2001
|
microRNA: emerging therapeutic targets in acute ischemic diseases. Pharmacol Ther 2009; 125:92-104. [PMID: 19896977 DOI: 10.1016/j.pharmthera.2009.10.003] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 10/05/2009] [Indexed: 02/08/2023]
Abstract
microRNAs (miRNAs) are 21-23-nucleotide non-protein-coding RNA molecules that act as negative regulators of gene expression, modulating the stability and/or the translational efficiency of target messenger RNAs. This review describes miRNA regulation and function in tissue response to acute ischemia. We focused our attention on a subset of miRNAs that have been found de-regulated in different studies, suggesting that they may represent "master ischemic" miRNAs, playing a pathogenetic role in different components of tissue response to ischemia. First, we analyzed the role of miRNAs in cell response to hypoxia, a crucial component of ischemia, and in angiogenesis. Then, we describe miRNAs role in acute myocardial infarction as much as in hindlimb, cerebral, hepatic and retinal ischemia. The role played by specific miRNAs in the regulation of apoptosis, fibrosis, regeneration and myocardial arrhythmias is illustrated. The identification of specific miRNAs as key regulators of the response to ischemia has opened new clinical avenues. miRNAs may constitute excellent non-invasive disease biomarkers. Furthermore, innovative strategies targeting miRNAs, aimed to reduce the levels of pathogenic or aberrantly expressed miRNAs or to elevate the levels of miRNAs with beneficial functions, have been developed and could be applied in the treatment of ischemic diseases.
Collapse
|
2002
|
Li G, Luna C, Qiu J, Epstein DL, Gonzalez P. Alterations in microRNA expression in stress-induced cellular senescence. Mech Ageing Dev 2009; 130:731-41. [PMID: 19782699 PMCID: PMC2795064 DOI: 10.1016/j.mad.2009.09.002] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 08/14/2009] [Accepted: 09/16/2009] [Indexed: 02/08/2023]
Abstract
We investigated miRNA expression changes associated with stress-induced premature senescence (SIPS) in primary cultures of human diploid fibroblast (HDF) and human trabecular meshwork (HTM) cells. Twenty-five miRNAs were identified by miRNA microarray analysis and their changes in expression were validated by TaqMan real-time RT-PCR in three independent cell lines of HTM and HDF. SIPS in both HTM and HDF cell types was associated with significant down-regulation of four members of the miR-15 family and five miRNAs of the miR-106b family located in the oncogenic clusters miR-17-92, miR-106a-363, and miR-106b-25. SIPS was also associated with up-regulation of two miRNAs (182 and 183) from the miR-183-96-182 cluster. Transfection with miR-106a agomir inhibited the up-regulation of p21(CDKN1A) associated with SIPS while transfection with miR-106a antagomir led to increased p21(CDKN1A) expression in senescent cells. In addition, we identified retinoic acid receptor gamma (RARG) as a target of miR-182 and showed that this protein was down-regulated during SIPS in HDF and HTM cells. These results suggest that changes in miRNA expression might contribute to phenotypic alterations of senescent cells by modulating the expression of key regulatory proteins such as p21(CDKN1A) as well as by targeting genes that are down-regulated in senescent cells such as RARG.
Collapse
Affiliation(s)
- Guorong Li
- Department of Ophthalmology, Duke University, Durham, North Carolina 27710, USA
| | - Coralia Luna
- Department of Ophthalmology, Duke University, Durham, North Carolina 27710, USA
| | - Jianming Qiu
- Department of Ophthalmology, Duke University, Durham, North Carolina 27710, USA
| | - David L. Epstein
- Department of Ophthalmology, Duke University, Durham, North Carolina 27710, USA
| | - Pedro Gonzalez
- Department of Ophthalmology, Duke University, Durham, North Carolina 27710, USA
| |
Collapse
|
2003
|
Wei J, Liu B, Cardona AF, Rosell R. Molecular biomarkers for predicting chemotherapy response in lung cancer. EXPERT OPINION ON MEDICAL DIAGNOSTICS 2009; 3:621-9. [PMID: 23496047 DOI: 10.1517/17530050903222239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Chemotherapy in non-small-cell lung cancer (NSCLC) has reached a plateau, with no evidence of substantial improvement in survival. However, recent advances in the management of lung cancer have paved the way for the optimization of treatment. Several lines of evidence indicate that multiple genetic disturbances found in human cancer cell lines and in the tumors of NSCLC patients have a role as predictive markers for response and survival with chemotherapy regimens now in use. OBJECTIVE This review highlights relevant translational research findings on potential predictive markers in lung cancer with therapeutic impact in both the near and distant future. CONCLUSION The next step is to develop clinical trials that will prospectively validate the benefits of customizing chemotherapy, which should translate into an improvement in outcome in NSCLC patients.
Collapse
Affiliation(s)
- Jia Wei
- Medical School of Nanjing University, Affiliated Drum Tower Hospital, Clinical Cancer Institute of Nanjing University, Department of Oncology, Zhongshan Road 321, Nanjing 210008, China +86 25 83317016 ; +86 25 83317016 ;
| | | | | | | |
Collapse
|
2004
|
Granjon A, Gustin MP, Rieusset J, Lefai E, Meugnier E, Güller I, Cerutti C, Paultre C, Disse E, Rabasa-Lhoret R, Laville M, Vidal H, Rome S. The microRNA signature in response to insulin reveals its implication in the transcriptional action of insulin in human skeletal muscle and the role of a sterol regulatory element-binding protein-1c/myocyte enhancer factor 2C pathway. Diabetes 2009; 58:2555-64. [PMID: 19720801 PMCID: PMC2768160 DOI: 10.2337/db09-0165] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Factors governing microRNA expressions in response to changes of cellular environment are still largely unknown. Our aim was to determine whether insulin, the major hormone controlling whole-body energy homeostasis, is involved in the regulation of microRNA expressions in human skeletal muscle. RESEARCH DESIGN AND METHODS We carried out comparative microRNA (miRNA) expression profiles in human skeletal muscle biopsies before and after a 3-h euglycemic-hyperinsulinemic clamp, with TaqMan low-density arrays. Then, using DNA microarrays, we determined the response to insulin of the miRNA putative target genes in order to determine their role in the transcriptional action of insulin. We further characterized the mechanism of action of insulin on two representative miRNAs, miR-1 and miR-133a, in human muscle cells. RESULTS Insulin downregulated the expressions of 39 distinct miRNAs in human skeletal muscle. Their potential target mRNAs coded for proteins that were mainly involved in insulin signaling and ubiquitination-mediated proteolysis. Bioinformatic analysis suggested that combinations of different downregulated miRNAs worked in concert to regulate gene expressions in response to insulin. We further demonstrated that sterol regulatory element-binding protein (SREBP)-1c and myocyte enhancer factor 2C were involved in the effect of insulin on miR-1 and miR-133a expression. Interestingly, we found an impaired regulation of miRNAs by insulin in the skeletal muscle of type 2 diabetic patients, likely as consequences of altered SREBP-1c activation. CONCLUSIONS This work demonstrates a new role of insulin in the regulation of miRNAs in human skeletal muscle and suggests a possible implication of these new modulators in insulin resistance.
Collapse
Affiliation(s)
- Aurélie Granjon
- Institut de la Recherche Agronomique (INRA) 1235, INSERM 870, INSA-Lyon, Régulations Métaboliques Nutrition et Diabète, Université Lyon, Oullins, France
| | | | - Jennifer Rieusset
- Institut de la Recherche Agronomique (INRA) 1235, INSERM 870, INSA-Lyon, Régulations Métaboliques Nutrition et Diabète, Université Lyon, Oullins, France
| | - Etienne Lefai
- Institut de la Recherche Agronomique (INRA) 1235, INSERM 870, INSA-Lyon, Régulations Métaboliques Nutrition et Diabète, Université Lyon, Oullins, France
| | - Emmanuelle Meugnier
- Institut de la Recherche Agronomique (INRA) 1235, INSERM 870, INSA-Lyon, Régulations Métaboliques Nutrition et Diabète, Université Lyon, Oullins, France
| | - Isabelle Güller
- Institut de la Recherche Agronomique (INRA) 1235, INSERM 870, INSA-Lyon, Régulations Métaboliques Nutrition et Diabète, Université Lyon, Oullins, France
| | - Catherine Cerutti
- INSERM ERI22/EA 4173, Biostatistiques, Université Lyon, Lyon, France
| | - Christian Paultre
- INSERM ERI22/EA 4173, Biostatistiques, Université Lyon, Lyon, France
| | - Emmanuel Disse
- Hospices Civils de Lyon, Service de Diabétologie et Nutrition, Hôpital Edouard-Herriot, Lyon, France
- Centre de Recherche en Nutrition Humaine Rhône-Alpes, Oullins, France
| | - Rémi Rabasa-Lhoret
- Chaire de recherche J-A DeSève, Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
| | - Martine Laville
- Institut de la Recherche Agronomique (INRA) 1235, INSERM 870, INSA-Lyon, Régulations Métaboliques Nutrition et Diabète, Université Lyon, Oullins, France
- Hospices Civils de Lyon, Service de Diabétologie et Nutrition, Hôpital Edouard-Herriot, Lyon, France
- Centre de Recherche en Nutrition Humaine Rhône-Alpes, Oullins, France
| | - Hubert Vidal
- Institut de la Recherche Agronomique (INRA) 1235, INSERM 870, INSA-Lyon, Régulations Métaboliques Nutrition et Diabète, Université Lyon, Oullins, France
- Hospices Civils de Lyon, Service de Diabétologie et Nutrition, Hôpital Edouard-Herriot, Lyon, France
- Centre de Recherche en Nutrition Humaine Rhône-Alpes, Oullins, France
| | - Sophie Rome
- Institut de la Recherche Agronomique (INRA) 1235, INSERM 870, INSA-Lyon, Régulations Métaboliques Nutrition et Diabète, Université Lyon, Oullins, France
- Corresponding author: Sophie Rome,
| |
Collapse
|
2005
|
Saydam O, Shen Y, Würdinger T, Senol O, Boke E, James MF, Tannous BA, Stemmer-Rachamimov AO, Yi M, Stephens RM, Fraefel C, Gusella JF, Krichevsky AM, Breakefield XO. Downregulated microRNA-200a in meningiomas promotes tumor growth by reducing E-cadherin and activating the Wnt/beta-catenin signaling pathway. Mol Cell Biol 2009; 29:5923-40. [PMID: 19703993 PMCID: PMC2772747 DOI: 10.1128/mcb.00332-09] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2009] [Revised: 04/18/2009] [Accepted: 08/13/2009] [Indexed: 01/04/2023] Open
Abstract
Meningiomas, one of the most common human brain tumors, are derived from arachnoidal cells associated with brain meninges, are usually benign, and are frequently associated with neurofibromatosis type 2. Here, we define a typical human meningioma microRNA (miRNA) profile and characterize the effects of one downregulated miRNA, miR-200a, on tumor growth. Elevated levels of miR-200a inhibited meningioma cell growth in culture and in a tumor model in vivo. Upregulation of miR-200a decreased the expression of transcription factors ZEB1 and SIP1, with consequent increased expression of E-cadherin, an adhesion protein associated with cell differentiation. Downregulation of miR-200a in meningiomas and arachnoidal cells resulted in increased expression of beta-catenin and cyclin D1 involved in cell proliferation. miR-200a was found to directly target beta-catenin mRNA, thereby inhibiting its translation and blocking Wnt/beta-catenin signaling, which is frequently involved in cancer. A direct correlation was found between the downregulation of miR-200a and the upregulation of beta-catenin in human meningioma samples. Thus, miR-200a appears to act as a multifunctional tumor suppressor miRNA in meningiomas through effects on the E-cadherin and Wnt/beta-catenin signaling pathways. This reveals a previously unrecognized signaling cascade involved in meningioma tumor development and highlights a novel molecular interaction between miR-200a and Wnt signaling, thereby providing insights into novel therapies for meningiomas.
Collapse
Affiliation(s)
- Okay Saydam
- Departments of Neurology and Radiology, Massachusetts General Hospital, and Neuroscience Program, Harvard Medical School, Boston, Massachusetts 02129, Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, Neuro-Oncology Research Group, Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands, Molecular Neuro-Oncology Laboratory and Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, Advanced Biomedical Computing Center, National Cancer Institute, Bethesda, Maryland 21702, Institute of Virology, University of Zurich, Zurich 8057, Switzerland, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Yiping Shen
- Departments of Neurology and Radiology, Massachusetts General Hospital, and Neuroscience Program, Harvard Medical School, Boston, Massachusetts 02129, Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, Neuro-Oncology Research Group, Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands, Molecular Neuro-Oncology Laboratory and Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, Advanced Biomedical Computing Center, National Cancer Institute, Bethesda, Maryland 21702, Institute of Virology, University of Zurich, Zurich 8057, Switzerland, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Thomas Würdinger
- Departments of Neurology and Radiology, Massachusetts General Hospital, and Neuroscience Program, Harvard Medical School, Boston, Massachusetts 02129, Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, Neuro-Oncology Research Group, Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands, Molecular Neuro-Oncology Laboratory and Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, Advanced Biomedical Computing Center, National Cancer Institute, Bethesda, Maryland 21702, Institute of Virology, University of Zurich, Zurich 8057, Switzerland, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Ozlem Senol
- Departments of Neurology and Radiology, Massachusetts General Hospital, and Neuroscience Program, Harvard Medical School, Boston, Massachusetts 02129, Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, Neuro-Oncology Research Group, Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands, Molecular Neuro-Oncology Laboratory and Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, Advanced Biomedical Computing Center, National Cancer Institute, Bethesda, Maryland 21702, Institute of Virology, University of Zurich, Zurich 8057, Switzerland, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Elvan Boke
- Departments of Neurology and Radiology, Massachusetts General Hospital, and Neuroscience Program, Harvard Medical School, Boston, Massachusetts 02129, Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, Neuro-Oncology Research Group, Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands, Molecular Neuro-Oncology Laboratory and Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, Advanced Biomedical Computing Center, National Cancer Institute, Bethesda, Maryland 21702, Institute of Virology, University of Zurich, Zurich 8057, Switzerland, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Marianne F. James
- Departments of Neurology and Radiology, Massachusetts General Hospital, and Neuroscience Program, Harvard Medical School, Boston, Massachusetts 02129, Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, Neuro-Oncology Research Group, Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands, Molecular Neuro-Oncology Laboratory and Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, Advanced Biomedical Computing Center, National Cancer Institute, Bethesda, Maryland 21702, Institute of Virology, University of Zurich, Zurich 8057, Switzerland, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Bakhos A. Tannous
- Departments of Neurology and Radiology, Massachusetts General Hospital, and Neuroscience Program, Harvard Medical School, Boston, Massachusetts 02129, Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, Neuro-Oncology Research Group, Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands, Molecular Neuro-Oncology Laboratory and Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, Advanced Biomedical Computing Center, National Cancer Institute, Bethesda, Maryland 21702, Institute of Virology, University of Zurich, Zurich 8057, Switzerland, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Anat O. Stemmer-Rachamimov
- Departments of Neurology and Radiology, Massachusetts General Hospital, and Neuroscience Program, Harvard Medical School, Boston, Massachusetts 02129, Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, Neuro-Oncology Research Group, Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands, Molecular Neuro-Oncology Laboratory and Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, Advanced Biomedical Computing Center, National Cancer Institute, Bethesda, Maryland 21702, Institute of Virology, University of Zurich, Zurich 8057, Switzerland, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Ming Yi
- Departments of Neurology and Radiology, Massachusetts General Hospital, and Neuroscience Program, Harvard Medical School, Boston, Massachusetts 02129, Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, Neuro-Oncology Research Group, Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands, Molecular Neuro-Oncology Laboratory and Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, Advanced Biomedical Computing Center, National Cancer Institute, Bethesda, Maryland 21702, Institute of Virology, University of Zurich, Zurich 8057, Switzerland, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Robert M. Stephens
- Departments of Neurology and Radiology, Massachusetts General Hospital, and Neuroscience Program, Harvard Medical School, Boston, Massachusetts 02129, Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, Neuro-Oncology Research Group, Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands, Molecular Neuro-Oncology Laboratory and Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, Advanced Biomedical Computing Center, National Cancer Institute, Bethesda, Maryland 21702, Institute of Virology, University of Zurich, Zurich 8057, Switzerland, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Cornel Fraefel
- Departments of Neurology and Radiology, Massachusetts General Hospital, and Neuroscience Program, Harvard Medical School, Boston, Massachusetts 02129, Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, Neuro-Oncology Research Group, Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands, Molecular Neuro-Oncology Laboratory and Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, Advanced Biomedical Computing Center, National Cancer Institute, Bethesda, Maryland 21702, Institute of Virology, University of Zurich, Zurich 8057, Switzerland, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - James F. Gusella
- Departments of Neurology and Radiology, Massachusetts General Hospital, and Neuroscience Program, Harvard Medical School, Boston, Massachusetts 02129, Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, Neuro-Oncology Research Group, Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands, Molecular Neuro-Oncology Laboratory and Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, Advanced Biomedical Computing Center, National Cancer Institute, Bethesda, Maryland 21702, Institute of Virology, University of Zurich, Zurich 8057, Switzerland, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Anna M. Krichevsky
- Departments of Neurology and Radiology, Massachusetts General Hospital, and Neuroscience Program, Harvard Medical School, Boston, Massachusetts 02129, Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, Neuro-Oncology Research Group, Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands, Molecular Neuro-Oncology Laboratory and Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, Advanced Biomedical Computing Center, National Cancer Institute, Bethesda, Maryland 21702, Institute of Virology, University of Zurich, Zurich 8057, Switzerland, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Xandra O. Breakefield
- Departments of Neurology and Radiology, Massachusetts General Hospital, and Neuroscience Program, Harvard Medical School, Boston, Massachusetts 02129, Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, Neuro-Oncology Research Group, Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands, Molecular Neuro-Oncology Laboratory and Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, Advanced Biomedical Computing Center, National Cancer Institute, Bethesda, Maryland 21702, Institute of Virology, University of Zurich, Zurich 8057, Switzerland, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
2006
|
Wang P, Zou F, Zhang X, Li H, Dulak A, Tomko RJ, Lazo JS, Wang Z, Zhang L, Yu J. microRNA-21 negatively regulates Cdc25A and cell cycle progression in colon cancer cells. Cancer Res 2009; 69:8157-65. [PMID: 19826040 DOI: 10.1158/0008-5472.can-09-1996] [Citation(s) in RCA: 264] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
microRNAs (miRNA) are small noncoding RNAs that participate in diverse biological processes by suppressing target gene expression. Altered expression of miR-21 has been reported in cancer. To gain insights into its potential role in tumorigenesis, we generated miR-21 knockout colon cancer cells through gene targeting. Unbiased microarray analysis combined with bioinformatics identified cell cycle regulator Cdc25A as a miR-21 target. miR-21 suppressed Cdc25A expression through a defined sequence in its 3'-untranslated region. We found that miR-21 is induced by serum starvation and DNA damage, negatively regulates G(1)-S transition, and participates in DNA damage-induced G(2)-M checkpoint through down-regulation of Cdc25A. In contrast, miR-21 deficiency did not affect apoptosis induced by a variety of commonly used anticancer agents or cell proliferation under normal cell culture conditions. Furthermore, miR-21 was found to be underexpressed in a subset of Cdc25A-overexpressing colon cancers. Our data show a role of miR-21 in modulating cell cycle progression following stress, providing a novel mechanism of Cdc25A regulation and a potential explanation of miR-21 in tumorigenesis.
Collapse
Affiliation(s)
- Peng Wang
- Departments of Pathology and Pharmacology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2007
|
Abstract
MicroRNAs are short regulatory RNAs that negatively modulate gene expression at the post-transcriptional level, and are deeply involved in the pathogenesis of several types of cancers. To investigate whether specific miRNAs and their target genes participate in the molecular pathogenesis of laryngeal carcinoma, oligonucleotide microarrays were used to assess the differential expression profiles of microRNAs and mRNAs in laryngeal carcinoma tissues compared with normal tissues. The oncogenic miRNA, microRNA-21 (miR-21), was found to be upregulated in laryngeal carcinoma tissues. Knockdown of miR-21 by specific antisense oligonucleotides inhibited the proliferation potential of HEp-2 cells, whereas overexpression of miR-21 elevated growth activity of the cells, as detected by the colony formation assay. The cell number reduction caused by miR-21 inhibition was due to the loss of control of the G1-S phase transition, instead of a noticeable increase in apoptosis. Subsequently, a new target gene of miR-21, BTG2, was found to be downregulated in laryngeal carcinoma tissues. BTG2 is known to act as a pan-cell cycle regulator and tumor suppressor. These findings indicate that aberrant expression of miR-21 may contribute to the malignant phenotype of laryngeal carcinoma by maintaining a low level of BTG2. The identification of the oncogenic miR-21 and its target gene, BTG2, in laryngeal carcinoma is potentially valuable for cancer diagnosis and therapy.
Collapse
|
2008
|
Lee CH, Subramanian S, Beck AH, Espinosa I, Senz J, Zhu SX, Huntsman D, van de Rijn M, Gilks CB. MicroRNA profiling of BRCA1/2 mutation-carrying and non-mutation-carrying high-grade serous carcinomas of ovary. PLoS One 2009; 4:e7314. [PMID: 19798417 PMCID: PMC2749450 DOI: 10.1371/journal.pone.0007314] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2008] [Accepted: 09/11/2009] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNA) are 20 approximately 25 nucleotide non-coding RNAs that inhibit the translation of targeted mRNA, and they have been implicated in the development of human malignancies. High grade serous ovarian carcinomas, the most common and lethal subtype of ovarian cancer, can occur sporadically or in the setting of BRCA1/2 syndromes. Little is known regarding the miRNA expression profiles of high grade serous carcinoma in relation to BRCA1/2 status, and compared to normal tubal epithelium, the putative tissue of origin for high grade serous carcinomas. METHODOLOGY/PRINCIPAL FINDINGS Global miRNA expression profiling was performed on a series of 33 high grade serous carcinomas, characterized with respect to BRCA1/2 status (mutation, epigenetic silencing with loss of expression or normal), and with clinical follow-up, together with 2 low grade serous carcinomas, 2 serous borderline tumors, and 3 normal fallopian tube samples, using miRNA microarrays (328 human miRNA). Unsupervised hierarchical clustering based on miRNA expression profiles showed no clear separation between the groups of carcinomas with different BRCA1/2 status. There were relatively few miRNAs that were differentially expressed between the genotypic subgroups. Comparison of 33 high grade serous carcinomas to 3 normal fallopian tube samples identified several dysregulated miRNAs (false discovery rate <5%), including miR-422b and miR-34c. Quantitative RT-PCR analysis performed on selected miRNAs confirmed the pattern of differential expression shown by microarray analysis. Prognostically, lower level miR-422b and miR-34c in high grade serous carcinomas were both associated with decreased disease-specific survival by Kaplan-Meier analysis (p<0.05). CONCLUSIONS/SIGNIFICANCE High grade serous ovarian carcinomas with and without BRCA1/2 abnormalities demonstrate very similar miRNA expression profiles. High grade serous carcinomas as a group exhibit significant miRNA dysregulation in comparison to tubal epithelium and the levels of miR-34c and miR-422b appear to be prognostically important.
Collapse
Affiliation(s)
- Cheng-Han Lee
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver General Hospital, Vancouver, British Columbia, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
2009
|
Abstract
Over the past several years it has become clear that alterations in the expression of microRNA (miRNA) genes contribute to the pathogenesis of most--if not all--human malignancies. These alterations can be caused by various mechanisms, including deletions, amplifications or mutations involving miRNA loci, epigenetic silencing or the dysregulation of transcription factors that target specific miRNAs. Because malignant cells show dependence on the dysregulated expression of miRNA genes, which in turn control or are controlled by the dysregulation of multiple protein-coding oncogenes or tumour suppressor genes, these small RNAs provide important opportunities for the development of future miRNA-based therapies.
Collapse
Affiliation(s)
- Carlo M Croce
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Medical Center, 410 West 10th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
2010
|
Edwin F, Anderson K, Ying C, Patel TB. Intermolecular interactions of Sprouty proteins and their implications in development and disease. Mol Pharmacol 2009; 76:679-91. [PMID: 19570949 PMCID: PMC2769046 DOI: 10.1124/mol.109.055848] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 07/01/2009] [Indexed: 12/19/2022] Open
Abstract
Receptor tyrosine kinase (RTK) signaling is spatially and temporally regulated by a number of positive and negative regulatory mechanisms. These regulatory mechanisms control the amplitude and duration of the signals initiated at the cell surface to have a normal or aberrant biological outcome in development and disease, respectively. In the past decade, the Sprouty (Spry) family of proteins has been identified as modulators of RTK signaling in normal development and disease. This review summarizes recent advances concerning the biological activities modulated by Spry family proteins, their interactions with signaling proteins, and their involvement in cardiovascular diseases and cancer. The diversity of mechanisms in the regulation of Spry expression and activity in cell systems emphasizes the crucial role of Spry proteins in development and growth across the animal kingdom.
Collapse
Affiliation(s)
- Francis Edwin
- Department of Pharmacology and Experimental Therapeutics, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| | | | | | | |
Collapse
|
2011
|
Friedland DR, Eernisse R, Erbe C, Gupta N, Cioffi JA. Cholesteatoma growth and proliferation: posttranscriptional regulation by microRNA-21. Otol Neurotol 2009; 30:998-1005. [PMID: 19672202 PMCID: PMC2828528 DOI: 10.1097/mao.0b013e3181b4e91f] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The goal of this study was to identify novel regulatory mechanisms controlling the growth and proliferation of cholesteatoma. Specifically, the potential role of microRNAs, regulators of protein translation, was studied in cholesteatoma. STUDY DESIGN This study represents a molecular biologic investigation characterizing and comparing microRNA and protein expression in cholesteatoma and normal postauricular skin. METHODS Cholesteatoma and normal skin were taken from patients at the time of surgery. Tissue was processed for RNA and protein extraction. Real-time reverse-transcriptase-polymerase chain reaction was used to assess levels of human microRNAs, reverse-transcriptase-polymerase chain reaction was used to confirm the presence of upstream regulators, and Western blot analyses were used to assess levels of downstream target proteins. RESULTS Among the microRNAs investigated, human microRNA-21 (hsa-miR-21) showed a 4.4-fold higher expression in cholesteatoma as compared with normal skin (p = 0.0011). The downstream targets of hsa-miR-21, PTEN and programmed cell death 4, were found to be greatly reduced in 3 of 4 cholesteatoma samples. Proposed upstream regulators of hsa-miR-21 expression (CD14, interleukin 6R, gp130, and signal transducer and activator of transcription 3) were present in all cholesteatoma tissues. CONCLUSION MicroRNAs represent powerful regulators of protein translation, and their dysregulation has been implicated in many neoplastic diseases. This study specifically identified up-regulation of hsa-miR-21 concurrent with down-regulation of potent tumor suppressor proteins PTEN and programmed cell death 4. These proteins control aspects of apoptosis, proliferation, invasion, and migration. The results of this study were used to develop a model for cholesteatoma proliferation through microRNA dysregulation. This model can serve as a template for further study into potential RNA-based therapies for the treatment of cholesteatoma.
Collapse
Affiliation(s)
- David R Friedland
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| | | | | | | | | |
Collapse
|
2012
|
Wang B, Majumder S, Nuovo G, Kutay H, Volinia S, Patel T, Schmittgen TD, Croce C, Ghoshal K, Jacob ST. Role of microRNA-155 at early stages of hepatocarcinogenesis induced by choline-deficient and amino acid-defined diet in C57BL/6 mice. Hepatology 2009; 50:1152-61. [PMID: 19711427 PMCID: PMC2757532 DOI: 10.1002/hep.23100] [Citation(s) in RCA: 249] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
UNLABELLED MicroRNAs (miRs) are conserved, small (20-25 nucleotide) noncoding RNAs that negatively regulate expression of messenger RNAs (mRNAs) at the posttranscriptional level. Aberrant expression of certain microRNAs plays a causal role in tumorigenesis. Here, we report identification of hepatic microRNAs that are dysregulated at early stages of feeding C57BL/6 mice choline-deficient and amino acid-defined (CDAA) diet that is known to promote nonalcoholic steatohepatitis (NASH)-induced hepatocarcinogenesis after 84 weeks. Microarray analysis identified 30 hepatic microRNAs that are significantly (P < or = 0.01) altered in mice fed CDAA diet for 6, 18, 32, and 65 weeks compared with those fed choline-sufficient and amino acid-defined (CSAA) diet. Real-time reverse transcription polymerase chain reaction (RT-PCR) analysis demonstrated up-regulation of oncogenic miR-155, miR-221/222, and miR-21 and down-regulation of the most abundant liver-specific miR-122 at early stages of hepatocarcinogenesis. Western blot analysis showed reduced expression of hepatic phosphatase and tensin homolog (PTEN) and CCAAT/enhancer binding protein beta (C/EBPbeta), respective targets of miR-21 and miR-155, in these mice at early stages. DNA binding activity of nuclear factor kappa B (NF-kappaB) that transactivates miR-155 gene was significantly (P = 0.002) elevated in the liver nuclear extract of mice fed CDAA diet. Furthermore, the expression of miR-155, as measured by in situ hybridization and real-time RT-PCR, correlated with diet-induced histopathological changes in the liver. Ectopic expression of miR-155 promoted growth of hepatocellular carcinoma (HCC) cells, whereas its depletion inhibited cell growth. Notably, miR-155 was significantly (P = 0.0004) up-regulated in primary human HCCs with a concomitant decrease (P = 0.02) in C/EBPbeta level compared with matching liver tissues. CONCLUSION Temporal changes in microRNA profile occur at early stages of CDAA diet-induced hepatocarcinogenesis. Reciprocal regulation of specific oncomirs and their tumor suppressor targets implicate their role in NASH-induced hepatocarcinogenesis and suggest their use in the diagnosis, prognosis, and therapy of liver cancer.
Collapse
Affiliation(s)
- Bo Wang
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | - Sarmila Majumder
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, OH 43210, USA
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Gerard Nuovo
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
- Department of Pathology, Ohio State University, Columbus, OH 43210, USA
| | - Huban Kutay
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | - Stefano Volinia
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
- Department of Molecular Virology, Immunology and Medical Genetics, Ohio State University, Columbus, OH 43210, USA
| | - Tushar Patel
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
- Department of Gastroenterology and Hepatology, Ohio State University, Columbus, OH 43210, USA
| | - Thomas D. Schmittgen
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
- Department of Pharmacy and Ohio State University, Columbus, OH 43210, USA
| | - Carlo Croce
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
- Department of Molecular Virology, Immunology and Medical Genetics, Ohio State University, Columbus, OH 43210, USA
| | - Kalpana Ghoshal
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, OH 43210, USA
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Samson T. Jacob
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, OH 43210, USA
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
2013
|
Mathé EA, Nguyen GH, Bowman ED, Zhao Y, Budhu A, Schetter AJ, Braun R, Reimers M, Kumamoto K, Hughes D, Altorki NK, Casson AG, Liu CG, Wang XW, Yanaihara N, Hagiwara N, Dannenberg AJ, Miyashita M, Croce CM, Harris CC. MicroRNA expression in squamous cell carcinoma and adenocarcinoma of the esophagus: associations with survival. Clin Cancer Res 2009; 15:6192-200. [PMID: 19789312 DOI: 10.1158/1078-0432.ccr-09-1467] [Citation(s) in RCA: 306] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE The dismal outcome of esophageal cancer patients highlights the need for novel prognostic biomarkers, such as microRNAs (miRNA). Although recent studies have established the role of miRNAs in esophageal carcinoma, a comprehensive multicenter study investigating different histologic types, including squamous cell carcinoma (SCC) and adenocarcinoma with or without Barrett's, is still lacking. EXPERIMENTAL DESIGN miRNA expression was measured in cancerous and adjacent noncancerous tissue pairs collected from 100 adenocarcinoma and 70 SCC patients enrolled at four clinical centers from the United States, Canada, and Japan. Microarray-based expression was measured in a subset of samples in two cohorts and was validated in all available samples. RESULTS In adenocarcinoma patients, miR-21, miR-223, miR-192, and miR-194 expression was elevated, whereas miR-203 expression was reduced in cancerous compared with noncancerous tissue. In SCC patients, we found elevated miR-21 and reduced miR-375 expression levels in cancerous compared with noncancerous tissue. When comparing cancerous tissue expression between adenocarcinoma and SCC patients, miR-194 and miR-375 were elevated in adenocarcinoma patients. Significantly, elevated miR-21 expression in noncancerous tissue of SCC patients and reduced levels of miR-375 in cancerous tissue of adenocarcinoma patients with Barrett's were strongly associated with worse prognosis. Associations with prognosis were independent of tumor stage or nodal status, cohort type, and chemoradiation therapy. CONCLUSIONS Our multicenter-based results highlight miRNAs involved in major histologic types of esophageal carcinoma and uncover significant associations with prognosis. Elucidating miRNAs relevant to esophageal carcinogenesis is potentially clinically useful for developing prognostic biomarkers and identifying novel drug targets and therapies.
Collapse
Affiliation(s)
- Ewy A Mathé
- Laboratory of Human Carcinogenesis, National Cancer Institute/NIH, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2014
|
Abstract
Small non-coding miRNAs (microRNAs) are emerging as key factors involved in cancer at all stages ranging from initiation to metastasis. MIRN21 is an miRNA gene that codes for the miR-21 miRNA which has been found to be overexpressed in many tumour samples where it has been analysed. Whereas consistent overexpression of miR-21 in tumours could be suggestive of functional effects of miR-21 in cancer, more in-depth functional studies with miR-21 are demonstrating that mir-21 displays oncogenic activity and can be classed as an oncomir. Extensive efforts are underway to identify the downstream genes and gene networks regulated by miR-21 and to identify the upstream factors that are regulating expression of miR-21. Even though miR-21 is one of the most intensively studied miRNAs, for all miRNAs, our understanding of miRNA signalling pathways is currently in its early stages. The unravelling of such RNA signalling pathways and networks will be key to understanding the role that dysregulated miRNA functioning can play in oncogenic processes.
Collapse
|
2015
|
Ohlsson Teague EMC, Print CG, Hull ML. The role of microRNAs in endometriosis and associated reproductive conditions. Hum Reprod Update 2009; 16:142-65. [DOI: 10.1093/humupd/dmp034] [Citation(s) in RCA: 216] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
2016
|
Braconi C, Meng F, Swenson E, Khrapenko L, Huang N, Patel T. Candidate therapeutic agents for hepatocellular cancer can be identified from phenotype-associated gene expression signatures. Cancer 2009; 115:3738-48. [PMID: 19514085 DOI: 10.1002/cncr.24417] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND The presence of vascular invasion in hepatocellular cancer (HCC) correlates with prognosis, and is a critical determinant of both the therapeutic approach and the recurrence or intrahepatic metastases. The authors sought to identify candidate therapeutic agents capable of targeting the invasive phenotype in HCC. METHODS A gene expression signature associated with vascular invasion derived from 81 human cases of HCC was used to screen a database of 453 genomic profiles associated with 164 bioactive molecules using the connectivity map. Candidate agents were identified by their inverse correlation to the query gene signature. The efficacy of the candidate agents to target invasion was experimentally verified in PLC/PRF-5 and HepG2 HCC cells. RESULTS The gene signature associated with vascular invasion in HCC comprised of 47 up-regulated and 26 down-regulated genes. Computational bioinformatics analysis revealed several putative candidates, including resveratrol and 17-allylamino-geldanamycin (17-AAG). Both of these agents reduced HCC cell invasion at noncytotoxic concentrations. 17-AAG, a heat shock protein 90 (HSP-90) inhibitor, was shown to modulate the expression of several diverse cancer-associated genes, including ADAMTS1, part of the query signature, and maspin, an HSP-90-associated protein with a tumor suppressor role in HCC. CONCLUSIONS Candidates for further evaluation as therapies to limit invasion in HCC have been identified using a computational bioinformatics analysis of phenotype-associated gene expression. Phenotype targeting using genomic profiling is a rational approach for drug discovery. Therapeutic strategies targeting a defined cancer-associated phenotype can be identified without a detailed knowledge of individual downstream targets.
Collapse
Affiliation(s)
- Chiara Braconi
- Department of Internal Medicine, College of Medicine, Ohio State University, Columbus, OH, USA
| | | | | | | | | | | |
Collapse
|
2017
|
Belair C, Darfeuille F, Staedel C. Helicobacter pylori and gastric cancer: possible role of microRNAs in this intimate relationship. Clin Microbiol Infect 2009; 15:806-12. [PMID: 19702585 DOI: 10.1111/j.1469-0691.2009.02960.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chronic infection by Helicobacter pylori is a major risk factor for gastric adenocarcinoma and mucosa-associated lymphoid tissue lymphoma. H. pylori possesses a set of virulence factors, including the CagA effector, which interferes with intracellular signalling pathways and mediates phenotypic alterations, strongly evoking neoplasic transformation. MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression involved in development, cell proliferation and immune responses. miRNAs are frequently altered in cancers, revealing their functions as oncogenes or tumour suppressors. However, the role, if any, that miRNAs play in the host cell responses to H. pylori remains unknown. This review considers the possible involvement of some miRNAs, including miR-146, miR-155, miR-21, miR-27a, miR-106-93-25 and miR-221-222 clusters and the miR-200 family in H. pylori-induced infection and gastric cancers. Further exploration of miRNA-mediated gene silencing, taking into account the relationship between host targets and bacterial effectors, will most certainly bring new insights into the control of gene expression in human gastric cells chronically infected by H. pylori.
Collapse
Affiliation(s)
- C Belair
- INSERM U869, Université Victor Segalen Bordeaux 2, 146 rue Léo Saignat, Bordeaux, France
| | | | | |
Collapse
|
2018
|
Abstract
MicroRNAs (miRNAs) are small RNA strands (20-25 nucleotides) that regulate gene expression by translational repression as well as by messenger RNA degradation. This review will examine the application and function of miRNAs in immune cell development and differentiation.
Collapse
Affiliation(s)
- Tie-Jun Liang
- The Department of Digestive Diseases, Shandong University Provincial Hospital, Jinan, Shandong Province, China
| | | |
Collapse
|
2019
|
Leite KRM, Canavez JMS, Reis ST, Tomiyama AH, Piantino CB, Sañudo A, Camara-Lopes LH, Srougi M. miRNA analysis of prostate cancer by quantitative real time PCR: comparison between formalin-fixed paraffin embedded and fresh-frozen tissue. Urol Oncol 2009; 29:533-7. [PMID: 19734068 DOI: 10.1016/j.urolonc.2009.05.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 05/06/2009] [Accepted: 05/11/2009] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Micro RNA (miRNA) is a class of small noncoding RNA that plays a major role in the regulation of gene expression, which has been related to cancer behavior. The possibility of analyzing miRNA from the archives of pathology laboratories is exciting, as it allows for large retrospective studies. Formalin is the most common fixative used in the surgical pathology routine, and its promotion of nucleic acid degradation is well known. Our aim is to compare miRNA profiles from formalin-fixed paraffin embedded (FFPE) tissues with fresh-frozen prostate cancer tissues. METHODS The expression of 14 miRNAs was determined by quantitative real time polymerase chain reaction (qRT-PCR) in 5 paired fresh-frozen and FFPE tissues, which were representative of prostate carcinoma. RESULTS There was a very good correlation of the miRNA expression of miR-let7c and miR-32 between the fresh-frozen and FFPE tissues, with Pearson's correlation coefficients of 0.927 (P = 0.023) and 0.960 (P = 0.010), respectively. For the remaining miRNAs, the correlation was good with Spearman correlation coefficient of 0.638 (P < 0.001). CONCLUSION Analysis of miRNAs from routinely processed and stored FFPE prostate tissue is feasible for some miRNAs using qRT-PCR. Further studies should be conducted to confirm the reliability of using stock tissues for miRNA expression determination.
Collapse
Affiliation(s)
- Katia R M Leite
- Laboratory of Medical Investigation-LIM55, Urology Department, University of Sao Paulo Medical School, Sao Paulo, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
2020
|
Li S, Chen X, Zhang H, Liang X, Xiang Y, Yu C, Zen K, Li Y, Zhang CY. Differential expression of microRNAs in mouse liver under aberrant energy metabolic status. J Lipid Res 2009; 50:1756-1765. [PMID: 19372595 PMCID: PMC2724772 DOI: 10.1194/jlr.m800509-jlr200] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2008] [Revised: 03/31/2009] [Indexed: 12/13/2022] Open
Abstract
Despite years of effort, exact pathogenesis of nonalcoholic fatty liver disease (NAFLD) remains obscure. To gain an insight into the regulatory roles of microRNAs (miRNAs) in aberrant energy metabolic status and pathogenesis of NAFLD, we analyzed the expression of miRNAs in livers of ob/ob mice, streptozotocin (STZ)-induced type 1 diabetic mice, and normal C57BL/6 mice by miRNA microarray. Compared with normal C57BL/6 mice, ob/ob mice showed upregulation of eight miRNAs and downregulation of four miRNAs in fatty livers. Upregulation of miR-34a and downregulation of miR-122 was found in livers of STZ-induced diabetic mice. These results demonstrate that distinct miRNAs are strongly dysregulated in NAFLD and hyperglycemia. Comparison between miRNA expressions in livers of ob/ob mice and STZ-administered mice further revealed upregulation of four miRNAs and downregulation of two miRNAs in livers of ob/ob mice, indicating that these miRNAs may represent a molecular signature of NAFLD. A distinctive miRNA expression pattern was identified in ob/ob mouse liver, and hierarchical clustering of this pattern could clearly discriminate ob/ob mice from either normal C57BL/6 mice or STZ-administered mice. These findings suggest an important role of miRNAs in hepatic energy metabolism and implicate the participation of miRNAs in the pathophysiological processes of NAFLD.
Collapse
Affiliation(s)
- Shengjie Li
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xi Chen
- Jiangsu Diabetes Center, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Hongjie Zhang
- Jiangsu Diabetes Center, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Xiangying Liang
- Jiangsu Diabetes Center, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Yang Xiang
- Jiangsu Diabetes Center, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Chaohui Yu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Ke Zen
- Jiangsu Diabetes Center, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Youming Li
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Chen-Yu Zhang
- Jiangsu Diabetes Center, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| |
Collapse
|
2021
|
Cortez MA, Calin GA. MicroRNA identification in plasma and serum: a new tool to diagnose and monitor diseases. Expert Opin Biol Ther 2009; 9:703-711. [PMID: 19426115 DOI: 10.1517/14712590902932889] [Citation(s) in RCA: 341] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNAs that regulate gene expression at the posttranscriptional level by degrading or blocking translation of messenger RNA (mRNA) targets. MiRNAs play important regulatory roles in a variety of cellular functions as well as in several diseases, including cancer. MiRNA-specific expression profiles have been reported for several pathological conditions. Recently, the discovery of miRNAs in serum opens up the possibility of using miRNAs as biomarkers of disease. In this review, we discuss the potential use of miRNAs as clinically diagnostic biomarkers of various cancers and other diseases as well as the approaches used to detect these molecules in serum and plasma.
Collapse
|
2022
|
Shah PP, Hutchinson LE, Kakar SS. Emerging role of microRNAs in diagnosis and treatment of various diseases including ovarian cancer. J Ovarian Res 2009; 2:11. [PMID: 19712461 PMCID: PMC2744658 DOI: 10.1186/1757-2215-2-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 08/27/2009] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) represent a class of small non-coding RNAs that control gene expression by targeting messenger RNA (mRNA). Recently, it has been demonstrated that miRNA expression is altered in many human diseases including cancers, suggesting that miRNA may play a potential role in the pathogenesis of different diseases. It has also been reported that there is a unique expression pattern of miRNAs in the disease state differing from the normal state. In this review, we focus on the miRNA signatures in different human diseases including cancers. Such signatures may be used as diagnostic and prognostic markers.
Collapse
Affiliation(s)
- Parag P Shah
- Department of Physiology and Biophysics, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.
| | | | | |
Collapse
|
2023
|
Valeri N, Vannini I, Fanini F, Calore F, Adair B, Fabbri M. Epigenetics, miRNAs, and human cancer: a new chapter in human gene regulation. Mamm Genome 2009; 20:573-80. [PMID: 19697081 DOI: 10.1007/s00335-009-9206-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 07/06/2009] [Indexed: 02/08/2023]
Abstract
Cancer is a genetic and epigenetic disease. MicroRNAs (miRNAs), a class of small noncoding RNAs, have been shown to be deregulated in many diseases including cancer. An intertwined connection between epigenetics and miRNAs has been supported by the recent identification of a specific subgroup of miRNAs called "epi-miRNAs" that can directly and indirectly modulate the activity of the epigenetic machinery. The complexity of this connection is enhanced by the epigenetic regulation of miRNA expression that generates a fine regulatory feedback loop. This review focuses on how epigenetics affects the miRNome and how the recently identified epi-miRNAs regulate the epigenome in human cancers, ultimately contributing to human carcinogenesis.
Collapse
Affiliation(s)
- Nicola Valeri
- Department of Molecular Virology, Immunology, and Medical Genetics and Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
2024
|
Fedeli M, Napolitano A, Wong MPM, Marcais A, de Lalla C, Colucci F, Merkenschlager M, Dellabona P, Casorati G. Dicer-dependent microRNA pathway controls invariant NKT cell development. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:2506-12. [PMID: 19625646 DOI: 10.4049/jimmunol.0901361] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Invariant NK T (iNKT) cells are a separate lineage of T lymphocytes with innate effector functions. They express an invariant TCR specific for lipids presented by CD1d and their development and effector differentiation rely on a unique gene expression program. We asked whether this program includes microRNAs, small noncoding RNAs that regulate gene expression posttranscriptionally and play a key role in the control of cellular differentiation programs. To this aim, we investigated iNKT cell development in mice in which Dicer, the RNase III enzyme that generates functional microRNAs, is deleted in cortical thymocytes. We find that Dicer deletion results in a substantial reduction of iNKT cells in thymus and their disappearance from the periphery, unlike mainstream T cells. Without Dicer, iNKT cells do not complete their innate effector differentiation and display a defective homeostasis due to increased cell death. Differentiation and homeostasis of iNKT cells require Dicer in a cell-autonomous fashion. Furthermore, we identify a miRNA profile specific for iNKT cells, which exhibits features of activated/effector T lymphocytes, consistent with the idea that iNKT cells undergo agonist thymic selection. Together, these results define a critical role of the Dicer-dependent miRNA pathway in the physiology of iNKT cells.
Collapse
Affiliation(s)
- Maya Fedeli
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, H San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
2025
|
MicroRNA-21 promotes cell proliferation and down-regulates the expression of programmed cell death 4 (PDCD4) in HeLa cervical carcinoma cells. Biochem Biophys Res Commun 2009; 388:539-42. [PMID: 19682430 DOI: 10.1016/j.bbrc.2009.08.044] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 08/05/2009] [Indexed: 11/22/2022]
Abstract
MicroRNAs are involved in cancer-related processes. The microRNA-21(miR-21) has been identified as the only miRNA over-expressed in a wide variety of cancers, including cervical cancer. However, the function of miR-21 is unknown in cervical carcinomas. In this study, we found that the inhibition of miR-21 in HeLa cervical cancer cells caused profound suppression of cell proliferation, and up-regulated the expression of the tumor suppressor gene PDCD4. We also provide direct evidence that PDCD4-3'UTR is a functional target of miR-21 and that the 18bp putative target site can function as the sole regulatory element in HeLa cells. These results suggest that miR-21 may play an oncogenic role in the cellular processes of cervical cancer and may serve as a target for effective therapies.
Collapse
|
2026
|
Gramantieri L, Fornari F, Ferracin M, Veronese A, Sabbioni S, Calin GA, Grazi GL, Croce CM, Bolondi L, Negrini M. MicroRNA-221 targets Bmf in hepatocellular carcinoma and correlates with tumor multifocality. Clin Cancer Res 2009; 15:5073-81. [PMID: 19671867 DOI: 10.1158/1078-0432.ccr-09-0092] [Citation(s) in RCA: 249] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
UNLABELLED Deregulated cell proliferation and apoptosis play a major role in hepatocellular carcinoma (HCC). MicroRNAs participate in the modulation of key molecules linked to hepatocarcinogenesis. PURPOSE This study aims to investigate the role of miR-221 in the modulation of Bmf, a proapoptotic BH3-only protein, and to characterize miR-221 contribution to hepatocarcinogenesis through modulation of apoptosis. EXPERIMENTAL DESIGN Transfection of miR-221 and anti-miR-221 in HCC-derived cell lines and luciferase reporter assay were used to assess Bmf as a target of miR-221. Modulation of miR-221 and Bmf expression contributed to characterize their role in anoikis. Primary HCC tissues were analyzed to assess the clinical relevance of in vitro findings. RESULTS Enforced miR-221 expression caused Bmf down-regulation, whereas anti-miR-221 induced its up-regulation. A luciferase reporter assay confirmed Bmf as a target of miR-221. Following matrix detachment, miR-221 silencing led to increased apoptotic cell death. The analysis of HCC tissues revealed an inverse correlation between miR-221 and Bmf expression and a direct correlation between Bmf and activated caspase-3, as a marker of apoptosis. High miR-221 levels were associated with tumor multifocality and reduced time to recurrence after surgery. CONCLUSIONS Our results indicate that miR-221, by targeting Bmf, inhibits apoptosis. Moreover, in HCC, miR-221 overexpression is associated with a more aggressive phenotype. These findings, together with the previously reported modulation of CDKN1B/p27 and CDKN1C/p57, show that miR-221 simultaneously affects multiple pro-oncogenic pathways and suggest miR-221 as a potential target for nonconventional treatment against HCC.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Aged
- Aged, 80 and over
- Apoptosis/drug effects
- Apoptosis/genetics
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/mortality
- Carcinoma, Hepatocellular/pathology
- Female
- Gene Expression Regulation, Neoplastic
- Gene Targeting
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/mortality
- Liver Neoplasms/pathology
- Male
- MicroRNAs/antagonists & inhibitors
- MicroRNAs/physiology
- Middle Aged
- Neoplasm Recurrence, Local
- Neoplasms, Multiple Primary/genetics
- Neoplasms, Multiple Primary/mortality
- Neoplasms, Multiple Primary/pathology
- RNA, Small Interfering/pharmacology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Laura Gramantieri
- Dipartimento di Medicina Interna e Gastroenterologia e Centro di Ricerca Biomedica Applicata, Università di Bologna, Bologna, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2027
|
Tsai LM, Yu D. MicroRNAs in common diseases and potential therapeutic applications. Clin Exp Pharmacol Physiol 2009; 37:102-7. [PMID: 19671070 DOI: 10.1111/j.1440-1681.2009.05269.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
1. Evidence gathered in recent years has revealed microRNAs (miRNAs) fine-tune gene expression and play an important role in various cellular processes, including cell growth, differentiation, proliferation and apoptosis. 2. The present review summarizes current knowledge of miRNA pathways in the pathogenesis of cancer, cardiac diseases, neurodegenerative diseases, diabetes, autoimmune/inflammatory diseases and infection. 3. There is considerable potential to target miRNAs as a novel approach in the treatment of human diseases. Currently, miRNA-based therapies are being examined in both animal models and human clinical trials.
Collapse
Affiliation(s)
- Louis M Tsai
- Immunology and Inflammation Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | | |
Collapse
|
2028
|
Abstract
MicroRNAs are a class of small regulatory RNAs that function to modulate protein expression. This control allows for fine-tuning of the cellular phenotype, including regulation of proliferation, cell signaling, and apoptosis; not surprisingly, microRNAs contribute to liver cancer biology. Recent investigations in human liver cancers and tumor-derived cell lines have demonstrated decreased or increased expression of particular microRNAs in hepatobiliary cancer cells. Based on predicted and validated protein targets as well as functional consequences of altered expression, microRNAs with decreased expression in liver tumor cells may normally aid in limiting neoplastic transformation. Conversely, selected microRNAs that are up-regulated in liver tumor cells can promote malignant features, contributing to carcinogenesis. In addition, microRNAs themselves are subject to regulated expression, including regulation by tumor suppressor and oncogene pathways. This review will focus on the expression and function of cancer-related microRNAs, including their intimate involvement in tumor suppressor and oncogene signaling networks relevant to hepatobiliary neoplasia.
Collapse
Affiliation(s)
- Justin L Mott
- Division of Gastroenterology and Hepatology, Miles and Shirley Fiterman Center for Digestive Diseases, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
2029
|
Abstract
Melanocytes undergo extensive genetic changes during transformation into aggressive melanomas. These changes deregulate genes whose aberrant activity promotes the development of this disease. The phosphoinositide-3-kinase (PI3K) and mitogen-activated protein (MAP) kinase pathways are two key signaling cascades that have been found to play prominent roles in melanoma development. These pathways relay extra-cellular signals via an ordered series of consecutive phosphorylation events from cell surface throughout the cytoplasm and nucleus regulating diverse cellular processes including proliferation, survival, invasion and angiogenesis. It is generally accepted that therapeutic agents would need to target these two pathways to be an effective therapy for the long-term treatment of advanced-stage melanoma patients. This review provides an overview of the PI3 kinase pathway focusing specifically on two members of the pathway, called PTEN and Akt3, which play important roles in melanoma development. Mechanisms leading to deregulation of these two proteins and therapeutic implications of targeting this signaling cascade to treat melanoma are detailed in this review.
Collapse
Affiliation(s)
| | - Gavin P. Robertson
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- Department of Pathology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- Department of Dermatology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- The Foreman Foundation for Melanoma Research, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- Penn State Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| |
Collapse
|
2030
|
Affiliation(s)
- Tsutomu Masaki
- Department of Gastroenterology and Neurology, Kagawa University School of Medicine, Kagawa, Japan
| |
Collapse
|
2031
|
Sotiropoulou G, Pampalakis G, Lianidou E, Mourelatos Z. Emerging roles of microRNAs as molecular switches in the integrated circuit of the cancer cell. RNA (NEW YORK, N.Y.) 2009; 15:1443-1461. [PMID: 19561119 PMCID: PMC2714746 DOI: 10.1261/rna.1534709] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Transformation of normal cells into malignant tumors requires the acquisition of six hallmark traits, e.g., self-sufficiency in growth signals, insensitivity to antigrowth signals and self-renewal, evasion of apoptosis, limitless replication potential, angiogenesis, invasion, and metastasis, which are common to all cancers (Hanahan and Weinberg 2000). These new cellular traits evolve from defects in major regulatory microcircuits that are fundamental for normal homeostasis. The discovery of microRNAs (miRNAs) as a new class of small non-protein-coding RNAs that control gene expression post-transcriptionally by binding to various mRNA targets suggests that these tiny RNA molecules likely act as molecular switches in the extensive regulatory web that involves thousands of transcripts. Most importantly, accumulating evidence suggests that numerous microRNAs are aberrantly expressed in human cancers. In this review, we discuss the emergent roles of microRNAs as switches that function to turn on/off known cellular microcircuits. We outline recent compelling evidence that deregulated microRNA-mediated control of cellular microcircuits cooperates with other well-established regulatory mechanisms to confer the hallmark traits of the cancer cell. Furthermore, these exciting insights into aberrant microRNA control in cancer-associated circuits may be exploited for cancer therapies that will target deregulated miRNA switches.
Collapse
Affiliation(s)
- Georgia Sotiropoulou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras 26500, Greece.
| | | | | | | |
Collapse
|
2032
|
Garofalo M, Condorelli GL, Croce CM, Condorelli G. MicroRNAs as regulators of death receptors signaling. Cell Death Differ 2009; 17:200-8. [PMID: 19644509 DOI: 10.1038/cdd.2009.105] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Death receptors, belonging to the TNF receptor superfamily, induce apoptosis through two different pathways, one involving the effector caspases directly (type I cells or mitochondria-independent death), the other one amplifying the death signal through the mitochondrial pathway (type II cells or mitochondria-dependent death). MicroRNAs (miRNAs) are a class of small noncoding RNAs that regulate the stability or translational efficiency of targeted messenger RNAs. MiRNAs are involved in many cellular processes that are altered in cancer, such as differentiation, proliferation and apoptosis. In this review we will discuss recent findings implicating miRNAs as regulators of death receptors and pro- and antiapoptotic genes involved in programmed cell death pathways.
Collapse
Affiliation(s)
- M Garofalo
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| | | | | | | |
Collapse
|
2033
|
Aberrant overexpression of microRNAs activate AKT signaling via down-regulation of tumor suppressors in natural killer-cell lymphoma/leukemia. Blood 2009; 114:3265-75. [PMID: 19641183 DOI: 10.1182/blood-2009-06-222794] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The gene(s) responsible for natural killer (NK)-cell lymphoma/leukemia have not been identified. In the present study, we found that in NK-cell lymphoma lines (n = 10) and specimens of primary lymphoma (n = 10), levels of miR-21 and miR-155 expression were inversely related and were significantly greater than those found in normal natural killer (CD3(-)CD56(+)) cells (n = 8). To determine the functions of these microRNAs in lymphomagenesis, we examined the effects of antisense oligonucleotides (ASOs) targeting miR-21 (ASO-21) and/or miR-155 (ASO-155) in NK-cell lymphoma lines overexpressing one or both of these miRNAs. Conversely, cells showing little endogenous expression of miR-21 or miR-155 were transduced by the use of lentiviral vectors, leading to their overexpression. Reducing expression of miR-21 or miR-155 led to up-regulation of phosphatase and tensin homologue (PTEN), programmed cell death 4 (PDCD4), or Src homology-2 domain-containing inositol 5-phosphatase 1 (SHIP1). ASO-21- and ASO-155-treated cell lines all showed down-regulation of phosphorylated AKT(ser473). Moreover, transduction with either miR-21 or miR-155 led to down-regulation of PTEN and PDCD4 or SHIP1 with up-regulation of phosphorylated AKT(ser473). Collectively, these results provide important new insight into the pathogenesis of NK-cell lymphoma/leukemia and suggest targeting miR-21 and/or miR-155 may represent a useful approach to treating NK-cell lymphoma/leukemia.
Collapse
|
2034
|
Chow TFF, Youssef YM, Lianidou E, Romaschin AD, Honey RJ, Stewart R, Pace KT, Yousef GM. Differential expression profiling of microRNAs and their potential involvement in renal cell carcinoma pathogenesis. Clin Biochem 2009; 43:150-8. [PMID: 19646430 DOI: 10.1016/j.clinbiochem.2009.07.020] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 07/08/2009] [Accepted: 07/14/2009] [Indexed: 02/08/2023]
Abstract
OBJECTIVE We seek to identify the differentially expressed miRNAs in the clear cell subtype (ccRCC) of kidney cancer. DESIGN AND METHODS We performed a miRNA microarray analysis to compare the miRNA expression levels between ccRCC tissues and their normal counterpart. The top dysregulated miRNAs were validated by quantitative RT-PCR analysis. Bioinformatics analysis was also performed. RESULTS A total of 33 dysregulated miRNAs were identified in ccRCC, including 21 upregulated miRNAs and many of these miRNAs have been reported to be dysregulated in other malignancies and have a potential role in cancer pathogenesis. The miRNAs showed a significant correlation with reported chromosomal aberration sites. We also utilized target prediction algorithms to identify gene targets. Preliminary analyses showed these targets can be directly involved in RCC pathogenesis. CONCLUSION We identified miRNAs that are dysregulated in ccRCC and bioinformatics analysis suggests that these miRNAs may be involved in cancer pathogenesis and have the potential to be biomarkers.
Collapse
Affiliation(s)
- Tsz-Fung F Chow
- Department of Laboratory Medicine, and the Keenan Research Centre in the Li Ka Shing Knowledge Institute St Michael's Hospital, Toronto, Canada
| | | | | | | | | | | | | | | |
Collapse
|
2035
|
Bourguignon LYW, Spevak CC, Wong G, Xia W, Gilad E. Hyaluronan-CD44 interaction with protein kinase C(epsilon) promotes oncogenic signaling by the stem cell marker Nanog and the Production of microRNA-21, leading to down-regulation of the tumor suppressor protein PDCD4, anti-apoptosis, and chemotherapy resistance in breast tumor cells. J Biol Chem 2009; 284:26533-46. [PMID: 19633292 DOI: 10.1074/jbc.m109.027466] [Citation(s) in RCA: 254] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Multidrug resistance and disease relapse is a challenging clinical problem in the treatment of breast cancer. In this study, we investigated the hyaluronan (HA)-induced interaction between CD44 (a primary HA receptor) and protein kinase Cepsilon (PKCepsilon), which regulates a number of human breast tumor cell functions. Our results indicate that HA binding to CD44 promotes PKCepsilon activation, which, in turn, increases the phosphorylation of the stem cell marker, Nanog, in the breast tumor cell line MCF-7. Phosphorylated Nanog is then translocated from the cytosol to the nucleus and becomes associated with RNase III DROSHA and the RNA helicase p68. This process leads to microRNA-21 (miR-21) production and a tumor suppressor protein (e.g. PDCD4 (program cell death 4)) reduction. All of these events contribute to up-regulation of inhibitors of apoptosis proteins (IAPs) and MDR1 (multidrug-resistant protein), resulting in anti-apoptosis and chemotherapy resistance. Transfection of MCF-7 cells with PKCepsilon or Nanog-specific small interfering RNAs effectively blocks HA-mediated PKCepsilon-Nanog signaling events, abrogates miR-21 production, and increases PDCD4 expression/eIF4A binding. Subsequently, this PKCepsilon-Nanog signaling inhibition causes IAP/MDR1 down-regulation, apoptosis, and chemosensitivity. To further evaluate the role of miR-21 in oncogenesis and chemoresistance, MCF-7 cells were also transfected with a specific anti-miR-21 inhibitor in order to silence miR-21 expression and inhibit its target functions. Our results indicate that anti-miR-21 inhibitor not only enhances PDCD4 expression/eIF4A binding but also blocks HA-CD44-mediated tumor cell behaviors. Thus, this newly discovered HA-CD44 signaling pathway should provide important drug targets for sensitizing tumor cell apoptosis and overcoming chemotherapy resistance in breast cancer cells.
Collapse
Affiliation(s)
- Lilly Y W Bourguignon
- Endocrine Unit, Department of Medicine, University of California at San Francisco, and Veterans Affairs Medical Center, San Francisco, California 94121, USA.
| | | | | | | | | |
Collapse
|
2036
|
Abstract
More than 1000 microRNAs (miRNAs) are expressed in human cells, some tissue or cell type specific, others considered as house-keeping molecules. Functions and direct mRNA targets for some miRNAs have been relatively well studied over the last years. Every miRNA potentially regulates the expression of numerous protein-coding genes (tens to hundreds), but it has become increasingly clear that not all miRNAs are equally important; diverse high-throughput screenings of various systems have identified a limited number of key functional miRNAs over and over again. Particular miRNAs emerge as principal regulators that control major cell functions in various physiological and pathophysiological settings. Since its identification 3 years ago as the miRNA most commonly and strongly up-regulated in human brain tumour glioblastoma [1], miR-21 has attracted the attention of researchers in various fields, such as development, oncology, stem cell biology and aging, becoming one of the most studied miRNAs, along with let-7, miR-17-92 cluster ('oncomir-1'), miR-155 and a few others. However, an miR-21 knockout mouse has not yet been generated, and the data about miR-21 functions in normal cells are still very limited. In this review, we summarise the current knowledge of miR-21 functions in human disease, with an emphasis on its regulation, oncogenic role, targets in human cancers, potential as a disease biomarker and novel therapeutic target in oncology.
Collapse
Affiliation(s)
- Anna M Krichevsky
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
2037
|
Abstract
MicroRNAs (miRs) are small non-coding RNAs regulating gene expression at the post-transcriptional and/or translational levels. miRs play important roles in diverse biological processes, including development, cell differentiation, proliferation and apoptosis. Recent evidence has shown that miR loci frequently map to cancer-associated genomic regions and deregulated miR expression profiles are associated with many cancer types, implicating miRs in crucial processes that lead to tumourigenesis. Here, we review the current findings about miRs and tumourigenesis, focusing on their involvement in the apoptosis pathway. A significant observation is that greater than one-quarter of all known human miRs were reported to be deregulated in at least one cancer type. The expression of a subset of miRs (e.g. miR-21 and miR-155) was found to be consistently up-regulated, whereas another subset of miRs (e.g.miR-143 and miR-145) was consistently down-regulated across different cancer types suggesting their involvement in regulating common cellular processes whose deregulation may lead to tumourigenesis. Several miRs were implicated to play roles in cell proliferation and apoptosis. Some miRs, such as miR-29b and miR-15–16, influence only the apoptotic pathway, whereas others including let-7/miR-98 and miR-17–92 may play roles in both the apoptotic and cell-proliferation pathways. In conclusion, although our current understanding of the functions of miRs is still fragmentary, taken together, this review highlights the complex and intricate roles that miRs play in the regulation of cellular processes. Perturbation of the expression of miRs may thus lead to tumourigenesis.
Collapse
Affiliation(s)
- Yu Wang
- Department of Biochemistry, National University of Singapore, Singapore
| | | |
Collapse
|
2038
|
Seike M, Goto A, Okano T, Bowman ED, Schetter AJ, Horikawa I, Mathe EA, Jen J, Yang P, Sugimura H, Gemma A, Kudoh S, Croce CM, Harris CC. MiR-21 is an EGFR-regulated anti-apoptotic factor in lung cancer in never-smokers. Proc Natl Acad Sci U S A 2009; 106:12085-12090. [PMID: 19597153 PMCID: PMC2715493 DOI: 10.1073/pnas.0905234106] [Citation(s) in RCA: 411] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Indexed: 01/02/2023] Open
Abstract
Fifteen percent of lung cancer cases occur in never-smokers and show characteristics that are molecularly and clinically distinct from those in smokers. Epidermal growth factor receptor (EGFR) gene mutations, which are correlated with sensitivity to EGFR-tyrosine kinase inhibitors (EGFR-TKIs), are more frequent in never-smoker lung cancers. In this study, microRNA (miRNA) expression profiling of 28 cases of never-smoker lung cancer identified aberrantly expressed miRNAs, which were much fewer than in lung cancers of smokers and included miRNAs previously identified (e.g., up-regulated miR-21) and unidentified (e.g., down-regulated miR-138) in those smoker cases. The changes in expression of some of these miRNAs, including miR-21, were more remarkable in cases with EGFR mutations than in those without these mutations. A significant correlation between phosphorylated-EGFR (p-EGFR) and miR-21 levels in lung carcinoma cell lines and the suppression of miR-21 by an EGFR-TKI, AG1478, suggest that the EGFR signaling is a pathway positively regulating miR-21 expression. In the never-smoker-derived lung adenocarcinoma cell line H3255 with mutant EGFR and high levels of p-EGFR and miR-21, antisense inhibition of miR-21 enhanced AG1478-induced apoptosis. In a never-smoker-derived adenocarcinoma cell line H441 with wild-type EGFR, the antisense miR-21 not only showed the additive effect with AG1478 but also induced apoptosis by itself. These results suggest that aberrantly increased expression of miR-21, which is enhanced further by the activated EGFR signaling pathway, plays a significant role in lung carcinogenesis in never-smokers, as well as in smokers, and is a potential therapeutic target in both EGFR-mutant and wild-type cases.
Collapse
Affiliation(s)
- Masahiro Seike
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
- Department of Pulmonary Medicine/Infection and Oncology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Akiteru Goto
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Tetsuya Okano
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
- Department of Pulmonary Medicine/Infection and Oncology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Elise D. Bowman
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Aaron J. Schetter
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Izumi Horikawa
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Ewy A. Mathe
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jin Jen
- Division of Pulmonary and Critical Care Medicine and Microarray Share Resources, Mayo Clinic and Foundation, Rochester, MN 55905
| | - Ping Yang
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Haruhiko Sugimura
- Department of Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; and
| | - Akihiko Gemma
- Department of Pulmonary Medicine/Infection and Oncology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Shoji Kudoh
- Department of Pulmonary Medicine/Infection and Oncology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Carlo M. Croce
- Molecular Virology, Immunology and Medical Genetics, Ohio State University Comprehensive Cancer Center, Columbus, OH 43212
| | - Curtis C. Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
2039
|
|
2040
|
Fornari F, Gramantieri L, Giovannini C, Veronese A, Ferracin M, Sabbioni S, Calin GA, Grazi GL, Croce CM, Tavolari S, Chieco P, Negrini M, Bolondi L. MiR-122/cyclin G1 interaction modulates p53 activity and affects doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res 2009; 69:5761-7. [PMID: 19584283 DOI: 10.1158/0008-5472.can-08-4797] [Citation(s) in RCA: 318] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The identification of target genes is a key step for assessing the role of aberrantly expressed microRNAs (miRNA) in human cancer and for the further development of miRNA-based gene therapy. MiR-122 is a liver-specific miRNA accounting for 70% of the total miRNA population. Its down-regulation is a common feature of both human and mouse hepatocellular carcinoma (HCC). We have previously shown that miR-122 can regulate the expression of cyclin G1, whose high levels have been reported in several human cancers. We evaluated the role of miR-122 and cyclin G1 expression in hepatocarcinogenesis and in response to treatment with doxorubicin and their relevance on survival and time to recurrence (TTR) of HCC patients. We proved that, by modulating cyclin G1, miR-122 influences p53 protein stability and transcriptional activity and reduces invasion capability of HCC-derived cell lines. In addition, in a therapeutic perspective, we assayed the effects of a restored miR-122 expression in triggering doxorubicin-induced apoptosis and we proved that miR-122, as well as cyclin G1 silencing, increases sensitivity to doxorubicin challenge. In patients resected for HCC, lower miR-122 levels were associated with a shorter TTR, whereas higher cyclin G1 expression was related to a lower survival, suggesting that miR-122 might represent an effective molecular target for HCC. Our findings establish a basis toward the development of combined chemo- and miRNA-based therapy for HCC treatment.
Collapse
Affiliation(s)
- Francesca Fornari
- Dipartimento di Medicina Clinica e CRBA, Policlinico S.Orsola-Malpighi, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2041
|
Bhatti I, Lee A, Lund J, Larvin M. Small RNA: a large contributor to carcinogenesis? J Gastrointest Surg 2009; 13:1379-88. [PMID: 19373515 DOI: 10.1007/s11605-009-0887-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 03/24/2009] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Homeostasis in normal tissue includes balancing cell proliferation and apoptosis (programmed cell death). Mutations in proto-oncogenes or tumor suppressor genes may lead to disruption of normal cellular function, uncontrolled cell proliferation, and subsequent carcinogenesis. DISCUSSION Micro-RNAs (miRNAs) are short (19-24 nucleotide) noncoding RNA sequences that inhibit protein translation and can cause the degradation of subsequent messenger RNA, thus playing an important role in the regulation of gene expression. Aberrant expression of miRNAs has been shown to inhibit tumor suppressor genes or inappropriately activate oncogenes initiating the cancer process. Unique miRNA expression profiles have been found in different cancer types at different stages, suggesting a possible diagnostic application. This review summarizes the current evidence supporting a link between aberrant miRNA expression and carcinogenesis and its possible role in improving diagnosis and treatment of cancers, particularly of gastrointestinal origin.
Collapse
Affiliation(s)
- Imran Bhatti
- Division of Surgery, School of Graduate Entry Medicine and Health, University of Nottingham Medical School at Derby, Derby City General Hospital, Uttoxeter Road, Derby, DE22 3DT, UK.
| | | | | | | |
Collapse
|
2042
|
Zhang X, Cairns M, Rose B, O'Brien C, Shannon K, Clark J, Gamble J, Tran N. Alterations in miRNA processing and expression in pleomorphic adenomas of the salivary gland. Int J Cancer 2009; 124:2855-63. [DOI: 10.1002/ijc.24298] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
2043
|
Tryndyak VP, Ross SA, Beland FA, Pogribny IP. Down-regulation of the microRNAs miR-34a, miR-127, and miR-200b in rat liver during hepatocarcinogenesis induced by a methyl-deficient diet. Mol Carcinog 2009; 48:479-87. [PMID: 18942116 DOI: 10.1002/mc.20484] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Altered expression of microRNAs (miRNAs) has been reported in diverse human cancers; however, the down-regulation or up-regulation of any particular miRNAs in cancer is not sufficient to address the role of these changes in carcinogenesis. In this study, using the rat model of liver carcinogenesis induced by a methyl-deficient diet, which is relevant to the hepatocarcinogenesis in humans associated with viral hepatitis C and B infections, alcohol exposure and metabolic liver diseases, we showed that the development of hepatocellular carcinoma (HCC) is characterized by prominent early changes in expression of miRNA genes, specifically by inhibition of expression of microRNAs miR-34a, miR-127, miR-200b, and miR-16a involved in the regulation of apoptosis, cell proliferation, cell-to-cell connection, and epithelial-mesenchymal transition. The mechanistic link between these alterations in miRNAs expression and the development of HCC was confirmed by the corresponding changes in the levels of E2F3, NOTCH1, BCL6, ZFHX1B, and BCL2 proteins targeted by these miRNAs. The significance of miRNAs expression dysregulation in respect to hepatocarcinogenesis was confirmed by the persistence of these miRNAs alterations in the livers of methyl-deficient rats re-fed a methyl-adequate diet. Altogether, the early occurrence of alterations in miRNAs expression and their persistence during the entire process of hepatocarcinogenesis indicate that the dysregulation of microRNAs expression may be an important contributing factor in the development of HCC.
Collapse
Affiliation(s)
- Volodymyr P Tryndyak
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079, USA
| | | | | | | |
Collapse
|
2044
|
Novakova J, Slaby O, Vyzula R, Michalek J. MicroRNA involvement in glioblastoma pathogenesis. Biochem Biophys Res Commun 2009; 386:1-5. [PMID: 19523920 DOI: 10.1016/j.bbrc.2009.06.034] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 06/05/2009] [Indexed: 01/04/2023]
Abstract
MicroRNAs are endogenously expressed regulatory noncoding RNAs. Altered expression levels of several microRNAs have been observed in glioblastomas. Functions and direct mRNA targets for these microRNAs have been relatively well studied over the last years. According to these data, it is now evident, that impairment of microRNA regulatory network is one of the key mechanisms in glioblastoma pathogenesis. MicroRNA deregulation is involved in processes such as cell proliferation, apoptosis, cell cycle regulation, invasion, glioma stem cell behavior, and angiogenesis. In this review, we summarize the current knowledge of miRNA functions in glioblastoma with an emphasis on its significance in glioblastoma oncogenic signaling and its potential to serve as a disease biomarker and a novel therapeutic target in oncology.
Collapse
Affiliation(s)
- Jana Novakova
- University Cell Immunotherapy Center, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | | | | | | |
Collapse
|
2045
|
Li J, Huang H, Sun L, Yang M, Pan C, Chen W, Wu D, Lin Z, Zeng C, Yao Y, Zhang P, Song E. MiR-21 indicates poor prognosis in tongue squamous cell carcinomas as an apoptosis inhibitor. Clin Cancer Res 2009; 15:3998-4008. [PMID: 19509158 DOI: 10.1158/1078-0432.ccr-08-3053] [Citation(s) in RCA: 326] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE We aim to examine miR-21 expression in tongue squamous cell carcinomas (TSCC) and correlate it with patient clinical status, and to investigate its contribution to TSCC cell growth, apoptosis, and tumorigenesis. EXPERIMENTAL DESIGN MicroRNA profiling was done in 10 cases of TSCC with microarray. MiR-21 overexpression was quantitated with quantitative reverse transcription-PCR in 103 patients, and correlated to the pathoclinical status of the patients. Immunohistochemistry was used to examine the expression of TPM1 and PTEN, and terminal deoxynucleotidyl transferase-mediated dUTP labeling to evaluate apoptosis. Moreover, miR-21 antisense oligonucleotide (ASO) was transfected in SCC-15 and CAL27 cell lines, and tumor cell growth was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, adherent colony formation, and soft agar assay, whereas apoptosis was determined by Annexin V assay, cytochrome c release, and caspase 3 assay. Tumorigenesis was evaluated by xenografting SCC-15 cells in nude mice. RESULTS MiR-21 is overexpressed in TSCC relative to adjacent normal tissues. The level of miR-21 is reversely correlated with TPM1 and PTEN expression and apoptosis of cancer cells. Multivariate analysis showed that miR-21 expression is an independent prognostic factor indicating poor survival. Inhibiting miR-21 with ASO in TSCC cell lines reduces survival and anchorage-independent growth, and induces apoptosis in TSCC cell lines. Simultaneous silencing of TPM1 with siRNA only partially recapitulates the effect of miR-21 ASO. Furthermore, repeated injection of miR-21 ASO suppresses tumor formation in nude mice by reducing cell proliferation and inducing apoptosis. CONCLUSIONS miR-21 is an independent prognostic indicator for TSCC, and may play a role in TSCC development by inhibiting cancer cell apoptosis partly via TPM1 silencing.
Collapse
Affiliation(s)
- Jinsong Li
- Oral and Maxillofacial Surgery, and Breast Tumor Center, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2046
|
McCafferty MPJ, McNeill RE, Miller N, Kerin MJ. Interactions between the estrogen receptor, its cofactors and microRNAs in breast cancer. Breast Cancer Res Treat 2009; 116:425-32. [PMID: 19507020 DOI: 10.1007/s10549-009-0429-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 05/23/2009] [Indexed: 01/08/2023]
Abstract
The activity of selective estrogen receptor modulators (SERMs) is not fully explained by an estrogen receptor (ER) switch model that simply turns estrogen activity on or off. A better understanding of the mechanisms involved in estrogen signaling and the development of drug resistance could help stratify patients into more coherent treatment groups and identify novel therapeutic candidates. This review describes how interactions between two novel factors known to influence estrogenic activity: nuclear receptor cofactors--protein partners which modulate estrogen action, and microRNAs--a class of recently discovered regulatory elements, may impact hormone-sensitive breast cancer. The role of nuclear receptor cofactors in estrogen signaling and the associations between ER cofactors and breast cancer are described. We outline the activity of microRNAs (miRNAs) and their associations with breast cancer and detail recent evidence of interactions between the ER and its cofactors and miRNA and provide an overview of the emerging field of miRNA-based therapeutics. We propose that previously unrecognised interactions between these two species of regulatory molecules may underlie at least some of the heterogeneity of breast cancer in terms of its clinical course and response to treatment. The exploitation of such associations will have important implications for drug development.
Collapse
Affiliation(s)
- Marc P J McCafferty
- Department of Surgery, Clinical Science Institute, National University of Ireland, Galway, Galway, Ireland.
| | | | | | | |
Collapse
|
2047
|
Yamamichi N, Shimomura R, Inada KI, Sakurai K, Haraguchi T, Ozaki Y, Fujita S, Mizutani T, Furukawa C, Fujishiro M, Ichinose M, Shiogama K, Tsutsumi Y, Omata M, Iba H. Locked nucleic acid in situ hybridization analysis of miR-21 expression during colorectal cancer development. Clin Cancer Res 2009; 15:4009-16. [PMID: 19509156 DOI: 10.1158/1078-0432.ccr-08-3257] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE To better understand microRNA miR-21 function in carcinogenesis, we analyzed miR-21 expression patterns in different stages of colorectal cancer development using in situ hybridization (ISH). EXPERIMENTAL DESIGN Locked nucleic acid (LNA)/DNA probes and a biotin-free tyramide signal amplification system were used in ISH analyses of miRNA expression. Conditions for specific detection of miR-21 were determined using human cell lines and miR-21-expressing lentiviral vectors. Expression was determined in 39 surgically excised colorectal tumors and 34 endoscopically resected colorectal polyps. RESULTS In the surgical samples, miR-21 expression was much higher in colorectal cancers than in normal mucosa. Strong miR-21 expression was also observed in cancer-associated stromal fibroblasts, suggesting miR-21 induction by cancer-secreted cytokines. Protein expression of PDCD4, a miR-21 target, was inversely correlated with miR-21 expression, confirming that miR-21 is indeed a negative regulator of PDCD4 in vivo. In the endoscopic samples, miR-21 expression was very high in malignant adenocarcinomas but was not elevated in nontumorigenic polyps. Precancerous adenomas also frequently showed miR-21 up-regulation. CONCLUSION Using the LNA-ISH system for miRNA detection, miR-21 was detectable in precancerous adenomas. The frequency and extent of miR-21 expression increased during the transition from precancerous colorectal adenoma to advanced carcinoma. Expression patterns of miR-21 RNA and its target, tumor suppressor protein PDCD4, were mutually exclusive. This pattern may have clinical application as a biomarker for colorectal cancer development and might be emphasized by self-reinforcing regulatory systems integrated with the miR-21 gene, which has been previously shown in cell culture.
Collapse
Affiliation(s)
- Nobutake Yamamichi
- Department of Microbiology and Immunology, Division of Host-Parasite Interaction, Faculty of Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2048
|
Abstract
MicroRNAs (miRNAs) are non-protein-coding small RNA molecules that negatively regulate target messenger RNA through degradation or suppression of protein translation. MiRNAs play important roles in the control of many biologic processes, such as development, differentiation, proliferation, and apoptosis. Increasing evidence shows that aberrant miRNA expression profiles and unique miRNA signaling pathways are present in a variety of cancers. MiRNAs function as oncogenes or tumor suppressors during tumor development and progression. Experimental evidence demonstrates that correction of specific miRNA alterations using miRNA mimics or antagomirs can normalize the gene regulatory network and signaling pathways, and reverse the phenotype in cancerous cells. MiRNA-based gene therapy provides an attractive anti-tumor approach for integrated cancer therapy. In this review, we focus on miRNA-based treatment for cancers, summarize the delivery systems used in experimental and preclinical research, such as liposomes, viral vectors, and nanoparticles, and consider the safety and toxicity of miRNA therapy.
Collapse
Affiliation(s)
- Vivien Wang
- Department of Pathology, Evanston Northwestern Hospital, Evanston, Illinois, USA
| | | |
Collapse
|
2049
|
Huse JT, Brennan C, Hambardzumyan D, Wee B, Pena J, Rouhanifard SH, Sohn-Lee C, le Sage C, Agami R, Tuschl T, Holland EC. The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo. Genes Dev 2009; 23:1327-37. [PMID: 19487573 DOI: 10.1101/gad.1777409] [Citation(s) in RCA: 417] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Activated oncogenic signaling is central to the development of nearly all forms of cancer, including the most common class of primary brain tumor, glioma. Research over the last two decades has revealed the particular importance of the Akt pathway, and its molecular antagonist PTEN (phosphatase and tensin homolog), in the process of gliomagenesis. Recent studies have also demonstrated that microRNAs (miRNAs) may be responsible for the modulation of cancer-implicated genes in tumors. Here we report the identification miR-26a as a direct regulator of PTEN expression. We also show that miR-26a is frequently amplified at the DNA level in human glioma, most often in association with monoallelic PTEN loss. Finally, we demonstrate that miR-26a-mediated PTEN repression in a murine glioma model both enhances de novo tumor formation and precludes loss of heterozygosity and the PTEN locus. Our results document a new epigenetic mechanism for PTEN regulation in glioma and further highlight dysregulation of Akt signaling as crucial to the development of these tumors.
Collapse
Affiliation(s)
- Jason T Huse
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2050
|
BMP-6 inhibits microRNA-21 expression in breast cancer through repressing deltaEF1 and AP-1. Cell Res 2009; 19:487-96. [PMID: 19308091 DOI: 10.1038/cr.2009.34] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
MicroRNAs (miRNAs), which are small noncoding RNA molecules, play important roles in the post-transcriptional regulation process. The microRNA-21 gene (miR-21) has been reported to be highly expressed in various solid tumors, including breast cancer. Bone morphogenetic protein-6 (BMP-6) has been identified as an inhibitor of breast cancer epithelial-mesenchymal transition (EMT) through rescuing E-cadherin expression. We initiated experiments to identify the relationships between miR-21 and BMP-6 in breast cancer progression. Real-time PCR analysis showed that miR-21 expression was very high in MDA-MB-231 cells that expressed little BMP-6. A reverse correlation between BMP-6 and miR-21 was also determined in breast cancer tissue samples. Moreover, BMP-6 inhibited miR-21 transcription in MDA-MB-231 cells. In order to investigate how BMP-6 inhibited the miR-21 promoter (miPPR-21), we constructed a series of miPPR-21 reporters. Luciferase assay results indicated that BMP-6 inhibited miPPR-21 activity through the E2-box and AP-1-binding sites. We also demonstrated that both deltaEF1 and TPA induced miR-21 expression. Using site-directed mutation and CHIP assay, we found that deltaEF1 induced miPPR-21 activity by binding to the E2-box on miPPR-21. Moreover, TPA triggered miPPR-21 activity through the AP-1 binding sites. BMP-6 treatment significantly reduced the binding of these factors to miPPR-21 by decreasing the expression of deltaEF1 and c-Fos/c-Jun. We also demonstrated that BMP-6-induced downregulation of miR-21 modified the activity of PDCD4 3'UTR and inhibited MDA-MB-231 cell invasion. deltaEF1 overexpression and TPA induction blocked this inhibitory effect of BMP-6. In conclusion, BMP-6-induced inhibition of miR-21 suggests that BMP-6 may function as an anti-metastasis factor by a mechanism involving transcriptional repression of miR-21 in breast cancer.
Collapse
|