1951
|
Eom DS, Choi WS, Oh YJ. Bcl-2 enhances neurite extension via activation of c-Jun N-terminal kinase. Biochem Biophys Res Commun 2004; 314:377-81. [PMID: 14733915 DOI: 10.1016/j.bbrc.2003.12.094] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent studies suggest that Bcl-2 may play an active role in neuronal differentiation. Here, we showed a marked neurite extension in MN9D dopaminergic neuronal cells overexpressing Bcl-2 (MN9D/Bcl-2) or Bcl-X(L) (MN9D/Bcl-X(L)). We found a specific increase in phosphorylation of c-Jun N-terminal kinase (JNK) accompanied by neurite extension in MN9D/Bcl-2 but not in MN9D/Bcl-X(L) cells. Consequently, neurite extension in MN9D/Bcl-2 but not in MN9D/Bcl-X(L) cells was suppressed by treatment with SP600125, a specific inhibitor of JNK. Inhibition of other mitogen-activated protein kinases-including p38 and extracellular signal-regulated kinase-did not affect Bcl-2-mediated neurite extension in MN9D cells. While the expression levels of such protein markers of maturation as SNAP-25, phosphorylated NF-H, and neuron-specific enolase were increased in MN9D/Bcl-2 cells, only upregulation of SNAP-25 was inhibited after treatment with SP600125. Thus, the JNK signal activated by Bcl-2 seems to play an important role during morphological and certain biochemical differentiation in cultured dopaminergic neurons.
Collapse
Affiliation(s)
- Dae-Seok Eom
- Department of Biology, Yonsei University College of Science, 120-749 Seoul, Republic of Korea
| | | | | |
Collapse
|
1952
|
Wang MJ, Jeng KCG, Kuo JS, Chen HL, Huang HY, Chen WF, Lin SZ. c-Jun N-terminal kinase and, to a lesser extent, p38 mitogen-activated protein kinase regulate inducible nitric oxide synthase expression in hyaluronan fragments-stimulated BV-2 microglia. J Neuroimmunol 2004; 146:50-62. [PMID: 14698847 DOI: 10.1016/j.jneuroim.2003.10.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Lower molecular weight of hyaluronan (HA) fragments are capable of activating macrophages to express a number of inflammatory mediators through the interaction with the HA receptor CD44. Recent evidence has demonstrated that concomitant induction of CD44 and HA synthase 2 (HAS-2) mRNA in microglia of the ischemic brain. However, the influence of HA fragments on the activation of microglia is poorly understood. In this study, we demonstrated that HA fragments induced inducible NO synthase (iNOS) expression in BV-2 microglia in a dose-dependent manner and was synergized with interferon-gamma (IFN-gamma). Moreover, HA fragments could induce the activation of p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK1/ERK2), and c-Jun N-terminal kinase (JNK) in a time and dose-dependent fashion. The HA fragments-induced iNOS expression was suppressed by the selective inhibitors of JNK and, to a lesser extent, p38 MAPK. These results suggest that the induction of iNOS by HA fragments is significantly dependent on JNK than on p38 MAPK signaling pathways and support the hypothesis that HA fragments may be an important regulator in the activation of microglia at sites of ischemic brain.
Collapse
Affiliation(s)
- Mei Jen Wang
- Neuro-Medical Scientific Center, Buddhist Tzu-Chi General Hospital, Tzu-Chi College of Technology, Hualien 970, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
1953
|
Huwiler A, Xin C, Brust AK, Briner VA, Pfeilschifter J. Differential binding of ceramide to MEKK1 in glomerular endothelial and mesangial cells. Biochim Biophys Acta Mol Cell Biol Lipids 2004; 1636:159-68. [PMID: 15164763 DOI: 10.1016/j.bbalip.2003.08.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2003] [Revised: 08/31/2003] [Accepted: 08/31/2003] [Indexed: 01/20/2023]
Abstract
Previously, we have shown that ceramide is able to directly bind to and activate c-Raf and to trigger the downstream classical mitogen-activated protein kinase (MAPK/ERK) cascade in glomerular mesangial cells [Proc. Natl. Acad. Sci. USA 93 (1996) 6959]. In this study, we show that ceramide acts differently in glomerular endothelial cells in that treatment of endothelial cells with exogenous ceramide leads to a potent activation of the stress-activated protein kinase (SAPK/JNK) cascade but not to an activation of the classical ERK cascade. A similar effect was observed with the inflammatory cytokines TNFalpha and IL-1beta, which activate a sphingomyelinase and thereby increase intracellular ceramide levels. The activation of JNKs as shown by c-Jun phosphorylation assays was paralleled by increased phosphorylation of the two JNK isoforms, p45 and p54. In addition, also the activator of JNKs, SEK1, was found to be increasingly phosphorylated by exogenous ceramide as well as by TNFalpha. In contrast, dihydroceramide had no effect on JNK or SEK1 phosphorylation. To see whether ceramide directly binds to MEKK1, which is the c-Raf analog in the SAPK cascade, a radioiodinated photoaffinity labeling analogue of ceramide, (N-[3-[[[2-(125I)iodo-4-[3-(trifluoromethyl)-3H-diazirin-3-yl]benzyl]oxy]-carbonyl] propanoyl]-D-erythro-sphingosine) ([125I]TID-ceramide) was used. Stimulation of endothelial cells with this [125I]TID-ceramide for 5 min followed by a short photolysis defined MEKK1 as a direct target of ceramide. With the same method, protein kinase C-alpha (PKC-alpha) was identified as a ceramide target. In contrast, no binding to c-Raf or the MEKK1 activator p65-PAK could be detected. A direct binding of ceramide to MEKK1 was also confirmed by affinity chromatography using a ceramide-coupled sepharose column. Furthermore, the ceramide-activated SAPK/JNK cascade is clearly involved in the mechanism of apoptosis, since in the presence of a JNK inhibitor, ceramide-induced DNA fragmentation is significantly reduced. In summary, we have shown that ceramide potently activates the SAPK cascade but not the ERK cascade in endothelial cells, which contrasts to mesangial cells where ceramide activates the ERK pathway and has only a minor effect on the SAPK cascade. Regarding the direct target of ceramide binding and action in endothelial cells, we identified MEKK1 as a further member of the growing family of ceramide-activated protein kinases.
Collapse
Affiliation(s)
- Andrea Huwiler
- Pharmazentrum Frankfurt, Klinikum der Johann Wolfgang Goethe-Universität, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
1954
|
Bogoyevitch MA, Boehm I, Oakley A, Ketterman AJ, Barr RK. Targeting the JNK MAPK cascade for inhibition: basic science and therapeutic potential. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1697:89-101. [PMID: 15023353 DOI: 10.1016/j.bbapap.2003.11.016] [Citation(s) in RCA: 207] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2003] [Accepted: 11/12/2003] [Indexed: 12/27/2022]
Abstract
The c-Jun N-terminal protein kinases (JNKs) form one subfamily of the mitogen-activated protein kinase (MAPK) group of serine/threonine protein kinases. The JNKs were first identified by their activation in response to a variety of extracellular stresses and their ability to phosphorylate the N-terminal transactivation domain of the transcription factor c-Jun. One approach to study the function of the JNKs has included in vivo gene knockouts of each of the three JNK genes. Whilst loss of either JNK1 or JNK2 alone appears to have no serious consequences, their combined knockout is embryonic lethal. In contrast, the loss of JNK3 is not embryonic lethal, but rather protects the adult brain from glutamate-induced excitotoxicity. This latter example has generated considerable enthusiasm with JNK3, considered an appropriate target for the treatment of diseases in which neuronal death should be prevented (e.g. stroke, Alzheimer's and Parkinson's diseases). More recently, these gene knockout animals have been used to demonstrate that JNK could provide a suitable target for the protection against obesity and diabetes and that JNKs may act as tumour suppressors. Considerable effort is being directed to the development of chemical inhibitors of the activators of JNKs (e.g. CEP-1347, an inhibitor of the MLK family of JNK pathway activators) or of the JNKs themselves (e.g. SP600125, a direct inhibitor of JNK activity). These most commonly used inhibitors have demonstrated efficacy for use in vivo, with the successful intervention to decrease brain damage in animal models (CEP-1347) or to ameliorate some of the symptoms of arthritis in other animal models (SP600125). Alternative peptide-based inhibitors of JNKs are now also in development. The possible identification of allosteric modifiers rather than direct ATP competitors could lead to inhibitors of unprecedented specificity and efficacy.
Collapse
Affiliation(s)
- Marie A Bogoyevitch
- Cell Signalling Laboratory, Biochemistry and Molecular Biology, School of Biomedical and Chemical Sciences, University of Western Australia, Crawley, WA 6009, Australia.
| | | | | | | | | |
Collapse
|
1955
|
Choi HJ, Lee SY, Cho Y, Hwang O. JNK activation by tetrahydrobiopterin: implication for Parkinson's disease. J Neurosci Res 2004; 75:715-21. [PMID: 14991847 DOI: 10.1002/jnr.20012] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Parkinson's disease (PD) is a progressive neurologic disease associated with selective degeneration of dopaminergic neurons in the substantia nigra. Despite extensive studies to understand the underlying cause of dopaminergic degeneration, the pathologic factors leading to this neuronal loss in PD remain obscure. We have observed previously that tetrahydrobiopterin (BH4) exerts selective toxicity and oxidative stress on dopaminergic cells, suggesting that BH4 might participate endogenously in dopaminergic neurodegeneration in PD. We investigated signaling events leading to BH4 toxicity in dopaminergic CATH.a cells. We show that c-Jun N-terminal kinase (JNK), but not extracellular signal-regulated kinase (ERK) or p38 mitogen-activated protein kinase (MAPK), is phosphorylated significantly by BH4 exposure. BH4 also leads to c-Jun phosphorylation and an increase in c-Jun protein level. The JNK inhibitor SP600125 protects cells against BH4 toxicity and inhibits cytochrome c release and apoptotic nuclear condensation induced by BH4. These data indicate that activation of the JNK pathway is important in mediating BH4-induced dopaminergic cell death.
Collapse
Affiliation(s)
- Hyun Jin Choi
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | | | | | | |
Collapse
|
1956
|
Huang CC, You JL, Wu MY, Hsu KS. Rap1-induced p38 Mitogen-activated Protein Kinase Activation Facilitates AMPA Receptor Trafficking via the GDI·Rab5 Complex. J Biol Chem 2004; 279:12286-92. [PMID: 14709549 DOI: 10.1074/jbc.m312868200] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Recent evidence has emphasized the importance of p38 mitogen-activated protein kinase (MAPK) in the induction of metabotropic glutamate receptor (mGluR)-dependent long term depression (LTD) at hippocampal CA3-CA1 synapses. However, the cascade responsible of mGluR to activate p38 MAPK and the signaling pathway immediately downstream from it to induce synaptic depression is poorly understood. Here, we show that transient activation of group I mGluR with the selective agonist (S)-3,5-dihydroxyphenylglycine (DHPG) activates p38 MAPK through G protein betagamma-subunit, small GTPase Rap1, and MAPK kinase 3/6 (MKK3/6), thus resulting in mGluR5-dependent LTD. Furthermore, our data clearly show that an accelerating AMPA receptor endocytosis by stimulating the formation of guanyl nucleotide dissociation inhibitor-Rab5 complex is a potential downstream processing of p38 MAPK activation to mediate DHPG-LTD. These results suggest an important role for Rap1-MKK3/6-p38 MAPK pathway in the induction of mGluR-dependent LTD by directly coupling to receptor trafficking machineries to facilitate the loss of synaptic AMPA receptors.
Collapse
Affiliation(s)
- Chiung-Chun Huang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No. 1 University Road, Tainan City 701, Taiwan
| | | | | | | |
Collapse
|
1957
|
Kaap S, Brechlin P, Quentin I, Eger K, Steinfelder HJ. Apoptosis by 6-O-palmitoyl-l-ascorbic acid coincides with JNK-phosphorylation and inhibition of Mg2+-dependent phosphatase activity. Biochem Pharmacol 2004; 67:919-26. [PMID: 15104245 DOI: 10.1016/j.bcp.2003.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
6-O-Palmitoyl ascorbic acid (PAA) has recently been used as a substitute for ascorbic acid because of its greater potency as an antioxidant. In detailed concentration response studies distinct cytotoxic effects of PAA at concentrations exceeding 100 microM were reported. Here we examined and further characterized this cytotoxicity. While ascorbic acid was tolerated well up to millimolar concentrations, PAA revealed an LC50 between 125 and 150 microM in rat GH3 tumor cells. Morphological and biochemical observations suggested the induction of apoptosis at concentrations exceeding 125 microM with a prominent activation of caspase 3 at 250 microM after 4 hr. A subsequent pronounced fragmentation of DNA (DNA-ladder) was detected after 6 hr and was further enhanced after 12 hr. The activation of caspases and the cleavage of its substrate PARP was preceded by a distinct increase in the phosphorylation of stress activated JNK-kinases. This observation suggested that the agent affected signal transduction mechanisms regulating protein phosphorylation at serine/threonine residues in the cell. No effect of PAA on protein phosphatase 2A (PP2A)-like activity was observed while magnesium-dependent protein phosphatase activity, presumably PP2C, was inhibited concentration-dependently up to 75% at the respective concentrations. Thus, the cytotoxic, pro-apoptotic effect of PAA might be related to the inhibition of PP2C and the activation of JNK.
Collapse
Affiliation(s)
- S Kaap
- Institute of Pharmacology & Toxicology, University of Göttingen, Göttingen, Germany
| | | | | | | | | |
Collapse
|
1958
|
Li LF, Yu L, Quinn DA. Ventilation-induced Neutrophil Infiltration Depends on c-Jun N-Terminal Kinase. Am J Respir Crit Care Med 2004; 169:518-24. [PMID: 14644930 DOI: 10.1164/rccm.200305-660oc] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Positive pressure ventilation with large VTs has been shown to cause release of cytokines, including macrophage inflammatory protein-2 (MIP-2), a functional equivalent of human interleukin-8. The mechanisms regulating ventilation-induced cytokine production are unclear. Based on our previous in vitro model of lung cell stretch, we hypothesized that high VT ventilation-induced MIP-2 production is dependent on the activation of the c-Jun N-terminal kinase (JNK). We exposed C57BL/6 mice to high VT (30 ml/kg) or low VT (6 ml/kg) mechanical ventilation for 5 hours. High VT ventilation-induced neutrophil migration into the lung, MIP-2 protein production, MIP-2 messenger RNA expression, and JNK activation. Large VT ventilation of JNK knockout mice and pharmacologic JNK inhibition with SP600125 attenuated neutrophil sequestration and blocked MIP-2 messenger RNA expression and MIP-2 production. We conclude that lung cell stretch in vivo results in increased lung neutrophil sequestration and increased MIP-2 production, which was, at least in part, dependent upon the JNK pathway.
Collapse
Affiliation(s)
- Li-Fu Li
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | |
Collapse
|
1959
|
Ishii M, Suzuki Y, Takeshita K, Miyao N, Kudo H, Hiraoka R, Nishio K, Sato N, Naoki K, Aoki T, Yamaguchi K. Inhibition of c-Jun NH2-terminal kinase activity improves ischemia/reperfusion injury in rat lungs. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2004; 172:2569-2577. [PMID: 14764730 DOI: 10.4049/jimmunol.172.4.2569] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although c-Jun NH(2)-terminal kinase (JNK) has been implicated in the pathogenesis of transplantation-induced ischemia/reperfusion (I/R) injury in various organs, its significance in lung transplantation has not been conclusively elucidated. We therefore attempted to measure the transitional changes in JNK and AP-1 activities in I/R-injured lungs. Subsequently, we assessed the effects of JNK inhibition by the three agents including SP600125 on the degree of lung injury assessed by means of various biological markers in bronchoalveolar lavage fluid and histological examination including detection of apoptosis. In addition, we evaluated the changes in p38, extracellular signal-regulated kinase, and NF-kappaB-DNA binding activity. I/R injury was established in the isolated rat lung preserved in modified Euro-Collins solution at 4 degrees C for 4 h followed by reperfusion at 37 degrees C for 3 h. We found that AP-1 was transiently activated during ischemia but showed sustained activation during reperfusion, leading to significant lung injury and apoptosis. The change in AP-1 was generally in parallel with that of JNK, which was activated in epithelial cells (bronchial and alveolar), alveolar macrophages, and smooth muscle cells (bronchial and vascular) on immunohistochemical examination. The change in NF-kappaB qualitatively differed from that of AP-1. Protein leakage, release of lactate dehydrogenase and TNF-alpha into bronchoalveolar lavage fluid, and lung injury were improved, and apoptosis was suppressed by JNK inhibition. In conclusion, JNK plays a pivotal role in mediating lung injury caused by I/R. Therefore, inhibition of JNK activity has potential as an effective therapeutic strategy for preventing I/R injury during lung transplantation.
Collapse
Affiliation(s)
- Makoto Ishii
- Department of Medicine, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1960
|
Zhang JY, Green CL, Tao S, Khavari PA. NF-kappaB RelA opposes epidermal proliferation driven by TNFR1 and JNK. Genes Dev 2004; 18:17-22. [PMID: 14724177 PMCID: PMC314269 DOI: 10.1101/gad.1160904] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
NF-kappaB inhibition promotes epidermal tumorigenesis; however, whether this reflects an underlying role in homeostasis or a special case confined to neoplasia is unknown. Embryonic lethality of mice lacking NF-kappaB RelA has hindered efforts to address this. We therefore generated developmentally mature RelA(-/-) skin. RelA(-/-) epidermis displays hyperplasia without abnormal differentiation, inflammation, or apoptosis. Hyperproliferation is TNFR1-dependent because Tnfr1 deletion normalized cell division. TNFR1-dependent JNK activation occurred in RelA(-/-) epidermis, and JNK inhibition abolished hyperproliferation due to RelA deficiency. Thus, RelA antagonizes TNFR1-JNK proliferative signals in epidermis and plays a nonredundant role in restraining epidermal growth.
Collapse
Affiliation(s)
- Jennifer Y Zhang
- VA Palo Alto Healthcare System, Palo Alto, California 94305, USA
| | | | | | | |
Collapse
|
1961
|
Leahy M, Lyons A, Krause D, O'Connor R. Impaired Shc, Ras, and MAPK activation but normal Akt activation in FL5.12 cells expressing an insulin-like growth factor I receptor mutated at tyrosines 1250 and 1251. J Biol Chem 2004; 279:18306-13. [PMID: 14963047 DOI: 10.1074/jbc.m309234200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Y1250F/Y1251F mutant of the insulin-like growth factor I receptor (IGF-IR) has tyrosines 1250 and 1251 mutated to phenylalanines and is deficient in IGF-I-mediated suppression of apoptosis in FL5.12 lymphocytic cells. To address the mechanism of loss of function in this mutant we investigated signaling responses in FL5.12 cells overexpressing either a wild-type (WT) or Y1250F/Y1251F (mutant) IGF-IR. Cells expressing the mutant receptor were deficient in IGF-I-induced phosphorylation of the JNK pathway and had decreased ERK and p38 phosphorylation. IGF-I induced phosphorylation of Akt was comparable in WT and mutant expressing cells. The decreased activation of the mitogen-activated protein kinase (MAPK) pathways was accompanied by greatly decreased Ras activation in response to IGF-I. Although phosphorylation of Gab2 was similar in WT and mutant cell lines, phosphorylation of Shc on Tyr(313) in response to IGF-I was decreased in cells expressing the mutant receptor, as was recruitment of Grb2 and Ship to Shc. However, phosphorylation of Shc on Tyr(239), the Src phosphorylation site, was normal. A role for JNK in the survival of FL5.12 cells was supported by the observation that the JNK inhibitor SP600125 suppressed IGF-I-mediated protection from apoptosis. Altogether these data demonstrate that phosphorylation of Shc, and assembly of the Shc complex necessary for activation of Ras and the MAPK pathways are deficient in cells expressing the Y1250F/Y1251F mutant IGF-IR. This would explain the loss of IGF-I-mediated survival in FL5.12 cells expressing this mutant and may also explain why this mutant IGF-IR is deficient in functions associated with cellular transformation and cell migration in fibroblasts and epithelial tumor cells.
Collapse
Affiliation(s)
- Madeline Leahy
- Cell Biology Laboratory, Department of Biochemistry, BioSciences Institute, National University of Ireland, Cork, Ireland
| | | | | | | |
Collapse
|
1962
|
Wang LH, Besirli CG, Johnson EM. MIXED-LINEAGEKINASES: A Target for the Prevention of Neurodegeneration. Annu Rev Pharmacol Toxicol 2004; 44:451-74. [PMID: 14744254 DOI: 10.1146/annurev.pharmtox.44.101802.121840] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The activation of the c-Jun N-terminal kinase (JNK) pathway is critical for naturally occurring neuronal cell death during development and may be important for the pathological neuronal cell death of neurodegenerative diseases. The small molecule inhibitor of the mixed-lineage kinase (MLK) family of kinases, CEP-1347, inhibits the activation of the JNK pathway and, consequently, the cell death in many cell culture and animal models of neuronal death. CEP-1347 has the ability not only to inhibit cell death but also to maintain the trophic status of neurons in culture. The possible importance of the JNK pathway in neurodegenerative diseases such as Alzheimer's and Parkinson's diseases provides a rationale for the use of CEP-1347 for the treatment of these diseases. CEP-1347 has the potential of not only retarding disease progression but also reversing the severity of symptoms by improving the function of surviving neurons.
Collapse
Affiliation(s)
- Leo H Wang
- Departments of Neurology and Molecular Biology & Pharmacology, Washington University School of Medicine, Saint Louis, Missouri 63110-1031, USA
| | | | | |
Collapse
|
1963
|
Curtin JF, Cotter TG. JNK regulates HIPK3 expression and promotes resistance to Fas-mediated apoptosis in DU 145 prostate carcinoma cells. J Biol Chem 2004; 279:17090-100. [PMID: 14766760 DOI: 10.1074/jbc.m307629200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Elevated endogenous JNK activity and resistance to Fas receptor-mediated apoptosis have recently been implicated in progression of prostate cancer and can promote resistance to apoptosis in response to chemotherapeutic drugs. In addition, JNK has been demonstrated to promote transformation of epithelial cells by increasing both proliferation and survival. Although numerous studies have reported a role for JNK in promoting Fas receptor-mediated apoptosis, there is a paucity in the literature studying the antiapoptotic function of JNK during Fas receptor-mediated apoptosis. Consequently, we have used the recently described specific JNK inhibitor SP600125 and RNA interference to inhibit endogenous JNK activity in the prostate carcinoma cell line DU 145. We demonstrated that endogenous JNK activity increased the expression of a kinase, HIPK3, that has previously been implicated in multidrug resistance in a number of tumors. HIPK3 has also been reported to phosphorylate FADD. The interaction between FADD and caspase-8 was inhibited, but abrogation of JNK activity or HIPK3 expression was found to restore this interaction and increased the sensitivity of DU 145 cells to Fas receptor-mediated apoptosis. In conclusion, we present novel evidence that JNK regulates the expression of HIPK3 in prostate cancer cells, and this contributes to increased resistance to Fas receptor-mediated apoptosis by reducing the interaction between FADD and caspase-8.
Collapse
Affiliation(s)
- James F Curtin
- Tumour Biology Laboratory, Department of Biochemistry, Biosciences Research Institute, University College Cork, Cork, Ireland
| | | |
Collapse
|
1964
|
Schwabe RF, Uchinami H, Qian T, Bennett BL, Lemasters JJ, Brenner DA. Differential requirement for c-Jun NH2-terminal kinase in TNFalpha- and Fas-mediated apoptosis in hepatocytes. FASEB J 2004; 18:720-2. [PMID: 14766793 DOI: 10.1096/fj.03-0771fje] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The c-Jun NH2-terminal kinase (JNK) is involved in the regulation of cell death, but its role in tumor necrosis factor (TNF)-alpha- and Fas-mediated apoptosis in primary cells is not well defined. In primary rat hepatocytes expressing an IkappaB superrepressor, the JNK inhibitor SP600125 strongly decreased TNF-alpha-induced cell death, caspase 3 activation, and DNA laddering. In contrast, SP600125 did not rescue mouse hepatocytes from Fas-induced apoptosis. Apoptosis in mouse hepatocytes, induced by human TNF-alpha, was blocked by SP600125, indicating that TNF-receptor (TNF-R) 1-mediated JNK activation is important for TNF-alpha-induced death. However, mouse TNF-alpha was more efficient than human TNF-alpha in activating JNK and killing mouse hepatocytes, suggesting that TNF-R1 and TNF-R2 cooperate in JNK activation and apoptosis. SP600125 rescued actinomycin D-pretreated hepatocytes and hepatocytes expressing a dominant negative c-Jun from TNF-alpha, indicating that JNK exerts its proapoptotic effect independently of transcription and c-Jun. SP600125 delayed the mitochondrial permeability transition, inhibited cytochrome c release and prevented bid degradation after TNF-alpha, suggesting that JNK-regulated proapoptotic factors act upstream of the mitochondria. Moreover, overexpression of JNK1 activated a mitochondrial death pathway in hepatocytes, albeit less efficiently than TNF-alpha. This study demonstrates that JNK augments TNF-alpha-induced apoptosis in hepatocytes through a signaling pathway that is distinct from the pathway by which it regulates proliferation.
Collapse
Affiliation(s)
- Robert F Schwabe
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA.
| | | | | | | | | | | |
Collapse
|
1965
|
Gdalyahu A, Ghosh I, Levy T, Sapir T, Sapoznik S, Fishler Y, Azoulai D, Reiner O. DCX, a new mediator of the JNK pathway. EMBO J 2004; 23:823-32. [PMID: 14765123 PMCID: PMC380994 DOI: 10.1038/sj.emboj.7600079] [Citation(s) in RCA: 174] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2003] [Accepted: 12/16/2003] [Indexed: 01/09/2023] Open
Abstract
Mutations in the X-linked gene DCX result in lissencephaly in males, and abnormal neuronal positioning in females, suggesting a role for this gene product during neuronal migration. In spite of several known protein interactions, the involvement of DCX in a signaling pathway is still elusive. Here we demonstrate that DCX is a substrate of JNK and interacts with both c-Jun N-terminal kinase (JNK) and JNK interacting protein (JIP). The localization of this signaling module in the developing brain suggests its functionality in migrating neurons. The localization of DCX at neurite tips is determined by its interaction with JIP and by the interaction of the latter with kinesin. DCX is phosphorylated by JNK in growth cones. DCX mutated in sites phosphorylated by JNK affected neurite outgrowth, and the velocity and relative pause time of migrating neurons. We hypothesize that during neuronal migration, there is a need to regulate molecular motors that are working in the cell in opposite directions: kinesin (a plus-end directed molecular motor) versus dynein (a minus-end directed molecular motor).
Collapse
Affiliation(s)
- Amos Gdalyahu
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Indraneel Ghosh
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Talia Levy
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Tamar Sapir
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Sivan Sapoznik
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Yael Fishler
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - David Azoulai
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Orly Reiner
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Genetics, The Weizmann Institute of Science, 76100 Rehovot, Israel. Tel.: +972 8 9342319; Fax: +972 8 9344108; E-mail:
| |
Collapse
|
1966
|
Mingo-Sion AM, Marietta PM, Koller E, Wolf DM, Van Den Berg CL. Inhibition of JNK reduces G2/M transit independent of p53, leading to endoreduplication, decreased proliferation, and apoptosis in breast cancer cells. Oncogene 2004; 23:596-604. [PMID: 14724588 DOI: 10.1038/sj.onc.1207147] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
c-Jun N-terminal kinase (JNK) is activated by diverse cell stimuli, including stress, growth factors, and cytokines. Traditionally, activation of JNK by stress treatment is thought to induce cell death. However, our recent data indicate that JNK's ability to sensitize cells to apoptosis may be, in part, cell cycle dependent. Here, we show that the majority of both paclitaxel- and UV-induced apoptosis can be inhibited by the pharmacological JNK inhibitor, SP600125, in MCF-7 cells. However, inhibition of JNK does little to reverse doxorubicin-induced apoptosis in MCF-7 cells or doxorubicin- and UV-mediated death in MDA MB-231 cells. SP treatment causes G2/M arrest of three breast cancer cell lines and results in the endoreduplication (cellular DNA content >4N) of MCF-7 and MDA MB-231 cells. These effects on cell cycle and apoptosis are not significantly altered by the inhibition of p53, indicating that JNK is functioning independently of p53. Lastly, inhibition of JNK using both SP and antisense oligonucleotides targeted to JNK1 and JNK2 reduced proliferation of all three breast cancer cell lines. Taken together, these results suggest that the activation of JNK is important for the induction of apoptosis following stresses that function at different cell cycle phases, and that basal JNK activity is necessary to promote proliferation and maintain diploidy in breast cancer cells.
Collapse
Affiliation(s)
- Amy M Mingo-Sion
- School of Pharmacy, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Campus Box C238, Denver, CO 80262, USA
| | | | | | | | | |
Collapse
|
1967
|
Abstract
Because of its ease of dispersal and high lethality, Bacillus anthracis is one of the most feared biowarfare agents. A better understanding of anthrax pathogenesis is urgently needed to develop new therapies for systemic disease that is relatively unresponsive to antibiotics. Although experimental evidence has implicated a role for macrophages in anthrax pathogenesis, clinical and pathological observations suggest that a direct insult to the host vasculature may also be important. Two bacterial toxins, lethal toxin and edema toxin, are believed to mediate the clinical sequelae of anthrax. Here, I examined whether these toxins are directly toxic to endothelial cells, the cell type that lines the interior of blood vessels. I show for the first time that lethal toxin but not edema toxin reduces the viability of cultured human endothelial cells and induces caspase-dependent endothelial apoptosis. In addition, this toxicity affects both microvascular and large vessel endothelial cells as well as endothelial cells that have differentiated into tubules within a type I collagen extracellular matrix. Finally, lethal toxin induces cleavage of mitogen-activated protein kinase kinases in endothelial cells and inhibits phosphorylation of ERK, p38, and JNK p46. Based on the contributions of these pathways to endothelial survival, I propose that lethal toxin-mediated cytotoxicity/apoptosis results primarily through inhibition of the ERK pathway. I also hypothesize that the observed endothelial toxicity contributes to vascular pathology and hemorrhage during systemic anthrax.
Collapse
Affiliation(s)
- James E Kirby
- Department of Pathology, Division of Cancer Biology and Angiogenesis, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA.
| |
Collapse
|
1968
|
Huang Y, Keen JC, Hager E, Smith R, Hacker A, Frydman B, Valasinas AL, Reddy VK, Marton LJ, Casero RA, Davidson NE. Regulation of Polyamine Analogue Cytotoxicity by c-Jun in Human MDA-MB-435 Cancer Cells. Mol Cancer Res 2004. [DOI: 10.1158/1541-7786.81.2.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Several polyamine analogues have efficacy against a variety of epithelial tumor models including breast cancer. Recently, a novel class of polyamine analogues designated as oligoamines has been developed. Here, we demonstrate that several representative oligoamine compounds inhibit in vitro growth of human breast cancer MDA-MB-435 cells. The activator protein-1 (AP-1) transcriptional factor family members, c-Jun and c-Fos, are up-regulated by oligoamines in MDA-MB-435 cells, suggesting a possible AP-1-dependent induction of apoptosis. However, the use of a novel c-Jun NH2-terminal kinase (JNK) inhibitor, SP600125, suggests that inhibition of c-Jun activity sensitized tumor cells to oligoamine-induced cell death. To directly test this hypothesis, cells were stably transfected with the dominant-negative mutant c-Jun (TAM67), which lacks the NH2-terminal transactivation domain. Cells overexpressing TAM67 exhibit normal growth kinetics but demonstrate a significantly increased sensitivity to oligoamine cytotoxicity and attenuated colony formation after oligoamine treatment. Furthermore, oligoamine treatment leads to more profound caspase-3 activation and poly(ADP-ribose) polymerase cleavage in TAM67 transfectants, suggesting that c-Jun acts as an antiapoptosis factor in MDA-MB-435 cells in response to oligoamine treatment. These findings indicate that oligoamine-inducible AP-1 plays a prosurvival role in oligoamine-treated MDA-MB-435 cells and that JNK/AP-1 might be a potential target for enhancing the therapeutic efficacy of polyamine analogues in human breast cancer.
Collapse
Affiliation(s)
- Yi Huang
- 1Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD and
| | - Judith C. Keen
- 1Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD and
| | - Erin Hager
- 1Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD and
| | - Renee Smith
- 1Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD and
| | - Amy Hacker
- 1Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD and
| | | | | | | | | | - Robert A. Casero
- 1Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD and
| | - Nancy E. Davidson
- 1Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD and
| |
Collapse
|
1969
|
Jiménez C, Berl T, Rivard CJ, Edelstein CL, Capasso JM. Phosphorylation of MAP kinase-like proteins mediate the response of the halotolerant alga Dunaliella viridis to hypertonic shock. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1644:61-9. [PMID: 14741745 DOI: 10.1016/j.bbamcr.2003.10.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The microalga Dunaliella viridis has the ability to adapt to a variety of environmental stresses including osmotic and thermal shocks, UV irradiation and nitrogen starvation. Lacking a rigid cell wall, Dunaliella provides an excellent model to study stress signaling in eukaryotic unicellular organisms. When exposed to hyperosmotic stress, UV irradiation or high temperature, a 57-kDa protein is recognized by antibodies specific to mammalian p38, to its yeast homologue Hog1, and to the phospho-p38 MAP kinase motif. This 57-kDa protein appears to be both up-regulated and phosphorylated. Three other proteins (50, 45, 43 kDa) were transiently phosphorylated under stress conditions as detected with an antibody specific to the mammalian phospho c-Jun N-terminal kinase (JNK) motif. Treatment with specific inhibitors of p38 MAP kinase (SB203580) and JNK (SP600125) activities markedly impaired the adaptation of Dunaliella to osmotic stress. From an evolutionary standpoint, these data strongly suggest that MAP kinase signaling pathways, other than ERK, were already operating in the common ancestor of plant and animal kingdoms, probably as early as 1400 million years ago.
Collapse
Affiliation(s)
- Carlos Jiménez
- Department of Ecology, Faculty of Science, University of Málaga, Málaga 29071, Spain
| | | | | | | | | |
Collapse
|
1970
|
Yang Y, Ikezoe T, Saito T, Kobayashi M, Koeffler HP, Taguchi H. Proteasome inhibitor PS-341 induces growth arrest and apoptosis of non-small cell lung cancer cells via the JNK/c-Jun/AP-1 signaling. Cancer Sci 2004; 95:176-80. [PMID: 14965369 PMCID: PMC11160053 DOI: 10.1111/j.1349-7006.2004.tb03200.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2003] [Revised: 11/25/2003] [Accepted: 12/12/2003] [Indexed: 11/26/2022] Open
Abstract
Proteasome inhibitor PS-341 induces growth arrest and apoptosis of multiple myeloma (MM) cells via inactivation of NF-kappaB in vitro and has afforded some objective responses in individuals with relapsed, refractory MM. However, the activity of PS-341 against non-hematological malignancies remains to be fully elucidated. In this study, we found that PS-341 induced growth arrest and apoptosis of NCI-H520 and -H460 non-small cell lung cancer (NSCLC) cells in conjunction with markedly up-regulated levels of p21(waf1) and p53, and down-regulation of bcl-2 protein in these cells. Also, PS-341 caused phosphorylation of c-Jun NH(2)-terminal kinase (JNK) and c-Jun, and enhanced AP-1/DNA binding activities in these cells as measured by western blotting and enzyme-linked immunosorbent assay (ELISA), respectively. Interestingly, when the JNK/c-Jun/AP-1 signal pathway was disrupted by the JNK inhibitor SP600125, the ability of PS-341 to inhibit the growth of NSCLC cells and to up-regulate the levels of p21(waf1) in these cells was blunted, but the expression of p53 was sustained at a high level, suggesting that the JNK/c-Jun/AP-1 signal pathway might mediate the anti-lung cancer effects of PS-341, with p21(waf1) playing the central role. Thus, PS-341 might be useful for the treatment of individuals with NSCLC.
Collapse
Affiliation(s)
- Yang Yang
- Department of Internal Medicine, Kochi Medical School, Kochi 783-8505, Japan
| | | | | | | | | | | |
Collapse
|
1971
|
Larregina AT, Morelli AE, Tkacheva O, Erdos G, Donahue C, Watkins SC, Thomson AW, Falo LD. Highly efficient expression of transgenic proteins by naked DNA-transfected dendritic cells through terminal differentiation. Blood 2004; 103:811-9. [PMID: 14551149 DOI: 10.1182/blood-2003-02-0524] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AbstractDendritic cells (DCs) play a key role in the induction and control of immunity. Genetic engineering of DCs is a promising approach for the development of a broad range of immunomodulatory strategies, for purposes ranging from genetic immunization to tolerance induction. The development of DC-based immunotherapies is limited by the inability to efficiently transfect DCs using naked DNA. Here we demonstrate that after plasmid DNA delivery, the transgene expression level controlled by the human immediate-early cytomegalovirus promoter (hIE-CMVp) is higher in mature DCs than in immature DCs and is further increased after terminal differentiation of DCs by agonist anti-CD40 monoclonal antibody (mAb) or after DC interaction with CD4+ T cells. CD40 signaling of DCs resulted in nuclear translocation of the transcription factors nuclear factor-κB (NF-κB), activator of protein-1 (AP-1), and cyclic adenosine monophosphate (cAMP)–responsive element, necessary for the activation of hIE-CMVp. Transgene expression by DCs diminished after the inhibition of these transcription factors or the blockade of adhesion molecules involved in the DC–T-cell synapse. Importantly, CD40 signaling of DCs results in the highly efficient expression and presentation of transgenic antigens and the induction of “in vivo” cytotoxic T-cell (CTL) responses specific for transgenic antigen peptides, demonstrating the functional potential of genetically engineered DCs.
Collapse
|
1972
|
Sethi G, Sodhi A. Activation of c-Jun N-terminal kinase is required for ultraviolet B-induced apoptosis of murine peritoneal macrophages in vitro. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2004; 73:133-40. [PMID: 14975401 DOI: 10.1016/j.jphotobiol.2003.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2003] [Revised: 09/16/2003] [Accepted: 09/20/2003] [Indexed: 10/26/2022]
Abstract
The mechanisms of ultraviolet B (UVB)-induced apoptosis and the role of c-Jun N-terminal kinase (JNK) mitogen activated protein kinase (MAPK) in murine peritoneal macrophages, the terminally differentiated non-dividing cells were investigated. Exposure of macrophages to UVB 100 mJ/cm2 induced rapid apoptosis concurrent with activation of JNK and mitochondrial cytochrome c release leading to procaspase-3 activation. Late into the UVB-induced apoptosis, a caspase-mediated cleavage of Bid was observed. Caspase inhibitors N-Benzylocarbonyl-Val-Asp-fluoromethyl ketone and N-Acetyl-Asp-Glu-Val-Asp-aldehyde inhibited the UVB-induced apoptosis without preventing the release of cytochrome c and JNK activation. The inhibition of JNK MAPK prevented UVB-induced apoptosis, concomitant with inhibition in cytochrome c release and procaspase-3 activation. However, it had no effect on procaspase-8 activation. These results indicate that activation of JNK MAPK upstream of caspases might play an important role in the apoptotic process of macrophages exposed to UVB irradiation.
Collapse
Affiliation(s)
- Gautam Sethi
- School of Biotechnology, Banaras Hindu University, Varanasi 221 005, India
| | | |
Collapse
|
1973
|
Darieva Z, Lasunskaia EB, Campos MNN, Kipnis TL, Da Silva WD. Activation of phosphatidylinositol 3-kinase and c-Jun-N-terminal kinase cascades enhances NF-κB-dependent gene transcription in BCG-stimulated macrophages through promotion of p65/p300 binding. J Leukoc Biol 2004; 75:689-97. [PMID: 14742634 DOI: 10.1189/jlb.0603280] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The proinflammatory response of infected macrophages is an important early host defense mechanism against mycobacterial infection. Mycobacteria have been demonstrated to induce proinflammatory gene transcription through the Toll-like receptors, (TLR)2 and TLR 4, which initiate signaling cascades leading to nuclear factor (NF)-kappaB activation. The main transduction pathway responsible for NF-kappaB activation has been established and involves the MyD88, interleukin-1 receptor-associated kinase, tumor necrosis factor receptor-associated factor-6, NF-kappaB-inducing kinase, and inhibitor of kappaB kinase complex. The role of other kinase cascades triggered by mycobacteria in the NF-kappaB activation is less clear. We herein examine the role of the mitogen-activated protein kinases (MAPKs) and phosphatidylinositol 3-kinase (PI-3K) cascades in the expression of the bacillus Calmette-Guerin (BCG) mycobacteria-induced NF-kappaB-dependent genes, macrophage-inflammatory protein-2 (MIP-2) and inducible nitric oxide (NO) synthase. Specific pharmacological inhibition of the PI-3K, c-jun-N-terminal kinase (JNK), and to a smaller extent, p38 MAPK but not extracellular-regulated kinase (ERK), suppressed NF-kappaB-dependent reporter gene transcription and MIP-2 and NO secretion in BCG-induced RAW264.7 macrophages. A similar effect was obtained following molecular inhibition of JNK via JNK-interacting protein-1 overexpression. In addition, a kinase-dead mutant of MEK kinase-1, the up-stream regulator of JNK, also proved to be a potent inhibitor of NF-kappaB-reporter activity. The effect of inhibitors was mediated by the down-regulation of NF-kappaB transcription activity and without effecting its nuclear translocation. These data suggest an indirect mechanism of the NF-kappaB regulation by these kinases, probably through p65 phosphorylation and improved binding to the p300 transcription coactivator. The data obtained demonstrate that PI-3K, JNK, and p38 MAPK activation by mycobacteria enhance NF-kappaB-driven gene expression contributing to the proinflammatory macrophage response.
Collapse
Affiliation(s)
- Zoulfia Darieva
- Laboratóire de Biologia do Reconhecer, Universisade Estadual do Norte Fluminense, Campos, Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
1974
|
Nishiki S, Hato F, Kamata N, Sakamoto E, Hasegawa T, Kimura-Eto A, Hino M, Kitagawa S. Selective activation of STAT3 in human monocytes stimulated by G-CSF: implication in inhibition of LPS-induced TNF-alpha production. Am J Physiol Cell Physiol 2004; 286:C1302-11. [PMID: 14736711 DOI: 10.1152/ajpcell.00387.2003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Lipopolysaccharide (LPS) induced tumor necrosis factor (TNF)-alpha production in human monocytes, which was dependent on activation of extracellular signal-regulated kinase (ERK), p38, c-Jun NH(2)-terminal kinase (JNK), and nuclear factor (NF)-kappa B. LPS-induced TNF-alpha production was inhibited by granulocyte colony-stimulating factor (G-CSF) and interleukin (IL)-10. G-CSF, like IL-10, exerted the inhibitory effect even when simultaneously added with LPS. Among the signaling pathways, signal transducer and activator of transcription 3 (STAT3) was selectively activated in monocytes stimulated by G-CSF or IL-10. G-CSF-mediated inhibition of LPS-induced TNF-alpha production as well as G-CSF-induced STAT3 phosphorylation and suppressor of cytokine signaling 3 mRNA expression were prevented by pretreatment of monocytes with AG-490, an inhibitor of Janus kinase 2. G-CSF did not affect LPS-induced activation of ERK, p38, JNK, and NF-kappa B, indicating that G-CSF affects the pathway downstream or independently of these signaling molecules. G-CSF-induced, but not IL-10-induced, STAT3 phosphorylation was attenuated in the presence of LPS. These findings suggest that G-CSF, like IL-10, inhibits LPS-induced TNF-alpha production in human monocytes through selective activation of STAT3, and the immunomodulation observed in vivo by G-CSF administration may be partly ascribed to the direct effect of G-CSF on monocyte functions.
Collapse
Affiliation(s)
- Saori Nishiki
- Department of Physiology, Osaka City University Medical School, Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | | | | | | | | | | | | | | |
Collapse
|
1975
|
Waetzig V, Herdegen T. The concerted signaling of ERK1/2 and JNKs is essential for PC12 cell neuritogenesis and converges at the level of target proteins. Mol Cell Neurosci 2004; 24:238-49. [PMID: 14550783 DOI: 10.1016/s1044-7431(03)00126-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) pathways are central signaling elements, which translate and integrate stimuli from cell surface receptors into cytoplasmic and transcriptional responses. Here, we systematically compare the role of MAPKs in the nerve growth factor-induced long-term differentiation of PC12 cells and show the persistent nuclear and dose-dependent cytoplasmic activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and the increasing nuclear and cytoplasmic activation of c-Jun N-terminal kinases (JNKs). Inhibition of ERK1/2 and JNKs significantly reduced neurite outgrowth. Both synergistically controlled the expression of c-Jun, the induction and/or phosphorylation of neurofilament, and the phosphorylation of Elk-1. JNKs alone were responsible for the phosphorylation of c-Jun and activating transcription factor 2 as well as for the expression of MAPK phosphatase 1. In contrast, p38alpha was only transiently activated and marginally involved in these processes. Thus, JNKs and ERK1/2 accomplish differentiation by signaling in parallel cascades that converge only at the target level.
Collapse
Affiliation(s)
- Vicki Waetzig
- Institute of Pharmacology, University Hospital Schleswig-Holstein, Hospitalstrasse 4, D-24105 Kiel, Germany
| | | |
Collapse
|
1976
|
Cloutier A, Ear T, Borissevitch O, Larivée P, McDonald PP. Inflammatory cytokine expression is independent of the c-Jun N-terminal kinase/AP-1 signaling cascade in human neutrophils. THE JOURNAL OF IMMUNOLOGY 2004; 171:3751-61. [PMID: 14500675 DOI: 10.4049/jimmunol.171.7.3751] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the last decade, the ability of neutrophils to generate proinflammatory cytokines has become firmly established. Because neutrophils typically infiltrate inflammatory sites in large numbers, they could significantly contribute to the cytokine environment and even represent a substantial source of cytokines in chronic inflammatory disorders in which they predominate over other cell types. To date, however, most studies have focused on identifying which mediators are produced by neutrophils, as opposed to elucidating the molecular bases underlying this process. We previously showed that most stimuli of cytokine production in neutrophils also activate NF-kappaB in these cells. In this report, we turned our attention to another transcription factor that plays a central role in inflammation, AP-1. Among Jun/Fos proteins, only JunD and c-Fos are abundantly expressed in neutrophils, and they are mainly cytoplasmic. Both the cellular levels and distribution of the Jun/Fos proteins remain unaffected by various neutrophil stimuli, including those that are known to increase the corresponding mRNA transcripts. Similarly, c-Jun N-terminal kinase (JNK) 1 is overwhelmingly cytoplasmic in neutrophils and does not translocate to the nucleus upon cell activation. Although JNK is not activatable under most circumstances, specific conditions do allow its phosphorylation in response to TNF. However, no experimental condition (even those leading to JNK activation) resulted in the induction of genuine AP-1 complexes in neutrophils. Accordingly, the potent JNK inhibitor, SP 600125, failed to inhibit inflammatory cytokine gene expression in neutrophils. Collectively, our findings strongly suggest that the JNK/AP-1 signaling pathway has little or no impact on the generation of inflammatory mediators in neutrophils.
Collapse
Affiliation(s)
- Alexandre Cloutier
- Pulmonary Division, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | | | | | | |
Collapse
|
1977
|
Choi SH, Lee DY, Ryu JK, Kim J, Joe EH, Jin BK. Thrombin induces nigral dopaminergic neurodegeneration in vivo by altering expression of death-related proteins. Neurobiol Dis 2004; 14:181-93. [PMID: 14572441 DOI: 10.1016/s0969-9961(03)00085-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
One week after intranigral injection of thrombin resulted in a dose-dependent loss of dopaminergic neurons (20-78%) in the rat substantia nigra (SN), as evidenced by tyrosine hydroxylase (TH) immunohistochemistry. This cell death was accompanied by localization of terminal deoxynucleotidyl transferase-mediated fluorecein UTP nick end labeling (TUNEL) staining within dopaminergic neurons, activation of caspase-3 and attenuation of dopaminergic neuronal cell death in the SN by the caspase inhibitor (zVAD-fmk), indicative of apoptosis. Furthermore, Western blot analyses and double-immunofluorescent staining showed activation of c-Jun N-terminal kinase (JNK) and p53, and a localization of p53 in the dopaminergic neurons in the SN after thrombin, respectively. Intriguingly, Western blot analyses demonstrated significant down-regulation of Bcl-2 protein, but no alteration in Bax protein expression in the SN after thrombin. Consistent with in vivo data, degeneration of dopaminergic neurons and colocalization of TUNEL and TH were observed in mesencephalic cultures, following treatment with thrombin. Cell death was almost completely abolished by the thrombin-specific inhibitor, hirudin. Thrombin receptor-activating peptides (TRAP-6 and-14) did not mimic the effects of thrombin, even at much higher (1,000 to 2,000-fold) concentrations, although expression of protease-activated receptor-1 (PAR-1) mRNA was detected using RT-PCR. Morphological evidence and molecular events in vivo and in vitro collectively suggest that thrombin induces apoptosis in dopaminergic neurons via non-PAR-1 receptors.
Collapse
Affiliation(s)
- Sang-H Choi
- Brain Disease Research Center, Ajou University School of Medicine, Suwon 442-721, Korea
| | | | | | | | | | | |
Collapse
|
1978
|
Abstract
Despite the availability of a great number of medications, the asthma epidemic is continuing to increase. It is obvious that a high, unmet medical need remains and innovative therapeutic agents are urgently required. Existing therapies, such as beta-agonists and corticosteroids, provide relief for sufferers of mild-to-moderate asthma, reversing the acute bronchoconstriction and decreasing the inflammation. However, these therapies provide little relief for chronic asthmatics. Asthma is a manifestation of an imbalance in cytokine and signalling pathways that mediate inflammatory and structural changes within the lung. New therapies need to be developed to target these changes. Emerging treatments for asthma include strategies to alter the cytokine/chemokine balance, to skew the cytokine profile away from a T helper (Th)2 response and towards a Th1 response. Strategies designed to do this include therapeutic antibodies or small molecule inhibitors targeted towards IL-13, IL-4 or their receptors, and the Th1 cytokine IL-12. Much interest has focused on the signalling pathways involved in asthma. Among these, the mitogen-activated protein kinase (MAPK) pathway members c-Jun N-terminal kinase (JNK) and p38 have gathered much interest, in addition to the transcription factors nuclear factor kappaB (NF-kappa B), activator protein-1 (AP-1) and signal transducer and activator of transcription (STAT)-6. This review aims to summarise the emerging treatments for chronic asthma, from early discovery, to late clinical stages, and discuss the therapeutic rationale behind these treatments. Much is still to be learned about the mechanisms involved in the development and treatment of chronic asthma; however, much promise lies in the future of these new therapeutics.
Collapse
Affiliation(s)
- Kate Blease
- Celgene, 4550 Towne Centre Court, San Diego, CA 92121, USA
| | | | | |
Collapse
|
1979
|
Naruishi K, Nishimura F, Yamada-Naruishi H, Omori K, Yamaguchi M, Takashiba S. C-jun N-terminal kinase (JNK) inhibitor, SP600125, blocks interleukin (IL)-6-induced vascular endothelial growth factor (VEGF) production: cyclosporine A partially mimics this inhibitory effect. Transplantation 2004; 76:1380-2. [PMID: 14627919 DOI: 10.1097/01.tp.0000085661.52980.95] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
SUMMARY Angiogenesis is a common complication of organ-transplant rejection. One of the primary responsible molecules for enhanced angiogenesis is vascular endothelial growth factor (VEGF). Activated protein (AP)-1 is considered to play a key role in the transcription of VEGF. c-jun N-terminal kinase (JNK), one of the MAP kinase family members, plays a critical role in AP-1 activation. Thus, we tested the effect of a novel JNK inhibitor, SP600125, on VEGF production in fibroblasts. SP600125 significantly suppressed interleukin (IL)-6-induced production of VEGF in cultured fibroblasts. Cyclosporine A (CsA), a known in vitro anti-angiogenic reagent, partially mimicked this suppression. In fact, CsA suppressed IL-6-induced phosphorylation of JNK. The results indicate that although both SP600125 and CsA are anti-angiogenic by inhibiting VEGF production by way of a JNK-dependent pathway, the inhibitory effect was much stronger with the novel inhibitor of JNK than with CsA.
Collapse
Affiliation(s)
- Koji Naruishi
- Department of Pathophysiology/Periodontal Science, Okayama University Graduate School of Medicine and Dentistry, Japan
| | | | | | | | | | | |
Collapse
|
1980
|
Du L, Lyle CS, Obey TB, Gaarde WA, Muir JA, Bennett BL, Chambers TC. Inhibition of cell proliferation and cell cycle progression by specific inhibition of basal JNK activity: evidence that mitotic Bcl-2 phosphorylation is JNK-independent. J Biol Chem 2004; 279:11957-66. [PMID: 14704147 DOI: 10.1074/jbc.m304935200] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The c-Jun NH(2)-terminal kinase (JNK) subgroup of mitogen-activated protein kinases has been implicated largely in stress responses, but an increasing body of evidence has suggested that JNK also plays a role in cell proliferation and survival. We examined the effect of JNK inhibition, using either SP600125 or specific antisense oligonucleotides, on cell proliferation and cell cycle progression. SP600125 was selective for JNK in vitro and in vivo versus other kinases tested including ERK, p38, cyclin-dependent protein kinase 1 (CDK1), and CDK2. SP600125 inhibited JNK activity and KB-3 cell proliferation with the same dose dependence, suggesting that inhibition of proliferation was a direct consequence of JNK inhibition. Inhibition of proliferation by SP600125 was associated with an increase in the G(2)-M and apoptotic fractions of cells but was not associated with p53 or p21 induction. Antisense oligonucleotides to JNK2 but not JNK1 caused highly significant inhibition of cell proliferation. Wild-type mouse fibroblasts responded similarly with proliferation inhibition and apoptosis induction, whereas c-jun(-/-) fibroblasts were refractory to the effects of SP600125, suggesting that JNK signaling to c-Jun is required for cell proliferation. Studies in synchronized KB-3 cells indicated that SP600125 delayed transit time through S and G(2)-M phases. Correspondingly, JNK activity increased in late S phase and peaked in late G(2) phase. During synchronous mitotic progression, cyclin B levels increased concomitant with phosphorylation of c-Jun, H1 histone, and Bcl-2. In the presence of SP600125, mitotic progression was prolonged, and c-Jun phosphorylation was inhibited, but neither H1 nor Bcl-2 phosphorylation was inhibited. However, the CDK inhibitor roscovitine inhibited mitotic Bcl-2 phosphorylation. These results indicate that JNK, and more specifically the JNK2 isoform, plays a key role in cell proliferation and cell cycle progression. In addition, conclusive evidence is presented that a kinase other than JNK, most likely CDK1 or a CDK1-regulated kinase, is responsible for mitotic Bcl-2 phosphorylation.
Collapse
Affiliation(s)
- Lihua Du
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | | | | | | | | | | | | |
Collapse
|
1981
|
Chen Q, Wang WC, Bruce R, Li H, Schleider DM, Mulbury MJ, Bain MD, Wallace PK, Baumann H, Evans SS. Central Role of IL-6 Receptor Signal-Transducing Chain gp130 in Activation of L-Selectin Adhesion by Fever-Range Thermal Stress. Immunity 2004; 20:59-70. [PMID: 14738765 DOI: 10.1016/s1074-7613(03)00358-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The physiological benefit of the febrile response is poorly understood. Here we show that fever-range thermal stress enhances the function of the L-selectin lymphocyte homing receptor through an interleukin-6 (IL-6)-dependent signaling mechanism. Thermal stimulation of L-selectin adhesion in vitro and in vivo is mediated by engagement of the gp130 signal-transducing chain by IL-6 and a soluble form of the IL-6 receptor-alpha (sIL-6Ralpha) binding subunit. Thermal control of adhesion is maintained in IL-6-deficient mice through a gp130-dependent compensatory mechanism mediated by IL-6-related cytokines (i.e., oncostatin M [OSM], leukemia inhibitory factor [LIF], and IL-11). Combined biochemical and pharmacological inhibitor (PD98059, U0126, SB203580, SP600125) approaches positioned MEK1/ERK1-2, but not p38 MAPK or JNK, in the IL-6/sIL-6Ralpha signaling pathway upstream of activation of L-selectin/cytoskeletal interactions and L-selectin avidity/affinity. These results highlight a role for gp130-linked IL-6/sIL-6Ralpha transsignaling in amplifying lymphocyte trafficking during febrile inflammatory responses.
Collapse
Affiliation(s)
- Qing Chen
- Department of Immunology, Roswell Park Cancer Institute, Carlton and Elm Streets, Buffalo, NY 14263, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1982
|
Chan WH, Wu HJ. Anti-apoptotic effects of curcumin on photosensitized human epidermal carcinoma A431 cells. J Cell Biochem 2004; 92:200-12. [PMID: 15095415 DOI: 10.1002/jcb.20059] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Photodynamic treatment (PDT) can elicit a diverse range of cellular responses, including apoptotic cell death. Previously, we showed that PDT stimulates caspase-3 activation and subsequent cleavage and activation of p21-activated kinase 2 (PAK2) in human epidermal carcinoma A431 cells. Curcumin, the yellow pigment of Curcuma longa, is known to have anti-oxidant and anti-inflammatory properties. In the present study, using Rose Bengal (RB) as the photosensitizer, we investigated the effect of curcumin on PDT-induced apoptotic events in human epidermal carcinoma A431 cells. We report that curcumin prevented PDT-induced JNK activation, mitochondrial release of cytochrome c, caspase-3 activation, and cleavage of PAK2. Using the cell permeable dye DCF-DA as an indicator of reactive oxygen species (ROS) generation, we found that both curcumin and ROS scavengers (i.e., l-histidine, a-tocopherol, mannitol) abolished PDT-stimulated intracellular oxidative stress. Moreover, all these PDT-induced apoptotic changes in cells could be blocked by singlet oxygen scavengers (i.e., l-histidine, a-tocopherol), but were not affected by the hydroxyl radical scavenger mannitol. In addition, we found that SP600125, a JNK-specific inhibitor, reduced PDT-induced JNK activation as well as caspase-3 activation, indicating that JNK activity is required for PDT-induced caspase activation. Collectively, these results demonstrate that singlet oxygen triggers JNK activation, cytochrome c release, caspase activation and subsequent apoptotic biochemical changes during PDT and show that curcumin is a potent inhibitor for this process.
Collapse
Affiliation(s)
- Wen-Hsiung Chan
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Chung Li, Taiwan, Republic of China.
| | | |
Collapse
|
1983
|
Mahns A, Wolber R, Stäb F, Klotz LO, Sies H. Contribution of UVB and UVA to UV-dependent stimulation of cyclooxygenase-2 expression in artificial epidermis. Photochem Photobiol Sci 2004; 3:257-62. [PMID: 14993941 DOI: 10.1039/b309067a] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Both UVB (280-320 nm) and UVA (320-400 nm) radiation lead to an enhanced expression of cyclooxygenase-2 (COX-2) in epidermal cells in various in-vitro and in-vivo models. It is demonstrated here that the expression of COX-2 is induced in artificial human epidermis exposed to simulated solar light (>290 nm). Employing filters eliminating specified regions from the simulated solar spectrum, the UVB and UVA-2 (320-350 nm) regions are shown to fully account for induction of COX-2 mRNA and protein as well as the enhanced production of prostaglandin E(2) after irradiation. At the protein level, approximately 70% of the total induction by solar light is due to light in the UVA-2 region. UVA-1 (350-400 nm), visible light and IR radiation are practically ineffective. COX-2 induction by simulated solar light is attenuated in the presence of inhibitors of p38(MAPK) or of c-Jun-N-terminal kinases (JNK), whereas COX-2 induction by UVA is blocked only by inhibition of JNK. UV-induced COX-2 expression is not affected by inhibition of the MEK 1,2/ERK 1,2 pathways.
Collapse
Affiliation(s)
- André Mahns
- Institut fur Biochemie und Molekularbiologie I, Heinrich-Heine-Universitat Dusseldorf, 40225 Dusseldorf, Germany
| | | | | | | | | |
Collapse
|
1984
|
Takenaka M, Matsuno H, Ishisaki A, Nakajima K, Hirade K, Takei M, Yasuda E, Akamatsu S, Yoshimi N, Kato K, Kozawa O. Platelet-derived growth factor-BB phosphorylates heat shock protein 27 in cardiac myocytes. J Cell Biochem 2004; 91:316-24. [PMID: 14743391 DOI: 10.1002/jcb.10717] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
It is recognized that heat shock protein 27 (HSP27) is highly expressed in heart. In the present study, we investigated whether platelet-derived growth factor (PDGF) phosphorylates HSP27 in mouse myocytes, and the mechanism underlying the HSP27 phosphorylation. Administration of PDGF-BB induced the phosphorylation of HSP27 at Ser-15 and -85 in mouse cardiac muscle in vivo. In primary cultured myocytes, PDGF-BB time dependently phosphorylated HSP27 at Ser-15 and -85. PDGF-BB stimulated the phosphorylation of p44/p42 mitogen-activated protein (MAP) kinase, p38 MAP kinase, and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) among the MAP kinase superfamily. SB203580, a specific inhibitor of p38 MAP kinase, reduced the PDGF-BB-stimulated phosphorylation of HSP27 at both Ser-15 and -85, and phosphorylation of p38 MAP kinase. However, PD98059, a specific inhibitor of MEK, or SP600125, a specific inhibitor of SAPK/JNK, failed to affect the HSP27 phosphorylation. These results strongly suggest that PDGF-BB phosphorylates HSP27 at Ser-15 and -85 via p38 MAP kinase in cardiac myocytes.
Collapse
Affiliation(s)
- Motoki Takenaka
- Department of Pharmacology, Gifu University School of Medicine, Gifu 500-8705, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1985
|
Vasilevskaya IA, Rakitina TV, O'Dwyer PJ. Quantitative effects on c-Jun N-terminal protein kinase signaling determine synergistic interaction of cisplatin and 17-allylamino-17-demethoxygeldanamycin in colon cancer cell lines. Mol Pharmacol 2004; 65:235-43. [PMID: 14722256 DOI: 10.1124/mol.65.1.235] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the effects of cisplatin and the hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) in combination in a panel of human colon adenocarcinoma cell lines that differ in their p53 and mismatch repair status. Analysis of cytotoxicity after combined treatment revealed additive effects of cisplatin and 17-AAG in the HCT 116, DLD1, and SW480 cell lines and antagonism in HT-29 cells. Clonogenic assays demonstrated antagonism in HT-29, an additive effect in SW480, and synergism in HCT 116 and DLD1 cell lines. Analysis of signaling pathways revealed that cisplatin-induced activation of c-Jun N-terminal kinase (JNK) was fully blocked by 17-AAG in HT-29 and SW480 cells, whereas in HCT 116 and DLD1 cells it was inhibited only partially. The activation of caspases was also more pronounced in DLD1 and HCT 116 cell lines. These data suggested that a minimal level of apoptotic signaling through JNK was required for synergism with this combination. To test this hypothesis, we used the specific JNK inhibitor SP600125; when JNK was inhibited pharmacologically in HCT 116 and DLD1 cells, they demonstrated increased survival in clonogenic assays. Alternatively, sustained activation of JNK pathway led to an increase of the cytotoxicity of the cisplatin/17-AAG combination in HT-29 cells. Taken together, these data suggest that the synergistic interaction of this combination in colon cancer cell lines depends on the effect exerted by 17-AAG on cisplatin-induced signaling through JNK and associated pathways leading to cell death. An implication of that finding is that quantitative effects of signaling inhibitors may be critical for their ability to reverse cisplatin resistance.
Collapse
|
1986
|
Marek L, Levresse V, Amura C, Zentrich E, Van Putten V, Nemenoff RA, Heasley LE. Multiple signaling conduits regulate global differentiation-specific gene expression in PC12 cells. J Cell Physiol 2004; 201:459-69. [PMID: 15389548 DOI: 10.1002/jcp.20087] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PC12 cells serve as a model for exploring nerve growth factor (NGF)-stimulated signal pathways that mediate neural differentiation. We previously demonstrated that neurofilament light chain (NFLC) gene induction by NGF requires collaborative extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) signaling. Herein, we investigate the broader requirement for integrated ERK and JNK signaling in NGF-stimulated gene expression. NGF stimulates differentiation as well as maintenance of cell viability while insulin-like growth factor-1 (IGF-1) stimulates only trophic actions in PC12 cells. Affymetrix Genechips were used to identify genes whose expression specifically increased in response to NGF, but not IGF-1. From the set of NGF-specific genes, the induction by NGF of ten genes with diverse predicted cellular functions was tested for ERK and JNK pathway requirements using the protein kinase inhibitors, PD98059 and SP600125, respectively. Like NFLC, induction of urokinase plasminogen activator (uPAR), transin/matrix metalloproteinase 3 (MMP3), Fra-1 and transforming growth factor beta 1 (TGF beta 1) required collaborative ERK and JNK signaling while the increased expression of cortexin, rat collapsin response mediator protein 4 (rCRMP4), rat growth and transformation-dependent protein (RGT), and synapsin II required neither mitogen-activated protein kinase (MAPK) pathway. NGF-induction of the bradykinin B2 receptor and c-Ret mRNAs was partially inhibited by SP600125, but not PD98059. Reporter constructs containing the promoters for ERK/JNK-dependent genes (NFLC, transin, uPAR) as well as an ERK/JNK-independent gene (synapsin II) revealed that both sets of genes required functional Ras signaling for activation by NGF. Integrated signaling through the ERK and JNK MAPKs, therefore, represents a general conduit for NGF-dependent gene expression, but additional Ras-dependent signaling pathways distinct from the ERKs and JNKs must contribute as well. Thus, multiple signaling conduits control global differentiation-specific gene expression in PC12 cells.
Collapse
Affiliation(s)
- Lindsay Marek
- Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | | | | | |
Collapse
|
1987
|
Xie Z, Smith CJ, Van Eldik LJ. Activated glia induce neuron death via MAP kinase signaling pathways involving JNK and p38. Glia 2004; 45:170-9. [PMID: 14730710 DOI: 10.1002/glia.10314] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Chronic glial activation in neurodegenerative diseases contributes to neuronal dysfunction and neuron loss through production of neuroinflammatory molecules. However, the molecular mechanisms, particularly the signal transduction pathways involved in glia-dependent neuron death, are poorly understood. As a first step to address this question, we used a neuron-glia co-culture system that allows diffusion of soluble molecules between glia and neurons to test the potential importance of mitogen-activated protein kinase (MAPK) signaling pathways in the glia-induced neuron death. Activation of glia in co-culture by lipopolysaccharide (LPS) induced apoptotic-like neuron death. The MAPKs tested (p38, JNK, ERK1/2) were activated in both glia and neurons following LPS treatment, suggesting their involvement in both glial activation and neuronal response to diffusible, glia-derived neurotoxic molecules. Inhibitors of p38 and JNK partially blocked neuron death in the LPS-treated co-culture, whereas an ERK1/2 pathway inhibitor did not protect neurons. These results show that p38 and JNK MAPKs, but not ERK1/2 MAPK, are important signal transduction pathways contributing to glia-induced neuron death.
Collapse
Affiliation(s)
- Zhong Xie
- Department of Cell and Molecular Biology, and Drug Discovery Program, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60612, USA
| | | | | |
Collapse
|
1988
|
Lin FS, Lin CC, Chien CS, Luo SF, Yang CM. Involvement of p42/p44 MAPK, JNK, and NF-?B in IL-1?-induced ICAM-1 expression in human pulmonary epithelial cells. J Cell Physiol 2004; 202:464-73. [PMID: 15389584 DOI: 10.1002/jcp.20142] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Interleukin-1beta (IL-1beta) has been shown to induce the expression of intercellular adhesion molecule-1 (ICAM-1) on airway epithelial cells and contributes to inflammatory responses. However, the mechanisms regulating ICAM-1 expression by IL-1beta in human A549 cells was not completely understood. Here, the roles of mitogen-activated protein kinases (MAPKs) and NF-kappaB pathways for IL-1beta-induced ICAM-1 expression were investigated in A549 cells. IL-1beta induced expression of ICAM-1 protein and mRNA in a time- and concentration-dependent manner. The IL-1beta induction of ICAM-1 mRNA and protein were partially inhibited by U0126 and PD98059 (specific inhibitors of MEK1/2) and SP600125 [a specific inhibitor of c-Jun-N-terminal kinase (JNK)]. U0126 was more potent than other inhibitors to attenuate IL-1beta-induced ICAM-1 expression. Consistently, IL-1beta stimulated phosphorylation of p42/p44 MAPK and JNK which was attenuated by pretreatment with U0126 or SP600125, respectively. Moreover, transfection with dominant negative mutants of MEK1/2 (MEK K97R) or ERK2 (ERK2 K52R) also attenuated IL-1beta-induced ICAM-1 expression. The combination of PD98059 and SP600125 displayed an additive effect on IL-1beta-induced ICAM-1 gene expression. IL-1beta-induced ICAM-1 expression was almost completely blocked by a specific NF-kappaB inhibitor helenalin. Consistently, IL-1beta stimulated translocation of NF-kappaB into the nucleus and degradation of IkappaB-alpha which was blocked by helenalin, U0126, or SP600125. Taken together, these results suggest that activation of p42/p44 MAPK and JNK cascades, at least in part, mediated through NF-kappaB pathway is essential for IL-1beta-induced ICAM-1 gene expression in A549 cells. These results provide new insight into the mechanisms of IL-1beta action that cytokines may promote inflammatory responses in the airway disease.
Collapse
Affiliation(s)
- Feng-Shu Lin
- Graduate Institute of Natural Products, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | | | | | | | | |
Collapse
|
1989
|
Watanabe H, Shimizu T, Nishihira J, Abe R, Nakayama T, Taniguchi M, Sabe H, Ishibashi T, Shimizu H. Ultraviolet A-induced Production of Matrix Metalloproteinase-1 Is Mediated by Macrophage Migration Inhibitory Factor (MIF) in Human Dermal Fibroblasts. J Biol Chem 2004; 279:1676-83. [PMID: 14581488 DOI: 10.1074/jbc.m303650200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are thought to be responsible for dermal photoaging in human skin. In the present study, we evaluated the involvement of macrophage migration inhibitory factor (MIF) in MMP-1 expression under ultraviolet A (UVA) irradiation in cultured human dermal fibroblasts. UVA (20 J/cm(2)) up-regulates MIF production, and UVA-induced MMP-1 mRNA production is inhibited by an anti-MIF antibody. MIF (100 ng/ml) was shown to induce MMP-1 in cultured human dermal fibroblasts. We found that MIF (100 ng/ml) enhanced MMP-1 activity in cultured fibroblasts assessed by zymography. Moreover, we observed that fibroblasts obtained from MIF-deficient mice were much less sensitive to UVA regarding MMP-13 expression than those from wild-type BALB/c mice. Furthermore, after UVA irradiation (10 J/cm(2)), dermal fibroblasts of MIF-deficient mice produced significantly decreased levels of MMP-13 compared with fibroblasts of wild-type mice. Next we investigated the signal transduction pathway of MIF. The up-regulation of MMP-1 mRNA by MIF stimulation was found to be inhibited by a PKC inhibitor (GF109203X), a Src-family tyrosine kinase inhibitor (herbimycin A), a tyrosine kinase inhibitor (genistein), a PKA inhibitor (H89), a MEK inhibitor (PD98089), and a JNK inhibitor (SP600125). In contrast, the p38 inhibitor (SB203580) was found to have little effect on expression of MMP-1 mRNA. We found that PKC-pan, PKC alpha/beta II, PKC delta (Thr505), PKC delta (Ser(643)), Raf, and MAPK were phosphorylated by MIF. Moreover, we demonstrated that phosphorylation of PKC alpha/beta II and MAPK in response to MIF was suppressed by genistein, and herbimycin A as well as by transfection of the plasmid of C-terminal Src kinase. The DNA binding activity of AP-1 was significantly up-regulated 2 h after MIF stimulation. Taken together, these results suggest that MIF is involved in the up-regulation of UVA-induced MMP-1 in dermal fibroblasts through PKC-, PKA-, Src family tyrosine kinase-, MAPK-, c-Jun-, and AP-1-dependent pathways.
Collapse
Affiliation(s)
- Hirokazu Watanabe
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo 060-8638, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
1990
|
Li G, Xiang Y, Sabapathy K, Silverman RH. An Apoptotic Signaling Pathway in the Interferon Antiviral Response Mediated by RNase L and c-Jun NH2-terminal Kinase. J Biol Chem 2004; 279:1123-31. [PMID: 14570908 DOI: 10.1074/jbc.m305893200] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cellular stress responses induced during viral infections are critical to the health and survival of organisms. In higher vertebrates, interferons (IFNs) mediate the innate antiviral response in part through the action of RNase L, a uniquely regulated enzyme. RNase L is activated by 5'-phosphorylated, 2'-5' oligoadenylates (2-5A) produced from IFN-inducible and double stranded RNA-dependent synthetases. We show that viral activation of the c-Jun NH2-terminal kinases (JNK) family of MAP kinases and viral induction of apoptosis are both deficient in mouse cells lacking RNase L. Also, JNK phosphorylation in response to 2-5A was greatly reduced in RNase L-/- mouse cells. In addition, 2-5A treatment of the human ovarian carcinoma cell line, Hey1b, resulted in specific ribosomal RNA cleavage products coinciding with JNK activation. Furthermore, suppression of JNK activity with the chemical inhibitor, SP600125, prevented apoptosis induced by 2-5A. In contrast, inhibition of alternative MAP kinases, p38 and ERK, failed to prevent 2-5A-mediated apoptosis. Short interfering RNA to JNK1/JNK2 mRNAs resulted in JNK ablation while also suppressing 2-5A-mediated apoptosis. Moreover, Jnk1-/- Jnk2-/- cells were highly resistant to the apoptotic effects of IFN and 2-5A. These findings suggest that JNK and RNase L function in an integrated signaling pathway during the IFN response that leads to elimination of virus-infected cells through apoptosis.
Collapse
Affiliation(s)
- Geqiang Li
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
1991
|
Wong BCY, Jiang XH, Lin MCM, Tu SP, Cui JT, Jiang SH, Wong WM, Yuen MF, Lam SK, Kung HF. Cyclooxygenase-2 inhibitor (SC-236) suppresses activator protein-1 through c-Jun NH2-terminal kinase. Gastroenterology 2004; 126:136-47. [PMID: 14699495 DOI: 10.1053/j.gastro.2003.10.063] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS Aspirin exerts antitumor effect partly through blocking tumor promoter-induced activator protein-1 (AP-1) activation. The aim of this study is to determine how specific COX-2 inhibitor SC-236 mediates antitumor effect by modulation of AP-1-signaling pathway. METHODS AP-1 transcriptional activity and DNA-binding activity were detected by luciferase reporter assay and gel shift assay, separately. Mitogen-activated protein kinase (MAPK) activation was determined by Western blot and in vitro kinase assay. Antisense oligonucleotide against c-Jun-N-terminal kinase (JNK) was used to suppress JNK expression. RESULTS We showed that SC-236 inhibited 12-O-tetradecanoylphorbol-13-acetate (PMA)-induced cell transformation in a dose-dependent manner in JB6 cells. At a dose range (12.5-50 micromol/L) that inhibited cell transformation, SC-236 also inhibited anchorage-independent cell growth and AP-1-activation in 3 gastric cancer cells, independent of COX-prostaglandin synthesis. SC-236 down-regulated c-Jun-NH2-terminal kinase phosphorylation and activity. Suppression of JNK activity reversed the inhibitory effect on AP-1 activity by SC-236 and suppressed gastric cancer cell growth, indicating that the inhibitory effect of SC-236 on AP-1 activation and cell growth was through interaction with JNK. CONCLUSIONS The inhibitory effect on JNK-c-Jun/AP-1 activation contributes to the antitumor effect of COX-2-specific inhibitor, and inhibition of JNK activation may have a therapeutic benefit against gastric cancer.
Collapse
|
1992
|
Usatyuk PV, Natarajan V. Role of mitogen-activated protein kinases in 4-hydroxy-2-nonenal-induced actin remodeling and barrier function in endothelial cells. J Biol Chem 2003; 279:11789-97. [PMID: 14699126 DOI: 10.1074/jbc.m311184200] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In vivo and in vitro studies indicate that 4-hydroxy-2-nonenal (4-HNE), generated by cellular lipid peroxidation or after oxidative stress, affects endothelial permeability and vascular tone. However, the mechanism(s) of 4-HNE-induced endothelial barrier function is not well defined. Here we provide evidence for the first time on the involvement of mitogen-activated protein kinases (MAPKs) in 4-HNE-mediated actin stress fiber formation and barrier function in lung endothelial cells. Treatment of bovine lung microvascular endothelial cells with hydrogen peroxide (H(2)O(2)), as a model oxidant, resulted in accumulation of 4-HNE as evidenced by the formation of 4-HNE-Michael protein adducts. Exposure of cells to 4-HNE, in a dose- and time-dependent manner, decreased endothelial cell permeability measured as transendothelial electrical resistance. The 4-HNE-induced permeability changes were not because of cytotoxicity or endothelial cell apoptosis, which occurred after prolonged treatment and at higher concentrations of 4-HNE. 4-HNE-induced changes in transendothelial electrical resistance were calcium independent, as 4-HNE did not alter intracellular free calcium levels as compared with H(2)O(2) or diperoxovanadate. Stimulation of quiescent cells with 4-HNE (1-100 microm) resulted in phosphorylation of ERK1/2, JNK, and p38 MAPKs, and actin cytoskeleton remodeling. Furthermore, pretreatment of bovine lung microvascular endothelial cells with PD 98059 (25 microm), an inhibitor of MEK1/2, or SP 600125 (25 microm), an inhibitor of JNK, or SB 202190 (25 microm), an inhibitor of p38 MAPK, partially attenuated 4-HNE-mediated barrier function and cytoskeletal remodeling. These results suggest that the activation of ERK, JNK, and p38 MAP kinases is involved in 4-HNE-mediated actin remodeling and endothelial barrier function.
Collapse
Affiliation(s)
- Peter V Usatyuk
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, USA
| | | |
Collapse
|
1993
|
Arndt PG, Suzuki N, Avdi NJ, Malcolm KC, Worthen GS. Lipopolysaccharide-induced c-Jun NH2-terminal kinase activation in human neutrophils: role of phosphatidylinositol 3-Kinase and Syk-mediated pathways. J Biol Chem 2003; 279:10883-91. [PMID: 14699155 DOI: 10.1074/jbc.m309901200] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polymorphonuclear leukocytes (neutrophils) respond to lipopolysaccharide (LPS) through the up-regulation of several pro-inflammatory mediators. We have recently shown that LPS-stimulated neutrophils express monocyte chemoattractant protein 1 (MCP-1), an AP-1-dependent gene, suggesting that LPS activates the c-Jun N-terminal kinase (JNK) pathway in neutrophils. Previously, we have shown the activation of p38 MAPK, but not JNK, in suspended neutrophils stimulated with LPS but have recently shown activation of JNK by TNF-alpha in an adherent neutrophil system. We show here that exposure to LPS activates JNK in non-suspended neutrophils and that LPS-induced MCP-1 expression, but not tumor necrosis factor-alpha (TNF-alpha) or interleukin-8 (IL-8), is dependent on JNK activation. In addition, LPS stimulation of non-suspended neutrophils activates Syk and phosphatidylinositol 3-kinase (PI3K). Inhibition of Syk with piceatannol or PI3K with wortmannin inhibited LPS-induced JNK activation and decreased MCP-1 expression after exposure to LPS, suggesting that both Syk and PI3K reside in a signaling pathway leading to LPS-induced JNK activation in neutrophils. This Syk- and PI3K-dependent pathway leading to JNK activation after LPS exposure in non-suspended neutrophils is specific for JNK, because inhibition of neither Syk nor PI3K decreased p38 activation after LPS stimulation. Furthermore we show that PI3K inhibition decreased LPS-induced Syk activation suggesting that PI3K resides upstream of Syk in this pathway. Finally, we show that Syk associates with Toll-like receptor 4 (TLR4) upon LPS stimulation further implicating Syk in the LPS-induced signaling pathway in neutrophils. Overall our data suggests that LPS induces JNK activation only in non-suspended neutrophils, which proceeds through Syk- and PI3K-dependent pathways, and that JNK activation is important for LPS-induced MCP-1 expression but not for TNF-alpha or IL-8 expression.
Collapse
Affiliation(s)
- Patrick G Arndt
- Department of Medicine and Division of Cell Biology, National Jewish Medical and Research Center, Denver, Colorado, USA.
| | | | | | | | | |
Collapse
|
1994
|
Gate L, Majumdar RS, Lunk A, Tew KD. Increased myeloproliferation in glutathione S-transferase pi-deficient mice is associated with a deregulation of JNK and Janus kinase/STAT pathways. J Biol Chem 2003; 279:8608-16. [PMID: 14684749 DOI: 10.1074/jbc.m308613200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has been shown that glutathione S-transferase pi (GSTpi) interacts with and suppresses the activity of c-Jun NH(2)-terminal kinase (JNK). GST-deficient mice (GSTpi(-/-)) have higher levels of circulating white blood cells, with similar proportions of lymphocytes, monocytes, and granulocytes. Interestingly, a selective expansion of splenic B lymphocytes was observed in GSTpi(-/-) animals but no change in T lymphocytes or natural killer cells. A peptidomimetic inhibitor of GSTpi that disrupts the interaction between GSTpi and JNK mimics in wild type mice the increased myeloproliferation observed in GSTpi(-/-) animals. Until now, the molecular basis for this effect has not been defined. In an in vitro hematopoiesis assay, interleukin-3, granulocyte colony-stimulating factor, and granulocyte/macrophage colony-stimulating factor were more effective at stimulating proliferation of hematopoietic cells in GSTpi(-/-) mice than in wild type. The JNK inhibitor SP600125 which caused little inhibition of cytokine-induced myeloproliferation in wild type mice, decreased the number of colonies in GSTpi(-/-) animals. A more sustained phosphorylation of the STAT family of proteins was also observed in GSTpi(-/-) bone marrow-derived mast cells exposed to interleukin-3. This was associated with an increased proliferation and a down-regulation of expression of negative regulators of the Janus kinase-STAT pathway SHP, Src homology 2 domain-containing tyrosine phosphatase-1 and -2. The increased activation of JNK and STATs in GSTpi-deficient mice provides a viable mechanism for the increased myeloproliferation in these animals. These data also confirm the important role that GSTpi plays in the regulation of cell signaling pathways in a myeloproliferative setting.
Collapse
Affiliation(s)
- Laurent Gate
- Department of Pharmacology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | | | |
Collapse
|
1995
|
Masamune A, Satoh M, Kikuta K, Suzuki N, Shimosegawa T. Establishment and characterization of a rat pancreatic stellate cell line by spontaneous immortalization. World J Gastroenterol 2003; 9:2751-8. [PMID: 14669327 PMCID: PMC4612046 DOI: 10.3748/wjg.v9.i12.2751] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: Activated pancreatic stellate cells (PSCs) have been implicated in the pathogenesis of pancreatic fibrosis and inflammation. Primary PSCs can be subcultured only several times because of their limited growth potential. A continuous cell line may therefore be valuable in studying molecular mechanisms of these pancreatic disorders. The aim of this study was to establish a cell line of rat PSCs by spontaneous immortalization.
METHODS: PSCs were isolated from the pancreas of male Wistar rats, and conventional subcultivation was performed repeatedly. Telomerase activity was measured using the telomere repeat amplification protocol. Activation of transcription factors was assessed by electrophoretic mobility shift assay. Activation of mitogen-activated protein (MAP) kinases was examined by Western blotting using anti-phosphospecific antibodies. Expression of cytokine-induced neutrophil chemoattractant-1 was determined by enzyme immunoassay.
RESULTS: Conventional subcultivation yielded actively growing cells. One clone was obtained after limiting dilution, and designated as SIPS. This cell line has been passaged repeatedly more than 2 years, and is thus likely immortalized. SIPS cells retained morphological characteristics of primary, culture-activated PSCs. SIPS expressed α-smooth muscle actin, glial acidic fibrillary protein, vimentin, desmin, type I collagen, fibronectin, and prolyl hydroxylases. Telomerase activity and p53 expression were negative. Proliferation of SIPS cells was serum-dependent, and stimulated with platelet-derived growth factor-BB through the activation of extracellular signal-regulated kinase. Interleukin-1β activated nuclear factor-κB, activator protein-1, and MAP kinases. Interleukin-1β induced cytokine-induced neutrophil chemoattractant-1 expression through the activation of nuclear factor-κB and MAP kinases.
CONCLUSION: SIPS cells can be useful for in vitro studies of cell biology and signal transduction of PSCs.
Collapse
Affiliation(s)
- Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | | | | | | | | |
Collapse
|
1996
|
Zuco V, Zanchi C, Cassinelli G, Lanzi C, Supino R, Pisano C, Zanier R, Giordano V, Garattini E, Zunino F. Induction of apoptosis and stress response in ovarian carcinoma cell lines treated with ST1926, an atypical retinoid. Cell Death Differ 2003; 11:280-9. [PMID: 14657960 DOI: 10.1038/sj.cdd.4401304] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
To understand the molecular mechanisms mediating apoptosis induction by a novel atypical retinoid, ST1926, the cellular response to drug treatment was investigated in IGROV-1 ovarian carcinoma cells carrying wild-type p53 and a cisplatin-resistant p53 mutant subline (IGROV-1/Pt1). Despite a similar extent of drug-induced DNA strand breaks, the level of apoptosis was substantially higher in p53 wild-type cells. p53 activation and early upregulation of p53-target genes were consistent with p53-dependent apoptosis in IGROV-1 cells. Stress-activated protein kinases were activated in both cell lines in response to ST1926. This event and activation of AP-1 were more pronounced in IGROV-1/Pt1 cells, in which the modulation of DNA repair-associated genes suggests an increased ability to repair DNA damage. Inhibition of JNK or p38 stimulated ST1926-induced apoptosis only in IGROV-1 cells, whereas inhibition of ERKs enhanced apoptosis in both the cell lines. Such a pattern of cellular response and modulation of genes implicated in DNA damage response supports that the genotoxic stress is a critical event mediating drug-induced apoptosis. The results are consistent with apoptosis induction through p53-dependent and -independent pathways, regulated by MAP kinases, which likely play a protective role.
Collapse
Affiliation(s)
- V Zuco
- Istituto Nazionale Tumori, Via Venezian 1, 20133 Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1997
|
Okamoto N, Tezuka K, Kato M, Abe R, Tsuji T. PI3-kinase and MAP-kinase signaling cascades in AILIM/ICOS- and CD28-costimulated T-cells have distinct functions between cell proliferation and IL-10 production. Biochem Biophys Res Commun 2003; 310:691-702. [PMID: 14550257 DOI: 10.1016/j.bbrc.2003.09.065] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Both AILIM/ICOS and CD28 provide positive costimulatory signals for T-cell activation, resulting in proliferation and cytokine production. In this study, we attempted to clarify the key signaling molecules in T-cell proliferation, and also IL-2 and IL-10 production, during T-cell activation by CD3 induced by costimulation with either AILIM/ICOS or CD28. We examined the role of both the PI3-kinase/Akt pathway and MAP kinase family members such as ERK1/2, JNK, and p38 kinase in this process. PI3-kinase and Erk1/2 were shown to potentially regulate primary T-cell activation and subsequent proliferation via both AILIM/ICOS- or CD28-mediated costimulation and the Erk signaling cascade was essential for this proliferation induction and also for IL-2 production. The JAK inhibitor, AG490, inhibited this induction. Our studies indicate that IL-2 is necessary for induction of T-cell proliferation and that the quantities of IL-2 produced by AILIM/ICOS ligation are also sufficient for T-cells to proliferate. In contrast, inhibition of Akt and p38, that are phosphorylated by both AILIM/ICOS and CD28-ligation, could downregulate IL-10 production but not T-cell proliferation. These data raise the interesting possibility that the signaling cascades between T-cell proliferation and IL-10 production are regulated by different molecules in AILIM/ICOS- and CD28-costimulated T-cells.
Collapse
Affiliation(s)
- Naokazu Okamoto
- Department of Biological Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| | | | | | | | | |
Collapse
|
1998
|
Iavarone C, Catania A, Marinissen MJ, Visconti R, Acunzo M, Tarantino C, Carlomagno MS, Bruni CB, Gutkind JS, Chiariello M. The Platelet-derived Growth Factor Controls c-myc Expression through a JNK- and AP-1-dependent Signaling Pathway. J Biol Chem 2003; 278:50024-30. [PMID: 14523011 DOI: 10.1074/jbc.m308617200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pro-inflammatory cytokines, environmental stresses, as well as receptor tyrosine kinases regulate the activity of JNK. In turn, JNK phosphorylates Jun members of the AP-1 family of transcription factors, thereby controlling processes as different as cell growth, differentiation, and apoptosis. Still, very few targets of the JNK-Jun pathway have been identified. Here we show that JNK is required for the induction of c-myc expression by PDGF. Furthermore, we identify a phylogenetically conserved AP-1-responsive element in the promoter of the c-myc proto-oncogene that recruits in vivo the c-Jun and JunD AP-1 family members and controls the PDGF-dependent transactivation of the c-myc promoter. These findings suggest the existence of a novel biochemical route linking tyrosine kinase receptors, such as those for PDGF, and c-myc expression through JNK activation of AP-1 transcription factors. They also provide a novel potential mechanism by which both JNK and Jun proteins may exert either their proliferative or apoptotic potential by stimulating the expression of the c-myc proto-oncogene.
Collapse
Affiliation(s)
- Carlo Iavarone
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1999
|
Kooijman R, Coppens A, Hooghe-Peters E. IGF-I stimulates IL-8 production in the promyelocytic cell line HL-60 through activation of extracellular signal-regulated protein kinase. Cell Signal 2003; 15:1091-8. [PMID: 14575864 DOI: 10.1016/s0898-6568(03)00069-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Interleukin (IL)-8 serves as a major chemoattractant for neutrophils and has also been proposed to affect cancer progression. In the present study, we show that IGF-I stimulates IL-8 mRNA expression and IL-8 secretion in the leukemic cell line HL-60. Stimulation of IL-8 expression was completely attenuated by two inhibitors of mitogen-activated protein kinase (MAPK) kinase (MEK), which phosphorylates the MAPKs extracellular-regulated kinase (ERK)1 and ERK2, and by the c-Jun NH2-terminal kinase (JNK) inhibitor SP600125. In contrast, inhibitors of p38 MAPK and phosphatidylinositol-3 kinase (PI3K) did not abrogate the effect of IGF-I. We also show that IGF-I stimulates the activation of ERK1 and ERK2, but we could not detect any effect of IGF-I on the phosphorylation of p38, JNK(p46) or JNK(p54). Collectively, our results suggest that basal JNK activity and activation of the MEK-ERK pathway are required for upregulation of IL-8 by IGF-I in HL-60 cells.
Collapse
Affiliation(s)
- Ron Kooijman
- Laboratory for Neuroendocrine Immunology, Department of Pharmacology, Medical School, Free University of Brussels (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium.
| | | | | |
Collapse
|
2000
|
Eynott PR, Nath P, Leung SY, Adcock IM, Bennett BL, Chung KF. Allergen-induced inflammation and airway epithelial and smooth muscle cell proliferation: role of Jun N-terminal kinase. Br J Pharmacol 2003; 140:1373-80. [PMID: 14623764 PMCID: PMC1574155 DOI: 10.1038/sj.bjp.0705569] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Revised: 09/05/2003] [Accepted: 10/08/2003] [Indexed: 11/09/2022] Open
Abstract
Chronic cellular inflammation and airway wall remodelling with subepithelial fibrosis and airway smooth muscle (ASM) cell hyperplasia are features of chronic asthma. Jun N-terminal kinase (JNK) may be implicated in these processes by regulating the transcriptional activity of activator protein (AP)-1. We examined the effects of an inhibitor of JNK, SP600125 (anthra [1,9-cd] pyrazole-6 (2 H)-one), in a model of chronic allergic inflammation in the rat. Rats sensitised to ovalbumin (OA) were exposed to OA-aerosol every third day on six occasions and were treated with SP600125 (30 mg kg-1 b.i.d; 360 mg in total) for 12 days, starting after the second through to the sixth OA exposure. We measured eosinophilic and T-cell inflammation in the airways, proliferation of ASM cells and epithelial cells by incorporation of bromodeoxyuridine (BrdU), and bronchial responsiveness to acetylcholine. SP600125 significantly reduced the number of eosinophils (P<0.05) and lymphocytes (P<0.05) in bronchoalveolar lavage fluid, suppressed eosinophilic (P<0.05) and CD2+ T-cell (P<0.05) infiltration within the bronchial submucosa, and the increased DNA incorporation in ASM (P<0.05) and epithelial cell incorporation (P<0.05). SP600125 did not alter bronchial hyper-responsiveness observed after chronic allergen exposure. Pathways regulated by JNK positively regulate ASM cell proliferation and allergic cellular inflammation following chronic allergen exposure.
Collapse
Affiliation(s)
- Paul R Eynott
- National Heart & Lung Institute, Imperial College School of Medicine, Dovehouse St, London SW3 6LY
| | - Puneeta Nath
- National Heart & Lung Institute, Imperial College School of Medicine, Dovehouse St, London SW3 6LY
| | - Sum-Yee Leung
- National Heart & Lung Institute, Imperial College School of Medicine, Dovehouse St, London SW3 6LY
| | - Ian M Adcock
- National Heart & Lung Institute, Imperial College School of Medicine, Dovehouse St, London SW3 6LY
| | | | - K Fan Chung
- National Heart & Lung Institute, Imperial College School of Medicine, Dovehouse St, London SW3 6LY
| |
Collapse
|