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Michael Kluge
- Institute for Informatics, Ludwig-Maximilians-Universität München, 80333, Munich, Germany
| | - Lars M Koenig
- Center of Integrated Protein Science Munich (CIPSM) and Division of Clinical Pharmacology, Klinikum der Universität München, Lindwurmstrasse 2a, 80337, Munich, Germany
| | - Christine Hörth
- Center of Integrated Protein Science Munich (CIPSM) and Division of Clinical Pharmacology, Klinikum der Universität München, Lindwurmstrasse 2a, 80337, Munich, Germany
| | - Carlotta A Rambuscheck
- Center of Integrated Protein Science Munich (CIPSM) and Division of Clinical Pharmacology, Klinikum der Universität München, Lindwurmstrasse 2a, 80337, Munich, Germany
| | - Daniel Böhmer
- Center of Integrated Protein Science Munich (CIPSM) and Division of Clinical Pharmacology, Klinikum der Universität München, Lindwurmstrasse 2a, 80337, Munich, Germany
| | - Julia Ahlfeld
- Center of Integrated Protein Science Munich (CIPSM) and Division of Clinical Pharmacology, Klinikum der Universität München, Lindwurmstrasse 2a, 80337, Munich, Germany
| | - Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPSM) and Division of Clinical Pharmacology, Klinikum der Universität München, Lindwurmstrasse 2a, 80337, Munich, Germany
| | - Caroline C Friedel
- Institute for Informatics, Ludwig-Maximilians-Universität München, 80333, Munich, Germany
| | - Stefan Endres
- Center of Integrated Protein Science Munich (CIPSM) and Division of Clinical Pharmacology, Klinikum der Universität München, Lindwurmstrasse 2a, 80337, Munich, Germany
| | - Max Schnurr
- Center of Integrated Protein Science Munich (CIPSM) and Division of Clinical Pharmacology, Klinikum der Universität München, Lindwurmstrasse 2a, 80337, Munich, Germany
| | - Peter Duewell
- Center of Integrated Protein Science Munich (CIPSM) and Division of Clinical Pharmacology, Klinikum der Universität München, Lindwurmstrasse 2a, 80337, Munich, Germany. .,Institute of Innate Immunity, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
191
|
Lorenzo-Sanz L, Muñoz P. Tumor-Infiltrating Immunosuppressive Cells in Cancer-Cell Plasticity, Tumor Progression and Therapy Response. CANCER MICROENVIRONMENT 2019; 12:119-132. [PMID: 31583529 DOI: 10.1007/s12307-019-00232-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/01/2019] [Indexed: 12/16/2022]
Abstract
In most tumors, cancer cells show the ability to dynamically transit from a non-cancer stem-like cell to a cancer stem-like cell (CSC) state and vice versa. This cell plasticity has been associated with the epithelial-to-mesenchymal transition program (EMT) and can be regulated by tumor cell-intrinsic mechanisms and complex interactions with various tumor microenvironment (TME) components. These interactions favor the generation of a specific "CSC niche" that helps maintain the main properties, phenotypic plasticity and metastatic potential of this subset of tumor cells. For this reason, TME has been recognized as an important promoter of tumor progression and therapy resistance. Tumors have evolved a network of immunosuppressive mechanisms that limits the cytotoxic T cell response to cancer cells. Some key players in this network are tumor-associated macrophages, myeloid-derived suppressor cells and regulatory T cells, which not only favor a pro-tumoral and immunosuppressive environment that supports tumor growth and immune evasion, but also negatively influences immunotherapy. Here, we review the relevance of cytokines and growth factors provided by immunosuppressive immune cells in regulating cancer-cell plasticity. We also discuss how cancer cells remodel their own niche to promote proliferation, stemness and EMT, and escape immune surveillance. A better understanding of CSC-TME crosstalk signaling will enable the development of effective targeted or immune therapies that block tumor growth and metastasis.
Collapse
Affiliation(s)
- Laura Lorenzo-Sanz
- Aging and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Av. Gran Vía de L'Hospitalet 199-203, 08908, Barcelona, Spain
| | - Purificación Muñoz
- Aging and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Av. Gran Vía de L'Hospitalet 199-203, 08908, Barcelona, Spain.
| |
Collapse
|
192
|
Olukitibi TA, Ao Z, Mahmoudi M, Kobinger GA, Yao X. Dendritic Cells/Macrophages-Targeting Feature of Ebola Glycoprotein and its Potential as Immunological Facilitator for Antiviral Vaccine Approach. Microorganisms 2019; 7:E402. [PMID: 31569539 PMCID: PMC6843631 DOI: 10.3390/microorganisms7100402] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/19/2019] [Accepted: 09/26/2019] [Indexed: 01/06/2023] Open
Abstract
In the prevention of epidemic and pandemic viral infection, the use of the antiviral vaccine has been the most successful biotechnological and biomedical approach. In recent times, vaccine development studies have focused on recruiting and targeting immunogens to dendritic cells (DCs) and macrophages to induce innate and adaptive immune responses. Interestingly, Ebola virus (EBOV) glycoprotein (GP) has a strong binding affinity with DCs and macrophages. Shreds of evidence have also shown that the interaction between EBOV GP with DCs and macrophages leads to massive recruitment of DCs and macrophages capable of regulating innate and adaptive immune responses. Therefore, studies for the development of vaccine can utilize the affinity between EBOV GP and DCs/macrophages as a novel immunological approach to induce both innate and acquired immune responses. In this review, we will discuss the unique features of EBOV GP to target the DC, and its potential to elicit strong immune responses while targeting DCs/macrophages. This review hopes to suggest and stimulate thoughts of developing a stronger and effective DC-targeting vaccine for diverse virus infection using EBOV GP.
Collapse
Affiliation(s)
- Titus Abiola Olukitibi
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Zhujun Ao
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Mona Mahmoudi
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Gary A Kobinger
- Centre de Recherche en Infectiologie de l' Université Laval/Centre Hospitalier de l' Université Laval (CHUL), Québec, QC G1V 4G2, Canada.
| | - Xiaojian Yao
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| |
Collapse
|
193
|
Hays E, Bonavida B. Nitric Oxide-Mediated Enhancement and Reversal of Resistance of Anticancer Therapies. Antioxidants (Basel) 2019; 8:E407. [PMID: 31533363 PMCID: PMC6769868 DOI: 10.3390/antiox8090407] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/11/2019] [Accepted: 09/13/2019] [Indexed: 12/13/2022] Open
Abstract
In the last decade, immune therapies against human cancers have emerged as a very effective therapeutic strategy in the treatment of various cancers, some of which are resistant to current therapies. Although the clinical responses achieved with many therapeutic strategies were significant in a subset of patients, another subset remained unresponsive initially, or became resistant to further therapies. Hence, there is a need to develop novel approaches to treat those unresponsive patients. Several investigations have been reported to explain the underlying mechanisms of immune resistance, including the anti-proliferative and anti-apoptotic pathways and, in addition, the increased expression of the transcription factor Yin-Yang 1 (YY1) and the programmed death ligand 1 (PD-L1). We have reported that YY1 leads to immune resistance through increasing HIF-1α accumulation and PD-L1 expression. These mechanisms inhibit the ability of the cytotoxic T-lymphocytes to mediate their cytotoxic functions via the inhibitory signal delivered by the PD-L1 on tumor cells to the PD-1 receptor on cytotoxic T-cells. Thus, means to override these resistance mechanisms are needed to sensitize the tumor cells to both cell killing and inhibition of tumor progression. Treatment with nitric oxide (NO) donors has been shown to sensitize many types of tumors to chemotherapy, immunotherapy, and radiotherapy. Treatment of cancer cell lines with NO donors has resulted in the inhibition of cancer cell activities via, in part, the inhibition of YY1 and PD-L1. The NO-mediated inhibition of YY1 was the result of both the inhibition of the upstream NF-κB pathway as well as the S-nitrosylation of YY1, leading to both the downregulation of YY1 expression as well as the inhibition of YY1-DNA binding activity, respectively. Also, treatment with NO donors induced the inhibition of YY1 and resulted in the inhibition of PD-L1 expression. Based on the above findings, we propose that treatment of tumor cells with the combination of NO donors, at optimal noncytotoxic doses, and anti-tumor cytotoxic effector cells or other conventional therapies will result in a synergistic anticancer activity and tumor regression.
Collapse
Affiliation(s)
- Emily Hays
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, CA 90095, USA.
| | - Benjamin Bonavida
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, CA 90095, USA.
| |
Collapse
|
194
|
Aarts CEM, Hiemstra IH, Tool ATJ, van den Berg TK, Mul E, van Bruggen R, Kuijpers TW. Neutrophils as Suppressors of T Cell Proliferation: Does Age Matter? Front Immunol 2019; 10:2144. [PMID: 31572368 PMCID: PMC6749034 DOI: 10.3389/fimmu.2019.02144] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/27/2019] [Indexed: 12/25/2022] Open
Abstract
Whereas, neutrophils have long been considered to mainly function as efficient innate immunity killers of micro-organisms at infected sites, they are now recognized to also be involved in modulation of adaptive immune responses. Immature and mature neutrophils were reported to have the capacity to suppress T cell-mediated immune responses as so-called granulocyte-myeloid-derived suppressor cells (g-MDSCs), and thereby affect the clinical outcome of cancer patients and impact the chronicity of microbial infections or rejection reactions in organ transplantation settings. These MDSCs were at first considered to be immature myeloid cells that left the bone marrow due to disease-specific signals. Current studies show that also mature neutrophils can exert suppressive activity. In this study we investigated in a robust T cell suppression assay whether immature CD11b+ myeloid cells were capable of MDSC activity comparable to mature fully differentiated neutrophils. We compared circulating neutrophils with myeloid cell fractions from the bone marrow at different differentiation stages. Our results indicate that functional MDSC activity is only becoming detectable at the final stage of differentiation, depending on the procedure of cell isolation. The MDSC activity obtained during neutrophil maturation correlated with the induction of the well-known highly mobile and toxic effector functions of the circulating neutrophil. Although immature neutrophils have been suggested to be increased in the circulation of cancer patients, we show here that immature neutrophils are not efficient in suppressing T cells. This suggests that the presence of immature neutrophils in the bloodstream of cancer patients represent a mere association or may function as a source of mature neutrophils in the tumor environment but not a direct cause of enhanced MDSC activity in cancer.
Collapse
Affiliation(s)
- Cathelijn E M Aarts
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Ida H Hiemstra
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Anton T J Tool
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - T K van den Berg
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Erik Mul
- Department of Research Facilities, Sanquin Research Amsterdam, Amsterdam, Netherlands
| | - Robin van Bruggen
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Taco W Kuijpers
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, AUMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
195
|
Wang H, Zhao S, Zhang X, Jia K, Deng J, Zhou C, He Y. Major histocompatibility complex class II molecule in non-small cell lung cancer diagnosis, prognosis and treatment. Onco Targets Ther 2019; 12:7281-7288. [PMID: 31564911 PMCID: PMC6733341 DOI: 10.2147/ott.s214231] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/05/2019] [Indexed: 11/23/2022] Open
Abstract
Lung cancer is one of the commonest cancers in the world. More than 70% of lung cancer patients are diagnosed with non-small cell lung cancer (NSCLC). Major histocompatibility complex class II (MHC class II), an important component in antigen presenting process, usually expresses on professional antigen presenting cells (APCs), and it can be induced by interferon-γ (IFN-γ). MHC class II can be expressed by NSCLC cells. In NSCLC patients, the expression of MHC class II can be correlated with the outcome of anti-programmed death-1 (anti-PD-1) therapy. This review summarizes MHC class II expression in NSCLC and the correlation between MHC class II and NSCLC diagnosis, prognosis and therapy.
Collapse
Affiliation(s)
- Hao Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, People's Republic of China.,Medical School, Tongji University, Shanghai 200433, People's Republic of China
| | - Sha Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, People's Republic of China.,Medical School, Tongji University, Shanghai 200433, People's Republic of China
| | - Xiaoshen Zhang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, People's Republic of China.,Medical School, Tongji University, Shanghai 200433, People's Republic of China
| | - Keyi Jia
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, People's Republic of China.,Medical School, Tongji University, Shanghai 200433, People's Republic of China
| | - Juan Deng
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, People's Republic of China.,Medical School, Tongji University, Shanghai 200433, People's Republic of China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, People's Republic of China
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, People's Republic of China
| |
Collapse
|
196
|
Othman N, Jamal R, Abu N. Cancer-Derived Exosomes as Effectors of Key Inflammation-Related Players. Front Immunol 2019; 10:2103. [PMID: 31555295 PMCID: PMC6737008 DOI: 10.3389/fimmu.2019.02103] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 08/20/2019] [Indexed: 12/11/2022] Open
Abstract
Exosomes, a category of small lipid bilayer extracellular vesicles that are naturally secreted by many cells (both healthy and diseased), carry cargo made up of proteins, lipids, DNAs, and RNAs; all of which are functional when transferred to their recipient cells. Numerous studies have demonstrated the powerful role that exosomes play in the mediation of cell-to-cell communication to induce a pro-tumoral environment to encourage tumor progression and survival. Recently, considerable interest has developed in regard to the role that exosomes play in immunity; with studies demonstrating the ability of exosomes to either metabolically alter immune players such as dendritic cells, T cells, macrophages, and natural killer cells. In this review, we summarize the recent literature on the function of exosomes in regulating a key process that has long been associated with the progression of cancer-inflammation and immunity.
Collapse
Affiliation(s)
- Norahayu Othman
- UKM Medical Centre, UKM Medical Molecular Biology Institute, Kuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Centre, UKM Medical Molecular Biology Institute, Kuala Lumpur, Malaysia
| | - Nadiah Abu
- UKM Medical Centre, UKM Medical Molecular Biology Institute, Kuala Lumpur, Malaysia
| |
Collapse
|
197
|
Rébé C, Ghiringhelli F. STAT3, a Master Regulator of Anti-Tumor Immune Response. Cancers (Basel) 2019; 11:E1280. [PMID: 31480382 PMCID: PMC6770459 DOI: 10.3390/cancers11091280] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 12/27/2022] Open
Abstract
Immune cells in the tumor microenvironment regulate cancer growth. Thus cancer progression is dependent on the activation or repression of transcription programs involved in the proliferation/activation of lymphoid and myeloid cells. One of the main transcription factors involved in many of these pathways is the signal transducer and activator of transcription 3 (STAT3). In this review we will focus on the role of STAT3 and its regulation, e.g. by phosphorylation or acetylation in immune cells and how it might impact immune cell function and tumor progression. Moreover, we will review the ability of STAT3 to regulate checkpoint inhibitors.
Collapse
Affiliation(s)
- Cédric Rébé
- Platform of Transfer in Cancer Biology, Centre Georges François Leclerc, INSERM LNC UMR1231,University of Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - François Ghiringhelli
- Platform of Transfer in Cancer Biology, Centre Georges François Leclerc, INSERM LNC UMR1231,University of Bourgogne Franche-Comté, F-21000 Dijon, France.
| |
Collapse
|
198
|
Ghiringhelli F, Fumet JD. Is There a Place for Immunotherapy for Metastatic Microsatellite Stable Colorectal Cancer? Front Immunol 2019; 10:1816. [PMID: 31447840 PMCID: PMC6691024 DOI: 10.3389/fimmu.2019.01816] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/18/2019] [Indexed: 12/21/2022] Open
Abstract
Immunotherapy using checkpoint inhibitor targeting PD-1 and PD-L1 revolutionized the treatment of microsatellite instable metastatic colon cancer. Such treatment is now a standard of care for these patients. However, when used as monotherapy checkpoint inhibitors targeting PD-1 and PD-L1 are not effective in metastatic colorectal cancer patients with microsatellite stable tumors. Recent advances in biology provide a rationale for this intrinsic resistance and support the evaluation of combination therapy to reverse resistance. This article will highlight recent findings on the mechanism of intrinsic resistance and recent advances in clinical trials for combination therapy.
Collapse
|
199
|
Alečković M, McAllister SS, Polyak K. Metastasis as a systemic disease: molecular insights and clinical implications. Biochim Biophys Acta Rev Cancer 2019; 1872:89-102. [PMID: 31202687 PMCID: PMC6692219 DOI: 10.1016/j.bbcan.2019.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/06/2019] [Accepted: 06/09/2019] [Indexed: 12/18/2022]
Abstract
Metastasis is a complex systemic disease that develops as a result of interactions between tumor cells and their local and distant microenvironments. Local and systemic immune-related changes play especially critical roles in limiting or enabling the development of metastatic disease. Although anti-tumor immune responses likely eliminate most early primary and metastatic lesions, factors secreted by cancer or stromal cells in the primary tumor can mobilize and activate cells in distant organs in a way that promotes the outgrowth of disseminated cancer cells into macrometastatic lesions. Therefore, the prevention, detection, and effective treatment of metastatic disease require a deeper understanding of the systemic effects of primary tumors as well as predisposing hereditary and acquired host factors including chronic inflammatory conditions. The success of immunotherapy in a subset of cancer patients is an example of how modulating the microenvironment and tumor-immune cell interactions can be exploited for the effective eradiation of even advanced-stage tumors. Here, we highlight emerging insights and clinical implications of cancer as a systemic disease.
Collapse
Affiliation(s)
- Maša Alečković
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States of America; Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States of America; Department of Medicine, Harvard Medical School, Boston, MA, United States of America
| | - Sandra S McAllister
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States of America; Department of Medicine, Harvard Medical School, Boston, MA, United States of America
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States of America; Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States of America; Department of Medicine, Harvard Medical School, Boston, MA, United States of America.
| |
Collapse
|
200
|
Alghamri MS, Kamran N, Kadiyala P, Lowenstein PR, Castro MG. Functional assay to assess T-cell inhibitory properties of myeloid derived suppressor cells (MDSCs) isolated from the tumor microenvironment of murine glioma models. Methods Enzymol 2019; 632:215-228. [PMID: 32000897 PMCID: PMC7038868 DOI: 10.1016/bs.mie.2019.05.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite advances in uncovering the molecular mechanisms that mediate glioma progression and the implementation of novel therapeutic modalities, patients' prognosis remains dismal. This is due to both systemic and local tumor induced immune suppression. We are particularly interested in the role played by infiltrating immunosuppressive myeloid derived suppressor cells (MDSCs) in the glioma tumor microenvironment (TME). This immunosuppressive TME also interferes with the effectiveness of immunotherapies against glioma. Development of multipronged treatment approaches is imperative when aiming to generate a robust anti-glioma immune response. Evaluating the inhibitory potential of MDSCs within the TME is an important aspect for developing effective treatments for glioma. Herein, we discuss methodology to assess the inhibitory effects of MDSCs isolated from the TME using a mouse glioma model.
Collapse
Affiliation(s)
- Mahmoud S Alghamri
- Department of Neurosurgery, University of Michigan Medical School, MSRB II, Ann Arbor, MI, United States; Department of Cell and Developmental Biology, University of Michigan Medical School, MSRB II, Ann Arbor, MI, United States
| | - Neha Kamran
- Department of Neurosurgery, University of Michigan Medical School, MSRB II, Ann Arbor, MI, United States; Department of Cell and Developmental Biology, University of Michigan Medical School, MSRB II, Ann Arbor, MI, United States
| | - Padma Kadiyala
- Department of Neurosurgery, University of Michigan Medical School, MSRB II, Ann Arbor, MI, United States; Department of Cell and Developmental Biology, University of Michigan Medical School, MSRB II, Ann Arbor, MI, United States
| | - Pedro Ricardo Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, MSRB II, Ann Arbor, MI, United States; Department of Cell and Developmental Biology, University of Michigan Medical School, MSRB II, Ann Arbor, MI, United States
| | - Maria Graciela Castro
- Department of Neurosurgery, University of Michigan Medical School, MSRB II, Ann Arbor, MI, United States; Department of Cell and Developmental Biology, University of Michigan Medical School, MSRB II, Ann Arbor, MI, United States.
| |
Collapse
|