151
|
Wang Y, Vizely K, Li CY, Shen K, Shakeri A, Khosravi R, Smith JR, Alteza EAII, Zhao Y, Radisic M. Biomaterials for immunomodulation in wound healing. Regen Biomater 2024; 11:rbae032. [PMID: 38779347 PMCID: PMC11110865 DOI: 10.1093/rb/rbae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 05/25/2024] Open
Abstract
The substantial economic impact of non-healing wounds, scarring, and burns stemming from skin injuries is evident, resulting in a financial burden on both patients and the healthcare system. This review paper provides an overview of the skin's vital role in guarding against various environmental challenges as the body's largest protective organ and associated developments in biomaterials for wound healing. We first introduce the composition of skin tissue and the intricate processes of wound healing, with special attention to the crucial role of immunomodulation in both acute and chronic wounds. This highlights how the imbalance in the immune response, particularly in chronic wounds associated with underlying health conditions such as diabetes and immunosuppression, hinders normal healing stages. Then, this review distinguishes between traditional wound-healing strategies that create an optimal microenvironment and recent peptide-based biomaterials that modulate cellular processes and immune responses to facilitate wound closure. Additionally, we highlight the importance of considering the stages of wounds in the healing process. By integrating advanced materials engineering with an in-depth understanding of wound biology, this approach holds promise for reshaping the field of wound management and ultimately offering improved outcomes for patients with acute and chronic wounds.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4 Canada
| | - Katrina Vizely
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Chen Yu Li
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Karen Shen
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4 Canada
| | - Amid Shakeri
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4 Canada
| | - Ramak Khosravi
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4 Canada
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - James Ryan Smith
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | | | - Yimu Zhao
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4 Canada
| | - Milica Radisic
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4 Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| |
Collapse
|
152
|
Yang Y, Qiu W, Xiao J, Sun J, Ren X, Jiang L. Dihydromyricetin ameliorates hepatic steatosis and insulin resistance via AMPK/PGC-1α and PPARα-mediated autophagy pathway. J Transl Med 2024; 22:309. [PMID: 38532480 PMCID: PMC10964712 DOI: 10.1186/s12967-024-05060-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/04/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Dihydromyricetin (DHM), a flavonoid compound of natural origin, has been identified in high concentrations in ampelopsis grossedentata and has a broad spectrum of biological and pharmacological functions, particularly in regulating glucose and lipid metabolism. The objective of this research was to examine how DHM affected nonalcoholic fatty liver disease (NAFLD) and its underlying mechanisms involved in the progression of NAFLD in a rat model subjected to a high-fat diet (HFD). Additionally, the study examines the underlying mechanisms in a cellular model of steatohepatitis using palmitic acid (PA)-treated HepG2 cells, with a focus on the potential correlation between autophagy and hepatic insulin resistance (IR) in the progress of NAFLD. METHODS SD rats were exposed to a HFD for a period of eight weeks, followed by a treatment with DHM (at doses of 50, 100, and 200 mg·kg-1·d-1) for additional six weeks. The HepG2 cells received a 0.5 mM PA treatment for 24 h, either alone or in conjunction with DHM (10 µM). The histopathological alterations were assessed by the use of Hematoxylin-eosin (H&E) staining. The quantification of glycogen content and lipid buildup in the liver was conducted by the use of PAS and Oil Red O staining techniques. Serum lipid and liver enzyme levels were also measured. Autophagic vesicle and autolysosome morphology was studied using electron microscopy. RT-qPCR and/or western blotting techniques were used to measure IR- and autophagy-related factors levels. RESULTS The administration of DHM demonstrated efficacy in ameliorating hepatic steatosis, as seen in both in vivo and in vitro experimental models. Moreover, DHM administration significantly increased GLUT2 expression, decreased G6Pase and PEPCK expression, and improved IR in the hepatic tissue of rats fed a HFD and in cells exhibiting steatosis. DHM treatment elevated Beclin 1, ATG 5, and LC3-II levels in hepatic steatosis models, correlating with autolysosome formation. The expression of AMPK levels and its downstream target PGC-1α, and PPARα were decreased in HFD-fed rats and PA-treated hepatocytes, which were reversed through DHM treatment. AMPK/ PGC-1α and PPARα knockdown reduced the impact of DHM on hepatic autophagy, IR and accumulation of hepatic lipid. CONCLUSIONS Our findings revealed that AMPK/ PGC-1α, PPARα-dependent autophagy pathways in the pathophysiology of IR and hepatic steatosis has been shown, suggesting that DHM might potentially serve as a promising treatment option for addressing this disease.
Collapse
Affiliation(s)
- Yan Yang
- Department of Endocrinology and Metabolism, Lanzhou University Second Hospital, Lanzhou, China
| | - Wen Qiu
- Department of Pharmacology, Lanzhou University Second Hospital, Lanzhou, China
| | - Jiyuan Xiao
- Department of Pharmacology, Lanzhou University Second Hospital, Lanzhou, China
| | - Jie Sun
- Department of Endocrinology and Metabolism, Lanzhou University Second Hospital, Lanzhou, China
| | - Xuan Ren
- Department of Endocrinology and Metabolism, Lanzhou University Second Hospital, Lanzhou, China
| | - Luxia Jiang
- Department of Cardiac Surgery ICU, Lanzhou University Second Hospital, Lanzhou, China.
| |
Collapse
|
153
|
Duan X, Ao J, Yu M, Li S, Li X, Zhang J. Shuganning Injection Suppresses Apoptosis for Protecting Against Cantharidin-Induced Liver Injury by Network Pharmacology and Experiment Validation. ACS OMEGA 2024; 9:13692-13703. [PMID: 38559921 PMCID: PMC10976354 DOI: 10.1021/acsomega.3c07981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 04/04/2024]
Abstract
Cantharidin (CTD) is a compound of mylabris with antitumor activity, and CTD can potentially cause toxicity, especially hepatotoxicity. The classical Traditional Chinese Medicine prescription Shuganning injection (SGNI) exerts notable anti-inflammatory and hepatoprotective effects. However, the protective property and mechanism of SGNI against CTD-induced liver injury (CTD-DILI) have not yet been elucidated. To investigate the effective compounds, potential targets, and molecular mechanism of SGNI against CTD-DILI, network pharmacology combined with experiments were performed. This study found that SGNI could act with 62 core therapeutic targets, regulate multiple biological processes such as apoptosis, and oxidative stress, and influence apoptotic and p53 signaling pathways to treat CTD-DILI. Subsequently, HepaRG cell experiments demonstrated that SGNI pretreatment significantly increased the levels of GSH-Px and SOD, inhibiting the apoptosis induced by CTD. In vivo, according to H&E staining, SGNI can reduce the degeneration of hepatocytes and cytoplasmic vacuolation in mice exposed to CTD. Western blot analysis results indicated that SGNI pretreatment significantly suppressed the expressions of Caspase-3 and Bax while increasing the expression of Bcl-2. In conclusion, SGNI acted as a protective agent against CTD-DILI by inhibiting apoptosis.
Collapse
Affiliation(s)
- Xiaotong Duan
- School
of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jingwen Ao
- School
of Pharmacy, Zunyi medical university, Zunyi, Guizhou 563000, China
| | - Ming Yu
- School
of Pharmacy, Zunyi medical university, Zunyi, Guizhou 563000, China
| | - Sali Li
- School
of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Xiaofei Li
- School
of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jianyong Zhang
- School
of Pharmacy, Zunyi medical university, Zunyi, Guizhou 563000, China
- Key
Laboratory of Basic Pharmacology Ministry Education and Joint International
Research Laboratory of Ethnomedicine Ministry of education, Zunyi medical University, Zunyi, Guizhou 563000, China
| |
Collapse
|
154
|
Perazza F, Leoni L, Colosimo S, Musio A, Bocedi G, D’Avino M, Agnelli G, Nicastri A, Rossetti C, Sacilotto F, Marchesini G, Petroni ML, Ravaioli F. Metformin and the Liver: Unlocking the Full Therapeutic Potential. Metabolites 2024; 14:186. [PMID: 38668314 PMCID: PMC11052067 DOI: 10.3390/metabo14040186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Metformin is a highly effective medication for managing type 2 diabetes mellitus. Recent studies have shown that it has significant therapeutic benefits in various organ systems, particularly the liver. Although the effects of metformin on metabolic dysfunction-associated steatotic liver disease and metabolic dysfunction-associated steatohepatitis are still being debated, it has positive effects on cirrhosis and anti-tumoral properties, which can help prevent the development of hepatocellular carcinoma. Furthermore, it has been proven to improve insulin resistance and dyslipidaemia, commonly associated with liver diseases. While more studies are needed to fully determine the safety and effectiveness of metformin use in liver diseases, the results are highly promising. Indeed, metformin has a terrific potential for extending its full therapeutic properties beyond its traditional use in managing diabetes.
Collapse
Affiliation(s)
- Federica Perazza
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Laura Leoni
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Santo Colosimo
- Doctorate School of Nutrition Science, University of Milan, 20122 Milan, Italy;
| | | | - Giulia Bocedi
- U.O. Diabetologia, Ospedale C. Magati, Scandiano, 42019 Reggio Emilia, Italy;
| | - Michela D’Avino
- S.C. Endocrinologia Arcispedale Santa Maria Nuova, 42123 Reggio Emilia, Italy;
| | - Giulio Agnelli
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Alba Nicastri
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Chiara Rossetti
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Federica Sacilotto
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Giulio Marchesini
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Maria Letizia Petroni
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Federico Ravaioli
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
- Division of Hepatobiliary and Immunoallergic Diseases, Department of Internal Medicine, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
155
|
Rasaei N, Heidari M, Esmaeili F, Khosravi S, Baeeri M, Tabatabaei-Malazy O, Emamgholipour S. The effects of prebiotic, probiotic or synbiotic supplementation on overweight/obesity indicators: an umbrella review of the trials' meta-analyses. Front Endocrinol (Lausanne) 2024; 15:1277921. [PMID: 38572479 PMCID: PMC10987746 DOI: 10.3389/fendo.2024.1277921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/27/2024] [Indexed: 04/05/2024] Open
Abstract
Background There is controversial data on the effects of prebiotic, probiotic, or synbiotic supplementations on overweight/obesity indicators. Thus, we aimed to clarify this role of biotics through an umbrella review of the trials' meta-analyses. Methods All meta-analyses of the clinical trials conducted on the impact of biotics on overweight/obesity indicators in general populations, pregnant women, and infants published until June 2023 in PubMed, Web of Sciences, Scopus, Embase, and Cochrane Library web databases included. The meta-analysis of observational and systematic review studies without meta-analysis were excluded. We reported the results by implementing the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) flowchart. The Assessment of Multiple Systematic Reviews-2 (AMSTAR2) and Grading of Recommendations Assessment, Development, and Evaluation (GRADE) systems were used to assess the methodological quality and quality of evidence. Results Overall, 97 meta-analysis studies were included. Most studies were conducted on the effect of probiotics in both genders. Consumption of prebiotic: 8-66 g/day, probiotic: 104 -1.35×1015 colony-forming unit (CFU)/day, and synbiotic: 106-1.5×1011 CFU/day and 0.5-300 g/day for 2 to 104 weeks showed a favorable effect on the overweight/obesity indicators. Moreover, an inverse association was observed between biotics consumption and overweight/obesity risk in adults in most of the studies. Biotics did not show any beneficial effect on weight and body mass index (BMI) in pregnant women by 6.6×105-1010 CFU/day of probiotics during 1-25 weeks and 1×109-112.5×109 CFU/capsule of synbiotics during 4-8 weeks. The effect of biotics on weight and BMI in infants is predominantly non-significant. Prebiotics and probiotics used in infancy were from 0.15 to 0.8 g/dL and 2×106-6×109 CFU/day for 2-24 weeks, respectively. Conclusion It seems biotics consumption can result in favorable impacts on some anthropometric indices of overweight/obesity (body weight, BMI, waist circumference) in the general population, without any significant effects on birth weight or weight gain during pregnancy and infancy. So, it is recommended to intake the biotics as complementary medications for reducing anthropometric indices of overweight/obese adults. However, more well-designed trials are needed to elucidate the anti-obesity effects of specific strains of probiotics.
Collapse
Affiliation(s)
- Niloufar Rasaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammadreza Heidari
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fataneh Esmaeili
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepehr Khosravi
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Baeeri
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Ozra Tabatabaei-Malazy
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Solaleh Emamgholipour
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
156
|
Mao J, Zheng K, Weng X. Editorial: Medical big data in cancer research. Front Mol Biosci 2024; 11:1395607. [PMID: 38545415 PMCID: PMC10965761 DOI: 10.3389/fmolb.2024.1395607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 11/26/2024] Open
Affiliation(s)
- Jingxin Mao
- Chongqing Medical and Pharmaceutical College, Chongqing, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Ke Zheng
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiong Weng
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
157
|
Gao S, Wei L, Qin Y, Zhang P, Quan T, Liang F, Huang G. Network pharmacological analysis on the mechanism of Linggui Zhugan decoction for nonalcoholic fatty liver disease. Medicine (Baltimore) 2024; 103:e37281. [PMID: 38457573 PMCID: PMC10919485 DOI: 10.1097/md.0000000000037281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 03/10/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), represents a chronic progressive disease that imposes a significant burden on patients and the healthcare system. Linggui Zhugan decoction (LGZGD) plays a substantial role in treating NAFLD, but its exact molecular mechanism is unknown. Using network pharmacology, this study aimed to investigate the mechanism of action of LGZGD in treating NAFLD. Active ingredients and targets were identified through the integration of data from the TCMSP, GEO, GeneCards, and OMIM databases. Cytoscape 3.9.1 software, in conjunction with the STRING platform, was employed to construct network diagrams and screen core targets. The enrichment analysis of gene ontology and the Kyoto Encyclopedia of Genes and Genomes pathways were conducted by using the R. Molecular docking of the active ingredients and core targets was performed with AutoDock Vina software. We obtained 93 and 112 active ingredients and potential targets using the bioinformatic analysis of LGZGD in treating NAFLD. The primary ingredients of LGZGD included quercetin, kaempferol, and naringenin. The core targets were identified AKT1, MYC, HSP90AA1, HIF1A, ESR1, TP53, and STAT3. Gene ontology function enrichment analysis revealed associations with responses to nutrient and oxygen levels, nuclear receptor activity, and ligand-activated transcription factor activity. Kyoto Encyclopedia of Genes and Genomes signaling pathway analysis implicated the involvement of the PI3K-Akt, IL-17, TNF, Th17 cell differentiation, HIF-1, and TLR signaling pathways. Molecular docking studies indicated strong binding affinities between active ingredients and targets. LGZGD intervenes in NAFLD through a multi-ingredient, multi-target, and multi-pathway approach. Treatment with LGZGD can improve insulin resistance, oxidative stress, inflammation, and lipid metabolism associated with NAFLD.
Collapse
Affiliation(s)
- Songlin Gao
- Graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Liuting Wei
- Graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yan Qin
- Graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Peng Zhang
- Department of Nephrology, Liuzhou Traditional Chinese Medicine Hospital, Liuzhou, Guangxi, China
| | - Tingwei Quan
- Graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Fei Liang
- Graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Guihua Huang
- Department of Spleen and Stomach Liver Diseases, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
158
|
He Y, Zhang Y, Li Z. Optimization and preparation of a compound cod liver oil film former agent: an orthogonal design. Front Pharmacol 2024; 15:1296448. [PMID: 38495097 PMCID: PMC10940503 DOI: 10.3389/fphar.2024.1296448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/08/2024] [Indexed: 03/19/2024] Open
Abstract
Background: Cod liver oil has anti-inflammatory properties and could help regulate recurrent aphthous stomatitis (RAS). An orthogonal experiment was used to evaluate and improve the dosage form of compound cod liver oil, which has replaced the previously used liniment preparation based on film method. Methods: An orthogonal experiment was adopted, and the appearance and film-forming time of the film coating agents were used as indicators. The optimal ratio in the preparation process for the compound cod liver oil film agent was then optimized. A method for determination of compound cod liver oil film was established using High-Performance Liquid Chromatography (HPLC). Results: The results indicate that the blank films prepared using 55 mg polyvinyl alcohol (PVA) (PVA low), 45 mg of PVA (PVA medium), and 10 mg glycerol had the optimal performance, which was defined as PVAa. The drug-carrying film prepared from 3 mL PVAa (i.e., film-forming material with the optimal proportion), 30 mg dexamethasone acetate, and 30 mg metronidazole had the optimal performance. The verified sample has a complete and smooth appearance, uniform thickness and color, and no evident bubbles, which meets the requirements for a film agent defined in the Chinese Pharmacopoeia, 2020 edition. HPLC was used to determine the major components: dexamethasone acetate, metronidazole, and dyclonine hydrochloride, and the optimal separation effect was obtained. The method has advantages of good specificity, good linear results, high recovery rate, and good repeatability. Conclusion: This study proposes an optimized compound cod liver oil film former agent and preparation method. The results indicate that the compound cod liver oil film former agent had good performance, reflecting the high feasibility of this research method. The detection method of compound cod liver oil film was established by HPLC. The method was feasible, and the validity and stability of the formulation and preparation technology were guaranteed. The role of the newly developed agent in patients with RAS should be investigated further.
Collapse
Affiliation(s)
- Yao He
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| | - Ying Zhang
- Chongqing Key Laboratory of Emergency Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| | - Zheng Li
- Pharmacy Department, The Fifth People’s Hospital of Chongqing, Chongqing, China
| |
Collapse
|
159
|
Li R, Wu D, Hu J, Ma Y, Ba Y, Zou L, Hu Y. Polyphenol-enriched Penthorum chinense Pursh ameliorates alcohol-related liver injury through Ras/Raf/MEK/ERK pathway: Integrating network pharmacology and experiment validation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117513. [PMID: 38040131 DOI: 10.1016/j.jep.2023.117513] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/09/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Penthorum chinense Pursh (PCP) has acknowledged as an edible herbal medicinal plant for the prevention and treatment of alcoholic liver injury (ALI). However, only few of researches focus on the chemical material basis and potential mechanisms of PCP against ALI. AIM OF THE STUDY Herein, we explored the therapeutic effects of PCP extract against ALI based on the integration of network pharmacology, molecular docking, and experiment validation. METHODS Based on the standard quality control of PCP herbs by UPLC fingerprint and quantitative determination, 80% ethanol extract fraction of PCP containing more polyphenols, compared to aqueous extract fraction of PCP, were chosen for further experiments. After oral administration of PCP ethanol extract, serum pharmacochemistry based on UPLC-Q-Exactive-MS analysis was implemented to evaluate the potential effective compounds. These absorbed prototypes in PCP were used to construct network pharmacology and predict the potential mechanisms of PCP extract against ALI. Then, the predicted targets and biological mechanisms of PCP extract were validated using animal experiments and molecular docking analysis. RESULTS Although totally 19 polyphenol compounds were identified in PCP ethanol extract by UPLC-MS analysis, only 18 absorbed prototypes were found in the serum collected from mice at 1 h post-administration with PCP extract. These candidate active compounds were further screened into 13 compounds to construct network pharmacology and 433 targets were identified as PCP targets. GO and KEGG pathway enrichment analyses indicated that the effects of PCP extract would involve in Ras signaling pathway. The animal experiments on chronic ALI model mice shown that the oral administration of PCP can alleviate ALI by attenuating hepatic oxidative stress, inflammation and down-regulating the target proteins in Ras/Raf/MEK/ERK pathway. Molecular docking analysis revealed the good binding ability between the three polyphenols (i.e. quercetin, apigenin, thonningianin B) in PCP with the top contribution in network pharmacology, and these target proteins (Ras, Raf, MEK1/2, and ERK1/2). CONCLUSION Our results clarified that PCP ethanol extract could effectively alleviate ALI by down-regulating Ras/Raf/MEK/ERK signaling pathway promisingly. Quercetin, apigenin, and thonningianin B may be the active compounds of PCP, attributing to the intervention benefits of PCP against ALI.
Collapse
Affiliation(s)
- Rui Li
- School of Pharmacy, Chengdu University, Chengdu, 610106, Sichuan, PR China; School of Food and Biological Engineering, Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, 610106, Sichuan, PR China.
| | - Dingtao Wu
- School of Food and Biological Engineering, Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, 610106, Sichuan, PR China.
| | - Jianping Hu
- School of Pharmacy, Chengdu University, Chengdu, 610106, Sichuan, PR China; School of Food and Biological Engineering, Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, 610106, Sichuan, PR China.
| | - Yuqi Ma
- School of Food and Biological Engineering, Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, 610106, Sichuan, PR China.
| | - Yabo Ba
- School of Food and Biological Engineering, Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, 610106, Sichuan, PR China.
| | - Liang Zou
- School of Food and Biological Engineering, Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, 610106, Sichuan, PR China.
| | - Yichen Hu
- School of Pharmacy, Chengdu University, Chengdu, 610106, Sichuan, PR China; School of Food and Biological Engineering, Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, 610106, Sichuan, PR China.
| |
Collapse
|
160
|
Xu J, Zuo J, Han C, Li T, Jin D, Zhao F, Cong H. Proprotein convertase subtilisin/kexin 9 inhibitor downregulates microRNA-130a-3p expression in hepatocytes to alleviates atherosclerosis progression. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1727-1736. [PMID: 37721554 DOI: 10.1007/s00210-023-02708-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/03/2023] [Indexed: 09/19/2023]
Abstract
Proprotein convertase subtilisin/kexin 9 (PCSK9) inhibitors have been shown to regulate lipid metabolism and reduce the risk of cardiovascular events. This study explores the effect and potential mechanism of PCSK9 inhibitors on lipid metabolism and coronary atherosclerosis. HepG2 cells were incubated with PCSK9 inhibitor. ApoE-/- mice were fed with a high fat to construct an atherosclerosis model, and then treated with PCSK9 inhibitor (8 mg/kg for 8 w). PCSK9 inhibitor downregulated microRNA (miRNA)-130a-3p expression in a dose-dependent manner. And, miR-130a-3p could bind directly to the 3' untranslated region (3'-UTR) region of LDLR to down-regulate LDLR expression in HepG2 cells, as confirmed by the luciferase reporter gene assay. In addition, miR-130a-3p overexpression significantly attenuated the promoting effect of PCSK9 inhibitor on LDLR and DiI-LDL uptake in HepG2 cells. More importantly, in vivo experiments confirmed that PCSK9 inhibitor could significantly inhibit miR-130a-3p levels and promote LDLR expression in liver tissues, thus regulating serum lipid profile and alleviating the progression of coronary atherosclerosis. PCSK9 inhibitor could moderately improve coronary atherosclerosis by regulating miR-130a-3p/LDLR axis, providing an exploitable strategy for the treatment of coronary atherosclerosis.
Collapse
Affiliation(s)
- Jinghan Xu
- The Department of Cardiology, Tianjin Chest Hospital, No. 261, Taierzhuang South Road, Jinnan District, Tianjin, 300222, China
- The Department of Cardiology, Chest Hospital, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Cardiovascular Emergency and Critical Care, Tianjin Municipal Science and Technology Bureau, Tianjin, China
- TianJin Institute of Cardiovascular Diseases, Tianjin, China
| | - Junrong Zuo
- Internal Medicine, Tianjin Jinnan Hospital, Tianjin, China
| | - Chuyi Han
- The Department of Cardiology, Tianjin Chest Hospital, No. 261, Taierzhuang South Road, Jinnan District, Tianjin, 300222, China
- The Department of Cardiology, Chest Hospital, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Cardiovascular Emergency and Critical Care, Tianjin Municipal Science and Technology Bureau, Tianjin, China
- TianJin Institute of Cardiovascular Diseases, Tianjin, China
| | - Tingting Li
- The Department of Cardiology, Tianjin Chest Hospital, No. 261, Taierzhuang South Road, Jinnan District, Tianjin, 300222, China
- The Department of Cardiology, Chest Hospital, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Cardiovascular Emergency and Critical Care, Tianjin Municipal Science and Technology Bureau, Tianjin, China
- TianJin Institute of Cardiovascular Diseases, Tianjin, China
| | - Dongxia Jin
- The Department of Cardiology, Tianjin Chest Hospital, No. 261, Taierzhuang South Road, Jinnan District, Tianjin, 300222, China
- The Department of Cardiology, Chest Hospital, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Cardiovascular Emergency and Critical Care, Tianjin Municipal Science and Technology Bureau, Tianjin, China
- TianJin Institute of Cardiovascular Diseases, Tianjin, China
| | - Fumei Zhao
- The Department of Cardiology, Tianjin Chest Hospital, No. 261, Taierzhuang South Road, Jinnan District, Tianjin, 300222, China
- The Department of Cardiology, Chest Hospital, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Cardiovascular Emergency and Critical Care, Tianjin Municipal Science and Technology Bureau, Tianjin, China
- TianJin Institute of Cardiovascular Diseases, Tianjin, China
| | - Hongliang Cong
- The Department of Cardiology, Tianjin Chest Hospital, No. 261, Taierzhuang South Road, Jinnan District, Tianjin, 300222, China.
- The Department of Cardiology, Chest Hospital, Tianjin University, Tianjin, China.
- Tianjin Key Laboratory of Cardiovascular Emergency and Critical Care, Tianjin Municipal Science and Technology Bureau, Tianjin, China.
- TianJin Institute of Cardiovascular Diseases, Tianjin, China.
| |
Collapse
|
161
|
Lee NK, Lee Y, Shin DS, Ra J, Choi YM, Ryu BH, Lee J, Park E, Paik HD. Hepatoprotective Effect of Lactiplantibacillus plantarum DSR330 in Mice with High Fat Diet-Induced Nonalcoholic Fatty Liver Disease. J Microbiol Biotechnol 2024; 34:399-406. [PMID: 38247213 PMCID: PMC10940777 DOI: 10.4014/jmb.2310.10026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 01/23/2024]
Abstract
Lactiplantibacillus plantarum DSR330 (DSR330) has been examined for its antimicrobials production and probiotics. In this study, the hepatoprotective effects of DSR330 were examined against non-alcoholic fatty liver disease (NAFLD) in a high-fat diet (HFD)-fed C57BL/6 mouse model. To induce the development of fatty liver, a HFD was administered for five weeks, and then silymarin (positive control) or DSR330 (108 or 109 CFU/day) was administered along with the HFD for seven weeks. DSR330 significantly decreased body weight and altered serum and hepatic lipid profiles, including a reduction in triglyceride, total cholesterol, and low-density lipoprotein cholesterol levels compared to those in the HFD group. DSR330 significantly alleviated HFD-related hepatic injury by inducing morphological changes and reducing the levels of biomarkers, including AST, ALT, and ALP. Additionally, DSR330 alleviated the expression of SREBP-1c, ACC1, FAS, ACO, PPARα, and CPT-1 in liver cells. Insulin and leptin levels were decreased by DSR330 compared to those observed in the HFD group. However, adiponectin levels were increased, similar to those observed in the ND group. These results demonstrate that L. plantarum DSR330 inhibited HFD-induced hepatic steatosis in mice with NAFLD by modulating various signaling pathways. Hence, the use of probiotics can lead to hepatoprotective effects.
Collapse
Affiliation(s)
- Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Yunjung Lee
- Department of Food and Nutrition, Kyungnam University, Changwon 51767, Republic of Korea
| | - Da-Soul Shin
- Department of Food and Nutrition, Kyungnam University, Changwon 51767, Republic of Korea
| | - Jehyeon Ra
- FM MI center, Daesang Wellife, Seoul 03130, Republic of Korea
| | - Yong-Min Choi
- FM MI center, Daesang Wellife, Seoul 03130, Republic of Korea
| | - Byung Hee Ryu
- Jongga R&D product Division, Daesang, Seoul 03130, Republic of Korea
| | - Jinhyeuk Lee
- FM MI center, Daesang Wellife, Seoul 03130, Republic of Korea
| | - Eunju Park
- Department of Food and Nutrition, Kyungnam University, Changwon 51767, Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
162
|
Gupta S, Tak H, Rathore K, Banavath HN, Tejavath KK. Caffeic acid, a dietary polyphenol, pre-sensitizes pancreatic ductal adenocarcinoma to chemotherapeutic drug. J Biomol Struct Dyn 2024:1-15. [PMID: 38385452 DOI: 10.1080/07391102.2024.2318481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
Resistance to chemotherapeutics is an eminent cause that leads to search for options that help in diminution of pancreatic ductal adenocarcinoma (PDAC) by overcoming resistance issues. Caffeic acid (CFA), a polyphenol occurring in many dietary foods, is known to show antidiabetic and anticancer properties potential. To unveil the effect of CFA on PDAC, we carried out this research in PDAC cells, following which we checked the combination effect of CFA and chemotherapeutics and pre-sensitization effects of CFA. Multitudinous web-based approaches were applied for identifying CFA targets in PDAC and then getting their interconnections. Subsequently, we manifested CFA effects by in-vitro analysis showing IC50 concentrations of 37.37 and 15.06 µM on Panc-1 and Mia-PaCa-2, respectively. The combination index of CFA with different drugs was explored which showed the antagonistic effects of combination treatment leading to further investigation of the pre-sensitizing effects. CFA pre-sensitization reduced IC50 concentration of doxorubicin in both PDAC cell lines which also triggered ROS generation determined by 2',7'-dichlorofluorescin diacetate assay. The differential gene expression analysis after CFA treatment showed discrete genes affected in both cells, i.e. N-Cad and Cas9 in Panc-1 and Pi3K/AkT/mTOR along with p53 in Mia-PaCa-2. Collectively, this study investigated the role of CFA as PDAC therapeutics and explored the mechanism in mitigating resistance of PDAC by sensitizing to chemotherapeutics.
Collapse
Affiliation(s)
- Shruti Gupta
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Rajasthan, Ajmer, India
| | - Harshita Tak
- Department of Sports Bio-Sciences, School of Sports Science MYAS-CURAJ, Central University of Rajasthan, Rajasthan, Ajmer, India
| | - Khushhal Rathore
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Rajasthan, Ajmer, India
| | - Hemanth Naick Banavath
- Department of Sports Bio-Sciences, School of Sports Science MYAS-CURAJ, Central University of Rajasthan, Rajasthan, Ajmer, India
| | - Kiran Kumar Tejavath
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Rajasthan, Ajmer, India
| |
Collapse
|
163
|
Wu Z, Wang C, Yang F, Zhou J, Zhang X, Xin J, Gao J. Network pharmacology, molecular docking, combined with experimental verification to explore the role and mechanism of shizhifang decoction in the treatment of hyperuricemia. Heliyon 2024; 10:e24865. [PMID: 38322942 PMCID: PMC10844032 DOI: 10.1016/j.heliyon.2024.e24865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/12/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
Ethnopharmacological relevance Shizhifang Decoction, a traditional Chinese medicine prescription formulated by Professor Zheng Pingdong of Shuguang Hospital, has been widely utilized in clinical settings for the treatment of hyperuricemia due to its proven safety and efficacy. Objective In this study, we used network pharmacology, molecular docking technology, and experimental validation to elucidate the therapeutic effects and underlying mechanisms of Shizhifang Decoction in managing hyperuricemia. Methods Quality control and component identification of the freeze-dried powder of Shizhifang Decoction were conducted using ultra-high performance liquid chromatography-tandem quadrupole time-of-flight mass spectrometry. Active ingredients and their corresponding targets were obtained from Traditional Chinese Medicine Systems Pharmacology, Traditional Chinese Medicine Information Database, The Encyclopedia of Traditional Chinese Medicine, and other databases. Disease-related targets for hyperuricemia were collected from GeneCards and DisGeNET databases. The Venny platform is used to screen common targets for drug active ingredients and diseases. Subsequently, we constructed an active component-target-disease interaction network using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, create a component disease common target network using Cytoscape 3.9.1 software, from which core targets were selected. Import common targets into the Database for Annotation, Visualization and Integrated Discovery (DAVID) for Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analysis. Molecular docking was then conducted to validate the binding capacity of key active ingredients and their associated targets in Shizhifang Decoction. The theoretical predictions were further confirmed through in vitro and in vivo experiments. Result A total of 35 active ingredients and 597 action targets were identified, resulting in 890 disease-related targets for hyperuricemia. After comprehensive analysis, 99 common targets were determined. Protein-protein interaction network analysis revealed crucial relationships between these targets and hyperuricemia. Among them, 12 core targets (CASP3, IL1B, IL6, TNF, TP53, GAPDH, PTGS2, MYC, INS, VEGFA, ESR1, PPARG) were identified. Gene Ontology enrichment analysis demonstrated significant associations with the regulation of inflammatory response, cell apoptosis, and the positive regulation of extracellular regulated protein kinases 1 and extracellular regulated protein kinases 2 cascades. Kyoto Encyclopedia of Genes and Genomes pathway analysis highlighted inflammation and apoptosis-related pathways as critical mediators of Shizhifang Decoction's effects on hyperuricemia. Molecular docking studies further supported the interactions between apoptosis-related proteins and active ingredients in the extracellular regulated protein kinases 1/2 signaling pathway. In vitro experiments confirmed the downregulation of apoptosis-related proteins (caspase-3, Bax, Bcl-2) and the inhibition of the extracellular regulated protein kinases 1/2 signaling pathway by Shizhifang Decoction. These findings were also validated in animal models, demonstrating the potential of Shizhifang Decoction to mitigate renal injury induced by hyperuricemia through extracellular regulated protein kinases 1/2-mediated inhibition of renal tubular epithelial cell apoptosis. Conclusion Our study provides valuable insights into the main mechanism by which Shizhifang Decoction ameliorates hyperuricemia. By targeting the ERK1/2 signaling pathway and modulating cell apoptosis, Shizhifang Decoction exhibits promising therapeutic potential for the treatment of hyperuricemia. These findings support the continued exploration and development of Shizhifang Decoction as a potential herbal remedy for hyperuricemia management.
Collapse
Affiliation(s)
- Zhiyuan Wu
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chuanxu Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng Yang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiabao Zhou
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuming Zhang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiadong Xin
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiandong Gao
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
164
|
Islam Shawon S, Nargis Reyda R, Qais N. Medicinal herbs and their metabolites with biological potential to protect and combat liver toxicity and its disorders: A review. Heliyon 2024; 10:e25340. [PMID: 38356556 PMCID: PMC10864916 DOI: 10.1016/j.heliyon.2024.e25340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/16/2024] Open
Abstract
The liver is an essential organ that helps the body with immunity, metabolism, and detoxification, among other functions. Worldwide, liver illnesses are a leading cause of mortality and disability. There are few effective treatment choices, but they frequently have unfavorable side effects. Investigating the potential of medicinal plants and their bioactive phytoconstituents in the prevention and treatment of liver disorders has gained more attention in recent years. An assessment of the hepatoprotective potential of medicinal plants and their bioactive secondary metabolites is the goal of this thorough review paper. To determine their hepatoprotective activity, these plants were tested against liver toxicity artificially induced in rats, mice and rabbits by chemical agents such as carbon tetrachloride (CCl4), paracetamol (PCM), thioacetamide (TAA), N-nitrosodiethylamine, d-galactosamine/lipopolysaccharide, antitubercular medicines (rifampin, isoniazid) and alcohol. To find pertinent research publications published between 1989 and 2022, a comprehensive search of electronic bibliographic databases (including Web of Science, SpringerLink, ScienceDirect, Google Scholar, PubMed, Scopus, and others) was carried out. The investigation comprised 203 plant species from 81 families in total. A thorough discussion was mentioned regarding the hepatoprotective qualities of plants belonging to several families, such as Fabaceae, Asteraceae, Lamiaceae, and Euphorbiaceae. The plant groups Asteraceae and Fabaceae were the most frequently shown to have hepatoprotective properties. The phytochemical constituents namely flavonoids, phenolic compounds, and alkaloids exhibited the highest frequency of hepatoprotective action. Also, some possible mechanism of action of some active constituents from medicinal plants was discussed in brief which were found in some studies. In summary, the information on medicinal plants and their potentially hepatoprotective bioactive phytoconstituents has been consolidated in this review which emphasizes the importance of further research to explore the efficacy and safety of these natural remedies for various liver ailments.
Collapse
Affiliation(s)
- Shahparan Islam Shawon
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Rashmia Nargis Reyda
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Nazmul Qais
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| |
Collapse
|
165
|
Hu H, Umair M, Khan SA, Sani AI, Iqbal S, Khalid F, Sultan R, Abdel-Maksoud MA, Mubarak A, Dawoud TM, Malik A, Saleh IA, Al Amri AA, Algarzae NK, Kodous AS, Hameed Y. CDCA8, a mitosis-related gene, as a prospective pan-cancer biomarker: implications for survival prognosis and oncogenic immunology. Am J Transl Res 2024; 16:432-445. [PMID: 38463578 PMCID: PMC10918119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/24/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Human cell division cycle-associated protein 8 (CDCA8), a critical regulator of mitosis, has been identified as a prospective prognostic biomarker in several cancer types, including breast, colon, and lung cancers. This study analyzed the diagnostic/prognostic potential and clinical implications of CDCA8 across diverse cancers. METHODS Bioinformatics and molecular experiments. RESULTS Analyzing TCGA data via TIMER2 and GEPIA2 databases revealed significant up-regulation of CDCA8 in 23 cancer types compared to normal tissues. Prognostically, elevated CDCA8 expression correlated with poorer overall survival in KIRC, LUAD, and SKCM, emphasizing its potential as a prognostic marker. UALCAN analysis demonstrated CDCA8 up-regulation based on clinical variables, such as cancer stage, race, and gender, in these cancers. Epigenetic exploration indicated reduced CDCA8 promoter methylation levels in Kidney Renal Clear Cell Carcinoma (KIRC), Lung Adenocarcinoma (LUAD), and Skin Cutaneous Melanoma (SKCM) tissues compared to normal controls. Promoter methylation and mutational analyses showcased a hypomethylation and low mutation rate for CDCA8 in these cancers. Correlation analysis revealed positive associations between CDCA8 expression and infiltrating immune cells, particularly CD8+ and CD4+ T cells. Protein-protein interaction (PPI) network analysis unveiled key interacting proteins, while gene enrichment analysis highlighted their involvement in crucial cellular processes and pathways. Additionally, exploration of CDCA8-associated drugs through DrugBank presented potential therapeutic options for KIRC, LUAD, and SKCM. In vitro validation using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) confirmed elevated CDCA8 expression in LUAD cell lines (A549 and H1299) compared to control cell lines (Beas-2B and NL-20). CONCLUSION This study provides concise insights into CDCA8's multifaceted role in KIRC, LUAD, and SKCM, covering expression patterns, diagnostic and prognostic relevance, epigenetic regulation, mutational landscape, immune infiltration, and therapeutic implications.
Collapse
Affiliation(s)
- Hanjie Hu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Muhammad Umair
- Department of Physiology, Gomal Medical College, MTIDera Ismail Khan, Pakistan
| | - Sikandar Ali Khan
- Department of Biochemistry Khyber Girls Medical CollegePeshawar, Pakistan
| | - Aliya Irshad Sani
- Department of Biochemistry, Ziauddin Medical CollegeKarachi 74700, Pakistan
| | - Sahar Iqbal
- Department of Pathology, Azra Naheed Medical CollegeLahore 54000, Pakistan
| | - Fatima Khalid
- Department of Pathology, Al Aleem Medical CollegeLahore, Pakistan
| | - Rizwana Sultan
- Department of Pathology, Faculty of Veterinary and Animal Sciences, Cholistan University of Veterinary and Animal SciencesBahawalpur, Pakistan
| | - Mostafa A Abdel-Maksoud
- Department of Botany and Microbiology, College of Science, King Saud UniversityP.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ayman Mubarak
- Department of Botany and Microbiology, College of Science, King Saud UniversityP.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Turki M Dawoud
- Department of Botany and Microbiology, College of Science, King Saud UniversityP.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud UniversitySaudi Arabia
| | | | - Abdul Aziz Al Amri
- Biochemistry Department, College of Science, King Saud UniversityP.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Norah Khaled Algarzae
- Department of Physiology, College of Medicine, King Saud UniversityRiyadh 11149, Saudi Arabia
| | - Ahmad S Kodous
- Radiation Biology Department, National Center for Radiation Research & Technology (NCRRT), Egyptian Atomic-Energy Authority (EAEA)Egypt
- Department of Molecular Oncology, Cancer Institute (WIA)38, Sardar Patel Road, Chennai, P.O. Box 600036, Tamilnadu, India
| | - Yasir Hameed
- Department of Biotechnology, Institute of Biochemistry Biotechnology and Bioinformatics, The Islamia University of BahawalpurBahawalpur 63100, Pakistan
| |
Collapse
|
166
|
Wang J, Jin B, Chen Y, Chen Y, Zuo W, Huang L, Lin J, Jiang Y, Xie L, Lian X, Wang Y. Costunolide attenuates high-fat diet-induced inflammation and oxidative stress in non-alcoholic fatty liver disease. Drug Dev Res 2024; 85:e22150. [PMID: 38349256 DOI: 10.1002/ddr.22150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/24/2023] [Accepted: 01/02/2024] [Indexed: 02/15/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a progressive disease that can further evolve towards liver fibrosis and hepatocellular carcinoma in the end stage. Costunolide (Cos) is a natural sesquiterpene lactone that exhibits both anti-inflammatory and antioxidant properties. However, the therapeutic effect of Cos on NAFLD is not clear. In this study, we explored the potential protective effect and mechanism of Cos on NAFLD. C57BL/6 mice were fed with high-fat diet (HFD) to induce NAFLD. Cos was administered by gavage to observe the effect of Cos on NAFLD. We demonstrated that oral administration of Cos reduced HFD-induced hepatic fibrosis and the release of inflammatory cytokines, limiting the generation of reactive oxygen species. In vitro experiments revealed that pretreatment with Cos significantly decreased PA-induced production of inflammatory cytokines and fibrosis in AML-12 cells. Mechanism study showed that the effect of Cos was correlated to the induction of Nrf-2 and inhibition of NF-κB pathways. Collectively, these findings indicated that Cos exerts hepatoprotective effect against NAFLD through blocking inflammation and oxidative stress. Our study suggested that Cos might be an effective pharmacotherapy for the treatment of NAFLD.
Collapse
Affiliation(s)
- Jiong Wang
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Ningbo, Zhejiang, China
| | - Bo Jin
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Ningbo, Zhejiang, China
| | - Yanghao Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Ningbo, Zhejiang, China
| | - Yi Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Ningbo, Zhejiang, China
| | - Wei Zuo
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China
| | - Lijiang Huang
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China
| | - Jianjun Lin
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China
| | - Yongsheng Jiang
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China
| | - Longteng Xie
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China
| | - Xiang Lian
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China
| | - Yi Wang
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Ningbo, Zhejiang, China
| |
Collapse
|
167
|
Wang C, Fu RJ, Xu DQ, Zuo Q, Liu JP, Tang YP. A study integrated metabolomics and network pharmacology to investigate the effects of Shicao in alleviating acute liver injury. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117369. [PMID: 38380571 DOI: 10.1016/j.jep.2023.117369] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 02/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shicao is the aerial part of Achillea alpina L., a common herb found mainly in Europe, Asia, and North America. Traditional Chinese medicine has a history of thousands of years and is widely used to treat various diseases. AIM OF STUDY To explore the hepatoprotective effects of Shicao on CCl4-induced acute liver injury. METHODS A rat model of acute liver injury was established and liver function indices were assessed to evaluate the protective effect of Shicao on the liver. Untargeted metabolomics of the serum and liver tissues was conducted using UPLC-Q-TOF/MS to identify differential metabolites related to acute liver injury. A network of metabolite-reaction-enzyme-gene constituents was constructed using network pharmacology. Hub targets and key components of the effect of Shicao on acute liver injury were screened from the network. RESULTS Compared to the model group, Shicao improved the degree of liver damage through the assessment of the liver index, ALT and AST levels, and hepatic pathology slices, demonstrating its hepatoprotective effect against acute liver injury in rats. 10 and 38 differential metabolites involved in acute liver injury were identified in serum and liver tissues, respectively. Most of these were regulated or restored following treatment with Shicao, which mainly consisted of bile acids, lipids, and nucleotides such as taurocholic acid, LysoPC (17:0), and adenosine diphosphate ribose. Through the network of metabolite-reaction-enzyme-gene-constituents, 10 key components and 5 hub genes, along with 7 crucial differential metabolites, were mainly involved in glycerophospholipid metabolism, purine metabolism, biosynthesis of unsaturated fatty acids, and primary bile acid biosynthesis, which may play important roles in the prevention of acute liver injury by Shicao. CONCLUSION This study revealed that Shicao had protective effects against CCl4-induced liver injury in rats. It was speculated that the ingredients of Shicao might be closely related to the hub targets, thereby regulating the levels of key metabolites, affecting inflammatory response and oxidative stress and attenuate the liver injury consequently. This study provides a basis for further investigation of its therapeutic potential and the mechanism of action.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China
| | - Rui-Jia Fu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China.
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China
| | - Qian Zuo
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China
| | - Ji-Ping Liu
- Key Laboratory of Pharmacodynamic Mechanism and Material Basis of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China.
| |
Collapse
|
168
|
Xu T, He P, namWangdu S, Xu C, Hou B, Ma P, Wang Z, Zhang L, Du G, Ring T, Ji T, Qiang G. Revealing the improvement of diabetes by Si Wei Jiang Huang Tang San through ERK/HIF1α signaling pathway via network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117254. [PMID: 37778519 DOI: 10.1016/j.jep.2023.117254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Si Wei Jiang Huang Tang San (SWJHTS) is a traditional Tibetan medicine prescription for the treatment of urethritis, frequent urination, and urgency, composed of four traditional Chinese medicines: Curcumae longae rhizoma, Berberidis cortex, Tribuli fructus, and Phyllanthi fructus. However, whether SWJHTS exhibits hypoglycemic efficacy and its specific mechanism remain unclear. AIM OF THE STUDY In this study, we aimed to investigate the anti-diabetic effects of SWJHTS and elucidate the underlying mechanism. MATERIALS AND METHODS HPLC-MS method was used to identify the key components of four kinds of traditional Chinese medicine (Curcumae longae rhizoma, Berberidis cortex., Tribuli fructus, and Phyllanthi fructus) which composed SWJHTS and determine their structure. Normal mice and 145 mg/kg STZ-induced type 1 diabetic mice were treated with three doses of SWJTHS by oral gavage. Body weight, 24h food and water intake, fasting blood glucose, glucose tolerance and other indicators were measured to evaluate the hypoglycemic effect of SWJHTS. OMIM, Genecards and other databases were used to collect targets of diabetes, and HPLC-MS results and TCMSP database information were used to collect drug component targets. Bioinformatics methods such as pathway enrichment analysis and molecular docking were used to predict the key targets of SWJHTS. The gene and protein expressions of HIF1α and ERK signaling pathways in HepG2 cells treated with SWJHTS were detected by RT-PCR and Western blot. RESULTS A total of 181 components were identified, including curcumin, palmatine, and berberine, etc. The in vivo studies showed that SWJHTS could significantly lower fasting blood glucose levels and improve the symptoms of polydipsia, polyphagia, and polyuria in diabetic mice. Furthermore, we identified HIF1α as the potential key target of SWJHTS against diabetes utilizing network pharmacology approach and in silico molecular docking. Subsequently, we experimentally confirmed that SWJHTS could suppress the high glucose-induced upregulation of HIF1α expression, which mediated the glucose consumption in HepG2 cells. The ERK signaling pathway was further found to be activated by the SWJHTS as the upstream of HIF1α. CONCLUSIONS SWJHTS can improve glucose metabolism by targeting the ERK/HIF1α signaling pathway; hence might be a prospective anti-diabetic drug for diabetic patients as traditional Tibetan medicine.
Collapse
Affiliation(s)
- Tianshu Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing, 100050, China
| | - Ping He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing, 100050, China; College of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - So namWangdu
- Hospital of Tibetan Traditional Medicine, Tibet Autonomous Region, 850000, China
| | - Chunyang Xu
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Biyu Hou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing, 100050, China
| | - Peng Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing, 100050, China
| | - Zijing Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing, 100050, China
| | - Li Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing, 100050, China; Inner Mongolia Clinical College, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Guanhua Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing, 100050, China
| | - Tse Ring
- Hospital of Tibetan Traditional Medicine, Tibet Autonomous Region, 850000, China.
| | - Tengfei Ji
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing, 100050, China.
| | - Guifen Qiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing, 100050, China.
| |
Collapse
|
169
|
Xiang Z, Zhu B, Yang X, Deng J, Zhu Y, Gan L, Yu M, Chen J, Xia C, Chen S. Comprehensive Analysis of Phenolic Constituents, Biological Activities, and Derived Aroma Differences of Penthorum chinense Pursh Leaves after Processing into Green and Black Tea. Foods 2024; 13:399. [PMID: 38338534 PMCID: PMC10855198 DOI: 10.3390/foods13030399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Penthorum chinense Pursh (Penthoraceae) is a traditional herb used in Miao medical systems that is also processed into foods (e.g., tea products) in China. Different processing methods significantly affect the volatile compounds, phenolic constituents, and biological activities. This study aimed to produce P. chinense green tea leaves (GTL), black tea leaves (BTL), and untreated leaves (UL) to investigate differences in their flavor substances, functional components, antioxidant activity, alcohol dehydrogenase (ADH) activity, and acetaldehyde dehydrogenase (ALDH) activity. The results showed that 63, 56, and 56 volatile compounds were detected in UL, GTL, and BTL, respectively, of which 43 volatile compounds were identified as differential metabolites among them. The total phenolic content (97.13-179.34 mg GAE/g DW), flavonoid content (40.07-71.93 mg RE/g DW), and proanthocyanidin content (54.13-65.91 mg CE/g DW) exhibited similar trends, decreasing in the order of UL > BTL > GTL. Fourteen phenolic compounds were determined, of which gallic acid, (-)-epicatechin, and pinocembrin 7-O-glucoside showed a sharp decrease in content from UL to BTL, while the content of pinocembrin 7-O-(3″-O-galloy-4″, 6″-hexahydroxydiphenoyl)-glucoside and pinocembrin significantly increased. GTL showed better DPPH/ABTS·+ scavenging ability and ferric-reducing ability than UL. The ADH and ALDH activities decreased in the order of GTL > UL > BTL. Therefore, tea products made with P. chinense leaves contained an abundance of functional compounds and showed satisfactory antioxidant and hepatoprotective activities, which are recommended for daily consumption.
Collapse
Affiliation(s)
- Zhuoya Xiang
- Institute of Agro-Products Processing Science and Technology (Institute of Food Nutrition and Health), Sichuan Academy of Agricultural Sciences, 60 Shizishan Road, Chengdu 610066, China; (Z.X.); (B.Z.); (X.Y.); (J.D.); (Y.Z.); (L.G.); (M.Y.)
| | - Boyu Zhu
- Institute of Agro-Products Processing Science and Technology (Institute of Food Nutrition and Health), Sichuan Academy of Agricultural Sciences, 60 Shizishan Road, Chengdu 610066, China; (Z.X.); (B.Z.); (X.Y.); (J.D.); (Y.Z.); (L.G.); (M.Y.)
| | - Xing Yang
- Institute of Agro-Products Processing Science and Technology (Institute of Food Nutrition and Health), Sichuan Academy of Agricultural Sciences, 60 Shizishan Road, Chengdu 610066, China; (Z.X.); (B.Z.); (X.Y.); (J.D.); (Y.Z.); (L.G.); (M.Y.)
| | - Junlin Deng
- Institute of Agro-Products Processing Science and Technology (Institute of Food Nutrition and Health), Sichuan Academy of Agricultural Sciences, 60 Shizishan Road, Chengdu 610066, China; (Z.X.); (B.Z.); (X.Y.); (J.D.); (Y.Z.); (L.G.); (M.Y.)
| | - Yongqing Zhu
- Institute of Agro-Products Processing Science and Technology (Institute of Food Nutrition and Health), Sichuan Academy of Agricultural Sciences, 60 Shizishan Road, Chengdu 610066, China; (Z.X.); (B.Z.); (X.Y.); (J.D.); (Y.Z.); (L.G.); (M.Y.)
| | - Lu Gan
- Institute of Agro-Products Processing Science and Technology (Institute of Food Nutrition and Health), Sichuan Academy of Agricultural Sciences, 60 Shizishan Road, Chengdu 610066, China; (Z.X.); (B.Z.); (X.Y.); (J.D.); (Y.Z.); (L.G.); (M.Y.)
| | - Manyou Yu
- Institute of Agro-Products Processing Science and Technology (Institute of Food Nutrition and Health), Sichuan Academy of Agricultural Sciences, 60 Shizishan Road, Chengdu 610066, China; (Z.X.); (B.Z.); (X.Y.); (J.D.); (Y.Z.); (L.G.); (M.Y.)
| | - Jian Chen
- Institute of Agro-Products Processing Science and Technology (Institute of Food Nutrition and Health), Sichuan Academy of Agricultural Sciences, 60 Shizishan Road, Chengdu 610066, China; (Z.X.); (B.Z.); (X.Y.); (J.D.); (Y.Z.); (L.G.); (M.Y.)
| | - Chen Xia
- Institute of Agro-Products Processing Science and Technology (Institute of Food Nutrition and Health), Sichuan Academy of Agricultural Sciences, 60 Shizishan Road, Chengdu 610066, China; (Z.X.); (B.Z.); (X.Y.); (J.D.); (Y.Z.); (L.G.); (M.Y.)
| | - Song Chen
- Gucui Biotechnology Co., Ltd., Luzhou 646500, China;
| |
Collapse
|
170
|
Wang Y, Zhao J, Tan Z, Du J, Zhang L, Xu Y, Li X, Cai Y, Wang H, Jiang J. Identification of a novel genomic variance of BRAF1 in papillary thyroid carcinoma: A case report. Medicine (Baltimore) 2024; 103:e36978. [PMID: 38241570 PMCID: PMC10798735 DOI: 10.1097/md.0000000000036978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/22/2023] [Indexed: 01/21/2024] Open
Abstract
RATIONALE Papillary thyroid carcinoma (PTC), the predominant subtypes accounting for approximately 85% of thyroid carcinomas, has a rapidly increasing global incidence rate. Statistically, approximately 74.6% PTC patients had the genomic variants of BRAF, especially BRAFV600E mutation, which has been reported to stratify patients and guide clinic-therapies. However, some PTC patients may carry other nonclassical mutation patterns of BRAF, due to the complex of genomic instability. And the spectrum of BRAF mutation was not fully characterized. We reported a novel BRAF mutation pattern of PTC. PATIENT CONCERNS A 59-year-old woman was admitted to our hospital because of the slight enlargement of bilateral cervical lymph nodes in July 2023. DIAGNOSIS Ultrasonography revealed that the bilateral thyroid nodules of the patients both presented 1 hypoechoic nodule, which was graded as 3 of the elastic score, and the small calcification in the right lobe (Chinese-Thyroid Imaging Reporting and Data System 4c). Pathological diagnosis showed the interstitial collagen change and focal follicular epithelial papillary hyperplasia with atypical hyperplasia of the bilateral thyroid. Further puncture pathology showed that the patient had a malignant thyroid lesion with the phenotypes of papillary carcinoma and diagnosed with malignancy subsequently. Additionally, the patient harbored a novel insert on BRAF exon 15, a 6-base fragment AGACAG inserting between c.1798 and c.1799. INTERVENTIONS The patient was undergone on microwave ablation of thyroid carcinoma on July 28, 2023. After the surgery, the patient was treated on anti-infection, cold saline external application of bilateral thyroid swelling supportive treatment. OUTCOMES No postoperative complications or recurrence and metastasis were found. LESSONS This is the first case of the novel nonclassical genomic variant of BRAF. Our study extends the spectrum of BRAF mutations. The patient had a favorable response to microwave ablation, indicating that in spite of the association between this mutation and high-grade malignant phenotype, this genomic variant of BRAF did not have a detrimental effect on the response of clinical treatment.
Collapse
Affiliation(s)
- Yuguo Wang
- Department of Ultrasound, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, China
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Jiangsu, China
| | - Jian Zhao
- Jurong Traditional Chinese Medicine Hospital, Zhenjiang, China
| | - Zhihan Tan
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Jiangsu, China
| | - Jing Du
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Jiangsu, China
| | - Linping Zhang
- Jurong Traditional Chinese Medicine Hospital, Zhenjiang, China
| | - Ying Xu
- Nanjing Dian Diagnostics Group Co., Ltd, Nanjing, China
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Dian Diagnostics Group Co., Ltd., Hangzhou, China
| | - Xiuying Li
- Nanjing Dian Diagnostics Group Co., Ltd, Nanjing, China
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Dian Diagnostics Group Co., Ltd., Hangzhou, China
| | - Yun Cai
- Nanjing Dian Diagnostics Group Co., Ltd, Nanjing, China
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Dian Diagnostics Group Co., Ltd., Hangzhou, China
| | - Hui Wang
- Department of Ultrasound, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, China
- Department of Endocrinology, Yancheng City No. 6 People’s Hospital, Jiangsu, China
| | - Jianjun Jiang
- Department of Ultrasound, Dafeng People’s Hospital, Jiangsu, China
| |
Collapse
|
171
|
Abdel-Maksoud MA, Ullah S, Nadeem A, Shaikh A, Zia MK, Zakri AM, Almanaa TN, Alfuraydi AA, Mubarak A, Hameed Y. Unlocking the diagnostic, prognostic roles, and immune implications of BAX gene expression in pan-cancer analysis. Am J Transl Res 2024; 16:63-74. [PMID: 38322551 PMCID: PMC10839381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/20/2023] [Indexed: 02/08/2024]
Abstract
OBJECTIVES Cancer, a formidable disease, continues to challenge our understanding and therapeutic approaches. This study delves into the pan-cancer analysis of BCL2 Associated X (BAX) gene expression, seeking to unravel its significance in cancer development, prognosis, and potential therapeutic strategies. METHODS A combination of bioinformatics and molecular experiments. RESULTS Our pan-cancer investigation into BAX expression encompassed 33 distinct cancer types, revealing a remarkable and uniform increase in BAX expression. This groundbreaking finding emphasizes the potential universality of BAX's role in cancer development and progression. Further, our study explored the prognostic implications of BAX expression, highlighting a consistent association between up-regulated BAX and poor overall survival (OS) in Liver Hepatocellular Carcinoma (LIHC) and Skin Cutaneous Melanoma (SKCM). These results suggest that BAX may serve as an adverse prognostic indicator in these malignancies, emphasizing the importance of personalized treatment strategies. Epigenetic and genetic analyses of BAX provided valuable insights. Hypomethylation of the BAX promoter region was evident in LIHC and SKCM, which likely contributes to the up-regulation of BAX, while genetic mutations in the BAX gene itself were infrequent in these cancers. Our exploration of BAX-associated signaling pathways and the correlation between BAX expression and CD8+ T cell infiltration shed light on the intricate molecular landscape of cancer. BAX's interaction with key apoptotic and immune-related pathways reinforces its role as a central player in tumor development and the immune microenvironment. Moreover, our drug prediction analysis identified potential therapeutic agents for modulating BAX expression in the context of LIHC and SKCM, bridging the gap between research and clinical application. CONCLUSION In sum, our comprehensive BAX study not only enhances our understanding of its significance as a biomarker gene but also offers novel avenues for therapeutic interventions, contributing to the ongoing quest for more effective cancer treatments and improved patient care.
Collapse
Affiliation(s)
- Mostafa A Abdel-Maksoud
- Department of Botany and Microbiology, College of Science, King Saud UniversityP.O. Box 2455, Riyadh 11451, Saudi Arabia
| | | | - Amun Nadeem
- Department of Pathology, Gujranwala Medical College Teaching Hospital GujranwalaPakistan
| | | | - Muhammad Khurram Zia
- Department of Surgery, Liaquat College of Medicine and Dentistry and Darul Sehat HospitalKarachi, Pakistan
| | - Adel M Zakri
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud UniversityRiyadh 11451, Saudi Arabia
| | - Taghreed N Almanaa
- Department of Botany and Microbiology, College of Science, King Saud UniversityP.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Akram A Alfuraydi
- Department of Botany and Microbiology, College of Science, King Saud UniversityP.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ayman Mubarak
- Department of Botany and Microbiology, College of Science, King Saud UniversityP.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Yasir Hameed
- Department of Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of BahawalpurBahawalpur 63100, Pakistan
| |
Collapse
|
172
|
Zhang K, Hu X, Su J, Li D, Thakur A, Gujar V, Cui H. Gastrointestinal Cancer Therapeutics via Triggering Unfolded Protein Response and Endoplasmic Reticulum Stress by 2-Arylbenzofuran. Int J Mol Sci 2024; 25:999. [PMID: 38256073 PMCID: PMC10816499 DOI: 10.3390/ijms25020999] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Gastrointestinal cancers are a major global health challenge, with high mortality rates. This study investigated the anti-cancer activities of 30 monomers extracted from Morus alba L. (mulberry) against gastrointestinal cancers. Toxicological assessments revealed that most of the compounds, particularly immunotoxicity, exhibit some level of toxicity, but it is generally not life-threatening under normal conditions. Among these components, Sanggenol L, Sanggenon C, Kuwanon H, 3'-Geranyl-3-prenyl-5,7,2',4'-tetrahydroxyflavone, Morusinol, Mulberrin, Moracin P, Kuwanon E, and Kuwanon A demonstrate significant anti-cancer properties against various gastrointestinal cancers, including colon, pancreatic, and gastric cancers. The anti-cancer mechanism of these chemical components was explored in gastric cancer cells, revealing that they inhibit cell cycle and DNA replication-related gene expression, leading to the effective suppression of tumor cell growth. Additionally, they induced unfolded protein response (UPR) and endoplasmic reticulum (ER) stress, potentially resulting in DNA damage, autophagy, and cell death. Moracin P, an active monomer characterized as a 2-arylbenzofuran, was found to induce ER stress and promote apoptosis in gastric cancer cells, confirming its potential to inhibit tumor cell growth in vitro and in vivo. These findings highlight the therapeutic potential of Morus alba L. monomers in gastrointestinal cancers, especially focusing on Moracin P as a potent inducer of ER stress and apoptosis.
Collapse
Affiliation(s)
- Kui Zhang
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Xin Hu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Jingjing Su
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Dong Li
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Abhimanyu Thakur
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vikramsingh Gujar
- Department of Anatomy and Cell Biology, Okhlahoma State University Center for Health Sciences, Tulsa, OK 74107, USA
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China
| |
Collapse
|
173
|
Keshavarzi A, Akrami R, Zarshenas MM, Zareie S, Ghadimi T, Najafi A, Rostami Chijan M, Dehghan A, Zarenezhad E. Evaluation of the Effect of Cichorium intybus L. on the Liver Enzymes in Burn Patients: A Randomized Double-Blind Clinical Trial. Int J Clin Pract 2024; 2024:1016247. [PMID: 38239768 PMCID: PMC10796187 DOI: 10.1155/2024/1016247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 09/02/2023] [Accepted: 12/30/2023] [Indexed: 01/22/2024] Open
Abstract
Burn injuries are considered an important public health problem in the world. Burns are considered the fourth most common kind of trauma in the world, after traffic accidents, falls, and interpersonal violence. Various biochemical agents are involved in the burn healing process such as cytokines (such as IL-6 and TNF-α), antioxidants, and liver and kidney damage biomarkers. Cichorium intybus L. and milk thistle extracts showed a wide range of pharmacological activities such as significant antimicrobial effect and antioxidant activity, as well as anti-inflammatory, antidiabetic, antiproliferative, antiprotozoal, and hepatoprotective effect. Also, these two herbs possess blood-cleansing, detoxifying, laxative, and invigorating activities. Some research confirmed that the preparations of the extract are very suitable for the treatment of nonalcoholic fatty liver disease. This is a double-blind randomized controlled clinical trial. Patients with 2nd and 3rd degree burns have been selected to participate in the study according to the inclusion criteria. A total of 60 patients were selected and divided into intervention and control groups (30 patients in each group). Patients in the intervention group received chicory seed syrup 10 cc three times a day and 1 placebo capsule, and those in the control group received placebo syrup (10 cc three times a day) and one Livergol (140 mg of silymarin in each capsule) capsule. Lab data such as liver function tests, albumin, creatinine, BUN, and hemoglobin were checked every 3 days and 1 week after discharge. The treatment lasted for 4 weeks. According to the results of the study, although the average of liver enzymes at the end of the study does not show a significant difference between the two groups, the level of liver enzymes in each group decreased on the 15th day of the study compared to the first day. This trial is registered with IRCT20180609040016N1.
Collapse
Affiliation(s)
- Abdolkhalegh Keshavarzi
- Shiraz Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rahimeh Akrami
- Shiraz Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad M. Zarshenas
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Zareie
- Nurse of Intensive Care Unit (ICU) of Amir Al-Momenin Burn Injury Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tayyeb Ghadimi
- Department of Plastic and Reconstructive Surgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Najafi
- Shiraz Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Rostami Chijan
- Department of Persian Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Azizallah Dehghan
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Elham Zarenezhad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
174
|
Jiao H, Fan Y, Gong A, Li T, Fu X, Yan Z. Xiaoyaosan ameliorates CUMS-induced depressive-like and anorexia behaviors in mice via necroptosis related cellular senescence in hypothalamus. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116938. [PMID: 37495029 DOI: 10.1016/j.jep.2023.116938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Depression and anorexia often co-occur and share symptoms such as low mood, lack of energy, and weight loss. Xiaoyaosan is a classic formula comprising of a combination of eight herbs, possessing definitive therapeutic effects, minimal side effects, and economical benefits. It has been extensively employed in clinical treatment of ailments and symptoms such as depression, anxiety, and appetite problems. Nonetheless, its exact pharmacological mechanism with necroptosis remains incompletely explicit. AIM OF THE STUDY The aim of this study is to explore the potential mechanisms of anti-depressive and appetite-regulating effects of the active ingredients in Xiaoyaosan, and to investigate whether there is a correlation with necroptosis. MATERIALS AND METHODS The network pharmacology method was conducted to identify active ingredients, which were used to predict the possible targets of Xiaoyaosan and explore the potential targets in treating depression and anorexia by overlapping with differentially expressed genes (DEGs) screened from GEO datasets (GSE125441, GSE198597, and GSE69151). Afterwards, the protein-protein interaction (PPI) network, enrichment analyses, hub gene identification, co-expression study and molecular docking were used to study the potential mechanism of Xiaoyaosan. Then, a mice model of depression was established by chronic unpredictable mild stress (CUMS) and the incidence of necroptosis in the hypothalamus of CUMS mice was investigated, while verifying the key therapeutic target of Xiaoyaosan. RESULTS Through network pharmacology research, it had been discovered that the 145 active ingredients of the 8 herbs in the Xiaoyaosan could regulate 198 disease targets. Through PPI network analysis and functional enrichment analysis, it had been found that the pharmacological mechanism of Xiaoyaosan mainly involved biological processes such as oxidative stress, kinase activity, and DNA metabolism. It is related to various pathways such as cellular senescence, immune inflammation, and the cell cycle, and 9 hub targets had been identified. Further analysis of the 9 hub targets and the key PPI network clusters clarified the key mechanisms by which Xiaoyaosan exerts anti-depressant and appetite regulating effects, possibly related to necroptosis-mediated cellular senescence. Molecular docking of the key indicators of cellular senescence screened by bioinformatics, SIRT1, ABL1, and MYC, revealed that the key component regulating SIRT1 is 2-[3,4-dihydroxyphenyl]-5,7-dihydroxy-6-[3-methylbut-2-enyl]chromone in licorice root, Glabridin in licorice root regulates ABL1, and β-sitosterol found in Chinese angelica, debark peony root, and fresh ginger regulates MYC. Finally, through in vivo experiments, the expression of necroptosis in the hypothalamus of CUMS mice was verified. The regulatory effects of Xiaoyaosan on key substances RIPK1, RIPK3, MLKL, and p-MLKL were determined, while regulating effects on SIRT1, ABL1, and MYC were also observed. CONCLUSION The present study have revealed the common mechanism of Xiaoyaosan in treating depression and anorexia, indicating that the active ingredients of Xiaoyaosan may alleviate the symptoms of depression and anorexia by intervening in the pathways related to necroptosis and cellular senescence. The hub genes and common pathways identified by the study also provide new insights into the therapeutic targets of depression and anorexia, as well as the exploration of pharmacological mechanism of Xiaoyaosan.
Collapse
Affiliation(s)
- Haiyan Jiao
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China.
| | - Yingli Fan
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China.
| | - Aimin Gong
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China.
| | - Tian Li
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China.
| | - Xing Fu
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China.
| | - Zhiyi Yan
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China; Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100078, China.
| |
Collapse
|
175
|
Longevity OMAC. Retracted: Screening and Identification of Antidepressant Active Ingredients from Puerariae Radix Extract and Study on Its Mechanism. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2024; 2024:9756581. [PMID: 38234563 PMCID: PMC10791233 DOI: 10.1155/2024/9756581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
[This retracts the article DOI: 10.1155/2021/2230195.].
Collapse
|
176
|
Mai H, Yang X, Xie Y, Zhou J, Wang Q, Wei Y, Yang Y, Lu D, Ye L, Cui P, Liang H, Huang J. The role of gut microbiota in the occurrence and progression of non-alcoholic fatty liver disease. Front Microbiol 2024; 14:1257903. [PMID: 38249477 PMCID: PMC10797006 DOI: 10.3389/fmicb.2023.1257903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is the most prevalent cause of chronic liver disease worldwide, and gut microbes are associated with the development and progression of NAFLD. Despite numerous studies exploring the changes in gut microbes associated with NAFLD, there was no consistent pattern of changes. Method We retrieved studies on the human fecal microbiota sequenced by 16S rRNA gene amplification associated with NAFLD from the NCBI database up to April 2023, and re-analyzed them using bioinformatic methods. Results We finally screened 12 relevant studies related to NAFLD, which included a total of 1,189 study subjects (NAFLD, n = 654; healthy control, n = 398; obesity, n = 137). Our results revealed a significant decrease in gut microbial diversity with the occurrence and progression of NAFLD (SMD = -0.32; 95% CI -0.42 to -0.21; p < 0.001). Alpha diversity and the increased abundance of several crucial genera, including Desulfovibrio, Negativibacillus, and Prevotella, can serve as an indication of their predictive risk ability for the occurrence and progression of NAFLD (all AUC > 0.7). The occurrence and progression of NAFLD are significantly associated with higher levels of LPS biosynthesis, tryptophan metabolism, glutathione metabolism, and lipid metabolism. Conclusion This study elucidated gut microbes relevance to disease development and identified potential risk-associated microbes and functional pathways associated with NAFLD occurrence and progression.
Collapse
Affiliation(s)
- Huanzhuo Mai
- School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, China
| | - Xing Yang
- School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, China
| | - Yulan Xie
- School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, China
| | - Jie Zhou
- School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, China
| | - Qing Wang
- School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, China
| | - Yiru Wei
- School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, China
| | - Yuecong Yang
- School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, China
| | - Dongjia Lu
- School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, China
| | - Li Ye
- School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, China
- Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Nanning, China
| | - Ping Cui
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, China
- Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Nanning, China
- Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Hao Liang
- School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, China
- Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Nanning, China
- Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Jiegang Huang
- School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| |
Collapse
|
177
|
Zhang Z, Shi B, Lv X, Dong Y, Li L, Xia Z. Effects of silybin supplementation on growth performance, serum indexes and liver transcriptome of Peking ducks. Front Vet Sci 2024; 10:1325115. [PMID: 38239743 PMCID: PMC10795170 DOI: 10.3389/fvets.2023.1325115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/04/2023] [Indexed: 01/22/2024] Open
Abstract
As an emerging feed additive extracted from the traditional herb milk thistle, silybin has few applications and studies in Peking ducks. The aim of this study was to explore the practical significance of silymarin application in Peking ducks and to provide more theoretical support for the application of silymarin in livestock and poultry production. A total of 156 1-day-old healthy Peking ducks were randomly divided into four groups and supplemented with 0 mg/kg (control group), 400 mg/kg (S400), 800 mg/kg (S800) and 1,600 mg/kg (S1600) of silybin in the diets at day 14, to investigate the effects of silymarin on the growth, serum indexes and liver transcriptome of Peking ducks. The whole experiment lasted until day 42, and the sample collection was scheduled to take place in the morning. A substantial inprovement in average daily gain (ADG) and a decrease in feed conversion ratio (FCR) occurred in the S1600 group on days 14-28 compared to the control group (p < 0.05). The FCRs of other additive groups in the same period showed the same results. Supplementation of diets with silybin significantly increased serum IgA levels and when 1,600 mg/kg of silybin was given, levels of TNF-α and IL-6 were also significantly decreased (p < 0.05). In addition, we observed that the S1600 group had a significantly lower (p < 0.05) glutamine transaminase and an increased (p < 0.05) T-SOD level in the S400 group (p < 0.05). Liver transcriptome sequencing showed that 71 and 258 differentially expressed genes (DEGs) were identified in the S400 and S1600 groups, respectively, compared with the control group. DEGs related to cell composition and function, antigen processing and presentation were up-regulated, while DEGs related to insulin resistance and JAK-STAT were down-regulated. Conclusively, silybin can be used as a feed additive to improve the growth performance and health status of Peking ducks.
Collapse
Affiliation(s)
- Ziyue Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Bozhi Shi
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xueze Lv
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- Beijing General Animal Husbandry Station, Beijing, China
| | - Yingchao Dong
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Li
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Zhaofei Xia
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
178
|
Jin C, Zheng J, Yang Q, Jia Y, Li H, Liu X, Xu Y, Chen Z, He L. Morusin Inhibits RANKL-induced Osteoclastogenesis and Ovariectomized Osteoporosis. Comb Chem High Throughput Screen 2024; 27:1358-1370. [PMID: 37807416 DOI: 10.2174/0113862073252310230925062415] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/18/2023] [Accepted: 08/09/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Postmenopausal osteoporosis (PMOP) is a classic type of osteoporosis that has gradually become a significant health problem worldwide. There is an urgent need for a safe alternative therapeutic agent considering the poor therapeutic strategies currently available for this disease. The roots and bark of the Morus australis tree (Moraceae) are used to make a traditional Chinese medicine known as "Morusin", and accumulating evidence has demonstrated its multiple activities, such as anti-inflammatory and anti-tumor effects. OBJECTIVE In this study, we aim to explore the effect of Morusin on mouse osteoclasts and its mechanism. METHODS In this study, we explored the inhibitory effects of Morusin on murine osteoclasts in vitro and its mechanism, and the protective effect of Morusin on an ovariectomy (OVX)-induced osteoporosis model in vivo. RESULTS The results showed that Morusin prevented OVX-induced bone loss and dramatically decreased RANKL-induced osteoclastogenesis. Morusin interfered with RANKL-activated NF- κB, MAPK, and PI3K/AKT signaling pathways. The expression of three master factors that control osteoclast differentiation, c-Fos, NFATc1, and c-Jun, was reduced by Morusin treatment. Collectively, in vitro results indicated that Morusin has a protective effect on OVX-induced bone loss in a mouse model. CONCLUSION Our data provide encouraging evidence that Morusin may be an effective treatment for PMOP.
Collapse
Affiliation(s)
- Cong Jin
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Jiewen Zheng
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
- Shaoxing University School of Medicine, Shaoxing, Zhejiang, 312000, China
| | - Qichang Yang
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yewei Jia
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Haibo Li
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Xuewen Liu
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China China
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yangjun Xu
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
- Shaoxing University School of Medicine, Shaoxing, Zhejiang, 312000, China
| | - Zhuolin Chen
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310000, China
| | - Lei He
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| |
Collapse
|
179
|
Keivanlou MH, Amini-Salehi E, Hassanipour S, Zare R, Mohammadi-Vajari E, Hashemi M, Salari A, Porteghali P. The Value of Microbiome-targeted Therapy on Lipid Indices of Patients with Type 2 Diabetes Mellitus: An Umbrella Meta-analysis of Randomized Controlled Trials. Curr Diabetes Rev 2024; 21:e180124225761. [PMID: 38243955 DOI: 10.2174/0115733998284844240102110559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is considered a global health challenge with increasing prevalence in recent years. One of the key elements in managing T2DM patients is controlling their lipid profile. Recent studies suggest microbiome-targeted therapy (MTT) as a treatment strategy for enhancing lipid profiles in these patients. OBJECTIVE The current study aimed to investigate the impact of MTT on lipid indices of T2DM patients by performing an umbrella approach. METHODS Three international databases including PubMed, Scopus, and Web of Science were searched from inception up to April 2023 to find meta-analyses evaluating the impact of MTT (prebiotics, probiotics, and synbiotics) on the lipid profile of T2DM patients. Two independent researchers extracted data from the relevant meta-analyses. To find the source of heterogeneity various subgroup analyses were performed. Comprehensive Meta-Analyses (CMA) software version 3 was utilized for the final analysis. RESULTS Based on the results of the current study, MTT had on significant effects total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL), and high-density lipoprotein (HDL) (ES: - 0.092; 95%CI: -0.111, -0.074; P< 0.001, ES: -0.109; 95%CI: -0.137, -0.081; P< 0.001, ES: -0.036; 95%CI: -0.068, -0.005; P= 0.024, ES: 0.109; 95%CI: 0.056, 0.162; P<0.000, respectively). In subgroup analysis, probiotics showed the most substantial effect on all lipid biomarkers. CONCLUSION This research has provided promising insights into the potential impact of MTT on lipid levels in patients diagnosed with T2DM. Notably, MTT had the greatest impact on HDL levels, followed by TG, TC, and LDL. As a result of our study, MTT is recommended as an adjunctive therapeutic option for T2DM treatment due to its capability to regulate lipid profiles.
Collapse
Affiliation(s)
- Mohammad-Hossein Keivanlou
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Ehsan Amini-Salehi
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Soheil Hassanipour
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Reza Zare
- Student Research Committee, Larestan University of Medical Sciences, Larestan, Iran
| | | | - Mohammad Hashemi
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Arsalan Salari
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Parham Porteghali
- Department of Internal Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
180
|
Liu Y, Wang D, Jin Y, Sun G, Lou Q, Wang H, Li W. Costunolide ameliorates angiotensin II-induced atrial inflammation and fibrosis by regulating mitochondrial function and oxidative stress in mice: A possible therapeutic approach for atrial fibrillation. Microvasc Res 2024; 151:104600. [PMID: 37666318 DOI: 10.1016/j.mvr.2023.104600] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
Atrial fibrillation (AF) is a cardiac disease characterized by disordered atrial electrical activity. Atrial inflammation and fibrosis are involved in AF progression. Costunolide (COS) is a sesquiterpene lactone containing anti-inflammatory and anti-fibrotic activities. This study aims to explore the underlying mechanisms by which COS protects against AF. Male C57BL/6 mice (8- to 10-week-old) were infused with angiotensin (Ang) II for 3 weeks. Meanwhile, different doses of COS (COS-L: 10 mg/kg, COS-H: 20 mg/kg) were administered to mice by intragastric treatment. The results showed irregular and rapid heart rates in Ang II-treated mice. Moreover, the levels of inflammatory cytokines and fibrotic factors were elevated in mice. COS triggered a reduction of Ang II-induced inflammation and fibrosis, which conferred a protective effect. Mechanistically, mitochondrial dysfunction with mitochondrial respiration inhibition and aberrant ATP levels were observed after Ang II treatment. Moreover, Ang-II-induced excessive reactive oxygen species caused oxidative stress, which was further aggravated by inhibiting Nrf2 nuclear translocation. Importantly, COS diminished these Ang-II-mediated effects in mice. In conclusion, COS attenuated inflammation and fibrosis in Ang-II-treated mice by alleviating mitochondrial dysfunction and oxidative stress. Our findings represent a potential therapeutic option for AF treatment.
Collapse
Affiliation(s)
- Yushu Liu
- The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, PR China
| | - Dong Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang, PR China
| | - Yimin Jin
- Department of General Practice, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, PR China
| | - Guifang Sun
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, PR China
| | - Qi Lou
- Graduate Student, Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, PR China
| | - Hong Wang
- Graduate Student, Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, PR China
| | - Weimin Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, PR China.
| |
Collapse
|
181
|
Guo F, Guo Y, Zhang D, Fu Z, Han S, Wan Y, Guan G. Luteolin inhibits the JAK/STAT pathway to alleviate auditory cell apoptosis of acquired sensorineural hearing loss based on network pharmacology, molecular docking, molecular dynamics simulation, and experiments in vitro. Toxicol Appl Pharmacol 2024; 482:116790. [PMID: 38103742 DOI: 10.1016/j.taap.2023.116790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
PURPOSE The study aimed to explore the mechanisms of luteolin in acquired sensorineural hearing loss (SNHL) through network pharmacology, molecular docking, molecular dynamics simulation, and experimental verification. METHODS First, the practices of network pharmacology were used to obtain the intersecting targets of luteolin and acquired SNHL, construct the PPI (Protein-Protein Interaction) network, conduct GO and KEGG enrichments, and establish luteolin-acquired SNHL-target-pathway network, aiming to gain the core targets and pathways. Then, the affinity between the core targets and luteolin was verified by molecular docking. Moreover, molecular dynamics (MD) simulation was applied to simulate the binding between targets and luteolin. Finally, with the HEI-OC1 cell line, some molecular biology techniques were adopted to verify the pharmacological actions of luteolin and the significance of the pathway from KEGG enrichment in luteolin-protecting auditory cell damage related to acquired SNHL. RESULTS 14 intersecting targets were obtained, and the 10 core targets were further verified through molecular docking and MD simulation to get 5 core targets. The JAK/STAT was selected as the critical pathway through KEGG enrichment. Luteolin could dose-dependently alleviate auditory cell apoptosis by inhibiting the JAK/STAT pathway, confirmed by a series of experiments in vitro. CONCLUSION This study manifested that luteolin could reduce acquired SNHL-related auditory cell apoptosis through the JAK/STAT pathway, which provided a new idea for acquired SNHL pharmacological treatment.
Collapse
Affiliation(s)
- Fang Guo
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital, Jilin University, Changchun, China.
| | - Yingyuan Guo
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital, Jilin University, Changchun, China
| | - Dejun Zhang
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital, Jilin University, Changchun, China.
| | - Zeming Fu
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital, Jilin University, Changchun, China.
| | - Shuang Han
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital, Jilin University, Changchun, China.
| | - Yining Wan
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital, Jilin University, Changchun, China.
| | - Guofang Guan
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital, Jilin University, Changchun, China.
| |
Collapse
|
182
|
Wang W, Cao X, Cao YN, Liu LL, Zhang SL, Qi WY, Zhang JX, Yang XZ, Li XK, Zao XB, Ye YA. Exploring the Molecular Mechanism of Niuxi-Mugua Formula in Treating Coronavirus Disease 2019 via Network Pharmacology, Computational Biology, and Surface Plasmon Resonance Verification. Curr Comput Aided Drug Des 2024; 20:1113-1129. [PMID: 37855353 DOI: 10.2174/0115734099272592231004170422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND In China, Niuxi-Mugua formula (NMF) has been widely used to prevent and treat coronavirus disease 2019 (COVID-19). However, the mechanism of NMF for treating COVID-19 is not yet fully understood. OBJECTIVE This study aimed to explore the potential mechanism of NMF for treating COVID- 19 by network pharmacology, computational biology, and surface plasmon resonance (SPR) verification. MATERIALS AND METHODS The NMF-compound-target network was constructed to screen the key compounds, and the Molecular Complex Detection (MCODE) tool was used to screen the preliminary key genes. The overlapped genes (OGEs) and the preliminary key genes were further analyzed by enrichment analysis. Then, the correlation analysis of immune signatures and the preliminary key genes was performed. Molecular docking and molecular dynamic (MD) simulation assays were applied to clarify the interactions between key compounds and key genes. Moreover, the SPR interaction experiment was used for further affinity kinetic verification. RESULTS Lipid and atherosclerosis, TNF, IL-17, and NF-kappa B signaling pathways were the main pathways of NMF in the treatment of COVID-19. There was a positive correlation between almost the majority of immune signatures and all preliminary key genes. The key compounds and the key genes were screened out, and they were involved in the main pathways of NMF for treating COVID-19. Moreover, the binding affinities of most key compounds binding to key genes were good, and IL1B-Quercetin had the best binding stability. SPR analysis further demonstrated that IL1B-Quercetin showed good binding affinity. CONCLUSION Our findings provided theoretical grounds for NMF in the treatment of COVID-19.
Collapse
Affiliation(s)
- Wei Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100700, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xu Cao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Yi-Nan Cao
- Sun Simiao Hospital, Beijing University of Chinese Medicine, Tongchuan, 727031, China
| | - Lian-Lian Liu
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Shu-Ling Zhang
- Sun Simiao Hospital, Beijing University of Chinese Medicine, Tongchuan, 727031, China
| | - Wen-Ying Qi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100700, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jia-Xin Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Xian-Zhao Yang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Xiao-Ke Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Xiao-Bin Zao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Yong-An Ye
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100700, China
| |
Collapse
|
183
|
Shin S, Kim J, Lee JY, Kim J, Oh CM. Mitochondrial Quality Control: Its Role in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). J Obes Metab Syndr 2023; 32:289-302. [PMID: 38049180 PMCID: PMC10786205 DOI: 10.7570/jomes23054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/27/2023] [Accepted: 09/30/2023] [Indexed: 12/06/2023] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease, is characterized by hepatic steatosis and metabolic dysfunction and is often associated with obesity and insulin resistance. Recent research indicates a rapid escalation in MASLD cases, with projections suggesting a doubling in the United States by 2030. This review focuses on the central role of mitochondria in the pathogenesis of MASLD and explores potential therapeutic interventions. Mitochondria are dynamic organelles that orchestrate hepatic energy production and metabolism and are critically involved in MASLD. Dysfunctional mitochondria contribute to lipid accumulation, inflammation, and liver fibrosis. Genetic associations further underscore the relationship between mitochondrial dynamics and MASLD susceptibility. Although U.S. Food and Drug Administration-approved treatments for MASLD remain elusive, ongoing clinical trials have highlighted promising strategies that target mitochondrial dysfunction, including vitamin E, metformin, and glucagon-like peptide-1 receptor agonists. In preclinical studies, novel therapeutics, including nicotinamide adenine dinucleotide+ precursors, urolithin A, spermidine, and mitoquinone, have shown beneficial effects, such as improving mitochondrial quality control, reducing oxidative stress, and ameliorating hepatic steatosis and inflammation. In conclusion, mitochondrial dysfunction is central to MASLD pathogenesis. The innovative mitochondria-targeted approaches discussed in this review offer a promising avenue for reducing the burden of MASLD and improving global quality of life.
Collapse
Affiliation(s)
- Soyeon Shin
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Jaeyoung Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Ju Yeon Lee
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Jun Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| |
Collapse
|
184
|
Li C, Zhang J, Dionigi G, Sun H. The relationship between subclinical hypothyroidism and invasive papillary thyroid cancer. Front Endocrinol (Lausanne) 2023; 14:1294441. [PMID: 38174330 PMCID: PMC10761496 DOI: 10.3389/fendo.2023.1294441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
Background Subclinical hypothyroidism is the most common thyroid dysfunction. Approximately 10% of patients with thyroid cancer have subclinical hypothyroidism. There is a paucity of real-world studies examining the relationship between subclinical hypothyroidism and known correlates of invasiveness of papillary thyroid carcinoma (PTC). Materials and methods A retrospective cohort study of 13,717 patients with PTC was conducted. Odds ratios were calculated to assess the relationship between subclinical hypothyroidism and extrathyroidal extension (ETE) after adjusting for BMI and genders. The Cancer Genome Atlas (TCGA) data were utilized for the analysis of TSHR-associated pathways, while qRT-PCR was employed to validate the expression levels of pivotal genes in the relevant signaling pathways. Results In total, 13,717 PTC patients (10,769 women and 2,948 men; mean [SD] age, 42.90 [9.43] years) were included in the retrospective study. Subclinical hypothyroidism was an independent risk factor for ETE (OR adjusted, 1.168 [95% CI, 1.028-1.327]; P=0.017). In normal-weight patients, subclinical hypothyroidism was an independent risk factor for ETE (OR adjusted, 1.287 [95% CI, 1.089-1.520]; P=0.003). However, this risk was not observed in under-weight, overweight, and obese patients. Compared to females, subclinical hypothyroidism was a higher risk factor for ETE in male patients with normal body weight (OR male=2.363 vs. OR female=1.228). Subclinical hypothyroidism was found to be a significant risk factor for ETE in the subgroup of patients younger than 38 years old (OR1 adjusted, 1.382 [95% CI, 1.032-1.852], P=0.030). The findings from Gene Set Enrichment Analysis (GSEA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed the involvement of the autophagy signaling pathway in TSHR/ETE/EMT regulation. Moreover, the gene expression levels demonstrated a concentration-dependent relationship between TSH intervention levels and the expression of key genes in the autophagy pathway of thyroid cancer cells. Conclusion Subclinical hypothyroidism was an independent risk factor for ETE in patients with PTC. This association was particularly significant in normal-weight and younger patients. The risk of ETE associated with subclinical hypothyroidism was higher in males compared to females. Our study indicates a potential involvement of the autophagy pathway in regulating the ETE phenotype in thyroid cancer, specifically in the context of subclinical hypothyroidism.
Collapse
Affiliation(s)
- Changlin Li
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Jilin Provincial Engineering Laboratory of Thyroid Disease Prevention and Control, Changchun, Jilin, China
| | - Jiao Zhang
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Jilin Provincial Engineering Laboratory of Thyroid Disease Prevention and Control, Changchun, Jilin, China
| | - Gianlorenzo Dionigi
- Division of Surgery, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifco (IRCCS), Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Hui Sun
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Jilin Provincial Engineering Laboratory of Thyroid Disease Prevention and Control, Changchun, Jilin, China
| |
Collapse
|
185
|
Wei X, Tian Z, Zhao F, Sun A, Zhao S, Jamil M, Yan W. Unveiling pathogenic mutations in BRCA1 and BRCA2 genes across head and neck squamous cell carcinoma patients via next generation sequencing. Am J Cancer Res 2023; 13:6099-6112. [PMID: 38187047 PMCID: PMC10767334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/09/2023] [Indexed: 01/09/2024] Open
Abstract
Head and Neck Squamous Cell Carcinoma (HNSC) presents a formidable challenge in the field of oncology due to its aggressive nature and the limited therapeutic options available. In this study, our primary focus was on the Pakistani HNSC patient population, aiming to investigate germline oncogenic mutations within the BRCA1 and BRCA2 genes via Next Generation Sequencing (NGS) and explore their clinical implications. We sought to understand the functional consequences of these mutations via RT-qPCR and Immunohistochemistry (IHC) techniques. The key discovery of our research lies in the identification of three pathogenic mutations, including two within BRCA1 (p.Cys274Ter and p.Glu272Ter) and one within BRCA2 (p.Met1Val), among Pakistani HNSC patients. These mutations previously associated with an increased risk of various cancers. What sets our study apart is the uniqueness of these pathogenic mutations, absent in HNSC patients from other populations. This suggests a distinct genetic profile in Pakistani HNSC patients, possibly contributing to their susceptibility to this malignancy. Furthermore, our research revealed elevated expression levels of BRCA1 and BRCA2 genes in HNSC samples harboring pathogenic mutations, offering insights into mechanisms driving tumor progression in HNSC. Importantly, we identified significant enrichment of BRCA1/2 genes in pathways related to cancer development within the KEGG database. Finally, in our quest to explore therapeutic avenues, we systematically analyzed drugs targeting up-regulated and mutated BRCA1/2 genes, identifying promising candidates for tailored treatment modalities in HNSC. In conclusion, our study reveals the unique genetic profile of HNSC in Pakistani patients, featuring unique pathogenic mutations in BRCA1 and BRCA2 genes. These mutations offer promise as valuable diagnostic markers and potential therapeutic targets.
Collapse
Affiliation(s)
- Xiaotong Wei
- Department of Oral and Maxillofacial Surgery, Cangzhou Central HospitalCangzhou 061000, Hebei, China
| | - Zhizhengrong Tian
- Department of Ultrasound, Cangzhou Central HospitalCangzhou 061000, Hebei, China
| | - Fengyun Zhao
- Department of Ultrasound, Cangzhou Maternal and Child Health Care HospitalCangzhou 061000, Hebei, China
| | - Anjun Sun
- Department of Oral and Maxillofacial Surgery, Cangzhou Central HospitalCangzhou 061000, Hebei, China
| | - Shujuan Zhao
- Department of Oral and Maxillofacial Surgery, Cangzhou Central HospitalCangzhou 061000, Hebei, China
| | - Muhammad Jamil
- PARC Arid Zone Research CenterDera Ismail Khan 29050, Pakistan
| | - Wei Yan
- Department of Oral and Maxillofacial Surgery, Cangzhou Central HospitalCangzhou 061000, Hebei, China
| |
Collapse
|
186
|
Zhan H, Chen R, Zhong M, Wang G, Jiang G, Tao X, Chen M, Jiang Y. Exploring the pharmacological mechanisms and key active ingredients of total flavonoids from Lamiophlomis rotata (Benth.) Kudo against rheumatoid arthritis based on multi-technology integrated network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116850. [PMID: 37385573 DOI: 10.1016/j.jep.2023.116850] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/04/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lamiophlomis rotata (Benth.) Kudo (LR, Lamiaceae) is a traditional Tibetan medicinal material in China. Tibetan medicine classic and research report suggested that LR could be used to cure rheumatoid arthritis (RA). However, the anti-RA active ingredients and pharmacological mechanisms of LR have not been elucidated. AIM OF THE STUDY To explore the mechanisms and key active ingredients of total flavonoids from LR (TFLR) against RA. MATERIALS AND METHODS First, the mechanisms of TFLR against RA were investigated on collagen-induced arthritis (CIA) rat model by analyzing paw appearance, paw swelling, arthritis score, spleen index, thymus index, inflammatory cytokine (TNF-α, IL-1β, IL-6 and IL-17) levels in serum, histopathology of ankle joint and synovium from knee joint (hematoxylin-eosin, safranin O-fast green and DAB-TUNEL staining), and apoptosis-related protein (PI3K, Akt1, p-Akt, Bad, p-Bad, Bcl-xL and Bcl-2) levels in the synovium of ankle joints (Western blot). Then, the crucially active ingredients of TFLR against RA were explored by network pharmacology, ingredient analysis, in vitro metabolism and TNF-α-induced human RA synovial fibroblast MH7A proliferation assays. Network pharmacology was applied to predict the key active ingredients of TFLR against RA. The ingredient analysis and in vitro metabolism of TFLR were performed on HPLC, and MH7A proliferation assay were applied to evaluate the predicted results of network pharmacology. RESULTS TFLR shown excellently anti-RA effect by reducing paw swelling, arthritis score, spleen index, thymus index and inflammatory cytokine (IL-1β, IL-6 and IL-17) levels, and improving the histopathological changes of ankle joint and synovium from knee joint in CIA rats. Results of Western blot indicated that TFLR reversed the changes of PI3K, p-Akt, p-Bad, Bcl-xL and Bcl-2 levels in the ankle joint synovium of CIA rats. Results of network pharmacology exhibited that luteolin was identified as the pivotal active ingredient of TFLR against RA. The ingredient analysis of TFLR indicated that the main ingredient in TFLR was luteoloside. The in vitro metabolism study of TFLR suggested that luteoloside could be converted to luteolin in artificial gastric juice and intestinal juice. Results of MH7A proliferation assay showed that there was no significant difference between TFLR and equal luteoloside on the viability of MH7A cells, indicating that luteoloside was the key active ingredient of TFLR against RA. Additionally, the luteolin (same mol as luteoloside) showed better inhibitory effect on the viability of MH7A cells than luteoloside. CONCLUSION TFLR showed anti-RA effect, and the mechanism was related to promoting synovial cell apoptosis mediated by PI3K/Akt/Bad pathway. Meanwhile, this work indicated that luteoloside was the key active ingredient of TFLR against RA. This work lays a foundation for providing TFLR product with clear mechanism and stable quality to treat RA.
Collapse
Affiliation(s)
- Hupo Zhan
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, 400715, China.
| | - Ruixin Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Mei Zhong
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region.
| | - Guowei Wang
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, 400715, China.
| | - Guihua Jiang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xingbao Tao
- College of Pharmacy, Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China.
| | - Min Chen
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, 400715, China.
| | - Yunbin Jiang
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
187
|
Praiss AM, Marra A, Zhou Q, Rios-Doria E, Momeni-Boroujeni A, Iasonos A, Selenica P, Brown DN, Aghajanian C, Abu-Rustum NR, Ellenson LH, Weigelt B. TERT promoter mutations and gene amplification in endometrial cancer. Gynecol Oncol 2023; 179:16-23. [PMID: 37890416 PMCID: PMC10841990 DOI: 10.1016/j.ygyno.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/06/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023]
Abstract
OBJECTIVE To assess the clinicopathologic, molecular profiles, and survival outcomes of patients with endometrial carcinomas (ECs) harboring telomerase reverse transcriptase (TERT) hotspot mutations or gene amplification. METHODS ECs harboring somatic TERT promoter hotspot mutations or gene amplification (TERT-altered) were identified from 1944 ECs that underwent clinical tumor-normal sequencing from 08/2016-12/2021. Clinicopathologic variables, somatic mutation profiles, and survival outcomes of TERT-alt and TERT-wild-type EC were assessed. RESULTS We identified 66 TERT-altered ECs (43 TERT-mutated and 23 TERT-amplified), representing 3% of the unselected ECs across histologic subtypes. Most TERT-altered ECs were of copy number (CN)-high/TP53abn molecular subtype (n = 40, 60%), followed by microsatellite-unstable (MSI-H) or CN-low/no specific molecular profile (NSMP)(n = 13, 20% each). TERT-amplified and TERT-mutated ECs were molecularly distinct, with TERT-amplified ECs being more genomically instable and more frequently harboring TP53 and PPP2R1A alterations (q < 0.1). Compared to TERT-wild-type ECs, TERT-altered ECs were more commonly of CN-H/TP53abn molecular subtype (31% vs 57%, p = 0.001), serous histology (10% vs 26%, p = 0.004), and were significantly enriched for TP53, CDKN2A/B, and DROSHA somatic genetic alterations (q < 0.1). Median progression-free survival was 18.7 months (95% CI 11.8-not estimable [NE]) for patients with TERT-altered EC and 80.9 months (65.8-NE) for patients with TERT-wild-type EC (HR 0.33, 95% CI 0.21-0.51, p < 0.001). Similarly, median overall survival was 46.7 months (95% CI 30-NE) for TERT-altered EC patients and not reached for TERT-wild-type EC patients (HR 0.24, 95% CI 0.13-0.44, p < 0.001). CONCLUSION TERT-altered ECs, although rare, are enriched for CN-high/TP53abn tumors, TP53, CDKN2A/B and DROSHA somatic mutations, and independently predict worse survival outcomes.
Collapse
Affiliation(s)
- Aaron M Praiss
- Gynecology Service, Departments of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Antonio Marra
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Qin Zhou
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eric Rios-Doria
- Gynecology Service, Departments of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amir Momeni-Boroujeni
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexia Iasonos
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pier Selenica
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David N Brown
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Carol Aghajanian
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nadeem R Abu-Rustum
- Gynecology Service, Departments of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lora H Ellenson
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Britta Weigelt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
188
|
Oh KK, Gupta H, Ganesan R, Sharma SP, Won SM, Jeong JJ, Lee SB, Cha MG, Kwon GH, Jeong MK, Min BH, Hyun JY, Eom JA, Park HJ, Yoon SJ, Choi MR, Kim DJ, Suk KT. The seamless integration of dietary plant-derived natural flavonoids and gut microbiota may ameliorate non-alcoholic fatty liver disease: a network pharmacology analysis. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2023; 51:217-232. [PMID: 37129458 DOI: 10.1080/21691401.2023.2203734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
We comprised metabolites of gut microbiota (GM; endogenous species) and dietary plant-derived natural flavonoids (DPDNFs; exogenous species) were known as potent effectors against non-alcoholic fatty liver disease (NAFLD) via network pharmacology (NP). The crucial targets against NAFLD were identified via GM and DPDNFs. The protein interaction (PPI), bubble chart and networks of GM or natural products- metabolites-targets-key signalling (GNMTK) pathway were described via R Package. Furthermore, the molecular docking test (MDT) to verify the affinity was performed between metabolite(s) and target(s) on a key signalling pathway. On the networks of GNMTK, Enterococcus sp. 45, Escherichia sp.12, Escherichia sp.33 and Bacterium MRG-PMF-1 as key microbiota; flavonoid-rich products as key natural resources; luteolin and myricetin as key metabolites (or dietary flavonoids); AKT Serine/Threonine Kinase 1 (AKT1), CF Transmembrane conductance Regulator (CFTR) and PhosphoInositide-3-Kinase, Regulatory subunit 1 (PIK3R1) as key targets are promising components to treat NAFLD, by suppressing cyclic Adenosine MonoPhosphate (cAMP) signalling pathway. This study shows that components (microbiota, metabolites, targets and a key signalling pathway) and DPDNFs can exert combinatorial pharmacological effects against NAFLD. Overall, the integrated pharmacological approach sheds light on the relationships between GM and DPDNFs.
Collapse
Affiliation(s)
- Ki-Kwang Oh
- Center for Microbiome, Institute for Liver and Digestive Diseases, Hallym University Medical Center, Chuncheon, Korea
| | - Haripriya Gupta
- Center for Microbiome, Institute for Liver and Digestive Diseases, Hallym University Medical Center, Chuncheon, Korea
| | - Raja Ganesan
- Center for Microbiome, Institute for Liver and Digestive Diseases, Hallym University Medical Center, Chuncheon, Korea
| | - Satya Priya Sharma
- Center for Microbiome, Institute for Liver and Digestive Diseases, Hallym University Medical Center, Chuncheon, Korea
| | - Sung-Min Won
- Center for Microbiome, Institute for Liver and Digestive Diseases, Hallym University Medical Center, Chuncheon, Korea
| | - Jin-Ju Jeong
- Center for Microbiome, Institute for Liver and Digestive Diseases, Hallym University Medical Center, Chuncheon, Korea
| | - Su-Been Lee
- Center for Microbiome, Institute for Liver and Digestive Diseases, Hallym University Medical Center, Chuncheon, Korea
| | - Min-Gi Cha
- Center for Microbiome, Institute for Liver and Digestive Diseases, Hallym University Medical Center, Chuncheon, Korea
| | - Goo-Hyun Kwon
- Center for Microbiome, Institute for Liver and Digestive Diseases, Hallym University Medical Center, Chuncheon, Korea
| | - Min-Kyo Jeong
- Center for Microbiome, Institute for Liver and Digestive Diseases, Hallym University Medical Center, Chuncheon, Korea
| | - Byeong-Hyun Min
- Center for Microbiome, Institute for Liver and Digestive Diseases, Hallym University Medical Center, Chuncheon, Korea
| | - Ji-Ye Hyun
- Center for Microbiome, Institute for Liver and Digestive Diseases, Hallym University Medical Center, Chuncheon, Korea
| | - Jung-A Eom
- Center for Microbiome, Institute for Liver and Digestive Diseases, Hallym University Medical Center, Chuncheon, Korea
| | - Hee-Jin Park
- Center for Microbiome, Institute for Liver and Digestive Diseases, Hallym University Medical Center, Chuncheon, Korea
| | - Sang-Jun Yoon
- Center for Microbiome, Institute for Liver and Digestive Diseases, Hallym University Medical Center, Chuncheon, Korea
| | - Mi-Ran Choi
- Center for Microbiome, Institute for Liver and Digestive Diseases, Hallym University Medical Center, Chuncheon, Korea
| | - Dong Joon Kim
- Center for Microbiome, Institute for Liver and Digestive Diseases, Hallym University Medical Center, Chuncheon, Korea
| | - Ki-Tae Suk
- Center for Microbiome, Institute for Liver and Digestive Diseases, Hallym University Medical Center, Chuncheon, Korea
| |
Collapse
|
189
|
Ang S, Liu C, Hong P, Yang L, Hu G, Zheng X, Jin J, Wu R, Wong WL, Zhang K, Gan L, Li D. Hirsutinolide-type sesquiterpenoids with anti-prostate cancer activity from Cyanthillium cinereum. PHYTOCHEMISTRY 2023; 216:113887. [PMID: 37806467 DOI: 10.1016/j.phytochem.2023.113887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Four previously undescribed hirsutinolide-type sesquiterpenoids, cyanolides A-D (1-4), along with twelve known analogues (5-16), were isolated from the aerial parts of Cyanthillium cinereum. Their structures were determined by comprehensive analysis of NMR, HRESIMS, and ECD spectra. Compound 1 is a rarely occurring hirsutinolide-type sesquiterpenoid with 1,4-ether ring ruptured and containing a chlorine atom, and compounds 13-16 were reported from this plant for the first time. All compounds were tested for their inhibiting effects on prostate cancer cells. As a result, compounds 1, 3, and 8-14 exhibited significant anti-prostate cancer activity against PC-3 and LNCaP cells with IC50 values ranging from 2.2 ± 0.4 to 8.5 ± 0.7 μM and 3.0 ± 0.7 to 10.5 ± 1.1 μM, respectively. The preliminary structure-activity relationship was discussed. Further investigation showed that compound 1 induced apoptosis in PC-3 cells.
Collapse
Affiliation(s)
- Song Ang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, China; Guangdong University of Technology, Guangzhou, 510006, China
| | - Chun Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Peng Hong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, China
| | - Lei Yang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, China
| | - Gui'e Hu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Xi Zheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, China
| | - Jingwei Jin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, China
| | - Rihui Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, China
| | - Wing-Leung Wong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, China; Guangdong University of Technology, Guangzhou, 510006, China
| | - Lishe Gan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, China.
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, China; Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China.
| |
Collapse
|
190
|
Zhang YX, Bai JY, Pu X, Lv J, Dai EL. An integrated bioinformatics approach to identify key biomarkers in the tubulointerstitium of patients with focal segmental glomerulosclerosis and construction of mRNA-miRNA-lncRNA/circRNA networks. Ren Fail 2023; 45:2284212. [PMID: 38013448 PMCID: PMC11001368 DOI: 10.1080/0886022x.2023.2284212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 11/11/2023] [Indexed: 11/29/2023] Open
Abstract
OBJECTIVE The purpose of this study was to identify potential biomarkers in the tubulointerstitium of focal segmental glomerulosclerosis (FSGS) and comprehensively analyze its mRNA-miRNA-lncRNA/circRNA network. METHODS The expression data (GSE108112 and GSE200818) were downloaded from the Gene Expression Omnibus database (https://www.ncbi.nlm.nih.gov/geo/). Identification and enrichment analysis of differentially expressed genes (DEGs) were performed. the PPI networks of the DEGs were constructed and classified using the Cytoscape molecular complex detection (MCODE) plugin. Weighted gene coexpression network analysis (WGCNA) was used to identify critical gene modules. Least absolute shrinkage and selection operator regression analysis were used to screen for key biomarkers of the tubulointerstitium in FSGS, and the receiver operating characteristic curve was used to determine their diagnostic accuracy. The screening results were verified by quantitative real-time-PCR (qRT-PCR) and Western blot. The transcription factors (TFs) affecting the hub genes were identified by Cytoscape iRegulon. The mRNA-miRNA-lncRNA/circRNA network for identifying potential biomarkers was based on the starBase database. RESULTS A total of 535 DEGs were identified. MCODE obtained eight modules. The green module of WGCNA had the greatest association with the tubulointerstitium in FSGS. PPARG coactivator 1 alpha (PPARGC1A) was screened as a potential tubulointerstitial biomarker for FSGS and verified by qRT-PCR and Western blot. The TFs FOXO4 and FOXO1 had a regulatory effect on PPARGC1A. The ceRNA network yielded 17 miRNAs, 32 lncRNAs, and 50 circRNAs. CONCLUSIONS PPARGC1A may be a potential biomarker in the tubulointerstitium of FSGS. The ceRNA network contributes to the comprehensive elucidation of the mechanisms of tubulointerstitial lesions in FSGS.
Collapse
Affiliation(s)
- Yun Xia Zhang
- College of Integrated Traditional and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Jun Yuan Bai
- College of Integrated Traditional and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - XiaoWei Pu
- College of Integrated Traditional and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Juan Lv
- College of Integrated Traditional and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - En Lai Dai
- College of Integrated Traditional and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
191
|
Moreira RO, Valerio CM, Villela-Nogueira CA, Cercato C, Gerchman F, Lottenberg AMP, Godoy-Matos AF, Oliveira RDA, Brandão Mello CE, Álvares-da-Silva MR, Leite NC, Cotrim HP, Parisi ER, Silva GF, Miranda PAC, Halpern B, Pinto Oliveira C. Brazilian evidence-based guideline for screening, diagnosis, treatment, and follow-up of metabolic dysfunction-associated steatotic liver disease (MASLD) in adult individuals with overweight or obesity: A joint position statement from the Brazilian Society of Endocrinology and Metabolism (SBEM), Brazilian Society of Hepatology (SBH), and Brazilian Association for the Study of Obesity and Metabolic Syndrome (Abeso). ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2023; 67:e230123. [PMID: 38048417 DOI: 10.20945/2359-4292-2023-0123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
INTRODUCTION Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as Nonalcoholic fatty liver disease (NAFLD), is one of the most common hepatic diseases in individuals with overweight or obesity. In this context, a panel of experts from three medical societies was organized to develop an evidence-based guideline on the screening, diagnosis, treatment, and follow-up of MASLD. MATERIAL AND METHODS A MEDLINE search was performed to identify randomized clinical trials, meta-analyses, cohort studies, observational studies, and other relevant studies on NAFLD. In the absence of studies on a certain topic or when the quality of the study was not adequate, the opinion of experts was adopted. Classes of Recommendation and Levels of Evidence were determined using prespecified criteria. RESULTS Based on the literature review, 48 specific recommendations were elaborated, including 11 on screening and diagnosis, 9 on follow-up,14 on nonpharmacologic treatment, and 14 on pharmacologic and surgical treatment. CONCLUSION A literature search allowed the development of evidence-based guidelines on the screening, diagnosis, treatment, and follow-up of MASLD in individuals with overweight or obesity.
Collapse
Affiliation(s)
- Rodrigo Oliveira Moreira
- Instituto Estadual de Diabetes e Endocrinologia Luiz Capriglione, Rio de Janeiro, RJ, Brasil,
- Faculdade de Medicina de Valença,Centro Universitário de Valença, Valença, RJ, Brasil
- Faculdade de Medicina, Centro Universitário Presidente Antônio Carlos, Juiz de Fora, MG, Brasil
| | - Cynthia Melissa Valerio
- Instituto Estadual de Diabetes e Endocrinologia Luiz Capriglione, Rio de Janeiro, RJ, Brasil
| | - Cristiane Alves Villela-Nogueira
- Departamento de Clínica Médica, Faculdade de Medicina e Serviço de Hepatologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Cintia Cercato
- Grupo de Obesidade, Hospital das Clínicas, Universidade de São Paulo, São Paulo, SP, Brasil
- Laboratório de Lípides, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Fernando Gerchman
- Programa de Pós-graduação em Ciências Médicas (Endocrinologia), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
- Divisão de Endocrinologia e Metabolismo, Hospital das Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
| | - Ana Maria Pita Lottenberg
- Laboratório de Lípides, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
- Hospital Israelita Albert Einstein, São Paulo, SP, Brasil
| | | | | | - Carlos Eduardo Brandão Mello
- Departamento de Clínica Médica e da Disciplina de Gastroenterologia Clínica e Cirúrgica, Escola de Medicina e Cirurgia, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
- Departamento de Clínica Médica e Serviço de Hepatologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Mãrio Reis Álvares-da-Silva
- Serviço de Gastroenterologia, Hospital das Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Nathalie Carvalho Leite
- Serviço de Clínica Médica e Serviço de Hepatologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | | | - Edison Roberto Parisi
- Disciplina de Gastroenterologia e Hepatologia, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - Giovanni Faria Silva
- Departamento de Clínica Médica da Faculdade de Medicina de Botucatu, Botucatu, SP, Brasil
| | | | - Bruno Halpern
- Grupo de Obesidade, Hospital das Clínicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Claudia Pinto Oliveira
- Laboratório de Investigação Médica (LIM07), Departamento de Gastroenterologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
192
|
Janicki L, Patel A, Jendrzejewski J, Hellmann A. Prevalence and Impact of BRAF mutation in patients with concomitant papillary thyroid carcinoma and Hashimoto's thyroiditis: a systematic review with meta-analysis. Front Endocrinol (Lausanne) 2023; 14:1273498. [PMID: 38047109 PMCID: PMC10691376 DOI: 10.3389/fendo.2023.1273498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/25/2023] [Indexed: 12/05/2023] Open
Abstract
Background Evidence suggests that patients with Hashimoto thyroiditis (HT) are at significantly higher risk of developing papillary thyroid cancer (PTC). However, the course of PTC in patients with both diseases concomitantly has been found to be more indolent than conventional PTC. Additionally, it has been well proven that BRAF mutation results in an aggressive course of PTC. The aims of this meta-analysis were to identify prevalence of BRAF mutation and its impact on clinicopathological features in patients with concomitant PTC-HT. Methods Medline, Cochrane Library, Scopus, and Web of Science were searched until 16.09.2022, resulting in 227 articles, of which nine studies were included. Summary estimates, comparing patients with (A) BRAF (+) PTC-HT versus BRAF (+) PTC, and (B) BRAF (+) PTC-HT versus BRAF (-) PTC-HT, were generated with Review Manager 5.0. Results In total, 6395 patients were included in this review. PTC-HT patients had significantly less BRAF mutation than PTC patients (Odds Ratio (OR) (95% Confidence Interval (CI))=0.45 (0.35-0.58), P<0.001). BRAF (+) PTC-HT patients were significantly more likely to have multifocal lesions (OR (95% CI)=1.22 (1.04-1.44), P=0.01) but less likely to have lymph node metastasis (OR (95% CI)=0.65 (0.46-0.91), P=0.01) and extrathyroidal extension (OR (95% CI)=0.55 (0.32-0.96), P=0.03) compared to BRAF (+) PTC patients. BRAF (+) PTC-HT patients were more likely to have multifocal lesions (OR (95% CI)=0.71 (0.53-0.95), P=0.02), lymph node metastasis (OR (95% CI)=0.59 (0.44-0.78), P<0.001) and extrathyroidal extension (OR (95% CI)=0.72 (0.56-0.92), P=0.01) compared to BRAF (-) PTC-HT patients. Conclusion This meta-analysis highlights that the lower prevalence of BRAF mutation in patients with PTC-HT than conventional PTC may explain the indolent clinicopathological course in this cohort.
Collapse
Affiliation(s)
- Lukasz Janicki
- Department of Surgical Oncology, Medical University of Gdansk, Gdansk, Poland
| | - Agastya Patel
- Department of General, Endocrine, and Transplant Surgery, Medical University of Gdansk, Gdansk, Poland
- Regional Hepato-Pancreato-Biliary Surgical Unit, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Jarosław Jendrzejewski
- Department of Endocrinology and Internal Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Andrzej Hellmann
- Department of General, Endocrine, and Transplant Surgery, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
193
|
Wang F, Chen S, Peng S, Zhou X, Tang H, Liang H, Zhong X, Yang H, Ke X, Lü M, Cui H. PRMT1 promotes the proliferation and metastasis of gastric cancer cells by recruiting MLXIP for the transcriptional activation of the β-catenin pathway. Genes Dis 2023; 10:2622-2638. [PMID: 37554218 PMCID: PMC10404965 DOI: 10.1016/j.gendis.2023.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 02/03/2023] [Indexed: 03/30/2023] Open
Abstract
Protein arginine methyltransferase 1 (PRMT1), a type I PRMT, is overexpressed in gastric cancer (GC) cells. To elucidate the function of PRMT1 in GC, PRMT1 expression in HGC-27 and MKN-45 cells was knocked down by short hairpin RNA (shRNA) or inhibited by PRMT1 inhibitors (AMI-1 or DCLX069), which resulted in inhibition of GC cell proliferation, migration, invasion, and tumorigenesis in vitro and in vivo. MLX-interacting protein (MLXIP) and Kinectin 1 (KTN1) were identified as PRMT1-binding proteins. PRMT1 recruited MLXIP to the promoter of β-catenin, which induced β-catenin transcription and activated the β-catenin signaling pathway, promoting GC cell migration and metastasis. Furthermore, KTN1 inhibited the K48-linked ubiquitination of PRMT1 by decreasing the interaction between TRIM48 and PRMT1. Collectively, our findings reveal a mechanism by which PRMT1 promotes cell proliferation and metastasis mediated by the β-catenin signaling pathway.
Collapse
Affiliation(s)
- Feng Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Shitong Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Shihan Peng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Xujun Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Houyi Tang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Hanghua Liang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Xi Zhong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - He Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Xiaoxue Ke
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - MuHan Lü
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan 646000, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
- Jinfeng Laboratory, Chongqing 401329, China
| |
Collapse
|
194
|
Mao J, Tan L, Tian C, Wang W, Zhang H, Zhu Z, Li Y. Hepatoprotective effect of syringin combined with costunolide against LPS-induced acute liver injury in L-02 cells via Rac1/AKT/NF-κB signaling pathway. Aging (Albany NY) 2023; 15:11994-12020. [PMID: 37916984 PMCID: PMC10683587 DOI: 10.18632/aging.205161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023]
Abstract
Acute liver injury (ALI) leads to abnormal liver function and damage to liver cells. Syringin (syr) and costunolide (cos) are the major extracts from Dolomiaea souliei (Franch.) C.Shih (D. souliei), showing diverse biological functions in various biological processes. We explored the underlying hepatoprotective effects of syr+cos against LPS-induced ALI. Cell viability and proliferation were assessed using an MTT assay and immunofluorescence staining. Flow cytometry analysis was used to detect cell cycle distribution and apoptosis. ELISA was utilized to measure liver function and antioxidant stress indexes. qRT-PCR and western blotting was performed to determine mRNA and protein levels respectively. Using shRNA approach to Rac1 analyzed transcriptional targets. The results showed that syr+cos promoted L-02 cell proliferation, inhibiting the cell apoptosis and blocking cell cycle in G1 and G2/M phase. Syr+cos decreased the production of ALT, AST, LDH, MDA and ROS while increased SOD and CAT activities. Pretreated with syr+cos may decrease expressions of caspase-3,7,9, NF-κB, TNF-α proteins, Cyclin B, CDK1 and p-IκB proteins while p-IκB increased. Silencing of Rac-1 may protect the liver by increasing AKT, S473, T308 and reducing p-AKT proteins. Syr+cos exhibits anti-ALI activity via Rac1/AKT/NF-κB signaling pathway which might act as an effective candidate drug for the treatment of ALI.
Collapse
Affiliation(s)
- Jingxin Mao
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Lihong Tan
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| | - Cheng Tian
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| | - Wenxiang Wang
- Chongqing Three Gorges Medical College, Chongqing 404120, China
| | - Hao Zhang
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| | - Zhaojing Zhu
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| | - Yan Li
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| |
Collapse
|
195
|
Gkiourtzis N, Michou P, Moutafi M, Glava A, Cheirakis K, Christakopoulos A, Vouksinou E, Fotoulaki M. The benefit of metformin in the treatment of pediatric non-alcoholic fatty liver disease: a systematic review and meta-analysis of randomized controlled trials. Eur J Pediatr 2023; 182:4795-4806. [PMID: 37639015 PMCID: PMC10640492 DOI: 10.1007/s00431-023-05169-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/07/2023] [Accepted: 08/17/2023] [Indexed: 08/29/2023]
Abstract
This is the first meta-analysis of the available literature about the efficacy of metformin exclusively in pediatric patients with non-alcoholic fatty liver disease (NAFLD). We conducted a systematic literature search through major electronic databases till March 12, 2023, investigating the efficacy and safety of metformin in pediatric NAFLD. Weighted mean difference (WD) and standard deviation (SD) were used for continuous outcomes. In total, 4 randomized controlled trials (RCTs) with 309 pediatric patients with NAFLD were included in the meta-analysis. Metformin could not reach a statistically significant improvement in alanine aminotransferase (ALT) levels [(ALT: WMD = - 1.55 IU/L, 95% CI: - 5.38 to 2.28, I2 = 16%, p = 0.43), but had a statistically significant impact (p < 0.05) in insulin and HOMA-IR regulation, triglycerides, and high-density lipoprotein level improvement. Conclusion: According to the data of this meta-analysis, treatment with metformin failed to statistically improve liver enzymes but may be beneficial in the improvement of lipid parameters and insulin metabolism regulation in pediatric patients with NAFLD. As there are not enough available studies in the literature, the influence of metformin on liver ultrasonography or histology in pediatric NAFLD should be further analyzed in future studies. What is Known: • Lifestyle modification with weight loss through physical activity and dietary modification is the recommended treatment option for pediatric NAFLD. • Metformin may reduce steatosis on ultrasound and may have a beneficial role in liver histology collated with insulin resistance improvement. What is New: • Metformin may improve insulin sensitivity and lipid parameters in children with obesity and NAFLD. • Metformin does not have a significant effect on transaminase levels in children with obesity and NAFLD.
Collapse
Affiliation(s)
- Nikolaos Gkiourtzis
- 4th Department of Pediatrics, Papageorgiou General Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Ring Road, Municipality of Pavlou Mela, Area N. Evkarpia, Thessaloniki, 56429, Greece.
| | - Panagiota Michou
- Department of Pediatrics, Gennimatas General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Maria Moutafi
- 4th Department of Pediatrics, Papageorgiou General Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Ring Road, Municipality of Pavlou Mela, Area N. Evkarpia, Thessaloniki, 56429, Greece
| | - Agni Glava
- 4th Department of Pediatrics, Papageorgiou General Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Ring Road, Municipality of Pavlou Mela, Area N. Evkarpia, Thessaloniki, 56429, Greece
| | - Konstantinos Cheirakis
- 4th Department of Pediatrics, Papageorgiou General Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Ring Road, Municipality of Pavlou Mela, Area N. Evkarpia, Thessaloniki, 56429, Greece
| | - Aristeidis Christakopoulos
- 4th Department of Pediatrics, Papageorgiou General Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Ring Road, Municipality of Pavlou Mela, Area N. Evkarpia, Thessaloniki, 56429, Greece
| | - Eleni Vouksinou
- 4th Department of Pediatrics, Papageorgiou General Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Ring Road, Municipality of Pavlou Mela, Area N. Evkarpia, Thessaloniki, 56429, Greece
| | - Maria Fotoulaki
- 4th Department of Pediatrics, Papageorgiou General Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Ring Road, Municipality of Pavlou Mela, Area N. Evkarpia, Thessaloniki, 56429, Greece
| |
Collapse
|
196
|
Zeng M, Feng A, Wang L, Li K, Zhou J. Aralia saponin A isolated from Achyranthes bidentata Bl. ameliorates LPS/D-GalN induced acute liver injury via SPHK1/S1P/S1PR1 pathway in vivo and in vitro. Int Immunopharmacol 2023; 124:110912. [PMID: 37699301 DOI: 10.1016/j.intimp.2023.110912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023]
Abstract
OBJECTIVE Acute liver injury (ALI) refers to a disease in which the liver is affected by factors such as chemical substances, alcohol, and virus infection in a short time, resulting in damage to liver cells. Achyranthes bidentata Bl. with the hepatoprotective activity has attracted great attention. In this study, a pentacyclic triterpenoid (Aralia saponin A, AsA) was isolated from roots of Achyranthes bidentata Bl. and its anti-ALI activity, as well as the mechanisms, were investigated for the first time. METHODS AsA (10 or 20 mg/kg, i.g.) was administered over a period of 1 weeks, following which liver injury was induced by LPS (10 µg/kg)/D-GalN (700 mg/kg). H&E staining of liver, Aspartate amino transferase (AST), Alanine transaminase (ALT) and cytokines was employed to investigate ALI relevant features. The mitochondrial morphology and levels of mitochondrial membrane potential (MMP), oxidative stress balance, apoptosis, average fluorescence intensity of 2-DG, natural killer (NK) cells in liver tissues were determined to assess the oxidative stress damage and inflammatory injury. Transcriptomics and metabonomics analysis were employed to clarify the mechanisms. Additionally, the mRNA and protein expression levels of Sphingosine 1-phosphate (S1P), Sphingosine kinase-1 (SPKH1), Sphingosine 1 phosphate receptor 1 (S1PR1), Sphingosine 1 phosphate receptor 3 (S1PR3), TNF receptor associated factor 2 (TRAF-2), Phospho-NF- kappaB p65 (p-P65), NF- kappaB p65 (P65), Proto-oncogene ras (Ras), Ras-related C3 botulinum toxin substrate (Rac), Phospholipase C (PLC), Interleukin 6 (IL-6), Tumor necrosis factor α (TNF-α), Interleukin 1β (IL-1β), Vascular cell adhesion molecule 1 (Vcam1), CC chemokine ligand-2 (Ccl2) were analyzed. The mediating role of SPHK1 in the observed effects caused by AsA was assessed by investigatin SPHK1 transfection silencing/overexpression against AsA in AML12 cells induced by LPS/D-GalN. RESULTS AsA can ameliorate liver function, inflammation, mitochondrial structure and oxidative stress in the ALI model. Meanwhile, AsA led to downregulated expression of proteins associated with sphingolipid signaling pathway. Silencing of SPHK1 led to enhanced protective effects of AsA, while over-expression of SPHK1 led to degraded protective effects of AsA in LPS/D-GalN-induced AML12 cells, suggesting that ALI is regulated by active molecules of AsA by means of SPHK1 mediation. CONCLUSIONS AsA can ameliorate LPS/D-GalN-induced ALI by inhibiting inflammation and oxidative stress via the SPHK1/S1P/S1PR1 pathway. In this way, a molecular justification is provided for AsA application in ALI treatment.
Collapse
Affiliation(s)
- Mengnan Zeng
- College of Pharmacy, Huanghe S&T University, Zhengzhou 450000, China; College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Aozi Feng
- Department of Clinical Research, Jinan University, Guangzhou 510632, China
| | - Li Wang
- College of Pharmacy, Huanghe S&T University, Zhengzhou 450000, China.
| | - Kun Li
- College of Pharmacy, Huanghe S&T University, Zhengzhou 450000, China
| | - Jihong Zhou
- College of Pharmacy, Huanghe S&T University, Zhengzhou 450000, China
| |
Collapse
|
197
|
Saxton AT, Scheri RP. Resection of Papillary Thyroid Carcinoma Involving a Functioning Recurrent Laryngeal Nerve: Pushing Boundaries to Preserve Nerve Function. Ann Surg Oncol 2023; 30:6960-6962. [PMID: 37713120 DOI: 10.1245/s10434-023-14287-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023]
Affiliation(s)
- Anthony T Saxton
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Randall P Scheri
- Department of Surgery, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
198
|
Abouelwafa E, Zaki A, M Sabry O, Caprioli G, Abdel-Sattar E. Dolomiaea costus: an untapped mine of sesquiterpene lactones with wide magnificent biological activities. Nat Prod Res 2023; 37:4069-4079. [PMID: 36625545 DOI: 10.1080/14786419.2022.2164577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 01/11/2023]
Abstract
Dolomiaea costus (Falc.) Kasana & A.K. Pandey Family Asteraceae, formerly known as Saussurea costus (Falc.) Lipsch contains a rich treasury of diverse bioactive compounds such as monoterpenes, sesquiterpenes, triterpenes, sterols, cardenolides, flavonoids, coumarins, lignans, phenylpropanoids and alkaloids. The sesquiterpene lactones, costunolide and dehydrocostuslactone in D. costus, possess unique promising in vitro and in vivo biological activities for the prevention and cure of diverse ailments like Parkinson's disease, oxidative stress, hyperpigmentation, ulcerative colitis, breast cancer, hepatocellular carcinoma, colon cancer, prostate cancer, ovarian cancer, leukemia, stomach cancer, prostate cancer, lung cancer, osteosarcoma, neuroblastoma, allergy, type 2 diabetes, hepatotoxicity, bronchitis, pulmonary fibrosis, thrombosis and various microbial infections. Costunolide and dehydrocostuslactone are potential drug candidates that could lead to the development of new medications for a variety of difficult-to-treat diseases.
Collapse
Affiliation(s)
- Ebraheem Abouelwafa
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Amal Zaki
- Department of Biochemistry, Animal Health Research Institute, Giza, Egypt
| | - Omar M Sabry
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Pharmacognosy Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Giovanni Caprioli
- Pharmacy Department, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Essam Abdel-Sattar
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
199
|
Chen D, Huang J, Xiao S, Cheng G, Liu Y, Zhao T, Chen C, Yi Y, Peng Y, Cao J. Synthesis, anti-leukemia activity, and molecular docking of novel 3,16-androstenedione derivatives. Steroids 2023; 199:109290. [PMID: 37549776 DOI: 10.1016/j.steroids.2023.109290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
In this study, we synthesized androsta-4,14-diene-3,16-dione, 12β-hydroxyandrosta-4,14-diene-3,16-dione, and other 3,16-androstenedione derivatives from commercially available dehydroepiandrosterone as a starting material in 9-13 steps with high yields. The bioactivity of the obtained compounds was evaluated. Compounds 14a and 23a were shown to have high antitumor activity against acute lymphoblastic leukemia cell lines Nalm-6 and BALL-1, respectively. Network pharmacology analysis showed that the anti-leukemia activity of compounds 14a and 23a might be related to the JAK2, ABL1 protein, and PI3K/Akt signaling pathways. The molecular docking of compounds 14a and 23a identified possible active sites, with the lowest docking scores for PTGS2 and MAPK14, respectively. In addition, the absorption, distribution, metabolism, and excretion prediction results revealed the drug-likeness of the two compounds. Therefore, compounds 14a and 23a should be considered anti-leukemia candidates in future studies.
Collapse
Affiliation(s)
- Dongjie Chen
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Jiaying Huang
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Shanshan Xiao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Guiguang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yaping Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Tianrui Zhao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Caixia Chen
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yongxin Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yungui Peng
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Jianxin Cao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
200
|
Oladzadabbasabadi N, Dheyab MA, Nafchi AM, Ghasemlou M, Ivanova EP, Adhikari B. Turning food waste into value-added carbon dots for sustainable food packaging application: A review. Adv Colloid Interface Sci 2023; 321:103020. [PMID: 37871382 DOI: 10.1016/j.cis.2023.103020] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/01/2023] [Accepted: 10/04/2023] [Indexed: 10/25/2023]
Abstract
Carbon dots (CDs) are a recent addition to the nanocarbon family, encompassing both crystalline and amorphous phases. They have sparked significant research interest due to their unique electrical and optical properties, remarkable biocompatibility, outstanding mechanical characteristics, customizable surface chemistry, and negligible cytotoxicity. Their current applications are mainly limited to flexible photonic and biomedical devices, but they have also garnered attention for their potential use in intelligent packaging. The conversion of food waste into CDs further contributes to the concept of the circular economy. It provides a comprehensive overview of emerging green technologies, energy-saving reactions, and cost-effective starting materials involved in the synthesis of CDs. It also highlights the unique properties of biomass-derived CDs, focusing on their structural performance, cellular toxicity, and functional characteristics. The application of CDs in the food industry, including food packaging, is summarized in a concise manner. This paper sheds light on the current challenges and prospects of utilizing CDs in the packaging industry. It aims to provide researchers with a roadmap to tailor the properties of CDs to suit specific applications in the food industry, particularly in food packaging.
Collapse
Affiliation(s)
| | - Mohammed Ali Dheyab
- School of Physics, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia; Department of Physics, College of Science, University of Anbar, 31001 Ramadi, Iraq
| | - Abdorreza Mohammadi Nafchi
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia; Department of Food Science and Technology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Mehran Ghasemlou
- School of Science, STEM College, RMIT University, Melbourne, VIC 3083, Australia.
| | - Elena P Ivanova
- School of Science, STEM College, RMIT University, Melbourne, VIC 3083, Australia
| | - Benu Adhikari
- School of Science, STEM College, RMIT University, Melbourne, VIC 3083, Australia; Centre for Advanced Materials and Industrial Chemistry (CAMIC), RMIT University, Melbourne, VIC 3001., Australia
| |
Collapse
|