151
|
Kosari E, Vafai K. Thermal tissue damage analysis for magnetothermal neuromodulation and lesion size minimization. BRAIN MULTIPHYSICS 2020. [DOI: 10.1016/j.brain.2020.100014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
152
|
Differential functional connectivity underlying asymmetric reward-related activity in human and nonhuman primates. Proc Natl Acad Sci U S A 2020; 117:28452-28462. [PMID: 33122437 PMCID: PMC7668182 DOI: 10.1073/pnas.2000759117] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The orbitofrontal cortex (OFC) is a key brain region involved in complex cognitive functions such as reward processing and decision making. Neuroimaging studies have reported unilateral OFC response to reward-related variables; however, those studies rarely discussed this observation. Nevertheless, some lesion studies suggest that the left and right OFC contribute differently to cognitive processes. We hypothesized that the OFC asymmetrical response to reward could reflect underlying hemispherical difference in OFC functional connectivity. Using resting-state and reward-related functional MRI data from humans and from rhesus macaques, we first identified an asymmetrical response of the lateral OFC to reward in both species. Crucially, the subregion showing the highest reward-related asymmetry (RRA) overlapped with the region showing the highest functional connectivity asymmetry (FCA). Furthermore, the two types of asymmetries were found to be significantly correlated across individuals. In both species, the right lateral OFC was more connected to the default mode network compared to the left lateral OFC. Altogether, our results suggest a functional specialization of the left and right lateral OFC in primates.
Collapse
|
153
|
Meng Y, Hynynen K, Lipsman N. Applications of focused ultrasound in the brain: from thermoablation to drug delivery. Nat Rev Neurol 2020; 17:7-22. [PMID: 33106619 DOI: 10.1038/s41582-020-00418-z] [Citation(s) in RCA: 192] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2020] [Indexed: 02/07/2023]
Abstract
Focused ultrasound (FUS) is a disruptive medical technology, and its implementation in the clinic represents the culmination of decades of research. Lying at the convergence of physics, engineering, imaging, biology and neuroscience, FUS offers the ability to non-invasively and precisely intervene in key circuits that drive common and challenging brain conditions. The actions of FUS in the brain take many forms, ranging from transient blood-brain barrier opening and neuromodulation to permanent thermoablation. Over the past 5 years, we have seen a dramatic expansion of indications for and experience with FUS in humans, with a resultant exponential increase in academic and public interest in the technology. Applications now span the clinical spectrum in neurological and psychiatric diseases, with insights still emerging from preclinical models and human trials. In this Review, we provide a comprehensive overview of therapeutic ultrasound and its current and emerging indications in the brain. We examine the potential impact of FUS on the landscape of brain therapies as well as the challenges facing further advancement and broader adoption of this promising minimally invasive therapeutic alternative.
Collapse
Affiliation(s)
- Ying Meng
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Sunnybrook Research Institute, Hurvitz Brain Sciences Program, Harquail Centre for Neuromodulation, Toronto, ON, Canada.,Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Kullervo Hynynen
- Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Medical Biophysics and Institute of Biomaterials & Biomedical Engineering (IBBME), University of Toronto, Toronto, ON, Canada
| | - Nir Lipsman
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada. .,Sunnybrook Research Institute, Hurvitz Brain Sciences Program, Harquail Centre for Neuromodulation, Toronto, ON, Canada. .,Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
154
|
Badran BW, Caulfield KA, Stomberg-Firestein S, Summers PM, Dowdle LT, Savoca M, Li X, Austelle CW, Short EB, Borckardt JJ, Spivak N, Bystritsky A, George MS. Sonication of the anterior thalamus with MRI-Guided transcranial focused ultrasound (tFUS) alters pain thresholds in healthy adults: A double-blind, sham-controlled study. Brain Stimul 2020; 13:1805-1812. [PMID: 33127579 PMCID: PMC7888561 DOI: 10.1016/j.brs.2020.10.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 12/30/2022] Open
Abstract
Background: Transcranial focused ultrasound (tFUS) is a noninvasive brain stimulation method that may modulate deep brain structures. This study investigates whether sonication of the right anterior thalamus would modulate thermal pain thresholds in healthy individuals. Methods: We enrolled 19 healthy individuals in this three-visit, double-blind, sham-controlled, crossover trial. Participants first underwent a structural MRI scan used solely for tFUS targeting. They then attended two identical experimental tFUS visits (counterbalanced by condition) at least one week apart. Within the MRI scanner, participants received two, 10-min sessions of either active or sham tFUS spread 10 min apart targeting the right anterior thalamus [fundamental frequency: 650 kHz, Pulse repetition frequency: 10 Hz, Pulse Width: 5 ms, Duty Cycle: 5%, Sonication Duration: 30s, Inter-Sonication Interval: 30 s, Number of Sonications: 10, ISPTA.0 995 mW/cm2, ISPTA.3 719 mW/cm2, Peak rarefactional pressure 0.72 MPa]. The primary outcome measure was quantitative sensory thresholding (QST), measuring sensory, pain, and tolerance thresholds to a thermal stimulus applied to the left forearm before and after right anterior thalamic tFUS. Results: The right anterior thalamus was accurately sonicated in 17 of the 19 subjects. Thermal pain sensitivity was significantly attenuated after active tFUS. The pre-post x active-sham interaction was significant (F(1,245.95) = 4.03, p = .046). This interaction indicates that in the sham stimulation condition, thermal pain thresholds decreased 1.08 °C (SE = 0.28) pre-post session, but only decreased .51 °C (SE = 0.30) pre-post session in the active stimulation group. Conclusions: Two 10-min sessions of anterior thalamic tFUS induces antinociceptive effects in healthy individuals. Future studies should optimize the parameter space, dose and duration of this effect which may lead to multi-session tFUS interventions for pain disorders.
Collapse
Affiliation(s)
- Bashar W Badran
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA.
| | - Kevin A Caulfield
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Sasha Stomberg-Firestein
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Philipp M Summers
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Logan T Dowdle
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Matt Savoca
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Xingbao Li
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Christopher W Austelle
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - E Baron Short
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Jeffrey J Borckardt
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Norman Spivak
- University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Mark S George
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| |
Collapse
|
155
|
Meneghetti N, Dedola F, Gavryusev V, Sancataldo G, Turrini L, de Vito G, Tiso N, Vanzi F, Carpaneto J, Cutrone A, Pavone FS, Micera S, Mazzoni A. Direct activation of zebrafish neurons by ultrasonic stimulation revealed by whole CNS calcium imaging. J Neural Eng 2020; 17:056033. [DOI: 10.1088/1741-2552/abae8b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
156
|
Rabut C, Yoo S, Hurt RC, Jin Z, Li H, Guo H, Ling B, Shapiro MG. Ultrasound Technologies for Imaging and Modulating Neural Activity. Neuron 2020; 108:93-110. [PMID: 33058769 PMCID: PMC7577369 DOI: 10.1016/j.neuron.2020.09.003] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/25/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023]
Abstract
Visualizing and perturbing neural activity on a brain-wide scale in model animals and humans is a major goal of neuroscience technology development. Established electrical and optical techniques typically break down at this scale due to inherent physical limitations. In contrast, ultrasound readily permeates the brain, and in some cases the skull, and interacts with tissue with a fundamental resolution on the order of 100 μm and 1 ms. This basic ability has motivated major efforts to harness ultrasound as a modality for large-scale brain imaging and modulation. These efforts have resulted in already-useful neuroscience tools, including high-resolution hemodynamic functional imaging, focused ultrasound neuromodulation, and local drug delivery. Furthermore, recent breakthroughs promise to connect ultrasound to neurons at the genetic level for biomolecular imaging and sonogenetic control. In this article, we review the state of the art and ongoing developments in ultrasonic neurotechnology, building from fundamental principles to current utility, open questions, and future potential.
Collapse
Affiliation(s)
- Claire Rabut
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Sangjin Yoo
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Robert C Hurt
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Zhiyang Jin
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Hongyi Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Hongsun Guo
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Bill Ling
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
157
|
Yu K, Niu X, He B. Neuromodulation Management of Chronic Neuropathic Pain in The Central Nervous system. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1908999. [PMID: 34335132 PMCID: PMC8323399 DOI: 10.1002/adfm.201908999] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Indexed: 05/05/2023]
Abstract
Neuromodulation is becoming one of the clinical tools for treating chronic neuropathic pain by transmitting controlled physical energy to the pre-identified neural targets in the central nervous system. Its nature of drug-free, non-addictive and improved targeting have attracted increasing attention among neuroscience research and clinical practices. This article provides a brief overview of the neuropathic pain and pharmacological routines for treatment, summarizes both the invasive and non-invasive neuromodulation modalities for pain management, and highlights an emerging brain stimulation technology, transcranial focused ultrasound (tFUS) with a focus on ultrasound transducer devices and the achieved neuromodulation effects and applications on pain management. Practical considerations of spatial guidance for tFUS are discussed for clinical applications. The safety of transcranial ultrasound neuromodulation and its future prospectives on pain management are also discussed.
Collapse
Affiliation(s)
| | | | - Bin He
- Department of Biomedical Engineering, Carnegie Mellon University
| |
Collapse
|
158
|
Braun V, Blackmore J, Cleveland RO, Butler CR. Transcranial ultrasound stimulation in humans is associated with an auditory confound that can be effectively masked. Brain Stimul 2020; 13:1527-1534. [PMID: 32891872 PMCID: PMC7710976 DOI: 10.1016/j.brs.2020.08.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 01/07/2023] Open
Abstract
Background Transcranial ultrasound stimulation (TUS) is emerging as a potentially powerful, non-invasive technique for focal brain stimulation. Recent animal work suggests, however, that TUS effects may be confounded by indirect stimulation of early auditory pathways. Objective We aimed to investigate in human participants whether TUS elicits audible sounds and if these can be masked by an audio signal. Methods In 18 healthy participants, T1-weighted magnetic resonance brain imaging was acquired for 3D ultrasound simulations to determine optimal transducer placements and source amplitudes. Thermal simulations ensured that temperature rises were <0.5 °C at the target and <3 °C in the skull. To test for non-specific auditory activation, TUS (500 kHz, 300 ms burst, modulated at 1 kHz with 50% duty cycle) was applied to primary visual cortex and participants were asked to distinguish stimulation from non-stimulation trials. EEG was recorded throughout the task. Furthermore, ex-vivo skull experiments tested for the presence of skull vibrations during TUS. Results We found that participants can hear sound during TUS and can distinguish between stimulation and non-stimulation trials. This was corroborated by EEG recordings indicating auditory activation associated with TUS. Delivering an audio waveform to participants through earphones while TUS was applied reduced detection rates to chance level and abolished the TUS-induced auditory EEG signal. Ex vivo skull experiments demonstrated that sound is conducted through the skull at the pulse repetition frequency of the ultrasound. Conclusion Future studies using TUS in humans need to take this auditory confound into account and mask stimulation appropriately. Transcranial ultrasound stimulation elicits auditory signals in humans. Healthy human participants can distinguish stimulation from non-stimulation trials. Auditory masking reduces detection rates. Skull vibrations are present during transcranial ultrasound stimulation. The auditory signal is likely due to bone conduction at the pulse repetition frequency.
Collapse
Affiliation(s)
- Verena Braun
- Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | | | | | - Christopher R Butler
- Nuffield Department of Clinical Neurosciences, University of Oxford, UK; Department of Brain Sciences, Imperial College London, UK; Departamento de Neurología, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
159
|
Pouget P, Frey S, Ahnine H, Attali D, Claron J, Constans C, Aubry JF, Arcizet F. Neuronavigated Repetitive Transcranial Ultrasound Stimulation Induces Long-Lasting and Reversible Effects on Oculomotor Performance in Non-human Primates. Front Physiol 2020; 11:1042. [PMID: 32973560 PMCID: PMC7466663 DOI: 10.3389/fphys.2020.01042] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/29/2020] [Indexed: 12/17/2022] Open
Abstract
Since the late 2010s, Transcranial Ultrasound Stimulation (TUS) has been used experimentally to carryout safe, non-invasive stimulation of the brain with better spatial resolution than Transcranial Magnetic Stimulation (TMS). This innovative stimulation method has emerged as a novel and valuable device for studying brain function in humans and animals. In particular, single pulses of TUS directed to oculomotor regions have been shown to modulate visuomotor behavior of non-human primates during 100 ms ultrasound pulses. In the present study, a sustained effect was induced by applying 20-s trains of neuronavigated repetitive Transcranial Ultrasound Stimulation (rTUS) to oculomotor regions of the frontal cortex in three non-human primates performing an antisaccade task. With the help of MRI imaging and a frame-less stereotactic neuronavigation system (SNS), we were able to demonstrate that neuronavigated TUS (outside of the MRI scanner) is an efficient tool to carry out neuromodulation procedures in non-human primates. We found that, following neuronavigated rTUS, saccades were significantly modified, resulting in shorter latencies compared to no-rTUS trials. This behavioral modulation was maintained for up to 20 min. Oculomotor behavior returned to baseline after 18-31 min and could not be significantly distinguished from the no-rTUS condition. This study is the first to show that neuronavigated rTUS can have a persistent effect on monkey behavior with a quantified return-time to baseline. The specificity of the effects could not be explained by auditory confounds.
Collapse
Affiliation(s)
- Pierre Pouget
- Institute of Brain and Spinal Cord, UMRS 975 Inserm, CNRS 7225, UMPC, Paris, France
| | | | - Harry Ahnine
- Institute of Brain and Spinal Cord, UMRS 975 Inserm, CNRS 7225, UMPC, Paris, France
| | - David Attali
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, Univ Paris Diderot, Sorbonne Paris Cite, Paris, France.,Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), Inserm U1266, Team Pathophysiology of Psychiatric Disorders, Paris, France.,GHU Paris Psychiatrie et Neurosciences, Site Sainte-Anne, Service Hospitalo-Universitaire, Paris, France
| | - Julien Claron
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, Univ Paris Diderot, Sorbonne Paris Cite, Paris, France
| | - Charlotte Constans
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, Univ Paris Diderot, Sorbonne Paris Cite, Paris, France
| | - Jean-Francois Aubry
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, Univ Paris Diderot, Sorbonne Paris Cite, Paris, France
| | - Fabrice Arcizet
- Institut de la Vision CNRS, Inserm, Sorbonne Université, Paris, France
| |
Collapse
|
160
|
Todd N, McDannold N, Borsook D. Targeted manipulation of pain neural networks: The potential of focused ultrasound for treatment of chronic pain. Neurosci Biobehav Rev 2020; 115:238-250. [PMID: 32534900 PMCID: PMC7483565 DOI: 10.1016/j.neubiorev.2020.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/24/2020] [Accepted: 06/04/2020] [Indexed: 12/29/2022]
Abstract
Focused ultrasound (FUS) is a promising technology for facilitating treatment of brain diseases including chronic pain. Focused ultrasound is a unique modality for delivering therapeutic levels of energy into the body, including the central nervous system (CNS). It is non-invasive and can target spatially localized effects through the intact skull to cortical or subcortical regions of the brain. FUS can achieve three different mechanisms of action in the brain that are relevant for chronic pain treatment: (1) localized thermal ablation of neural tissue; (2) localized and transient disruption of the blood-brain barrier for targeted drug delivery to CNS structures; and (3) inhibition or stimulation of neuronal activity in targeted regions. This review provides an in-depth look at the technology of FUS with emphasis placed on applications to CNS-based treatments of chronic pain. While still in the early stages of clinical translation and with some technical challenges remaining, we suggest that FUS has great potential as a novel approach for manipulating CNS networks involved in pain treatment.
Collapse
Affiliation(s)
- Nick Todd
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Center for Pain and the Brain, 1 Autumn Street, Boston Children's Hospital, Boston, MA, 02115, United States.
| | - Nathan McDannold
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - David Borsook
- Center for Pain and the Brain, 1 Autumn Street, Boston Children's Hospital, Boston, MA, 02115, United States; Department of Anesthesia, Perioperative, and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, United States
| |
Collapse
|
161
|
Salahshoor H, Shapiro MG, Ortiz M. Transcranial focused ultrasound generates skull-conducted shear waves: Computational model and implications for neuromodulation. APPLIED PHYSICS LETTERS 2020; 117:033702. [PMID: 32741976 PMCID: PMC7386437 DOI: 10.1063/5.0011837] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/22/2020] [Indexed: 05/12/2023]
Abstract
Focused ultrasound (FUS) is an established technique for non-invasive surgery and has recently attracted considerable attention as a potential method for non-invasive neuromodulation. While the pressure waves in FUS procedures have been extensively studied in this context, the accompanying shear waves are often neglected due to the relatively high shear compliance of soft tissues. However, in bony structures such as the skull, acoustic pressure can also induce significant shear waves that could propagate outside the ultrasound focus. Here, we investigate wave propagation in the human cranium by means of a finite-element model that accounts for the anatomy, elasticity, and viscoelasticity of the skull and brain. We show that, when a region on the scalp is subjected to FUS, the skull acts as a waveguide for shear waves that propagate with a speed close to 1500 m/s, reaching off-target structures such as the cochlea. In particular, when a sharp onset of FUS is introduced in a zone proximal to the intersection of the parietal and temporal cranium, the bone-propagated shear waves reach the inner ear in about 40 μ s , leading to cumulative displacements of about 1 μ m . We further quantify the effect of ramped and sharp application of FUS on the cumulative displacements in the inner ear. Our results help explain the off-target auditory responses observed during neuromodulation experiments and inform the development of mitigation and sham control strategies.
Collapse
Affiliation(s)
- Hossein Salahshoor
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, USA
| | - Mikhail G. Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Michael Ortiz
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
162
|
Krug K. Coding Perceptual Decisions: From Single Units to Emergent Signaling Properties in Cortical Circuits. Annu Rev Vis Sci 2020; 6:387-409. [PMID: 32600168 DOI: 10.1146/annurev-vision-030320-041223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Spiking activity in single neurons of the primate visual cortex has been tightly linked to perceptual decisions. Any mechanism that reads out these perceptual signals to support behavior must respect the underlying neuroanatomy that shapes the functional properties of sensory neurons. Spatial distribution and timing of inputs to the next processing levels are critical, as conjoint activity of precursor neurons increases the spiking rate of downstream neurons and ultimately drives behavior. I set out how correlated activity might coalesce into a micropool of task-sensitive neurons signaling a particular percept to determine perceptual decision signals locally and for flexible interarea transmission depending on the task context. As data from more and more neurons and their complex interactions are analyzed, the space of computational mechanisms must be constrained based on what is plausible within neurobiological limits. This review outlines experiments to test the new perspectives offered by these extended methods.
Collapse
Affiliation(s)
- Kristine Krug
- Lehrstuhl für Sensorische Physiologie, Institut für Biologie, Otto-von-Guericke-Universität Magdeburg, 39120 Magdeburg, Germany; .,Leibniz-Institut für Neurobiologie, 39118 Magdeburg, Germany.,Department of Physiology, Anatomy, and Genetics, Oxford University, Oxford OX1 3PT, United Kingdom
| |
Collapse
|
163
|
Yang H, Yuan Y, Wang X, Li X. Closed-Loop Transcranial Ultrasound Stimulation for Real-Time Non-invasive Neuromodulation in vivo. Front Neurosci 2020; 14:445. [PMID: 32477055 PMCID: PMC7235408 DOI: 10.3389/fnins.2020.00445] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/09/2020] [Indexed: 12/18/2022] Open
Abstract
The closed-loop brain stimulation technique plays a key role in neural network information processing and therapies of neurological diseases. Transcranial ultrasound stimulation (TUS) is an established neuromodulation method for the neural oscillation in animals or human. All available TUS systems provide brain stimulation in an open-loop pattern. In this study, we developed a closed-loop transcranial ultrasound stimulation (CLTUS) system for real-time non-invasive neuromodulation in vivo. We used the CLTUS system to modulate the neural activities of the hippocampus of a wild-type mouse based on the phase of the theta rhythm recorded at the ultrasound-targeted location. In addition, we modulated the hippocampus of a temporal lobe epilepsy (TLE) mouse. The ultrasound stimulation increased the absolute power and reduced the relative power of the theta rhythm, which were independent of the specific phase of the theta rhythm. Compared with those of a sham stimulation, the latency of epileptic seizures was significantly increased, while the epileptic seizure duration was significantly decreased under the CLTUS. The above results indicate that the CLTUS can be used to not only modulate the neural oscillation through the theta-phase-specific manipulation of the hippocampus but also effectively inhibit the seizure of a TLE mouse in time. CLTUS has large application potentials for the understanding of the causal relationship of neural circuits as well as for timely, effective, and non-invasive therapies of neurological diseases such as epilepsy and Parkinson's disease.
Collapse
Affiliation(s)
| | | | | | - Xin Li
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, China
| |
Collapse
|
164
|
Kamimura HAS, Conti A, Toschi N, Konofagou EE. Ultrasound neuromodulation: mechanisms and the potential of multimodal stimulation for neuronal function assessment. FRONTIERS IN PHYSICS 2020; 8:150. [PMID: 32509757 PMCID: PMC7274478 DOI: 10.3389/fphy.2020.00150] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Focused ultrasound (FUS) neuromodulation has shown that mechanical waves can interact with cell membranes and mechanosensitive ion channels, causing changes in neuronal activity. However, the thorough understanding of the mechanisms involved in these interactions are hindered by different experimental conditions for a variety of animal scales and models. While the lack of complete understanding of FUS neuromodulation mechanisms does not impede benefiting from the current known advantages and potential of this technique, a precise characterization of its mechanisms of action and their dependence on experimental setup (e.g., tuning acoustic parameters and characterizing safety ranges) has the potential to exponentially improve its efficacy as well as spatial and functional selectivity. This could potentially reach the cell type specificity typical of other, more invasive techniques e.g., opto- and chemogenetics or at least orientation-specific selectivity afforded by transcranial magnetic stimulation. Here, the mechanisms and their potential overlap are reviewed along with discussions on the potential insights into mechanisms that magnetic resonance imaging sequences along with a multimodal stimulation approach involving electrical, magnetic, chemical, light, and mechanical stimuli can provide.
Collapse
Affiliation(s)
- Hermes A. S. Kamimura
- Ultrasound Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New Yor, NY, USA
| | - Allegra Conti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, MA, USA
| | - Elisa E. Konofagou
- Ultrasound Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New Yor, NY, USA
| |
Collapse
|
165
|
Kubanek J, Brown J, Ye P, Pauly KB, Moore T, Newsome W. Remote, brain region-specific control of choice behavior with ultrasonic waves. SCIENCE ADVANCES 2020; 6:eaaz4193. [PMID: 32671207 PMCID: PMC7314556 DOI: 10.1126/sciadv.aaz4193] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 03/09/2020] [Indexed: 05/05/2023]
Abstract
The ability to modulate neural activity in specific brain circuits remotely and systematically could revolutionize studies of brain function and treatments of brain disorders. Sound waves of high frequencies (ultrasound) have shown promise in this respect, combining the ability to modulate neuronal activity with sharp spatial focus. Here, we show that the approach can have potent effects on choice behavior. Brief, low-intensity ultrasound pulses delivered noninvasively into specific brain regions of macaque monkeys influenced their decisions regarding which target to choose. The effects were substantial, leading to around a 2:1 bias in choices compared to the default balanced proportion. The effect presence and polarity was controlled by the specific target region. These results represent a critical step towards the ability to influence choice behavior noninvasively, enabling systematic investigations and treatments of brain circuits underlying disorders of choice.
Collapse
Affiliation(s)
- Jan Kubanek
- Department of Biomedical Engineering, University of Utah, 36 S Wasatch Dr, Salt Lake City, UT 84112, USA
| | - Julian Brown
- Department of Neurobiology, Stanford University, 318 Campus Dr, Stanford, CA 94305, USA
| | - Patrick Ye
- Department of Radiology, Stanford University, 1201 Welch Rd, Stanford, CA 94034, USA
| | - Kim Butts Pauly
- Department of Radiology, Stanford University, 1201 Welch Rd, Stanford, CA 94034, USA
| | - Tirin Moore
- Department of Neurobiology, Stanford University, 318 Campus Dr, Stanford, CA 94305, USA
| | - William Newsome
- Department of Neurobiology, Stanford University, 318 Campus Dr, Stanford, CA 94305, USA
| |
Collapse
|
166
|
Legon W, Adams S, Bansal P, Patel PD, Hobbs L, Ai L, Mueller JK, Meekins G, Gillick BT. A retrospective qualitative report of symptoms and safety from transcranial focused ultrasound for neuromodulation in humans. Sci Rep 2020; 10:5573. [PMID: 32221350 PMCID: PMC7101402 DOI: 10.1038/s41598-020-62265-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/04/2020] [Indexed: 02/08/2023] Open
Abstract
Low intensity transcranial focused ultrasound (LIFU) is a promising method of non-invasive neuromodulation that uses mechanical energy to affect neuronal excitability. LIFU confers high spatial resolution and adjustable focal lengths for precise neuromodulation of discrete regions in the human brain. Before the full potential of low intensity ultrasound for research and clinical application can be investigated, data on the safety of this technique is indicated. Here, we provide an evaluation of the safety of LIFU for human neuromodulation through participant report and neurological assessment with a comparison of symptomology to other forms of non-invasive brain stimulation. Participants (N = 120) that were enrolled in one of seven human ultrasound neuromodulation studies in one laboratory at the University of Minnesota (2015–2017) were queried to complete a follow-up Participant Report of Symptoms questionnaire assessing their self-reported experience and tolerance to participation in LIFU research (Isppa 11.56–17.12 W/cm2) and the perceived relation of symptoms to LIFU. A total of 64/120 participant (53%) responded to follow-up requests to complete the Participant Report of Symptoms questionnaire. None of the participants experienced serious adverse effects. From the post-hoc assessment of safety using the questionnaire, 7/64 reported mild to moderate symptoms, that were perceived as ‘possibly’ or ‘probably’ related to participation in LIFU experiments. These reports included neck pain, problems with attention, muscle twitches and anxiety. The most common unrelated symptoms included sleepiness and neck pain. There were initial transient reports of mild neck pain, scalp tingling and headache that were extinguished upon follow-up. No new symptoms were reported upon follow up out to 1 month. The profile and incidence of symptoms looks to be similar to other forms of non-invasive brain stimulation.
Collapse
Affiliation(s)
- Wynn Legon
- Division of Physical Therapy and Rehabilitation Science, Department of Rehabilitation Medicine, School of Medicine, University of Minnesota, MN, Minneapolis, USA. .,Department of Neurological Surgery, School of Medicine, University of Virginia, VA, Charlottesville, USA.
| | - Sarah Adams
- Department of Neurological Surgery, School of Medicine, University of Virginia, VA, Charlottesville, USA
| | - Priya Bansal
- Division of Physical Therapy and Rehabilitation Science, Department of Rehabilitation Medicine, School of Medicine, University of Minnesota, MN, Minneapolis, USA
| | - Parantap D Patel
- School of Medicine, University of Virginia, VA, Charlottesville, USA
| | - Landon Hobbs
- School of Medicine, University of Virginia, VA, Charlottesville, USA
| | - Leo Ai
- Division of Physical Therapy and Rehabilitation Science, Department of Rehabilitation Medicine, School of Medicine, University of Minnesota, MN, Minneapolis, USA
| | - Jerel K Mueller
- Division of Physical Therapy and Rehabilitation Science, Department of Rehabilitation Medicine, School of Medicine, University of Minnesota, MN, Minneapolis, USA
| | - Gregg Meekins
- Department of Neurology, School of Medicine, University of Minnesota, MN, Minneapolis, USA
| | - Bernadette T Gillick
- Division of Physical Therapy and Rehabilitation Science, Department of Rehabilitation Medicine, School of Medicine, University of Minnesota, MN, Minneapolis, USA
| |
Collapse
|
167
|
Schimek N, Burke-Conte Z, Abernethy J, Schimek M, Burke-Conte C, Bobola M, Stocco A, Mourad PD. Repeated Application of Transcranial Diagnostic Ultrasound Towards the Visual Cortex Induced Illusory Visual Percepts in Healthy Participants. Front Hum Neurosci 2020; 14:66. [PMID: 32194387 PMCID: PMC7062642 DOI: 10.3389/fnhum.2020.00066] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/12/2020] [Indexed: 11/24/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) of the visual cortex can induce phosphenes as participants look at a visual target. So can non-diagnostic ultrasound (nDU), delivered in a transcranial fashion, while participants have closed their eyes during stimulation. Here, we sought to determine if DU, aimed at the visual cortex, could alter the perception of a visual target. We applied a randomized series of actual or sham DU, transcranially and towards the visual cortex of healthy participants while they stared at a visual target (a white crosshair on a light-blue background), with the ultrasound device placed where TMS elicited phosphenes. These participants observed percepts seven out of ten times, which consisted of extra or extensions of lines relative to the original crosshair, and additional colors, an average of 53.7 ± 2.6% of the time over the course of the experiment. Seven out of ten different participants exposed to sham-only DU observed comparable percepts, but only an average of 36.3 ± 1.9% of the time, a statistically significant difference (p < 0.00001). Moreover, on average, participants exposed to a combination of sham and actual ultrasound reported a net increase of 47.9 percentage points in the likelihood that they would report a percept by the end of the experiment. Our results are consistent with the hypothesis that a random combination of sham-only and actual DU, applied directly over the visual cortex of participants, increased the likelihood that they would observe visual effects, but not the type of effects, with that likelihood increasing over the course of the experiment. From this, we conclude that repeated exposures by DU may make the visual cortex more responsive to stimulation of their visual cortex by the visual target itself. Future studies should identify the biophysical mechanism(s) and neural pathways by which DU, in our hands and others, can generate its observed effects on brain function. These observations, consistent with other’s observation of effects of DU stimulation of the human motor cortex and amygdala, as well as the FDA approved nature of DU, may lead to increased use of DU as a means of altering brain function.
Collapse
Affiliation(s)
- Nels Schimek
- Department of Neurological Surgery, University of Washington, Seattle, WA, United States
| | - Zeb Burke-Conte
- Department of Neurological Surgery, University of Washington, Seattle, WA, United States
| | - Justin Abernethy
- Department of Psychology, University of Washington, Seattle, WA, United States
| | - Maren Schimek
- Department of Neurological Surgery, University of Washington, Seattle, WA, United States
| | - Celeste Burke-Conte
- Department of Neurological Surgery, University of Washington, Seattle, WA, United States
| | - Michael Bobola
- Department of Neurological Surgery, University of Washington, Seattle, WA, United States
| | - Andrea Stocco
- Department of Psychology, University of Washington, Seattle, WA, United States
| | - Pierre D Mourad
- Department of Neurological Surgery, University of Washington, Seattle, WA, United States.,Division of Engineering and Mathematics, University of Washington, Seattle, WA, United States
| |
Collapse
|
168
|
Sanguinetti JL, Hameroff S, Smith EE, Sato T, Daft CMW, Tyler WJ, Allen JJB. Transcranial Focused Ultrasound to the Right Prefrontal Cortex Improves Mood and Alters Functional Connectivity in Humans. Front Hum Neurosci 2020; 14:52. [PMID: 32184714 PMCID: PMC7058635 DOI: 10.3389/fnhum.2020.00052] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/04/2020] [Indexed: 01/21/2023] Open
Abstract
Transcranial focused ultrasound (tFUS) is an emerging method for non-invasive neuromodulation akin to transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). tFUS offers several advantages over electromagnetic methods including high spatial resolution and the ability to reach deep brain targets. Here we describe two experiments assessing whether tFUS could modulate mood in healthy human volunteers by targeting the right inferior frontal gyrus (rIFG), an area implicated in mood and emotional regulation. In a randomized, placebo-controlled, double-blind study, participants received 30 s of 500 kHz tFUS or a placebo control. Visual Analog Mood Scales (VAMS) assessed mood four times within an hour (baseline and three times after tFUS). Participants who received tFUS reported an overall increase in Global Affect (GA), an aggregate score from the VAMS scale, indicating a positive shift in mood. Experiment 2 examined resting-state functional (FC) connectivity using functional magnetic resonance imaging (fMRI) following 2 min of 500 kHz tFUS at the rIFG. As in Experiment 1, tFUS enhanced self-reported mood states and also decreased FC in resting state networks related to emotion and mood regulation. These results suggest that tFUS can be used to modulate mood and emotional regulation networks in the prefrontal cortex.
Collapse
Affiliation(s)
- Joseph L Sanguinetti
- Department of Psychology, University of Arizona, Tucson, AZ, United States.,Center for Consciousness Studies, University of Arizona, Tucson, AZ, United States.,Department of Psychology, The University of New Mexico, Albuquerque, NM, United States
| | - Stuart Hameroff
- Department of Psychology, University of Arizona, Tucson, AZ, United States.,Center for Consciousness Studies, University of Arizona, Tucson, AZ, United States.,Department of Anesthesiology, University of Arizona, Tucson, AZ, United States
| | - Ezra E Smith
- Department of Psychology, University of Arizona, Tucson, AZ, United States.,New York State Psychiatric Institute, New York, NY, United States
| | - Tomokazu Sato
- The Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Chris M W Daft
- River Sonic Solutions LLC, San Francisco, CA, United States
| | - William J Tyler
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
| | - John J B Allen
- Department of Psychology, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
169
|
Gaur P, Casey KM, Kubanek J, Li N, Mohammadjavadi M, Saenz Y, Glover GH, Bouley DM, Pauly KB. Histologic safety of transcranial focused ultrasound neuromodulation and magnetic resonance acoustic radiation force imaging in rhesus macaques and sheep. Brain Stimul 2020; 13:804-814. [PMID: 32289711 DOI: 10.1016/j.brs.2020.02.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 02/15/2020] [Accepted: 02/17/2020] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Neuromodulation by transcranial focused ultrasound (FUS) offers the potential to non-invasively treat specific brain regions, with treatment location verified by magnetic resonance acoustic radiation force imaging (MR-ARFI). OBJECTIVE To investigate the safety of these methods prior to widespread clinical use, we report histologic findings in two large animal models following FUS neuromodulation and MR-ARFI. METHODS Two rhesus macaques and thirteen Dorset sheep were studied. FUS neuromodulation was targeted to the primary visual cortex in rhesus macaques and to subcortical locations, verified by MR-ARFI, in eleven sheep. Both rhesus macaques and five sheep received a single FUS session, whereas six sheep received repeated sessions three to six days apart. The remaining two control sheep did not receive ultrasound but otherwise underwent the same anesthetic and MRI procedures as the eleven experimental sheep. Hematoxylin and eosin-stained sections of brain tissue (harvested zero to eleven days following FUS) were evaluated for tissue damage at FUS and control locations as well as tissue within the path of the FUS beam. TUNEL staining was used to evaluate for the presence of apoptosis in sheep receiving high dose FUS. RESULTS No FUS-related pre-mortem histologic findings were observed in the rhesus macaques or in any of the examined sheep. Extravascular red blood cells (RBCs) were present within the meninges of all sheep, regardless of treatment group. Similarly, small aggregates of perivascular RBCs were rarely noted in non-target regions of neural parenchyma of FUS-treated (8/11) and untreated (2/2) sheep. However, no concurrent histologic abnormalities were observed, consistent with RBC extravasation occurring as post-mortem artifact following brain extraction. Sheep within the high dose FUS group were TUNEL-negative at the targeted site of FUS. CONCLUSIONS The absence of FUS-related histologic findings suggests that the neuromodulation and MR-ARFI protocols evaluated do not cause tissue damage.
Collapse
Affiliation(s)
- Pooja Gaur
- Department of Radiology, Stanford University, Stanford, CA, USA.
| | - Kerriann M Casey
- Department of Comparative Medicine, Stanford University, Stanford, CA, USA
| | - Jan Kubanek
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Ningrui Li
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | | | - Yamil Saenz
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Gary H Glover
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Donna M Bouley
- Department of Comparative Medicine, Stanford University, Stanford, CA, USA
| | - Kim Butts Pauly
- Department of Radiology, Stanford University, Stanford, CA, USA
| |
Collapse
|
170
|
Mitoma H, Buffo A, Gelfo F, Guell X, Fucà E, Kakei S, Lee J, Manto M, Petrosini L, Shaikh AG, Schmahmann JD. Consensus Paper. Cerebellar Reserve: From Cerebellar Physiology to Cerebellar Disorders. CEREBELLUM (LONDON, ENGLAND) 2020; 19:131-153. [PMID: 31879843 PMCID: PMC6978437 DOI: 10.1007/s12311-019-01091-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cerebellar reserve refers to the capacity of the cerebellum to compensate for tissue damage or loss of function resulting from many different etiologies. When the inciting event produces acute focal damage (e.g., stroke, trauma), impaired cerebellar function may be compensated for by other cerebellar areas or by extracerebellar structures (i.e., structural cerebellar reserve). In contrast, when pathological changes compromise cerebellar neuronal integrity gradually leading to cell death (e.g., metabolic and immune-mediated cerebellar ataxias, neurodegenerative ataxias), it is possible that the affected area itself can compensate for the slowly evolving cerebellar lesion (i.e., functional cerebellar reserve). Here, we examine cerebellar reserve from the perspective of the three cornerstones of clinical ataxiology: control of ocular movements, coordination of voluntary axial and appendicular movements, and cognitive functions. Current evidence indicates that cerebellar reserve is potentiated by environmental enrichment through the mechanisms of autophagy and synaptogenesis, suggesting that cerebellar reserve is not rigid or fixed, but exhibits plasticity potentiated by experience. These conclusions have therapeutic implications. During the period when cerebellar reserve is preserved, treatments should be directed at stopping disease progression and/or limiting the pathological process. Simultaneously, cerebellar reserve may be potentiated using multiple approaches. Potentiation of cerebellar reserve may lead to compensation and restoration of function in the setting of cerebellar diseases, and also in disorders primarily of the cerebral hemispheres by enhancing cerebellar mechanisms of action. It therefore appears that cerebellar reserve, and the underlying plasticity of cerebellar microcircuitry that enables it, may be of critical neurobiological importance to a wide range of neurological/neuropsychiatric conditions.
Collapse
Affiliation(s)
- H Mitoma
- Medical Education Promotion Center, Tokyo Medical University, Tokyo, Japan.
| | - A Buffo
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, 10043, Orbassano, Italy
| | - F Gelfo
- Department of Human Sciences, Guglielmo Marconi University, 00193, Rome, Italy
- IRCCS Fondazione Santa Lucia, 00179, Rome, Italy
| | - X Guell
- Department of Neurology, Massachusetts General Hospital, Ataxia Unit, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Harvard Medical School, Boston, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, USA
| | - E Fucà
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, 10043, Orbassano, Italy
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital, 00165, Rome, Italy
| | - S Kakei
- Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - J Lee
- Komatsu University, Komatsu, Japan
| | - M Manto
- Unité des Ataxies Cérébelleuses, Service de Neurologie, CHU-Charleroi, 6000, Charleroi, Belgium
- Service des Neurosciences, University of Mons, 7000, Mons, Belgium
| | - L Petrosini
- IRCCS Fondazione Santa Lucia, 00179, Rome, Italy
| | - A G Shaikh
- Louis Stokes Cleveland VA Medical Center, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - J D Schmahmann
- Department of Neurology, Massachusetts General Hospital, Ataxia Unit, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Harvard Medical School, Boston, USA
| |
Collapse
|
171
|
Beisteiner R, Matt E, Fan C, Baldysiak H, Schönfeld M, Philippi Novak T, Amini A, Aslan T, Reinecke R, Lehrner J, Weber A, Reime U, Goldenstedt C, Marlinghaus E, Hallett M, Lohse‐Busch H. Transcranial Pulse Stimulation with Ultrasound in Alzheimer's Disease-A New Navigated Focal Brain Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902583. [PMID: 32042569 PMCID: PMC7001626 DOI: 10.1002/advs.201902583] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/20/2019] [Indexed: 05/17/2023]
Abstract
Ultrasound-based brain stimulation techniques may become a powerful new technique to modulate the human brain in a focal and targeted manner. However, for clinical brain stimulation no certified systems exist and the current techniques have to be further developed. Here, a clinical sonication technique is introduced, based on single ultrashort ultrasound pulses (transcranial pulse stimulation, TPS) which markedly differs from existing focused ultrasound techniques. In addition, a first clinical study using ultrasound brain stimulation and first observations of long term effects are presented. Comprehensive feasibility, safety, and efficacy data are provided. They consist of simulation data, laboratory measurements with rat and human skulls and brains, in vivo modulations of somatosensory evoked potentials (SEP) in healthy subjects (sham controlled) and clinical pilot data in 35 patients with Alzheimer's disease acquired in a multicenter setting (including neuropsychological scores and functional magnetic resonance imaging (fMRI)). Preclinical results show large safety margins and dose dependent neuromodulation. Patient investigations reveal high treatment tolerability and no major side effects. Neuropsychological scores improve significantly after TPS treatment and improvement lasts up to three months and correlates with an upregulation of the memory network (fMRI data). The results encourage broad neuroscientific application and translation of the method to clinical therapy and randomized sham-controlled clinical studies.
Collapse
Affiliation(s)
- Roland Beisteiner
- Department of NeurologyLaboratory for Functional Brain Diagnostics and TherapyHigh Field MR CenterMedical University of ViennaSpitalgasse 23Vienna1090Austria
| | - Eva Matt
- Department of NeurologyLaboratory for Functional Brain Diagnostics and TherapyHigh Field MR CenterMedical University of ViennaSpitalgasse 23Vienna1090Austria
| | - Christina Fan
- Applied Research CenterStorz Medical AGLohstampfestrasse 8Tägerwilen8274Switzerland
| | - Heike Baldysiak
- RheintalklinikOutpatient Department Manual MedicineCenter for Movement DisordersThürachstraße 10Bad Krozingen79189Germany
| | - Marleen Schönfeld
- Department of NeurologyLaboratory for Functional Brain Diagnostics and TherapyHigh Field MR CenterMedical University of ViennaSpitalgasse 23Vienna1090Austria
| | - Tabea Philippi Novak
- Department of NeurologyLaboratory for Functional Brain Diagnostics and TherapyHigh Field MR CenterMedical University of ViennaSpitalgasse 23Vienna1090Austria
| | - Ahmad Amini
- Department of NeurologyLaboratory for Functional Brain Diagnostics and TherapyHigh Field MR CenterMedical University of ViennaSpitalgasse 23Vienna1090Austria
| | - Tuna Aslan
- Department of NeurologyLaboratory for Functional Brain Diagnostics and TherapyHigh Field MR CenterMedical University of ViennaSpitalgasse 23Vienna1090Austria
| | - Raphael Reinecke
- Department of NeurologyLaboratory for Functional Brain Diagnostics and TherapyHigh Field MR CenterMedical University of ViennaSpitalgasse 23Vienna1090Austria
| | - Johann Lehrner
- Department of NeurologyLaboratory for Functional Brain Diagnostics and TherapyHigh Field MR CenterMedical University of ViennaSpitalgasse 23Vienna1090Austria
| | - Alexandra Weber
- Department of NeurologyLaboratory for Functional Brain Diagnostics and TherapyHigh Field MR CenterMedical University of ViennaSpitalgasse 23Vienna1090Austria
| | - Ulrike Reime
- RheintalklinikOutpatient Department Manual MedicineCenter for Movement DisordersThürachstraße 10Bad Krozingen79189Germany
| | - Cédric Goldenstedt
- Applied Research CenterStorz Medical AGLohstampfestrasse 8Tägerwilen8274Switzerland
| | - Ernst Marlinghaus
- Applied Research CenterStorz Medical AGLohstampfestrasse 8Tägerwilen8274Switzerland
| | - Mark Hallett
- Human Motor Control SectionNINDSNIH10 Center DriveBethesdaMD20892‐1428USA
| | - Henning Lohse‐Busch
- RheintalklinikOutpatient Department Manual MedicineCenter for Movement DisordersThürachstraße 10Bad Krozingen79189Germany
| |
Collapse
|
172
|
Ozenne V, Constans C, Bour P, Santin MD, Valabrègue R, Ahnine H, Pouget P, Lehéricy S, Aubry JF, Quesson B. MRI monitoring of temperature and displacement for transcranial focus ultrasound applications. Neuroimage 2020; 204:116236. [DOI: 10.1016/j.neuroimage.2019.116236] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/27/2019] [Accepted: 09/28/2019] [Indexed: 01/21/2023] Open
|
173
|
Khalighinejad N, Bongioanni A, Verhagen L, Folloni D, Attali D, Aubry JF, Sallet J, Rushworth MFS. A Basal Forebrain-Cingulate Circuit in Macaques Decides It Is Time to Act. Neuron 2019; 105:370-384.e8. [PMID: 31813653 PMCID: PMC6975166 DOI: 10.1016/j.neuron.2019.10.030] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/02/2019] [Accepted: 10/22/2019] [Indexed: 12/22/2022]
Abstract
The medial frontal cortex has been linked to voluntary action, but an explanation of why decisions to act emerge at particular points in time has been lacking. We show that, in macaques, decisions about whether and when to act are predicted by a set of features defining the animal’s current and past context; for example, respectively, cues indicating the current average rate of reward and recent previous voluntary action decisions. We show that activity in two brain areas—the anterior cingulate cortex and basal forebrain—tracks these contextual factors and mediates their effects on behavior in distinct ways. We use focused transcranial ultrasound to selectively and effectively stimulate deep in the brain, even as deep as the basal forebrain, and demonstrate that alteration of activity in the two areas changes decisions about when to act. Likelihood and timing of voluntary action in macaques can be partially predicted Recent experience and present context influence when voluntary action occurs A basal forebrain-cingulate circuit mediated effects of these factors on behavior Stimulation of this circuit by ultrasound changed decisions about when to act
Collapse
Affiliation(s)
- Nima Khalighinejad
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, UK.
| | - Alessandro Bongioanni
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, UK
| | - Lennart Verhagen
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, UK; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen 6525 XZ, the Netherlands
| | - Davide Folloni
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, UK
| | - David Attali
- Physics for Medicine Paris, INSERM U1273, ESPCI Paris, CNRS FRE 2031, PSL Research University, Paris 75012, France; Pathophysiology of Psychiatric Disorders Laboratory, Inserm U1266, Institute of Psychiatry and Neuroscience of Paris, Paris Descartes University, Paris University, Paris 75014, France; Service Hospitalo-Universitaire, Sainte-Anne Hospital, UGH Paris Psychiatry and Neurosciences, Paris 75014, France
| | - Jean-Francois Aubry
- Physics for Medicine Paris, INSERM U1273, ESPCI Paris, CNRS FRE 2031, PSL Research University, Paris 75012, France
| | - Jerome Sallet
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, UK
| | - Matthew F S Rushworth
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, UK
| |
Collapse
|
174
|
Folloni D, Sallet J, Khrapitchev AA, Sibson N, Verhagen L, Mars RB. Dichotomous organization of amygdala/temporal-prefrontal bundles in both humans and monkeys. eLife 2019; 8:e47175. [PMID: 31689177 PMCID: PMC6831033 DOI: 10.7554/elife.47175] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 09/12/2019] [Indexed: 12/23/2022] Open
Abstract
The interactions of anterior temporal structures, and especially the amygdala, with the prefrontal cortex are pivotal to learning, decision-making, and socio-emotional regulation. A clear anatomical description of the organization and dissociation of fiber bundles linking anterior temporal cortex/amygdala and prefrontal cortex in humans is still lacking. Using diffusion imaging techniques, we reconstructed fiber bundles between these anatomical regions in human and macaque brains. First, by studying macaques, we assessed which aspects of connectivity known from tracer studies could be identified with diffusion imaging. Second, by comparing diffusion imaging results in humans and macaques, we estimated the patterns of fibers coursing between human amygdala and prefrontal cortex and compared them with those in the monkey. In posterior prefrontal cortex, we observed a prominent and well-preserved bifurcation of bundles into primarily two fiber systems-an amygdalofugal path and an uncinate path-in both species. This dissociation fades away in more rostral prefrontal regions.
Collapse
Affiliation(s)
- Davide Folloni
- Wellcome Centre for Integrative Neuroimaging (WIN),Department of Experimental PsychologyUniversity of OxfordOxfordUnited Kingdom
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB),Nuffield Department of Clinical NeurosciencesJohn Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
| | - Jerome Sallet
- Wellcome Centre for Integrative Neuroimaging (WIN),Department of Experimental PsychologyUniversity of OxfordOxfordUnited Kingdom
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB),Nuffield Department of Clinical NeurosciencesJohn Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
| | - Alexandre A Khrapitchev
- Department of Oncology, Cancer Research UK and Medical Research Council Oxford Institute for Radiation OncologyUniversity of OxfordOxfordUnited Kingdom
| | - Nicola Sibson
- Department of Oncology, Cancer Research UK and Medical Research Council Oxford Institute for Radiation OncologyUniversity of OxfordOxfordUnited Kingdom
| | - Lennart Verhagen
- Wellcome Centre for Integrative Neuroimaging (WIN),Department of Experimental PsychologyUniversity of OxfordOxfordUnited Kingdom
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB),Nuffield Department of Clinical NeurosciencesJohn Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
- Donders Institute for Brain, Cognition and BehaviourRadboud University NijmegenNijmegenNetherlands
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB),Nuffield Department of Clinical NeurosciencesJohn Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
- Donders Institute for Brain, Cognition and BehaviourRadboud University NijmegenNijmegenNetherlands
| |
Collapse
|
175
|
Ye M, Solarana K, Rafi H, Patel S, Nabili M, Liu Y, Huang S, Fisher JAN, Krauthamer V, Myers M, Welle C. Longitudinal Functional Assessment of Brain Injury Induced by High-Intensity Ultrasound Pulse Sequences. Sci Rep 2019; 9:15518. [PMID: 31664091 PMCID: PMC6820547 DOI: 10.1038/s41598-019-51876-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/09/2019] [Indexed: 01/02/2023] Open
Abstract
Exposure of the brain to high-intensity stress waves creates the potential for long-term functional deficits not related to thermal or cavitational damage. Possible sources of such exposure include overpressure from blast explosions or high-intensity focused ultrasound (HIFU). While current ultrasound clinical protocols do not normally produce long-term neurological deficits, the rapid expansion of potential therapeutic applications and ultrasound pulse-train protocols highlights the importance of establishing a safety envelope beyond which therapeutic ultrasound can cause neurological deficits not detectable by standard histological assessment for thermal and cavitational damage. In this study, we assessed the neuroinflammatory response, behavioral effects, and brain micro-electrocorticographic (µECoG) signals in mice following exposure to a train of transcranial pulses above normal clinical parameters. We found that the HIFU exposure induced a mild regional neuroinflammation not localized to the primary focal site, and impaired locomotor and exploratory behavior for up to 1 month post-exposure. In addition, low frequency (δ) and high frequency (β, γ) oscillations recorded by ECoG were altered at acute and chronic time points following HIFU application. ECoG signal changes on the hemisphere ipsilateral to HIFU exposure are of greater magnitude than the contralateral hemisphere, and persist for up to three months. These results are useful for describing the upper limit of transcranial ultrasound protocols, and the neurological sequelae of injury induced by high-intensity stress waves.
Collapse
Affiliation(s)
- Meijun Ye
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA.
| | - Krystyna Solarana
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA
| | - Harmain Rafi
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA
| | - Shyama Patel
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA
- Division of Neurological and Physical Medicine Devices, Office of Device Evaluation, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA
| | - Marjan Nabili
- Division of Applied Mechanics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA
- Division of Radiological Health, Office of In Vitro Diagnostics and Radiological Health, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA
| | - Yunbo Liu
- Division of Applied Mechanics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA
| | | | - Jonathan A N Fisher
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA
- Department of Physiology, New York Medical College, Valhalla, NY, USA
| | - Victor Krauthamer
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA
| | - Matthew Myers
- Division of Applied Mechanics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA
| | - Cristin Welle
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA.
- Departments of Neurosurgery and Physiology & Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
176
|
Yoon K, Lee W, Lee JE, Xu L, Croce P, Foley L, Yoo SS. Effects of sonication parameters on transcranial focused ultrasound brain stimulation in an ovine model. PLoS One 2019; 14:e0224311. [PMID: 31648261 PMCID: PMC6812789 DOI: 10.1371/journal.pone.0224311] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/10/2019] [Indexed: 01/01/2023] Open
Abstract
Low-intensity focused ultrasound (FUS) has significant potential as a non-invasive brain stimulation modality and novel technique for functional brain mapping, particularly with its advantage of greater spatial selectivity and depth penetration compared to existing non-invasive brain stimulation techniques. As previous studies, primarily carried out in small animals, have demonstrated that sonication parameters affect the stimulation efficiency, further investigation in large animals is necessary to translate this technique into clinical practice. In the present study, we examined the effects of sonication parameters on the transient modification of excitability of cortical and thalamic areas in an ovine model. Guided by anatomical and functional neuroimaging data specific to each animal, 250 kHz FUS was transcranially applied to the primary sensorimotor area associated with the right hind limb and its thalamic projection in sheep (n = 10) across multiple sessions using various combinations of sonication parameters. The degree of effect from FUS was assessed through electrophysiological responses, through analysis of electromyogram and electroencephalographic somatosensory evoked potentials for evaluation of excitatory and suppressive effects, respectively. We found that the modulatory effects were transient and reversible, with specific sonication parameters outperforming others in modulating regional brain activity. Magnetic resonance imaging and histological analysis conducted at different time points after the final sonication session, as well as behavioral observations, showed that repeated exposure to FUS did not damage the underlying brain tissue. Our results suggest that FUS-mediated, non-invasive, region-specific bimodal neuromodulation can be safely achieved in an ovine model, indicating its potential for translation into human studies.
Collapse
Affiliation(s)
- Kyungho Yoon
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Wonhye Lee
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ji Eun Lee
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Linda Xu
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Phillip Croce
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lori Foley
- Translational Discovery Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Seung-Schik Yoo
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
177
|
Jerusalem A, Al-Rekabi Z, Chen H, Ercole A, Malboubi M, Tamayo-Elizalde M, Verhagen L, Contera S. Electrophysiological-mechanical coupling in the neuronal membrane and its role in ultrasound neuromodulation and general anaesthesia. Acta Biomater 2019; 97:116-140. [PMID: 31357005 DOI: 10.1016/j.actbio.2019.07.041] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 07/20/2019] [Accepted: 07/23/2019] [Indexed: 01/23/2023]
Abstract
The current understanding of the role of the cell membrane is in a state of flux. Recent experiments show that conventional models, considering only electrophysiological properties of a passive membrane, are incomplete. The neuronal membrane is an active structure with mechanical properties that modulate electrophysiology. Protein transport, lipid bilayer phase, membrane pressure and stiffness can all influence membrane capacitance and action potential propagation. A mounting body of evidence indicates that neuronal mechanics and electrophysiology are coupled, and together shape the membrane potential in tight coordination with other physical properties. In this review, we summarise recent updates concerning electrophysiological-mechanical coupling in neuronal function. In particular, we aim at making the link with two relevant yet often disconnected fields with strong clinical potential: the use of mechanical vibrations-ultrasound-to alter the electrophysiogical state of neurons, e.g., in neuromodulation, and the theories attempting to explain the action of general anaesthetics. STATEMENT OF SIGNIFICANCE: General anaesthetics revolutionised medical practice; now an apparently unrelated technique, ultrasound neuromodulation-aimed at controlling neuronal activity by means of ultrasound-is poised to achieve a similar level of impact. While both technologies are known to alter the electrophysiology of neurons, the way they achieve it is still largely unknown. In this review, we argue that in order to explain their mechanisms/effects, the neuronal membrane must be considered as a coupled mechano-electrophysiological system that consists of multiple physical processes occurring concurrently and collaboratively, as opposed to sequentially and independently. In this framework the behaviour of the cell membrane is not the result of stereotypical mechanisms in isolation but instead emerges from the integrative behaviour of a complexly coupled multiphysics system.
Collapse
Affiliation(s)
- Antoine Jerusalem
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK.
| | - Zeinab Al-Rekabi
- Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | - Haoyu Chen
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - Ari Ercole
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Majid Malboubi
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - Miren Tamayo-Elizalde
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - Lennart Verhagen
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford OX1 3TA, UK; WIN, Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Sonia Contera
- Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK.
| |
Collapse
|
178
|
Kaiser M. Computational models and fundamental constraints can inform the design of synthetic connectomes: Comment on "What would a synthetic connectome look like?" by Ithai Rabinowitch. Phys Life Rev 2019; 33:16-18. [PMID: 31416703 DOI: 10.1016/j.plrev.2019.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 10/26/2022]
Affiliation(s)
- Marcus Kaiser
- Interdisciplinary Computing and Complex BioSystems (ICOS) research group, School of Computing, Newcastle University, Newcastle upon Tyne, NE4 5TG, United Kingdom; Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China.
| |
Collapse
|
179
|
Pasquinelli C, Hanson LG, Siebner HR, Lee HJ, Thielscher A. Safety of transcranial focused ultrasound stimulation: A systematic review of the state of knowledge from both human and animal studies. Brain Stimul 2019; 12:1367-1380. [PMID: 31401074 DOI: 10.1016/j.brs.2019.07.024] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Low-intensity transcranial focused ultrasound stimulation (TFUS) holds great promise as a highly focal technique for transcranial stimulation even for deep brain areas. Yet, knowledge about the safety of this novel technique is still limited. OBJECTIVE To systematically review safety related aspects of TFUS. The review covers the mechanisms-of-action by which TFUS may cause adverse effects and the available data on the possible occurrence of such effects in animal and human studies. METHODS Initial screening used key term searches in PubMed and bioRxiv, and a review of the literature lists of relevant papers. We included only studies where safety assessment was performed, and this results in 33 studies, both in humans and animals. RESULTS Adverse effects of TFUS were very rare. At high stimulation intensity and/or rate, TFUS may cause haemorrhage, cell death or damage, and unintentional blood-brain barrier (BBB) opening. TFUS may also unintentionally affect long-term neural activity and behaviour. A variety of methods was used mainly in rodents to evaluate these adverse effects, including tissue staining, magnetic resonance imaging, temperature measurements and monitoring of neural activity and behaviour. In 30 studies, adverse effects were absent, even though at least one Food and Drug Administration (FDA) safety index was frequently exceeded. Two studies reported microhaemorrhages after long or relatively intense stimulation above safety limits. Another study reported BBB opening and neuronal damage in a control condition, which intentionally and substantially exceeded the safety limits. CONCLUSION Most studies point towards a favourable safety profile of TFUS. Further investigations are warranted to establish a solid safety framework for the therapeutic window of TFUS to reliably avoid adverse effects while ensuring neural effectiveness. The comparability across studies should be improved by a more standardized reporting of TFUS parameters.
Collapse
Affiliation(s)
- Cristina Pasquinelli
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark; Center for Magnetic Resonance, Department of Health Technology, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Lars G Hanson
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark; Center for Magnetic Resonance, Department of Health Technology, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark; Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hyunjoo J Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark; Center for Magnetic Resonance, Department of Health Technology, Technical University of Denmark, Kgs, Lyngby, Denmark.
| |
Collapse
|
180
|
di Biase L, Falato E, Di Lazzaro V. Transcranial Focused Ultrasound (tFUS) and Transcranial Unfocused Ultrasound (tUS) Neuromodulation: From Theoretical Principles to Stimulation Practices. Front Neurol 2019; 10:549. [PMID: 31244747 PMCID: PMC6579808 DOI: 10.3389/fneur.2019.00549] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/07/2019] [Indexed: 01/28/2023] Open
Abstract
Transcranial focused ultrasound is an emerging technique for non-invasive neurostimulation. Compared to magnetic or electric non-invasive brain stimulation, this technique has a higher spatial resolution and can reach deep structures. In addition, both animal and human studies suggest that, potentially, different sites of the central and peripheral nervous system can be targeted by this technique. Depending on stimulation parameters, transcranial focused ultrasound is able to determine a wide spectrum of effects, ranging from suppression or facilitation of neural activity to tissue ablation. The aim is to review the state of the art of the human transcranial focused ultrasound neuromodulation literature, including the theoretical principles which underlie the explanation of the bioeffects on neural tissues, and showing the stimulation techniques and parameters used and their outcomes in terms of clinical, neurophysiological or neuroimaging results and safety.
Collapse
Affiliation(s)
- Lazzaro di Biase
- Neurology, Neurophysiology, and Neurobiology Unit, Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy.,Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction, School of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Emma Falato
- Neurology, Neurophysiology, and Neurobiology Unit, Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy.,Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction, School of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Vincenzo Di Lazzaro
- Neurology, Neurophysiology, and Neurobiology Unit, Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| |
Collapse
|
181
|
Feng B, Chen L, Ilham SJ. A review on ultrasonic neuromodulation of the peripheral nervous system: enhanced or suppressed activities? APPLIED SCIENCES-BASEL 2019; 9. [PMID: 34113463 PMCID: PMC8188893 DOI: 10.3390/app9081637] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Ultrasonic (US) neuromodulation has emerged as a promising therapeutic means by delivering focused energy deep into the tissue. Low-intensity ultrasound (US) directly activates and/or inhibits neurons in the central nervous system (CNS). US neuromodulation of the peripheral nervous system (PNS) is less developed and rarely used clinically. Literature on the neuromodulatory effects of US on the PNS is controversy with some documenting enhanced neural activities, some showing suppressed activities, and others reporting mixed effects. US, with different range of intensity and strength, is likely to generate distinct physical effects in the stimulated neuronal tissues, which underlies different experimental outcomes in the literature. In this review, we summarize all the major reports that documented the effects of US on peripheral nerve endings, axons, and/or somata in the dorsal root ganglion. In particular, we thoroughly discuss the potential impacts by the following key parameters to the study outcomes of PNS neuromodulation by the US: frequency, pulse repetition frequency, duty cycle, intensity, metrics for peripheral neural activities, and type of biological preparations used in the studies. Potential mechanisms of peripheral US neuromodulation are summarized to provide a plausible interpretation to the seemly contradictory effects of enhanced and suppressed neural activities from US neuromodulation.
Collapse
Affiliation(s)
- Bin Feng
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
- Correspondence: ; Tel.: (001-860-486-6435)
| | - Longtu Chen
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Sheikh J. Ilham
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
182
|
Fouragnan EF, Chau BKH, Folloni D, Kolling N, Verhagen L, Klein-Flügge M, Tankelevitch L, Papageorgiou GK, Aubry JF, Sallet J, Rushworth MFS. The macaque anterior cingulate cortex translates counterfactual choice value into actual behavioral change. Nat Neurosci 2019; 22:797-808. [PMID: 30988525 PMCID: PMC7116825 DOI: 10.1038/s41593-019-0375-6] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/06/2019] [Indexed: 12/17/2022]
Abstract
The neural mechanisms mediating sensory-guided decision making have received considerable attention but animals often pursue behaviors for which there is currently no sensory evidence. Such behaviors are guided by internal representations of choice values that have to be maintained even when these choices are unavailable. We investigated how four macaque monkeys maintained representations of the value of counterfactual choices– choices that could not be taken at the current moment but which could be taken in the future. Using functional magnetic resonance imaging, we found two different patterns of activity co-varying with values of counterfactual choices in a circuit spanning hippocampus, anterior lateral prefrontal cortex, and anterior cingulate cortex (ACC). ACC activity also reflected whether the internal value representations would be translated into actual behavioral change. To establish the causal importance of ACC for this translation process, we used a novel technique, Transcranial Focused Ultrasound Stimulation, to reversibly disrupt ACC activity.
Collapse
Affiliation(s)
- Elsa F Fouragnan
- School of Psychology, University of Plymouth, Plymouth, UK. .,Wellcome Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, UK.
| | - Bolton K H Chau
- Wellcome Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, UK.,Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Davide Folloni
- Wellcome Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Nils Kolling
- Wellcome Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Lennart Verhagen
- Wellcome Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Miriam Klein-Flügge
- Wellcome Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Lev Tankelevitch
- Wellcome Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Georgios K Papageorgiou
- Wellcome Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, UK.,McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jean-Francois Aubry
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, Paris, France
| | - Jerome Sallet
- Wellcome Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Matthew F S Rushworth
- Wellcome Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, UK.,Wellcome Integrative Neuroimaging, Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| |
Collapse
|
183
|
Making waves with ultrasound. Nat Rev Neurosci 2019; 20:189. [DOI: 10.1038/s41583-019-0149-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
184
|
Folloni D, Verhagen L, Mars RB, Fouragnan E, Constans C, Aubry JF, Rushworth MFS, Sallet J. Manipulation of Subcortical and Deep Cortical Activity in the Primate Brain Using Transcranial Focused Ultrasound Stimulation. Neuron 2019. [PMID: 30765166 DOI: 10.1101/342303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The causal role of an area within a neural network can be determined by interfering with its activity and measuring the impact. Many current reversible manipulation techniques have limitations preventing their application, particularly in deep areas of the primate brain. Here, we demonstrate that a focused transcranial ultrasound stimulation (TUS) protocol impacts activity even in deep brain areas: a subcortical brain structure, the amygdala (experiment 1), and a deep cortical region, the anterior cingulate cortex (ACC, experiment 2), in macaques. TUS neuromodulatory effects were measured by examining relationships between activity in each area and the rest of the brain using functional magnetic resonance imaging (fMRI). In control conditions without sonication, activity in a given area is related to activity in interconnected regions, but such relationships are reduced after sonication, specifically for the targeted areas. Dissociable and focal effects on neural activity could not be explained by auditory confounds.
Collapse
Affiliation(s)
- Davide Folloni
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, UK; Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK.
| | - Lennart Verhagen
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, UK; Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK.
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 HR Nijmegen, the Netherlands
| | - Elsa Fouragnan
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, UK; School of Psychology, University of Plymouth, Plymouth PL4 8AA, UK
| | - Charlotte Constans
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, Univ Paris Diderot, Sorbonne Paris Cité, Paris 75012, France
| | - Jean-François Aubry
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, Paris 75012, France
| | - Matthew F S Rushworth
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, UK; Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Jérôme Sallet
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, UK; Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK.
| |
Collapse
|
185
|
Folloni D, Verhagen L, Mars RB, Fouragnan E, Constans C, Aubry JF, Rushworth MFS, Sallet J. Manipulation of Subcortical and Deep Cortical Activity in the Primate Brain Using Transcranial Focused Ultrasound Stimulation. Neuron 2019; 101:1109-1116.e5. [PMID: 30765166 PMCID: PMC6520498 DOI: 10.1016/j.neuron.2019.01.019] [Citation(s) in RCA: 223] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/29/2018] [Accepted: 01/14/2019] [Indexed: 01/10/2023]
Abstract
The causal role of an area within a neural network can be determined by interfering with its activity and measuring the impact. Many current reversible manipulation techniques have limitations preventing their application, particularly in deep areas of the primate brain. Here, we demonstrate that a focused transcranial ultrasound stimulation (TUS) protocol impacts activity even in deep brain areas: a subcortical brain structure, the amygdala (experiment 1), and a deep cortical region, the anterior cingulate cortex (ACC, experiment 2), in macaques. TUS neuromodulatory effects were measured by examining relationships between activity in each area and the rest of the brain using functional magnetic resonance imaging (fMRI). In control conditions without sonication, activity in a given area is related to activity in interconnected regions, but such relationships are reduced after sonication, specifically for the targeted areas. Dissociable and focal effects on neural activity could not be explained by auditory confounds.
Collapse
Affiliation(s)
- Davide Folloni
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, UK; Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK.
| | - Lennart Verhagen
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, UK; Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK.
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 HR Nijmegen, the Netherlands
| | - Elsa Fouragnan
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, UK; School of Psychology, University of Plymouth, Plymouth PL4 8AA, UK
| | - Charlotte Constans
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, Univ Paris Diderot, Sorbonne Paris Cité, Paris 75012, France
| | - Jean-François Aubry
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, Paris 75012, France
| | - Matthew F S Rushworth
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, UK; Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Jérôme Sallet
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, UK; Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK.
| |
Collapse
|