1951
|
Ruck CE, Odumade OA, Smolen KK. Vaccine Interactions With the Infant Microbiome: Do They Define Health and Disease? Front Pediatr 2020; 8:565368. [PMID: 33324590 PMCID: PMC7725791 DOI: 10.3389/fped.2020.565368] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 11/05/2020] [Indexed: 12/17/2022] Open
Abstract
Over the past decade, there has been a growing awareness of the vital role of the microbiome in the function of the immune system. Recently, several studies have demonstrated a relationship between the composition of the microbiome and the vaccine-specific immune response. As a result of these findings, the administration of probiotics has been proposed as a means of boosting vaccine-specific immunity. Early results have so far been highly inconsistent, with little evidence of sustained benefit. To date, a precise determination of the aspects of the microbiome that impact immunity is still lacking, and the mechanisms of action are also unknown. Further investigations into these questions are necessary to effectively manipulate the microbiome for the purpose of boosting immunity and enhancing vaccine-specific responses in infants. In this review, we summarize recent studies aimed at altering the neonatal gut microbiome to enhance vaccine responses and highlight gaps in knowledge and understanding. We also discuss research strategies aimed at filling these gaps and developing potential therapeutic interventions.
Collapse
Affiliation(s)
- Candice E. Ruck
- Department of Experimental Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Oludare A. Odumade
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Medicine Critical Care, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Kinga K. Smolen
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Institute for Medical Immunology, Université libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
1952
|
Ballini A, Scacco S, Boccellino M, Santacroce L, Arrigoni R. Microbiota and Obesity: Where Are We Now? BIOLOGY 2020; 9:biology9120415. [PMID: 33255588 PMCID: PMC7761345 DOI: 10.3390/biology9120415] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/14/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023]
Abstract
Simple Summary Emerging new data reported in the international scientific literature show that specific alterations in the human gut microbiota are characteristic in obesity and obesity-related metabolic diseases. Obesity is conditioned by a multitude of factors, and the microbiota is certainly an important player. The analysis of the data obtained from experimental studies allow us to hypothesize that changes in the composition of the microbiota may be the cause, and not simply the consequence, of alterations in human metabolism. Clinical trials on wide samples that investigate the role of diet-induced modulation of the gut microbiota on the host metabolism are needed to understand the interactions at the molecular level for the observed correlations between metabolism and microbiota changes. Abstract Genetic and environmental factors are underlying causes of obesity and other metabolic diseases, so it is therefore difficult to find suitable and effective medical treatments. However, without a doubt, the gut microbiota—and also the bacteria present in the oral cavity—act as key factors in the development of these pathologies, yet the mechanisms have not been fully described. Certainly, a more detailed knowledge of the structure of the microbiota—composition, intra- and inter-species relationships, metabolic functions—could be of great help in counteracting the onset of obesity. Identifying key bacterial species will allow us to create a database of “healthy” bacteria, making it possible to manipulate the bacterial community according to metabolic and clinical needs. Targeting gut microbiota in clinical care as treatment for obesity and health-related complications—even just for weight loss has become a real possibility. In this topical review we provide an overview of the role of the microbiota on host energy homeostasis and obesity-related metabolic diseases, therefore addressing the therapeutic potential of novel and existing strategies (impact of nutrition/dietary modulation, and fecal microbiota transplantation) in the treatment of metabolic disease.
Collapse
Affiliation(s)
- Andrea Ballini
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Campus Universitario, University of Bari “Aldo Moro”, 70125 Bari, Italy;
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70121 Bari, Italy
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Salvatore Scacco
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70121 Bari, Italy
- Correspondence: (S.S.); (M.B.); (R.A.)
| | - Mariarosaria Boccellino
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Correspondence: (S.S.); (M.B.); (R.A.)
| | - Luigi Santacroce
- Microbiology and Virology Laboratory, Ionian Department, Policlinico University Hospital, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Roberto Arrigoni
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), 70124 Bari, Italy
- Correspondence: (S.S.); (M.B.); (R.A.)
| |
Collapse
|
1953
|
Atypical immunometabolism and metabolic reprogramming in liver cancer: Deciphering the role of gut microbiome. Adv Cancer Res 2020; 149:171-255. [PMID: 33579424 DOI: 10.1016/bs.acr.2020.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related mortality worldwide. Much recent research has delved into understanding the underlying molecular mechanisms of HCC pathogenesis, which has revealed to be heterogenous and complex. Two major hallmarks of HCC include: (i) a hijacked immunometabolism and (ii) a reprogramming in metabolic processes. We posit that the gut microbiota is a third component in an entanglement triangle contributing to HCC progression. Besides metagenomic studies highlighting the diagnostic potential in the gut microbiota profile, recent research is pinpointing the gut microbiota as an instigator, not just a mere bystander, in HCC. In this chapter, we discuss mechanistic insights on atypical immunometabolism and metabolic reprogramming in HCC, including the examination of tumor-associated macrophages and neutrophils, tumor-infiltrating lymphocytes (e.g., T-cell exhaustion, regulatory T-cells, natural killer T-cells), the Warburg effect, rewiring of the tricarboxylic acid cycle, and glutamine addiction. We further discuss the potential involvement of the gut microbiota in these characteristics of hepatocarcinogenesis. An immediate highlight is that microbiota metabolites (e.g., short chain fatty acids, secondary bile acids) can impair anti-tumor responses, which aggravates HCC. Lastly, we describe the rising 'new era' of immunotherapies (e.g., immune checkpoint inhibitors, adoptive T-cell transfer) and discuss for the potential incorporation of gut microbiota targeted therapeutics (e.g., probiotics, fecal microbiota transplantation) to alleviate HCC. Altogether, this chapter invigorates for continuous research to decipher the role of gut microbiome in HCC from its influence on immunometabolism and metabolic reprogramming.
Collapse
|
1954
|
Mutual Interplay of Host Immune System and Gut Microbiota in the Immunopathology of Atherosclerosis. Int J Mol Sci 2020; 21:ijms21228729. [PMID: 33227973 PMCID: PMC7699263 DOI: 10.3390/ijms21228729] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammation is the key for the initiation and progression of atherosclerosis. Accumulating evidence has revealed that an altered gut microbiome (dysbiosis) triggers both local and systemic inflammation to cause chronic inflammatory diseases, including atherosclerosis. There have been some microbiome-relevant pro-inflammatory mechanisms proposed to link the relationships between dysbiosis and atherosclerosis such as gut permeability disruption, trigger of innate immunity from lipopolysaccharide (LPS), and generation of proatherogenic metabolites, such as trimethylamine N-oxide (TMAO). Meanwhile, immune responses, such as inflammasome activation and cytokine production, could reshape both composition and function of the microbiota. In fact, the immune system delicately modulates the interplay between microbiota and atherogenesis. Recent clinical trials have suggested the potential of immunomodulation as a treatment strategy of atherosclerosis. Here in this review, we present current knowledge regarding to the roles of microbiota in contributing atherosclerotic pathogenesis and highlight translational perspectives by discussing the mutual interplay between microbiota and immune system on atherogenesis.
Collapse
|
1955
|
Żaczek M, Weber-Dąbrowska B, Międzybrodzki R, Górski A. Phage Prevalence in the Human Urinary Tract-Current Knowledge and Therapeutic Implications. Microorganisms 2020; 8:microorganisms8111802. [PMID: 33212807 PMCID: PMC7696197 DOI: 10.3390/microorganisms8111802] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/20/2022] Open
Abstract
Recent metagenomic analyses imply an immense abundance of phages in the human body. Samples collected from different sites (lungs, skin, oral cavity, intestines, ascitic fluid, and urine) reveal a generally greater number of phage particles than that of eukaryotic viruses. The presence of phages in those tissues and fluids reflects the paths they must overcome in the human body, but may also relate to the health statuses of individuals. Besides shaping bacterial metabolism and community structure, the role of phages circulating in body fluids has not been fully understood yet. The lack of relevant reports is especially visible with regard to the human urobiome. Certainly, phage presence and the role they have to fulfill in the human urinary tract raises questions on potential therapeutic connotations. Urinary tract infections (UTIs) are among the most common bacterial infections in humans and their treatment poses a difficult therapeutic dilemma. Despite effective antibiotic therapy, these infections tend to recur. In this review, we summarized the recent data on phage presence in the human urinary tract and its possible implications for health and disease.
Collapse
Affiliation(s)
- Maciej Żaczek
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.Ż.); (B.W.-D.); (R.M.)
| | - Beata Weber-Dąbrowska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.Ż.); (B.W.-D.); (R.M.)
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
| | - Ryszard Międzybrodzki
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.Ż.); (B.W.-D.); (R.M.)
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, 02-006 Warsaw, Poland
| | - Andrzej Górski
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.Ż.); (B.W.-D.); (R.M.)
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
- Infant Jesus Hospital, Medical University of Warsaw, 02-005 Warsaw, Poland
- Correspondence:
| |
Collapse
|
1956
|
Moon J, Yoon CH, Choi SH, Kim MK. Can Gut Microbiota Affect Dry Eye Syndrome? Int J Mol Sci 2020; 21:E8443. [PMID: 33182758 PMCID: PMC7697210 DOI: 10.3390/ijms21228443] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023] Open
Abstract
Using metagenomics, continuing evidence has elicited how intestinal microbiota trigger distant autoimmunity. Sjögren's syndrome (SS) is an autoimmune disease that affects the ocular surface, with frequently unmet therapeutic needs requiring new interventions for dry eye management. Current studies also suggest the possible relation of autoimmune dry eye with gut microbiota. Herein, we review the current knowledge of how the gut microbiota interact with the immune system in homeostasis as well as its influence on rheumatic and ocular autoimmune diseases, and compare their characteristics with SS. Both rodent and human studies regarding gut microbiota in SS and environmental dry eye are explored, and the effects of prebiotics and probiotics on dry eye are discussed. Recent clinical studies have commonly observed a correlation between gut dysbiosis and clinical manifestations of SS, while environmental dry eye portrays characteristics in between normal and autoimmune. Moreover, a decrease in both the Firmicutes/Bacteroidetes ratio and genus Faecalibacterium have most commonly been observed in SS subjects. The presumable pathways forming the "gut dysbiosis-ocular surface-lacrimal gland axis" are introduced. This review may provide perspectives into the link between the gut microbiome and dry eye, enhance our understanding of the pathogenesis in autoimmune dry eye, and be useful in the development of future interventions.
Collapse
Affiliation(s)
- Jayoon Moon
- Department of Ophthalmology, College of Medicine, Seoul National University, Seoul 03080, Korea; (J.M.); (C.H.Y.)
- Seoul Artificial Eye Center, Laboratory of Ocular Regenerative Medicine and Immunology, Seoul National University Hospital Biomedical Research Institute, Seoul 03082, Korea;
| | - Chang Ho Yoon
- Department of Ophthalmology, College of Medicine, Seoul National University, Seoul 03080, Korea; (J.M.); (C.H.Y.)
- Seoul Artificial Eye Center, Laboratory of Ocular Regenerative Medicine and Immunology, Seoul National University Hospital Biomedical Research Institute, Seoul 03082, Korea;
| | - Se Hyun Choi
- Seoul Artificial Eye Center, Laboratory of Ocular Regenerative Medicine and Immunology, Seoul National University Hospital Biomedical Research Institute, Seoul 03082, Korea;
- Department of Ophthalmology, Hallym University Sacred Heart Hospital, Anyang-si 14068, Korea
| | - Mee Kum Kim
- Department of Ophthalmology, College of Medicine, Seoul National University, Seoul 03080, Korea; (J.M.); (C.H.Y.)
- Seoul Artificial Eye Center, Laboratory of Ocular Regenerative Medicine and Immunology, Seoul National University Hospital Biomedical Research Institute, Seoul 03082, Korea;
| |
Collapse
|
1957
|
Rubin D, Bosy-Westphal A, Kabisch S, Kronsbein P, Simon MC, Tombek A, Weber K, Skurk T. Empfehlungen zur Ernährung von Personen mit Typ-1-Diabetes mellitus. DIABETOL STOFFWECHS 2020. [DOI: 10.1055/a-1245-5623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Diana Rubin
- Vivantes Klinikum Spandau, Berlin
- Vivantes Humboldt Klinikum, Berlin
| | - Anja Bosy-Westphal
- Institut für Humanernährung, Agrar- und Ernährungswissenschaftliche Fakultät, Christian-Albrechts-Universität zu Kiel, Kiel
| | - Stefan Kabisch
- Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke, Potsdam
| | - Peter Kronsbein
- Fachbereich Oecotrophologie, Hochschule Niederrhein, Campus Mönchengladbach
| | - Marie-Christine Simon
- Institut für Ernährungs- und Lebensmittelwissenschaften, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn
| | | | - Katharina Weber
- Institut für Epidemiologie, Christian-Albrechts-Universität zu Kiel, Kiel
| | - Thomas Skurk
- ZIEL – Institute for Food & Health, Technische Universität München, München
| | | |
Collapse
|
1958
|
Lactococcus lactis subsp. Cremoris C60 restores T Cell Population in Small Intestinal Lamina Propria in Aged Interleukin-18 Deficient Mice. Nutrients 2020; 12:nu12113287. [PMID: 33121026 PMCID: PMC7693701 DOI: 10.3390/nu12113287] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/18/2022] Open
Abstract
Lactic acid bacteria (LAB), a major commensal bacterium in the small intestine, are well known beneficial bacteria which promote establishment of gut-centric immunity, such as anti-inflammation and anti-infection. In this report, we show that a LAB strain Lactococcus lactis subsp. Cremoris C60 possess an ability to activate antigen presenting cells, such as dendritic cells (DCs), and intestinal T cells which possibly support to maintain healthy intestinal immunological environment in aging process. We found that CD4+ T cells in the small intestine are dramatically decreased in aged Interleukin-18 knock out (IL-18KO) mice, associated with the impairment of IFN-γ production in the CD4+ T cells, especially in small intestinal lamina propria (LP). Surprisingly, heat killed-C60 (HK-C60) diet completely recovered the CD4+ T cells population and activity in SI-LP and over activated the population in Peyer's patches (PPs) of IL-18KO mice. The HK-C60 diet was effective approach not only to restore the number of cells, but also to recover IFN-γ production in the CD4+ T cell population in the small intestine of IL-18-deficient mice. As a possible cause in the age-associated impairment of CD4+ T cells activity in IL-18KO mice, we found that the immunological activity was downregulated in the IL-18-deficient DCs. The cytokines production and cellular activation markers expression were downregulated in the IL-18-deficient bone marrow derived dendritic cells (BMDCs) at the basal level, however, both activities were highly upregulated in HK-C60 stimulation as compared to those of WT cells. Antigen uptake was also attenuated in the IL-18-deficient BMDCs, and it was significantly enhanced in the cells as compared to WT cells in HK-60 stimulation. An in vitro antigen presentation assay showed that IFN-γ production in the CD4+ T cells was significantly enhanced in the culture of IL-18-deficient BMDCs compared with WT cells in the presence of HK-C60. Thus, we conclude that HK-C60 diet possesses an ability to restore T cells impairment in the small intestine of IL-18-deficient environment. In addition, the positive effect is based on the immunological modification of DCs function which directory influences into the promotion of effector CD4+ T cells generation in the small intestine.
Collapse
|
1959
|
Wang A, Rojas O, Lee D, Gommerman JL. Regulation of neuroinflammation by B cells and plasma cells. Immunol Rev 2020; 299:45-60. [PMID: 33107072 DOI: 10.1111/imr.12929] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023]
Abstract
The remarkable success of anti-CD20 B cell depletion therapies in reducing the burden of multiple sclerosis (MS) disease has prompted significant interest in how B cells contribute to neuroinflammation. Most focus has been on identifying pathogenic CD20+ B cells. However, an increasing number of studies have also identified regulatory functions of B lineage cells, particularly the production of IL-10, as being associated with disease remission in anti-CD20-treated MS patients. Moreover, IL-10-producing B cells have been linked to the attenuation of inflammation in experimental autoimmune encephalomyelitis (EAE), the animal model of MS. In addition to IL-10-producing B cells, antibody-producing plasma cells (PCs) have also been implicated in suppressing neuroinflammation. This review will examine regulatory roles for B cells and PCs in MS and EAE. In addition, we speculate on the involvement of regulatory PCs and the cytokine BAFF in the context of anti-CD20 treatment. Lastly, we explore how the microbiota could influence anti-inflammatory B cell behavior. A better understanding of the contributions of different B cell subsets to the regulation of neuroinflammation, and factors that impact the development, maintenance, and migration of such subsets, will be important for rationalizing next-generation B cell-directed therapies for the treatment of MS.
Collapse
Affiliation(s)
- Angela Wang
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Olga Rojas
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Dennis Lee
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
1960
|
Probiotics in Treatment of Viral Respiratory Infections and Neuroinflammatory Disorders. Molecules 2020; 25:molecules25214891. [PMID: 33105830 PMCID: PMC7660077 DOI: 10.3390/molecules25214891] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022] Open
Abstract
Inflammation is a biological response to the activation of the immune system by various infectious or non-infectious agents, which may lead to tissue damage and various diseases. Gut commensal bacteria maintain a symbiotic relationship with the host and display a critical function in the homeostasis of the host immune system. Disturbance to the gut microbiota leads to immune dysfunction both locally and at distant sites, which causes inflammatory conditions not only in the intestine but also in the other organs such as lungs and brain, and may induce a disease state. Probiotics are well known to reinforce immunity and counteract inflammation by restoring symbiosis within the gut microbiota. As a result, probiotics protect against various diseases, including respiratory infections and neuroinflammatory disorders. A growing body of research supports the beneficial role of probiotics in lung and mental health through modulating the gut-lung and gut-brain axes. In the current paper, we discuss the potential role of probiotics in the treatment of viral respiratory infections, including the COVID-19 disease, as major public health crisis in 2020, and influenza virus infection, as well as treatment of neurological disorders like multiple sclerosis and other mental illnesses.
Collapse
|
1961
|
Abstract
In a striking display of trans-kingdom symbiosis, gut bacteria cooperate with their animal hosts to regulate the development and function of the immune, metabolic and nervous systems through dynamic bidirectional communication along the 'gut-brain axis'. These processes may affect human health, as certain animal behaviours appear to correlate with the composition of gut bacteria, and disruptions in microbial communities have been implicated in several neurological disorders. Most insights about host-microbiota interactions come from animal models, which represent crucial tools for studying the various pathways linking the gut and the brain. However, there are complexities and manifest limitations inherent in translating complex human disease to reductionist animal models. In this Review, we discuss emerging and exciting evidence of intricate and crucial connections between the gut microbiota and the brain involving multiple biological systems, and possible contributions by the gut microbiota to neurological disorders. Continued advances from this frontier of biomedicine may lead to tangible impacts on human health.
Collapse
|
1962
|
de Vries H, Geervliet M, Jansen CA, Rutten VPMG, van Hees H, Groothuis N, Wells JM, Savelkoul HFJ, Tijhaar E, Smidt H. Impact of Yeast-Derived β-Glucans on the Porcine Gut Microbiota and Immune System in Early Life. Microorganisms 2020; 8:microorganisms8101573. [PMID: 33066115 PMCID: PMC7601942 DOI: 10.3390/microorganisms8101573] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 01/10/2023] Open
Abstract
Piglets are susceptible to infections in early life and around weaning due to rapid environmental and dietary changes. A compelling target to improve pig health in early life is diet, as it constitutes a pivotal determinant of gut microbial colonization and maturation of the host’s immune system. In the present study, we investigated how supplementation of yeast-derived β-glucans affects the gut microbiota and immune function pre- and post-weaning, and how these complex systems develop over time. From day two after birth until two weeks after weaning, piglets received yeast-derived β-glucans or a control treatment orally and were subsequently vaccinated against Salmonella Typhimurium. Faeces, digesta, blood, and tissue samples were collected to study gut microbiota composition and immune function. Overall, yeast-derived β-glucans did not affect the vaccination response, and only modest effects on faecal microbiota composition and immune parameters were observed, primarily before weaning. This study demonstrates that the pre-weaning period offers a ‘window of opportunity’ to alter the gut microbiota and immune system through diet. However, the observed changes were modest, and any long-lasting effects of yeast-derived β-glucans remain to be elucidated.
Collapse
Affiliation(s)
- Hugo de Vries
- Laboratory of Microbiology, Wageningen University, 6700 EH Wageningen, The Netherlands;
- Host-Microbe Interactomics Group, Wageningen University, 6700 AH Wageningen, The Netherlands;
| | - Mirelle Geervliet
- Cell Biology and Immunology Group, Wageningen University, 6700 AH Wageningen, The Netherlands; (M.G.); (N.G.); (H.F.J.S.); (E.T.)
| | - Christine A. Jansen
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (C.A.J.); (V.P.M.G.R.)
| | - Victor P. M. G. Rutten
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (C.A.J.); (V.P.M.G.R.)
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| | - Hubèrt van Hees
- Research and Development, Trouw Nutrition, 3800 AG Amersfoort, The Netherlands;
| | - Natalie Groothuis
- Cell Biology and Immunology Group, Wageningen University, 6700 AH Wageningen, The Netherlands; (M.G.); (N.G.); (H.F.J.S.); (E.T.)
| | - Jerry M. Wells
- Host-Microbe Interactomics Group, Wageningen University, 6700 AH Wageningen, The Netherlands;
| | - Huub F. J. Savelkoul
- Cell Biology and Immunology Group, Wageningen University, 6700 AH Wageningen, The Netherlands; (M.G.); (N.G.); (H.F.J.S.); (E.T.)
| | - Edwin Tijhaar
- Cell Biology and Immunology Group, Wageningen University, 6700 AH Wageningen, The Netherlands; (M.G.); (N.G.); (H.F.J.S.); (E.T.)
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University, 6700 EH Wageningen, The Netherlands;
- Correspondence:
| |
Collapse
|
1963
|
Jun SR, Cheema A, Bose C, Boerma M, Palade PT, Carvalho E, Awasthi S, Singh SP. Multi-Omic Analysis Reveals Different Effects of Sulforaphane on the Microbiome and Metabolome in Old Compared to Young Mice. Microorganisms 2020; 8:microorganisms8101500. [PMID: 33003447 PMCID: PMC7599699 DOI: 10.3390/microorganisms8101500] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/12/2020] [Accepted: 09/27/2020] [Indexed: 01/05/2023] Open
Abstract
Dietary factors modulate interactions between the microbiome, metabolome, and immune system. Sulforaphane (SFN) exerts effects on aging, cancer prevention and reducing insulin resistance. This study investigated effects of SFN on the gut microbiome and metabolome in old mouse model compared with young mice. Young (6–8 weeks) and old (21–22 months) male C57BL/6J mice were provided regular rodent chow ± SFN for 2 months. We collected fecal samples before and after SFN administration and profiled the microbiome and metabolome. Multi-omics datasets were analyzed individually and integrated to investigate the relationship between SFN diet, the gut microbiome, and metabolome. The SFN diet restored the gut microbiome in old mice to mimic that in young mice, enriching bacteria known to be associated with an improved intestinal barrier function and the production of anti-inflammatory compounds. The tricarboxylic acid cycle decreased and amino acid metabolism-related pathways increased. Integration of multi-omic datasets revealed SFN diet-induced metabolite biomarkers in old mice associated principally with the genera, Oscillospira, Ruminococcus, and Allobaculum. Collectively, our results support a hypothesis that SFN diet exerts anti-aging effects in part by influencing the gut microbiome and metabolome. Modulating the gut microbiome by SFN may have the potential to promote healthier aging.
Collapse
Affiliation(s)
- Se-Ran Jun
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Amrita Cheema
- Departments of Oncology and Biochemistry, Molecular and Cellular Biology, University Medical Center, Washington, DC 20057, USA;
| | - Chhanda Bose
- Department of Internal Medicine, Division of Hematology & Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (C.B.); (S.A.)
| | - Marjan Boerma
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Philip T. Palade
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Eugenia Carvalho
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-531 Coimbra, Portugal;
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Sanjay Awasthi
- Department of Internal Medicine, Division of Hematology & Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (C.B.); (S.A.)
| | - Sharda P. Singh
- Department of Internal Medicine, Division of Hematology & Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (C.B.); (S.A.)
- Correspondence: ; Tel.: +1-806-743-1540
| |
Collapse
|
1964
|
Mrochen DM, Fernandes de Oliveira LM, Raafat D, Holtfreter S. Staphylococcus aureus Host Tropism and Its Implications for Murine Infection Models. Int J Mol Sci 2020; 21:E7061. [PMID: 32992784 PMCID: PMC7582387 DOI: 10.3390/ijms21197061] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is a pathobiont of humans as well as a multitude of animal species. The high prevalence of multi-resistant and more virulent strains of S. aureus necessitates the development of new prevention and treatment strategies for S. aureus infection. Major advances towards understanding the pathogenesis of S. aureus diseases have been made using conventional mouse models, i.e., by infecting naïve laboratory mice with human-adapted S.aureus strains. However, the failure to transfer certain results obtained in these murine systems to humans highlights the limitations of such models. Indeed, numerous S. aureus vaccine candidates showed promising results in conventional mouse models but failed to offer protection in human clinical trials. These limitations arise not only from the widely discussed physiological differences between mice and humans, but also from the lack of attention that is paid to the specific interactions of S. aureus with its respective host. For instance, animal-derived S. aureus lineages show a high degree of host tropism and carry a repertoire of host-specific virulence and immune evasion factors. Mouse-adapted S.aureus strains, humanized mice, and microbiome-optimized mice are promising approaches to overcome these limitations and could improve transferability of animal experiments to human trials in the future.
Collapse
Affiliation(s)
- Daniel M. Mrochen
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse DZ 7, 17475 Greifswald, Germany; (L.M.F.d.O.); (D.R.); (S.H.)
| | - Liliane M. Fernandes de Oliveira
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse DZ 7, 17475 Greifswald, Germany; (L.M.F.d.O.); (D.R.); (S.H.)
| | - Dina Raafat
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse DZ 7, 17475 Greifswald, Germany; (L.M.F.d.O.); (D.R.); (S.H.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt
| | - Silva Holtfreter
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse DZ 7, 17475 Greifswald, Germany; (L.M.F.d.O.); (D.R.); (S.H.)
| |
Collapse
|
1965
|
Shastry RP, Rekha PD. Bacterial cross talk with gut microbiome and its implications: a short review. Folia Microbiol (Praha) 2020; 66:15-24. [PMID: 32949007 DOI: 10.1007/s12223-020-00821-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022]
Abstract
Human gut microbiota exists in a complicated symbiotic relationship which postulates to impact health and disease conditions on the host. Interestingly, the gut microbiome shows different mechanisms to regulate host physiology and metabolism including cell-to-cell communications. But microbiota imbalance is characterized to change in the host normal functioning and lead to the development and progression of major human diseases. Therefore, the direct cross talk through the microbial metabolites or peptides suggests the evidence of host health and disease. Recent reports highlight the adaptation signals/small molecules promoting microbial colonization which allows modulating immunity of host and leads to pathogen colonization. Moreover, quorum sensing peptides are also evident in the involvement of host disease conditions. Here, we review the current understanding of the gut microbiota cross talk with mammalian cells through metabolites and peptides. These studies are providing insight into the prediction of signature molecules which significantly provide information for the understanding of the interaction for precision medicine applications.
Collapse
Affiliation(s)
- Rajesh P Shastry
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India.
| | - P D Rekha
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India
| |
Collapse
|
1966
|
A Multi-Omics Approach Reveals New Signatures in Obese Allergic Asthmatic Children. Biomedicines 2020; 8:biomedicines8090359. [PMID: 32961859 PMCID: PMC7555790 DOI: 10.3390/biomedicines8090359] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/26/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Asthma is a multifactorial condition where patients with identical clinical diagnoses do not have the same clinical history or respond to treatment. This clinical heterogeneity is reflected in the definition of two main endotypes. We aimed to explore the metabolic and microbiota signatures that characterize the clinical allergic asthma phenotype in obese children. Methods: We used a multi-omics approach combining clinical data, plasma and fecal inflammatory biomarkers, metagenomics, and metabolomics data in a cohort of allergic asthmatic children. Results: We observed that the obese allergic asthmatic phenotype was markedly associated with higher levels of leptin and lower relative proportions of plasma acetate and a member from the Clostridiales order. Moreover, allergic children with a worse asthma outcome showed higher levels of large unstained cells, fecal D lactate and D/L lactate ratio, and with a higher relative proportion of plasma creatinine and an unclassified family member from the RF39 order belonging to the Mollicutes class. Otherwise, children with persistent asthma presented lower levels of plasma citrate and dimethylsulfone. Conclusion: Our integrative approach shows the molecular heterogeneity of the allergic asthma phenotype while highlighting the use of omics technologies to examine the clinical phenotype at a more holistic level.
Collapse
|
1967
|
Comparative analysis of the pulmonary microbiome in healthy and diseased pigs. Mol Genet Genomics 2020; 296:21-31. [PMID: 32944788 DOI: 10.1007/s00438-020-01722-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022]
Abstract
The lungs possess an effective antimicrobial system and a strong ability to eliminate microorganisms in healthy organisms, and were once considered sterile. With the development of culture-independent sequencing technology, the richness and diversity of porcine lung microbiota have been gaining attention. In order to study the relationship between lung microbiota and porcine respiratory disease complex (PRDC), the lung microbiota in healthy and diseased swine bronchoalveolar lavage fluids were analyzed and compared using the Illumina MiSeq sequencing platform. The predominant microbial communities of healthy and diseased swine were similar at the phylum level, mainly composed of Proteobacteria, Firmicutes, Tenericutes, and Bacteroidetes. However, the bacterial taxonomic communities of healthy and diseased swine differed at the genus level. The higher relative abundances of Lactococcus, Enterococcus, Staphylococcus, and Lactobacillus genera in healthy swine might provide more benefits for lung health, while the enhanced richness of Streptococcus, Haemophilus, Pasteurella, and Bordetella genera in diseased swine might be closely related to pathogen invasion and the occurrence of respiratory disease. In conclusion, the observed differences in the richness and diversity of lung microbiota can provide novel insights into their relationship with PRDC. Analyses of swine lung microbiota communities might produce an effective strategy for the control and prevention of respiratory tract infections.
Collapse
|
1968
|
Bartlett A, Gullickson RG, Singh R, Ro S, Omaye ST. The Link between Oral and Gut Microbiota in Inflammatory Bowel Disease and a Synopsis of Potential Salivary Biomarkers. APPLIED SCIENCES 2020; 10:6421. [DOI: 10.3390/app10186421] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The objective of this review is to provide recent evidence for the oral–gut axis connection and to discuss gastrointestinal (GI) immune response, inflammatory bowel disease (IBD) pathogenesis, and potential salivary biomarkers for determining GI health. IBD affects an estimated 1.3% of the US adult population. While genetic predisposition and environment play a role, abnormal immune activity and microbiota dysbiosis within the gastrointestinal tract are also linked in IBD pathogenesis. It has been inferred that a reduced overall richness of bacterial species as well as colonization of opportunistic bacteria induce systemic inflammation in the GI tract. Currently, there is supporting evidence that both oral and gut microbiota may be related to the development of IBD. Despite this, there are currently no curative therapies for IBD, and diagnosis requires samples of blood, stool, and invasive diagnostic imaging techniques. Considering the relative ease of collection, emerging evidence of association with non-oral diseases may imply that saliva microbiome research may have the potential for gut diagnostic or prognostic value. This review demonstrates a link between saliva and intestinal profiles in IBD patients, suggesting that saliva sampling has the potential to serve as a non-invasive biomarker for gut diseases such as IBD in the oral–gut axis.
Collapse
Affiliation(s)
- Allison Bartlett
- Department of Physiology & Cell Biology, School of Medicine, University of Nevada, Reno, NV 89557, USA
- Department of Nutrition, University of Nevada, Reno, NV 89557, USA
| | | | - Rajan Singh
- Department of Physiology & Cell Biology, School of Medicine, University of Nevada, Reno, NV 89557, USA
- Department of Nutrition, University of Nevada, Reno, NV 89557, USA
| | - Seungil Ro
- Department of Physiology & Cell Biology, School of Medicine, University of Nevada, Reno, NV 89557, USA
- Department of Nutrition, University of Nevada, Reno, NV 89557, USA
- Environmental Sciences Graduate Program, University of Nevada, Reno, NV 89557, USA
| | - Stanley T. Omaye
- Department of Nutrition, University of Nevada, Reno, NV 89557, USA
- Environmental Sciences Graduate Program, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
1969
|
Bi K, Zhang X, Chen W, Diao H. MicroRNAs Regulate Intestinal Immunity and Gut Microbiota for Gastrointestinal Health: A Comprehensive Review. Genes (Basel) 2020; 11:genes11091075. [PMID: 32932716 PMCID: PMC7564790 DOI: 10.3390/genes11091075] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/24/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs are small non-coding RNAs regulating gene expression at the post-transcriptional level. The regulation of microRNA expression in the gut intestine is gradually recognized as one of the crucial contributors of intestinal homeostasis and overall health. Recent studies indicated that both the microRNAs endogenous in the gut intestine and exogenous from diets could play influential roles in modulating microbial colonization and intestinal immunity. In this review, we discuss the biological functions of microRNAs in regulating intestinal homeostasis by modulating intestinal immune responses and gut microbiota. We particularly focus on addressing the microRNA-dependent communication and interactions among microRNA, gut microbiota, and intestinal immune system. Besides, we also summarize the roles of diet-derived microRNAs in host-microbiome homeostasis and their benefits on intestinal health. A better understanding of the relationships among intestinal disorders, microRNAs, and other factors influencing intestinal health can facilitate the application of microRNA-based therapeutics for gastrointestinal diseases.
Collapse
|
1970
|
Wallace RK. The Microbiome in Health and Disease from the Perspective of Modern Medicine and Ayurveda. ACTA ACUST UNITED AC 2020; 56:medicina56090462. [PMID: 32932766 PMCID: PMC7559905 DOI: 10.3390/medicina56090462] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/28/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023]
Abstract
The role of the microbiome in health and disease helps to provide a scientific understanding of key concepts in Ayurveda. We now recognize that virtually every aspect of our physiology and health is influenced by the collection of microorganisms that live in various parts of our body, especially the gut microbiome. There are many external factors which influence the composition of the gut microbiome but one of the most important is diet and digestion. Ayurveda and other systems of traditional health have for thousands of years focused on diet and digestion. Recent research has helped us understand the connection between the microbiome and the many different prevention and therapeutic treatment approaches of Ayurveda.
Collapse
Affiliation(s)
- Robert Keith Wallace
- Department of Physiology and Health, Maharishi International University, Fairfield, IA 52556, USA
| |
Collapse
|
1971
|
Xu C, Li HB, Flavell RA. A special collection of reviews on frontiers in immunology. Cell Res 2020; 30:827-828. [PMID: 32859992 PMCID: PMC7454546 DOI: 10.1038/s41422-020-00403-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Chenqi Xu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China.
| | - Hua-Bing Li
- Shanghai Institute of Immunology, Department of Liver Surgery, State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Richard A Flavell
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA. .,Howard Hughes Medical Institute, New Haven, CT, USA.
| |
Collapse
|
1972
|
Yang Q, Wang Y, Jia A, Wang Y, Bi Y, Liu G. The crosstalk between gut bacteria and host immunity in intestinal inflammation. J Cell Physiol 2020; 236:2239-2254. [PMID: 32853458 DOI: 10.1002/jcp.30024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/20/2020] [Accepted: 08/12/2020] [Indexed: 12/20/2022]
Abstract
The gut of mammals is considered as a harmonious ecosystem mediated by intestinal microbiota and the host. Both bacteria and mammalian immune cells show region-related distribution characteristics, and the interaction between the two could be demonstrated by synergetic roles in maintaining intestinal homeostasis and dysregulation in intestinal inflammation. The harmonious interplay between bacteria and host requires fine-tuned regulations by environmental and genetic factors. Thus, the disturbed immune response to microbial components or metabolites and dysbiosis related to immunodeficiency are absolute risk factors to intestinal inflammation and cancer. In this review, we discuss the crosstalk between bacteria and host immunity in the gut and highlight the critical roles of bidirectional regulation between bacteria and the mammalian immune system involved in intestinal inflammation.
Collapse
Affiliation(s)
- Qiuli Yang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yuexin Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Anna Jia
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yufei Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
1973
|
Di Sotto A, Vitalone A, Di Giacomo S. Plant-Derived Nutraceuticals and Immune System Modulation: An Evidence-Based Overview. Vaccines (Basel) 2020; 8:E468. [PMID: 32842641 PMCID: PMC7563161 DOI: 10.3390/vaccines8030468] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022] Open
Abstract
Immunomodulators are agents able to affect the immune system, by boosting the immune defences to improve the body reaction against infectious or exogenous injuries, or suppressing the abnormal immune response occurring in immune disorders. Moreover, immunoadjuvants can support immune system acting on nonimmune targets, thus improving the immune response. The modulation of inflammatory pathways and microbiome can also contribute to control the immune function. Some plant-based nutraceuticals have been studied as possible immunomodulating agents due to their multiple and pleiotropic effects. Being usually more tolerable than pharmacological treatments, their adjuvant contribution is approached as a desirable nutraceutical strategy. In the present review, the up to date knowledge about the immunomodulating properties of polysaccharides, fatty acids and labdane diterpenes have been analyzed, in order to give scientific basic and clinical evidence to support their practical use. Since promising evidence in preclinical studies, limited and sometimes confusing results have been highlighted in clinical trials, likely due to low methodological quality and lacking standardization. More investigations of high quality and specificity are required to describe in depth the usefulness of these plant-derived nutraceuticals in the immune system modulation, for health promoting and disease preventing purposes.
Collapse
Affiliation(s)
- Antonella Di Sotto
- Department of Physiology and Pharmacology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Annabella Vitalone
- Department of Physiology and Pharmacology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
| | | |
Collapse
|
1974
|
Legrand TPRA, Wynne JW, Weyrich LS, Oxley APA. Investigating Both Mucosal Immunity and Microbiota in Response to Gut Enteritis in Yellowtail Kingfish. Microorganisms 2020; 8:E1267. [PMID: 32825417 PMCID: PMC7565911 DOI: 10.3390/microorganisms8091267] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/03/2020] [Accepted: 08/19/2020] [Indexed: 12/24/2022] Open
Abstract
The mucosal surfaces of fish play numerous roles including, but not limited to, protection against pathogens, nutrient digestion and absorption, excretion of nitrogenous wastes and osmotic regulation. During infection or disease, these surfaces act as the first line of defense, where the mucosal immune system interacts closely with the associated microbiota to maintain homeostasis. This study evaluated microbial changes across the gut and skin mucosal surfaces in yellowtail kingfish displaying signs of gut inflammation, as well as explored the host gene expression in these tissues in order to improve our understanding of the underlying mechanisms that contribute to the emergence of these conditions. For this, we obtained and analyzed 16S rDNA and transcriptomic (RNA-Seq) sequence data from the gut and skin mucosa of fish exhibiting different health states (i.e., healthy fish and fish at the early and late stages of enteritis). Both the gut and skin microbiota were perturbed by the disease. More specifically, the gastrointestinal microbiota of diseased fish was dominated by an uncultured Mycoplasmataceae sp., and fish at the early stage of the disease showed a significant loss of diversity in the skin. Using transcriptomics, we found that only a few genes were significantly differentially expressed in the gut. In contrast, gene expression in the skin differed widely between health states, in particular in the fish at the late stage of the disease. These changes were associated with several metabolic pathways that were differentially expressed and reflected a weakened host. Altogether, this study highlights the sensitivity of the skin mucosal surface in response to gut inflammation.
Collapse
Affiliation(s)
- Thibault P. R. A. Legrand
- Department of Ecology and Evolution, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia;
- CSIRO, Agriculture and Food, Hobart, TAS 7004, Australia;
- South Australia Research and Development Institute, Aquatic Sciences Centre, West Beach, SA 5024, Australia
| | - James W. Wynne
- CSIRO, Agriculture and Food, Hobart, TAS 7004, Australia;
| | - Laura S. Weyrich
- Department of Ecology and Evolution, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia;
- Department of Anthropology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, State College, PA 16801, USA
| | - Andrew P. A. Oxley
- School of Life and Environmental Sciences, Faculty of Sciences Engineering and Built Environment, Deakin University, Waurn Ponds, VIC 3216, Australia
| |
Collapse
|
1975
|
Konuma T, Kohara C, Watanabe E, Takahashi S, Ozawa G, Inomata K, Suzuki K, Mizukami M, Nagai E, Okabe M, Isobe M, Kato S, Oiwa-Monna M, Takahashi S, Tojo A. Impact of Intestinal Microbiota on Reconstitution of Circulating Monocyte, Dendritic Cell, and Natural Killer Cell Subsets in Adults Undergoing Single-Unit Cord Blood Transplantation. Biol Blood Marrow Transplant 2020; 26:e292-e297. [PMID: 32798658 DOI: 10.1016/j.bbmt.2020.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 02/02/2023]
Abstract
The intestinal microbiota plays a fundamental role in the development of host innate immune cells, such as monocytes, dendritic cells (DCs), and natural killer (NK) cells. We examined the association between intestinal microbiota and subsequent immune reconstitution of circulating monocyte, DC, and NK cell subsets in 38 adult patients undergoing single-unit cord blood transplantation (CBT). A higher diversity of intestinal microbiota at 1 month was significantly associated with higher counts of plasmacytoid DCs at 7 months after CBT, as measured by the Chao1 index. Principal coordinate analysis of unweighted UniFrac distances showed significant differences between higher and lower classical monocyte reconstitution at 7 months post-CBT. The families Neisseriaceae, Burkholderiaceae, Propionibacteriaceae, and Coriobacteriaceae were increased in higher classical monocyte reconstitution at 7 months post-CBT, whereas the family Bacteroidaceae was increased in lower classical monocyte reconstitution at 7 months post-CBT. These data show that intestinal microbiota composition affects immune reconstitution of classical monocyte and plasmacytoid DCs following single-unit CBT.
Collapse
Affiliation(s)
- Takaaki Konuma
- Department of Hematology/Oncology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| | - Chisato Kohara
- Department of Hematology/Oncology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Eri Watanabe
- IMSUT Clinical Flow Cytometry Laboratory, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | - Genki Ozawa
- TechnoSuruga Laboratory Co, Ltd, Shizuoka, Japan
| | | | - Kei Suzuki
- TechnoSuruga Laboratory Co, Ltd, Shizuoka, Japan
| | - Motoko Mizukami
- Department of Laboratory Medicine, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Etsuko Nagai
- Department of Laboratory Medicine, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Motohito Okabe
- Department of Hematology/Oncology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masamichi Isobe
- Department of Hematology/Oncology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seiko Kato
- Department of Hematology/Oncology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Maki Oiwa-Monna
- Department of Hematology/Oncology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Satoshi Takahashi
- Department of Hematology/Oncology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Arinobu Tojo
- Department of Hematology/Oncology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|