151
|
Vernon JJ. Modulation of the Human Microbiome: Probiotics, Prebiotics, and Microbial Transplants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1472:277-294. [PMID: 40111698 DOI: 10.1007/978-3-031-79146-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The balance between health and disease is intrinsically linked to the interactions between microbial communities and the host. This complex environment of antagonism and synergy involves both prokaryotic and eukaryotic cells, whose collaborative metabolic pathways and immunomodulatory elements influence system homeostasis. As with the gut and other niches, the oral microbiome has the capacity to affect distal host sites. The ability to manipulate this environment holds the potential to impact local and systemic disease.With the increasing threat of antimicrobial resistance, novel approaches to reduce the burden of disease are essential. The use of probiotics and prebiotics is one such strategy. Probiotics introduce non-pathogenic bacteria into the environment to compete with pathogens for nutrients and attachment sites, or to produce metabolites that counteract disease aetiologies. Prebiotic compounds enhance the growth of health-associated organisms, offering additional benefits, whilst a conjunctive approach with probiotics potentially holds even greater promise. Though widely studied in the gastrointestinal context, their potential for treating oral diseases, such as dental caries and periodontitis, is less understood. Additionally, the use of microbial transplantations has demonstrated efficacy in other areas, reducing systemic inflammation and recolonising with commensal bacteria. Here we evaluate their use in the oral context and their modulatory impact on overall health.In this chapter, we discuss how pro- and prebiotic strategies seek to modulate both the oral and gut environments to promote oral health and prevent disease. We assess novel approaches for utilising health-associated microorganisms to combat oral disorders, either administered locally in the mouth or imparting influence through immune modulation via the oral-gut axis. By examining available clinical trial data, we aim to further understand the intricacies involved in this discipline. Furthermore, we consider the challenges facing the research community, including optimal candidate organism/compound selection and colonisation retention, as well as considerations for future research.
Collapse
Affiliation(s)
- Jon J Vernon
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, UK.
| |
Collapse
|
152
|
Dalkılıç S, Kadıoğlu Dalkılıç L, Uygur L, Timurkaan M, Gültürk B, Kaplan M. Bioinformatics analysis of colorectal cancer transcriptomic data reveals novel prognostic signature and potential biomarker genes. Scand J Gastroenterol 2025; 60:42-53. [PMID: 39644158 DOI: 10.1080/00365521.2024.2437437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/15/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
OBJECTIVE Colorectal cancer (CRC) is a type of digestive system cancer. At the molecular level, some factors, including genetic and epigenetic factors, as well as various signaling pathways such as oxidative stress and inflammation, play an active role in the onset of CRC. Genetic and epigenetic mutations, particularly in oncogenes and tumor suppressor genes, occur during colorectal adenocarcinoma development as a result of a change in gastrointestinal epithelial cell proliferation and self-renewal rates. This study aimed to determine the genes and molecular mechanisms that play a role in the emergence of this disease by analyzing the CRC data. MATERIAL AND METHODS Microarray data selected for bioinformatics analysis is Gene Expression data stored with the code GSE110224 in the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) database. Gene expression analysis, functional clustering analysis, enrichment analysis, and pathway analysis were performed using this data set. RESULTS Analysis of raw transcriptomic data revealed 1770 common DEGs in CRC. While the expression level of 769 of these genes increased, the expression level of 1001 genes decreased. A Protein-protein interaction (PPI) network was created from the first 25 genes with increased expression levels and 11 signature genes were identified. Increased expression of REG1A, MMP3, FOXQ1 and CEMIP genes and decreased expression of AQP8, CA1, CLDN8, PYY, CA4, CEACAM7 and SLC30A10 genes were observed. CONCLUSIONS This approach revealed a CRC-specific molecular profile and may provide some guidance for further investigation of potential biomarkers for diagnosis and prognosis prediction of CRC patients.
Collapse
Affiliation(s)
- Semih Dalkılıç
- Department of Biology and Molecular Biology and Genetics Program, Faculty of Science, Fırat University, Elazig, Türkiye
| | | | - Lütfü Uygur
- Department of Biology and Molecular Biology and Genetics Program, Faculty of Science, Fırat University, Elazig, Türkiye
| | - Mustafa Timurkaan
- Department of Internal Medicine, Fethi Sekin City Hospital, Elazig, Turkey
| | - Barış Gültürk
- Department of General Surgery, Medikal Hospital, Elazig, Turkey
| | - Mustafa Kaplan
- Department of Medical Parasitology, Faculty of Medicine, Faculty of Medicine, Elazig, Turkey
| |
Collapse
|
153
|
Jin K, Huang Y, Che H, Wu Y. Engineered Bacteria for Disease Diagnosis and Treatment Using Synthetic Biology. Microb Biotechnol 2025; 18:e70080. [PMID: 39801378 PMCID: PMC11725985 DOI: 10.1111/1751-7915.70080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/18/2024] [Accepted: 12/26/2024] [Indexed: 01/16/2025] Open
Abstract
Using synthetic biology techniques, bacteria have been engineered to serve as microrobots for diagnosing diseases and delivering treatments. These engineered bacteria can be used individually or in combination as microbial consortia. The components within these consortia complement each other, enhancing diagnostic accuracy and providing synergistic effects that improve treatment efficacy. The application of microbial therapies in cancer, intestinal diseases, and metabolic disorders underscores their significant potential. The impact of these therapies on the host's native microbiota is crucial, as engineered microbes can modulate and interact with the host's microbial environment, influencing treatment outcomes and overall health. Despite numerous advancements, challenges remain. These include ensuring the long-term survival and safety of bacteria, developing new chassis microbes and gene editing techniques for non-model strains, minimising potential toxicity, and understanding bacterial interactions with the host microbiota. This mini-review examines the current state of engineered bacteria and microbial consortia in disease diagnosis and treatment, highlighting advancements, challenges, and future directions in this promising field.
Collapse
Affiliation(s)
- Kai Jin
- Department of Environmental and Chemical EngineeringShanghai UniversityShanghaiChina
| | - Yi Huang
- Department of Environmental and Chemical EngineeringShanghai UniversityShanghaiChina
| | - Hailong Che
- Department of Environmental and Chemical EngineeringShanghai UniversityShanghaiChina
| | - Yihan Wu
- Department of Environmental and Chemical EngineeringShanghai UniversityShanghaiChina
| |
Collapse
|
154
|
Jiang P, Chu M, Liang Y. Identification and Validation of a m6A-Related Long Noncoding RNA Prognostic Model in Colorectal Cancer. J Cell Mol Med 2025; 29:e70376. [PMID: 39868645 PMCID: PMC11770481 DOI: 10.1111/jcmm.70376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 01/28/2025] Open
Abstract
Accumulating research indicates that N6-methyladenosine (m6A) modification plays a pivotal role in colorectal cancer (CRC). Hence, investigating the m6A-related long noncoding RNAs (lncRNAs) significantly improves therapeutic strategies and prognostic assessments. This study aimed to develop and validate a prognostic model based on m6A-related lncRNAs to improve the prediction of clinical outcomes and identify potential immunological mechanisms in CRC. We obtained high-throughput CRC data from The Cancer Genome Atlas to identify a prognostic model based on m6A-related lncRNAs. Then, the model was constructed and validated through LASSO analysis and Cox regression using R software. The clinical applicability was enhanced by developing a nomogram. We further conducted experiments to reveal the biological function of LINC00543. The prognostic model based on eight m6A-related lncRNAs exhibited impressive accuracy, achieving an area under the receiver-operating curve value of 0.753, 0.682 and 0.706 for predictions after 1, 3 and 5 years, respectively. The Kaplan-Meier analysis confirmed the consistency of the model across different pathological characteristics, with a high-risk group showing a poorer prognosis. Furthermore, the model was linked to immune function, particularly the type I interferon response, through gene set enrichment analysis and experimental validation. Our study presented a m6A-related lncRNA prognostic model for CRC with potential clinical utility. The model not only provided improved accuracy over traditional staging but also offered insights into the immunological mechanisms of CRC, facilitating personalised medicine approaches.
Collapse
Affiliation(s)
- Peng Jiang
- Department of Colorectal SurgeryCancer Hospital of China Medical University, Liaoning Cancer Hospital & InstituteShenyangChina
| | - Mingfei Chu
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityShenyangChina
| | - Yu Liang
- Department of Colorectal SurgeryCancer Hospital of China Medical University, Liaoning Cancer Hospital & InstituteShenyangChina
| |
Collapse
|
155
|
Cai H, Li T, Feng W, Wu X, Zhao Y, Wang T. Triple probiotics attenuate colitis via inhibiting macrophage glycolysis dependent pro-inflammatory response. Biochem Biophys Res Commun 2025; 742:151128. [PMID: 39644601 DOI: 10.1016/j.bbrc.2024.151128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/05/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Probiotics, a class of live microorganisms, play an important role in anti-inflammation, regulating immunity and optimizing intestinal microecological environment. In this study, we constructed a combination of three strains - Lactobacillus acidophilus, Bacillus bulgaricus, and Bacillus subtilis - to ferment triple probiotics Bornlisy. Our findings indicate that Bornlisy has a significant therapeutic effect in alleviating colitis in mice, further proofing its ability to suppress inflammation in colon, enhance intestinal barrier function and restore imbalanced intestinal microbiome. Then we found Bornlisy could modulate immune response by inhibiting macrophage glycolysis and ultimately attenuated the progression of colitis in mice. Our investigation into the therapeutic efficacy of Bornlisy in colitis revealed that triple probiotics offer a promising approach for the management of intestinal inflammation.
Collapse
Affiliation(s)
- Hantao Cai
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Tianxin Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Wanting Feng
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Xian Wu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Yue Zhao
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China.
| | - Tingting Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
156
|
Sandys O, Stokkers PCF, Te Velde AA. DAMP-ing IBD: Extinguish the Fire and Prevent Smoldering. Dig Dis Sci 2025; 70:49-73. [PMID: 38963463 PMCID: PMC11761125 DOI: 10.1007/s10620-024-08523-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024]
Abstract
In inflammatory bowel diseases (IBD), the most promising therapies targeting cytokines or immune cell trafficking demonstrate around 40% efficacy. As IBD is a multifactorial inflammation of the intestinal tract, a single-target approach is unlikely to solve this problem, necessitating an alternative strategy that addresses its variability. One approach often overlooked by the pharmaceutically driven therapeutic options is to address the impact of environmental factors. This is somewhat surprising considering that IBD is increasingly viewed as a condition heavily influenced by such factors, including diet, stress, and environmental pollution-often referred to as the "Western lifestyle". In IBD, intestinal responses result from a complex interplay among the genetic background of the patient, molecules, cells, and the local inflammatory microenvironment where danger- and microbe-associated molecular patterns (D/MAMPs) provide an adjuvant-rich environment. Through activating DAMP receptors, this array of pro-inflammatory factors can stimulate, for example, the NLRP3 inflammasome-a major amplifier of the inflammatory response in IBD, and various immune cells via non-specific bystander activation of myeloid cells (e.g., macrophages) and lymphocytes (e.g., tissue-resident memory T cells). Current single-target biological treatment approaches can dampen the immune response, but without reducing exposure to environmental factors of IBD, e.g., by changing diet (reducing ultra-processed foods), the adjuvant-rich landscape is never resolved and continues to drive intestinal mucosal dysregulation. Thus, such treatment approaches are not enough to put out the inflammatory fire. The resultant smoldering, low-grade inflammation diminishes physiological resilience of the intestinal (micro)environment, perpetuating the state of chronic disease. Therefore, our hypothesis posits that successful interventions for IBD must address the complexity of the disease by simultaneously targeting all modifiable aspects: innate immunity cytokines and microbiota, adaptive immunity cells and cytokines, and factors that relate to the (micro)environment. Thus the disease can be comprehensively treated across the nano-, meso-, and microscales, rather than with a focus on single targets. A broader perspective on IBD treatment that also includes options to adapt the DAMPing (micro)environment is warranted.
Collapse
Affiliation(s)
- Oliver Sandys
- Tytgat Institute for Liver and Intestinal Research, AmsterdamUMC, AGEM, University of Amsterdam, Amsterdam, The Netherlands
| | - Pieter C F Stokkers
- Department of Gastroenterology and Hepatology, OLVG West, Amsterdam, The Netherlands
| | - Anje A Te Velde
- Tytgat Institute for Liver and Intestinal Research, AmsterdamUMC, AGEM, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
157
|
Zaramella A, Arcidiacono D, Duci M, Benna C, Pucciarelli S, Fantin A, Rosato A, De Re V, Cannizzaro R, Fassan M, Realdon S. Predictive Value of a Gastric Microbiota Dysbiosis Test for Stratifying Cancer Risk in Atrophic Gastritis Patients. Nutrients 2024; 17:142. [PMID: 39796578 PMCID: PMC11722812 DOI: 10.3390/nu17010142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/24/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND/OBJECTIVES Gastric cancer (GC) incidence remains high worldwide, and the survival rate is poor. GC develops from atrophic gastritis (AG), associated with Helicobacter pylori (Hp) infection, passing through intestinal metaplasia and dysplasia steps. Since Hp eradication does not exclude GC development, further investigations are needed. New data suggest the possible role of unexplored gastric microbiota beyond Hp in the progression from AG to GC. Aimed to develop a score that could be used in clinical practice to stratify GC progression risk, here was investigate gastric microbiota in AG Hp-negative patients with or without high-grade dysplasia (HGD) or GC. METHODS Consecutive patients undergoing upper endoscopy within an endoscopic follow-up for AG were considered. The antrum and corpus biopsies were used to assess the microbiota composition along the disease progression by sequencing the 16S ribosomal RNA gene. Statistical differences between HGD/GC and AG patients were included in a multivariate analysis. RESULTS HGD/GC patients had a higher percentage of Bacillus in the antrum and a low abundance of Rhizobiales, Weeksellaceae and Veillonella in the corpus. These data were used to calculate a multiparametric score (Resident Gastric Microbiota Dysbiosis Test, RGM-DT) to predict the risk of progression toward HGD/GC. The performance of RGM-DT in discriminating patients with HGD/GC showed a specificity of 88.9%. CONCLUSIONS The microbiome-based risk prediction model for GC could clarify the role of gastric microbiota as a cancer risk biomarker to be used in clinical practice. The proposed test might be used to personalize follow-up program thanks to a better cancer risk stratification.
Collapse
Affiliation(s)
- Alice Zaramella
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padua, Via Giustiniani 2, 35128 Padua, Italy; (A.Z.); (C.B.); (S.P.); (A.R.)
- Gastroenterology Unit, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35128 Padua, Italy; (D.A.); (A.F.)
| | - Diletta Arcidiacono
- Gastroenterology Unit, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35128 Padua, Italy; (D.A.); (A.F.)
| | - Miriam Duci
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy;
- Pediatric Surgery Unit, Division of Women’s and Children’s Health, Padova University Hospital, 35128 Padova, Italy
| | - Clara Benna
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padua, Via Giustiniani 2, 35128 Padua, Italy; (A.Z.); (C.B.); (S.P.); (A.R.)
| | - Salvatore Pucciarelli
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padua, Via Giustiniani 2, 35128 Padua, Italy; (A.Z.); (C.B.); (S.P.); (A.R.)
| | - Alberto Fantin
- Gastroenterology Unit, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35128 Padua, Italy; (D.A.); (A.F.)
| | - Antonio Rosato
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padua, Via Giustiniani 2, 35128 Padua, Italy; (A.Z.); (C.B.); (S.P.); (A.R.)
- UOC Immunology and Molecular Oncology, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35128 Padua, Italy
| | - Valli De Re
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy;
| | - Renato Cannizzaro
- Oncological Gastroenterology, Centro di Riferimento Oncologico di Aviano (CRO), National Cancer Institute, IRCCS, 33081 Aviano, Italy;
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Matteo Fassan
- Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35128 Padua, Italy;
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, Via Gabelli 61, 35121 Padua, Italy
| | - Stefano Realdon
- Oncological Gastroenterology, Centro di Riferimento Oncologico di Aviano (CRO), National Cancer Institute, IRCCS, 33081 Aviano, Italy;
| |
Collapse
|
158
|
Li W, Liu Y, Zheng X, Han J, Shi A, Wong CC, Wang R, Jing X, Li Y, Fan S, Zhang C, Chen Y, Guo G, Yu J, She J. Rewiring Tryptophan Metabolism via Programmable Probiotic Integrated by Dual-Layered Microcapsule Protects against Inflammatory Bowel Disease in Mice. ACS NANO 2024; 18:35443-35464. [PMID: 39609102 DOI: 10.1021/acsnano.4c12801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Intestinal dysbiosis and the associated l-tryptophan metabolic disorder are pivotal in inflammatory bowel disease progression, leading to a compromised intestinal barrier integrity. Remedying the dysfunction in tryptophan metabolism has emerged as a promising therapeutic strategy. Herein, we reprogram the tryptophan metabolism in situ by EcN-TRP@A/G, encapsulating the engineered probiotic, EcN-TRP, with enhanced tryptophan synthesis capacity, for sustained modulation, thereby restoring intestinal barrier function and microbial homeostasis. The pH-responsive dual-layered EcN-TRP@A/G microcapsule developed via high-voltage electrospraying and liquid interface self-assembly, preserved probiotic viability in the harsh gastrointestinal milieu, and facilitated targeted colon release. Bioluminescent tracking in mice reveals a 22.84-fold increase in EcN-TRP@A/G viability and distribution compared to naked EcN-TRP. Targeted metabolomics highlights EcN-TRP@A/G's modulation of the tryptophan-indole pathway. Oral administration of EcN-TRP@A/G sustained elevates indole metabolites, particularly indole-3-acetic acid and indole-3-propionic acid, in colon tissue for up to 7 days. In IBD mice, EcN-TRP@A/G improves intestinal permeability, reduces inflammation, and recovers the gut microbiome by enhancing beneficial bacteria abundance like Prevotellaceae_UCG-001 and Anaerostipes while suppressing pathogenic strains like Escherichia-Shigella. Our findings offer a cost-effective approach, harnessing the probiotic metabolic potential in situ through engineered modifications for effective IBD treatment.
Collapse
Affiliation(s)
- Wen Li
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
- Department of General Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Yichen Liu
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Xiaoming Zheng
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- Shaanxi Key Lab of Intelligent Robots, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Jing Han
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Anchen Shi
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
- Department of General Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Chi Chun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong SAR, China
| | - Ruochen Wang
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Xunan Jing
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Yan Li
- Key Laboratory of Biomedical Information Engineering of Ministry of Education and Department of Biomedical Engineering School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Shu Fan
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Cuiyu Zhang
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Yinnan Chen
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Gang Guo
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Jun Yu
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong SAR, China
| | - Junjun She
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
- Department of General Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| |
Collapse
|
159
|
Pueschel L, Nothacker S, Kuhn L, Wedemeyer H, Lenzen H, Wiestler M. Exploring Dietary- and Disease-Related Influences on Flatulence and Fecal Odor Perception in Inflammatory Bowel Disease. J Clin Med 2024; 14:137. [PMID: 39797221 PMCID: PMC11720819 DOI: 10.3390/jcm14010137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Background/Objectives: Inflammatory bowel disease (IBD) affects gastrointestinal function and may alter fecal and flatulence odor (intestinal odor) due to changes in inflammation, the gut microbiome, and metabolism. Investigating the relationship between dietary habits and intestinal odor in IBD is critical given the relationship between diet, gut health, and microbiome diversity. Methods: We performed a cohort analysis of a monocentric, cross-sectional study at a tertiary referral center and compared the perception of fecal and flatulence odor in 233 IBD patients (n = 117 women) with that of 96 healthy controls (HCs) (n = 67 women). In addition to a short screening questionnaire on highly processed foods (sQ-HPF), dietary behavior (Food Frequency Questionnaire (FFQ)), clinical (HBI, PMS) and biochemical (CRP, fecal calprotectin) parameters of disease activity, and adherence to a Mediterranean diet were assessed. Results: A notable predisposition towards elevated levels of intestinal malodor was identified in the IBD cohort when compared to the HC group. The analysis of dietary behavior in conjunction with intestinal malodor revealed more pronounced associations in the HC collective than in the IBD collective. The data further indicated that, in comparison to those in remission, IBD individuals with an active disease status exhibited a higher prevalence of intestinal malodor. In an adjusted logistic regression analysis of the influence of disease- and diet-specific factors on flatulence and fecal malodor in IBD, male sex was identified as a significant risk factor. Conclusions: This study highlights the significance of dietary factors in the management of IBD symptoms, with a particular focus on flatulence and fecal odor. Individuals with IBD demonstrated a higher propensity for intestinal malodor compared to HC, with active disease status further amplifying this prevalence. Dietary behavior showed stronger associations with malodor in the HC group than in IBD individuals, suggesting distinct interaction patterns between diet and gut health in these populations.
Collapse
Affiliation(s)
- Lea Pueschel
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (L.P.); (L.K.); (H.W.); or (H.L.)
| | - Sonja Nothacker
- School for Dietitians, Hannover Medical School, 30625 Hannover, Germany;
| | - Leonie Kuhn
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (L.P.); (L.K.); (H.W.); or (H.L.)
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (L.P.); (L.K.); (H.W.); or (H.L.)
| | - Henrike Lenzen
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (L.P.); (L.K.); (H.W.); or (H.L.)
- Department of Gastroenterology, Hepatology, Interventional Endoscopy and Diabetology, Academic Teaching Hospital Braunschweig, 38126 Braunschweig, Germany
| | - Miriam Wiestler
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (L.P.); (L.K.); (H.W.); or (H.L.)
| |
Collapse
|
160
|
Deskur A, Ambrożkiewicz F, Samborowska E, Błogowski W, Sulikowski T, Białek A, Zawada I, Dąbkowski K, Mitrus J, Karczmarski J, Cybula P, Paziewska A, Starzyńska T. Plasma Bacterial Metabolites in Crohn's Disease Pathogenesis and Complications. Nutrients 2024; 17:74. [PMID: 39796508 PMCID: PMC11722665 DOI: 10.3390/nu17010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND/OBJECTIVES Crohn's disease is known for being associated with an abnormal composition of the bacterial flora, dysbiosis and intestinal function disorders. Metabolites produced by gut microbiota play a pivotal role in the pathogenesis of CD, and the presence of unspecific extraintestinal manifestations. METHODS The aim of this study was a determination of the level of bacterial metabolites in blood plasma in patients with Crohn's disease. CD patients (29) and healthy individuals (30) were recruited for this study. Bacterial metabolites (SCFAs and TMAO panel) were measured by a liquid chromatography-mass spectrometry system. RESULTS A significant correlation (p-value < 0.05) between CD and bacterial metabolites was obtained for three of eight tested SCFAs; acetic acid (reduced in CD; FC 1.7; AUC = 0.714), butyric acid (increased; FC 0.68; AUC = 0.717), 2MeBA (FC 1.168; AUC = 0.702), and indoxyl (FC 0.624). The concentration of CA (FC 0.82) and choline (FC 0.78) in plasma was significantly disturbed according to the biological treatment. Choline level (FC 1.28) was also significantly disturbed in the patients treated with glucocorticoids. In total, 68.97% of Crohn's patients presented extraintestinal manifestations (EIMs) of Crohn's disease, mainly osteoarticular complications. The level of BA was statistically significantly elevated in patients with extraintestinal (FC 0.602) manifestations, while in the group of patients with osteoarticular complications, a significant difference in the level of betaine (FC 1.647) was observed. CONCLUSIONS The analyzed bacterial metabolites of plasma may significantly help in the diagnostic process, and in the monitoring of the disease course and treatment, in a lowly invasive way, as biomarkers after additional research on a larger group of patients.
Collapse
Affiliation(s)
- Anna Deskur
- Department of Gastroenterology and Hepatology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (A.B.); (I.Z.); (K.D.); (T.S.)
| | - Filip Ambrożkiewicz
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 32300 Pilsen, Czech Republic;
| | - Emilia Samborowska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; (E.S.); (J.K.)
| | - Wojciech Błogowski
- Institute of Medical Sciences, University of Zielona Góra, ul. Zyty 28, 65-046 Zielona Gora, Poland;
| | - Tadeusz Sulikowski
- Department of General, Minimally Invasive, and Gastroenterological Surgery, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland;
| | - Andrzej Białek
- Department of Gastroenterology and Hepatology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (A.B.); (I.Z.); (K.D.); (T.S.)
| | - Iwona Zawada
- Department of Gastroenterology and Hepatology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (A.B.); (I.Z.); (K.D.); (T.S.)
| | - Krzysztof Dąbkowski
- Department of Gastroenterology and Hepatology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (A.B.); (I.Z.); (K.D.); (T.S.)
| | - Joanna Mitrus
- Institute of Biological Sciences, University of Siedlce, Prusa 14, 08-110 Siedlce, Poland;
| | - Jakub Karczmarski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; (E.S.); (J.K.)
| | - Patrycja Cybula
- Institute of Health Sciences, Faculty of Medical and Health Sciences, University of Siedlce, 08-110 Siedlce, Poland;
- Molecular Biology Laboratory, Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland
| | - Agnieszka Paziewska
- Institute of Health Sciences, Faculty of Medical and Health Sciences, University of Siedlce, 08-110 Siedlce, Poland;
- Warsaw Genomics Inc., 01-682 Warszawa, Poland
| | - Teresa Starzyńska
- Department of Gastroenterology and Hepatology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (A.B.); (I.Z.); (K.D.); (T.S.)
| |
Collapse
|
161
|
Pan H, Liao L, Xu S, Xu Y, Chai W, Liu X, Li J, Cao Y, Sun L, Liu Q, Yan M. RBIS regulates ribosome biogenesis to affect progression in lung adenocarcinoma. J Transl Med 2024; 22:1147. [PMID: 39722009 DOI: 10.1186/s12967-024-05886-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 11/14/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Increased ribosome biogenesis is required for tumor growth. In this study, we investigated the function and underlying molecular mechanism of ribosome biogenesis factor (RBIS) in the progression of non-small cell lung cancer (NSCLC). METHODS In our study, we conducted a comprehensive analysis to identify key genes implicated in ribosome biogenesis by leveraging a Gene Set Enrichment Analysis (GSEA) dataset. Subsequently, we performed a comparative analysis of gene expression profiles by utilizing data from the Gene Expression Omnibus (GEO) datasets to ascertain differentially expressed genes (DEGs) between cancerous and adjacent non-cancerous tissues. Through the intersection of gene sets derived from GSEA and GEO, we identified a cohort of ribosome-associated genes that might exert a substantial influence on the progression of lung adenocarcinoma. Following an extensive literature review, we have identified the RBIS gene as an interesting candidate for further investigation. To elucidate the in vitro functional role of RBIS, several assays was employed, including the Transwell migration and invasion assay, wound healing assay, Cell Counting Kit-8 (CCK-8) proliferation assay, and colony formation assay. Subcutaneous and tail vein injection-based lung metastasis xenograft tumor models were used in evaluating the tumorigenic potential, growth, and metastatic spread of lung cancer cells. Flow cytometry analysis was employed to investigate cell cycle distribution and apoptotic rates. Additionally, real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) was utilized to quantify the mRNA expression levels of genes. To comprehensively assess the translational efficiency of nascent proteins, we employed polysome profiling analysis to provide insights into the cellular translational landscape. Furthermore, we quantified global protein synthesis using a fluorescence-based assay to measure protein synthesis rates. The immunofluorescence technology was utilized to study the subcellular reorganization of the nucleolus. We conducted co-immunoprecipitation (Co-IP) assays followed by Western blot analysis to identify potential proteins interacted with RBIS. The half maximal inhibitory concentration (IC50) was used for evaluating the chemosensitivity of lung cancer cells to gemcitabine. Additionally, the colony formation assay was employed to assess the survival and proliferative capacity post-treatment of gemcitabine. RESULTS The database analysis showed that RBIS was upregulated in lung adenocarcinoma, and its high expression was associated with poor prognosis; Knockdown of RBIS significantly inhibited NSCLC cell migration, invasion and proliferation in vitro and xenograft tumor growth and metastasis in vivo. Additionally, knockdown of RBIS led to G0/G1 phase arrest and significantly increased apoptosis in lung adenocarcinoma cells. Mechanistically, downregulation of RBIS significantly decreased the expression of 47S ribosomal RNA (rRNA), a component associated with ribosome assembly. Polysome profiling analysis indicated that RBIS knockdown affected protein translation efficiency, and global protein synthesis assay further verified that RBIS knockdown inhibited synthesis of newborn proteins. Additionally, the ribosomal biogenesis-targeting drugs CX-5461 and the loss of RBIS exhibited synergistic effects in inhibiting cell cycle progression and inducing apoptosis. Furthermore, the ribosomal maturation factor GNL2 was identified as the key downstream regulator of RBIS in ribosome biogenesis. Notably, knockdown of RBIS substantially increased the sensitivity of lung adenocarcinoma cells to the chemotherapeutic drug gemcitabine, highlighting its l role in chemotherapy. CONCLUSIONS Collectively, these studies suggested the close involvement of RBIS in the progression of lung adenocarcinoma, providing new insights for targeted therapeutic interventions involving ribosomes.
Collapse
Affiliation(s)
- Hongyu Pan
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Li Liao
- Department of Oncology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Siwei Xu
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yujian Xu
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wenjun Chai
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaoli Liu
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jing Li
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yue Cao
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Lei Sun
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qian Liu
- Department of Respiratory Medicine, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, 1665 Kong Jiang Road, Shanghai, 200092, China.
| | - Mingxia Yan
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
162
|
Bai SH, Chandnani A, Cao S. Bile Acids in Inflammatory Bowel Disease: From Pathophysiology to Treatment. Biomedicines 2024; 12:2910. [PMID: 39767816 PMCID: PMC11673883 DOI: 10.3390/biomedicines12122910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic condition that affects about 7 million people worldwide, and new therapies are needed. Understanding the complex roles that bile acids (BAs) play in IBD may lead to the development of novel IBD treatments independent of direct immunosuppression. This review discusses the latest discoveries in the roles BAs play in IBD pathogenesis and explores how these discoveries offer promising new therapeutic targets to treat IBD and improve patient outcomes. Several therapies discussed include specific BA receptor (BAR) agonists, dietary therapies, supplements, probiotics, and mesenchymal stem cell therapies that have all been shown to decrease IBD disease activity.
Collapse
Affiliation(s)
| | | | - Siyan Cao
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (S.H.B.); (A.C.)
| |
Collapse
|
163
|
Rezano A, Gondo N, Sakai Y, Nakamura Y, Phimsen S, Tani T, Ito A, Okada S, Kuwahara K. Tumorigenesis Caused by Aberrant Expression of GANP, a Central Component in the Mammalian TREX-2 Complex-Lessons from Transcription-Coupled DNA Damages. Int J Mol Sci 2024; 25:13612. [PMID: 39769375 PMCID: PMC11727803 DOI: 10.3390/ijms252413612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025] Open
Abstract
DNA is frequently damaged by genotoxic stresses such as ionizing radiation, reactive oxygen species, and nitrogen species. DNA damage is a key contributor to cancer initiation and progression, and thus the precise and timely repair of these harmful lesions is required. Recent studies revealed transcription as a source of genome instability, and transcription-coupled DNA damage has been a focus in cancer research. Impaired mRNA export is closely related to DNA damage through R-loop formation. The molecular machineries of transcription-coupled DNA damage have been extensively analyzed in Saccharomyces cerevisiae. However, the molecular basis of these phenomena in higher eukaryotes remains elusive. In this review, we focus on the relationship between deregulated mRNA export through the transcription-export-2 (TREX-2) complex and cancer development. Particularly, the expression of germinal center-associated nuclear protein (GANP), a molecular scaffold in the TREX-2 complex, is highly associated with tumorigenesis in mice and humans. Although the deregulated expression of other components in the TREX-2 complex might affect cancer development, we have directly demonstrated the significance of GANP in tumorigenesis using genetically modified mice. Additionally, we describe recent evidence for medical applications demonstrating that the downregulation of the other components may be a good candidate for a chemotherapeutic target in terms of reducing the side effects.
Collapse
Affiliation(s)
- Andri Rezano
- Department of Biomedical Sciences, Division of Cell Biology, Faculty of Medicine, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia;
| | - Naomi Gondo
- Department of Breast and Thyroid Surgical Oncology, Sagara Hospital, Kagoshima 892-0833, Kagoshima, Japan;
| | - Yasuhiro Sakai
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Shizuoka, Japan;
| | - Yuko Nakamura
- Department of Diagnostic Pathology, Kindai University Hospital, Osaka-sayama 589-8511, Osaka, Japan;
| | - Suchada Phimsen
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand;
| | - Tokio Tani
- International Research Center for Agricultural and Environmental Biology (IRCAEB), Kumamoto University, Kumamoto 860-8555, Kumamoto, Japan;
| | - Akihiko Ito
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-sayama 589-8511, Osaka, Japan;
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Retroviral Infection, Kumamoto University, Kumamoto 860-0811, Kumamoto, Japan;
| | - Kazuhiko Kuwahara
- Department of Diagnostic Pathology and Genome Medical Center, Kindai University Hospital, Osaka-sayama 589-8511, Osaka, Japan
| |
Collapse
|
164
|
Rong J, Chen X, Li Z, Li B, Sun Y, Miao Y. Dysregulation of saliva and fecal microbiota as novel biomarkers of colorectal cancer. Front Oncol 2024; 14:1498328. [PMID: 39743994 PMCID: PMC11688226 DOI: 10.3389/fonc.2024.1498328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025] Open
Abstract
The aim of this study was to investigate the biomarkers of salivary and fecal microbiota in Colorectal cancer (CRC). Initially, the study scrutinized the microbial community composition disparities among groups. Utilizing Lasso analysis, it sifted through operational taxonomic units (OTUs) to pinpoint distinctive features. Subsequently, by intersecting feature OTUs across groups, it curated a set of core-shared OTUs and devised a corresponding network. Concluding with functional enrichment analysis, the research delved into the divergent biological functions of these microbial communities within the studied groups. Analysis revealed higher bacterial diversity in saliva compared to feces, with distinct differences at both phylum and genus levels. Feces primarily contained Firmicutes, while saliva was dominated by Bacteroidetes and Proteobacteria. Notably, Escherichia-Shigella and Fusobacterium in feces and Streptococcus in saliva showed increasing abundance from average to adenoma to colorectal cancer. Specific dominant flora was identified within and between groups, including CRC and adenomas across different stages. Seventeen core shared OTUs were identified, and networks of shared OTUs were constructed for each group. Functional enrichment analysis highlighted distinct microbial community functions among the groups. This study's findings on characteristic OTUs in saliva and fecal samples offer valuable insights for distinguishing between healthy individuals, adenoma patients, and those with colorectal cancer. This study identified distinctive OTUs in saliva and feces to distinguish between healthy individuals, adenoma patients, and those with CRC, offering a valuable diagnostic reference.
Collapse
Affiliation(s)
- Jiamei Rong
- Yan’an Hospital Affiliated To Kunming Medical University, Kunming, Yunnan, China
| | - Xiaocui Chen
- Affiliated Hospital of Panzhihua University, Panzhihua, Sichuan, China
| | - Zhangqin Li
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Bona Li
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yang Sun
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yinglei Miao
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
165
|
Zhou X, Zhang Q, Zhu H, Ouyang G, Wang X, Cai Y. High Carbonyl Graphene Oxide Suppresses Colorectal Cancer Cell Proliferation and Migration by Inducing Ferroptosis via the System Xc-/GSH/GPX4 Axis. Pharmaceutics 2024; 16:1605. [PMID: 39771583 PMCID: PMC11678421 DOI: 10.3390/pharmaceutics16121605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/25/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Colorectal cancer (CRC) is characterized by a high rate of both incidence and mortality, and its treatment outcomes are often affected by recurrence and drug resistance. Ferroptosis, an iron-dependent programmed cell death mechanism triggered by lipid peroxidation, has recently gained attention as a potential therapeutic target. Graphene oxide (GO), known for its oxygen-containing functional groups, biocompatibility, and potential for functionalization, holds promise in cancer treatment. However, its role in ferroptosis induction in CRC remains underexplored. The objective of this study was to investigate the effects of High Carbonyl Graphene Oxide (HC-GO) on ferroptosis in CRC and elucidate the underlying mechanisms. METHODS In vitro assays were conducted to evaluate the impact of HC-GO on CRC cell proliferation, mitochondrial function, iron accumulation, lipid peroxidation, and reactive oxygen species (ROS) production. The ferroptosis inhibitor Fer-1 was used to confirm the role of ferroptosis in HC-GO's anti-tumor effects. In vivo, the anti-tumor activity of HC-GO was assessed in a CRC xenograft model, with organ toxicity evaluated. RESULTS HC-GO significantly inhibited CRC cell proliferation, induced mitochondrial damage, and enhanced iron accumulation, lipid peroxidation, and ROS production. It also downregulated the ferroptosis-inhibiting proteins GPX4 and SLC7A11, which were reversed by Fer-1, confirming the involvement of ferroptosis in HC-GO's anti-cancer effects. In vivo, HC-GO significantly suppressed tumor growth without noticeable toxicity to vital organs. CONCLUSIONS HC-GO triggered ferroptosis in CRC cells by suppressing the System Xc-/GSH/GPX4 pathway, providing a novel therapeutic strategy for CRC treatment. These findings suggest HC-GO as a promising nanomedicine for clinical application, warranting further investigation to explore its potential in CRC therapy.
Collapse
Affiliation(s)
- Xiecheng Zhou
- Department of General Surgery, The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai 200240, China; (X.Z.); (H.Z.)
- Center of Community-Based Health Research, Fudan University, Shanghai 200240, China;
| | - Qixing Zhang
- Center of Community-Based Health Research, Fudan University, Shanghai 200240, China;
- Department of Pediatrics, The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai 200240, China
| | - Haoran Zhu
- Department of General Surgery, The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai 200240, China; (X.Z.); (H.Z.)
- Center of Community-Based Health Research, Fudan University, Shanghai 200240, China;
| | - Guangxiong Ouyang
- Department of General Surgery, The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai 200240, China; (X.Z.); (H.Z.)
- Center of Community-Based Health Research, Fudan University, Shanghai 200240, China;
| | - Xin Wang
- Department of General Surgery, The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai 200240, China; (X.Z.); (H.Z.)
- Center of Community-Based Health Research, Fudan University, Shanghai 200240, China;
| | - Yuankun Cai
- Department of General Surgery, The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai 200240, China; (X.Z.); (H.Z.)
- Center of Community-Based Health Research, Fudan University, Shanghai 200240, China;
| |
Collapse
|
166
|
Holani R, Bar-Yoseph H, Krekhno Z, Serapio-Palacios A, Moon KM, Stacey RG, Donald KA, Deng W, Bressler B, Magaña AA, Foster LJ, Atser MG, Johnson JD, Finlay B. Bile acid-induced metabolic changes in the colon promote Enterobacteriaceae expansion and associate with dysbiosis in Crohn's disease. Sci Signal 2024; 17:eadl1786. [PMID: 39689182 DOI: 10.1126/scisignal.adl1786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 06/10/2024] [Accepted: 11/25/2024] [Indexed: 12/19/2024]
Abstract
Bile acids (BAs) affect the growth of potentially pathogenic commensals, including those from the Enterobacteriaceae family, which are frequently overrepresented in inflammatory bowel disease (IBD). BAs are normally reabsorbed in the ileum for recycling and are often increased in the colonic lumina of patients with IBD, including those with Crohn's disease (CD). Here, we investigated the influence of BAs on gut colonization by Enterobacteriaceae. We found increased abundance of Enterobacteriaceae in the colonic mucosae of patients with CD with a concomitant decrease in the transporters that resorb BAs in the ileum. The increase in Enterobacteriaceae colonization was greater in the colons of patients who had undergone terminal ileum resection compared with those with intact ileum, leading us to hypothesize that BAs promote intestinal colonization by Enterobacteriaceae. Exposure of human colonic epithelial cell lines to BAs reduced mitochondrial respiration, increased oxygen availability, and enhanced the epithelial adherence of several Enterobacteriaceae members. In a publicly available human dataset, mucosal Enterobacteriaceae was negatively associated with the expression of genes related to mitochondrial function. In a murine model, increased intestinal BA availability enhanced colonization by Escherichia coli in a manner that depended on bacterial respiration. Together, our findings demonstrate that BAs reduce mitochondrial respiration in the colon, leading to an increase in oxygen availability that facilitates Enterobacteriaceae colonization. This identification of BAs as facilitators of host-commensal interactions may be relevant to multiple intestinal diseases.
Collapse
Affiliation(s)
- Ravi Holani
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Haggai Bar-Yoseph
- Department of Gastroenterology, Rambam Health Care Campus, Haifa, Israel
- Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Zakhar Krekhno
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Antonio Serapio-Palacios
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kyung-Mee Moon
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Biochemistry and Molecular Biology Department, University of British Columbia, Vancouver, British Columbia, Canada
| | - Richard G Stacey
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Katherine A Donald
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wanyin Deng
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian Bressler
- Division of Gastroenterology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Armando A Magaña
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Biochemistry and Molecular Biology Department, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael G Atser
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - James D Johnson
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Barton Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- Biochemistry and Molecular Biology Department, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
167
|
Han J, Zhang J, Shi H, Wen X. WTAP knockdown inhibits cell migration through regulating SNAIL1 expression in colorectal cancer. Am J Transl Res 2024; 16:8023-8031. [PMID: 39822563 PMCID: PMC11733317 DOI: 10.62347/qaqe4354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/05/2024] [Indexed: 01/19/2025]
Abstract
OBJECTIVE N6-methyladenosine (m6A) modification is the most prevalent mRNA modification in carcinogenesis and it plays a crucial role. WTAP, an m6A RNA methyltransferase, is functionally significant in various cancers; however, the specific role and functional mechanism in colorectal cancer (CRC) remain poorly understood. METHOD In this study, we utilized Gene Expression Profiling Interactive Analysis (GEPIA) to compare WTAP expression in CRC and normal tissues. Functional assays including colony formation assay and transwell assay were conducted to assess the impact of WTAP on cell viability and migration. RNA dot blot and MeRIP-PCR assays were used to investigate WTAP's role in m6A modification. RESULTS WTAP expression was elevated in CRC tissues. Colony formation and transwell assays showed that WTAP promoted proliferation and migration of CRC cells in vitro. Mechanistically, MeRIP-PCR analysis demonstrated that WTAP knockdown inhibited SNAI1 expression by reducing m6A modification of SNAI1 in CRC cells. Supporting this, analysis of data from GEPIA and cBioPortal revealed a positive correlation between WTAP and SNAI1 expression. CONCLUSION WTAP may act as an oncogene in CRC by regulating SNAI1 expression.
Collapse
Affiliation(s)
- Jingjing Han
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinan 250117, Shandong, China
| | - Jiankun Zhang
- Department of General Surgery, Zhaoyuan People’s HospitalYantai 265406, Shandong, China
| | - Huilong Shi
- Department of Colorectal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinan 250117, Shandong, China
| | - Xiaowen Wen
- Department of Colorectal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinan 250117, Shandong, China
| |
Collapse
|
168
|
He Z, Yu J, Gong J, Wu J, Zong X, Luo Z, He X, Cheng WM, Liu Y, Liu C, Zhang Q, Dai L, Ding T, Gao B, Gharaibeh RZ, Huang J, Jobin C, Lan P. Campylobacter jejuni-derived cytolethal distending toxin promotes colorectal cancer metastasis. Cell Host Microbe 2024; 32:2080-2091.e6. [PMID: 39626677 DOI: 10.1016/j.chom.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 09/13/2024] [Accepted: 11/07/2024] [Indexed: 12/14/2024]
Abstract
Various forms of solid tumors harbor intracellular bacteria, but the physiological consequences of these microorganisms are poorly understood. We show that Campylobacter is significantly enriched in primary colorectal cancer (CRC) lesions from patients with metastasis. Campylobacter jejuni-derived cytolethal distending toxin (CDT) promotes CRC metastasis through JAK2-STAT3-MMP9 signaling in liver or pulmonary metastatic mice models, as confirmed in C. jejuni-infected human colonic tissue and CDT-treated colonic tumoroids from patients. Genetic deletion of cdtB (ΔcdtB) or purified CdtB protein demonstrates that the genotoxin is essential for C. jejuni's pro-metastatic property. In C.-jejuni-colonized mice, increased translocation of CDT-producing C. jejuni to extraintestinal implanted tumors potentially leads to accelerated metastasis of these tumors. Overall, these findings demonstrate that an intratumor-bacteria-derived genotoxin accelerates tumor metastasis, potentially opening a new diagnostic and therapeutic avenue for cancer management.
Collapse
Affiliation(s)
- Zhen He
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510655, China
| | - Jing Yu
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510655, China
| | - Junli Gong
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510655, China
| | - Jinjie Wu
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510655, China
| | - Xuan Zong
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhanhao Luo
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Xiaowen He
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Wai Ming Cheng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Yugeng Liu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Chen Liu
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Qiang Zhang
- School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Tao Ding
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Beile Gao
- CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, China
| | - Raad Z Gharaibeh
- Department of Medicine, Division of Gastroenterology, University of Florida, Gainesville, FL 32610, USA; Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Jinlin Huang
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Christian Jobin
- Department of Medicine, Division of Gastroenterology, University of Florida, Gainesville, FL 32610, USA; Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA.
| | - Ping Lan
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.
| |
Collapse
|
169
|
Lopez JA, McKeithen-Mead S, Shi H, Nguyen TH, Huang KC, Good BH. Abundance measurements reveal the balance between lysis and lysogeny in the human gut microbiome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.27.614587. [PMID: 39386523 PMCID: PMC11463441 DOI: 10.1101/2024.09.27.614587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The human gut contains diverse communities of bacteriophage, whose interactions with the broader microbiome and potential roles in human health are only beginning to be uncovered. Here, we combine multiple types of data to quantitatively estimate gut phage population dynamics and lifestyle characteristics in human subjects. Unifying results from previous studies, we show that an average human gut contains a low ratio of phage particles to bacterial cells (~1:100), but a much larger ratio of phage genomes to bacterial genomes (~4:1), implying that most gut phage are effectively temperate (e.g., integrated prophage, phage-plasmids, etc.). By integrating imaging and sequencing data with a generalized model of temperate phage dynamics, we estimate that phage induction and lysis occurs at a low average rate (~0.001-0.01 per bacterium per day), imposing only a modest fitness burden on their bacterial hosts. Consistent with these estimates, we find that the phage composition of a diverse synthetic community in gnotobiotic mice can be quantitatively predicted from bacterial abundances alone, while still exhibiting phage diversity comparable to native human microbiomes. These results provide a foundation for interpreting existing and future studies on links between the gut virome and human health.
Collapse
Affiliation(s)
- Jamie A. Lopez
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Saria McKeithen-Mead
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Handuo Shi
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Taylor H. Nguyen
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Benjamin H. Good
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
- Department of Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
170
|
Li L, Zhi M, Wang S, Deng J, Cai Q, Feng D. The effect of workplace environment on coal miners' gut microbiota in a mouse model. Front Microbiol 2024; 15:1453798. [PMID: 39723143 PMCID: PMC11668784 DOI: 10.3389/fmicb.2024.1453798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/13/2024] [Indexed: 12/28/2024] Open
Abstract
The coal mine workplace environment is a significant factor in inducing occupational health issues, such as intestinal dysfunction in coal miners. However, the mechanism by which the coal mine workplace environment induces intestinal dysfunction is still unclear. Therefore, we applied the Coal Mine Workplace Environment Biological Simulation (CEBS) model which was previously constructed to detect the intestinal pathological manifestations and changes in the gut microbiota of mice from the perspectives of intestinal function, tissue morphology, and cell molecules. CEBS mice showed increased fecal water content, shortened colon length, significant activation of MPO+ and CD11b+ numbers, and significant changes in IL-1b, IL-6, and IL-12 expression levels. In addition, we also found an imbalance in the proportions of Firmicutes, Bacteroidetes, Lactobacillus, and Parabacteroides in CEBS mice, resulting in significant changes in gut microbial diversity. After intervention with compound probiotics, the intestinal function of CEBS + Mix mice was improved and inflammation levels were reduced. Results indicated that stress in the coal mine workplace environment can lead to intestinal dysfunction and inflammatory damage of the colon and use of compound probiotics can improve intestinal dysfunction in CBES mice. In our study, we revealed that there is a correlation between coal mine workplace environment and diversity disorders of gut microbiota. This discovery has enhanced the relevant theories on the causes of intestinal dysfunction in coal miners and has suggested a new approach to intervention.
Collapse
Affiliation(s)
- Lei Li
- School of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an, China
- Key Laboratory for Prevention and Control of Coal Fires in Shaanxi Province, Xi'an, China
| | - Mei Zhi
- School of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an, China
- Key Laboratory for Prevention and Control of Coal Fires in Shaanxi Province, Xi'an, China
| | - Siwei Wang
- School of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an, China
- Key Laboratory for Prevention and Control of Coal Fires in Shaanxi Province, Xi'an, China
- Safety Supervision Department, Nanhai Department of Transportation, Foshan, China
| | - Jun Deng
- School of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an, China
- Key Laboratory for Prevention and Control of Coal Fires in Shaanxi Province, Xi'an, China
| | - Qing Cai
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Dayun Feng
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
171
|
Aspesi A, La Vecchia M, Sala G, Ghelardi E, Dianzani I. Study of Microbiota Associated to Early Tumors Can Shed Light on Colon Carcinogenesis. Int J Mol Sci 2024; 25:13308. [PMID: 39769073 PMCID: PMC11677268 DOI: 10.3390/ijms252413308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
An increasingly important role for gut microbiota in the initiation and progression of colorectal cancer (CRC) has been described. Even in the early stages of transformation, i.e., colorectal adenomas, changes in gut microbiota composition have been observed, and several bacterial species, such as pks+Escherichia coli and enterotoxigenic Bacteroides fragilis, have been proposed to drive colon tumorigenesis. In recent years, several strategies have been developed to study mucosa-associated microbiota (MAM), which is more closely associated with CRC development than lumen-associated microbiota (LAM) derived from fecal samples. This review summarizes the state of the art about the oncogenic actions of gut bacteria and compares the different sampling strategies to collect intestinal microbiota (feces, biopsies, swabs, brushes, and washing aspirates). In particular, this article recapitulates the current knowledge on MAM in colorectal adenomas and serrated polyps, since studying the intestinal microbiota associated with early-stage tumors can elucidate the molecular mechanisms underpinning CRC carcinogenesis.
Collapse
Affiliation(s)
- Anna Aspesi
- Department of Health Sciences, Università Del Piemonte Orientale, 28100 Novara, Italy; (A.A.); (M.L.V.); (G.S.)
| | - Marta La Vecchia
- Department of Health Sciences, Università Del Piemonte Orientale, 28100 Novara, Italy; (A.A.); (M.L.V.); (G.S.)
| | - Gloria Sala
- Department of Health Sciences, Università Del Piemonte Orientale, 28100 Novara, Italy; (A.A.); (M.L.V.); (G.S.)
| | - Emilia Ghelardi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56123 Pisa, Italy;
| | - Irma Dianzani
- Department of Health Sciences, Università Del Piemonte Orientale, 28100 Novara, Italy; (A.A.); (M.L.V.); (G.S.)
| |
Collapse
|
172
|
Zhu B, Tapinos A, Koka H, Yi Lee PM, Zhang T, Zhu W, Wang X, Klein A, Lee D, Tse GM, Tsang KH, Wu C, Hua M, Highfill CA, Lenz P, Zhou W, Wang D, Luo W, Jones K, Hutchinson A, Hicks B, Garcia-Closas M, Chanock S, Tse LA, Wedge DC, Yang XR. Genomes and epigenomes of matched normal and tumor breast tissue reveal diverse evolutionary trajectories and tumor-host interactions. Am J Hum Genet 2024; 111:2773-2788. [PMID: 39492056 PMCID: PMC11639081 DOI: 10.1016/j.ajhg.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 11/05/2024] Open
Abstract
Normal tissues adjacent to the tumor (NATs) may harbor early breast carcinogenesis events driven by field cancerization. Although previous studies have characterized copy-number (CN) and transcriptomic alterations, the evolutionary history of NATs in breast cancer (BC) remains poorly characterized. Utilizing whole-genome sequencing (WGS), methylation profiling, and RNA sequencing (RNA-seq), we analyzed paired germline, NATs, and tumor samples from 43 individuals with BC in Hong Kong (HK). We found that single-nucleotide variants (SNVs) were common in NATs, with one-third of NAT samples exhibiting SNVs in driver genes, many of which were present in paired tumor samples. The most frequently mutated genes in both tumor and NAT samples were PIK3CA, TP53, GATA3, and AKT1. In contrast, large-scale aberrations such as somatic CN alterations (SCNAs) and structural variants (SVs) were rarely detected in NAT samples. We generated phylogenetic trees to investigate the evolutionary history of paired NAT and tumor samples. They could be categorized into tumor only, shared, and multiple-tree groups, the last of which is concordant with non-genetic field cancerization. These groups exhibited distinct genomic and epigenomic characteristics in both NAT and tumor samples. Specifically, NAT samples in the shared-tree group showed higher number of mutations, while NAT samples belonging to the multiple-tree group showed a less inflammatory tumor microenvironment (TME), characterized by a higher proportion of regulatory T cells (Tregs) and lower presence of CD14 cell populations. In summary, our findings highlight the diverse evolutionary history in BC NAT/tumor pairs and the impact of field cancerization and TME in shaping the genomic evolutionary history of tumors.
Collapse
Affiliation(s)
- Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Avraam Tapinos
- Manchester Cancer Research Centre, The University of Manchester, Manchester, UK
| | - Hela Koka
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Priscilla Ming Yi Lee
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Wei Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA; Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Xiaoyu Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA; Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Alyssa Klein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - DongHyuk Lee
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA; Department of Statistics, Pusan National University, Busan, Korea
| | - Gary M Tse
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Koon-Ho Tsang
- Department of Pathology, Yan Chai Hospital, Hong Kong, China
| | - Cherry Wu
- Department of Pathology, North District Hospital, Hong Kong, China
| | - Min Hua
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Chad A Highfill
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA; Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Petra Lenz
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA; Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Weiyin Zhou
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA; Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Difei Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA; Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Wen Luo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA; Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kristine Jones
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA; Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Amy Hutchinson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA; Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Belynda Hicks
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA; Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Montserrat Garcia-Closas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA; Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Stephen Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Lap Ah Tse
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - David C Wedge
- Manchester Cancer Research Centre, The University of Manchester, Manchester, UK; NIHR Manchester Biomedical Research Centre, Manchester, UK.
| | - Xiaohong R Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA.
| |
Collapse
|
173
|
Chen Z, Chen W, Lin K, Chen X, Lin G, Li Y, Cui C. Cancer-associated fibroblasts promote the proliferation and metastasis of colon cancer by mediating the RLIM/PML axis through paracrine COMP. J Gastroenterol Hepatol 2024; 39:2677-2689. [PMID: 39162054 DOI: 10.1111/jgh.16713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/14/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND AND AIM Cancer-associated fibroblasts (CAFs) are abundant in colon cancer (CC) patients with a poor prognosis. Here, the molecular regulatory mechanism of CAFs on CC growth and metastasis was explored. METHODS The genes' expression was monitored using RT-qPCR, immunoblotting, and immunohistochemistry. Cell viability and proliferation were found using CCK-8 and clone formation assays. The cell migration and invasion were probed using wound healing and Transwell. Co-IP was utilized for ascertaining the interaction between AKT and the ring finger protein, LIM domain interacting (RLIM). The in vivo murine subcutaneous tumor model and the metastasis model were built to further ascertain the axis. RESULTS The result showed that CAFs motivate the growth and activate the PI3K/AKT pathway of CC cells via paracrine cartilage oligomeric matrix protein (COMP). Moreover, RLIM promoted the growth of CC cells, and its protein stability was regulated by AKT through its phosphorylation. Further, RLIM facilitated the ubiquitination and degradation of promyelocytic leukemia protein (PML). The in vitro and in vivo tests found that PML overexpression could inhibit CC's growth and metastasis, which were enhanced by CAFs. CONCLUSION The COMP excreted from CAFs enhances the CC's growth and metastasis through regulating the RLIM/PML axis, supplying a new potential target for the cure of CC.
Collapse
Affiliation(s)
- Zhenfeng Chen
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Weirong Chen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Kaihuang Lin
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Xigui Chen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Guangrong Lin
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yanchong Li
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Chunhui Cui
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
174
|
Shi S, Ding K, Chen F, Yang M, Ni L, Wu X. Identification of hub genes in the crosstalk between type 2 diabetic nephropathy and obesity according to bioinformatics analysis. Adipocyte 2024; 13:2423723. [PMID: 39526504 PMCID: PMC11556279 DOI: 10.1080/21623945.2024.2423723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 11/16/2024] Open
Abstract
Diabetic nephropathy (DN) and obesity bring a huge burden to society. Obesity plays a crucial role in the progression of type 2 DN, but the pathophysiology remains unclear. Thus, we aimed the explore the association between type 2 DN and obesity using bioinformatics method. The gene expression profiles of type 2 DN (GSE96804) and obesity (GSE94752) were downloaded from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were screened with the thresholds defined as |log2FC| ≥1 and P<0.05. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed. Subsequently, a protein-protein interaction network was constructed based on the STRING database. Hub genes were identified, and the co-expression network was constructed. Finally, the hub genes were verified in clinical samples of 24 patients by immunohistochemistry. A total of 17 common DEGs were identified. Finally, two overlapping hub genes were identified (CCL18, C1QC). C1QC has been verified in clinical specimens. Using bioinformatics methods, the present study analyzed the common DEGs and the potential pathogenic mechanisms involved in type 2 DN and obesity. C1QC was the hub gene. Further studies are needed to clarify the specific relationships among C1QC, type 2 DN and obesity.
Collapse
Affiliation(s)
- Shaomin Shi
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Ke Ding
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Feng Chen
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Donghu Road, Wuhan, Hubei, China
| | - Mei Yang
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Lihua Ni
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Donghu Road, Wuhan, Hubei, China
| | - Xiaoyan Wu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Donghu Road, Wuhan, Hubei, China
- Department of General Practice, Zhongnan Hospital of Wuhan University, Donghu Road, Wuhan, Hubei, China
| |
Collapse
|
175
|
Nakano Y, Masuda T, Sakamoto T, Tanaka N, Tobo T, Hashimoto M, Tatsumi T, Saito H, Takahashi J, Koike K, Abe T, Ando Y, Ozato Y, Hosoda K, Hirose K, Higuchi S, Ikehara T, Hisamatsu Y, Toshima T, Yonemura Y, Ogino T, Uemura M, Eguchi H, Doki Y, Mimori K. SHARPIN is a novel gene of colorectal cancer that promotes tumor growth potentially via inhibition of p53 expression. Int J Oncol 2024; 65:113. [PMID: 39450547 PMCID: PMC11542962 DOI: 10.3892/ijo.2024.5701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Colorectal cancer (CRC) is widely prevalent and represents a significant contributor to global cancer‑related mortality. There remains a pressing demand for advancements in CRC treatment modalities. The E3 ubiquitin ligase is a critical enzyme involved in modulating protein expression levels via posttranslational ubiquitin‑mediated proteolysis, and it is reportedly involved in the progression of various cancers, making it a target of recent interest in anticancer therapy. In the present study, using comprehensive expression analysis involving spatial transcriptomic analysis with single‑cell RNA sequencing in clinical CRC datasets, the ubiquitin‑associated protein Shank‑associated RH domain interactor (SHARPIN) was identified, located on amplified chromosome 8q, which could promote CRC progression. SHARPIN was found to be upregulated in tumor cells, with elevated expression observed in tumor tissues. This heightened expression of SHARPIN was positively associated with lymphatic invasion and served as an independent predictor of a poor prognosis in patients with CRC. In vitro and in vivo analyses using SHARPIN‑overexpressing or ‑knockout CRC cells revealed that SHARPIN overexpression upregulated MDM2, resulting in the downregulation of p53, while SHARPIN silencing or knockout downregulated MDM2, leading to p53 upregulation, which affects cell cycle progression, tumor cell apoptosis and tumor growth in CRC. Furthermore, SHARPIN was found to be overexpressed in several cancer types, exerting significant effects on survival outcomes. In conclusion, SHARPIN represents a newly identified novel gene with the potential to promote tumor growth following apoptosis inhibition and cell cycle progression in part by inhibiting p53 expression via MDM2 upregulation; therefore, SHARPIN represents a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Yusuke Nakano
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Takaaki Masuda
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
- Department of Breast and Endocrine Surgery, Kochi Medical School, Kochi University, Nankoku 783-8505, Japan
| | - Takeharu Sakamoto
- Department of Cancer Biology, Institute of Biomedical Science, Kansai Medical University, Osaka 573-1010, Japan
| | - Noritaka Tanaka
- Department of Cancer Biology, Institute of Biomedical Science, Kansai Medical University, Osaka 573-1010, Japan
| | - Taro Tobo
- Department of Clinical Laboratory Medicine, Kyushu University Beppu Hospital, Oita 874-0838, Japan
| | - Masahiro Hashimoto
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Takanari Tatsumi
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
| | - Hideyuki Saito
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
| | - Junichi Takahashi
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
| | - Kensuke Koike
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
| | - Tadashi Abe
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
| | - Yuki Ando
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
| | - Yuki Ozato
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Kiyotaka Hosoda
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
| | - Kosuke Hirose
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
| | - Satoshi Higuchi
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Tomohiko Ikehara
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
| | - Yuichi Hisamatsu
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
| | - Takeo Toshima
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
| | - Yusuke Yonemura
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
| | - Takayuki Ogino
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Mamoru Uemura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
| |
Collapse
|
176
|
Permain J, Hock B, Eglinton T, Purcell R. Functional links between the microbiome and the molecular pathways of colorectal carcinogenesis. Cancer Metastasis Rev 2024; 43:1463-1474. [PMID: 39340753 PMCID: PMC11554747 DOI: 10.1007/s10555-024-10215-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024]
Abstract
Colorectal cancer (CRC) is a common cancer, with a concerning rise in early-onset CRC cases, signalling a shift in disease epidemiology. Whilst our understanding of the molecular underpinnings of CRC has expanded, the complexities underlying its initiation remain elusive, with emerging evidence implicating the microbiome in CRC pathogenesis. This review synthesizes current knowledge on the intricate interplay between the microbiome, tumour microenvironment (TME), and molecular pathways driving CRC carcinogenesis. Recent studies have reported how the microbiome may modulate the TME and tumour immune responses, consequently influencing cancer progression, and whilst specific bacteria have been linked with CRC, the underlying mechanisms remains poorly understood. By elucidating the functional links between microbial landscapes and carcinogenesis pathways, this review offers insights into how bacteria orchestrate diverse pathways of CRC development, shedding light on potential therapeutic targets and personalized intervention strategies.
Collapse
Affiliation(s)
- Jessica Permain
- Department of Surgery and Critical Care, University of Otago, Christchurch, New Zealand
| | - Barry Hock
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Timothy Eglinton
- Department of Surgery and Critical Care, University of Otago, Christchurch, New Zealand
| | - Rachel Purcell
- Department of Surgery and Critical Care, University of Otago, Christchurch, New Zealand.
| |
Collapse
|
177
|
Hu B, Yang Y, Yao J, Lin G, He Q, Bo Z, Zhang Z, Li A, Wang Y, Chen G, Shan Y. Gut Microbiota as Mediator and Moderator Between Hepatitis B Virus and Hepatocellular Carcinoma: A Prospective Study. Cancer Med 2024; 13:e70454. [PMID: 39702929 DOI: 10.1002/cam4.70454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/06/2024] [Accepted: 11/16/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND The impact of gut microbiome on hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) is unclear. We aimed to evaluate the potential correlation between gut microbiome and HBV-related HCC and introduced novel machine learning (ML) signatures based on gut microbe to predict the risk of HCC. MATERIALS AND METHODS A total of 640 patients with chronic liver diseases or HCC were prospectively recruited between 2019 and 2022. Fecal samples were collected and subjected to 16S rRNA gene sequencing. Univariate and multivariate logistic regression was applied to identify risk characteristics. Several ML methods were employed to construct gut microbe-based models and the predictive performance was evaluated. RESULTS A total of 571 patients were involved in the study, including 374 patients with HCC and 197 patients with chronic liver diseases. After the propensity score matching method, 147 pairs of participants were enrolled in the analysis. Bacteroidia and Bacteroidales were demonstrated to exert mediating effects between HBV and HCC, and the moderating effects varied across Bacilli, Lactobacillales, Erysipelotrichaceae, Actinomyces, and Roseburia. HBV, alpha-fetoprotein, alanine transaminase, triglyceride, and Child-Pugh were identified as independent risk factors for HCC occurrence. Seven ML-based HBV-gut microbe models were established to predict HCC, with AUCs ranging from 0.821 to 0.898 in the training set and 0.813-0.885 in the validation set. Furthermore, the merged clinical-HBV-gut microbe models exhibited a comparable performance to HBV-gut microbe models. CONCLUSIONS Gut microbes are important factors between HBV and HCC through its potential mediating and moderating effects, which can be used as valuable biomarkers for the pathogenesis of HBV-related HCC.
Collapse
Affiliation(s)
- Bingren Hu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Jiangqiao Yao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ganglian Lin
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qikuan He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhiyuan Bo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhewei Zhang
- The First Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Anlvna Li
- The First Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Yi Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Gang Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yunfeng Shan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
178
|
Kumar S, Basu M, Ghosh MK. E3 ubiquitin ligases and deubiquitinases in colorectal cancer: Emerging molecular insights and therapeutic opportunities. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119827. [PMID: 39187067 DOI: 10.1016/j.bbamcr.2024.119827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024]
Abstract
Colorectal cancer (CRC) presents ongoing challenges due to limited treatment effectiveness and a discouraging prognosis, underscoring the need for ground-breaking therapeutic approaches. This review delves into the pivotal role of E3 ubiquitin ligases and deubiquitinases (DUBs), underscoring their role as crucial regulators for tumor suppression and oncogenesis in CRC. We spotlight the diverse impact of E3 ligases and DUBs on CRC's biological processes and their remarkable versatility. We closely examine their specific influence on vital signaling pathways, particularly Wnt/β-catenin and NF-κB. Understanding these regulatory mechanisms is crucial for unravelling the complexities of CRC progression. Importantly, we explore the untapped potential of E3 ligases and DUBs as novel CRC treatment targets, discussing aspects that may guide more effective therapeutic strategies. In conclusion, our concise review illuminates the E3 ubiquitin ligases and deubiquitinases pivotal role in CRC, offering insights to inspire innovative approaches for transforming the treatment landscape in CRC.
Collapse
Affiliation(s)
- Sunny Kumar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201 002, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24 Paraganas, PIN - 743372, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201 002, India.
| |
Collapse
|
179
|
Zheng J, Sun Q, Zhang M, Liu C, Su Q, Zhang L, Xu Z, Lu W, Ching J, Tang W, Cheung CP, Hamilton AL, Wilson O'Brien AL, Wei SC, Bernstein CN, Rubin DT, Chang EB, Morrison M, Kamm MA, Chan FKL, Zhang J, Ng SC. Noninvasive, microbiome-based diagnosis of inflammatory bowel disease. Nat Med 2024; 30:3555-3567. [PMID: 39367251 PMCID: PMC11645270 DOI: 10.1038/s41591-024-03280-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/29/2024] [Indexed: 10/06/2024]
Abstract
Despite recent progress in our understanding of the association between the gut microbiome and inflammatory bowel disease (IBD), the role of microbiome biomarkers in IBD diagnosis remains underexplored. Here we developed a microbiome-based diagnostic test for IBD. By utilization of metagenomic data from 5,979 fecal samples with and without IBD from different geographies and ethnicities, we identified microbiota alterations in IBD and selected ten and nine bacterial species for construction of diagnostic models for ulcerative colitis and Crohn's disease, respectively. These diagnostic models achieved areas under the curve >0.90 for distinguishing IBD from controls in the discovery cohort, and maintained satisfactory performance in transethnic validation cohorts from eight populations. We further developed a multiplex droplet digital polymerase chain reaction test targeting selected IBD-associated bacterial species, and models based on this test showed numerically higher performance than fecal calprotectin in discriminating ulcerative colitis and Crohn's disease from controls. Here we discovered universal IBD-associated bacteria and show the potential applicability of a multibacteria biomarker panel as a noninvasive tool for IBD diagnosis.
Collapse
Affiliation(s)
- Jiaying Zheng
- Microbiota I-Center (MagIC), Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Qianru Sun
- Microbiota I-Center (MagIC), Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Chengyu Liu
- Microbiota I-Center (MagIC), Hong Kong, China
| | - Qi Su
- Microbiota I-Center (MagIC), Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Lin Zhang
- Microbiota I-Center (MagIC), Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhilu Xu
- Microbiota I-Center (MagIC), Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Wenqi Lu
- Microbiota I-Center (MagIC), Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Jessica Ching
- Microbiota I-Center (MagIC), Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Whitney Tang
- Microbiota I-Center (MagIC), Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Chun Pan Cheung
- Microbiota I-Center (MagIC), Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Amy L Hamilton
- Department of Gastroenterology, St Vincent's Hospital, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| | - Amy L Wilson O'Brien
- Department of Gastroenterology, St Vincent's Hospital, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| | - Shu Chen Wei
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Charles N Bernstein
- Department of Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - David T Rubin
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Eugene B Chang
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Mark Morrison
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Michael A Kamm
- Department of Gastroenterology, St Vincent's Hospital, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| | - Francis K L Chan
- Microbiota I-Center (MagIC), Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
| | - Jingwan Zhang
- Microbiota I-Center (MagIC), Hong Kong, China.
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.
- Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Siew C Ng
- Microbiota I-Center (MagIC), Hong Kong, China.
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.
- Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China.
- Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
180
|
Bu Y, Liang J, Li Z, Wang J, Wang J, Yu G. Cancer molecular subtyping using limited multi-omics data with missingness. PLoS Comput Biol 2024; 20:e1012710. [PMID: 39724112 PMCID: PMC11709273 DOI: 10.1371/journal.pcbi.1012710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 01/08/2025] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Diagnosing cancer subtypes is a prerequisite for precise treatment. Existing multi-omics data fusion-based diagnostic solutions build on the requisite of sufficient samples with complete multi-omics data, which is challenging to obtain in clinical applications. To address the bottleneck of collecting sufficient samples with complete data in clinical applications, we proposed a flexible integrative model (CancerSD) to diagnose cancer subtype using limited samples with incomplete multi-omics data. CancerSD designs contrastive learning tasks and masking-and-reconstruction tasks to reliably impute missing omics, and fuses available omics data with the imputed ones to accurately diagnose cancer subtypes. To address the issue of limited clinical samples, it introduces a category-level contrastive loss to extend the meta-learning framework, effectively transferring knowledge from external datasets to pretrain the diagnostic model. Experiments on benchmark datasets show that CancerSD not only gives accurate diagnosis, but also maintains a high authenticity and good interpretability. In addition, CancerSD identifies important molecular characteristics associated with cancer subtypes, and it defines the Integrated CancerSD Score that can serve as an independent predictive factor for patient prognosis.
Collapse
Affiliation(s)
- Yongqi Bu
- School of Software, Shandong University, Jinan, Shandong, China
- Joint SDU-NTU Centre for Artificial Intelligence Research, Shandong University, Jinan, Shandong, China
| | - Jiaxuan Liang
- School of Software, Shandong University, Jinan, Shandong, China
- Joint SDU-NTU Centre for Artificial Intelligence Research, Shandong University, Jinan, Shandong, China
| | - Zhen Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jianbo Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jun Wang
- Joint SDU-NTU Centre for Artificial Intelligence Research, Shandong University, Jinan, Shandong, China
| | - Guoxian Yu
- School of Software, Shandong University, Jinan, Shandong, China
- Joint SDU-NTU Centre for Artificial Intelligence Research, Shandong University, Jinan, Shandong, China
| |
Collapse
|
181
|
Yazici H, Kayaci AE, Oğur K, Yildiz A, Demirbas BT, Cingi A. Is laparoscopic colorectal surgery safe and feasible among elderly patients? Curr Probl Surg 2024; 61:101644. [PMID: 39647977 DOI: 10.1016/j.cpsurg.2024.101644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 12/10/2024]
Affiliation(s)
- Hilmi Yazici
- General Surgery Department, Marmara University Pendik Research and Training Hospital, Istanbul, Turkey.
| | - Ayse Eren Kayaci
- General Surgery Department, Marmara University Pendik Research and Training Hospital, Istanbul, Turkey
| | - Kemal Oğur
- General Surgery Department, Marmara University Pendik Research and Training Hospital, Istanbul, Turkey
| | - Aysenur Yildiz
- General Surgery Department, Marmara University Pendik Research and Training Hospital, Istanbul, Turkey
| | - Baha Tolga Demirbas
- General Surgery Department, Marmara University Pendik Research and Training Hospital, Istanbul, Turkey
| | - Asim Cingi
- General Surgery Department, Marmara University Pendik Research and Training Hospital, Istanbul, Turkey
| |
Collapse
|
182
|
Wang Z, Yang S, Liu L, Mao A, Kan H, Yu F, Ma X, Feng L, Zhou T. The gut microbiota-derived metabolite indole-3-propionic acid enhances leptin sensitivity by targeting STAT3 against diet-induced obesity. Clin Transl Med 2024; 14:e70053. [PMID: 39606796 PMCID: PMC11602751 DOI: 10.1002/ctm2.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/21/2024] [Accepted: 09/28/2024] [Indexed: 11/29/2024] Open
Abstract
Obesity is associated with the gut microbiome. Here, we report that gut commensal Clostridia bacteria regulate host energy balance through the tryptophan-derived metabolite indole-3-propionic acid (IPA). IPA acts as an endogenous leptin sensitiser to counteract obesity. Mechanistically, IPA is secreted from the gut into the circulation, and then targets to the STAT3 in the hypothalamic appetite regulation centre, promoting its phosphorylation and nuclear translocation, which enhances the body's response to leptin, and regulates the balance between appetite and energy metabolism. The in vitro pull-down assays involving site-directed mutagenesis demonstrate that Trp623 in the SH2 domain is the key binding site for STAT3-IPA interaction. High-fat diet (HFD), rather than genetic factors, induces excessive secretion of antimicrobial peptides by Paneth cells, inhibiting the growth of Clostridia in the gut and resulting in decreased production of the beneficial metabolite IPA. IPA or Clostridium sporogenes supplement effectively controls weight gain, improves glucose metabolism, and reduces inflammation in DIO mice. IPA fails to achieve such effects in ob/ob mice, while exogenous leptin administration restores the therapeutic effect of IPA. Our study suggests that the IPA-based gut-brain axis regulates host metabolism, and supplementation with microbiome-derived IPA could be a promising intervention strategy for treating obesity.
Collapse
Affiliation(s)
- Zhiwei Wang
- Department of PharmacologyWuxi School of MedicineJiangnan UniversityWuxiChina
| | - Shaying Yang
- Department of PharmacologyWuxi School of MedicineJiangnan UniversityWuxiChina
| | - Liangju Liu
- Department of PharmacologyWuxi School of MedicineJiangnan UniversityWuxiChina
| | - Aiqin Mao
- Department of PharmacologyWuxi School of MedicineJiangnan UniversityWuxiChina
| | - Hao Kan
- Department of PharmacologyWuxi School of MedicineJiangnan UniversityWuxiChina
| | - Fan Yu
- Department of PharmacologyWuxi School of MedicineJiangnan UniversityWuxiChina
| | - Xin Ma
- Department of PharmacologyWuxi School of MedicineJiangnan UniversityWuxiChina
- Medical Basic Research Innovation Center for Gut Microbiota and Chronic DiseasesWuxi School of MedicineJiangnan UniversityWuxiChina
| | - Lei Feng
- Department of PharmacologyWuxi School of MedicineJiangnan UniversityWuxiChina
| | - Tingting Zhou
- Department of PharmacologyWuxi School of MedicineJiangnan UniversityWuxiChina
| |
Collapse
|
183
|
Rojas S, Barghouth PG, Karabinis P, Oviedo NJ. The DNA methyltransferase DMAP1 is required for tissue maintenance and planarian regeneration. Dev Biol 2024; 516:196-206. [PMID: 39179016 PMCID: PMC11521571 DOI: 10.1016/j.ydbio.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/12/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024]
Abstract
The precise regulation of transcription is required for embryonic development, adult tissue turnover, and regeneration. Epigenetic modifications play a crucial role in orchestrating and regulating the transcription of genes. These modifications are important in the transition of pluripotent stem cells and their progeny. Methylation, a key epigenetic modification, influences gene expression through changes in DNA methylation. Work in different organisms has shown that the DNA methyltransferase-1-associated protein (DMAP1) may associate with other molecules to repress transcription through DNA methylation. Thus, DMAP1 is a versatile protein implicated in a myriad of events, including pluripotency maintenance, DNA damage repair, and tumor suppression. While DMAP1 has been extensively studied in vitro, its complex regulation in the context of the adult organism remains unclear. To gain insights into the possible roles of DMAP1 at the organismal level, we used planarian flatworms that possess remarkable regenerative capabilities driven by pluripotent stem cells called neoblast. Our findings demonstrate the evolutionary conservation of DMAP1 in the planarian Schmidtea mediterranea. Functional disruption of DMAP1 through RNA interference revealed its critical role in tissue maintenance, neoblast differentiation, and regeneration in S. mediterranea. Moreover, our analysis unveiled a novel function for DMAP1 in regulating cell death in response to DNA damage and influencing the expression of axial polarity markers. Our findings provide a simplified paradigm for studying DMAP1's function in adult tissues.
Collapse
Affiliation(s)
- Salvador Rojas
- Department of Molecular & Cell Biology, University of California, Merced, CA, 95343, USA
| | - Paul G Barghouth
- Department of Molecular & Cell Biology, University of California, Merced, CA, 95343, USA
| | - Peter Karabinis
- Department of Molecular & Cell Biology, University of California, Merced, CA, 95343, USA
| | - Néstor J Oviedo
- Department of Molecular & Cell Biology, University of California, Merced, CA, 95343, USA; Health Sciences Research Institute, University of California, Merced, CA, 95343, USA.
| |
Collapse
|
184
|
González A, Fullaondo A, Navarro D, Rodríguez J, Tirnauca C, Odriozola A. New Insights into Mucosa-Associated Microbiota in Paired Tumor and Non-Tumor Adjacent Mucosal Tissues in Colorectal Cancer Patients. Cancers (Basel) 2024; 16:4008. [PMID: 39682194 DOI: 10.3390/cancers16234008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVE Colorectal cancer (CRC) is one of the most common cancers worldwide. Increasing scientific evidence supports the idea that gut microbiota dysbiosis accompanies colorectal tumorigenesis, and these changes could be causative. Implementing gut microbiota analysis in clinical practice is limited by sample type, sequencing platform and taxonomic classification. This article aims to address these limitations, providing new insights into the microbiota associated with CRC pathogenesis and implementing its analyses in personalized medicine. METHODS To that aim, we evaluate differences in the bacterial composition of 130 paired tumor and non-tumor adjacent tissues from a cohort of CRC patients from the Biobank of the University of Navarra, Spain. The V3-V4 region of the 16S rRNA gene was amplified, sequenced using the MinION platform, and taxonomically classified using the NCBI database. RESULTS To our knowledge, this is the first study to report an increased relative abundance of Streptococcus periodonticum and a decreased relative abundance of Corynebacterium associated with CRC. Genera such as Fusobacterium, Leptotrichia and Streptococcus showed higher relative abundances in tumor than in non-tumor tissues, as previously described in the literature. Specifically, we identified higher levels of Fusobacterium animalis, Fusobacterium nucleatum, Fusobacterium polymorphum and S. periodonticum in tumor tissues. In contrast, genera such as Bacteroides and Corynebacterium showed lower relative abundances in tumor tissues. There were also differences at the taxonomic level between tumor locations. CONCLUSIONS These results, consistent with previous studies, further support the hypothesis that Leptotrichia and Fusobacterium contribute to CRC progression, with F. nucleatum and F. animalis proposed as key CRC pathogenic taxa. Overall, these results contribute to a better understanding of the CRC-associated microbiota, addressing critical barriers to its implementation in personalized medicine.
Collapse
Affiliation(s)
- Adriana González
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48940 Bilbao, Spain
| | - Asier Fullaondo
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48940 Bilbao, Spain
| | | | - Javier Rodríguez
- Department of Oncology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Cristina Tirnauca
- Department of Mathematics, Statistics and Computer Science, University of Cantabria, 39005 Santander, Spain
| | - Adrian Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48940 Bilbao, Spain
| |
Collapse
|
185
|
Gomes SF, Valois A, Estevinho MM, Santiago M, Magro F. Association of Gut Microbiome and Dipeptidyl Peptidase 4 in Immune-Mediated Inflammatory Bowel Disease: A Rapid Literature Review. Int J Mol Sci 2024; 25:12852. [PMID: 39684563 PMCID: PMC11641704 DOI: 10.3390/ijms252312852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Immune-mediated inflammatory diseases (IMIDs) are characterized by dysregulated immune responses and chronic tissue inflammation. In the setting of inflammatory bowel disease (IBD), dipeptidyl peptidase 4 (DPP4) and gut microorganisms have been proved to interplay, potentially influenced by dietary factors. This rapid review aimed to study the DPP4-gut microbiome link in IBD. A search across five databases and two gray literature sources identified seven relevant studies reporting data on DPP4 and gut microbiome in patients with IBD-related IMIDs or in vitro or in vivo models: one cross-sectional, one in vitro, and five in vivo studies. The findings revealed a significant impact of DPP4 and its substrates, i.e., glucagon-like peptide-1/2 (GLP-1/2), on the composition of gut microbiome and on the development of dysbiosis. Increased DPP4 activity is associated with decreased GLP-1/2; increased pathogenic bacterial phyla such as Actinobacteria, Bacteroidetes, Deferribacteres, Firmicutes, Fusobacteriota, Proteobacteria, and Verrucomicrobia; and decreased alpha diversity of beneficial gut microbes, including Clostridiaceae, Lachnospiraceae, and Ruminococcaceae families and short-chain fatty acid-producing bacteria like Odoribacter and Butryvibrio spp., with exacerbation of intestinal inflammation. This overview revealed that understanding the DPP4-gut microbiome association is critical for the development of DPP4-targeted therapeutic strategies to guarantee gut microbiome balance and modulation of immune response in IBD.
Collapse
Affiliation(s)
- Sandra F. Gomes
- Unit of Pharmacology and Therapeutics, Department of Biomedicine, Faculty of Medicine, University of Porto (FMUP), 4200-450 Porto, Portugal; (S.F.G.); (M.M.E.)
- Unit of Medical Education, Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto (FMUP), 4200-450 Porto, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), University of Porto, 4200-450 Porto, Portugal
- RISE-Health, Faculty of Medicine, University of Porto (FMUP), 4200-450 Porto, Portugal
| | - André Valois
- Unit of Clinical Pharmacology, São João University Hospital Center, 4200-319 Porto, Portugal;
| | - Maria Manuela Estevinho
- Unit of Pharmacology and Therapeutics, Department of Biomedicine, Faculty of Medicine, University of Porto (FMUP), 4200-450 Porto, Portugal; (S.F.G.); (M.M.E.)
- Center for Drug Discovery and Innovative Medicines (MedInUP), University of Porto, 4200-450 Porto, Portugal
- Department of Gastroenterology, Vila Nova de Gaia/Espinho Hospital Center, 4434-502 Vila Nova de Gaia, Portugal
| | - Mafalda Santiago
- Portuguese Study Group of Inflammatory Bowel Disease (GEDII), 4200-450 Porto, Portugal;
| | - Fernando Magro
- Unit of Pharmacology and Therapeutics, Department of Biomedicine, Faculty of Medicine, University of Porto (FMUP), 4200-450 Porto, Portugal; (S.F.G.); (M.M.E.)
- RISE-Health, Faculty of Medicine, University of Porto (FMUP), 4200-450 Porto, Portugal
- Unit of Clinical Pharmacology, São João University Hospital Center, 4200-319 Porto, Portugal;
- Portuguese Study Group of Inflammatory Bowel Disease (GEDII), 4200-450 Porto, Portugal;
- Center for Health Technology and Services Research (CINTESIS), Faculty of Medicine, University of Porto (FMUP), 4200-450 Porto, Portugal
- Department of Gastroenterology, São João University Hospital Center, 4200-319 Porto, Portugal
| |
Collapse
|
186
|
Zeng X, Ma Q, Huang CX, Xiao JJ, Fu X, Ren YF, Qu YL, Xiang HX, Lei M, Zheng RY, Zhong Y, Xiao P, Zhuang X, You FM, He JW. Diagnostic potential of salivary microbiota in persistent pulmonary nodules: identifying biomarkers and functional pathways using 16S rRNA sequencing and machine learning. J Transl Med 2024; 22:1079. [PMID: 39609902 PMCID: PMC11603953 DOI: 10.1186/s12967-024-05802-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/23/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND The aim of this study was to explore the microbial variations and biomarkers in the oral environment of patients with persistent pulmonary nodules (pPNs) and to reveal the potential biological functions of the salivary microbiota in pPNs. MATERIALS AND METHODS This study included a total of 483 participants (141 healthy controls and 342 patients with pPNs) from June 2022 and January 2024. Saliva samples were subjected to sequencing of the V3-V4 region of the 16S rRNA gene to assess microbial diversity and differential abundance. Seven advanced machine learning algorithms (logistic regression, support vector machine, multi-layer perceptron, naïve Bayes, random forest, gradient boosting decision tree, and LightGBM) were utilized to evaluate performance and identify key microorganisms, with fivefold cross-validation employed to ensure robustness. The Shapley Additive exPlanations (SHAP) algorithm was employed to explain the contribution of these core microbiotas to the predictive model. Additionally, the PICRUSt2 algorithm was used to predict the microbial functions. RESULTS The salivary microbial composition in pPNs group showed significantly lower α- and β-diversity compared to healthy controls. A high-accuracy LightGBM model was developed, identifying six core genera-Fusobacterium, Solobacterium, Actinomyces, Porphyromonas, Atopobium, and Peptostreptococcus-as pPNs biomarkers. Additionally, a visualization pPNs risk prediction system was developed. The immune responses and metabolic activities differences in salivary microbiota between the patients with pPNs and healthy controls were revealed. CONCLUSIONS This study highlights the potential clinical applications of the salivary microbiota for enable earlier detection and targeted interventions, offering significant promise for advancing clinical management and improving patient outcomes in pPNs.
Collapse
Affiliation(s)
- Xiao Zeng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China
| | - Qiong Ma
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China
| | - Chun-Xia Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China
| | - Jun-Jie Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China
| | - Xi Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China
| | - Yi-Feng Ren
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China
| | - Yu-Li Qu
- College of Artificial Intelligence, Xi'an Jiaotong University, Xian, 710061, Shanxi Province, China
| | - Hong-Xia Xiang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China
| | - Mao Lei
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China
| | - Ru-Yi Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China
| | - Yang Zhong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China
| | - Ping Xiao
- Department of Thoracic Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610042, Sichuan Province, China
| | - Xiang Zhuang
- Department of Thoracic Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610042, Sichuan Province, China
| | - Feng-Ming You
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China.
| | - Jia-Wei He
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China.
| |
Collapse
|
187
|
Estaji F, Zibaee S, Torabi M, Moghim S. Epstein-Barr Virus and gastric carcinoma pathogenesis with emphasis on underlying epigenetic mechanisms. Discov Oncol 2024; 15:719. [PMID: 39601901 PMCID: PMC11602878 DOI: 10.1007/s12672-024-01619-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024] Open
Abstract
Gastric cancer (GC) remains one of the top causes of cancer-related mortality around the world. The pathogenesis of GC is attributed to lifestyle, family history, genetic mutations, epigenetic alterations, as well as infectious agents such as Epstein-Barr Virus (EBV). EBV, a ubiquitous human gamma herpes virus, with latent asymptomatic infection in more than 95% of the world's population, is able to infect through the oral epithelium. EBV is described as the first virus found in human neoplastic, when it was detected in Burkitt lymphoma tumor biopsy. Nowadays this virus is considered to be involved in various human malignancies such as GC. Despite comprehensive efforts and immense studies, the main underlying mechanism is not well described as there are crucial contradictions regarding the presence of this virus and the prognosis of the disease. Immunological alterations, genetic mutations, and epigenetic modifications are among the most important criteria presented in EBV- associated gastric cancer (EBVaGC), leading to its consideration as a separate subtype with unique clinical, histological, biochemical, and genetic characteristics. The current study aimed to review the association between EBV and GC with an emphasis on the role of epigenetic modifications in the suppression or progression of carcinogenesis. To put all findings in a nutshell, several genes and chromatin mutations, promoter hypermethylation and subsequent silencing of related genes, and histone modifications and aberrant micro RNAs (miRNAs) expression were considered as the major altered mechanisms in the pathogenesis of EBVaGC, most of which able to be suggested as therapeutic targets. However, the current knowledge appeared to be imperfect, hence further studies are encouraged.
Collapse
Affiliation(s)
- Fatemeh Estaji
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Saeed Zibaee
- Department of Research and Development of Biological Products, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization, Mashhad, Iran
| | - Maryam Torabi
- Department of Biotechnology, Molecular Biology Laboratory of Khorasan Razavi Veterinary Head Office, Mashhad, Iran
| | - Sharareh Moghim
- Department of Bacteriology & Virology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
188
|
Okumura R, Takeda K. The role of the mucosal barrier system in maintaining gut symbiosis to prevent intestinal inflammation. Semin Immunopathol 2024; 47:2. [PMID: 39589551 PMCID: PMC11599372 DOI: 10.1007/s00281-024-01026-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 09/29/2024] [Indexed: 11/27/2024]
Abstract
In the intestinal tract, where numerous intestinal bacteria reside, intestinal epithelial cells produce and release various antimicrobial molecules that form a complex barrier on the mucosal surface. These barrier molecules can be classified into two groups based on their functions: those that exhibit bactericidal activity through chemical reactions, such as antimicrobial peptides, and those that physically hinder bacterial invasion, like mucins, which lack bactericidal properties. In the small intestine, where Paneth cells specialize in producing antimicrobial peptides, the chemical barrier molecules primarily inhibit bacterial growth. In contrast, in the large intestine, where Paneth cells are absent, allowing bacterial growth, the primary defense mechanism is the physical barrier, mainly composed of mucus, which controls bacterial movement and prevents their invasion of intestinal tissues. The expression of these barrier molecules is regulated by metabolites produced by bacteria in the intestinal lumen and cytokines produced by immune cells in the lamina propria. This regulation establishes a defense mechanism that adapts to changes in the intestinal environment, such as alterations in gut microbial composition and the presence of pathogenic bacterial infections. Consequently, when the integrity of the gut mucosal barrier is compromised, commensal bacteria and pathogenic microorganisms from outside the body can invade intestinal tissues, leading to conditions such as intestinal inflammation, as observed in cases of inflammatory bowel disease.
Collapse
Affiliation(s)
- Ryu Okumura
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
- Institute for Open and Transdisciplinary Research Initiative, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kiyoshi Takeda
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan.
- Institute for Open and Transdisciplinary Research Initiative, Osaka University, Suita, Osaka, 565-0871, Japan.
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
189
|
Wagner KD, Safwan-Zaiter H, Wagner N. A Dual Role of the Senescence Marker P16Ink4a in Liver Endothelial Cell Function. Cells 2024; 13:1929. [PMID: 39682678 PMCID: PMC11640762 DOI: 10.3390/cells13231929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
P16Ink4a is a well-established marker of senescence. Although P16Ink4a is expressed in endothelial cells, little is known about its function in these cells. Using isolated liver endothelial cells with silencing or overexpression of P16Ink4a, we show here that dependent on P16Ink4a levels, different pathways and functions are affected. High levels of P16Ink4a reduce proliferation and induce senescence, while low levels have the opposite effects. Only high P16Ink4a expression reduces in vitro angiogenesis. Expression profiling reveals an inflammatory phenotype upon silencing of P16Ink4a, while P16Ink4a overexpression is associated with a profile associated with DNA damage, repair and senescence. Low levels of P16Ink4a induce reactive oxygen species (ROS) generation and increase endothelial cell leakage. Collectively, P16Ink4a represents an "antagonistic pleiotropy" gene, which is, on the one hand, required to prevent ROS generation and endothelial damage and, on the other hand, inhibits angiogenesis through induction of senescence at high levels.
Collapse
Affiliation(s)
| | | | - Nicole Wagner
- CNRS, INSERM, iBV, Université Côte d’Azur, 06107 Nice, France;
| |
Collapse
|
190
|
Huang L, Jiang C, Yan M, Wan W, Li S, Xiang Z, Wu J. The oral-gut microbiome axis in breast cancer: from basic research to therapeutic applications. Front Cell Infect Microbiol 2024; 14:1413266. [PMID: 39639864 PMCID: PMC11617537 DOI: 10.3389/fcimb.2024.1413266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 11/01/2024] [Indexed: 12/07/2024] Open
Abstract
As a complicated and heterogeneous condition, breast cancer (BC) has posed a tremendous public health challenge across the world. Recent studies have uncovered the crucial effect of human microbiota on various perspectives of health and disease, which include cancer. The oral-gut microbiome axis, particularly, have been implicated in the occurrence and development of colorectal cancer through their intricate interactions with host immune system and modulation of systemic inflammation. However, the research concerning the impact of oral-gut microbiome axis on BC remains scarce. This study focused on comprehensively reviewing and summarizing the latest ideas about the potential bidirectional relation of the gut with oral microbiota in BC, emphasizing their potential impact on tumorigenesis, treatment response, and overall patient outcomes. This review can reveal the prospect of tumor microecology and propose a novel viewpoint that the oral-gut microbiome axis can be a breakthrough point in future BC studies.
Collapse
Affiliation(s)
- Lan Huang
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Chun Jiang
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Meina Yan
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Weimin Wan
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Shuxiang Li
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| |
Collapse
|
191
|
Zhu Y, Jin Y, He X, Chen J, Zhang Y, Wang J. ALKBH5 insufficiency protects against ferroptosis-driven cisplatin-induced renal cytotoxicity. Cell Biol Toxicol 2024; 40:99. [PMID: 39557743 PMCID: PMC11573822 DOI: 10.1007/s10565-024-09947-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 11/07/2024] [Indexed: 11/20/2024]
Abstract
In the clinical setting, cisplatin-induced nephrotoxicity primarily manifests as acute kidney injury (AKI). Recent studies have indicated that ferroptosis, a type of iron-dependent cell death, is closely involved in the cisplatin nephrotoxicity. AlkB homologue 5 (ALKBH5), an N6-methyladenosine (m6A) eraser protein expressed in various tissues, including the kidneys, has been implicated in this process. However, the specific role of ALKBH5 in cisplatin-induced nephrotoxicity remains unknown. Our findings indicated that ALKBH5 was upregulated in cisplatin-induced AKI, and the in vivo study results were consistent with the results of the in vitro study. Additionally, ALKBH5 knockout in transgenic animals was found to mitigate cisplatin-induced renal dysfunction, whereas its knock-in exacerbated the effects. Our study revealed that ALKBH5 controls the traditional ferroptosis metabolic pathway, leading to worsening of AKI in experiments conducted both in vivo and in vitro. The efficacy of pharmacological intervention targeting ALKBH5 in AKI animal models was demonstrated, and ALKBH5-based gene therapy confirmed these findings and displayed renoprotective effects against AKI. In conclusion, this study highlighted the crucial role of ALKBH5 as a key regulator of AKI. Overall, our research demonstrates the significant impact of ALKBH5 in controlling ferroptosis in cisplatin-induced AKI, suggesting that focusing on ALKBH5 could be a promising approach for treating cisplatin-related kidney damage.
Collapse
Affiliation(s)
- Yu Zhu
- Department of Traditional Chinese Medicine, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310005, China
| | - Yanyan Jin
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310005, China
| | - Xue He
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310005, China
| | - JunYi Chen
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310005, China
| | - Yao Zhang
- Department of Traditional Chinese Medicine, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310005, China
| | - JingJing Wang
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310005, China.
| |
Collapse
|
192
|
You D, Tong K, Li Y, Zhang T, Wu Y, Wang L, Chen G, Zhang X. PinX1 plays multifaceted roles in human cancers: a review and perspectives. Mol Biol Rep 2024; 51:1163. [PMID: 39550726 PMCID: PMC11570563 DOI: 10.1007/s11033-024-10082-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/30/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND Pin2/TRF1 interacting protein X1 (PinX1), a telomerase inhibitor, is located at human chromosome 8p23. This region is important for telomere length maintenance and chromosome stability, both of which are essential for regulating human ageing and associated diseases. METHODS AND RESULTS We investigated the research progress of PinX1 in human cancers. In cancers, the expression levels of PinX1 mRNA and protein vary according to cancer cell types, and PinX1 plays a critical role in the regulation of cancer development and progression. Additionally, a review of the literature indicates that PinX1 is involved in mitosis and affects the sensitivity of cancer cells to radiation-induced DNA damage. Therefore, PinX1 has therapeutic potential for cancer, and understanding the function of PinX1 in the regulation of cancers is crucial for improving treatment. In this review, we discuss the expression level of PinX1 in a variety of cancers and how it affects the implicated pathways. Additionally, we outline the function of PinX1 in cancer cells and provide a theoretical basis for PinX1-related cancer therapy. CONCLUSIONS PinX1 has promising prospects in future cancer therapeutics. This review may provide theoretical support for researchers in this field.
Collapse
Affiliation(s)
- Dian You
- Huzhou Key Laboratory of Precise Prevention and Control of Major Chronic Diseases, School of Medicine, Huzhou University, 759 East 2nd Rd., Huzhou, 313000, China
| | - Kaiwen Tong
- Huzhou Key Laboratory of Precise Prevention and Control of Major Chronic Diseases, School of Medicine, Huzhou University, 759 East 2nd Rd., Huzhou, 313000, China
| | - Yuan Li
- Huzhou Key Laboratory of Precise Prevention and Control of Major Chronic Diseases, School of Medicine, Huzhou University, 759 East 2nd Rd., Huzhou, 313000, China
| | - Ting Zhang
- Huzhou Key Laboratory of Precise Prevention and Control of Major Chronic Diseases, School of Medicine, Huzhou University, 759 East 2nd Rd., Huzhou, 313000, China
| | | | - Ling Wang
- Botuvac Biotechnology Co., Ltd, Beijing, China
| | - Guangming Chen
- Huzhou Key Laboratory of Precise Prevention and Control of Major Chronic Diseases, School of Medicine, Huzhou University, 759 East 2nd Rd., Huzhou, 313000, China
| | - Xiaoying Zhang
- Huzhou Key Laboratory of Precise Prevention and Control of Major Chronic Diseases, School of Medicine, Huzhou University, 759 East 2nd Rd., Huzhou, 313000, China.
| |
Collapse
|
193
|
Liu Y, Zhou J, Liu W, Le Y, Zhang L, Zhang Z, Zhou L, Li L. The E3 ubiquitin ligase RNF6 facilitates the progression of cervical cancer by inhibiting the Hippo/Yap pathway. Cell Div 2024; 19:32. [PMID: 39551725 PMCID: PMC11571774 DOI: 10.1186/s13008-024-00136-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/07/2024] [Indexed: 11/19/2024] Open
Abstract
PURPOSE Cervical cancer (CC), a significant global health threat, necessitates comprehensive understanding for improved therapeutic interventions. Many research indicates that dysregulation of the Hippo-YAP1 pathway leads to uncontrolled proliferation and invasion of tumor cells, promoting the progression of various cancers. This article aims to elucidate the role of RNF6 in CC and its regulation of the Hippo-YAP1 signaling pathway. METHODS The public tumor dataset analyses, immunohistochemistry, and western blotting were used to explore the expression of RNF6 in CC. Gain- and loss-of-function assays were conducted to elucidate the role of RNF6 in the proliferation and invasion of CC cells. Transcriptome sequencing was used to explore RNF6's role in cervical cancer, with validation of its regulation of the Hippo-YAP1 pathway through western blotting and RT-qPCR. Co-transfection of YAP overexpression plasmids into RNF6-silenced CC cells were preformed to confirm YAP1's pivotal role in RNF6-mediated CC progression. Animal experiments were preformed to further validate RNF6 interference's inhibitory effect on CC proliferation in vivo. RESULTS Clinical samples and bioinformatics analysis revealed high expression of RNF6 in CC, and closely associated with advanced FIGO (International Federation of Gynecology and Obstetrics) stage, larger tumor size, and poor prognosis. Cellular functional experiments demonstrate that RNF6 promotes the proliferation, invasion, and migration of CC cells, while knockdown of RNF6 yields the opposite effect. Transcriptome sequencing further reveals that RNF6 may promote CC progression through the Hippo-YAP signaling pathway. Western blotting and RT-qPCR further unveil that RNF6 enhances the upregulation of YAP1 protein levels, thereby activating downstream oncogenes CTGF and CYR61 transcription. Additionally, exogenous overexpression of YAP1 reverses the inhibitory effect of RNF6 silencing on CC proliferation and invasion. Furthermore, RNF6 interference significantly attenuates tumor growth in vivo experiments. CONCLUSION Our research reveals that RNF6 is highly expressed in CC, driving malignant progression by upregulating YAP1 protein expression and enhancing the transcription of downstream target genes CTGF and CYR61, offering potential therapeutic targets for CC treatment.
Collapse
Affiliation(s)
- Yawen Liu
- Department of Oncology, Jiangxi Maternal and Child Health Hospital, 318 Bayi Road, 330006, Nanchang, Jiangxi Province, P.R. China
| | - Juanjuan Zhou
- Department of Oncology, the First Affiliated Hospital of Nanchang University, 1519 Dongyue Avenue, 330006, Nanchang, Jiangxi Province, P.R. China
- Department of Jiangxi Key Laboratory for Individualized Cancer Therapy, 17 Yongwai Street, 330006, Nanchang, Jiangxi, China
| | - Weiqi Liu
- Department of Oncology, the First Affiliated Hospital of Nanchang University, 1519 Dongyue Avenue, 330006, Nanchang, Jiangxi Province, P.R. China
- Department of Jiangxi Key Laboratory for Individualized Cancer Therapy, 17 Yongwai Street, 330006, Nanchang, Jiangxi, China
| | - Yi Le
- Department of Oncology, the First Affiliated Hospital of Nanchang University, 1519 Dongyue Avenue, 330006, Nanchang, Jiangxi Province, P.R. China
- Department of Jiangxi Key Laboratory for Individualized Cancer Therapy, 17 Yongwai Street, 330006, Nanchang, Jiangxi, China
| | - Lingling Zhang
- Department of Oncology, Jiangxi Maternal and Child Health Hospital, 318 Bayi Road, 330006, Nanchang, Jiangxi Province, P.R. China
| | - Ziyu Zhang
- Department of Oncology, Jiangxi Maternal and Child Health Hospital, 318 Bayi Road, 330006, Nanchang, Jiangxi Province, P.R. China
| | - Ling Zhou
- Department of Oncology, the First Affiliated Hospital of Nanchang University, 1519 Dongyue Avenue, 330006, Nanchang, Jiangxi Province, P.R. China.
- Department of Jiangxi Key Laboratory for Individualized Cancer Therapy, 17 Yongwai Street, 330006, Nanchang, Jiangxi, China.
| | - Ling Li
- Department of Oncology, Jiangxi Maternal and Child Health Hospital, 318 Bayi Road, 330006, Nanchang, Jiangxi Province, P.R. China.
| |
Collapse
|
194
|
Berrino E, Michelet B, Vitse K, Nocentini A, Bartolucci G, Martin-Mingot A, Gratteri P, Carta F, Supuran CT, Thibaudeau S. Superacid-Synthesized Fluorinated Diamines Act as Selective hCA IV Inhibitors. J Med Chem 2024; 67:19460-19474. [PMID: 39447020 DOI: 10.1021/acs.jmedchem.4c01795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Carbonic anhydrase (CA) IV is a membrane-bound enzyme involved in important physio-pathological processes, such as excitation-contraction coupling in heart muscle, central nervous system (CNS) extracellular buffering, and mediation of inflammatory response after stroke. Known since the mid-1980s, this isoform is still largely unexplored when compared to other isoforms, mostly for the current lack of inhibitors targeting selectively this isoform. The discovery of selective CA IV inhibitors is thus largely awaited. In this work, we report β-(di) fluoropropyl diamines as effective CA IV inhibitors, opening real perspectives for a new mode of selective inhibition of this isoform. Inhibition data reveal that the essential structure core to ensure a potent and selective inhibition of CA IV is the N-propyldiamine. Molecular modeling studies were employed to understand the binding mode of the synthesized amines. Conformational searches within the active site space carried out in an implicit solvent (water) model were also conducted.
Collapse
Affiliation(s)
- Emanuela Berrino
- Superacid Group in "Organic Synthesis" Team, Université de Poitiers, CNRS UMR 7285 IC2MP, Bât. B28, 4 rue Michel Brunet, TSA 51106, 86073 Poitiers Cedex 09, France
- NEUROFARBA Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Bastien Michelet
- Superacid Group in "Organic Synthesis" Team, Université de Poitiers, CNRS UMR 7285 IC2MP, Bât. B28, 4 rue Michel Brunet, TSA 51106, 86073 Poitiers Cedex 09, France
| | - Kassandra Vitse
- Superacid Group in "Organic Synthesis" Team, Université de Poitiers, CNRS UMR 7285 IC2MP, Bât. B28, 4 rue Michel Brunet, TSA 51106, 86073 Poitiers Cedex 09, France
| | - Alessio Nocentini
- NEUROFARBA Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Gianluca Bartolucci
- NEUROFARBA Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Agnès Martin-Mingot
- Superacid Group in "Organic Synthesis" Team, Université de Poitiers, CNRS UMR 7285 IC2MP, Bât. B28, 4 rue Michel Brunet, TSA 51106, 86073 Poitiers Cedex 09, France
| | - Paola Gratteri
- NEUROFARBA Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Fabrizio Carta
- NEUROFARBA Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Claudiu T Supuran
- NEUROFARBA Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Sébastien Thibaudeau
- Superacid Group in "Organic Synthesis" Team, Université de Poitiers, CNRS UMR 7285 IC2MP, Bât. B28, 4 rue Michel Brunet, TSA 51106, 86073 Poitiers Cedex 09, France
| |
Collapse
|
195
|
Okuyan D. Epidermal Growth Factor Downregulates Carbon Anhydrase III (CAIII) in Colon Cancer. Curr Issues Mol Biol 2024; 46:12994-13002. [PMID: 39590368 PMCID: PMC11593170 DOI: 10.3390/cimb46110774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related death in the world. Dysregulations in the EGF signaling pathway have been associated with colon cancer. Some members of the carbonic anhydrase family serve as biomarkers in cancer. Carbonic anhydrase III (CAIII), a member of this family, shows different activities than the other members of its family and has been associated with cancer. However, there are no studies on the effective regulation of EGF. In this study, we investigated the EGF-influenced regulation of CAIII in the HT29, SW480, and HUVEC cell lines and showed that CAIII regulation decreased with the effect of EGF. We aimed to investigate the EGF-affected mRNA and protein regulation of the CAIII gene in HT29, SW480, and HUVEC cell lines. For this purpose, we determined time-dependent CAIII mRNA and protein expression by applying EGF to HT29, SW480, and HUVEC cells. Time-dependent EGF-induced mRNA and protein level regulation of the CAIII gene decreased in the HT29, SW480, and HUVEC cell lines. EGF regulates the motility, adhesion, and metastasis of cancer cells. CAIII prevents cells from metastasizing through cell acidification. Therefore, our findings explained why the EGF-effective regulation of CAIII decreased. We suggest that the CAIII gene is promising as a targeted therapy due to the decrease in EGF-effected CAIII gene regulation in colon carcinoma.
Collapse
Affiliation(s)
- Derya Okuyan
- Department of Veterinary Medicine, Susurluk Agriculture and Forestry Vocational School, Bandırma Onyedi Eylül University, Susurluk 10600, Balıkesir, Türkiye
| |
Collapse
|
196
|
Masenga SK, Desta S, Hatcher M, Kirabo A, Lee DL. How PPAR-alpha mediated inflammation may affect the pathophysiology of chronic kidney disease. Curr Res Physiol 2024; 8:100133. [PMID: 39665027 PMCID: PMC11629568 DOI: 10.1016/j.crphys.2024.100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/03/2024] [Accepted: 11/12/2024] [Indexed: 12/13/2024] Open
Abstract
Chronic kidney disease (CKD) is a major risk factor for death in adults. Inflammation plays a role in the pathogenesis of CKD, but the mechanisms are poorly understood. Peroxisome proliferator-activated receptor alpha (PPAR-α) is a nuclear receptor and one of the three members (PPARα, PPARβ/δ, and PPARγ) of the PPARs that plays an important role in ameliorating pathological processes that accelerate acute and chronic kidney disease. Although other PPARs members are well studied, the role of PPAR-α is not well described and its role in inflammation-mediated chronic disease is not clear. Herein, we review the role of PPAR-α in chronic kidney disease with implications for the immune system.
Collapse
Affiliation(s)
- Sepiso K. Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Zambia
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Selam Desta
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC, USA
| | - Mark Hatcher
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC, USA
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dexter L. Lee
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC, USA
| |
Collapse
|
197
|
Phillips E, O'Donoghue O, Zhang Y, Tsimpos P, Mallinger LA, Chatzidakis S, Pohlmann J, Du Y, Kim I, Song J, Brush B, Smirnakis S, Ong CJ, Orfanoudaki A. HELMET: A Hybrid Machine Learning Framework for Real-Time Prediction of Edema Trajectory in Large Middle Cerebral Artery Stroke. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.13.24317229. [PMID: 39606388 PMCID: PMC11601687 DOI: 10.1101/2024.11.13.24317229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Malignant cerebral edema occurs when brain swelling displaces and compresses vital midline structures within the first week of a large middle cerebral artery stroke. Early interventions such as hyperosmolar therapy or surgical decompression may reverse secondary injury but must be administered judiciously. To optimize treatment and reduce secondary damage, clinicians need strategies to frequently and quantitatively assess the trajectory of edema using updated, relevant information. However, existing risk assessment tools are limited by the absence of structured records capturing the evolution of edema and typically estimate risk at a single time point early in the admission, therefore failing to account for changes in variables over the following hours or days. To address this, we developed and validated dynamic machine learning models capable of accurately predicting the severity of midline structure displacement, an established indicator of malignant edema, in real-time. Our models can provide updated estimations as frequently as every hour, using data from structured time-varying patient records, radiographic text, and human-curated neurological characteristics. Our work resulted in two novel multi-class classification models, collectively named Hybrid Ensemble Learning Models for Edema Trajectory (HELMET), predicting the progression of midline shift over 8-hour (HELMET-8) and 24-hour windows (HELMET-24), respectively. HELMET combines transformer-based large language models with supervised ensemble learning, demonstrating the value of merging human expertise and multimodal health records in developing clinical risk scores. Both models were trained on a retrospective cohort of 15,696 observations from 623 patients hospitalized with large middle cerebral artery ischemic stroke and were externally validated using 3,713 observations from 60 patients at a separate hospital system. Our HELMET models are accurate and generalize effectively to diverse populations, achieving a cross-validated mean area under the receiver operating characteristic score of 96.6% in the derivation cohort and 92.5% in the external validation cohort. Moreover, our approach provides a framework for developing hybrid risk prediction models that integrate both human-extracted and algorithm-derived multi-modal inputs. Our work enables accurate estimation of complex, dynamic, and highly specific clinical targets, such as midline shift, in real-time, even when relevant structured information is limited in electronic health record databases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yili Du
- Boston University School of Public Health
| | - Ivy Kim
- Boston Medical Center, Department of Neurology
| | - Jonathan Song
- Boston University Chobanian & Avedisian School of Medicine
| | | | - Stelios Smirnakis
- Brigham & Women's Hospital, Department of Neurology
- Harvard Medical School
- Jamaica Plain Veterans Administration Hospital, Department of Neurology
| | - Charlene J Ong
- Boston Medical Center, Department of Neurology
- Boston University Chobanian & Avedisian School of Medicine
| | | |
Collapse
|
198
|
Yang A, Tian Y, Li X. Unveiling the hidden arsenal: new insights into Proteus mirabilis virulence in UTIs. Front Cell Infect Microbiol 2024; 14:1465460. [PMID: 39606746 PMCID: PMC11599158 DOI: 10.3389/fcimb.2024.1465460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024] Open
Abstract
Proteus mirabilis is a Gram-negative bacterium commonly found in urinary tract infections (UTIs) and catheter-associated urinary tract infections (CAUTIs). The pathogenic mechanisms of Proteus mirabilis are complex and diverse, involving various virulence factors, including fimbriae, flagella, urease, polyphosphate kinase, lipopolysaccharides, cyclic AMP receptor protein, Sigma factor RpoE, and RNA chaperone protein Hfq. These factors play crucial roles in bacterial colonization, invasion, evasion of host immune responses, biofilm formation, and urinary stone formation. This paper is the first to comprehensively describe the hydrogenase system, autotransporter proteins, molybdate-binding protein ModA, and two-component systems as virulence factors in Proteus mirabilis, providing new insights into its pathogenic mechanisms in urinary tract infections. This review explores the mechanisms of biofilm formation by Proteus mirabilis and the various virulence factors involved in UTIs, revealing many newly discovered virulence factors from recent studies. These findings may offer new targets for clinical treatment of UTIs and vaccine development, highlighting the importance of understanding these virulence factors.
Collapse
Affiliation(s)
- Aoyu Yang
- Department of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuchong Tian
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiancheng Li
- Department of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
199
|
Zeng R, Gou H, Lau HCH, Yu J. Stomach microbiota in gastric cancer development and clinical implications. Gut 2024; 73:2062-2073. [PMID: 38886045 PMCID: PMC11672014 DOI: 10.1136/gutjnl-2024-332815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024]
Abstract
Gastric cancer (GC) is one of the most common malignancies and a prominent cause of cancer mortality worldwide. A distinctive characteristic of GC is its intimate association with commensal microbial community. Although Helicobacter pylori is widely recognised as an inciting factor of the onset of gastric carcinogenesis, increasing evidence has indicated the substantial involvement of microbes that reside in the gastric mucosa during disease progression. In particular, dysregulation in gastric microbiota could play pivotal roles throughout the whole carcinogenic processes, from the development of precancerous lesions to gastric malignancy. Here, current understanding of the gastric microbiota in GC development is summarised. Potential translational and clinical implications of using gastric microbes for GC diagnosis, prognosis and therapeutics are also evaluated, with further discussion on conceptual haziness and limitations at present. Finally, we highlight that modulating microbes is a novel and promising frontier for the prevention and management of GC, which necessitates future in-depth investigations.
Collapse
Affiliation(s)
- Ruijie Zeng
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Hongyan Gou
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Harry Cheuk Hay Lau
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
200
|
Bannazadeh Baghi H, Bayat M, Mehrasa P, Alavi SMA, Lotfalizadeh MH, Memar MY, Taghavi SP, Zarepour F, Hamblin MR, Sadri Nahand J, Hashemian SMR, Mirzaei H. Regulatory role of microRNAs in virus-mediated inflammation. J Inflamm (Lond) 2024; 21:43. [PMID: 39497125 PMCID: PMC11536602 DOI: 10.1186/s12950-024-00417-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 10/21/2024] [Indexed: 11/06/2024] Open
Abstract
Viral infections in humans often cause excessive inflammation. In some viral infections, inflammation can be serious and even fatal, while in other infections it can promote viral clearance. Viruses can escape from the host immune system via regulating inflammatory pathways, thus worsening the illness. MicroRNAs (miRNAs) are tiny non-coding RNA molecules expressed within diverse tissues as well as cells and are engaged in different normal pathological and physiological pathways. Emerging proof suggests that miRNAs can impact innate and adaptive immunity, inflammatory responses, cell invasion, and the progression of viral infections. We discuss some intriguing new findings in the current work, focusing on the impacts of different miRNAs on host inflammatory responses and virus-mediated inflammation. A better understanding of dysregulated miRNAs in viral infections could improve the identification, prevention, and treatment of several serious diseases.
Collapse
Affiliation(s)
- Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Parisa Mehrasa
- Department of Pathology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Pouya Taghavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Zarepour
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Seyed Mohammad Reza Hashemian
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|