151
|
Liu K, Han H, Xiong K, Zhai S, Yang X, Yu X, Chen B, Liu M, Dong Q, Meng H, Gu Y. Single-cell landscape of intratumoral heterogeneity and tumor microenvironment remolding in pre-nodal metastases of breast cancer. J Transl Med 2024; 22:804. [PMID: 39210391 PMCID: PMC11363495 DOI: 10.1186/s12967-024-05625-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The metastasis of cancer cells is influenced by both their intrinsic characteristics and the tumor microenvironment (TME). However, the molecular mechanisms underlying pre-nodal metastases of breast cancer remain unclear. METHODS We integrated a total of 216,963 cells from 54 samples across 6 single-cell datasets to profile the cellular landscape differences between primary tumors and pre-nodal metastases. RESULTS We revealed three distinct metastatic epithelial cell subtypes (Epi1, Epi2 and Epi3), which exhibited different metastatic mechanisms. Specifically, the marker gene KCNK15 of the Epi1 subtype exhibited increased gene expression along the cell differentiation trajectory and was specifically regulated by the transcription factor ASCL1. In the Epi3 subtype, we highlighted NR2F1 as a regulator targeting the marker gene MUCL1. Additionally, we found that the Epi2 and Epi3 subtypes shared some regulons, such as ZEB1 and NR2C1. Similarly, we identified specific subtypes of stromal and immune cells in the TME, and discovered that vascular cancer-associated fibroblasts might promote capillary formation through CXCL9+ macrophages in pre-nodal metastases. All three subtypes of metastatic epithelial cells were associated with poor prognosis. CONCLUSIONS In summary, this study dissects the intratumoral heterogeneity and remodeling of the TME in pre-nodal metastases of breast cancer, providing novel insights into the mechanisms underlying breast cancer metastasis.
Collapse
Affiliation(s)
- Kaidong Liu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Huiming Han
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Kai Xiong
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Songmei Zhai
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xiuqi Yang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xinmiao Yu
- Department of Human Anatomy, Harbin Medical University, Harbin, China
| | - Bo Chen
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Mingyue Liu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Qi Dong
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hongxue Meng
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Yunyan Gu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.
| |
Collapse
|
152
|
Du C, Wang C, Liu Z, Xin W, Zhang Q, Ali A, Zeng X, Li Z, Ma C. Machine learning algorithms integrate bulk and single-cell RNA data to unveil oxidative stress following intracerebral hemorrhage. Int Immunopharmacol 2024; 137:112449. [PMID: 38865753 DOI: 10.1016/j.intimp.2024.112449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Increased oxidative stress (OS) activity following intracerebral hemorrhage (ICH) had significantly impacting patient prognosis. Identifying optimal genes associated with OS could enhance the understanding of OS after ICH. METHODS We employed single-cell RNA sequencing (scRNA-seq) to investigate the heterogeneity of OS across various cellular tiers following ICH, aiming to acquire biological insights into ICH. We utilized AUCell, Ucell, singscore, ssgsea, and AddModuleScore algorithms, along with correlation analysis, to identify hub genes influencing high OS post-ICH. Furthermore, we employed four machine learning algorithms, eXtreme Gradient Boosting, Boruta, Random Forest, and Least Absolute Shrinkage and Selection Operator, to identify the optimal feature genes. To validate the accuracy of our analysis, we conducted validation in ICH animal experiments. RESULTS After analyzing the scRNA-seq dataset using various algorithms, we found that OS activity exhibited heterogeneity across different cellular layers following ICH, with particularly heightened activity observed in monocytes. Further integration of bulk data and machine learning algorithms revealed that ANXA2 and COTL1 were closely associated with high OS after ICH. Our animal experiments demonstrated an increase in OS expression post-ICH. Additionally, the protein expression of ANXA2 and COTL1 was significantly elevated and co-localized with microglia. Pearson correlation coefficient analysis revealed a significant correlation between ANXA2 and OS, indicating strong consistency (r = 0.84, p < 0.05). Similar results were observed for COTL1 and OS (r = 0.69, p < 0.05). CONCLUSIONS Following ICH, ANXA2 and COTL1 might penetrate the brain via monocytes, localize within microglia, and enhance OS activity. This might help us better understand OS after ICH.
Collapse
Affiliation(s)
- Chaonan Du
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Cong Wang
- Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China; Department of Neurosurgery, Anhui Wannan Rehabilitation Hospital (The Fifth People's Hospital of Wuhu), Wuhu, China
| | - Zhiwei Liu
- Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenxuan Xin
- Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qizhe Zhang
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Alleyar Ali
- Department of Neurosurgery, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing, China
| | - Xinrui Zeng
- Department of Neurosurgery, School of Medicine, Southeast University, Nanjing, China
| | - Zhenxing Li
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Chiyuan Ma
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China; Department of Neurosurgery, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing, China; Department of Neurosurgery, School of Medicine, Southeast University, Nanjing, China; Department of Neurosurgery, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
153
|
Jeong HJ, Picou C, Jeong K, Chung JK. Oxidation Kinetics of Fluorescent Membrane Lipid Peroxidation Indicators. ACS Chem Biol 2024; 19:1786-1793. [PMID: 39037001 DOI: 10.1021/acschembio.4c00269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The oxidation of the cellular membrane through lipid peroxidation (LPO) is linked to aging and disease. Despite the physiological importance, the chemical mechanisms underlying LPO and oxidative reactions in membranes in general remain incompletely understood, and challenges exist in translating LPO inhibitor efficacies from in vitro to in vivo. The complexity of LPO, including multiple oxidation reactions in complex membrane environments and the difficulty in quantifying reaction kinetics, underlies these difficulties. In this work, we developed a robust and straightforward method for quantifying the oxidation rate kinetics of fluorescent molecules and determined the oxidation kinetics of widely fluorophores used as indicators of membrane LPO, diphenylhexatriene (DPH), BODIPY-C11, and Liperfluo. The measurement is initiated by lipoxygenase, which provides chemical specificity and enables a straightforward interpretation of oxidation kinetics. Our results reveal that the membrane composition significantly impacts the observed kinetics oxidation in DPH and BODIPY-C11 but not Liperfluo. Reaction mechanisms for their lipid peroxide-induced oxidation are proposed. This work provides a foundation for the quantitative analysis of LPO with fluorescence and extricating the complexity of oxidation reactions within membranes.
Collapse
Affiliation(s)
- Hye Jin Jeong
- Department of Chemistry, Colorado State University Fort Collins, Fort Collins, Colorado 80523, United States
| | - Cyrus Picou
- Department of Chemistry, Colorado State University Fort Collins, Fort Collins, Colorado 80523, United States
| | - Keunhong Jeong
- Department of Chemistry, Colorado State University Fort Collins, Fort Collins, Colorado 80523, United States
| | - Jean K Chung
- Department of Chemistry, Colorado State University Fort Collins, Fort Collins, Colorado 80523, United States
| |
Collapse
|
154
|
Zhao Y, Tang X, Lei T, Fu D, Zhang H. Lipocalin-2 promotes breast cancer brain metastasis by enhancing tumor invasion and modulating brain microenvironment. Front Oncol 2024; 14:1448089. [PMID: 39188682 PMCID: PMC11345181 DOI: 10.3389/fonc.2024.1448089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024] Open
Abstract
Breast cancer is the leading cancer diagnosed in women globally, with brain metastasis emerging as a major cause of death, particularly in human epidermal growth factor receptor 2 positive and triple-negative breast cancer subtypes. Comprehensive understanding of the molecular foundations of central nervous system metastases is imperative for the evolution of efficacious treatment strategies. Lipocalin-2 (LCN2), a secreted iron transport protein with multiple functions, has been linked to the progression of breast cancer brain metastasis (BCBM). In primary tumors, LCN2 promotes the proliferation and angiogenesis of breast cancer cells, triggers the epithelial-mesenchymal transition, interacts with matrix metalloproteinase-9, thereby facilitating the reorganization of the extracellular matrix and enhancing cancer cell invasion and migration. In brain microenvironment, LCN2 undermines the blood-brain barrier and facilitates tumor seeding in the brain by modulating the behavior of key cellular components. In summary, this review meticulously examines the fuel role of LCN2 in BCBM cascade, and investigates the potential mechanisms involved. It highlights the potential of LCN2 as both a therapeutic target and biomarker, indicating that interventions targeting LCN2 may offer improved outcomes for patients afflicted with BCBM.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Xiaogen Tang
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Tingting Lei
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Dongwei Fu
- Department of Oncology, The Affiliated Shunde Hospital of Jinan University, Foshan, Guangdong, China
| | - Hongyi Zhang
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
155
|
Ferran de la Cierva S, Terrasa D, Garaycochea O, Del Rio B, Urdin M, Fernandez S. MyotonPRO as a new valid tool for measuring cervical muscle tension. A reliability study. LOGOP PHONIATR VOCO 2024:1-8. [PMID: 39120117 DOI: 10.1080/14015439.2024.2388896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/17/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVE The main objective of this study is to test the reliability of a non-invasive objective method for the measurement of biomechanical parameters of cervicofacial muscle groups, with the purpose of diagnosis and evaluation of voice disorders' treatments, especially focused on muscle tension dysphonia. STUDY DESIGN Prospective study. METHODS The device used is a handheld myotonometer (MyotonPRO) that measures biomechanical and viscoelastic properties in superficial soft tissues frequency, stiffness, elasticity, relaxation time and creep. It is used in the field of medicine, sport and research. This pilot study includes 10 subjects, who have been measured in the masseter, sternocleidomastoid, orbicularis oris, semispinalis capitis, suprahyoid, infrahyoid and trapezius muscles on each side. Measurements were performed by 2 evaluators to assess inter-evaluator reliability. Subsequently, one of them repeated the measurements to assess intra-evaluator reliability. RESULTS The results revealed good to excellent inter-rater reliability for the masseter, sternocleidomastoid, trapezius and suprahyoid muscles, with lower ICCs for the stiffness and creep properties. Intra-rater reliability was good to excellent for the masseter, sternocleidomastoid, semispinalis capitis and suprahyoid muscles. The lowest ICCs were found in the stiffness and creep properties. CONCLUSION The use of a myotonometer to measure the mechanical properties of selected cervical and orofacial muscles is a reliable and reproducible method. Future research is needed to establish an association between the properties of these muscles and their role in voice disorders, as well as to determine whether this tool can aid diagnosis with quantifiable and objectifiable indicators, and for monitoring and treatment efficacy.
Collapse
Affiliation(s)
| | - David Terrasa
- Otorhinolaryngology Department, Clínica Universidad de Navarra. Pamplona, Spain
| | - Octavio Garaycochea
- Otorhinolaryngology Department, Clínica Universidad de Navarra. Pamplona, Spain
| | - Beatriz Del Rio
- Otorhinolaryngology Department, Clínica Universidad de Navarra. Pamplona, Spain
| | - Mikel Urdin
- Otorhinolaryngology Department, Clínica Universidad de Navarra. Pamplona, Spain
| | - Secundino Fernandez
- Otorhinolaryngology Department, Clínica Universidad de Navarra. Pamplona, Spain
| |
Collapse
|
156
|
Murakami K, Ganguly S. The Nectin family ligands, PVRL2 and PVR, in cancer immunology and immunotherapy. Front Immunol 2024; 15:1441730. [PMID: 39156900 PMCID: PMC11327090 DOI: 10.3389/fimmu.2024.1441730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
In recent years, immunotherapy has emerged as a crucial component of cancer treatment. However, its efficacy remains limited across various cancer types, highlighting unmet needs. Poliovirus receptor-related 2 (PVRL2) and Poliovirus receptor (PVR) are members of the Nectin and Nectin-like Molecules family, known for their role as cell-cell adhesion molecules. With the development of immunotherapy, their involvement in tumor immune mechanisms as immune checkpoint factors has garnered significant attention. PVRL2 and PVR are predominantly expressed on tumor cells and antigen-presenting cells, binding to PVRIG and TIGIT, respectively, which are primarily found on T and NK cells, thereby suppressing antitumor immunity. Notably, gynecological cancers such as ovarian and endometrial cancers exhibit high expression levels of PVRL2 and PVR, with similar trends observed in various other solid and hematologic tumors. Targeting these immune checkpoint pathways offers a promising therapeutic avenue, potentially in combination with existing treatments. However, the immunomodulatory mechanism involving these bindings, known as the DNAM-1 axis, is complex, underscoring the importance of understanding it for developing novel therapies. This article comprehensively reviews the immunomodulatory mechanisms centered on PVRL2 and PVR, elucidating their implications for various cancer types.
Collapse
Affiliation(s)
| | - Sudipto Ganguly
- The Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
157
|
Wu L, Li N, Zhu L, Shao G. CircPDSS1 (hsa_circ_0017998) silencing induces ferroptosis in non-small-cell lung cancer cells by modulating the miR-137/SLC7A11/GPX4/GCLC axis. Toxicol In Vitro 2024; 99:105887. [PMID: 38945378 DOI: 10.1016/j.tiv.2024.105887] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND Circular RNAs (circRNAs) regulate the tumorigenesis of non-small-cell lung cancer (NSCLC). CircPDSS1 (hsa_circ_0017998) has been newly discovered, and its role in NSCLC remains elusive. We aimed to investigate the functional roles and downstream targets of circPDSS1 in NSCLC cells. MATERIALS AND METHODS Cellular viabilities were measured through the Cell Counting Kit-8 (CCK-8) assay, whereas cell death was assessed through flow cytometry. The lactate dehydrogenase activity, malondialdehyde levels, ferrous iron, and reactive oxygen species were measured using commercial assay kits. The interaction between circPDSSA/ microRNA-137 (miR-137) and miR-137/solute carrier family 7 member 11 (SLC7A11) was assayed through a dual luciferase activity assay. Finally, the mRNA and protein levels were measured using real-time reverse transcriptase-polymerase chain reaction and western blots, respectively. RESULTS CircPDSS1 expression was upregulated in NSCLC cells, compared with healthy lung cells. CircPDSS1 silencing suppressed the viability of NSCLC cells. Additionally, circPDSS1 knockdown induced ferroptosis rather than other types of cell death in NSCLC cells. Mechanically, circPDSS1 functions as a "sponge" to inversely control miR-137 expression, which directly targets SLC7A11. Moreover, circPDSS1 silencing causes the downregulation of glutathione peroxidase 4 (GPX4) and glutamate-cysteine ligase catalytic subunit (GCLC). CONCLUSIONS Targeting the circPDSS1/miR-137/SLC7A11/GPX4/GCLC axis may be a promising strategy to kill NSCLC cells.
Collapse
Affiliation(s)
- Ling Wu
- Women and Children's Hospital of Ningbo University, Ningbo, Zhejiang 315000, China
| | - Ni Li
- Department of Cardiovascular Surgery, Lihuili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang 315000, China
| | - Linwen Zhu
- Department of Cardiovascular Surgery, Lihuili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang 315000, China
| | - Guofeng Shao
- Department of Cardiovascular Surgery, Lihuili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang 315000, China.
| |
Collapse
|
158
|
Zhang Z, Sun X, Liu Y, Zhang Y, Yang Z, Dong J, Wang N, Ying J, Zhou M, Yang L. Spatial Transcriptome-Wide Profiling of Small Cell Lung Cancer Reveals Intra-Tumoral Molecular and Subtype Heterogeneity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402716. [PMID: 38896789 PMCID: PMC11336901 DOI: 10.1002/advs.202402716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Small cell lung cancer (SCLC) is a highly aggressive malignancy characterized by rapid growth and early metastasis and is susceptible to treatment resistance and recurrence. Understanding the intra-tumoral spatial heterogeneity in SCLC is crucial for improving patient outcomes and clinically relevant subtyping. In this study, a spatial whole transcriptome-wide analysis of 25 SCLC patients at sub-histological resolution using GeoMx Digital Spatial Profiling technology is performed. This analysis deciphered intra-tumoral multi-regional heterogeneity, characterized by distinct molecular profiles, biological functions, immune features, and molecular subtypes within spatially localized histological regions. Connections between different transcript-defined intra-tumoral phenotypes and their impact on patient survival and therapeutic response are also established. Finally, a gene signature, termed ITHtyper, based on the prevalence of intra-tumoral heterogeneity levels, which enables patient risk stratification from bulk RNA-seq profiles is identified. The prognostic value of ITHtyper is rigorously validated in independent multicenter patient cohorts. This study introduces a preliminary tumor-centric, regionally targeted spatial transcriptome resource that sheds light on previously unexplored intra-tumoral spatial heterogeneity in SCLC. These findings hold promise to improve tumor reclassification and facilitate the development of personalized treatments for SCLC patients.
Collapse
Affiliation(s)
- Zicheng Zhang
- School of Biomedical EngineeringNational Clinical Research Center for Ocular DiseasesEye HospitalWenzhou Medical UniversityWenzhou325027P. R. China
- Department of PathologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Xujie Sun
- Department of PathologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Yutao Liu
- Department of Medical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Yibo Zhang
- School of Biomedical EngineeringNational Clinical Research Center for Ocular DiseasesEye HospitalWenzhou Medical UniversityWenzhou325027P. R. China
| | - Zijian Yang
- School of Biomedical EngineeringNational Clinical Research Center for Ocular DiseasesEye HospitalWenzhou Medical UniversityWenzhou325027P. R. China
| | - Jiyan Dong
- Department of PathologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Nan Wang
- Cosmos Wisdom Biotech Co. LtdBuilding 10thNo. 617 Jiner RoadHangzhou311215P. R. China
| | - Jianming Ying
- Department of PathologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Meng Zhou
- School of Biomedical EngineeringNational Clinical Research Center for Ocular DiseasesEye HospitalWenzhou Medical UniversityWenzhou325027P. R. China
| | - Lin Yang
- Department of PathologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| |
Collapse
|
159
|
He Y, Wang J, Zhao P, Wang R, Li M. Correlations of The Central Sensitization Inventory, conditioned pain modulation, cognitions and psychological factors in individuals with chronic neck pain: A cross-sectional study. Pain Ther 2024; 13:843-856. [PMID: 38789828 PMCID: PMC11254877 DOI: 10.1007/s40122-024-00601-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/02/2024] [Indexed: 05/26/2024] Open
Abstract
INTRODUCTION Chronic neck pain (CNP) is a global public health problem, with high prevalence and absenteeism rates. Central sensitization (CS) as a basis for chronic pain may play an essential role in its development and progression. It is often comorbid with low conditioned pain modulation (CPM) effects, cognitions, and psychological problems. OBJECTIVES The purposes of this study were to (1) explore the relationship between pain-related cognitions and psychological factors, CPM effects, and the central sensitization inventory (CSI) scores; and (2) determine whether cognitions and psychological factors can predict CSI scores and CPM effects in individuals with CNP. METHODS Fifty-four individuals with CNP were recruited for this cross-sectional study. The following outcome measures were evaluated: The CSI (screening tool) was compared with the cold pressor test (CPT), which was the psychophysical test used to assess the CPM; neck pain intensity using the visual analogue scale (VAS), as well as pain-related cognitions (including kinesiophobia and pain catastrophization) and psychological states (including anxiety and depression) using self-report questionnaires. RESULTS CSI score was not associated with the CPM effect (r = 0.257, p > 0.05), and no cognitions or psychological factors were associated with CPM (p > 0.05), but CSI score was moderately positively correlated with kinesiophobia (r = 0.554, p < 0.01), lowly positively correlated with pain catastrophization (r = 0.332, p = 0.017) and anxiety (r = 0.492, p < 0.01), but not depression (r = 0.207, p = 0.132). Multiple linear regression analysis showed that kinesiophobia (B = 1.308, p < 0.01) and anxiety (B = 1.806, p = 0.02) were significant positive predictors of CSI score. CONCLUSIONS The findings confirm some of our hypotheses. Accordingly, the findings inferred that the CSI does not seem to respond to CPM effect in patients with CNP effectively. In addition, CSI score was associated with cognitions and psychological factors, of which kinesiophobia and anxiety were effective predictors. In clinical practice, pain-related cognitions and psychological factors should be fully considered to manage neck pain efficiently.
Collapse
Affiliation(s)
- Yuwei He
- College of Sports Medicine and Rehabilitation, Beijing Sport University, 48 Information Road, Haidian District, Beijing, 100084, China
| | - Jialin Wang
- China Institute of Sports Science, General Administration of Sport, 11 Gymnasium Road, Dongcheng District, Beijing, 100061, China
| | - Peng Zhao
- China Institute of Sports Science, General Administration of Sport, 11 Gymnasium Road, Dongcheng District, Beijing, 100061, China.
| | - Ruirui Wang
- College of Sports Medicine and Rehabilitation, Beijing Sport University, 48 Information Road, Haidian District, Beijing, 100084, China
| | - Meng Li
- College of Sports Medicine and Rehabilitation, Beijing Sport University, 48 Information Road, Haidian District, Beijing, 100084, China
| |
Collapse
|
160
|
Han D, Li Z, Luo L, Jiang H. Targeting Hypoxia and HIF1α in Triple-Negative Breast Cancer: New Insights from Gene Expression Profiling and Implications for Therapy. BIOLOGY 2024; 13:577. [PMID: 39194515 DOI: 10.3390/biology13080577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024]
Abstract
Breast cancer is a complex and multifaceted disease with diverse risk factors, types, and treatment options. Triple-negative breast cancer (TNBC), which lacks the expression of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 (HER2), is the most aggressive subtype. Hypoxia is a common feature of tumors and is associated with poor prognosis. Hypoxia can promote tumor growth, invasion, and metastasis by stimulating the production of growth factors, inducing angiogenesis, and suppressing antitumor immune responses. In this study, we used mRNA-seq technology to systematically investigate the gene expression profile of MDA-MB-231 cells under hypoxia. We found that the hypoxia-inducible factor (HIF) signaling pathway is the primary pathway involved in the cellular response to hypoxia. The genes in which expression levels were upregulated in response to hypoxia were regulated mainly by HIF1α. In addition, hypoxia upregulated various genes, including Nim1k, Rimkla, Cpne6, Tpbgl, Kiaa11755, Pla2g4d, and Ism2, suggesting that it regulates cellular processes beyond angiogenesis, metabolism, and known processes. We also found that HIF1α was hyperactivated in MDA-MB-231 cells under normoxia. A HIF1α inhibitor effectively inhibited the invasion, migration, proliferation, and metabolism of MDA-MB-231 cells. Our findings suggest that hypoxia and the HIF signaling pathway play more complex and multifaceted roles in TNBC than previously thought. These findings have important implications for the development of new therapeutic strategies for TNBC.
Collapse
Affiliation(s)
- Delong Han
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
- Institute for Inheritance-Based Innovation of Chinese Medicine, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Zeyu Li
- Institute for Inheritance-Based Innovation of Chinese Medicine, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Lingjie Luo
- Institute for Inheritance-Based Innovation of Chinese Medicine, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Hezhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
161
|
Zhao Z, Miao Z, Hou Y, Zhong Y, Zhang X, Fang X. A novel signature constructed by cuproptosis-related RNA methylation regulators suggesting downregulation of YTHDC2 may induce cuproptosis resistance in colorectal cancer. Int Immunopharmacol 2024; 139:112691. [PMID: 39029230 DOI: 10.1016/j.intimp.2024.112691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/28/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND A newly identified type of cell death due to intracellular copper accumulation is known as cuproptosis and RNA methylation is a post-transcriptional modification mechanism, both of which perform vital roles in the immune microenvironment of colorectal cancer (CRC), but the link between the two needs more research. METHODS TCGA database provided RNA-seq data and details clinically of CRC samples. Cuproptosis-related RNA methylation regulators (CRRMRs) were identified by correlation analysis. We screened 6 CRRMRs for prognostic model construction by employing LASSO-Cox regression analysis and calculated risk scores by CRRMRs (CuMS). GSE39582 and GSE38832 cohort were used as external validation sets. This research concentrated on the connection between the prognostic model and somatic mutation, anti-cancer drug sensitivity, immune infiltration, immune checkpoint expression. In addition, we investigated the differential expression of YTHDC2 in epithelial cell subpopulations by single-cell analysis with GSE166555, calculated cuproptosis scores and performed pathway enrichment. In vitro experiments were performed to explore the consequences of knockdown of YTHDC2 on CRC cell proliferation and migration, as well as changes in CRC cell viability in response to elesclomol after knockdown of YTHDC2. In vivo experiments, we constructed the cell line-derived xenograft model to further validate the results of the in vitro experiments. RESULTS The prognosis of CRC can be predicted by CuMS, which GSE39582 and GSE38832 confirmed. Two CuMS groups showed different tumor mutation burden (TMB) and immune infiltration. CuMS was connected to emerging immune checkpoints CD47 and PVR, therefore, it can be clinically complementary to TMB and microsatellite instability (MSI) status. In single-cell analysis, a subpopulation of epithelial cells with high YTHDC2 expression had a high cuproptosis score. In vitro experiments, knocking down YTHDC2 promoted cell proliferation and migration in CRC, and weaken the inhibitory effect of elesclomol and elesclomol-Cu on cell viability, which in vivo experiments validated. CONCLUSION We developed a prognostic model constructed by 6 CRRMRs to assess overall survival and immune microenvironment of CRC patients. YTHDC2 might regulate cuproptosis in multiple ways.
Collapse
Affiliation(s)
- Zhongkai Zhao
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, No. 126 Sendai Street, Changchun, Jilin, China.
| | - Zeyu Miao
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, No. 126 Xinmin Street, Changchun, Jilin, China.
| | - Yuyang Hou
- Department of Immunology, College of Basic Medical Sciences, Jilin University, No. 126 Xinmin Street, Changchun, Jilin, China.
| | - Yifan Zhong
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, No. 126 Xinmin Street, Changchun, Jilin, China.
| | - Xiaorong Zhang
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, No. 126 Xinmin Street, Changchun, Jilin, China.
| | - Xuedong Fang
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, No. 126 Sendai Street, Changchun, Jilin, China.
| |
Collapse
|
162
|
Han X, Liu Z, Cui M, Lin J, Li Y, Qin H, Sheng J, Zhang X. FGA influences invasion and metastasis of hepatocellular carcinoma through the PI3K/AKT pathway. Aging (Albany NY) 2024; 16:12806-12819. [PMID: 39227068 PMCID: PMC11501378 DOI: 10.18632/aging.206011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/03/2024] [Indexed: 09/05/2024]
Abstract
Fibrinogen is an important plasma protein composed of three polypeptide chains, fibrinogen alpha (FGA), beta, and gamma. Apart from being an inflammation regulator, fibrinogen also plays a role in tumor progression. Liver cancer usually has a poor prognosis, with chronic hepatitis being the main cause of liver cirrhosis and hepatocellular carcinoma (HCC). FGA serves as a serological marker for chronic hepatitis, but its relationship with liver cancer remains unclear. Through bioinformatics analysis and agarose gel electrophoresis, we found that FGA was downregulated in HCC and correlated with tumor stage and grade. By constructing both FGA gene knockout and overexpression cell models, we demonstrated that overexpressing FGA inhibited migration and invasion of liver cancer cells through Transwell migration/invasion and wound healing assays. Western blotting experiments showed that FGA overexpression increased the expression of the epithelial-mesenchymal transition marker protein E-cadherin while decreasing N-cadherin and slug protein expression. In addition, FGA knockout activated the PI3K/AKT pathway. In a mouse model of metastatic tumors, overexpression of FGA restricted the spread of tumor cells. In conclusion, FGA exhibits an inhibitory effect on tumor metastasis, providing new insights for the treatment of advanced HCC metastatic tumors.
Collapse
Affiliation(s)
- Xi Han
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Zefeng Liu
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Mengying Cui
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Jie Lin
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Yongzhi Li
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Hanjiao Qin
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Jiyao Sheng
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Xuewen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| |
Collapse
|
163
|
Qian Y, Zhang Q, Ren Y, Cao L, Zheng S, Li B, Wu X, Meng Z, Xu K. Prognostic Value and Immune Landscapes of Four Types of RNA Modification Writer-Related LncRNAs Signature in Lung Adenocarcinoma. J Cancer 2024; 15:4818-4837. [PMID: 39132150 PMCID: PMC11310873 DOI: 10.7150/jca.96755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/24/2024] [Indexed: 08/13/2024] Open
Abstract
Background: Lung adenocarcinoma (LUAD) is the predominant pathological subtype of non-small cell lung cancer (NSCLC). The four primary forms of RNA adenosine modifications, N6-methyladenosine (m6A), N1-methyladenosine (m1A), alternative polyadenylation (APA) and adenosine-to-inosine (A-to-I) RNA editing, play a critical role in tumor progression. However, the clinical significance of RNA modification writer-related long non-coding RNAs (lncRNAs) in LUAD remains unclear. Methods: The Cancer Genome Atlas (TCGA) database was used to obtain transcriptomic and clinicopathological data. Univariate Cox regression analysis, consensus cluster analysis, and least absolute shrinkage and selection operator (LASSO) Cox regression were used to establish the molecular subtypes and prognostic signatures of LUAD based on the expression levels of lncRNAs. ESTIMATE, CIBERSORT, ssGSEA, and TIDE algorithms were used to investigate immune cell infiltration and immunotherapy. In addition, IC50 of chemotherapeutic agents were calculated for different risk subgroups using the "pRRophetic" R package. Finally, the expression of prognosis-associated lncRNAs in lung cancer tissues was verified using qPCR. Results: A prognostic risk signature containing seven lncRNAs associated with four types of RNA modification writers was established. The high-risk group had a poorer prognosis and higher clinicopathological grade. Most immune checkpoint genes and immune cell infiltration differed significantly between the two risk groups. The high-risk group had a higher tumor mutation burden (TMB), lower TIDE score, and was more sensitive to immunotherapy. Conclusion: We developed an RNA modification writer-related seven-lncRNA signature prognostic model that was associated with prognosis, tumor microenvironment, and response to immunotherapy in LUAD patients. Among them, LINC01352, AC024075.1, AC005070.3, AL133445.2, AC005856.1, and LINC00968 were downregulated in LUAD, whereas AC092168.2 was upregulated. This model may be a valuable tool for personalized LUAD therapies.
Collapse
Affiliation(s)
- Yongmei Qian
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Qicheng Zhang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yinghui Ren
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Limin Cao
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Sijia Zheng
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Bingbing Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xiang Wu
- Core Facility Center, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhaowei Meng
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ke Xu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
164
|
Braun M, Piasecka D, Sadej R, Romanska HM. FGFR4-driven plasticity in breast cancer progression and resistance to therapy. Br J Cancer 2024; 131:11-22. [PMID: 38627607 PMCID: PMC11231301 DOI: 10.1038/s41416-024-02658-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 07/10/2024] Open
Abstract
Breast cancer (BCa) is a complex and heterogeneous disease, with different intrinsic molecular subtypes that have distinct clinical outcomes and responses to therapy. Although intrinsic subtyping provides guidance for treatment decisions, it is now widely recognised that, in some cases, the switch of the BCa intrinsic subtype (which embodies cellular plasticity), may be responsible for therapy failure and disease progression. Aberrant FGFR4 signalling has been implicated in various cancers, including BCa, where it had been shown to be associated with aggressive subtypes, such as HER2-enriched BCa, and poor prognosis. More importantly, FGFR4 is also emerging as a potential driver of BCa intrinsic subtype switching, and an essential promoter of brain metastases, particularly in the HER2-positive BCa. Although the available data are still limited, the findings may have far-reaching clinical implications. Here, we provide an updated summary of the existing both pre- and clinical studies of the role of FGFR4 in BCa, with a special focus on its contribution to subtype switching during metastatic spread and/or induced by therapy. We also discuss a potential clinical benefit of targeting FGFR4 in the development of new treatment strategies.
Collapse
Affiliation(s)
- Marcin Braun
- Department of Pathology, Chair of Oncology, Medical University of Lodz, Lodz, Poland
| | - Dominika Piasecka
- Laboratory of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, Gdansk, Poland
| | - Rafal Sadej
- Laboratory of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, Gdansk, Poland.
| | - Hanna M Romanska
- Department of Pathology, Chair of Oncology, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
165
|
Huang Z, Lin G, Hong Y, Weng L, Zhu K, Zhuang W. High expression of AlkB homolog 5 suppresses the progression of non-small cell lung cancer by facilitating ferroptosis through m6A demethylation of SLC7A11. ENVIRONMENTAL TOXICOLOGY 2024; 39:4035-4046. [PMID: 38642004 DOI: 10.1002/tox.24272] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/17/2024] [Accepted: 03/23/2024] [Indexed: 04/22/2024]
Abstract
OBJECTIVE Non-small cell lung cancer (NSCLC) is a prevailing LC characterized by poor outcomes. AlkB homolog 5 (ALKBH5) functions as a tumor suppressor in several cancers. This study delved into the role of ALKBH5 in NSCLC development. METHODS TCGA database predicted ALKBH5 expression in NSCLC patients. ALKBH5 levels in NSCLC and human bronchial epithelial cells were determined. pcDNA3.1-ALKBH5/NC, pcDNA3.1-SLC7A11/NC, and ferrostatin-1 were used to explore the interactions among ALKBH5, SLC7A11, and ferroptosis. SLC7A11 mRNA and its protein levels were measured by RT-qPCR and Western blot. Cell viability, apoptosis, migration, and invasion were assessed by CCK-8, flow cytometry, and Transwell. Total N6-methyladenosine (m6A) quantification and its enrichment on SLC7A11 mRNA were determined, followed by the observation of Ki67, ALKBH5 and SLC7A11-positive cell numbers. Glutathione (GSH), lipid reactive oxygen species (lipid-ROS), malondialdehyde (MDA), and iron ion contents were determined. Animal experiments further analyzed the role of ALKBH5 in tumor development and glutathione peroxidase 4 (GPX4) expression. RESULTS Bioinformatics analysis revealed the lowly-expressed ALKBH5 in LC patients. ALKBH5 was downregulated in NSCLC cells and its upregulation repressed proliferation activity, invasion, and migration, and facilitated apoptosis. ALKBH5 upregulation decreased GSH, increased lipid-ROS, MDA, and iron ion contents, and downregulated SLC7A11 by reducing m6A modification. SLC7A11 upregulation partly annulled the effect of ALKBH5 overexpression on cell ferroptosis and malignant behaviors. In vivo assays elucidated the suppression of ALKBH5 upregulation on tumor development and GPX4 levels. CONCLUSION ALKBH5 upregulation downregulates SLC7A11 transcription by decreasing m6A modification, thus promoting NSCLC cell ferroptosis and ultimately repressing NSCLC progression.
Collapse
Affiliation(s)
- Zhangzhou Huang
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Gen Lin
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Yaping Hong
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Lihong Weng
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Kai Zhu
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Wu Zhuang
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| |
Collapse
|
166
|
Hsu R, Al-Zubeidy B, Flores D, Nazarian A, Baugh A, Gonzalez E, Castanon S, Xiu J, Kang I, Spicer D, Lenz HJ, Dara L, Ademuyiwa FO, Korn WM, Irshad S, Chan IS, Roussos Torres ET. Evaluation of markers of immunity in different metastatic immune microenvironments suggests more suppression within breast to liver metastases in breast cancer. Breast Cancer Res Treat 2024; 206:245-259. [PMID: 38643348 PMCID: PMC11182800 DOI: 10.1007/s10549-024-07295-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 02/09/2024] [Indexed: 04/22/2024]
Abstract
PURPOSE Programmed death receptor ligand-1 (PD-L1) expression and tumor mutational burden (TMB) are approved screening biomarkers for immune checkpoint inhibition (ICI) in advanced triple negative breast cancer. We examined these biomarkers along with characterization of the tumor microenvironment (TME) between breast tumors (BrTs), axillary metastases (AxMs), liver metastases (LvMs), non-axillary lymph node metastases, and non-liver metastases to determine differences related to site of metastatic disease. METHODS 3076 unpaired biopsies from breast cancer patients were analyzed using whole transcriptome sequencing and NextGen DNA depicting TMB within tumor sites. The PD-L1 positivity was determined with VENTANA PD-L1 (SP142) assay. The immune cell fraction within the TME was calculated by QuantiSeq and MCP-counter. RESULTS Compared to BrT, more LvM samples had a high TMB (≥ 10 mutations/Mb) and fewer LvM samples had PD-L1+ expression. Evaluation of the TME revealed that LvM sites harbored lower infiltration of adaptive immune cells, such as CD4+, CD8+, and regulatory T-cells compared with the BrT foci. We saw differences in innate immune cell infiltration in LvM compared to BrT, including neutrophils and NK cells. CONCLUSIONS LvMs are less likely to express PD-L1+ tumor cells but more likely to harbor high TMB as compared to BrTs. Unlike AxMs, LvMs represent a more immunosuppressed TME and demonstrate lower gene expression associated with adaptive immunity compared to BrTs. These findings suggest biopsy site be considered when interpreting results that influence ICI use for treatment and further investigation of immune composition and biomarkers expression by metastatic site.
Collapse
Affiliation(s)
- Robert Hsu
- Division of Medical Oncology, Department of Medicine, University of Southern California Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Batul Al-Zubeidy
- Division of Medical Oncology, Department of Medicine, University of Southern California Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Daniel Flores
- Division of Medical Oncology, Department of Medicine, University of Southern California Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ari Nazarian
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Aaron Baugh
- Division of Medical Oncology, Department of Medicine, University of Southern California Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Edgar Gonzalez
- Division of Medical Oncology, Department of Medicine, University of Southern California Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sofi Castanon
- Division of Medical Oncology, Department of Medicine, University of Southern California Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Irene Kang
- Division of Medical Oncology, Department of Medicine, University of Southern California Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Medical Oncology & Therapeutics Research, City of Hope Orange County, Irvine, CA, USA
| | - Darcy Spicer
- Division of Medical Oncology, Department of Medicine, University of Southern California Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Heinz Josef Lenz
- Division of Medical Oncology, Department of Medicine, University of Southern California Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lily Dara
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | | | - Sheeba Irshad
- School of Cancer & Pharmaceutical Sciences, King's College London, Cancer Research UK (CRUK) Clinician Scientist, London, UK
| | - Isaac S Chan
- Division of Hematology and Oncology, Department of Internal Medicine, University of Texas Southwestern, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Evanthia T Roussos Torres
- Division of Medical Oncology, Department of Medicine, University of Southern California Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
167
|
Li L, Tang Q, Ge J, Wang D, Mo Y, Zhang Y, Wang Y, Xiong F, Yan Q, Liao Q, Guo C, Wang F, Zhou M, Xiang B, Zeng Z, Shi L, Chen P, Xiong W. METTL14 promotes lipid metabolism reprogramming and sustains nasopharyngeal carcinoma progression via enhancing m 6A modification of ANKRD22 mRNA. Clin Transl Med 2024; 14:e1766. [PMID: 39021049 PMCID: PMC11255023 DOI: 10.1002/ctm2.1766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) modification is essential for modulating RNA processing as well as expression, particularly in the context of malignant tumour progression. However, the exploration of m6A modification in nasopharyngeal carcinoma (NPC) remains very limited. METHODS RNA m6A levels were analysed in NPC using m6A dot blot assay. The expression level of methyltransferase-like 14 (METTL14) within NPC tissues was analysed from public databases as well as RT-qPCR and immunohistochemistry. The influences on METTL14 expression on NPC proliferation and metastasis were explored via in vitro as well as in vivo functional assays. Targeted genes of METTL14 were screened using the m6A and gene expression profiling microarray data. Actinomycin D treatment and polysome analysis were used to detect the half-life and translational efficiency of ANKRD22. Flow cytometry, immunofluorescence and immunoprecipitation were used to validate the role of ANKRD22 on lipid metabolism in NPC cells. ChIP-qPCR analysis of H3K27AC signalling near the promoters of METTL14, GINS3, POLE2, PLEK2 and FERMT1 genes. RESULTS We revealed METTL14, in NPC, correlating with poor patient prognosis. In vitro and in vivo assays indicated METTL14 actively promoted NPC cells proliferation and metastasis. METTL14 catalysed m6A modification on ANKRD22 messenger ribonucleic acid (mRNA), recognized by the reader IGF2BP2, leading to increased mRNA stability and higher translational efficiency. Moreover, ANKRD22, a metabolism-related protein on mitochondria, interacted with SLC25A1 to enhance citrate transport, elevating intracellular acetyl-CoA content. This dual impact of ANKRD22 promoted lipid metabolism reprogramming and cellular lipid synthesis while upregulating the expression of genes associated with the cell cycle (GINS3 and POLE2) and the cytoskeleton (PLEK2 and FERMT1) through heightened epigenetic histone acetylation levels in the nucleus. Intriguingly, our findings highlighted elevated ANKRD22-mediated histone H3 lysine 27 acetylation (H3K27AC) signals near the METTL14 promoter, which contributes to a positive feedback loop perpetuating malignant progression in NPC. CONCLUSIONS The identified METTL14-ANKRD22-SLC25A1 axis emerges as a promising therapeutic target for NPC, and also these molecules may serve as novel diagnostic biomarkers.
Collapse
Affiliation(s)
- Lvyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer MetabolismHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangshaChina
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
| | - Qiling Tang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer MetabolismHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangshaChina
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
| | - Junshang Ge
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
| | - Dan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
| | - Yongzhen Mo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
- Department of Otolaryngology Head and Neck SurgeryXiangya Hospital, Central South UniversityChangshaChina
| | - Yijie Zhang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer MetabolismHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangshaChina
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
| | - Yumin Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
- Department of Otolaryngology Head and Neck SurgeryXiangya Hospital, Central South UniversityChangshaChina
| | - Fang Xiong
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
- Department of Otolaryngology Head and Neck SurgeryXiangya Hospital, Central South UniversityChangshaChina
| | - Qijia Yan
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
- Department of Otolaryngology Head and Neck SurgeryXiangya Hospital, Central South UniversityChangshaChina
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer MetabolismHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangshaChina
| | - Can Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
| | - Fuyan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
| | - Ming Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
| | - Bo Xiang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer MetabolismHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangshaChina
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
| | - Lei Shi
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer MetabolismHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangshaChina
- Department of Pathologythe Second Xiangya Hospital, Central South UniversityChangshaChina
| | - Pan Chen
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer MetabolismHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangshaChina
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer MetabolismHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangshaChina
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
| |
Collapse
|
168
|
Guo L, Ma X, Li H, Yan S, Zhang K, Li J. Single‑cell RNA‑seq necroptosis‑related genes predict the prognosis of breast cancer and affect the differentiation of CD4 + T cells in tumor immune microenvironment. Mol Clin Oncol 2024; 21:49. [PMID: 38872949 PMCID: PMC11170320 DOI: 10.3892/mco.2024.2747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/30/2024] [Indexed: 06/15/2024] Open
Abstract
Breast cancer (BC) is one of the most prevalent types of malignancy and a major cause of cancer-related death. The purpose of the present study was to identify prognostic models of necroptosis-related genes (NRGs) in BC at the single-cell RNA-sequencing level and reveal the role of NRGs in tumour immune microenvironment (TIME). A risk model was constructed based on Cox regression and LASSO methods. Next, high-scoring cell populations were searched through AUCell scores, and cell subtypes were then analyzed by pseudotime analysis. Finally, the expression level of the model genes was verified by reverse transcription-quantitative (RT-qPCR). A new prognostic model was constructed and validated based on five NRGs (BCL2, BIRC3, AIFM1, IFNG and VDAC1), which could effectively predict the prognosis of patients with BC. NRGs were found to be highly active in CD4+ T cells and differentially expressed in their developmental trajectories. Finally, the RT-qPCR results showed that most of the model genes were significantly overexpressed in MDA-MB-231 and MCF-7 cells (P<0.05). In conclusion, an NRG signature with excellent predictive properties in prognosis and TIME was successfully established. Moreover, NRGs were involved in the differentiation and development of CD4+ T cells in TIME. These findings provide potential therapeutic strategies for BC.
Collapse
Affiliation(s)
- Li Guo
- Clinical Medical College of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750003, P.R. China
| | - Xiuzhen Ma
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Hong Li
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Shuxun Yan
- Clinical Medical College of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750003, P.R. China
| | - Kai Zhang
- Clinical Medical College of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750003, P.R. China
| | - Jinping Li
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| |
Collapse
|
169
|
Wei L, Wang Y, Peng Y, Zhang G, Tan Q, Gu Y, Zhang M. Suitable Heel Height, a Potential Method for Musculoskeletal Problems during the Third Trimester: A Pilot Study. Bioengineering (Basel) 2024; 11:667. [PMID: 39061749 PMCID: PMC11274345 DOI: 10.3390/bioengineering11070667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND The treatment options for third-trimester musculoskeletal issues are limited. This study aims to examine how heel height affects gait biomechanics and provides heel height recommendations for various musculoskeletal problems. METHODS Five third-trimester gravidas were recruited wearing uniform footwear with four heel heights (0 mm, 15 mm, 30 mm, and 45 mm). Lower-limb muscle forces, joint angles, joint torques, joint contact forces, and ground reaction forces (GRF) at specific moments (the first peak, valley, and second peak of GRF) were collected for one-way analysis of variance with repeated measures. RESULTS The soleus, gastrocnemius, tibialis posterior, plantaris, obturator externus, gluteus maximus, gemellus superior, and obturator internus were the smallest at heel heights of 45 mm and 15 mm at the valley of GRF. Hip extension and knee flexion displayed the smallest joint angle and joint torques at a height of 15 mm. Ankle joint contact force decreased with increased heel height. CONCLUSIONS The height of the heel significantly impacts muscle force, joint angles, joint torques, and joint contact force. A heel of 15 mm might be the most suitable heel height to potentially avoid or alleviate musculoskeletal problems during the third trimester.
Collapse
Affiliation(s)
- Linjuan Wei
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China; (L.W.); (G.Z.); (Q.T.)
| | - Yan Wang
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China; (L.W.); (G.Z.); (Q.T.)
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518057, China
- Research Institute for Sports Science and Technology, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Yinghu Peng
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, Shenzhen 518055, China;
| | - Guoxin Zhang
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China; (L.W.); (G.Z.); (Q.T.)
| | - Qitao Tan
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China; (L.W.); (G.Z.); (Q.T.)
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518057, China
- Research Institute for Sports Science and Technology, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China;
| | - Ming Zhang
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China; (L.W.); (G.Z.); (Q.T.)
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518057, China
- Research Institute for Sports Science and Technology, The Hong Kong Polytechnic University, Hong Kong 999077, China
| |
Collapse
|
170
|
Hu X, Deng X, Xie J, Zhang H, Zhang H, Feng B, Zou Y, Wang C. Evolutionary Trend Analysis of Research on Immunotherapy for Brain Metastasis Based on Machine-Learning Scientometrics. Pharmaceuticals (Basel) 2024; 17:850. [PMID: 39065701 PMCID: PMC11280367 DOI: 10.3390/ph17070850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 07/28/2024] Open
Abstract
Brain metastases challenge cancer treatments with poor prognoses, despite ongoing advancements. Immunotherapy effectively alleviates advanced cancer, exhibiting immense potential to revolutionize brain metastasis management. To identify research priorities that optimize immunotherapies for brain metastases, 2164 related publications were analyzed. Scientometric visualization via R software, VOSviewer, and CiteSpace showed the interrelationships among literature, institutions, authors, and topic areas of focus. The publication rate and citations have grown exponentially over the past decade, with the US, China, and Germany as the major contributors. The University of Texas MD Anderson Cancer Center ranked highest in publications, while Memorial Sloan Kettering Cancer Center was most cited. Clusters of keywords revealed six hotspots: 'Immunology', 'Check Point Inhibitors', 'Lung Cancer', 'Immunotherapy', 'Melanoma', 'Breast Cancer', and 'Microenvironment'. Melanoma, the most studied primary tumor with brain metastases offers promising immunotherapy advancements with generalizability and adaptability to other cancers. Our results outline the holistic overview of immunotherapy research for brain metastases, which pinpoints the forefront in the field, and directs researchers toward critical inquiries for enhanced mechanistic insight and improved clinical outcomes. Moreover, governmental and funding agencies will benefit from assigning financial resources to entities and regions with the greatest potential for combating brain metastases through immunotherapy.
Collapse
Affiliation(s)
- Xiaoqian Hu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- School of Biomedical Sciences, Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xinpei Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jindong Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Hanqi Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Huiting Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Beibei Feng
- Department of Rehabilitation Medicine, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China
| | - Yutian Zou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Chuhuai Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
171
|
Zhou Z, Wang J, Wang J, Yang S, Wang R, Zhang G, Li Z, Shi R, Wang Z, Lu Q. Deciphering the tumor immune microenvironment from a multidimensional omics perspective: insight into next-generation CAR-T cell immunotherapy and beyond. Mol Cancer 2024; 23:131. [PMID: 38918817 PMCID: PMC11201788 DOI: 10.1186/s12943-024-02047-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
Tumor immune microenvironment (TIME) consists of intra-tumor immunological components and plays a significant role in tumor initiation, progression, metastasis, and response to therapy. Chimeric antigen receptor (CAR)-T cell immunotherapy has revolutionized the cancer treatment paradigm. Although CAR-T cell immunotherapy has emerged as a successful treatment for hematologic malignancies, it remains a conundrum for solid tumors. The heterogeneity of TIME is responsible for poor outcomes in CAR-T cell immunotherapy against solid tumors. The advancement of highly sophisticated technology enhances our exploration in TIME from a multi-omics perspective. In the era of machine learning, multi-omics studies could reveal the characteristics of TIME and its immune resistance mechanism. Therefore, the clinical efficacy of CAR-T cell immunotherapy in solid tumors could be further improved with strategies that target unfavorable conditions in TIME. Herein, this review seeks to investigate the factors influencing TIME formation and propose strategies for improving the effectiveness of CAR-T cell immunotherapy through a multi-omics perspective, with the ultimate goal of developing personalized therapeutic approaches.
Collapse
Affiliation(s)
- Zhaokai Zhou
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Jiahui Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Department of Nephrology, Union Medical College Hospital, Chinese Academy of Medical Sciences, PekingBeijing, 100730, China
| | - Jiaojiao Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Shuai Yang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ruizhi Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ge Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Run Shi
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhan Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Qiong Lu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
172
|
Yue J, Wang J, Chen W, Yin X, Du H, Wei Y. Palliative surgery versus non-surgery of the solitary metastatic lesion in De novo metastatic breast cancer: A SEER based study. Medicine (Baltimore) 2024; 103:e38651. [PMID: 38905366 PMCID: PMC11191955 DOI: 10.1097/md.0000000000038651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/30/2024] [Indexed: 06/23/2024] Open
Abstract
This study aimed to evaluate whether palliative surgery for metastatic lesion could provide a survival benefit in metastatic breast cancer (MBC) patients with solitary metastasis. De novo MBC patients with solitary distant lesions were enrolled utilizing the Surveillance, Epidemiology, and End Results (SEER) database. Propensity score matching (PSM) was conducted to form matched pairs of the surgery group and the non-surgery group. The breast cancer-specific survival (BCSS) and overall survival (OS) outcomes between the 2 groups were compared in the following 3 sample models: the entire cohort of MBC (7665 cases); subgroups of patients with different isolated metastatic organs; and subgroups of patients with different molecular subtypes for each isolated metastatic organ. Compared with the Non-surgery group, the surgery group showed better BCSS and OS before PSM (HR = 0.88, 95% CI = 0.79-0.99, P = .04 and HR = 0.85, 95% CI = 0.76-0.95, P = .006, respectively). After PSM, palliative surgery still provided an OS benefit in patients with brain metastasis and lung metastasis (HR = 0.59, 95% CI = 0.37-0.95, P = .01 and HR = 0.64, 95% CI = 0.45-0.90, P = .02, respectively). Likewise, a better BCSS benefit was also found in the subset of patients with brain metastasis (HR = 0.61, 95% CI = 0.38-1.00, P = .01). Further stratification analysis indicated that patients with the luminal A subtype with brain metastasis have a better BCSS (HR = 0.36, 95% CI = 0.16-0.79, P = .04) and OS (HR = 0.37, 95% CI = 0.18-0.75, P = .03) after undergoing palliative surgery than nonsurgical treatment. Our study originality showed that palliative surgery for metastatic lesion could improve survival prognosis in patients with special single-organ metastasis and specific molecular subtypes. More clinical studies are needed to determine whether palliative surgery should be performed in MBC patients.
Collapse
Affiliation(s)
- Jian Yue
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Breast Surgery, Gaozhou People’s Hospital, Gaozhou, China
| | - Jing Wang
- Department of Head, Neck and Breast Surgery, Anhui Provincial Cancer Hospital, Hefei, China
- Department of Head, Neck and Breast Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wei Chen
- Youyang Hospital, A Branch of The First Affiliated Hospital of Chongqing Medical University, Youyang, China
| | - Xuedong Yin
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huimin Du
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuxian Wei
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
173
|
Jia L, Zhang D, Zeng X, Wu L, Tian X, Xing N. Targeting RNA N6-methyladenosine modification-- a novel therapeutic target for HER2- positive gastric cancer. Front Oncol 2024; 14:1387444. [PMID: 38966068 PMCID: PMC11222400 DOI: 10.3389/fonc.2024.1387444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/06/2024] [Indexed: 07/06/2024] Open
Abstract
Gastric cancer is one of the most common cancers and is considered the 5th most frequent occurring cancer worldwide. It has gained great attention from the clinicians and researchers because of high mortality rate. It is generally treated with chemotherapy, radiotherapy, and surgery. Recently, additional treatment options including immunotherapy and targeted therapy and immunotherapy have been developed. However, poor prognosis, limited survival rate of patients, and drug resistance to treatment remain critical problems. To improve treatment options or to overcome the bottleneck of treatment, identification of diagnostic and prognostic markers, determining the most effective therapeutic options, and uncovering the molecular regulations associated with treatment strategies are required. In this regard n6-methyladenosine (m6A) regulation is considered important. This reversible modification plays a crucial role in progression, development and treatment of HER2-positive gastric cancer. Here, we discuss the role of m6A modification in HER2-positive gastric cancer progression through collecting related studies at present. We further discuss the association of m6A modification with therapeutic efficacy in HER2-positive gastric cancer and list some examples. We conclude that modification of m6A can be a new strategy for improving the prognosis and survival rate of HER2-positive gastric cancer patients.
Collapse
Affiliation(s)
| | - Di Zhang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | | | | | - Na Xing
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
174
|
Abbott AG, Meyers DE, Elmi-Assadzadeh G, Stukalin I, Marro A, Puloski SKT, Morris DG, Cheung WY, Monument MJ. Effectiveness of immune checkpoint inhibitor therapy on bone metastases in non-small-cell lung cancer. Front Immunol 2024; 15:1379056. [PMID: 38957472 PMCID: PMC11217176 DOI: 10.3389/fimmu.2024.1379056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/29/2024] [Indexed: 07/04/2024] Open
Abstract
Background Bone metastases (BoMs) are prevalent in patients with metastatic non-small-cell lung cancer (NSCLC) however, there are limited data detailing how BoMs respond to immune checkpoint inhibitors (ICIs). The purpose of this study was to compare the imaging response to ICIs of BoMs against visceral metastases and to evaluate the effect of BoMs on survival. Materials and methods A retrospective, multicentre cohort study was conducted in patients with NSCLC treated with nivolumab or pembrolizumab in Alberta, Canada from 2015 to 2020. The primary endpoint was the real-world organ specific progression free survival (osPFS) of bone versus visceral metastases. Visceral metastases were categorized as adrenal, brain, liver, lung, lymph node, or other intra-abdominal lesions. The secondary outcome was overall survival (OS) amongst patients with and without BoMs. Results A total of 573 patients were included of which all patients had visceral metastases and 243 patients (42.4%) had BoMs. High PD-L1 expression was identified in 268 patients (46.8%). No significant difference in osPFS was observed between bone, liver, and intra-abdominal metastases (p=0.20 and p=0.76, respectively), with all showing shorter osPFS than other disease sites. There was no difference in the osPFS of extra-thoracic sites of disease in patients with high PD-L1 expression. There was significant discordance between visceral disease response and bone disease response to ICI (p=0.047). The presence of BoMs was an independent poor prognostic factor for OS (HR 1.26, 95%CI: 1.05-1.53, p=0.01). Conclusion Metastatic bone, liver, and intra-abdominal lesions demonstrated inferior clinical responses to ICI relative to other sites of disease. Additionally, the presence of bone and liver metastases were independent poor prognostic factors for overall survival. This real-world data suggests that BoMs respond poorly to ICI and may require treatment adjuncts for disease control.
Collapse
Affiliation(s)
- Annalise G. Abbott
- Section of Orthopaedic Surgery, University of Calgary, Calgary, AB, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Daniel E. Meyers
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
- Department of Oncology, University of Calgary, Calgary, AB, Canada
| | | | - Igor Stukalin
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
- Department of Oncology, University of Calgary, Calgary, AB, Canada
| | - Alessandro Marro
- Departmenmt of Radiology, University of Calgary, Calgary, AB, Canada
| | - Shannon K. T. Puloski
- Section of Orthopaedic Surgery, University of Calgary, Calgary, AB, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
- McCaig Bone & Joint Institute, University of Calgary, Calgary, AB, Canada
| | - Don G. Morris
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
- Department of Oncology, University of Calgary, Calgary, AB, Canada
| | - Winson Y. Cheung
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
- Department of Oncology, University of Calgary, Calgary, AB, Canada
| | - Michael J. Monument
- Section of Orthopaedic Surgery, University of Calgary, Calgary, AB, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
- McCaig Bone & Joint Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
175
|
Badenhorst M, Windhorst AD, Beaino W. Navigating the landscape of PD-1/PD-L1 imaging tracers: from challenges to opportunities. Front Med (Lausanne) 2024; 11:1401515. [PMID: 38915766 PMCID: PMC11195831 DOI: 10.3389/fmed.2024.1401515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/20/2024] [Indexed: 06/26/2024] Open
Abstract
Immunotherapy targeted to immune checkpoint inhibitors, such as the program cell death receptor (PD-1) and its ligand (PD-L1), has revolutionized cancer treatment. However, it is now well-known that PD-1/PD-L1 immunotherapy response is inconsistent among patients. The current challenge is to customize treatment regimens per patient, which could be possible if the PD-1/PD-L1 expression and dynamic landscape are known. With positron emission tomography (PET) imaging, it is possible to image these immune targets non-invasively and system-wide during therapy. A successful PET imaging tracer should meet specific criteria concerning target affinity, specificity, clearance rate and target-specific uptake, to name a few. The structural profile of such a tracer will define its properties and can be used to optimize tracers in development and design new ones. Currently, a range of PD-1/PD-L1-targeting PET tracers are available from different molecular categories that have shown impressive preclinical and clinical results, each with its own advantages and disadvantages. This review will provide an overview of current PET tracers targeting the PD-1/PD-L1 axis. Antibody, peptide, and antibody fragment tracers will be discussed with respect to their molecular characteristics and binding properties and ways to optimize them.
Collapse
Affiliation(s)
- Melinda Badenhorst
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, De Boelelaan, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Albert D. Windhorst
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, De Boelelaan, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Wissam Beaino
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, De Boelelaan, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| |
Collapse
|
176
|
Yin J, Chen J, Hong JH, Huang Y, Xiao R, Liu S, Deng P, Sun Y, Chai KXY, Zeng X, Chan JY, Guan P, Wang Y, Wang P, Tong C, Yu Q, Xia X, Ong CK, Teh BT, Xiong Y, Tan J. 4EBP1-mediated SLC7A11 protein synthesis restrains ferroptosis triggered by MEK inhibitors in advanced ovarian cancer. JCI Insight 2024; 9:e177857. [PMID: 38842940 PMCID: PMC11383183 DOI: 10.1172/jci.insight.177857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/05/2024] [Indexed: 08/13/2024] Open
Abstract
Loss of ferroptosis contributes to the development of human cancer, and restoration of ferroptosis has been demonstrated as a potential therapeutic strategy in cancer treatment. However, the mechanisms of how ferroptosis escape contributes to ovarian cancer (OV) development are not well elucidated. Here, we show that ferroptosis negative regulation signatures correlated with the tumorigenesis of OV and were associated with poor prognosis, suggesting that restoration of ferroptosis represents a potential therapeutic strategy in OV. High-throughput drug screening with a kinase inhibitor library identified MEK inhibitors as ferroptosis inducers in OV cells. We further demonstrated that MEK inhibitor-resistant OV cells were less vulnerable to trametinib-induced ferroptosis. Mechanistically, mTOR/eIF4E binding protein 1 (4EBP1) signaling promoted solute carrier family 7 member 11 (SLC7A11) protein synthesis, leading to ferroptosis inhibition in MEK inhibitor-resistant cells. Dual inhibition of MEK and mTOR/4EBP1 signaling restrained the protein synthesis of SLC7A11 via suppression of the mTOR/4EBP1 axis to reactivate ferroptosis in resistant cells. Together, these findings provide a promising therapeutic option for OV treatment through ferroptosis restoration by the combined inhibition of MEK and mTOR/4EBP1 pathways.
Collapse
Affiliation(s)
- Jiaxin Yin
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jianfeng Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jing Han Hong
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Yulin Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Rong Xiao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shini Liu
- Department of Oncology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Peng Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yichen Sun
- Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Kelila Xin Ye Chai
- Lymphoma Genomic Translational Research Laboratory, Cellular and Molecular Research, and
| | - Xian Zeng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | | | - Peiyong Guan
- Genome Institute of Singapore, A*STAR, Singapore
| | - Yali Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Peili Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chongjie Tong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qiang Yu
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
- Genome Institute of Singapore, A*STAR, Singapore
| | - Xiaojun Xia
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Choon Kiat Ong
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
- Lymphoma Genomic Translational Research Laboratory, Cellular and Molecular Research, and
- Genome Institute of Singapore, A*STAR, Singapore
| | - Bin Tean Teh
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore
| | - Ying Xiong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jing Tan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore
- Hainan Academy of Medical Science, Hainan Medical University, Haikou, China
| |
Collapse
|
177
|
Chen Q, Gao F, Wu J, Zhang K, Du T, Chen Y, Cai R, Zhao D, Deng R, Tang J. Comprehensive pan-cancer analysis of mitochondrial outer membrane permeabilisation activity reveals positive immunomodulation and assists in identifying potential therapeutic targets for immunotherapy resistance. Clin Transl Med 2024; 14:e1735. [PMID: 38899748 PMCID: PMC11187817 DOI: 10.1002/ctm2.1735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Mitochondrial outer membrane permeabilisation (MOMP) plays a pivotal role in cellular death and immune activation. A deeper understanding of the impact of tumour MOMP on immunity will aid in guiding more effective immunotherapeutic strategies. METHODS A comprehensive pan-cancer dataset comprising 30 cancer-type transcriptomic cohorts, 20 immunotherapy transcriptomic cohorts and three immunotherapy scRNA-seq datasets was collected and analysed to determine the influence of tumour MOMP activity on clinical prognosis, immune infiltration and immunotherapy effectiveness. Leveraging 65 scRNA-Seq datasets, the MOMP signature (MOMP.Sig) was developed to accurately reflect tumour MOMP activity. The clinical predictive value of MOMP.Sig was explored through machine learning models. Integration of the MOMP.Sig model and a pan-cancer immunotherapy CRISPR screen further investigated potential targets to overcome immunotherapy resistance, which subsequently underwent clinical validation. RESULTS Our research revealed that elevated MOMP activity reduces mortality risk in cancer patients, drives the formation of an anti-tumour immune environment and enhances the response to immunotherapy. This finding emphasises the potential clinical application value of MOMP activity in immunotherapy. MOMP.Sig, offering a more precise indicator of tumour cell MOMP activity, demonstrated outstanding predictive efficacy in machine-learning models. Moreover, with the assistance of the MOMP.Sig model, FOXO1 was identified as a core modulator that promotes immune resistance. Finally, these findings were successfully validated in clinical immunotherapy cohorts of skin cutaneous melanoma and triple-negative breast cancer patients. CONCLUSIONS This study enhances our understanding of MOMP activity in immune modulation, providing valuable insights for more effective immunotherapeutic strategies across diverse tumours.
Collapse
Affiliation(s)
- Qingshan Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
- Department of Breast OncologySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Fenglin Gao
- Department of Respiratory and Critical Care MedicineThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Junwan Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
- Biotherapy Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Kaiming Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
- Department of Breast OncologySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Tian Du
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
- Department of Breast OncologySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yuhong Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Ruizhao Cai
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
- Department of Breast OncologySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Dechang Zhao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
- Department of Breast OncologySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Rong Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Jun Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
- Department of Breast OncologySun Yat‐sen University Cancer CenterGuangzhouChina
| |
Collapse
|
178
|
Sun Z, Xiao X, Liang S, Ma H, Sun Y, Zhao L, Wang C, Chang X, Zhao H, Guo H, Zhang Z. Consistency Analysis of Programmed Death Ligand 1 Expression in Non-Small Cell Lung Cancer Between Pleural Effusion and Matched Primary Lung Cancer Tissues by Immunohistochemical Double Staining. J Transl Med 2024; 104:102058. [PMID: 38626874 DOI: 10.1016/j.labinv.2024.102058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/14/2024] [Accepted: 04/05/2024] [Indexed: 05/12/2024] Open
Abstract
In clinical practice, programmed death ligand 1 (PD-L1) detection is prone to nonspecific staining due to the complex cellular composition of pleural effusion smears. In this study, diaminobenzidine (DAB) and 3-amino-9-ethylcarbazole (AEC) immunohistochemistry double staining was performed to investigate PD-L1 expression in tumor cells from malignant pleural effusion (MPE). MPE was considered as a metastasis in non-small cell lung cancer patients; thus, the heterogeneity between metastatic and primary lung cancer was revealed as well. Ninety paired specimens of MPE cell blocks and matched primary lung cancer tissues from non-small cell lung cancer patients were subjected to PD-L1 and thyroid transcription factor-1(TTF-1)/p63 immunohistochemistry double staining. Two experienced pathologists independently evaluated PD-L1 expression using 3 cutoffs (1%, 10%, and 50%). PD-L1 expression in MPE was strongly correlated with that in matched primary lung cancer tissues (R = 0.813; P < .001). Using a 4-tier scale (cutoffs: 1%, 10%, and 50%), the concordance was 71.1% (Cohen's κ = .534). Using a 2-tier scale, the concordance was 75.6% (1%, Cohen's κ = 0.53), 78.9% (10%, Cohen's κ = 0.574), and 95.6% (50%, Cohen's κ = 0.754). The rates of PD-L1 positivity in MPE (56.7%) were higher than that in lung tissues (32.2%). All 27 discordant cases had higher scores in MPE. The double-staining method provided superior identification of PD-L1-positive tumor cells on a background with nonspecific staining. In conclusion, PD-L1 expression was moderately concordant between metastatic MPE cell blocks and matched primary lung carcinoma tissues, with variability related to tumor heterogeneity. MPE should be considered to detect PD-L1 when histological specimens are unattainable, especially when PD-L1 expression is >50%. PD-L1 positivity rates were higher in MPE. Double staining can improve PD-L1 detection by reducing false-negative/positive results.
Collapse
Affiliation(s)
- Zihan Sun
- Cytopathology Section, Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyue Xiao
- Cytopathology Section, Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuo Liang
- Cytopathology Section, Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haiyue Ma
- Cytopathology Section, Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yue Sun
- Cytopathology Section, Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Linlin Zhao
- Cytopathology Section, Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cong Wang
- Cytopathology Section, Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinxiang Chang
- Cytopathology Section, Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huan Zhao
- Cytopathology Section, Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huiqin Guo
- Cytopathology Section, Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhihui Zhang
- Cytopathology Section, Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
179
|
Wang H, Li T, Jiang Y, Chen S, Wu Z, Zeng X, Yang K, Duan P, Zou S. Long non-coding RNA LncTUG1 regulates favourable compression force-induced cementocytes mineralization via PU.1/TLR4/SphK1 signalling. Cell Prolif 2024; 57:e13604. [PMID: 38318762 PMCID: PMC11150144 DOI: 10.1111/cpr.13604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/18/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024] Open
Abstract
Orthodontic tooth movement (OTM) is a highly coordinated biomechanical response to orthodontic forces with active remodelling of alveolar bone but minor root resorption. Such antiresorptive properties of root relate to cementocyte mineralization, the mechanisms of which remain largely unknown. This study used the microarray analysis to explore long non-coding ribonucleic acids involved in stress-induced cementocyte mineralization. Gain- and loss-of-function experiments, including Alkaline phosphatase (ALP) activity and Alizarin Red S staining, quantitative real-time polymerase chain reaction (qRT-PCR), Western blot, and immunofluorescence analyses of mineralization-associated factors, were conducted to verify long non-coding ribonucleic acids taurine-upregulated gene 1 (LncTUG1) regulation in stress-induced cementocyte mineralization, via targeting the Toll-like receptor 4 (TLR4)/SphK1 axis. The luciferase reporter assays, chromatin immunoprecipitation assays, RNA pull-down, RNA immunoprecipitation, and co-localization assays were performed to elucidate the interactions between LncTUG1, PU.1, and TLR4. Our findings indicated that LncTUG1 overexpression attenuated stress-induced cementocyte mineralization, while blocking the TLR4/SphK1 axis reversed the inhibitory effect of LncTUG1 on stress-induced cementocyte mineralization. The in vivo findings also confirmed the involvement of TLR4/SphK1 signalling in cementocyte mineralization during OTM. Mechanistically, LncTUG1 bound with PU.1 subsequently enhanced TLR4 promotor activity and thus transcriptionally elevated the expression of TLR4. In conclusion, our data revealed a critical role of LncTUG1 in regulating stress-induced cementocyte mineralization via PU.1/TLR4/SphK1 signalling, which might provide further insights for developing novel therapeutic strategies that could protect roots from resorption during OTM.
Collapse
Affiliation(s)
- Han Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Tiancheng Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of StomatologySichuan UniversityChengduChina
- Department of Orthodontics, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of StomatologyShanghaiChina
| | - Yukun Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Shuo Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Zuping Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of StomatologySichuan UniversityChengduChina
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityHangzhouChina
| | - Xinyi Zeng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Kuan Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Peipei Duan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
180
|
Wei Q, Xue C, Li M, Wei J, Zheng L, Chen S, Duan Y, Deng H, Tang F, Xiong W, Zhou M. Ferroptosis: a critical mechanism of N 6-methyladenosine modification involved in carcinogenesis and tumor progression. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1119-1132. [PMID: 38811442 DOI: 10.1007/s11427-023-2474-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/23/2023] [Indexed: 05/31/2024]
Abstract
Ferroptosis is an iron-dependent regulatory cell necrosis induced by iron overload and lipid peroxidation. It occurs when multiple redox-active enzymes are ectopically expressed or show abnormal function. Hence, the precise regulation of ferroptosis-related molecules is mediated across multiple levels, including transcriptional, posttranscriptional, translational, and epigenetic levels. N6-methyladenosine (m6A) is a highly evolutionarily conserved epigenetic modification in mammals. The m6A modification is commonly linked to tumor proliferation, progression, and therapy resistance because it is involved in RNA metabolic processes. Intriguingly, accumulating evidence suggests that dysregulated ferroptosis caused by the m6A modification drives tumor development. In this review, we summarized the roles of m6A regulators in ferroptosis-mediated malignant tumor progression and outlined the m6A regulatory mechanism involved in ferroptosis pathways. We also analyzed the potential value and application strategies of targeting m6A/ferroptosis pathway in the clinical diagnosis and therapy of tumors.
Collapse
Affiliation(s)
- Qingqing Wei
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
| | - Changning Xue
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
| | - Mengna Li
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
| | - Jianxia Wei
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
| | - Lemei Zheng
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
- Hunan Key Laboratory of Oncotarget Gene, Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Shipeng Chen
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
| | - Yumei Duan
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
| | - Hongyu Deng
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- Hunan Key Laboratory of Oncotarget Gene, Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Faqing Tang
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- Hunan Key Laboratory of Oncotarget Gene, Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China.
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China.
- Hunan Key Laboratory of Oncotarget Gene, Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China.
| |
Collapse
|
181
|
Wang Z, Ji X, Zhang Y, Yang F, Su H, Zhang H, Li Z, Zhang W, Sun W. Interactions between LAMP3+ dendritic cells and T-cell subpopulations promote immune evasion in papillary thyroid carcinoma. J Immunother Cancer 2024; 12:e008983. [PMID: 38816233 PMCID: PMC11141193 DOI: 10.1136/jitc-2024-008983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND The incidence of papillary thyroid cancer (PTC) continues to rise all over the world, 10-15% of the patients have a poor prognosis. Although immunotherapy has been applied in clinical practice, its therapeutic efficacy remains far from satisfactory, necessitating further investigation of the mechanism of PTC immune remodeling and exploration of novel treatment targets. METHODS This study conducted a single-cell RNA sequencing (scRNA-seq) analysis using 18 surgical tissue specimens procured from 14 patients diagnosed with adjacent tissues, non-progressive PTC or progressive PTC. Key findings were authenticated through spatial transcriptomics RNA sequencing, immunohistochemistry, multiplex immunohistochemistry, and an independent bulk RNA-seq data set containing 502 samples. RESULTS A total of 151,238 individual cells derived from 18 adjacent tissues, non-progressive PTC and progressive PTC specimens underwent scRNA-seq analysis. We found that progressive PTC exhibits the following characteristics: a significant decrease in overall immune cells, enhanced immune evasion of tumor cells, and disrupted antigen presentation function. Moreover, we identified a subpopulation of lysosomal associated membrane protein 3 (LAMP3+) dendritic cells (DCs) exhibiting heightened infiltration in progressive PTC and associated with advanced T stage and poor prognosis of PTC. LAMP3+ DCs promote CD8+ T cells exhaustion (mediated by NECTIN2-TIGIT) and increase infiltration abundance of regulatory T cells (mediated by chemokine (C-C motif) ligand 17 (CCL17)-chemokine (C-C motif) receptor 4 (CCR4)) establishing an immune-suppressive microenvironment. Ultimately, we unveiled that progressive PTC tumor cells facilitate the retention of LAMP3+ DCs within the tumor microenvironment through NECTIN3-NECTIN2 interactions, thereby rendering tumor cells more susceptible to immune evasion. CONCLUSION Our findings expound valuable insights into the role of the interaction between LAMP3+ DCs and T-cell subpopulations and offer new and effective ideas and strategies for immunotherapy in patients with progressive PTC.
Collapse
Affiliation(s)
- Zhiyuan Wang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Xiaoyu Ji
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Ye Zhang
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Fan Yang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Hongyue Su
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Hao Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Zhendong Li
- Department of Head and Neck Surgery, Cancer Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Wenqian Zhang
- Department of Head and Neck Surgery, Cancer Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Wei Sun
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
182
|
Li X, Poire A, Jeong KJ, Zhang D, Ozmen TY, Chen G, Sun C, Mills GB. C5aR1 inhibition reprograms tumor associated macrophages and reverses PARP inhibitor resistance in breast cancer. Nat Commun 2024; 15:4485. [PMID: 38802355 PMCID: PMC11130309 DOI: 10.1038/s41467-024-48637-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
Although Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) have been approved in multiple diseases, including BRCA1/2 mutant breast cancer, responses are usually transient requiring the deployment of combination therapies for optimal efficacy. Here we thus explore mechanisms underlying sensitivity and resistance to PARPi using two intrinsically PARPi sensitive (T22) and resistant (T127) syngeneic murine breast cancer models in female mice. We demonstrate that tumor associated macrophages (TAM) potentially contribute to the differential sensitivity to PARPi. By single-cell RNA-sequencing, we identify a TAM_C3 cluster, expressing genes implicated in anti-inflammatory activity, that is enriched in PARPi resistant T127 tumors and markedly decreased by PARPi in T22 tumors. Rps19/C5aR1 signaling is selectively elevated in TAM_C3. C5aR1 inhibition or transferring C5aR1hi cells increases and decreases PARPi sensitivity, respectively. High C5aR1 levels in human breast cancers are associated with poor responses to immune checkpoint blockade. Thus, targeting C5aR1 may selectively deplete pro-tumoral macrophages and engender sensitivity to PARPi and potentially other therapies.
Collapse
Affiliation(s)
- Xi Li
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Alfonso Poire
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Kang Jin Jeong
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Dong Zhang
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Tugba Yildiran Ozmen
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Gang Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaoyang Sun
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gordon B Mills
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
183
|
Liu Y, He M, Tang H, Xie T, Lin Y, Liu S, Liang J, Li F, Luo K, Yang M, Teng H, Luo X, He J, Liao S, Huang Q, Feng W, Zhan X, Wei Q. Single-cell and spatial transcriptomics reveal metastasis mechanism and microenvironment remodeling of lymph node in osteosarcoma. BMC Med 2024; 22:200. [PMID: 38755647 PMCID: PMC11100118 DOI: 10.1186/s12916-024-03319-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/23/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Osteosarcoma (OS) is the most common primary malignant bone tumor and is highly prone to metastasis. OS can metastasize to the lymph node (LN) through the lymphatics, and the metastasis of tumor cells reestablishes the immune landscape of the LN, which is conducive to the growth of tumor cells. However, the mechanism of LN metastasis of osteosarcoma and remodeling of the metastatic lymph node (MLN) microenvironment is not clear. METHODS Single-cell RNA sequencing of 18 samples from paracancerous, primary tumor, and lymph nodes was performed. Then, new signaling axes closely related to metastasis were identified using bioinformatics, in vitro experiments, and immunohistochemistry. The mechanism of remodeling of the LN microenvironment in tumor cells was investigated by integrating single-cell and spatial transcriptomics. RESULTS From 18 single-cell sequencing samples, we obtained 117,964 cells. The pseudotime analysis revealed that osteoblast(OB) cells may follow a differentiation path from paracancerous tissue (PC) → primary tumor (PT) → MLN or from PC → PT, during the process of LN metastasis. Next, in combination of bioinformatics, in vitro and in vivo experiments, and immunohistochemistry, we determined that ETS2/IBSP, a new signal axis, might promote LN metastasis. Finally, single-cell and spatial dissection uncovered that OS cells could reshape the microenvironment of LN by interacting with various cell components, such as myeloid, cancer-associated fibroblasts (CAFs), and NK/T cells. CONCLUSIONS Collectively, our research revealed a new molecular mechanism of LN metastasis and clarified how OS cells influenced the LN microenvironment, which might provide new insight for blocking LN metastasis.
Collapse
Affiliation(s)
- Yun Liu
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Mingwei He
- Department of Traumatic Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Haijun Tang
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Tianyu Xie
- Department of Traumatic Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yunhua Lin
- Department of Traumatic Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Shangyu Liu
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jiming Liang
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Feicui Li
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Kai Luo
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Mingxiu Yang
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Hongcai Teng
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xiaoting Luo
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Juliang He
- Department of Bone and Soft Tissue Tumor, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, China
| | - Shijie Liao
- Department of Traumatic Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Qian Huang
- Department of Traumatic Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China.
- Guangxi Key Laboratory of Regenerative Medicine, Orthopedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Wenyu Feng
- Department of Bone and Joint Surgery and Sports Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China.
| | - Xinli Zhan
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Qingjun Wei
- Department of Traumatic Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China.
| |
Collapse
|
184
|
Liu X, Miao R, Liu K, Xie Q, Zheng P, Zhu J, Zhang Y, Peng F. Panoramic analysis of cell death patterns reveals prognostic and immune profiles of head and neck squamous cell carcinoma. Am J Cancer Res 2024; 14:2584-2607. [PMID: 38859838 PMCID: PMC11162683 DOI: 10.62347/pmda6193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/15/2024] [Indexed: 06/12/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) has been characterized by a low therapeutic response and poor prognosis. Currently, there are no reliable predictive models for HNSCC progression and therapeutic efficacy. This study explores the role of diverse patterns of cell death in tumor development, positing them as predictive factors of HNSCC prognosis. We utilized bulk transcriptome and single-cell transcriptome, align with clinical information from TCGA and GEO database, to analyze genes associated with 15 types of cell death and construct a cell death index (CDI) signature. The associations of CDI with tumor-infiltrating immune cells and immunotherapy-related biomarkers were also evaluated using various algorithms. The CDI signature emerged as a robust prognosis biomarker that could identify patients who can benefit potentially from immunotherapy, thus improving diagnostic accuracy and optimizing clinical decisions in HNSCC management. Notably, we discovered that CAAP1 deficiency not only induced apoptosis but also enhanced anti-tumor immunity, suggesting its potential as a target for clinical drug development.
Collapse
Affiliation(s)
- Xinyu Liu
- Department of Otolaryngology Head and Neck Surgery, Loudi Central HospitalLoudi 417011, Hunan, The People’s Republic of China
| | - Rui Miao
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South UniversityNo. 87 Xiangya Road, Changsha 410008, Hunan, The People’s Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan ProvinceNo. 87 Xiangya Road, Changsha 410008, Hunan, The People’s Republic of China
| | - Kui Liu
- Department of Otolaryngology Head and Neck Surgery, Loudi Central HospitalLoudi 417011, Hunan, The People’s Republic of China
| | - Qun Xie
- Department of Otolaryngology Head and Neck Surgery, Loudi Central HospitalLoudi 417011, Hunan, The People’s Republic of China
| | - Penghui Zheng
- Department of Otolaryngology Head and Neck Surgery, Loudi Central HospitalLoudi 417011, Hunan, The People’s Republic of China
| | - Junai Zhu
- Department of Gastroenterology, The Chinese University of Hong KongHong Kong SAR, China
| | - Ying Zhang
- Department of Otolaryngology Head and Neck Surgery, Loudi Central HospitalLoudi 417011, Hunan, The People’s Republic of China
| | - Fusen Peng
- Department of Otolaryngology Head and Neck Surgery, Loudi Central HospitalLoudi 417011, Hunan, The People’s Republic of China
| |
Collapse
|
185
|
Xing Y, Zhang F, Yang T, Yin C, Yang A, Yan B, Zhao J. Augmented antitumor immune responses of HER2-targeted pyroptotic induction by long-lasting recombinant immunopyroptotins. Heliyon 2024; 10:e30444. [PMID: 38737283 PMCID: PMC11088320 DOI: 10.1016/j.heliyon.2024.e30444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/14/2024] Open
Abstract
Pyroptosis is a well-documented form of programmed cell death caused by the gasdermin-driven perforation of cell membranes. Selective induction of pyroptosis in tumor cells represents a promising antitumor strategy to enhance the efficacy of immunotherapy. In this study, we established a recombinant protein-based immunopyroptotin strategy that led to the intratumoral induction of pyroptosis for HER2-directed therapy. Long-lasting immunopyroptotins were constructed by sequentially fusing the humanized anti-HER2 single-chain antibody P1h3, albumin-binding peptide (ABD035 or dAb7h8), cathepsin B-cleavable peptide B2, endosome-disruptive peptide E5C3, and active pyroptotic effector gasdermin D-N fragment (GN). After purification, we evaluated the cytotoxicity and antitumor immune responses primarily induced by the immunopyroptotins in HER2-overexpressing breast cancer cells. The resulting ABD035-immunoGN and dAb7h8-immunoGN showed improved in vitro cytotoxicity in HER2-overexpressing cancer cells compared with that in the immunotBid that we previously generated to induce tumor cell apoptosis. The binding of long-lasting immunopyroptotins to albumin increased the half-life by approximately 7-fold in nude mice. The enhanced antitumor efficacy of long-lasting immunopyroptotins was confirmed in both N87 tumor-bearing T cell-deficient mice and 4T1-hHER2 bilateral tumor-bearing immunocompetent mice. Immunopyroptotin treatment elicited systemic antitumor immune responses involving CD8+ T cells and mature dendritic cells and upregulated the expression of proinflammatory cytokines, leading to sustained remission of non-injected distant tumors. This study extends the repertoire of antibody-based therapeutics through the tumor-targeted delivery of a constitutively active pore-forming gasdermin-N fragment, which shows great potential for pyroptosis-based antitumor therapy.
Collapse
Affiliation(s)
- Yuqi Xing
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Feiyu Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Tian Yang
- Department of Intensive Care Medicine, Bethune International Peace Hospital, Hebei, 050082, China
| | - Chunhui Yin
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Angang Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Immunology, Fourth Military Medical University, Xi'an, 710032, China
| | - Bo Yan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Jing Zhao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
186
|
Zheng X, Zhang X, Yu S. Organoids derived from metastatic cancers: Present and future. Heliyon 2024; 10:e30457. [PMID: 38720734 PMCID: PMC11077038 DOI: 10.1016/j.heliyon.2024.e30457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
Organoids are three-dimensional structures derived from primary tissue or tumors that closely mimic the architecture, histology, and function of the parental tissue. In recent years, patient-derived organoids (PDOs) have emerged as powerful tools for modeling tumor heterogeneity, drug screening, and personalized medicine. Although most cancer organoids are derived from primary tumors, the ability of organoids from metastatic cancer to serve as a model for studying tumor biology and predicting the therapeutic response is an area of active investigation. Recent studies have shown that organoids derived from metastatic sites can provide valuable insights into tumor biology and may be used to validate predictive models of the drug response. In this comprehensive review, we discuss the feasibility of culturing organoids from multiple metastatic cancers and evaluate their potential for advancing basic cancer research, drug development, and personalized therapy. We also explore the limitations and challenges associated with using metastasis organoids for cancer research. Overall, this review provides a comprehensive overview of the current state and future prospects of metastatic cancer-derived organoids.
Collapse
Affiliation(s)
- Xuejing Zheng
- Departments of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinxin Zhang
- Departments of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shengji Yu
- Departments of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
187
|
Zhang J, Ouyang F, Gao A, Zeng T, Li M, Li H, Zhou W, Gao Q, Tang X, Zhang Q, Ran X, Tian G, Quan X, Tang Z, Zou J, Zeng Y, Long Y, Li Y. ESM1 enhances fatty acid synthesis and vascular mimicry in ovarian cancer by utilizing the PKM2-dependent warburg effect within the hypoxic tumor microenvironment. Mol Cancer 2024; 23:94. [PMID: 38720298 PMCID: PMC11077861 DOI: 10.1186/s12943-024-02009-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND The hypoxic tumor microenvironment is a key factor that promotes metabolic reprogramming and vascular mimicry (VM) in ovarian cancer (OC) patients. ESM1, a secreted protein, plays an important role in promoting proliferation and angiogenesis in OC. However, the role of ESM1 in metabolic reprogramming and VM in the hypoxic microenvironment in OC patients has not been determined. METHODS Liquid chromatography coupled with tandem MS was used to analyze CAOV3 and OV90 cells. Interactions between ESM1, PKM2, UBA2, and SUMO1 were detected by GST pull-down, Co-IP, and molecular docking. The effects of the ESM1-PKM2 axis on cell glucose metabolism were analyzed based on an ECAR experiment. The biological effects of the signaling axis on OC cells were detected by tubule formation, transwell assay, RT‒PCR, Western blot, immunofluorescence, and in vivo xenograft tumor experiments. RESULTS Our findings demonstrated that hypoxia induces the upregulation of ESM1 expression through the transcription of HIF-1α. ESM1 serves as a crucial mediator of the interaction between PKM2 and UBA2, facilitating the SUMOylation of PKM2 and the subsequent formation of PKM2 dimers. This process promotes the Warburg effect and facilitates the nuclear translocation of PKM2, ultimately leading to the phosphorylation of STAT3. These molecular events contribute to the promotion of ovarian cancer glycolysis and vasculogenic mimicry. Furthermore, our study revealed that Shikonin effectively inhibits the molecular interaction between ESM1 and PKM2, consequently preventing the formation of PKM2 dimers and thereby inhibiting ovarian cancer glycolysis, fatty acid synthesis and vasculogenic mimicry. CONCLUSION Our findings demonstrated that hypoxia increases ESM1 expression through the transcriptional regulation of HIF-1α to induce dimerization via PKM2 SUMOylation, which promotes the OC Warburg effect and VM.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Fan Ouyang
- Department of Cardiology, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Anbo Gao
- Department of Cardiology, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
- Clinical Research Institute, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Tian Zeng
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ming Li
- Trauma Center, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Hui Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Wenchao Zhou
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qing Gao
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xing Tang
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Qunfeng Zhang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiaomin Ran
- Department of Gynecologic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Gang Tian
- Department of Rehabilitation, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Xiyun Quan
- Department of Pathology, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Zhenzi Tang
- Department of Gynecologic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Juan Zou
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yifei Zeng
- Department of Oncology, Shenzhen Luohu People's Hospital, Shenzhen, Guangdong, China.
| | - Yunzhu Long
- Department of Infectious Disease, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China.
| | - Yukun Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China.
| |
Collapse
|
188
|
Zhu L, Yu X, Tang X, Hu C, Wu L, Liu Y, Zhou Q. Evolving landscape of treatments targeting the microenvironment of liver metastases in non-small cell lung cancer. Chin Med J (Engl) 2024; 137:1019-1032. [PMID: 38251678 PMCID: PMC11062672 DOI: 10.1097/cm9.0000000000002981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Indexed: 01/23/2024] Open
Abstract
ABSTRACT Liver metastases (LMs) are common in lung cancer. Despite substantial advances in diagnosis and treatment, the survival rate of patients with LM remains low as the immune-suppressive microenvironment of the liver allows tumor cells to evade the immune system. The impact of LMs on the outcomes of immune checkpoint inhibitors in patients with solid tumors has been the main focus of recent translational and clinical research. Growing evidence indicates that the hepatic microenvironment delivers paracrine and autocrine signals from non-parenchymal and parenchymal cells. Overall, these microenvironments create pre- and post-metastatic conditions for the progression of LMs. Herein, we reviewed the epidemiology, physiology, pathology and immunology, of LMs associated with non-small cell lung cancer and the role and potential targets of the liver microenvironment in LM in each phase of metastasis. Additionally, we reviewed the current treatment strategies and challenges that should be overcome in preclinical and clinical investigations. These approaches target liver elements as the basis for future clinical trials, including combinatorial interventions reported to resolve hepatic immune suppression, such as immunotherapy plus chemotherapy, immunotherapy plus radiotherapy, immunotherapy plus anti-angiogenesis therapy, and surgical resection.
Collapse
Affiliation(s)
- Lingling Zhu
- Lung Cancer Center, Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xianzhe Yu
- Department of Gastrointestinal Surgery, Chengdu Second People’s Hospital, Chengdu, Sichuan 610041, China
| | - Xiaojun Tang
- Lung Cancer Center, Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chenggong Hu
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lei Wu
- Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yanyang Liu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qinghua Zhou
- Lung Cancer Center, Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
189
|
Huang F, Shi X, Hu M, Yan H, Li X, Ding Y, Zheng X, Cai X, Dai S, Xia Q, Cai Y. Blocking of FGFR4 signaling by F30 inhibits hepatocellular carcinoma cell proliferation through HMOX1-dependent ferroptosis pathway. Eur J Pharmacol 2024; 970:176493. [PMID: 38484925 DOI: 10.1016/j.ejphar.2024.176493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
Excessive activation of FGF19/fibroblast growth factor receptor 4 (FGFR4) signaling is associated with poor survival of patients with hepatocellular carcinoma (HCC). FGFR4 inhibitors show promise for HCC treatment. F30, an indazole derivative designed through computer-aided drug design targeting FGFR4, demonstrated anti-HCC activity as described in our previous studies. However, the precise molecular mechanisms underlying F30's anticancer effects remain largely unexplored. We report here that F30 could effectively induce ferroptosis in HCC cells. The concentrations of cellular ferrous iron, the peroxidation of cell membranes and the homeostasis of reduced glutathione (GSH)/oxidized glutathione disulfide (GSSG) were dysregulated by F30, thereby affecting cellular redox status. Induction of ferroptosis in HCC by F30 was inhibited by specific ferroptosis inhibitor ferrostatin-1. F30 upregulates various ferroptosis-related genes, including the heme oxygenase enzymes 1 (HMOX1), a key mediator of redox regulation. Surprisingly, F30-induced ferroptosis in HCC is dependent on HMOX1. The dysregulation of cellular ferrous iron concentrations and cell membrane peroxidation was rescued when knocking down HMOX1 with specific small interfering RNA. These findings shed light on the molecular mechanisms underlying FGFR4-targeting F30's anti-HCC effects and suggest that FGFR4 inactivation could be beneficial for HCC treatment involving ferroptosis.
Collapse
Affiliation(s)
- Fengyu Huang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xueqin Shi
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Meng Hu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Hang Yan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaohui Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yujie Ding
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xinxin Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaojun Cai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shijie Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qinqin Xia
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yuepiao Cai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
190
|
Roggio F, Di Grande S, Cavalieri S, Falla D, Musumeci G. Biomechanical Posture Analysis in Healthy Adults with Machine Learning: Applicability and Reliability. SENSORS (BASEL, SWITZERLAND) 2024; 24:2929. [PMID: 38733035 PMCID: PMC11086111 DOI: 10.3390/s24092929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
Posture analysis is important in musculoskeletal disorder prevention but relies on subjective assessment. This study investigates the applicability and reliability of a machine learning (ML) pose estimation model for the human posture assessment, while also exploring the underlying structure of the data through principal component and cluster analyses. A cohort of 200 healthy individuals with a mean age of 24.4 ± 4.2 years was photographed from the frontal, dorsal, and lateral views. We used Student's t-test and Cohen's effect size (d) to identify gender-specific postural differences and used the Intraclass Correlation Coefficient (ICC) to assess the reliability of this method. Our findings demonstrate distinct sex differences in shoulder adduction angle (men: 16.1° ± 1.9°, women: 14.1° ± 1.5°, d = 1.14) and hip adduction angle (men: 9.9° ± 2.2°, women: 6.7° ± 1.5°, d = 1.67), with no significant differences in horizontal inclinations. ICC analysis, with the highest value of 0.95, confirms the reliability of the approach. Principal component and clustering analyses revealed potential new patterns in postural analysis such as significant differences in shoulder-hip distance, highlighting the potential of unsupervised ML for objective posture analysis, offering a promising non-invasive method for rapid, reliable screening in physical therapy, ergonomics, and sports.
Collapse
Affiliation(s)
- Federico Roggio
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Via S. Sofia n°97, 95123 Catania, Italy;
| | - Sarah Di Grande
- Department of Electrical Electronic and Computer Engineering, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (S.D.G.); (S.C.)
| | - Salvatore Cavalieri
- Department of Electrical Electronic and Computer Engineering, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (S.D.G.); (S.C.)
| | - Deborah Falla
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, UK;
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Via S. Sofia n°97, 95123 Catania, Italy;
- Research Center on Motor Activities (CRAM), University of Catania, Via S. Sofia n°97, 95123 Catania, Italy
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
191
|
Fan C, Xiong F, Zhang S, Gong Z, Liao Q, Li G, Guo C, Xiong W, Huang H, Zeng Z. Role of adhesion molecules in cancer and targeted therapy. SCIENCE CHINA. LIFE SCIENCES 2024; 67:940-957. [PMID: 38212458 DOI: 10.1007/s11427-023-2417-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/17/2023] [Indexed: 01/13/2024]
Abstract
Adhesion molecules mediate cell-to-cell and cell-to-extracellular matrix interactions and transmit mechanical and chemical signals among them. Various mechanisms deregulate adhesion molecules in cancer, enabling tumor cells to proliferate without restraint, invade through tissue boundaries, escape from immune surveillance, and survive in the tumor microenvironment. Recent studies have revealed that adhesion molecules also drive angiogenesis, reshape metabolism, and are involved in stem cell self-renewal. In this review, we summarize the functions and mechanisms of adhesion molecules in cancer and the tumor microenvironment, as well as the therapeutic strategies targeting adhesion molecules. These studies have implications for furthering our understanding of adhesion molecules in cancer and providing a paradigm for exploring novel therapeutic approaches.
Collapse
Affiliation(s)
- Chunmei Fan
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, China
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Fang Xiong
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Shanshan Zhang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Can Guo
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - He Huang
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, 410013, China.
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China.
| |
Collapse
|
192
|
Sammut SJ, Galson JD, Minter R, Sun B, Chin SF, De Mattos-Arruda L, Finch DK, Schätzle S, Dias J, Rueda OM, Seoane J, Osbourn J, Caldas C, Bashford-Rogers RJM. Predictability of B cell clonal persistence and immunosurveillance in breast cancer. Nat Immunol 2024; 25:916-924. [PMID: 38698238 PMCID: PMC11065701 DOI: 10.1038/s41590-024-01821-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/15/2024] [Indexed: 05/05/2024]
Abstract
B cells and T cells are important components of the adaptive immune system and mediate anticancer immunity. The T cell landscape in cancer is well characterized, but the contribution of B cells to anticancer immunosurveillance is less well explored. Here we show an integrative analysis of the B cell and T cell receptor repertoire from individuals with metastatic breast cancer and individuals with early breast cancer during neoadjuvant therapy. Using immune receptor, RNA and whole-exome sequencing, we show that both B cell and T cell responses seem to coevolve with the metastatic cancer genomes and mirror tumor mutational and neoantigen architecture. B cell clones associated with metastatic immunosurveillance and temporal persistence were more expanded and distinct from site-specific clones. B cell clonal immunosurveillance and temporal persistence are predictable from the clonal structure, with higher-centrality B cell antigen receptors more likely to be detected across multiple metastases or across time. This predictability was generalizable across other immune-mediated disorders. This work lays a foundation for prioritizing antibody sequences for therapeutic targeting in cancer.
Collapse
MESH Headings
- Humans
- Female
- Breast Neoplasms/immunology
- B-Lymphocytes/immunology
- Immunologic Surveillance
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- T-Lymphocytes/immunology
- Monitoring, Immunologic
- Exome Sequencing
- Antigens, Neoplasm/immunology
- Neoplasm Metastasis
- Clone Cells
Collapse
Affiliation(s)
- Stephen-John Sammut
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK.
- The Royal Marsden Hospital NHS Foundation Trust, London, UK.
| | | | | | - Bo Sun
- Wellcome Centre for Human Genetics, Oxford, UK
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
| | - Suet-Feung Chin
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Leticia De Mattos-Arruda
- IrsiCaixa, Germans Trias i Pujol University Hospital, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | | | | | | | - Oscar M Rueda
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - Joan Seoane
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital, Institució Catalana de Recerca i Estudis Avançats (ICREA), Universitat Autònoma de Barcelona (UAB), CIBERONC, Barcelona, Spain
| | | | - Carlos Caldas
- School of Clinical Medicine, University of Cambridge, Cambridge, UK.
| | - Rachael J M Bashford-Rogers
- Wellcome Centre for Human Genetics, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
- Oxford Cancer Centre, Oxford, UK.
| |
Collapse
|
193
|
Ren F, Dai J, Zhang J, Luan Y, Yang F, Shen J, Liu H, Zhou J. A magnetic calcium phosphate for selective capture of multi-phosphopeptides. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1238:124110. [PMID: 38603891 DOI: 10.1016/j.jchromb.2024.124110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024]
Abstract
The specific enrichment of multi-phosphopeptides in the presence of non-phosphopeptides and mono-phosphopeptides was still a challenge for phosphoproteomics research. Most of these enrichment materials relied on Zn, Ti, Sn, and other rare precious metals as the bonding center to enrich multi-phosphopeptides while ignoring the use of common metal elements. The addition of rare metals increased the cost of the experiment, which was not conducive to their large-scale application in biomedical proteomics laboratories. In addition, multiple high-speed centrifugation steps also resulted in the loss of low-abundance multi-phosphopeptides in the treatment procedure of biological samples. This study proposed the use of calcium, a common element, as the central bonding agent for synthesizing magnetic calcium phosphate materials (designated as CaP-Fe3O4). These materials aim to capture multi-phosphopeptides and identifying phosphorylation sites. The current results demonstrate that CaP-Fe3O4 exhibited excellent selection specificity, high sensitivity, and stability in the enrichment of multi-phosphopeptides and the identification of phosphorylation sites. Additionally, the introduction of magnetic separation not only reduced the time required for multi-phosphopeptides enrichment but also prevented the loss of these peptides during high-speed centrifugation. These findings contribute to the widespread application and advancement of phosphoproteomics research.
Collapse
Affiliation(s)
- FangKun Ren
- College of Life Sciences, Jiangsu Key Laboratory Biofunctional Materials, Nanjing Normal University, Nanjing 210023, China
| | - JunYong Dai
- College of Life Sciences, Jiangsu Key Laboratory Biofunctional Materials, Nanjing Normal University, Nanjing 210023, China
| | - JingYi Zhang
- College of Life Sciences, Jiangsu Key Laboratory Biofunctional Materials, Nanjing Normal University, Nanjing 210023, China
| | - YanFei Luan
- College of Life Sciences, Jiangsu Key Laboratory Biofunctional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Fan Yang
- College of Life Sciences, Jiangsu Key Laboratory Biofunctional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Jian Shen
- College of Life Sciences, Jiangsu Key Laboratory Biofunctional Materials, Nanjing Normal University, Nanjing 210023, China
| | - HaiLong Liu
- College of Life Sciences, Jiangsu Key Laboratory Biofunctional Materials, Nanjing Normal University, Nanjing 210023, China.
| | - JiaHong Zhou
- College of Life Sciences, Jiangsu Key Laboratory Biofunctional Materials, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
194
|
Wang Z, Zhou P, Li Y, Zhang D, Chu F, Yuan F, Pan B, Gao F. A Bimetallic Polymerization Network for Effective Increase in Labile Iron Pool and Robust Activation of cGAS/STING Induces Ferroptosis-Based Tumor Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308397. [PMID: 38072786 DOI: 10.1002/smll.202308397] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/13/2023] [Indexed: 12/20/2023]
Abstract
Due to the inherent low immunogenicity and immunosuppressive tumor microenvironment (TME) of malignant cancers, the clinical efficacy and application of tumor immunotherapy have been limited. Herein, a bimetallic drug-gene co-loading network (Cu/ZIF-8@U-104@siNFS1-HA) is developed that increased the intracellular labile iron pool (LIP) and enhanced the weakly acidic TME by co-suppressing the dual enzymatic activities of carbonic anhydrase IX (CA IX) and cysteine desulfurylase (NFS1), inducing a safe and efficient initial tumor immunogenic ferroptosis. During this process, Cu2+ is responsively released to deplete glutathione (GSH) and reduce the enzyme activity of glutathione peroxidase 4 (GPX4), achieving the co-inhibition of the three enzymes and further inducing lipid peroxidation (LPO). Additionally, the reactive oxygen species (ROS) storm in target cells promoted the generation of large numbers of double-stranded DNA breaks. The presence of Zn2+ substantially increased the expression of cGAS/STING, which cooperated with ferroptosis to strengthen the immunogenic cell death (ICD) response and remodel the immunosuppressive TME. In brief, Cu/ZIF-8@U-104@siNFS1-HA linked ferroptosis with immunotherapy through multiple pathways, including the increase in LIP, regulation of pH, depletion of GSH/GPX4, and activation of STING, effectively inhibiting cancer growth and metastasis.
Collapse
Affiliation(s)
- Zhenxin Wang
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, 221002, P. R. China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Peng Zhou
- Department of Orthopedics, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Jiangsu, 223002, P. R. China
| | - Yuting Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Dazhen Zhang
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Fuchao Chu
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Feng Yuan
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, 221002, P. R. China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Bin Pan
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, 221002, P. R. China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Fenglei Gao
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, 221002, P. R. China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
| |
Collapse
|
195
|
Trnkova L, Buocikova V, Mego M, Cumova A, Burikova M, Bohac M, Miklikova S, Cihova M, Smolkova B. Epigenetic deregulation in breast cancer microenvironment: Implications for tumor progression and therapeutic strategies. Biomed Pharmacother 2024; 174:116559. [PMID: 38603889 DOI: 10.1016/j.biopha.2024.116559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024] Open
Abstract
Breast cancer comprises a substantial proportion of cancer diagnoses in women and is a primary cause of cancer-related mortality. While hormone-responsive cases generally have a favorable prognosis, the aggressive nature of triple-negative breast cancer presents challenges, with intrinsic resistance to established treatments being a persistent issue. The complexity intensifies with the emergence of acquired resistance, further complicating the management of breast cancer. Epigenetic changes, encompassing DNA methylation, histone and RNA modifications, and non-coding RNAs, are acknowledged as crucial contributors to the heterogeneity of breast cancer. The unique epigenetic landscape harbored by each cellular component within the tumor microenvironment (TME) adds great diversity to the intricate regulations which influence therapeutic responses. The TME, a sophisticated ecosystem of cellular and non-cellular elements interacting with tumor cells, establishes an immunosuppressive microenvironment and fuels processes such as tumor growth, angiogenesis, and extracellular matrix remodeling. These factors contribute to challenging conditions in cancer treatment by fostering a hypoxic environment, inducing metabolic stress, and creating physical barriers to drug delivery. This article delves into the complex connections between breast cancer treatment response, underlying epigenetic changes, and vital interactions within the TME. To restore sensitivity to treatment, it emphasizes the need for combination therapies considering epigenetic changes specific to individual members of the TME. Recognizing the pivotal role of epigenetics in drug resistance and comprehending the specificities of breast TME is essential for devising more effective therapeutic strategies. The development of reliable biomarkers for patient stratification will facilitate tailored and precise treatment approaches.
Collapse
Affiliation(s)
- Lenka Trnkova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovakia
| | - Verona Buocikova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovakia
| | - Michal Mego
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovakia; 2nd Department of Oncology, Comenius University, Faculty of Medicine & National Cancer Institute, Bratislava 83310, Slovakia
| | - Andrea Cumova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovakia
| | - Monika Burikova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovakia
| | - Martin Bohac
- 2nd Department of Oncology, Comenius University, Faculty of Medicine & National Cancer Institute, Bratislava 83310, Slovakia; Regenmed Ltd., Medena 29, Bratislava 811 01, Slovakia; Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, Bratislava 811 08, Slovakia
| | - Svetlana Miklikova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovakia
| | - Marina Cihova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovakia
| | - Bozena Smolkova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovakia.
| |
Collapse
|
196
|
Dai D, Zhuang H, Shu M, Chen L, Long C, Wu H, Chen B. Identification of N7-methylguanosine-related miRNAs as potential biomarkers for prognosis and drug response in breast cancer. Heliyon 2024; 10:e29326. [PMID: 38628712 PMCID: PMC11017060 DOI: 10.1016/j.heliyon.2024.e29326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/19/2024] Open
Abstract
Objectives The impact of N7-methylguanosine (m7G) on tumor progression and the regulatory role of microRNAs (miRNAs) in immune function significantly influence breast cancer (BC) prognosis. Investigating the interplay between m7G modification and miRNAs provides novel insights for assessing prognostics and drug responses in BC. Materials and methods RNA sequences (miRNA and mRNA profiles) and clinical data for BC were acquired from the Cancer Genome Atlas (TCGA) database. A miRNA signature associated with 15 m7G in this cohort was identified using Cox regression and LASSO. The risk score model was evaluated using Kaplan-Meier and time-dependent ROC analysis, categorizing patients into high-risk and low-risk groups. Functional enrichment analyses were conducted to explore potential pathways. The immune system, including scores, cell infiltration, function, and drug sensitivity, was examined and compared between high-risk and low-risk groups. A nomogram that combines risk scores and clinical factors was developed and validated. Single-sample gene set enrichment analysis (ssGSEA) was employed to explore m7G-related miRNA signatures and immune cell relationships in the tumor microenvironment. Additionally, drug susceptibility was compared between risk groups. Results Fifteen m7G-related miRNAs were independently correlated with overall survival (OS) in BC patients. Time-dependent ROC analysis yielded area under the curve (AUC) values of 0.742, 0.726, and 0.712 for predicting 3-, 5-, and 10-year survival rates, respectively. The Kaplan-Meier analysis revealed a significant disparity in OS between the high-risk and low-risk groups (p = 1.3e-6). Multiple regression identified the risk score as a significant independent prognostic factor. An excellent calibration nomogram with a C-index of 0.785 (95 % CI: 0.728-0.843) was constructed. In immune analysis, low-risk patients exhibited heightened immune function and increased responsiveness to immunotherapy and chemotherapy compared to high-risk patients. Conclusion This study systematically analyzed m7G-related miRNAs and revealed their regulatory mechanisms concerning the tumor microenvironment (TME), pathology, and the prognosis of BC patient. Based on these miRNAs, a prognostic model and nomogram were developed for BC patients, facilitating prognostic assessments. These findings can also assist in predicting treatment responses and guiding medication selection.
Collapse
Affiliation(s)
- Danian Dai
- Department of Vascular and Plastic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
| | - Hongkai Zhuang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Mao Shu
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Lezi Chen
- Department of Vascular and Plastic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
| | - Chen Long
- Department of Pathology, Yueyang Maternal Child Health-Care Hospital, Yueyang, 414000, Hunan, China
| | - Hongmei Wu
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Bo Chen
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
| |
Collapse
|
197
|
Gao X, Lin J, Qu C, Wang C, Wu A, Zhu J, Xu C. Computer-aided diagnostic system with automated deep learning method based on the AutoGluon framework improved the diagnostic accuracy of early esophageal cancer. J Gastrointest Oncol 2024; 15:535-543. [PMID: 38756633 PMCID: PMC11094492 DOI: 10.21037/jgo-24-158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024] Open
Abstract
Background There have been studies on the application of computer-aided diagnosis (CAD) in the endoscopic diagnosis of early esophageal cancer (EEC), but there is still a significant gap from clinical application. We developed an endoscopic CAD system for EEC based on the AutoGluon framework, aiming to explore the feasibility of automatic deep learning (DL) in clinical application. Methods The endoscopic pictures of normal esophagus, esophagitis, and EEC were collected from The First Affiliated Hospital of Soochow University (September 2015 to December 2021) and the Norwegian HyperKvasir database. All images of non-cancerous esophageal lesions and EEC in this study were pathologically examined. There were three tasks: task A was normal vs. lesion classification under non-magnifying endoscopy (n=932 vs. 1,092); task B was non-cancer lesion vs. EEC classification under non-magnifying endoscopy (n=594 vs. 429); and task C was non-cancer lesion vs. EEC classification under magnifying endoscopy (n=505 vs. 824). In all classification tasks, we took 100 pictures as the verification set, and the rest comprised as the training set. The CAD system was established based on the AutoGluon framework. Diagnostic performance of the model was compared with that of endoscopists grouped according to years of experience (senior >15 years; junior <5 years). Model evaluation indicators included accuracy, recall rate, precision, F1 value, interpretation time, and the area under the receiver operating characteristic (ROC) curve (AUC). Results In tasks A and B, the accuracies of medium-performance CAD and high-performance CAD were lower than those of junior doctors and senior doctors. In task C, the medium-performance and high-performance CAD accuracies were close to those of junior doctors and senior doctors. The high-performance CAD model outperformed the junior doctors in both task A (0.850 vs. 0.830) and task C (0.840 vs. 0.830) in sensitivity comparison, but there was still a large gap between high-performance CAD models and doctors in sensitivity comparison. In task A, with the aid of CAD pre-interpretation, the accuracy of junior and senior physicians were significantly improved (from 0.880 to 0.915 and from 0.920 to 0.945, respectively); the time spent on film reading was significantly shortened (junior: from 11.3 to 8.7 s; senior: from 6.7 to 5.5 s). In task C, with the aid of CAD pre-interpretation, the accuracy of junior and senior physicians were significantly improved (from 0.850 to 0.865 and from 0.915 to 0.935, respectively); the reading time was significantly shortened (junior: from 9.5 to 7.7 s; senior: from 5.6 to 3.0 s). Conclusions The CAD system based on the AutoGluon framework can assist doctors to improve the diagnostic accuracy and reading time of EEC under endoscopy. This study reveals that automatic DL methods are promising in clinical application.
Collapse
Affiliation(s)
- Xin Gao
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiaxi Lin
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Changju Qu
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chao Wang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Airong Wu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinzhou Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chunfang Xu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
198
|
Fleishman JS, Kumar S. Bile acid metabolism and signaling in health and disease: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:97. [PMID: 38664391 PMCID: PMC11045871 DOI: 10.1038/s41392-024-01811-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
Bile acids, once considered mere dietary surfactants, now emerge as critical modulators of macronutrient (lipid, carbohydrate, protein) metabolism and the systemic pro-inflammatory/anti-inflammatory balance. Bile acid metabolism and signaling pathways play a crucial role in protecting against, or if aberrant, inducing cardiometabolic, inflammatory, and neoplastic conditions, strongly influencing health and disease. No curative treatment exists for any bile acid influenced disease, while the most promising and well-developed bile acid therapeutic was recently rejected by the FDA. Here, we provide a bottom-up approach on bile acids, mechanistically explaining their biochemistry, physiology, and pharmacology at canonical and non-canonical receptors. Using this mechanistic model of bile acids, we explain how abnormal bile acid physiology drives disease pathogenesis, emphasizing how ceramide synthesis may serve as a unifying pathogenic feature for cardiometabolic diseases. We provide an in-depth summary on pre-existing bile acid receptor modulators, explain their shortcomings, and propose solutions for how they may be remedied. Lastly, we rationalize novel targets for further translational drug discovery and provide future perspectives. Rather than dismissing bile acid therapeutics due to recent setbacks, we believe that there is immense clinical potential and a high likelihood for the future success of bile acid therapeutics.
Collapse
Affiliation(s)
- Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| |
Collapse
|
199
|
Geukens T, De Schepper M, Van Den Bogaert W, Van Baelen K, Maetens M, Pabba A, Mahdami A, Leduc S, Isnaldi E, Nguyen HL, Bachir I, Hajipirloo M, Zels G, Van Cauwenberge J, Borremans K, Vandecaveye V, Weynand B, Vermeulen P, Leucci E, Baietti MF, Sflomos G, Battista L, Brisken C, Derksen PWB, Koorman T, Visser D, Scheele CLGJ, Thommen DS, Hatse S, Fendt SM, Vanderheyden E, Van Brussel T, Schepers R, Boeckx B, Lambrechts D, Marano G, Biganzoli E, Smeets A, Nevelsteen I, Punie K, Neven P, Wildiers H, Richard F, Floris G, Desmedt C. Rapid autopsies to enhance metastatic research: the UPTIDER post-mortem tissue donation program. NPJ Breast Cancer 2024; 10:31. [PMID: 38658604 PMCID: PMC11043338 DOI: 10.1038/s41523-024-00637-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/05/2024] [Indexed: 04/26/2024] Open
Abstract
Research on metastatic cancer has been hampered by limited sample availability. Here we present the breast cancer post-mortem tissue donation program UPTIDER and show how it enabled sampling of a median of 31 (range: 5-90) metastases and 5-8 liquids per patient from its first 20 patients. In a dedicated experiment, we show the mild impact of increasing time after death on RNA quality, transcriptional profiles and immunohistochemical staining in tumor tissue samples. We show that this impact can be counteracted by organ cooling. We successfully generated ex vivo models from tissue and liquid biopsies from distinct histological subtypes of breast cancer. We anticipate these and future findings of UPTIDER to elucidate mechanisms of disease progression and treatment resistance and to provide tools for the exploration of precision medicine strategies in the metastatic setting.
Collapse
Affiliation(s)
- Tatjana Geukens
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
- Department of General Medical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Maxim De Schepper
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | | | - Karen Van Baelen
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
- Department of Gynecology and Obstetrics, University Hospitals Leuven, Leuven, Belgium
| | - Marion Maetens
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Anirudh Pabba
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Amena Mahdami
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Sophia Leduc
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Edoardo Isnaldi
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Ha-Linh Nguyen
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Imane Bachir
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
- Department of Anesthesiology, Institut Jules Bordet, Brussels, Belgium
| | - Maysam Hajipirloo
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Gitte Zels
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Josephine Van Cauwenberge
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
- Department of Gynecology and Obstetrics, University Hospitals Leuven, Leuven, Belgium
| | - Kristien Borremans
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
- Department of Gynecology and Obstetrics, University Hospitals Leuven, Leuven, Belgium
| | | | - Birgit Weynand
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Peter Vermeulen
- Centre for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium
| | - Eleonora Leucci
- TRACE and Laboratory for RNA Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Maria Francesca Baietti
- TRACE and Laboratory for RNA Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - George Sflomos
- ISREC - Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Laura Battista
- ISREC - Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Cathrin Brisken
- ISREC - Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - Patrick W B Derksen
- Department of Pathology, University Medical Center, Utrecht, The Netherlands
| | - Thijs Koorman
- Department of Pathology, University Medical Center, Utrecht, The Netherlands
| | - Daan Visser
- Department of Pathology, University Medical Center, Utrecht, The Netherlands
| | - Colinda L G J Scheele
- Laboratory of Intravital Microscopy and Dynamics of Tumor Progression, Department of Oncology, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
| | - Daniela S Thommen
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sigrid Hatse
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Evy Vanderheyden
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium, and VIB Center for Cancer Biology, Leuven, Belgium
| | - Thomas Van Brussel
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium, and VIB Center for Cancer Biology, Leuven, Belgium
| | - Rogier Schepers
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium, and VIB Center for Cancer Biology, Leuven, Belgium
| | - Bram Boeckx
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium, and VIB Center for Cancer Biology, Leuven, Belgium
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium, and VIB Center for Cancer Biology, Leuven, Belgium
| | - Giuseppe Marano
- Unit of Medical Statistics, Biometry and Epidemiology, Department of Biomedical and Clinical Sciences (DIBIC) "L. Sacco" & DSRC, LITA Vialba campus, Università degli Studi di Milano, Milan, Italy
| | - Elia Biganzoli
- Unit of Medical Statistics, Biometry and Epidemiology, Department of Biomedical and Clinical Sciences (DIBIC) "L. Sacco" & DSRC, LITA Vialba campus, Università degli Studi di Milano, Milan, Italy
| | - Ann Smeets
- Department of Surgical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Ines Nevelsteen
- Department of Surgical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Kevin Punie
- Department of General Medical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Patrick Neven
- Department of Gynecology and Obstetrics, University Hospitals Leuven, Leuven, Belgium
| | - Hans Wildiers
- Department of General Medical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - François Richard
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Giuseppe Floris
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Christine Desmedt
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
200
|
Han J, Wang C, Yang H, Luo J, Zhang X, Zhang XA. Novel Insights into the Links between N6-Methyladenosine and Regulated Cell Death in Musculoskeletal Diseases. Biomolecules 2024; 14:514. [PMID: 38785921 PMCID: PMC11117795 DOI: 10.3390/biom14050514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 05/25/2024] Open
Abstract
Musculoskeletal diseases (MSDs), including osteoarthritis (OA), osteosarcoma (OS), multiple myeloma (MM), intervertebral disc degeneration (IDD), osteoporosis (OP), and rheumatoid arthritis (RA), present noteworthy obstacles associated with pain, disability, and impaired quality of life on a global scale. In recent years, it has become increasingly apparent that N6-methyladenosine (m6A) is a key regulator in the expression of genes in a multitude of biological processes. m6A is composed of 0.1-0.4% adenylate residues, especially at the beginning of 3'-UTR near the translation stop codon. The m6A regulator can be classified into three types, namely the "writer", "reader", and "eraser". Studies have shown that the epigenetic modulation of m6A influences mRNA processing, nuclear export, translation, and splicing. Regulated cell death (RCD) is the autonomous and orderly death of cells under genetic control to maintain the stability of the internal environment. Moreover, distorted RCDs are widely used to influence the course of various diseases and receiving increasing attention from researchers. In the past few years, increasing evidence has indicated that m6A can regulate gene expression and thus influence different RCD processes, which has a central role in the etiology and evolution of MSDs. The RCDs currently confirmed to be associated with m6A are autophagy-dependent cell death, apoptosis, necroptosis, pyroptosis, ferroptosis, immunogenic cell death, NETotic cell death and oxeiptosis. The m6A-RCD axis can regulate the inflammatory response in chondrocytes and the invasive and migratory of MM cells to bone remodeling capacity, thereby influencing the development of MSDs. This review gives a complete overview of the regulatory functions on the m6A-RCD axis across muscle, bone, and cartilage. In addition, we also discuss recent advances in the control of RCD by m6A-targeted factors and explore the clinical application prospects of therapies targeting the m6A-RCD in MSD prevention and treatment. These may provide new ideas and directions for understanding the pathophysiological mechanism of MSDs and the clinical prevention and treatment of these diseases.
Collapse
Affiliation(s)
- Juanjuan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang 110100, China; (J.H.); (C.W.)
| | - Cuijing Wang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110100, China; (J.H.); (C.W.)
| | - Haolin Yang
- College of Pharmacy, Jilin University, Changchun 132000, China;
| | - Jiayi Luo
- College of Exercise and Health, Shenyang Sport University, Shenyang 110100, China; (J.H.); (C.W.)
| | - Xiaoyi Zhang
- College of Second Clinical Medical, China Medical University, Shenyang 110100, China;
| | - Xin-An Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110100, China; (J.H.); (C.W.)
| |
Collapse
|