151
|
Prabakaran P, Zhu Z, Xiao X, Biragyn A, Dimitrov AS, Broder CC, Dimitrov DS. Potent human monoclonal antibodies against SARS CoV, Nipah and Hendra viruses. Expert Opin Biol Ther 2009; 9:355-68. [PMID: 19216624 DOI: 10.1517/14712590902763755] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Recently, several potently neutralizing fully human monoclonal antibodies (hmAbs) targeting the severe acute respiratory syndrome-associated coronavirus (SARS CoV) S glycoprotein, and the G glycoprotein of the paramyxoviruses Hendra virus (HeV) and Nipah virus (NiV) have been discovered [corrected]. OBJECTIVE To examine, compare and contrast the functional characteristics of hmAbs with the potential for prophylaxis and treatment of diseases caused by SARS CoV, HeV and NiV. METHODS A review of relevant literature. RESULTS/CONCLUSIONS Structural, functional and biochemical analyses [corrected] have provided insights into the molecular mechanisms of receptor recognition and antibody neutralization, and suggested that these antibodies alone or in combination could fight the viruses' heterogeneity and mutability, which is a major problem in the development of effective therapeutic agents against viruses, including therapeutic antibodies.
Collapse
Affiliation(s)
- Ponraj Prabakaran
- Protein Interactions, CCRNP, NCI-Frederick, NIH, Building 469, 150B, P.O. Box B, Miller Drive, Frederick, MD 21702 1201, USA.
| | | | | | | | | | | | | |
Collapse
|
152
|
Du L, Zhao G, Li L, He Y, Zhou Y, Zheng BJ, Jiang S. Antigenicity and immunogenicity of SARS-CoV S protein receptor-binding domain stably expressed in CHO cells. Biochem Biophys Res Commun 2009; 384:486-90. [PMID: 19422787 PMCID: PMC2750803 DOI: 10.1016/j.bbrc.2009.05.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2009] [Accepted: 05/01/2009] [Indexed: 12/31/2022]
Abstract
The receptor-binding domain (RBD) of SARS coronavirus (SARS-CoV) spike (S) protein contains multiple conformation-dependent epitopes that induce neutralizing antibody responses. Here we used CHO-K1 cells to establish a cell line for stable expression of a 193-mer (residues 318-510) RBD (RBD193-CHO) and determined its antigenicity and immunogenicity. We found that RBD193-CHO reacted strongly with a panel of six monoclonal antibodies recognizing various conformational and linear epitopes in RBD, suggesting that this recombinant protein maintains intact conformation and good antigenicity. Immunization of mice with RBD193-CHO resulted in induction of high titers of RBD-specific neutralizing antibodies and potent IL-4-expressing T cell responses. RBD193-CHO induced immunity that protected a majority of the vaccinated mice from SARS-CoV challenge. These results suggest that the recombinant RBD produced in an established stable cell line maintains strong immunogenicity with high potential for use as an effective and economic subunit SARS vaccine.
Collapse
Affiliation(s)
- Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | | | | | | | | | | | | |
Collapse
|
153
|
He Y, Barker SJ, MacDonald AJ, Yu Y, Cao L, Li J, Parhar R, Heck S, Hartmann S, Golenbock DT, Jiang S, Libri NA, Semper AE, Rosenberg WM, Lustigman S. Recombinant Ov-ASP-1, a Th1-biased protein adjuvant derived from the helminth Onchocerca volvulus, can directly bind and activate antigen-presenting cells. THE JOURNAL OF IMMUNOLOGY 2009; 182:4005-16. [PMID: 19299698 DOI: 10.4049/jimmunol.0800531] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We previously reported that rOv-ASP-1, a recombinant Onchocerca volvulus activation associated protein-1, was a potent adjuvant for recombinant protein or synthetic peptide-based Ags. In this study, we further evaluated the adjuvanticity of rOv-ASP-1 and explored its mechanism of action. Consistently, recombinant full-length spike protein of SARS-CoV or its receptor-binding domain in the presence of rOv-ASP-1 could effectively induce a mixed but Th1-skewed immune response in immunized mice. It appears that rOv-ASP-1 primarily bound to the APCs among human PBMCs and triggered Th1-biased proinflammatory cytokine production probably via the activation of monocyte-derived dendritic cells and the TLR, TLR2, and TLR4, thus suggesting that rOv-ASP-1 is a novel potent innate adjuvant.
Collapse
Affiliation(s)
- Yuxian He
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Pak JE, Sharon C, Satkunarajah M, Auperin TC, Cameron CM, Kelvin DJ, Seetharaman J, Cochrane A, Plummer FA, Berry JD, Rini JM. Structural insights into immune recognition of the severe acute respiratory syndrome coronavirus S protein receptor binding domain. J Mol Biol 2009; 388:815-23. [PMID: 19324051 PMCID: PMC7094495 DOI: 10.1016/j.jmb.2009.03.042] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 03/16/2009] [Accepted: 03/16/2009] [Indexed: 11/02/2022]
Abstract
The spike (S) protein of the severe acute respiratory syndrome coronavirus (SARS-CoV) is responsible for host cell attachment and fusion of the viral and host cell membranes. Within S the receptor binding domain (RBD) mediates the interaction with angiotensin-converting enzyme 2 (ACE2), the SARS-CoV host cell receptor. Both S and the RBD are highly immunogenic and both have been found to elicit neutralizing antibodies. Reported here is the X-ray crystal structure of the RBD in complex with the Fab of a neutralizing mouse monoclonal antibody, F26G19, elicited by immunization with chemically inactivated SARS-CoV. The RBD-F26G19 Fab complex represents the first example of the structural characterization of an antibody elicited by an immune response to SARS-CoV or any fragment of it. The structure reveals that the RBD surface recognized by F26G19 overlaps significantly with the surface recognized by ACE2 and, as such, suggests that F26G19 likely neutralizes SARS-CoV by blocking the virus-host cell interaction.
Collapse
Affiliation(s)
- John E Pak
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Du L, He Y, Zhou Y, Liu S, Zheng BJ, Jiang S. The spike protein of SARS-CoV--a target for vaccine and therapeutic development. Nat Rev Microbiol 2009; 7:226-36. [PMID: 19198616 PMCID: PMC2750777 DOI: 10.1038/nrmicro2090] [Citation(s) in RCA: 1172] [Impact Index Per Article: 78.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This Review provides an overview on the spike (S) protein of severe acute respiratory syndrome-coronavirus (SARS-CoV) as a target for the development of vaccines and therapeutics for the prevention and treatment of SARS. SARS is a newly emerging infectious disease, caused by SARS-CoV, a novel coronavirus that caused a global outbreak of SARS. SARS-CoV S protein mediates binding of the virus with its receptor angiotensin-converting enzyme 2 and promotes the fusion between the viral and host cell membranes and virus entry into the host cell. SARS-CoV S protein induces humoral and cellular immune responses against SARS-CoV. SARS S protein is the target of new SARS vaccines. These vaccines are based on SARS-CoV full-length S protein and its receptor-binding domain, including DNA-, viral vector- and subunit-based vaccines Peptides, antibodies, organic compounds and short interfering RNAs are additional anti-SARS-CoV therapeutics that target the S protein. The work on SARS-CoV S protein-based vaccines and drugs will be useful as a model for the development of prophylactic strategies and therapies against other viruses with class I fusion proteins that can cause emerging infectious diseases.
The outbreaks of severe acute respiratory syndrome (SARS) between 2002 and 2004 killed hundreds of people. Vaccines against the SARS coronavirus (SARS-CoV) could protect the population during future outbreaks. In this Review, Shibo Jiang and colleagues describe such vaccines, as well as other therapeutics, based on the SARS-CoV spike protein. Severe acute respiratory syndrome (SARS) is a newly emerging infectious disease caused by a novel coronavirus, SARS-coronavirus (SARS-CoV). The SARS-CoV spike (S) protein is composed of two subunits; the S1 subunit contains a receptor-binding domain that engages with the host cell receptor angiotensin-converting enzyme 2 and the S2 subunit mediates fusion between the viral and host cell membranes. The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses, as well as protective immunity, during infection with SARS-CoV. In this Review, we highlight recent advances in the development of vaccines and therapeutics based on the S protein.
Collapse
Affiliation(s)
- Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, 310 East 67th Street, New York, NY 10065, USA
| | | | | | | | | | | |
Collapse
|
156
|
Yan K, Tan W, Wang H, Wang Y, Zhang X, Li Y, Ruan L. SARS-CoV Spike Proteins Expressed by the Vaccinia Virus Tiantan Strain: Secreted SQ Protein Induces Robust Neutralization Antibody in Mice. Viral Immunol 2009; 22:57-66. [DOI: 10.1089/vim.2008.0064] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Kexia Yan
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Xuanwu District, Beijing, People's Republic of China
| | - Wenjie Tan
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Xuanwu District, Beijing, People's Republic of China
| | - Huijuan Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Xuanwu District, Beijing, People's Republic of China
| | - Yue Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Xuanwu District, Beijing, People's Republic of China
| | - Xiangmin Zhang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Xuanwu District, Beijing, People's Republic of China
| | - Yan Li
- National Microbiology Laboratory, Canadian Science Centre for Human and Animal Health, Winnipeg, Manitoba, Canada
| | - Li Ruan
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Xuanwu District, Beijing, People's Republic of China
| |
Collapse
|
157
|
A Sabin 1 poliovirus-based vaccine vector transfects Vero cells with high efficiency. Cytotechnology 2008; 54:169-79. [PMID: 19003009 PMCID: PMC2267503 DOI: 10.1007/s10616-007-9085-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Accepted: 06/12/2007] [Indexed: 11/05/2022] Open
Abstract
Over the past 40 years, live oral poliovirus (PV) vaccines have contributed to the eradication of wild PV in most countries. These live vaccine strains have a high safety record and can stimulate both cellular and humoral immune responses. As both of these factors are critical characteristics of a good vaccine, we aimed to modify the oral PV vaccines to create a powerful vaccine vector for extraneous antigen expression. In this study, we amplified three separate fragments from the Sabin 1 virus genome by RT-PCR and cloned them into the pGEM-TEasy vector. A cassette containing engineered protease cleavage sites and a polylinker was introduced into one of these fragments (f1) in front of the translation start site. This construction facilitated the insertion of foreign genes into the vector and the subsequent release of their co-translated antigens after digestion by endogenous protease. We also placed a ribozyme (Rz) sequence between the T7 promoter and viral genomic DNA so that in vitro transcription and Rz cleavage recreated the authentic 5′ end of the PV genome RNA. Poly(A)40 tails were added to the 3′ end of the genome to stabilize the transcribed RNA. The three PV genome fragments and their derivatives were cloned into various types of vectors that were transfected into Vero cells. Virus rescue experiments demonstrated that both the Rz and poly(A)40 elements were required for high transfection efficiency of the vector-derived RNAs.
Collapse
|
158
|
Bian C, Zhang X, Cai X, Zhang L, Chen Z, Zha Y, Xu Y, Xu K, Lu W, Yan L, Yuan J, Feng J, Hao P, Wang Q, Zhao G, Liu G, Zhu X, Shen H, Zheng B, Shen B, Sun B. Conserved amino acids W423 and N424 in receptor-binding domain of SARS-CoV are potential targets for therapeutic monoclonal antibody. Virology 2008; 383:39-46. [PMID: 18986662 PMCID: PMC7103409 DOI: 10.1016/j.virol.2008.09.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 08/04/2008] [Accepted: 09/29/2008] [Indexed: 12/30/2022]
Abstract
The receptor-binding domain (RBD) on spike protein of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) is the main region interacting with the viral receptor-ACE2 and is a useful target for induction of neutralizing antibodies against SARS-CoV infection. Here we generated two monoclonal antibodies (mAbs), targeting RBD, with marked virus neutralizing activity. The mAbs recognize a new conformational epitope which consists of several discontinuous peptides (aa. 343–367, 373–390 and 411–428) and is spatially located neighboring the receptor-binding motif (RPM) region of the RBD. Importantly, W423 and N424 residues are essential for mAb recognition and are highly conserved among 107 different strains of SARS, indicating that the residues are the most critical in the epitope which is a novel potential target for therapeutic mAbs. A human–mouse chimeric antibody, based upon the original murine mAb, was also constructed and shown to possess good neutralizing activity and high affinity.
Collapse
Affiliation(s)
- Chao Bian
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Chan CM, Woo PCY, Lau SKP, Tse H, Chen HL, Li F, Zheng BJ, Chen L, Huang JD, Yuen KY. Spike protein, S, of human coronavirus HKU1: role in viral life cycle and application in antibody detection. Exp Biol Med (Maywood) 2008; 233:1527-36. [PMID: 18849544 DOI: 10.3181/0806-rm-197] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We recently described the discovery, genome, clinical features, genotypes and evolution of a novel and global human respiratory virus named human coronavirus HKU1 (HCoV-HKU1) which is not yet culturable. We expressed a C-terminal FLAG-tagged CoV-HKU1 spike (S) protein by the Semliki Forest Virus (SFV) system and investigated its maturation profile. Pulse chase labeling revealed that S-FLAG was expressed as high-mannose N-glycans of monomers and trimers. It was predominantly cleaved into subdomains S1 and S2 during maturation. S1 was secreted into the medium. Immunofluorescence analysis visualized S along the secretory pathway from endoplasmic reticulum to plasma membrane. Cleavage of S and release of HCoV-HKU1 S pseudotyped virus were inhibited by furin or furin-like enzyme inhibitors. The cell-based expressed full-length S-FLAG could be recognized by the convalescent serum obtained from a patient with HCoV-HKU1 pneumonia. The data suggest that the native form of HCoV-HKU1 spike expressed in our system can be used in developing serological diagnostic assay and in understanding the role of S in the viral life cycle.
Collapse
Affiliation(s)
- Che-Man Chan
- Department of Microbiology, The University of Hong Kong, Hong Kong Special Administration Region, Hong Kong
| | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Suresh MR, Bhatnagar PK, Das D. Molecular targets for diagnostics and therapeutics of severe acute respiratory syndrome (SARS-CoV). JOURNAL OF PHARMACY AND PHARMACEUTICAL SCIENCES 2008; 11:1s-13s. [PMID: 19203466 DOI: 10.18433/j3j019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE The large number of deaths in a short period of time due to the spread of severe acute respiratory syndrome (SARS) infection led to the unparalleled collaborative efforts world wide to determine and characterize the new coronavirus (SARS-CoV). The full genome sequence was determined within weeks of the first outbreak by the Canadian group with international collaboration. As per the World Health Organization (WHO), the continual lack of a rapid laboratory test to aid the early diagnosis of suspected cases of SARS makes this area a priority for future research. To prevent deaths in the future, early diagnosis and therapy of this infectious disease is of paramount importance. METHODS This review describes the specific molecular targets for diagnostics and therapeutics of viral infection. RESULTS The three major diagnostic methods available for SARS includes viral RNA detection by reverse transcription polymerase chain reaction (RT-PCR), virus induced antibodies by immunofluorescence assay (IFA) or by enzyme linked immunosorbant assay (ELISA) of nucleocapsid protein (NP). The spike glycoprotein of SARS-CoV is the major inducer of neutralizing antibodies. The receptor binding domain (RBD) in the S1 region of the spike glycoprotein contains multiple conformational epitopes that induces highly potent neutralizing antibodies. The genetically engineered attenuated form of the virus or viral vector vaccine encoding for the SARS-CoV spike glycoprotein has been shown to elicit protective immunity in vaccinated animals. CONCLUSION NP is the preferred target for routine detection of SARS-CoV infection by ELISA which is an economical method compared to other methods. The RBD of the spike glycoprotein is both a functional domain for cell receptor binding and also a major neutralizing determinant of SARS-CoV. The progress in evaluating a therapeutic or vaccine would depend on the avail ability of clinically relevant animal model.
Collapse
Affiliation(s)
- Mavanur R Suresh
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | | | | |
Collapse
|
161
|
Du L, Zhao G, Lin Y, Sui H, Chan C, Ma S, He Y, Jiang S, Wu C, Yuen KY, Jin DY, Zhou Y, Zheng BJ. Intranasal vaccination of recombinant adeno-associated virus encoding receptor-binding domain of severe acute respiratory syndrome coronavirus (SARS-CoV) spike protein induces strong mucosal immune responses and provides long-term protection against SARS-CoV infection. THE JOURNAL OF IMMUNOLOGY 2008; 180:948-56. [PMID: 18178835 DOI: 10.4049/jimmunol.180.2.948] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We have previously reported that a subunit protein vaccine based on the receptor-binding domain (RBD) of severe acute respiratory syndrome coronavirus (SARS-CoV) spike protein and a recombinant adeno-associated virus (rAAV)-based RBD (RBD-rAAV) vaccine could induce highly potent neutralizing Ab responses in immunized animals. In this study, systemic, mucosal, and cellular immune responses and long-term protective immunity induced by RBD-rAAV were further characterized in a BALB/c mouse model, with comparison of the i.m. and intranasal (i.n.) routes of administration. Our results demonstrated that: 1) the i.n. vaccination induced a systemic humoral immune response of comparable strength and shorter duration than the i.m. vaccination, but the local humoral immune response was much stronger; 2) the i.n. vaccination elicited stronger systemic and local specific cytotoxic T cell responses than the i.m. vaccination, as evidenced by higher prevalence of IL-2 and/or IFN-gamma-producing CD3+/CD8+ T cells in both lungs and spleen; 3) the i.n. vaccination induced similar protection as the i.m. vaccination against SARS-CoV challenge in mice; 4) higher titers of mucosal IgA and serum-neutralizing Ab were associated with lower viral load and less pulmonary pathological damage, while no Ab-mediated disease enhancement effect was observed; and 5) the vaccination could provide long-term protection against SARS-CoV infection. Taken together, our findings suggest that RBD-rAAV can be further developed into a vaccine candidate for prevention of SARS and that i.n. vaccination may be the preferred route of administration due to its ability to induce SARS-CoV-specific systemic and mucosal immune responses and its better safety profile.
Collapse
Affiliation(s)
- Lanying Du
- Department of Microbiology, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Du L, Zhao G, Lin Y, Chan C, He Y, Jiang S, Wu C, Jin DY, Yuen KY, Zhou Y, Zheng BJ. Priming with rAAV encoding RBD of SARS-CoV S protein and boosting with RBD-specific peptides for T cell epitopes elevated humoral and cellular immune responses against SARS-CoV infection. Vaccine 2008; 26:1644-51. [PMID: 18289745 PMCID: PMC2600875 DOI: 10.1016/j.vaccine.2008.01.025] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 12/30/2007] [Accepted: 01/14/2008] [Indexed: 12/17/2022]
Abstract
Development of vaccines against severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) is crucial in the prevention of SARS reemergence. The receptor-binding domain (RBD) of SARS-CoV spike (S) protein is an important target in developing safe and effective SARS vaccines. Our previous study has demonstrated that vaccination with adeno-associated virus encoding RBD (RBD-rAAV) induces high titer of neutralizing antibodies. In this study, we further assessed the immune responses and protective effect of the immunization with RBD-rAAV prime/RBD-specific T cell peptide boost. Compared with the RBD-rAAV prime/boost vaccination, RBD-rAAV prime/RBD-peptide (RBD-Pep) boost induced similar levels of Th1 and neutralizing antibody responses that protected the vaccinated mice from subsequent SARS-CoV challenge, but stronger Th2 and CTL responses. No significant immune responses and protective effects were detected in mice vaccinated with RBD-Pep or blank AAV alone. Since T cell epitopes are highly conserved and boosting with peptides may induce the production of effector memory T cells, which may be effective against viruses with mutations in the neutralizing epitopes, our results suggest that the vaccination protocol used may be ideal for providing effective, broad and long-term protection against SARS-CoV infection.
Collapse
Affiliation(s)
- Lanying Du
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Zakhartchouk AN, Viswanathan S, Moshynskyy I, Petric M, Babiuk LA. Optimization of a DNA vaccine against SARS. DNA Cell Biol 2008; 26:721-6. [PMID: 17665998 DOI: 10.1089/dna.2007.0616] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV) first appeared in Southern China in November 2002, and then quickly spread to 33 countries on five continents along international air travel routes. Although the SARS epidemic has been contained, there is a clear need for a safe and effective vaccine should an outbreak of a SARS-CoV infection reappear in human population. In this study, we tested four DNA-vaccine constructs: (1) pLL70, containing cDNA for the SARS-CoV spike (S) gene; (2) pcDNA-SS, containing codon-optimized S gene for SARS-CoV S protein (residues 12-1255) fused with a leader sequence derived from the human CD5 gene; (3) pcDNA-St, containing the gene encoding the N-portion of the codon-optimized S gene (residues 12-532) with the CD5 leader sequence; (4) pcDNA-St-VP22C, containing the gene encoding the N-portion of the codon-optimized S protein with the CD5 leader sequence fused with the C-terminal 138 amino acids of the bovine herpesvirus-1 (BHV-1) major tegument protein VP22. Each of these plasmids was intradermally administered to C57BL/6 mice in three separate immunizations. Analysis of humoral and cellular immune responses in immunized mice demonstrated that pcDNA-SS and pcDNA-St-VP22C are the most immunogenic SARS vaccine candidates.
Collapse
Affiliation(s)
- Alexander N Zakhartchouk
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada.
| | | | | | | | | |
Collapse
|
164
|
Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin Microbiol Rev 2007; 20:660-94. [PMID: 17934078 DOI: 10.1128/cmr.00023-07] [Citation(s) in RCA: 657] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Before the emergence of severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) in 2003, only 12 other animal or human coronaviruses were known. The discovery of this virus was soon followed by the discovery of the civet and bat SARS-CoV and the human coronaviruses NL63 and HKU1. Surveillance of coronaviruses in many animal species has increased the number on the list of coronaviruses to at least 36. The explosive nature of the first SARS epidemic, the high mortality, its transient reemergence a year later, and economic disruptions led to a rush on research of the epidemiological, clinical, pathological, immunological, virological, and other basic scientific aspects of the virus and the disease. This research resulted in over 4,000 publications, only some of the most representative works of which could be reviewed in this article. The marked increase in the understanding of the virus and the disease within such a short time has allowed the development of diagnostic tests, animal models, antivirals, vaccines, and epidemiological and infection control measures, which could prove to be useful in randomized control trials if SARS should return. The findings that horseshoe bats are the natural reservoir for SARS-CoV-like virus and that civets are the amplification host highlight the importance of wildlife and biosecurity in farms and wet markets, which can serve as the source and amplification centers for emerging infections.
Collapse
|
165
|
Libraty DH, O'Neil KM, Baker LM, Acosta LP, Olveda RM. Human CD4(+) memory T-lymphocyte responses to SARS coronavirus infection. Virology 2007; 368:317-21. [PMID: 17692881 PMCID: PMC2094716 DOI: 10.1016/j.virol.2007.07.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2007] [Revised: 05/11/2007] [Accepted: 07/10/2007] [Indexed: 01/31/2023]
Abstract
Little is known about CD4+ T-cell immunity to the severe acute respiratory syndrome (SARS) coronavirus. In two SARS patients, we examined the memory CD4+ T-cell responses to peptides derived from SARS coronavirus structural proteins. We generated CD4+ T-cell lines to 3 peptides from the spike (S) protein and defined their HLA restriction. In one patient, the predominant memory CD4+ T-cell response was directed against an epitope outside the S protein receptor-binding domain. In both patients, the frequency of CD4+ memory T-cells to virus structural proteins and anti-SARS coronavirus IgG levels were low by 12 months after infection. This report expands our understanding of the specificity and duration of anti-SARS coronavirus CD4+ T-cell immune responses.
Collapse
Affiliation(s)
- Daniel H Libraty
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, 55 Lake Ave North, Worcester, MA 01655, USA.
| | | | | | | | | |
Collapse
|
166
|
Fenouillet E, Barbouche R, Jones IM. Cell entry by enveloped viruses: redox considerations for HIV and SARS-coronavirus. Antioxid Redox Signal 2007; 9:1009-34. [PMID: 17567241 DOI: 10.1089/ars.2007.1639] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
For enveloped viruses, genome entry into the target cell involves two major steps: virion binding to the cell-surface receptor and fusion of the virion and cell membranes. Virus-cell membrane fusion is mediated by the virus envelope complex, and its fusogenicity is the result of an active virus-cell interaction process that induces conformation changes within the envelope. For some viruses, such as influenza, exposure to an acidic milieu within the cell during the early steps of infection triggers the necessary structural changes. However, for other pathogens which are not exposed to such environmental stress, activation of fusogenicity can result from precise thiol/disulfide rearrangements mediated by either an endogenous redox autocatalytic isomerase or a cell-associated oxidoreductase. Study of the activation of HIV envelope fusogenicity has revealed new knowledge about how redox changes within a viral envelope trigger fusion. We discuss these findings and their implication for anti-HIV therapy. In addition, to compare and contrast the situation outlined for HIV with an enveloped virus that can fuse with the cell plasma membrane independent of the redox status of its envelope protein, we review parallel data obtained on SARS coronavirus entry.
Collapse
Affiliation(s)
- Emmanuel Fenouillet
- CNRS FRE2738 and Université de la Méditerranée, Faculté de Médecine, Marseille, France.
| | | | | |
Collapse
|
167
|
Zhu Z, Chakraborti S, He Y, Roberts A, Sheahan T, Xiao X, Hensley LE, Prabakaran P, Rockx B, Sidorov IA, Corti D, Vogel L, Feng Y, Kim JO, Wang LF, Baric R, Lanzavecchia A, Curtis KM, Nabel GJ, Subbarao K, Jiang S, Dimitrov DS. Potent cross-reactive neutralization of SARS coronavirus isolates by human monoclonal antibodies. Proc Natl Acad Sci U S A 2007; 104:12123-8. [PMID: 17620608 PMCID: PMC1924550 DOI: 10.1073/pnas.0701000104] [Citation(s) in RCA: 240] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus (SARS-CoV) caused a worldwide epidemic in late 2002/early 2003 and a second outbreak in the winter of 2003/2004 by an independent animal-to-human transmission. The GD03 strain, which was isolated from an index patient of the second outbreak, was reported to resist neutralization by the human monoclonal antibodies (hmAbs) 80R and S3.1, which can potently neutralize isolates from the first outbreak. Here we report that two hmAbs, m396 and S230.15, potently neutralized GD03 and representative isolates from the first SARS outbreak (Urbani, Tor2) and from palm civets (SZ3, SZ16). These antibodies also protected mice challenged with the Urbani or recombinant viruses bearing the GD03 and SZ16 spike (S) glycoproteins. Both antibodies competed with the SARS-CoV receptor, ACE2, for binding to the receptor-binding domain (RBD), suggesting a mechanism of neutralization that involves interference with the SARS-CoV-ACE2 interaction. Two putative hot-spot residues in the RBD (Ile-489 and Tyr-491) were identified within the SARS-CoV spike that likely contribute to most of the m396-binding energy. Residues Ile-489 and Tyr-491 are highly conserved within the SARS-CoV spike, indicating a possible mechanism of the m396 cross-reactivity. Sequence analysis and mutagenesis data show that m396 might neutralize all zoonotic and epidemic SARS-CoV isolates with known sequences, except strains derived from bats. These antibodies exhibit cross-reactivity against isolates from the two SARS outbreaks and palm civets and could have potential applications for diagnosis, prophylaxis, and treatment of SARS-CoV infections.
Collapse
Affiliation(s)
- Zhongyu Zhu
- *Protein Interactions Group, Center for Cancer Research Nanobiology Program, and
- Basic Research Program, SAIC-Frederick, Inc., National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD 21702
| | - Samitabh Chakraborti
- Basic Research Program, SAIC-Frederick, Inc., National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD 21702
| | - Yuxian He
- Laboratory of Viral Immunology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10021
| | | | - Tim Sheahan
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599
| | - Xiaodong Xiao
- *Protein Interactions Group, Center for Cancer Research Nanobiology Program, and
| | - Lisa E. Hensley
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702
| | - Ponraj Prabakaran
- *Protein Interactions Group, Center for Cancer Research Nanobiology Program, and
| | - Barry Rockx
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599
| | - Igor A. Sidorov
- *Protein Interactions Group, Center for Cancer Research Nanobiology Program, and
| | - Davide Corti
- **Institute for Research in Biomedicine, Via Vela 6, CH 6500 Belllinzona, Switzerland; and
| | | | - Yang Feng
- *Protein Interactions Group, Center for Cancer Research Nanobiology Program, and
| | - Jae-Ouk Kim
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Lin-Fa Wang
- CSIRO Livestock Industries, Australian Animal Health Laboratory and Australian Biosecurity Cooperative Research Center for Emerging Infectious Diseases, Geelong, Victoria 3220, Australia
| | - Ralph Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599
| | - Antonio Lanzavecchia
- **Institute for Research in Biomedicine, Via Vela 6, CH 6500 Belllinzona, Switzerland; and
| | - Kristopher M. Curtis
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702
| | - Gary J. Nabel
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | | | - Shibo Jiang
- Laboratory of Viral Immunology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10021
| | - Dimiter S. Dimitrov
- *Protein Interactions Group, Center for Cancer Research Nanobiology Program, and
- To whom correspondence should be addressed at:
Protein Interactions, Center for Cancer Research Nanobiology Program, National Cancer Institute, National Institutes of Health, P.O. Box B, Building 469, Room 150B, Frederick, MD 21702-1201. E-mail:
| |
Collapse
|
168
|
Ba L, Yi CE, Zhang L, Ho DD, Chen Z. Heterologous MVA-S prime Ad5-S boost regimen induces high and persistent levels of neutralizing antibody response against SARS coronavirus. Appl Microbiol Biotechnol 2007; 76:1131-6. [PMID: 17581748 PMCID: PMC7079952 DOI: 10.1007/s00253-007-1073-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 05/30/2007] [Accepted: 06/01/2007] [Indexed: 11/11/2022]
Abstract
Severe acute respiratory syndrome (SARS) is caused by a novel coronavirus (CoV), SARS-CoV. In previous studies, we showed that a SARS-CoV spike (S) glycoprotein-based modified vaccinia Ankara (MVA-S) vaccine could induce strong neutralizing antibody (Nab) response which might have played a critical role in protecting Chinese rhesus monkeys from the pathogenic viral challenge. To date, however, it remains unknown what the minimal level of Nab is required to achieve sterile immunity in humans. It is therefore important to explore techniques to maximize the level of Nab response in vivo. Here, we evaluate various vaccination regimens using combinations of DNA-S, MVA-S, and adenovirus type 5 (Ad5-S) vaccines. We show that in vaccinated mice and rabbits, a heterologous MVA-S prime with Ad5-S boost regimen induces the highest and most persistent level of Nab response when compared with other combinations. Interestingly, the initial level of Nab after prime does not necessarily predict the magnitude of the secondary response after the boost. Thus, our data provides a promising optimal regimen for vaccine development in humans against SARS-CoV infection.
Collapse
Affiliation(s)
- Lei Ba
- Aaron Diamond AIDS Research Center, The Rockefeller University, 455 1st Avenue, New York, NY 10016 USA
| | - Christopher E. Yi
- Aaron Diamond AIDS Research Center, The Rockefeller University, 455 1st Avenue, New York, NY 10016 USA
| | - Linqi Zhang
- Aaron Diamond AIDS Research Center, The Rockefeller University, 455 1st Avenue, New York, NY 10016 USA
| | - David D. Ho
- Aaron Diamond AIDS Research Center, The Rockefeller University, 455 1st Avenue, New York, NY 10016 USA
| | - Zhiwei Chen
- Aaron Diamond AIDS Research Center, The Rockefeller University, 455 1st Avenue, New York, NY 10016 USA
| |
Collapse
|
169
|
Lin TW, Lo CW, Lai SY, Fan RJ, Lo CJ, Chou YM, Thiruvengadam R, Wang AHJ, Wang MY. Chicken heat shock protein 90 is a component of the putative cellular receptor complex of infectious bursal disease virus. J Virol 2007; 81:8730-41. [PMID: 17522206 PMCID: PMC1951386 DOI: 10.1128/jvi.00332-07] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Infectious bursal disease virus (IBDV) causes a highly contagious disease in young chicks and leads to significant economic losses in the poultry industry. The capsid protein VP2 of IBDV plays an important role in virus binding and cell recognition. VP2 forms a subviral particle (SVP) with immunogenicity similar to that of the IBDV capsid. In the present study, we first showed that SVP could inhibit IBDV infection to an IBDV-susceptible cell line, DF-1 cells, in a dose-dependent manner. Second, the localizations of the SVP on the surface of DF-1 cells were confirmed by fluorescence microscopy, and the specific binding of the SVP to DF-1 cells occurred in a dose-dependent manner. Furthermore, the attachment of SVP to DF-1 cells was inhibited by an SVP-induced neutralizing monoclonal antibody against IBDV but not by denatured-VP2-induced polyclonal antibodies. Third, the cellular factors in DF-1 cells involved in the attachment of SVP were purified by affinity chromatography using SVP bound on the immobilized Ni(2+) ions. A dominant factor was identified as being chicken heat shock protein 90 (Hsp90) (cHsp90) by mass spectrometry. Results of biotinylation experiments and indirect fluorescence assays indicated that cHsp90 is located on the surface of DF-1 cells. Virus overlay protein binding assays and far-Western assays also concluded that cHsp90 interacts with IBDV and SVP, respectively. Finally, both Hsp90 and anti-Hsp90 can inhibit the infection of DF-1 cells by IBDV. Taken together, for the first time, our results suggest that cHsp90 is part of the putative cellular receptor complex essential for IBDV entry into DF-1 cells.
Collapse
Affiliation(s)
- Ta-Wei Lin
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Du L, Kao RY, Zhou Y, He Y, Zhao G, Wong C, Jiang S, Yuen KY, Jin DY, Zheng BJ. Cleavage of spike protein of SARS coronavirus by protease factor Xa is associated with viral infectivity. Biochem Biophys Res Commun 2007; 359:174-9. [PMID: 17533109 PMCID: PMC2323977 DOI: 10.1016/j.bbrc.2007.05.092] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 05/16/2007] [Indexed: 01/12/2023]
Abstract
The spike (S) protein of SARS coronavirus (SARS-CoV) has been known to recognize and bind to host receptors, whose conformational changes then facilitate fusion between the viral envelope and host cell membrane, leading to viral entry into target cells. However, other functions of SARS-CoV S protein such as proteolytic cleavage and its implications to viral infection are incompletely understood. In this study, we demonstrated that the infection of SARS-CoV and a pseudovirus bearing the S protein of SARS-CoV was inhibited by a protease inhibitor Ben-HCl. Also, the protease Factor Xa, a target of Ben-HCl abundantly expressed in infected cells, was able to cleave the recombinant and pseudoviral S protein into S1 and S2 subunits, and the cleavage was inhibited by Ben-HCl. Furthermore, this cleavage correlated with the infectivity of the pseudovirus. Taken together, our study suggests a plausible mechanism by which SARS-CoV cleaves its S protein to facilitate viral infection.
Collapse
Affiliation(s)
- Lanying Du
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Liu L, Fang Q, Deng F, Wang H, Yi CE, Ba L, Yu W, Lin RD, Li T, Hu Z, Ho DD, Zhang L, Chen Z. Natural mutations in the receptor binding domain of spike glycoprotein determine the reactivity of cross-neutralization between palm civet coronavirus and severe acute respiratory syndrome coronavirus. J Virol 2007; 81:4694-700. [PMID: 17314167 PMCID: PMC1900161 DOI: 10.1128/jvi.02389-06] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The severe acute respiratory syndrome (SARS) outbreak of 2002 and 2003 occurred as a result of zoonotic transmission. Coronavirus (CoV) found in naturally infected palm civet (civet-CoV) represents the closest genetic relative to SARS-CoV, but the degree and the determinants of cross-neutralization among these viruses remain to be investigated. Studies indicate that the receptor binding domain (RBD) of the SARS-CoV spike (S) glycoprotein contains major determinants for viral entry and neutralization. We aim to characterize the impact of natural mutations within the RBDs of civet-CoVs on viral entry and cross-neutralization. In this study, the S glycoprotein genes were recovered from naturally infected civets in central China (Hubei province), extending the geographic distribution of civet-CoV beyond the southeastern province of Guangdong. Moreover, pseudoviruses generated in our laboratory with four civet S genes, each with a distinct RBD, infected cells expressing human receptor angiotensin-converting enzyme 2, but with 90 to 95% less efficiency compared to that of SARS-CoV. These four civet S genes were also constructed as DNA vaccines to immunize mice. Immunized sera elicited against most civet S glycoproteins displayed potent neutralizing activities against autologous viruses but were much less efficient (50% inhibitory concentration, 20- to 40-fold) at neutralizing SARS-CoV and vice versa. Convalescence-phase sera from humans were similarly ineffective against the dominant civet pseudovirus. Our findings suggest that the design of SARS vaccine should consider not only preventing the reemergence of SARS-CoV but also providing cross-protection, thus interrupting zoonotic transmission of a group of genetically divergent civet CoVs of broad geographic origin.
Collapse
Affiliation(s)
- Li Liu
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Zhang Y, Zheng N, Zhong Y. Computational characterization and design of SARS coronavirus receptor recognition and antibody neutralization. Comput Biol Chem 2007; 31:129-33. [PMID: 17374510 PMCID: PMC7106420 DOI: 10.1016/j.compbiolchem.2007.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2006] [Accepted: 02/13/2007] [Indexed: 12/15/2022]
Abstract
The sequential determination of crystal structures of the SARS coronavirus spike receptor-binding domain (RBD) in complex with its cellular receptor or neutralizing antibody opened a door for the design and development of antiviral competitive inhibitors. Based on those complex structures, we conduct computational characterization and design of RBD-mediated receptor recognition and antibody neutralization. The comparisons between computational predictions and experimental evidences validate our structural bioinformatics protocols. And the calculations predict a number of single substitutions on RBD, receptor or antibody that could remarkably elevate the binding affinities of those complexes. It is reasonable to anticipate our structure-based computation-derived hypotheses could be informative to the future biochemical and immunological tests.
Collapse
Affiliation(s)
- Yuan Zhang
- School of Life Sciences, Fudan University, Shanghai 200433, China.
| | | | | |
Collapse
|
173
|
Lu H, Yang G, Fei X, Guo H, Tan Y, Chen H, Guo A. Modification of SARS-CoV S1 gene render expression in Pichia pastoris. Virus Genes 2007; 33:329-35. [PMID: 16991004 PMCID: PMC7088608 DOI: 10.1007/s11262-006-0072-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Accepted: 02/12/2006] [Indexed: 11/30/2022]
Abstract
S1 gene fragment containing receptor-binding region was amplified by several sets of primers using Over-Lap PCR. The native S1 gene was modified at A + T abundant regions; n.t.777–1683, n.t.1041–1050, n.t.1236–1248, n.t.1317–1335, n.t.1590–1605; based on the same amino acid sequences. The modified gene was cloned into a yeast expression vector pPIC9K. The resultant plasmid pPIC9K- S1 was transformed into Pichia pastoris GS 115 and the protein expression was induced with methanol. SDS-PAGE confirmed that the recombinant SI was secreted in the supernatant of induced GS 115. The protein yield reached 69 mg/l. ELISA and Western blot demonstrated that the S1 could react with the convalescent sera of people infected by SARS-CoV. Furthermore, ligand blot assay showed that the recombinant S1 could react with ACE2, the receptor of SARS-CoV. The molecular mass of expressed S1 was about 70 kDa, which was higher than that of the 30 kDa expected. PNGase F deglycosylation resulted in a protein band of 30 kDa. In conclusion, the S1 gene modification rendered the high-level expression of S1 in P. pastoris GS 115 and the protein was secreted as a biologically active form which was hyperglycosylated.
Collapse
Affiliation(s)
- Haisong Lu
- Provincial Key Laboratory of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 China
| | - Guoliang Yang
- Provincial Key Laboratory of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 China
| | - Xiaozhan Fei
- Provincial Key Laboratory of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 China
| | - Hongyan Guo
- Provincial Key Laboratory of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yadi Tan
- Provincial Key Laboratory of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 China
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Huanchun Chen
- Provincial Key Laboratory of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 China
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Aizhen Guo
- Provincial Key Laboratory of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 China
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
174
|
Kuhn JH, Li W, Radoshitzky SR, Choe H, Farzan M. Severe Acute Respiratory Syndrome Coronavirus Entry as a Target of Antiviral Therapies. Antivir Ther 2007. [DOI: 10.1177/135965350701200s05.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The identification in 2003 of a coronavirus as the aetiological agent of severe acute respiratory syndrome (SARS) intensified efforts to understand the biology of corona-viruses in general and SARS coronavirus (SARS-CoV) in particular. Rapid progress was made in describing the SARS-CoV genome, evolution and lifecycle. Identification of angiotensin-converting enzyme 2 (ACE2) as an obligate cellular receptor for SARS-CoV contributed to understanding of the SARS-CoV entry process, and helped to characterize two targets of antiviral therapeutics: the SARS-CoV spike protein and ACE2. Here we describe the role of these proteins in SARS-CoV replication and potential therapeutic strategies aimed at preventing entry of SARS-CoV into target cells.
Collapse
Affiliation(s)
- Jens H Kuhn
- Department of Microbiology and Molecular Genetics, Harvard Medical School, New England Primate Research Center, Southborough, MA, USA
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Wenhui Li
- Department of Microbiology and Molecular Genetics, Harvard Medical School, New England Primate Research Center, Southborough, MA, USA
| | - Sheli R Radoshitzky
- Department of Microbiology and Molecular Genetics, Harvard Medical School, New England Primate Research Center, Southborough, MA, USA
| | - Hyeryun Choe
- Department of Pediatrics, Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael Farzan
- Department of Microbiology and Molecular Genetics, Harvard Medical School, New England Primate Research Center, Southborough, MA, USA
| |
Collapse
|
175
|
Hu D, Shao C, Guan W, Su Z, Sun J. Studies on the interactions of Ti-containing polyoxometalates (POMs) with SARS-CoV 3CLpro by molecular modeling. J Inorg Biochem 2007; 101:89-94. [PMID: 17049610 PMCID: PMC7112571 DOI: 10.1016/j.jinorgbio.2006.08.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 08/14/2006] [Accepted: 08/17/2006] [Indexed: 11/28/2022]
Abstract
Ti-containing alpha-Keggin polyoxometalates (POMs) have been proved with properties of both anti-tumor and anti-HIV (human immunodeficiency virus). The potential anti-SARS (severe acute respiratory syndrome) activity of the POMs [alpha-PTi(2)W(10)O(40)](7-) isomers was investigated in this paper by molecular modeling method. The SARS 3c like protease, namely the SARS 3CL(pro) is the key function protease for virus replication as well as transcription and thus can be taken as one of the key targets for anti-SARS drug design. Affinity/Insight II was used to explore possible binding locations for POMs/3CL(pro) interaction. Charges in the POMs were obtained from density-functional theory (DFT) method. The results show that POMs bind with 3CL(pro) in the active site region with high affinity; POMs are more prone to bind with 3CL(pro) than with some organic compounds; for the POMs/3CL(pro)complex, the OTi(2) in POMs is the vital element for electrostatic interaction, and the electrostatic binding energy is strong enough to keep the complex stable.
Collapse
Affiliation(s)
- Donghua Hu
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
- Traditional Chinese Medicine Institute of Traditional Chinese Medicine Collage of Changchun, Changchun 130017, China
| | - Chen Shao
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Wei Guan
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Zhongmin Su
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Jiazhong Sun
- State Key Laboratory of Theoretical and Computational Chemistry of Jilin University, Changchun 130000, China
| |
Collapse
|
176
|
Coughlin M, Lou G, Martinez O, Masterman SK, Olsen OA, Moksa AA, Farzan M, Babcook JS, Prabhakar BS. Generation and characterization of human monoclonal neutralizing antibodies with distinct binding and sequence features against SARS coronavirus using XenoMouse. Virology 2006; 361:93-102. [PMID: 17161858 PMCID: PMC7103293 DOI: 10.1016/j.virol.2006.09.029] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 09/11/2006] [Accepted: 09/20/2006] [Indexed: 01/19/2023]
Abstract
Passive therapy with neutralizing human monoclonal antibodies (mAbs) could be an effective therapy against severe acute respiratory syndrome coronavirus (SARS-CoV). Utilizing the human immunoglobulin transgenic mouse, XenoMouse, we produced fully human SARS-CoV spike (S) protein specific antibodies. Antibodies were examined for reactivity against a recombinant S1 protein, to which 200 antibodies reacted. Twenty-seven antibodies neutralized 200TCID(50) SARS-CoV (Urbani). Additionally, 57 neutralizing antibodies were found that are likely specific to S2. Mapping of the binding region was achieved with several S1 recombinant proteins. Most S1 reactive neutralizing mAbs bound to the RBD, aa 318-510. However, two S1 specific mAbs reacted with a domain upstream of the RBD between aa 12 and 261. Immunoglobulin gene sequence analyses suggested at least 8 different binding specificities. Unique human mAbs could be used as a cocktail that would simultaneously target several neutralizing epitopes and prevent emergence of escape mutants.
Collapse
Affiliation(s)
- Melissa Coughlin
- Department of Microbiology and Immunology (MC790) College of Medicine, University of Illinois at Chicago, Room E705. 835 S. Wolcott AveChicago, IL 60612, USA
| | - Gin Lou
- Department of Microbiology and Immunology (MC790) College of Medicine, University of Illinois at Chicago, Room E705. 835 S. Wolcott AveChicago, IL 60612, USA
| | - Osvaldo Martinez
- Department of Microbiology and Immunology (MC790) College of Medicine, University of Illinois at Chicago, Room E705. 835 S. Wolcott AveChicago, IL 60612, USA
| | | | - Ole A. Olsen
- Amgen British Columbia Inc., 7990 Enterprise Street Burnaby, Canada BC V5A 1V7
| | - Angelica A. Moksa
- Amgen British Columbia Inc., 7990 Enterprise Street Burnaby, Canada BC V5A 1V7
| | - Michael Farzan
- Partners AIDS Reasearch Center, Bringham and Women’s Hospital, Department of Medicine (Microbiology and Molecular Genetics), Harvard Medical School, 75 Francis Street Boston, MA 02115, USA
| | - John S. Babcook
- Amgen British Columbia Inc., 7990 Enterprise Street Burnaby, Canada BC V5A 1V7
| | - Bellur S. Prabhakar
- Department of Microbiology and Immunology (MC790) College of Medicine, University of Illinois at Chicago, Room E705. 835 S. Wolcott AveChicago, IL 60612, USA
- Corresponding author. Fax: +1 312 996 6415.
| |
Collapse
|
177
|
Shih YP, Chen CY, Liu SJ, Chen KH, Lee YM, Chao YC, Chen YMA. Identifying epitopes responsible for neutralizing antibody and DC-SIGN binding on the spike glycoprotein of the severe acute respiratory syndrome coronavirus. J Virol 2006; 80:10315-24. [PMID: 17041212 PMCID: PMC1641789 DOI: 10.1128/jvi.01138-06] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The severe acute respiratory syndrome-associated coronavirus (SARS-CoV) uses dendritic cell-specific ICAM-3 grabbing nonintegrin (DC-SIGN) to facilitate cell entry via cellular receptor-angiotensin-converting enzyme 2. For this project, we used recombinant baculoviruses expressing different lengths of SARS-CoV spike (S) protein in a capture assay to deduce the minimal DC-SIGN binding region. Our results identified the region location between amino acid (aa) residues 324 to 386 of the S protein. We then generated nine monoclonal antibodies (MAbs) against the S protein to map the DC-SIGN-binding domain using capture assays with pseudotyped viruses and observed that MAb SIa5 significantly blocked S protein-DC-SIGN interaction. An enhancement assay using the HKU39849 SARS-CoV strain and human immature dendritic cells confirmed our observation. Data from a pepscan analysis and M13 phage peptide display library system mapped the reactive MAb SIa5 epitope to aa residues 363 to 368 of the S protein. Results from a capture assay testing three pseudotyped viruses with mutated N-linked glycosylation sites of the S protein indicate that only two pseudotyped viruses (N330Q and N357Q, both of which lost glycosylation sites near the SIa5 epitope) had diminished DC-SIGN-binding capacity. We also noted that MAb SIb4 exerted a neutralizing effect against HKU39849; its reactive epitope was mapped to aa residues 435 to 439 of the S protein. We offer the data to facilitate the development of therapeutic agents and preventive vaccines against SARS-CoV infection.
Collapse
MESH Headings
- Antibodies, Monoclonal
- Antibodies, Viral
- Antigens, Viral/genetics
- Baculoviridae/genetics
- Base Sequence
- Binding Sites/genetics
- Cell Adhesion Molecules/metabolism
- DNA, Viral/genetics
- Dendritic Cells/immunology
- Dendritic Cells/virology
- Epitope Mapping
- Epitopes/chemistry
- Epitopes/genetics
- Glycosylation
- Humans
- In Vitro Techniques
- Lectins, C-Type/metabolism
- Membrane Glycoproteins/chemistry
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Models, Molecular
- Mutagenesis, Site-Directed
- Neutralization Tests
- Protein Binding
- Protein Structure, Tertiary
- Receptors, Cell Surface/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Severe acute respiratory syndrome-related coronavirus/genetics
- Severe acute respiratory syndrome-related coronavirus/immunology
- Severe Acute Respiratory Syndrome/immunology
- Severe Acute Respiratory Syndrome/virology
- Spike Glycoprotein, Coronavirus
- Viral Envelope Proteins/chemistry
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
Collapse
Affiliation(s)
- Yi-Ping Shih
- AIDS Prevention and Research Center, National Yang-Ming University, Taipei 111, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
178
|
Du L, Zhao G, He Y, Guo Y, Zheng BJ, Jiang S, Zhou Y. Receptor-binding domain of SARS-CoV spike protein induces long-term protective immunity in an animal model. Vaccine 2006; 25:2832-8. [PMID: 17092615 PMCID: PMC7115660 DOI: 10.1016/j.vaccine.2006.10.031] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2006] [Revised: 09/10/2006] [Accepted: 10/17/2006] [Indexed: 12/16/2022]
Abstract
Development of effective vaccines against severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) is still a priority in prevention of re-emergence of SARS. Our previous studies have shown that the receptor-binding domain (RBD) of SARS-CoV spike (S) protein elicits highly potent neutralizing antibody responses in the immunized animals. But it is unknown whether RBD can also induce protective immunity in an animal model, a key aspect for vaccine development. In this study, BALB/c mice were vaccinated intramuscularly (i.m.) with 10 μg of RBD-Fc (RBD fused with human IgG1 Fc) and boosted twice at 3-week intervals and one more time at 12th month. Humoral immune responses of vaccinated mice were investigated for up to 12 months at a 1-month interval and the neutralizing titers of produced antibodies were reported at months 0, 3, 6 and 12 post-vaccination. Mice were challenged with the homologous strain of SARS-CoV 5 days after the last boost, and sacrificed 5 days after the challenge. Mouse lung tissues were collected for detection of viral load, virus replication and histopathological effects. Our results showed that RBD-Fc vaccination induced high titer of S-specific antibodies with long-term and potent SARS-CoV neutralizing activity. Four of five vaccinated mice were protected from subsequent SARS-CoV challenge because no significant virus replication, and no obvious histopathological changes were found in the lung tissues of the vaccinated mice challenged with SARS-CoV. Only one vaccinated mouse had mild alveolar damage in the lung tissues. In contrast, high copies of SARS-CoV RNA and virus replication were detected, and pathological changes were observed in the lung tissues of the control mice. In conclusion, our findings suggest that RBD, which can induce protective antibodies to SARS-CoV, may be further developed as a safe and effective SARS subunit vaccine.
Collapse
Affiliation(s)
- Lanying Du
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, China
| | | | | | | | | | | | | |
Collapse
|
179
|
Zhao J, Wang W, Yuan Z, Jia R, Zhao Z, Xu X, Lv P, Zhang Y, Jiang C, Gao XM. A study on antigenicity and receptor-binding ability of fragment 450-650 of the spike protein of SARS coronavirus. Virology 2006; 359:362-70. [PMID: 17055551 PMCID: PMC7103343 DOI: 10.1016/j.virol.2006.09.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 07/11/2006] [Accepted: 09/18/2006] [Indexed: 11/01/2022]
Abstract
The spike (S) protein of SARS coronavirus (SARS-CoV) is responsible for viral binding with ACE2 molecules. Its receptor-binding motif (S-RBM) is located between residues 424 and 494, which folds into 2 anti-parallel beta-sheets, beta5 and beta6. We have previously demonstrated that fragment 450-650 of the S protein (S450-650) is predominantly recognized by convalescent sera of SARS patients. The N-terminal 60 residues (450-510) of the S450-650 fragment covers the entire beta6 strand of S-RBM. In the present study, we demonstrate that patient sera predominantly recognized 2 linear epitopes outside the beta6 fragment, while the mouse antisera, induced by immunization of BALB/c mice with recombinant S450-650, mainly recognized the beta6 strand-containing region. Unlike patient sera, however, the mouse antisera were unable to inhibit the infectivity of S protein-expressing (SARS-CoV-S) pseudovirus. Fusion protein between green fluorescence protein (GFP) and S450-650 (S450-650-GFP) was able to stain Vero E6 cells and deletion of the beta6 fragment rendered the fusion product (S511-650-GFP) unable to do so. Similarly, recombinant S450-650, but not S511-650, was able to block the infection of Vero E6 cells by the SARS-CoV-S pseudovirus. Co-precipitation experiments confirmed that S450-650 was able to specifically bind with ACE2 molecules in lysate of Vero E6 cells. However, the ability of S450-510, either alone or in fusion with GFP, to bind with ACE2 was significantly poorer compared with S450-650. Our data suggest a possibility that, although the beta6 strand alone is able to bind with ACE2 with relatively high affinity, residues outside the S-RBM could also assist the receptor binding of SARS-CoV-S protein.
Collapse
Affiliation(s)
- Jincun Zhao
- Department of Immunology, Peking University Health Science Center, Peking University, 38 Xueyuan Road, Beijing 100083, China
| | - Wei Wang
- Department of Immunology, Peking University Health Science Center, Peking University, 38 Xueyuan Road, Beijing 100083, China
| | - Zhihong Yuan
- Department of Immunology, Peking University Health Science Center, Peking University, 38 Xueyuan Road, Beijing 100083, China
| | - Rujing Jia
- Department of Immunology, Peking University Health Science Center, Peking University, 38 Xueyuan Road, Beijing 100083, China
| | - Zhendong Zhao
- Department of Immunology, Peking University Health Science Center, Peking University, 38 Xueyuan Road, Beijing 100083, China
| | - Xiaojun Xu
- Department of Immunology, Peking University Health Science Center, Peking University, 38 Xueyuan Road, Beijing 100083, China
| | - Ping Lv
- Department of Immunology, Peking University Health Science Center, Peking University, 38 Xueyuan Road, Beijing 100083, China
| | - Yan Zhang
- Department of Immunology, Peking University Health Science Center, Peking University, 38 Xueyuan Road, Beijing 100083, China
| | - Chengyu Jiang
- Institute of Basic Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiao-Ming Gao
- Department of Immunology, Peking University Health Science Center, Peking University, 38 Xueyuan Road, Beijing 100083, China
- Corresponding author. Fax: +86 10 82801156.
| |
Collapse
|
180
|
Zhou M, Xu D, Li X, Li H, Shan M, Tang J, Wang M, Wang FS, Zhu X, Tao H, He W, Tien P, Gao GF. Screening and identification of severe acute respiratory syndrome-associated coronavirus-specific CTL epitopes. THE JOURNAL OF IMMUNOLOGY 2006; 177:2138-45. [PMID: 16887973 DOI: 10.4049/jimmunol.177.4.2138] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Severe acute respiratory syndrome (SARS) is a highly contagious and life-threatening disease that emerged in China in November 2002. A novel SARS-associated coronavirus was identified as its principal etiologic agent; however, the immunopathogenesis of SARS and the role of special CTLs in virus clearance are still largely uncharacterized. In this study, potential HLA-A*0201-restricted spike (S) and nucleocapsid protein-derived peptides were selected from an online database and screened for potential CTL epitopes by in vitro refolding and T2 cell-stabilization assays. The antigenicity of nine peptides which could refold with HLA-A*0201 molecules was assessed with an IFN-gamma ELISPOT assay to determine the capacity to stimulate CTLs from PBMCs of HLA-A2(+) SARS-recovered donors. A novel HLA-A*0201-restricted decameric epitope P15 (S411-420, KLPDDFMGCV) derived from the S protein was identified and found to localize within the angiotensin-converting enzyme 2 receptor-binding region of the S1 domain. P15 could significantly enhance the expression of HLA-A*0201 molecules on the T2 cell surface, stimulate IFN-gamma-producing CTLs from the PBMCs of former SARS patients, and induce specific CTLs from P15-immunized HLA-A2.1 transgenic mice in vivo. Furthermore, significant P15-specific CTLs were induced from HLA-A2.1-transgenic mice immunized by a DNA vaccine encoding the S protein; suggesting that P15 was a naturally processed epitope. Thus, P15 may be a novel SARS-associated coronavirus-specific CTL epitope and a potential target for characterization of virus control mechanisms and evaluation of candidate SARS vaccines.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Coronavirus Nucleocapsid Proteins
- Enzyme-Linked Immunosorbent Assay
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/isolation & purification
- Epitopes, T-Lymphocyte/metabolism
- HLA-A Antigens/biosynthesis
- HLA-A Antigens/metabolism
- HLA-A2 Antigen
- Humans
- Interferon-gamma/metabolism
- Intracellular Fluid/immunology
- Intracellular Fluid/metabolism
- Intracellular Fluid/virology
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/virology
- Lymphocyte Activation/immunology
- Membrane Glycoproteins/administration & dosage
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/isolation & purification
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Transgenic
- Nucleocapsid Proteins/immunology
- Nucleocapsid Proteins/isolation & purification
- Nucleocapsid Proteins/metabolism
- Peptide Fragments/administration & dosage
- Peptide Fragments/immunology
- Peptide Fragments/isolation & purification
- Peptide Fragments/metabolism
- Protein Binding/immunology
- Severe acute respiratory syndrome-related coronavirus/immunology
- Severe acute respiratory syndrome-related coronavirus/isolation & purification
- Severe acute respiratory syndrome-related coronavirus/metabolism
- Spike Glycoprotein, Coronavirus
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- T-Lymphocytes, Cytotoxic/virology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- Viral Envelope Proteins/administration & dosage
- Viral Envelope Proteins/immunology
- Viral Envelope Proteins/isolation & purification
- Viral Envelope Proteins/metabolism
Collapse
Affiliation(s)
- Minghai Zhou
- Center for Molecular Immunology and Center for Molecular Virology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, The People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Kam YW, Kien F, Roberts A, Cheung YC, Lamirande EW, Vogel L, Chu SL, Tse J, Guarner J, Zaki SR, Subbarao K, Peiris M, Nal B, Altmeyer R. Antibodies against trimeric S glycoprotein protect hamsters against SARS-CoV challenge despite their capacity to mediate FcgammaRII-dependent entry into B cells in vitro. Vaccine 2006; 25:729-40. [PMID: 17049691 PMCID: PMC7115629 DOI: 10.1016/j.vaccine.2006.08.011] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2006] [Revised: 07/30/2006] [Accepted: 08/10/2006] [Indexed: 12/28/2022]
Abstract
Vaccine-induced antibodies can prevent or, in the case of feline infectious peritonitis virus, aggravate infections by coronaviruses. We investigated whether a recombinant native full-length S-protein trimer (triSpike) of severe acute respiratory syndrome coronavirus (SARS-CoV) was able to elicit a neutralizing and protective immune response in animals and analyzed the capacity of anti-S antibodies to mediate antibody-dependent enhancement (ADE) of virus entry in vitro and enhancement of replication in vivo. SARS-CoV-specific serum and mucosal immunoglobulins were readily detected in immunized animals. Serum IgG blocked binding of the S-protein to the ACE2 receptor and neutralized SARS-CoV infection in vitro. Entry into human B cell lines occurred in a FcγRII-dependent and ACE2-independent fashion indicating that ADE of virus entry is a novel cell entry mechanism of SARS-CoV. Vaccinated animals showed no signs of enhanced lung pathology or hepatitis and viral load was undetectable or greatly reduced in lungs following challenge with SARS-CoV. Altogether our results indicate that a recombinant trimeric S protein was able to elicit an efficacious protective immune response in vivo and warrant concern in the safety evaluation of a human vaccine against SARS-CoV.
Collapse
Affiliation(s)
- Yiu Wing Kam
- HKU-Pasteur Research Centre, 8 Sassoon Road, Hong Kong SAR, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
182
|
He Y, Li J, Heck S, Lustigman S, Jiang S. Antigenic and immunogenic characterization of recombinant baculovirus-expressed severe acute respiratory syndrome coronavirus spike protein: implication for vaccine design. J Virol 2006; 80:5757-67. [PMID: 16731915 PMCID: PMC1472569 DOI: 10.1128/jvi.00083-06] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The spike (S) glycoprotein of severe acute respiratory syndrome coronavirus (SARS-CoV) mediates the receptor interaction and immune recognition and is considered a major target for vaccine design. However, its antigenic and immunogenic properties remain to be elucidated. In this study, we immunized mice with full-length S protein (FL-S) or its extracellular domain (EC-S) expressed by recombinant baculoviruses in insect cells. We found that the immunized mice developed high titers of anti-S antibodies with potent neutralizing activities against SARS pseudoviruses constructed with the S proteins of Tor2, GD03T13, and SZ3, the representative strains of 2002 to 2003 and 2003 to 2004 human SARS-CoV and palm civet SARS-CoV, respectively. These data suggest that the recombinant baculovirus-expressed S protein vaccines possess excellent immunogenicity, thereby inducing highly potent neutralizing responses against human and animal SARS-CoV variants. The antigenic structure of the S protein was characterized by a panel of 38 monoclonal antibodies (MAbs) isolated from the immunized mice. The epitopes of most anti-S MAbs (32 of 38) were localized within the S1 domain, and those of the remaining 6 MAbs were mapped to the S2 domain. Among the anti-S1 MAbs, 17 MAbs targeted the N-terminal region (amino acids [aa] 12 to 327), 9 MAbs recognized the receptor-binding domain (RBD; aa 318 to 510), and 6 MAbs reacted with the C-terminal region of S1 domain that contains the major immunodominant site (aa 528 to 635). Strikingly, all of the RBD-specific MAbs had potent neutralizing activity, 6 of which efficiently blocked the receptor binding, confirming that the RBD contains the main neutralizing epitopes and that blockage of the receptor association is the major mechanism of SARS-CoV neutralization. Five MAbs specific for the S1 N-terminal region exhibited moderate neutralizing activity, but none of the MAbs reacting with the S2 domain and the major immunodominant site in S1 showed neutralizing activity. All of the neutralizing MAbs recognize conformational epitopes. These data provide important information for understanding the antigenicity and immunogenicity of S protein and for designing SARS vaccines. This panel of anti-S MAbs can be used as tools for studying the structure and function of the SARS-CoV S protein.
Collapse
Affiliation(s)
- Yuxian He
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10021, USA.
| | | | | | | | | |
Collapse
|
183
|
Zakhartchouk AN, Sharon C, Satkunarajah M, Auperin T, Viswanathan S, Mutwiri G, Petric M, See RH, Brunham RC, Finlay BB, Cameron C, Kelvin DJ, Cochrane A, Rini JM, Babiuk LA. Immunogenicity of a receptor-binding domain of SARS coronavirus spike protein in mice: implications for a subunit vaccine. Vaccine 2006; 25:136-43. [PMID: 16919855 PMCID: PMC7115608 DOI: 10.1016/j.vaccine.2006.06.084] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Revised: 06/05/2006] [Accepted: 06/20/2006] [Indexed: 02/07/2023]
Abstract
We studied the immunogenicity of an anti-SARS subunit vaccine comprised of the fragment of the SARS coronavirus (SARS-CoV) spike protein amino acids 318-510 (S318-510) containing the receptor-binding domain. The S protein fragment was purified from the culture supernatant of stably transformed HEK293T cells secreting a tagged version of the protein. The vaccine was given subcutaneously to 129S6/SvEv mice in saline, with alum adjuvant or with alum plus CpG oligodeoxynucleotides (ODN). Mice immunized with the adjuvanted antigen elicited strong antibody and cellular immune responses; furthermore, adding the CpG ODN to the alum resulted in increased IgG2a antibody titers and a higher number of INF-gamma-secreting murine splenocytes. Mice vaccinated with S318-510 deglycosylated by PNGase F (dgS318-510) showed a lower neutralizing antibody response but had similar numbers of INF-gamma-producing cells in the spleen. This finding suggests that carbohydrate is important for the immunogenicity of the S318-510 protein fragment and provide useful information for designing an effective and safe SARS subunit vaccine.
Collapse
Affiliation(s)
- Alexander N Zakhartchouk
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, 120 Veterinary Road, Saskatoon, Sask., Canada S7N 5E3.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Yeung KS, Yamanaka GA, Meanwell NA. Severe acute respiratory syndrome coronavirus entry into host cells: Opportunities for therapeutic intervention. Med Res Rev 2006; 26:414-33. [PMID: 16521129 PMCID: PMC7168515 DOI: 10.1002/med.20055] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A novel human coronavirus (CoV) has been identified as the etiological agent that caused the severe acute respiratory syndrome (SARS) outbreak in 2003. The spike (S) protein of this virus is a type I surface glycoprotein that mediates binding of the virus to the host receptor and the subsequent fusion between the viral and host membranes. Because of its critical role in viral entry, the S protein is an important target for the development of anti-SARS CoV therapeutics and prophylactics. This article reviews the structure and function of the SARS CoV S protein in the context of its role in virus entry. Topics that are discussed include: the interaction between the S1 domain of the SARS spike protein and the cellular receptor, angiotensin converting enzyme 2 (ACE2), and the structural features of the ectodomain of ACE2; the antigenic determinants presented by the S protein and the nature of neutralizing monoclonal antibodies that are elicited in vivo; the structure of the 4,3-hydrophobic heptad repeats HR1 and HR2 of the S2 domain and their interaction to form a six-helical bundle during the final stages of fusion. Opportunities for the design and development of anti-SARS agents based on the inhibition of receptor binding, the therapeutic uses of S-directed monoclonal antibodies and inhibitors of HR1-HR2 complex formation are presented.
Collapse
Affiliation(s)
- Kap-Sun Yeung
- Department of Chemistry, The Bristol-Myers Squibb Pharmaceutical Research Institute, 5 Research Parkway, P.O. Box 5100, Wallingford, Connecticut 06492, USA.
| | | | | |
Collapse
|
185
|
ter Meulen J, van den Brink EN, Poon LLM, Marissen WE, Leung CSW, Cox F, Cheung CY, Bakker AQ, Bogaards JA, van Deventer E, Preiser W, Doerr HW, Chow VT, de Kruif J, Peiris JSM, Goudsmit J. Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants. PLoS Med 2006; 3:e237. [PMID: 16796401 PMCID: PMC1483912 DOI: 10.1371/journal.pmed.0030237] [Citation(s) in RCA: 500] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Accepted: 04/03/2006] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Experimental animal data show that protection against severe acute respiratory syndrome coronavirus (SARS-CoV) infection with human monoclonal antibodies (mAbs) is feasible. For an effective immune prophylaxis in humans, broad coverage of different strains of SARS-CoV and control of potential neutralization escape variants will be required. Combinations of virus-neutralizing, noncompeting mAbs may have these properties. METHODS AND FINDINGS Human mAb CR3014 has been shown to completely prevent lung pathology and abolish pharyngeal shedding of SARS-CoV in infected ferrets. We generated in vitro SARS-CoV variants escaping neutralization by CR3014, which all had a single P462L mutation in the glycoprotein spike (S) of the escape virus. In vitro experiments confirmed that binding of CR3014 to a recombinant S fragment (amino acid residues 318-510) harboring this mutation was abolished. We therefore screened an antibody-phage library derived from blood of a convalescent SARS patient for antibodies complementary to CR3014. A novel mAb, CR3022, was identified that neutralized CR3014 escape viruses, did not compete with CR3014 for binding to recombinant S1 fragments, and bound to S1 fragments derived from the civet cat SARS-CoV-like strain SZ3. No escape variants could be generated with CR3022. The mixture of both mAbs showed neutralization of SARS-CoV in a synergistic fashion by recognizing different epitopes on the receptor-binding domain. Dose reduction indices of 4.5 and 20.5 were observed for CR3014 and CR3022, respectively, at 100% neutralization. Because enhancement of SARS-CoV infection by subneutralizing antibody concentrations is of concern, we show here that anti-SARS-CoV antibodies do not convert the abortive infection of primary human macrophages by SARS-CoV into a productive one. CONCLUSIONS The combination of two noncompeting human mAbs CR3014 and CR3022 potentially controls immune escape and extends the breadth of protection. At the same time, synergy between CR3014 and CR3022 may allow for a lower total antibody dose to be administered for passive immune prophylaxis of SARS-CoV infection.
Collapse
MESH Headings
- Amino Acid Substitution
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Antibody Affinity
- Antibody Specificity
- Antigen-Antibody Reactions
- Antigenic Variation
- Antigens, Viral/immunology
- Base Sequence
- Binding Sites
- Cells, Cultured/virology
- Chlorocebus aethiops
- Disease Outbreaks
- Dose-Response Relationship, Immunologic
- Drug Synergism
- Epitopes/immunology
- Humans
- Immune Sera
- Immunization, Passive
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Heavy Chains/immunology
- Immunoglobulin Light Chains/genetics
- Immunoglobulin Light Chains/immunology
- Immunoglobulin Variable Region/chemistry
- Immunoglobulin Variable Region/immunology
- Macrophages/virology
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/physiology
- Molecular Sequence Data
- Mutation, Missense
- Nandiniidae/virology
- Neutralization Tests
- Point Mutation
- Protein Structure, Tertiary
- Recombinant Fusion Proteins/immunology
- Severe acute respiratory syndrome-related coronavirus/genetics
- Severe acute respiratory syndrome-related coronavirus/immunology
- Severe Acute Respiratory Syndrome/drug therapy
- Severe Acute Respiratory Syndrome/epidemiology
- Severe Acute Respiratory Syndrome/prevention & control
- Severe Acute Respiratory Syndrome/therapy
- Severe Acute Respiratory Syndrome/virology
- Spike Glycoprotein, Coronavirus
- Surface Plasmon Resonance
- Vero Cells
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- Viral Envelope Proteins/physiology
- Virus Replication
Collapse
|
186
|
Chan PKS, Tang JW, Hui DSC. SARS: clinical presentation, transmission, pathogenesis and treatment options. Clin Sci (Lond) 2006; 110:193-204. [PMID: 16411895 DOI: 10.1042/cs20050188] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SARS (severe acute respiratory syndrome) appeared as the first emerging infectious disease of this century. It is fortunate that the culprit virus can be grown without much difficulty from a commonly used cell line, allowing an unlimited supply of isolates for further molecular studies and leading to the development of sensitive diagnostic assays. How the virus has successfully jumped the species barrier is still a mystery. The superspreading events that occurred within hospital, hotel and high-density housing estate opens a new chapter in the mechanisms and routes of virus transmission. The old practice of quarantine proved to be still useful in controlling the global outbreak. Despite all the available sophisticated tests, alertness with early recognition by healthcare workers and prompt isolation of suspected cases is still the most important step for containing the spread of the infection. Although the rapidly evolving outbreak did not allow the conducting of systematic clinical trails to evaluate treatment options, the accumulated experience on managing SARS patients will improve the clinical outcome should SARS return. Although SARS led to more than 700 deaths worldwide, the lessons learnt have prepared healthcare systems worldwide to face future emerging and re-emerging infections.
Collapse
Affiliation(s)
- Paul K S Chan
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China.
| | | | | |
Collapse
|
187
|
He Y, Li J, Li W, Lustigman S, Farzan M, Jiang S. Cross-neutralization of human and palm civet severe acute respiratory syndrome coronaviruses by antibodies targeting the receptor-binding domain of spike protein. THE JOURNAL OF IMMUNOLOGY 2006; 176:6085-92. [PMID: 16670317 DOI: 10.4049/jimmunol.176.10.6085] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The spike (S) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) is considered as a protective Ag for vaccine design. We previously demonstrated that the receptor-binding domain (RBD) of S protein contains multiple conformational epitopes (Conf I-VI) that confer the major target of neutralizing Abs. Here we show that the recombinant RBDs derived from the S protein sequences of Tor2, GD03, and SZ3, the representative strains of human 2002-2003 and 2003-2004 SARS-CoV and palm civet SARS-CoV, respectively, induce in the immunized mice and rabbits high titers of cross-neutralizing Abs against pseudoviruses expressing S proteins of Tor2, GD03, and SZ3. We also demonstrate that the Tor2-RBD induced-Conf I-VI mAbs can potently neutralize both human SARS-CoV strains, Tor2 and GD03. However, only the Conf IV-VI, but not Conf I-III mAbs, neutralize civet SARS-CoV strain SZ3. All these mAbs reacted significantly with each of the three RBD variants (Tor2-RBD, GD03-RBD, and SZ3-RBD) that differ at several amino acids. Regardless, the Conf I-IV and VI epitopes were completely disrupted by single-point mutation of the conserved residues in the RBD (e.g., D429A, R441A, or D454A) and the Conf III epitope was significantly affected by E452A or D463A substitution. Interestingly, the Conf V epitope, which may overlap the receptor-binding motif and induce most potent neutralizing Abs, was conserved in these mutants. These data suggest that the major neutralizing epitopes of SARS-CoV have been apparently maintained during cross-species transmission, and that RBD-based vaccines may induce broad protection against both human and animal SARS-CoV variants.
Collapse
Affiliation(s)
- Yuxian He
- Lindsley F. Kimball Research Institute, New York Blood Center, 310 East 67th Street, New York, NY 10021, USA.
| | | | | | | | | | | |
Collapse
|
188
|
Du L, He Y, Wang Y, Zhang H, Ma S, Wong CK, Wu SH, Ng F, Huang JD, Yuen KY, Jiang S, Zhou Y, Zheng BJ. Recombinant adeno-associated virus expressing the receptor-binding domain of severe acute respiratory syndrome coronavirus S protein elicits neutralizing antibodies: Implication for developing SARS vaccines. Virology 2006; 353:6-16. [PMID: 16793110 PMCID: PMC7111904 DOI: 10.1016/j.virol.2006.03.049] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 01/27/2006] [Accepted: 03/31/2006] [Indexed: 12/31/2022]
Abstract
Development of an effective vaccine for severe acute respiratory syndrome (SARS) remains to be a priority to prevent possible re-emergence of SARS coronavirus (SARS-CoV). We previously demonstrated that the receptor-binding domain (RBD) of SARS-CoV S protein is a major target of neutralizing antibodies. This suggests that the RBD may serve as an ideal vaccine candidate. Recombinant adeno-associated virus (rAAV) has been proven to be an effective system for gene delivery and vaccine development. In this study, a novel vaccine against SARS-CoV was developed based on the rAAV delivery system. The gene encoding RBD was cloned into a pAAV-IRES-hrGFP plasmid. The immunogenicity induced by the resulting recombinant RBD-rAAV was evaluated in BALB/c mice. The results demonstrated that (1) a single dose of RBD-rAAV vaccination could induce sufficient neutralizing antibody against SARS-CoV infection; (2) two more repeated doses of the vaccination boosted the neutralizing antibody to about 5 times of the level achieved by a single dose of the immunization and (3) the level of the antibody continued to increase for the entire duration of the experiment of 5.5 months. These results suggested that RBD-rAAV is a promising SARS candidate vaccine.
Collapse
Affiliation(s)
- Lanying Du
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yuxian He
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
- Lindsley F. Kimball Research Institute, The New York Blood Center, New York, NY10021, USA
| | - Yijia Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Haojie Zhang
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Selene Ma
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Charlotte K.L. Wong
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Sharon H.W. Wu
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Fai Ng
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jian-Dong Huang
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kwok-Yung Yuen
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Shibo Jiang
- Lindsley F. Kimball Research Institute, The New York Blood Center, New York, NY10021, USA
| | - Yusen Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
- Corresponding authors. Y. Zhou is to be contacted at fax: +86 10 6381 5259. B.-J. Zheng, fax: +8 52 2855 1241.
| | - Bo-Jian Zheng
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Corresponding authors. Y. Zhou is to be contacted at fax: +86 10 6381 5259. B.-J. Zheng, fax: +8 52 2855 1241.
| |
Collapse
|
189
|
Maache M, Komurian-Pradel F, Rajoharison A, Perret M, Berland JL, Pouzol S, Bagnaud A, Duverger B, Xu J, Osuna A, Paranhos-Baccalà G. False-positive results in a recombinant severe acute respiratory syndrome-associated coronavirus (SARS-CoV) nucleocapsid-based western blot assay were rectified by the use of two subunits (S1 and S2) of spike for detection of antibody to SARS-CoV. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2006; 13:409-14. [PMID: 16522785 PMCID: PMC1391961 DOI: 10.1128/cvi.13.3.409-414.2006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To evaluate the reactivity of the recombinant proteins expressed in Escherichia coli strain BL21(DE3), a Western blot assay was performed by using a panel of 78 serum samples obtained, respectively, from convalescent-phase patients infected with severe acute respiratory syndrome-associated coronavirus (SARS-CoV) (30 samples) and from healthy donors (48 samples). As antigen for detection of SARS-CoV, the nucleocapsid protein (N) showed high sensitivity and strong reactivity with all samples from SARS-CoV patients and cross-reacted with all serum samples from healthy subjects, with either those obtained from China (10 samples) or those obtained from France (38 serum samples), giving then a significant rate of false positives. Specifically, our data indicated that the two subunits, S1 (residues 14 to 760) and S2 (residues 761 to 1190), resulted from the divided spike reacted with all samples from SARS-CoV patients and without any cross-reactivity with any of the healthy serum samples. Consequently, these data revealed the nonspecific nature of N protein in serodiagnosis of SARS-CoV compared with the S1 and S2, where the specificity is of 100%. Moreover, the reported results indicated that the use of one single protein as a detection antigen of SARS-CoV infection may lead to false-positive diagnosis. These may be rectified by using more than one protein for the serodiagnosis of SARS-CoV.
Collapse
Affiliation(s)
- Mimoun Maache
- Emerging Pathogens Department of bioMérieux, CERVI, 21 Avenue Tony Garnier, 69365 cedex 07, Lyon, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Li W, Wong SK, Li F, Kuhn JH, Huang IC, Choe H, Farzan M. Animal origins of the severe acute respiratory syndrome coronavirus: insight from ACE2-S-protein interactions. J Virol 2006; 80:4211-9. [PMID: 16611880 PMCID: PMC1472041 DOI: 10.1128/jvi.80.9.4211-4219.2006] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Wenhui Li
- Department of Microbiology and Molecular Genetics, Harvard Medical School and New England Primate Research Center, Southborough, Massachusetts, USA.
| | | | | | | | | | | | | |
Collapse
|
191
|
He Y, Li J, Du L, Yan X, Hu G, Zhou Y, Jiang S. Identification and characterization of novel neutralizing epitopes in the receptor-binding domain of SARS-CoV spike protein: revealing the critical antigenic determinants in inactivated SARS-CoV vaccine. Vaccine 2006; 24:5498-508. [PMID: 16725238 PMCID: PMC7115380 DOI: 10.1016/j.vaccine.2006.04.054] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 04/09/2006] [Accepted: 04/17/2006] [Indexed: 01/01/2023]
Abstract
The spike (S) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) is considered as a major antigen for vaccine design. We previously demonstrated that the receptor-binding domain (RBD: residues 318-510) of S protein contains multiple conformation-dependent neutralizing epitopes (Conf I to VI) and serves as a major target of SARS-CoV neutralization. Here, we further characterized the antigenic structure in the RBD by a panel of novel mAbs isolated from the mice immunized with an inactivated SARS-CoV vaccine. Ten of the RBD-specific mAbs were mapped to four distinct groups of conformational epitopes (designated Group A to D), and all of which had potent neutralizing activity against S protein-pseudotyped SARS viruses. Group A, B, C mAbs target the epitopes that may overlap with the previously characterized Conf I, III, and VI respectively, but they display different capacity to block the receptor binding. Group D mAb (S25) was directed against a unique epitope by its competitive binding. Two anti-RBD mAbs recognizing the linear epitopes (Group E) were mapped to the RBD residues 335-352 and 442-458, respectively, and none of them inhibited the receptor binding and virus entry. Surprisingly, most neutralizing epitopes (Groups A to C) could be completely disrupted by single amino acid substitutions (e.g., D429A, R441A or D454A) or by deletions of several amino acids at the N-terminal or C-terminal region of the RBD; however, the Group D epitope was not sensitive to the mutations, highlighting its importance for vaccine development. These data provide important information for understanding the antigenicity and immunogenicity of SARS-CoV, and this panel of novel mAbs can be used as tools for studying the structure of S protein and for guiding SARS vaccine design.
Collapse
Affiliation(s)
- Yuxian He
- Lindsley F. Kimball Research Institute, New York Blood Center, 310 East 67th Street, New York, NY 10021, USA.
| | | | | | | | | | | | | |
Collapse
|
192
|
Prabakaran P, Gan J, Feng Y, Zhu Z, Choudhry V, Xiao X, Ji X, Dimitrov DS. Structure of severe acute respiratory syndrome coronavirus receptor-binding domain complexed with neutralizing antibody. J Biol Chem 2006; 281:15829-36. [PMID: 16597622 PMCID: PMC8099238 DOI: 10.1074/jbc.m600697200] [Citation(s) in RCA: 207] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus (SARS-CoV, or SCV), which caused a world-wide epidemic in 2002 and 2003, binds to a receptor, angiotensin-converting enzyme 2 (ACE2), through the receptor-binding domain (RBD) of its envelope (spike, S) glycoprotein. The RBD is very immunogenic; it is a major SCV neutralization determinant and can elicit potent neutralizing antibodies capable of out-competing ACE2. However, the structural basis of RBD immunogenicity, RBD-mediated neutralization, and the role of RBD in entry steps following its binding to ACE2 have not been elucidated. By mimicking immune responses with the use of RBD as an antigen to screen a large human antibody library derived from healthy volunteers, we identified a novel potent cross-reactive SCV-neutralizing monoclonal antibody, m396, which competes with ACE2 for binding to RBD, and determined the crystal structure of the RBD-antibody complex at 2.3-Ä resolution. The antibody-bound RBD structure is completely defined, revealing two previously unresolved segments (residues 376–381 and 503–512) and a new disulfide bond (between residues 378 and 511). Interestingly, the overall structure of the m396-bound RBD is not significantly different from that of the ACE2-bound RBD. The antibody epitope is dominated by a 10-residue-long protruding β6–β7 loop with two putative ACE2-binding hotspot residues (Ile-489 and Tyr-491). These results provide a structural rationale for the function of a major determinant of SCV immunogenicity and neutralization, the development of SCV therapeutics based on the antibody paratope and epitope, and a retrovaccinology approach for the design of anti-SCV vaccines. The available structural information indicates that the SCV entry may not be mediated by ACE2-induced conformational changes in the RBD but may involve other conformational changes or/and yet to be identified coreceptors.
Collapse
Affiliation(s)
- Ponraj Prabakaran
- Protein Interactions Group, Center for Cancer Research Nanobiology Program, NCI, National Institutes of Health, Frederick, Maryland 21702, USA
| | | | | | | | | | | | | | | |
Collapse
|
193
|
Kuhn JH, Radoshitzky SR, Guth AC, Warfield KL, Li W, Vincent MJ, Towner JS, Nichol ST, Bavari S, Choe H, Aman MJ, Farzan M. Conserved receptor-binding domains of Lake Victoria marburgvirus and Zaire ebolavirus bind a common receptor. J Biol Chem 2006; 281:15951-8. [PMID: 16595665 DOI: 10.1074/jbc.m601796200] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The GP(1,2) envelope glycoproteins (GP) of filoviruses (marburg- and ebolaviruses) mediate cell-surface attachment, membrane fusion, and entry into permissive cells. Here we show that a 151-amino acid fragment of the Lake Victoria marburgvirus GP1 subunit bound filovirus-permissive cell lines more efficiently than full-length GP1. An homologous 148-amino acid fragment of the Zaire ebolavirus GP1 subunit similarly bound the same cell lines more efficiently than a series of longer GP1 truncation variants. Neither the marburgvirus GP1 fragment nor that of ebolavirus bound a nonpermissive lymphocyte cell line. Both fragments specifically inhibited replication of infectious Zaire ebolavirus, as well as entry of retroviruses pseudotyped with either Lake Victoria marburgvirus or Zaire ebolavirus GP(1,2). These studies identify the receptor-binding domains of both viruses, indicate that these viruses utilize a common receptor, and suggest that a single small molecule or vaccine can be developed to inhibit infection of all filoviruses.
Collapse
Affiliation(s)
- Jens H Kuhn
- Department of Microbiology and Molecular Genetics, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts 01772, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
194
|
He Y, Li J, Jiang S. A single amino acid substitution (R441A) in the receptor-binding domain of SARS coronavirus spike protein disrupts the antigenic structure and binding activity. Biochem Biophys Res Commun 2006; 344:106-13. [PMID: 16615996 PMCID: PMC7092835 DOI: 10.1016/j.bbrc.2006.03.139] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Accepted: 03/21/2006] [Indexed: 01/08/2023]
Abstract
The spike (S) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) has two major functions: interacting with the receptor to mediate virus entry and inducing protective immunity. Coincidently, the receptor-binding domain (RBD, residues 318-510) of SAR-CoV S protein is a major antigenic site to induce neutralizing antibodies. Here, we used RBD-Fc, a fusion protein containing the RBD and human IgG1 Fc, as a model in the studies and found that a single amino acid substitution in the RBD (R441A) could abolish the immunogenicity of RBD to induce neutralizing antibodies in immunized mice and rabbits. With a panel of anti-RBD mAbs as probes, we observed that R441A substitution was able to disrupt the majority of neutralizing epitopes in the RBD, suggesting that this residue is critical for the antigenic structure responsible for inducing protective immune responses. We also demonstrated that the RBD-Fc bearing R441A mutation could not bind to soluble and cell-associated angiotensin-converting enzyme 2 (ACE2), the functional receptor for SARS-CoV and failed to block S protein-mediated pseudovirus entry, indicating that this point mutation also disrupted the receptor-binding motif (RBM) in the RBD. Taken together, these data provide direct evidence to show that a single amino acid residue at key position in the RBD can determine the major function of SARS-CoV S protein and imply for designing SARS vaccines and therapeutics.
Collapse
Affiliation(s)
- Yuxian He
- Lindsley F. Kimball Research Institute, The New York Blood Center, New York, NY 10021, USA.
| | | | | |
Collapse
|
195
|
Tsunetsugu‐Yokota Y, Ohnishi K, Takemori T. Severe acute respiratory syndrome (SARS) coronavirus: application of monoclonal antibodies and development of an effective vaccine. Rev Med Virol 2006; 16:117-31. [PMID: 16518829 PMCID: PMC7169118 DOI: 10.1002/rmv.492] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Revised: 12/13/2005] [Accepted: 12/13/2005] [Indexed: 12/28/2022]
Abstract
SARS-CoV is a new type of human coronavirus identified as a causative agent of severe acute respiratory syndrome (SARS). On the occasion of the SARS outbreak, various monoclonal antibodies (mAbs) against SARS-CoV have been developed and applied for diagnosis, clinical management and basic research. In this review, we overview the biochemical and functional properties and applications of these SARS-CoV mAbs. We also focus on a variety of vaccines currently under development and discuss the immune response elicited by these vaccines in animal models, hopefully to better understand what we need to do next to fight against newly emerging pathogens in the future.
Collapse
Affiliation(s)
- Yasuko Tsunetsugu‐Yokota
- Department of Immunology, National Institute of Infectious Diseases, Toyama‐cho, Shinjuku‐ku, Tokyo, Japan
| | - Kazuo Ohnishi
- Department of Immunology, National Institute of Infectious Diseases, Toyama‐cho, Shinjuku‐ku, Tokyo, Japan
| | - Toshitada Takemori
- Department of Immunology, National Institute of Infectious Diseases, Toyama‐cho, Shinjuku‐ku, Tokyo, Japan
| |
Collapse
|
196
|
Zhou Z, Post P, Chubet R, Holtz K, McPherson C, Petric M, Cox M. A recombinant baculovirus-expressed S glycoprotein vaccine elicits high titers of SARS-associated coronavirus (SARS-CoV) neutralizing antibodies in mice. Vaccine 2006; 24:3624-31. [PMID: 16497416 PMCID: PMC7115485 DOI: 10.1016/j.vaccine.2006.01.059] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 01/17/2006] [Accepted: 01/24/2006] [Indexed: 12/28/2022]
Abstract
A recombinant SARS-CoV spike (S) glycoprotein vaccine produced in insect cells in a pre-clinical development stage is described. A truncated version of S glycoprotein, containing only the ecto-domain, as well as a His-tagged full-length version were cloned and expressed in a serum-free insect cell line, ExpresSF+. The proteins, purified to apparent homogeneity by liquid column chromatography, were formulated without adjuvant at 3, 9, 27, and 50 microg per dose in phosphate saline and used to immunize mice. Both antigens in each formulation elicited a strong immune response after two or three vaccinations with the antigen. Neutralizing antibody titers correlated closely with standard ELISA reactivity against the S glycoprotein. The truncated S protein was also formulated with an adjuvant, aluminum hydroxide, at 1 microg per dose (+/-adjuvant), and 5 microg per dose (+/-adjuvant). Significantly enhanced immune responses, manifested by higher titers of serum ELISA and viral neutralizing antibodies, were achieved in adjuvanted groups with fewer doses and lower concentration of S glycoprotein. These findings indicate that the ecto-domain of SARS-CoV S glycoprotein vaccine, with or without adjuvant, is immunogenic and induces high titers of virus neutralizing antibodies to levels similar to those achieved with the full S glycoprotein vaccine.
Collapse
Affiliation(s)
- Zhimin Zhou
- Protein Sciences Corporation, 1000 Research Parkway, Meriden, CT 06540, USA.
| | | | | | | | | | | | | |
Collapse
|
197
|
Perlman S, Holmes KV. Immunogenicity of SARS-CoV: the receptor-binding domain of S protein is a major target of neutralizing antibodies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 581:539-42. [PMID: 17037594 PMCID: PMC7124001 DOI: 10.1007/978-0-387-33012-9_98] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Stanley Perlman
- Department of Pediatrics, University of Iowa, 52242 Iowa City, IA USA
| | - Kathryn V. Holmes
- Department of Microbiology, University of Colorado Health Sciences Center at Fitzsimons, 80045-8333 Aurora, CO USA
| |
Collapse
|
198
|
Perlman S, Holmes KV. Insights from the association of SARS-CoV S-protein with its receptor, ACE2. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 581:209-18. [PMID: 17037532 PMCID: PMC7123956 DOI: 10.1007/978-0-387-33012-9_36] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Stanley Perlman
- Department of Pediatrics, University of Iowa, 52242 Iowa City, IA USA
| | - Kathryn V. Holmes
- Department of Microbiology, University of Colorado Health Sciences Center at Fitzsimons, 80045-8333 Aurora, CO USA
| |
Collapse
|
199
|
Yi CE, Ba L, Zhang L, Ho DD, Chen Z. Single amino acid substitutions in the severe acute respiratory syndrome coronavirus spike glycoprotein determine viral entry and immunogenicity of a major neutralizing domain. J Virol 2005; 79:11638-46. [PMID: 16140741 PMCID: PMC1212612 DOI: 10.1128/jvi.79.18.11638-11646.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neutralizing antibodies (NAbs) against severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) spike (S) glycoprotein confer protection to animals experimentally infected with the pathogenic virus. We and others previously demonstrated that a major mechanism for neutralizing SARS-CoV was through blocking the interaction between the S glycoprotein and the cellular receptor angiotensin-converting enzyme 2 (ACE2). In this study, we used in vivo electroporation DNA immunization and a pseudovirus-based assay to functionally evaluate immunogenicity and viral entry. We characterized the neutralization and viral entry determinants within the ACE2-binding domain of the S glycoprotein. The deletion of a positively charged region Sdelta(422-463) abolished the capacity of the S glycoprotein to induce NAbs in mice vaccinated by in vivo DNA electroporation. Moreover, the Sdelta(422-463) pseudovirus was unable to infect HEK293T-ACE2 cells. To determine the specific residues that contribute to related phenotypes, we replaced eight basic amino acids with alanine. We found that a single amino acid substitution (R441A) in the full-length S DNA vaccine failed to induce NAbs and abolished viral entry when pseudoviruses were generated. However, another substitution (R453A) abolished viral entry while retaining the capacity for inducing NAbs. The difference between R441A and R453A suggests that the determinants for immunogenicity and viral entry may not be identical. Our findings provide direct evidence that these basic residues are essential for immunogenicity of the major neutralizing domain and for viral entry. Our data have implications for the rational design of vaccine and antiviral agents as well as for understanding viral tropism.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution
- Animals
- Antibodies, Viral/biosynthesis
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Cell Line
- Female
- Humans
- Membrane Glycoproteins/chemistry
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/physiology
- Mice
- Mice, Inbred BALB C
- Microscopy, Electron
- Mutagenesis, Site-Directed
- Neutralization Tests
- Protein Structure, Tertiary
- Severe acute respiratory syndrome-related coronavirus/genetics
- Severe acute respiratory syndrome-related coronavirus/immunology
- Severe acute respiratory syndrome-related coronavirus/pathogenicity
- Severe acute respiratory syndrome-related coronavirus/physiology
- Sequence Deletion
- Spike Glycoprotein, Coronavirus
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Viral Envelope Proteins/chemistry
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- Viral Envelope Proteins/physiology
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
- Virulence/genetics
- Virulence/immunology
- Virulence/physiology
Collapse
Affiliation(s)
- Christopher E Yi
- Aaron Diamond AIDS Research Center, The Rockefeller University, 455 1st Avenue, 7th Floor, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
200
|
Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, Wang H, Crameri G, Hu Z, Zhang H, Zhang J, McEachern J, Field H, Daszak P, Eaton BT, Zhang S, Wang LF. Bats are natural reservoirs of SARS-like coronaviruses. Science 2005; 310:676-9. [PMID: 16195424 DOI: 10.1126/science.1118391] [Citation(s) in RCA: 1738] [Impact Index Per Article: 91.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Severe acute respiratory syndrome (SARS) emerged in 2002 to 2003 in southern China. The origin of its etiological agent, the SARS coronavirus (SARS-CoV), remains elusive. Here we report that species of bats are a natural host of coronaviruses closely related to those responsible for the SARS outbreak. These viruses, termed SARS-like coronaviruses (SL-CoVs), display greater genetic variation than SARS-CoV isolated from humans or from civets. The human and civet isolates of SARS-CoV nestle phylogenetically within the spectrum of SL-CoVs, indicating that the virus responsible for the SARS outbreak was a member of this coronavirus group.
Collapse
Affiliation(s)
- Wendong Li
- Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|