2101
|
3D Cell Migration Studies for Chemotaxis on Microfluidic-Based Chips: A Comparison between Cardiac and Dermal Fibroblasts. Bioengineering (Basel) 2018; 5:bioengineering5020045. [PMID: 29895736 PMCID: PMC6027294 DOI: 10.3390/bioengineering5020045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/07/2018] [Accepted: 06/09/2018] [Indexed: 11/16/2022] Open
Abstract
Fibroblast migration to damaged zones in different tissues is crucial to regenerate and recuperate their functional activity. However, fibroblast migration patterns have hardly been studied in disease terms. Here, we study this fundamental process in dermal and cardiac fibroblasts by means of microfluidic-based experiments, which simulate a three-dimensional matrix in which fibroblasts are found in physiological conditions. Cardiac fibroblasts show a higher mean and effective speed, as well as greater contractile force, in comparison to dermal fibroblasts. In addition, we generate chemical gradients to study fibroblast response to platelet derived growth factor (PDGF) and transforming growth factor beta (TGF-β) gradients. Dermal fibroblasts were attracted to PDGF, whereas cardiac fibroblasts are not. Notwithstanding, cardiac fibroblasts increased their mean and effective velocity in the presence of TGF-β. Therefore, given that we observe that the application of these growth factors does not modify fibroblasts’ morphology, these alterations in the migration patterns may be due to an intracellular regulation.
Collapse
|
2102
|
Hao Y, Ran Y, Lu B, Li J, Zhang J, Feng C, Fang J, Ma R, Qiao Z, Dai X, Xiong W, Liu J, Zhou Q, Hao J, Li R, Dai J. Therapeutic Effects of Human Umbilical Cord-Derived Mesenchymal Stem Cells on Canine Radiation-Induced Lung Injury. Int J Radiat Oncol Biol Phys 2018; 102:407-416. [PMID: 30191872 DOI: 10.1016/j.ijrobp.2018.05.068] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 05/02/2018] [Accepted: 05/25/2018] [Indexed: 12/27/2022]
Abstract
PURPOSE To investigate the effect of human umbilical cord-derived mesenchymal stem cell (MSC) transplantation on canine radiation-induced lung injury. METHODS AND MATERIALS Beagle dogs received localized 15-Gy x-ray radiation to the right lower lung to establish the model of radiation-induced lung injury. After 180 days, dogs were divided into 2 groups (4 per group). The MSC group received intratracheal MSC transplantation, and the saline group received the same volume of normal saline by lavage. The effect of MSC transplantation on lung injury was then evaluated 180 days after transplantation. RESULTS At 180 days after 15-Gy radiation, canine arterial blood oxygen partial pressure was significantly decreased, and the levels of hydroxyproline and transforming growth factor (TGF)-β in peripheral blood were significantly increased, whereas that of TGF-α was significantly decreased. Computed tomography evaluation revealed visible honeycomb shadows in the right middle and lower pulmonary pleurae. Blood oxygen partial pressure of the MSC group gradually increased over time, whereas the levels of hydroxyproline and TGF-β in the peripheral blood showed a decreasing trend; TGF-α levels gradually increased, which differed significantly from the results observed in the saline group. In addition, computed tomography and pathologic examination showed that the degree of lung injury in the MSC group was milder. The MSC group also showed significantly increased pulmonary superoxide dismutase levels and significantly decreased tumor necrosis factor-α, Interleukein-1, and hyaluronic acid levels. Further study confirmed that MSC transplantation inhibited the activation of TGF-β-Smad2/3 in lung tissues, and in vitro experiments showed that medium conditioned with MSCs effectively inhibited the increase in Smad2 and 3 levels induced by TGF-β1. CONCLUSION Canine radiation-induced lung injury could be observed at 180 days after radiation at 15 Gy. MSC transplantation can reduce oxidative stress, inflammatory reactions, and TGF-β-Smad2/3 pathway activation, thereby reducing lung injury.
Collapse
Affiliation(s)
- Yuhui Hao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China.
| | - Yonghong Ran
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Binghui Lu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Jiayin Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jiaojiao Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Chunjing Feng
- Institute of Animals, Chinese Academy of Sciences, Beijing, China
| | - Jinhui Fang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ruoyu Ma
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhihui Qiao
- Department of Respiratory Diseases, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiaotian Dai
- Department of Respiratory Diseases, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Wei Xiong
- Department of Respiratory Diseases, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jing Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Qi Zhou
- Institute of Animals, Chinese Academy of Sciences, Beijing, China
| | - Jie Hao
- Institute of Animals, Chinese Academy of Sciences, Beijing, China
| | - Rong Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Jianwu Dai
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2103
|
Liu X, Long X, Liu W, Zhao Y, Hayashi T, Yamato M, Mizuno K, Fujisaki H, Hattori S, Tashiro SI, Ogura T, Atsuzawa Y, Ikejima T. Type I collagen induces mesenchymal cell differentiation into myofibroblasts through YAP-induced TGF-β1 activation. Biochimie 2018; 150:110-130. [PMID: 29777737 DOI: 10.1016/j.biochi.2018.05.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 05/14/2018] [Indexed: 12/11/2022]
Abstract
In organ fibrosis, mechanical stress and transforming growth factor beta-1 (TGF-β1) promote differentiation into myofibroblast from mesenchymal cells, leading to extracellular matrix (ECM) remodeling or active synthesis, deposition or degradation of ECM components. A major component of ECM, type I collagen (col I) triple helical molecules assemble into fibrils or are denatured to gelatin without triple-helicity in remodeling. However, whether changes of ECM components in remodeling have influence on mesenchymal cell differentiation remains elusive. This study adopted three states of collagen I existing in ECM remodeling: molecular collagen, fibrillar collagen and gelatin to see what are characteristics in the effects on two cell lines of mesenchymal origin, murine 3T3-L1 embryonic fibroblast and murine C2C12 myoblasts. The results showed that all three forms of collagen I were capable of inducing these two cells to differentiate into myofibroblasts characterized by increased expression of alpha-smooth muscle actin (α-SMA) mRNA. The expression of α-SMA is positively regulated by TGF-β1. Nuclear translocation of Yes-associated protein (YAP) is involved in this process. Focal adhesion kinase (FAK) is activated in the cells cultured on molecular collagen-coated plates, contributing to YAP activation. On the other hand, in the cells cultured on fibrillar collagen gel or gelatin-coated plates, oxidative stress but not FAK induce YAP activation. In conclusion, the three physicochemically distinct forms of col I induce the differentiation of mesenchymal cells into myofibroblasts through different pathways.
Collapse
Affiliation(s)
- Xiaoling Liu
- China-Japan Research Institute of Medical Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xinyu Long
- China-Japan Research Institute of Medical Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Weiwei Liu
- China-Japan Research Institute of Medical Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yeli Zhao
- China-Japan Research Institute of Medical Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Toshihiko Hayashi
- China-Japan Research Institute of Medical Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, 110016, China; Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2665-1, Nakanomachi, Hachioji, Tokyo, 192-0015, Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, 162-8666, Japan
| | - Kazunori Mizuno
- Nippi Research Institute of Biomatrix, Ibaraki, 302-0017, Japan
| | - Hitomi Fujisaki
- Nippi Research Institute of Biomatrix, Ibaraki, 302-0017, Japan
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, Ibaraki, 302-0017, Japan
| | - Shin-Ichi Tashiro
- Department of Medical Education and Primary Care, Kyoto Prefectural University of Medicine, Kyoto, 603-8072, Japan
| | - Takaaki Ogura
- Nippi Research Institute of Biomatrix, Ibaraki, 302-0017, Japan
| | - Yuji Atsuzawa
- Nippi Research Institute of Biomatrix, Ibaraki, 302-0017, Japan
| | - Takashi Ikejima
- China-Japan Research Institute of Medical Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
2104
|
Seldin MM, Koplev S, Rajbhandari P, Vergnes L, Rosenberg GM, Meng Y, Pan C, Phuong TMN, Gharakhanian R, Che N, Mäkinen S, Shih DM, Civelek M, Parks BW, Kim ED, Norheim F, Chella Krishnan K, Hasin-Brumshtein Y, Mehrabian M, Laakso M, Drevon CA, Koistinen HA, Tontonoz P, Reue K, Cantor RM, Björkegren JLM, Lusis AJ. A Strategy for Discovery of Endocrine Interactions with Application to Whole-Body Metabolism. Cell Metab 2018; 27:1138-1155.e6. [PMID: 29719227 PMCID: PMC5935137 DOI: 10.1016/j.cmet.2018.03.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/14/2017] [Accepted: 03/24/2018] [Indexed: 12/16/2022]
Abstract
Inter-tissue communication via secreted proteins has been established as a vital mechanism for proper physiologic homeostasis. Here, we report a bioinformatics framework using a mouse reference population, the Hybrid Mouse Diversity Panel (HMDP), which integrates global multi-tissue expression data and publicly available resources to identify and functionally annotate novel circuits of tissue-tissue communication. We validate this method by showing that we can identify known as well as novel endocrine factors responsible for communication between tissues. We further show the utility of this approach by identification and mechanistic characterization of two new endocrine factors. Adipose-derived Lipocalin-5 is shown to enhance skeletal muscle mitochondrial function, and liver-secreted Notum promotes browning of white adipose tissue, also known as "beiging." We demonstrate the general applicability of the method by providing in vivo evidence for three additional novel molecules mediating tissue-tissue interactions.
Collapse
Affiliation(s)
- Marcus M Seldin
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Simon Koplev
- Department of Genetics and Genomic Sciences, The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden
| | - Prashant Rajbhandari
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Laurent Vergnes
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Gregory M Rosenberg
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yonghong Meng
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Calvin Pan
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Thuy M N Phuong
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Raffi Gharakhanian
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nam Che
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Selina Mäkinen
- Department of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland
| | - Diana M Shih
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mete Civelek
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Brian W Parks
- Department of Nutritional Sciences, University of Wisconsin, Madison, WI, USA
| | - Eric D Kim
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Frode Norheim
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | | | - Margarete Mehrabian
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Christian A Drevon
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Heikki A Koistinen
- Department of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Karen Reue
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Rita M Cantor
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Johan L M Björkegren
- Department of Genetics and Genomic Sciences, The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden
| | - Aldons J Lusis
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA.
| |
Collapse
|
2105
|
Chen L, Yang T, Lu DW, Zhao H, Feng YL, Chen H, Chen DQ, Vaziri ND, Zhao YY. Central role of dysregulation of TGF-β/Smad in CKD progression and potential targets of its treatment. Biomed Pharmacother 2018; 101:670-681. [PMID: 29518614 DOI: 10.1016/j.biopha.2018.02.090] [Citation(s) in RCA: 264] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/05/2018] [Accepted: 02/20/2018] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) has emerged as a major cause of morbidity and mortality worldwide. Interstitial fibrosis, glomerulosclerosis and inflammation play the central role in the pathogenesis and progression of CKD to end stage renal disease (ESRD). Transforming growth factor-β1 (TGF-β1) is the central mediator of renal fibrosis and numerous studies have focused on inhibition of TGF-β1 and its downstream targets for treatment of kidney disease. However, blockade of TGF-β1 has not been effective in the treatment of CKD patients. This may be, in part due to anti-inflammatory effect of TGF-β1. The Smad signaling system plays a central role in regulation of TGF-β1 and TGF-β/Smad pathway plays a key role in progressive renal injury and inflammation. This review provides an overview of the role of TGF-β/Smad signaling pathway in the pathogenesis of renal fibrosis and inflammation and an effective target of anti-fibrotic therapies. Under pathological conditions, Smad2 and Smad3 expression are upregulated, while Smad7 is downregulated. In addition to TGF-β1, other pathogenic mediators such as angiotensin II and lipopolysaccharide activate Smad signaling through both TGF-β-dependent and independent pathways. Smads also interact with other pathways including nuclear factor kappa B (NF-κB) to regulate renal inflammation and fibrosis. In the context of renal fibrosis and inflammation, Smad3 exerts profibrotic effect, whereas Smad2 and Smad7 play renal protective roles. Smad4 performs its dual functions by transcriptionally promoting Smad3-dependent renal fibrosis but simultaneously suppressing NF-κB-mediated renal inflammation via Smad7-dependent mechanism. Furthermore, TGF-β1 induces Smad3 expression to regulate microRNAs and Smad ubiquitination regulatory factor (Smurf) to exert its pro-fibrotic effect. In conclusion, TGF-β/Smad signaling is an important pathway that mediates renal fibrosis and inflammation. Thus, an effective anti-fibrotic therapy via inhibition of Smad3 and upregulation of Smad7 signaling constitutes an attractive approach for treatment of CKD.
Collapse
Affiliation(s)
- Lin Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Tian Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - De-Wen Lu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Hui Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Ya-Long Feng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Hua Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Dan-Qian Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Ying-Yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
2106
|
Identification of potential urine proteins and microRNA biomarkers for the diagnosis of pulmonary tuberculosis patients. Emerg Microbes Infect 2018; 7:63. [PMID: 29636444 PMCID: PMC5893550 DOI: 10.1038/s41426-018-0066-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 02/23/2018] [Accepted: 03/02/2018] [Indexed: 12/31/2022]
Abstract
This study identified urinary biomarkers for tuberculosis (TB) diagnosis. The urine proteomic profiles of 45 pulmonary tuberculosis patients prior to anti-TB treatment and 45 healthy controls were analyzed and compared using two-dimensional electrophoresis with matrix-assisted laser desorption/ionization time of flight mass spectrometry. Nineteen differentially expressed proteins were identified preliminarily, and western blotting and qRT-PCR were performed to confirm these changes at the translational and transcriptional levels, respectively, using samples from 122 additional pulmonary tuberculosis patients and 73 additional healthy controls. Two proteins, mannose-binding lectin 2 and a 35-kDa fragment of inter-α-trypsin inhibitor H4, exhibited the highest differential expression. We constructed a protein-microRNA interaction network that primarily involved complement and inflammatory responses. Eleven microRNAs from microRNA-target protein interactions were screened and validated using qRT-PCR with some of the above samples, including 97 pulmonary tuberculosis patients and 48 healthy controls. Only miR-625-3p exhibited significant differential expression (p < 0.05). miR-625-3p was increased to a greater extent in samples of smear-positive than smear-negative patients. miR-625-3p was predicted to target mannose-binding lectin 2 protein. A binary logistic regression model based on miR-625-3p, mannose-binding lectin 2, and inter-α-trypsin inhibitor H4 was further established. This three-biomarker combination exhibited better performance for tuberculosis diagnosis than individual biomarkers or any two-biomarker combination and generated a diagnostic sensitivity of 85.87% and a specificity of 87.50%. These novel urine biomarkers may significantly improve tuberculosis diagnosis.
Collapse
|
2107
|
Piperigkou Z, Götte M, Theocharis AD, Karamanos NK. Insights into the key roles of epigenetics in matrix macromolecules-associated wound healing. Adv Drug Deliv Rev 2018; 129:16-36. [PMID: 29079535 DOI: 10.1016/j.addr.2017.10.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/14/2017] [Accepted: 10/20/2017] [Indexed: 02/08/2023]
Abstract
Extracellular matrix (ECM) is a dynamic network of macromolecules, playing a regulatory role in cell functions, tissue regeneration and remodeling. Wound healing is a tissue repair process necessary for the maintenance of the functionality of tissues and organs. This highly orchestrated process is divided into four temporally overlapping phases, including hemostasis, inflammation, proliferation and tissue remodeling. The dynamic interplay between ECM and resident cells exerts its critical role in many aspects of wound healing, including cell proliferation, migration, differentiation, survival, matrix degradation and biosynthesis. Several epigenetic regulatory factors, such as the endogenous non-coding microRNAs (miRNAs), are the drivers of the wound healing response. microRNAs have pivotal roles in regulating ECM composition during wound healing and dermal regeneration. Their expression is associated with the distinct phases of wound healing and they serve as target biomarkers and targets for systematic regulation of wound repair. In this article we critically present the importance of epigenetics with particular emphasis on miRNAs regulating ECM components (i.e. glycoproteins, proteoglycans and matrix proteases) that are key players in wound healing. The clinical relevance of miRNA targeting as well as the delivery strategies designed for clinical applications are also presented and discussed.
Collapse
|
2108
|
Huang D, Meran S, Nie SP, Midgley A, Wang J, Cui SW, Xie M, Phillips GO, Phillips AO. Cordyceps sinensis : Anti-fibrotic and inflammatory effects of a cultured polysaccharide extract. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.bcdf.2017.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
2109
|
Pinto BI, Lujan OR, Ramos SA, Propper CR, Kellar RS. Estrogen Mitigates the Negative Effects of Arsenic Contamination in an In Vitro Wound Model. APPLIED IN VITRO TOXICOLOGY 2018; 4:24-29. [PMID: 30956995 PMCID: PMC5881251 DOI: 10.1089/aivt.2017.0020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Arsenic, a naturally occurring environmental contaminant, is harmful to humans at elevated concentrations. Increased levels of arsenic in the environment occur as a result of human activities and from natural geologically sourced leaching into ground and surface water. These sources pose an exposure risk above the USEPA standard to individuals whose food and water sources become contaminated. Arsenic exposure negatively impacts organ function and increases the risk for developing pathologies, including cancer. Some of the effects of arsenic on cancer translate to normal cell function in wound healing. To evaluate whether arsenic influences wound healing, an in vitro scratch assay was employed to study the effects of arsenic on cellular migration, which is a key component in the normal wound-healing process. In this study, skin cells were exposed to environmentally relevant concentrations of arsenic, and wound closure was evaluated. Results indicated that arsenic significantly decreased the rate of cellular migration in the scratch assay when compared with controls. In addition, estradiol, which has been shown to positively influence cellular and tissue processes involved in wound healing, reversed the slowing effects of arsenic on wound closure. These results suggest that arsenic contamination may inhibit, and estrogen may provide a therapeutic benefit for individuals with arsenic-contaminated wounds.
Collapse
Affiliation(s)
- Bronson I. Pinto
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona
- Center for Bioengineering Innovation, Northern Arizona University, Flagstaff, Arizona
| | - Oscar R. Lujan
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona
| | - Stephan A. Ramos
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona
| | - Catherine R. Propper
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona
- Center for Bioengineering Innovation, Northern Arizona University, Flagstaff, Arizona
| | - Robert S. Kellar
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona
- Center for Bioengineering Innovation, Northern Arizona University, Flagstaff, Arizona
- Department of Mechanical Engineering, Northern Arizona University, Flagstaff, Arizona
| |
Collapse
|
2110
|
Wilson RB. Hypoxia, cytokines and stromal recruitment: parallels between pathophysiology of encapsulating peritoneal sclerosis, endometriosis and peritoneal metastasis. Pleura Peritoneum 2018; 3:20180103. [PMID: 30911653 PMCID: PMC6405013 DOI: 10.1515/pp-2018-0103] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 03/01/2018] [Indexed: 02/06/2023] Open
Abstract
Peritoneal response to various kinds of injury involves loss of peritoneal mesothelial cells (PMC), danger signalling, epithelial-mesenchymal transition and mesothelial-mesenchymal transition (MMT). Encapsulating peritoneal sclerosis (EPS), endometriosis (EM) and peritoneal metastasis (PM) are all characterized by hypoxia and formation of a vascularized connective tissue stroma mediated by vascular endothelial growth factor (VEGF). Transforming growth factor-β1 (TGF-β1) is constitutively expressed by the PMC and plays a major role in the maintenance of a transformed, inflammatory micro-environment in PM, but also in EPS and EM. Persistently high levels of TGF-β1 or stimulation by inflammatory cytokines (interleukin-6 (IL-6)) induce peritoneal MMT, adhesion formation and fibrosis. TGF-β1 enhances hypoxia inducible factor-1α expression, which drives cell growth, extracellular matrix production and cell migration. Disruption of the peritoneal glycocalyx and exposure of the basement membrane release low molecular weight hyaluronan, which initiates a cascade of pro-inflammatory mediators, including peritoneal cytokines (TNF-α, IL-1, IL-6, prostaglandins), growth factors (TGF-α, TGF-β, platelet-derived growth factor, VEGF, epidermal growth factor) and the fibrin/coagulation cascade (thrombin, Tissue factor, plasminogen activator inhibitor [PAI]-1/2). Chronic inflammation and cellular transformation are mediated by damage-associated molecular patterns, pattern recognition receptors, AGE-RAGE, extracellular lactate, pro-inflammatory cytokines, reactive oxygen species, increased glycolysis, metabolomic reprogramming and cancer-associated fibroblasts. The pathogenesis of EPS, EM and PM shows similarities to the cellular transformation and stromal recruitment of wound healing.
Collapse
Affiliation(s)
- Robert Beaumont Wilson
- Upper GI Surgery Department, Liverpool Hospital, Elizabeth St, Liverpool, 2170, NSW, Australia
| |
Collapse
|
2111
|
Lan T, Pang J, Wu Y, Zhu M, Yao X, Wu M, Qian H, Zhang Z, Gao J, Chen Y. Cross-linked hyaluronic acid gel inhibits metastasis and growth of gastric and hepatic cancer cells: in vitro and in vivo studies. Oncotarget 2018; 7:65418-65428. [PMID: 27589842 PMCID: PMC5323165 DOI: 10.18632/oncotarget.11739] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 08/24/2016] [Indexed: 11/26/2022] Open
Abstract
Cross-linked hyaluronic acid gel (CHAG) has been used to prevent postoperative adhesion of abdominal tumorectomy. However, its effect on tumor cells is still unknown. This paper was designed to investigate the effect of CHAG on metastasis and growth of tumor cells. Migration and invasion assays, Western blotting, pull down assay, siRNA interference, and nude mice implantation tumor model were applied in this study. The results of in vitro experiments with gastric cancer cell line AGS and hepatic cancer cell line HepG2 showed that CHAG inhibited the migration and invasion activities, the MAPK and PI3K/Akt mediated signaling, the activation of small G proteins Rac1 and RhoA, and the expression of MMPs and PCNA initiated by EGF, through blocking the activation of EGFR. CHAG also had inhibitory effect on activation of other membrane receptors, including integrin and VEGFR. When the expression of hyaluronic acid receptors (CD44 or RHAMM) was interfered, the above inhibitory effects of CHAG still existed. In vivo experimental results showed that CHAG suppressed colonization, growth and metastasis of gastric cancer cell line SGC-7901 in peritoneal cavity of nude mice. In conclusion, CHAG had inhibitory effect on tumor cells, through covering cell surface and blocking the interaction between extracellular stimulative factors and their receptors.
Collapse
Affiliation(s)
- Ting Lan
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province, China
| | - Ji Pang
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province, China
| | - Yan Wu
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province, China
| | - Miaolin Zhu
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province, China
| | - Xiaoyuan Yao
- Basic Medical Department, Changchun Medical College, Changchun City, Jilin Province, China
| | - Min Wu
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province, China
| | - Hai Qian
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province, China
| | - Zhenyu Zhang
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital of Capital Medical University, Beijing, China
| | - Jizong Gao
- R&D Department, BioRegen Biomedical (Changzhou) Co., Ltd., Changzhou, China
| | - Yongchang Chen
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province, China
| |
Collapse
|
2112
|
Effects of topical topiramate in wound healing in mice. Arch Dermatol Res 2018; 310:363-373. [PMID: 29476247 DOI: 10.1007/s00403-018-1822-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 01/02/2018] [Accepted: 02/15/2018] [Indexed: 02/07/2023]
|
2113
|
Modulation of hyaluronan polymer size regulates proliferation of perimysial fibroblasts in thyroid eye disease. Biochem Biophys Res Commun 2018; 496:1376-1381. [DOI: 10.1016/j.bbrc.2018.02.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 02/04/2018] [Indexed: 11/22/2022]
|
2114
|
Day AJ, Milner CM. TSG-6: A multifunctional protein with anti-inflammatory and tissue-protective properties. Matrix Biol 2018; 78-79:60-83. [PMID: 29362135 DOI: 10.1016/j.matbio.2018.01.011] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 02/06/2023]
Abstract
Tumor necrosis factor- (TNF) stimulated gene-6 (TSG-6) is an inflammation-associated secreted protein that has been implicated as having important and diverse tissue protective and anti-inflammatory properties, e.g. mediating many of the immunomodulatory and beneficial activities of mesenchymal stem/stromal cells. TSG-6 is constitutively expressed in some tissues, which are either highly metabolically active or subject to challenges from the environment, perhaps providing protection in these contexts. The diversity of its functions are dependent on the binding of TSG-6 to numerous ligands, including matrix molecules such as glycosaminoglycans, as well as immune regulators and growth factors that themselves interact with these linear polysaccharides. It is becoming apparent that TSG-6 can directly affect matrix structure and modulate the way extracellular signalling molecules interact with matrix. In this review, we focus mainly on the literature for TSG-6 over the last 10 years, summarizing its expression, structure, ligand-binding properties, biological functions and highlighting TSG-6's potential as a therapeutic for a broad range of disease indications.
Collapse
Affiliation(s)
- Anthony J Day
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| | - Caroline M Milner
- Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
2115
|
Li C, Ma Y, Zhang K, Gu J, Tang F, Chen S, Cao L, Li S, Jin Y. Aberrant transcriptional networks in step-wise neurogenesis of paroxysmal kinesigenic dyskinesia-induced pluripotent stem cells. Oncotarget 2018; 7:53611-53627. [PMID: 27449084 PMCID: PMC5288209 DOI: 10.18632/oncotarget.10680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/30/2016] [Indexed: 12/31/2022] Open
Abstract
Paroxysmal kinesigenic dyskinesia (PKD) is an episodic movement disorder with autosomal-dominant inheritance and marked variability in clinical manifestations. Proline-rich transmembrane protein 2 (PRRT2) has been identified as a causative gene of PKD, but the molecular mechanism underlying the pathogenesis of PKD still remains a mystery. The phenotypes and transcriptional patterns of the PKD disease need further clarification. Here, we report the generation and neural differentiation of iPSC lines from two familial PKD patients with c.487C>T (p. Gln163X) and c.573dupT (p. Gly192Trpfs*8) PRRT2 mutations, respectively. Notably, an extremely lower efficiency in neural conversion from PKD-iPSCs than control-iPSCs is observed by a step-wise neural differentiation method of dual inhibition of SMAD signaling. Moreover, we show the high expression level of PRRT2 throughout the human brain and the expression pattern of PRRT2 in other human tissues for the first time. To gain molecular insight into the development of the disease, we conduct global gene expression profiling of PKD cells at four different stages of neural induction and identify altered gene expression patterns, which peculiarly reflect dysregulated neural transcriptome signatures and a differentiation tendency to mesodermal development, in comparison to control-iPSCs. Additionally, functional and signaling pathway analyses indicate significantly different cell fate determination between PKD-iPSCs and control-iPSCs. Together, the establishment of PKD-specific in vitro models and the illustration of transcriptome features in PKD cells would certainly help us with better understanding of the defects in neural conversion as well as further investigations in the pathogenesis of the PKD disease.
Collapse
Affiliation(s)
- Chun Li
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yu Ma
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Kunshan Zhang
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Junjie Gu
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Fan Tang
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shengdi Chen
- Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Key Laboratory of Stem Cell Biology, Center for The Excellence in Molecular and Cell Sciences, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Li Cao
- Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Siguang Li
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China.,Collaborative Innovation Center for Brain Science, Tongji University, Shanghai 200092, China
| | - Ying Jin
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Key Laboratory of Stem Cell Biology, Center for The Excellence in Molecular and Cell Sciences, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
2116
|
Wu SC, Chen CH, Wang JY, Lin YS, Chang JK, Ho ML. Hyaluronan size alters chondrogenesis of adipose-derived stem cells via the CD44/ERK/SOX-9 pathway. Acta Biomater 2018; 66:224-237. [PMID: 29128538 DOI: 10.1016/j.actbio.2017.11.025] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 11/02/2017] [Accepted: 11/07/2017] [Indexed: 12/23/2022]
Abstract
Hyaluronan (HA) is a natural linear polymer that is one of the main types of extracellular matrix during the early stage of chondrogenesis. We found that the chondrogenesis of adipose-derived stem cells (ADSCs) can be initiated and promoted by the application of HA to mimic the chondrogenic niche. The aim of this study is to investigate the optimal HA molecular weight (Mw) for chondrogenesis of ADSCs and the detailed mechanism. In this study, we investigated the relationships among HA Mw, CD44 clustering, and the extracellular signal-regulated kinase (ERK)/SOX-9 pathway during chondrogenesis of ADSCs. Human ADSCs (hADSCs) and rabbit ADSCs (rADSCs) were isolated and expanded. Chondrogenesis was induced in rADSCs by culturing cells in HA-coated wells (HA Mw: 80 kDa, 600 kDa and 2000 kDa) and evaluated by examining cell aggregation, chondrogenic gene expression (collagen type II and aggrecan) and sulfated glycosaminoglycan (sGAG) deposition in vitro. Cartilaginous tissue formation in vivo was confirmed by implanting HA/rADSCs into joint cavities. CD44 clustering, ERK phosphorylation, SOX-9 expression and SOX-9 phosphorylation in cultured hADSCs were further evaluated. Isolated and expanded rADSCs showed multilineage potential and anchorage-independent growth properties. Cell aggregation, chondrogenic gene expression, and sGAG deposition increased with increasing HA Mw in rADSCs. The 2000 kDa HA had the most pronounced chondrogenic effect on rADSCs in vitro, and implanted 2000 kDa HA/rADSCs exhibited marked cartilaginous tissue formation in vivo. CD44 clustering and cell aggregation of hADSCs were enhanced by an increase in HA Mw. In addition, higher HA Mws further enhanced CD44 clustering, ERK phosphorylation, and SOX-9 expression and phosphorylation in hADSCs. Inhibiting CD44 clustering in hADSCs reduced HA-induced chondrogenic gene expression. Inhibiting ERK phosphorylation also simultaneously attenuated HA-induced SOX-9 expression and phosphorylation and chondrogenic gene expression in hADSCs. Our results indicate that HA initiates ADSC chondrogenesis and that higher Mw HAs exhibit stronger effects, with 2000 kDa HA having the strongest effect. These effects may be mediated through increased CD44 clustering and the ERK/SOX-9 signaling pathway. STATEMENT OF SIGNIFICANCE HA-based biomaterials have been studied in stem cell-based articular cartilage tissue engineering. However, little is known about the optimal HA size for stem cell chondrogenesis and the mechanism of how HA size modulates stem cell chondrogenesis. Accordingly, we used HAs with various Mws (80-2000 kDa) as culture substrates and tested their chondrogenic effect on ADSCs. Our results demonstrated that HAs with a Mw of 2000 kDa showed the optimal effect for chondrogenesis of ADSCs. Moreover, we found that HA size can regulate ADSC chondrogenesis via the CD44/ERK/SOX-9 pathway. This finding provides new information regarding the biochemical control of chondrogenesis by HA substrates that may add value to the development of HA-based biomaterials for articular cartilage regeneration.
Collapse
Affiliation(s)
- Shun-Cheng Wu
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Hwan Chen
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopaedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Adult Reconstruction Surgery, Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jyun-Ya Wang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Shan Lin
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Je-Ken Chang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopaedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Adult Reconstruction Surgery, Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Mei-Ling Ho
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
2117
|
Abstract
Fibrosis is the excessive accumulation of extracellular matrix that often occurs as a wound healing response to repeated or chronic tissue injury, and may lead to the disruption of organ architecture and loss of function. Although fibrosis was previously thought to be irreversible, recent evidence indicates that certain circumstances permit the resolution of fibrosis when the underlying causes of injury are eradicated. The mechanism of fibrosis resolution encompasses degradation of the fibrotic extracellular matrix as well as elimination of fibrogenic myofibroblasts through their adaptation of various cell fates, including apoptosis, senescence, dedifferentiation, and reprogramming. In this Review, we discuss the present knowledge and gaps in our understanding of how matrix degradation is regulated and how myofibroblast cell fates can be manipulated, areas that may identify potential therapeutic approaches for fibrosis.
Collapse
|
2118
|
Cardiovascular Disease: An Introduction. BIOMATHEMATICAL AND BIOMECHANICAL MODELING OF THE CIRCULATORY AND VENTILATORY SYSTEMS 2018. [PMCID: PMC7123129 DOI: 10.1007/978-3-319-89315-0_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cardiovascular disease (CVD) is a collective term designating all types of affliction affecting the blood circulatory system, including the heart and vasculature, which, respectively, displaces and conveys the blood.
Collapse
|
2119
|
Guo L, Chen K, Yuan J, Huang P, Xu X, Li C, Qian N, Qi J, Shao Z, Deng L, He C, Xu J. Estrogen inhibits osteoclasts formation and bone resorption via microRNA-27a targeting PPARγ and APC. J Cell Physiol 2018; 234:581-594. [PMID: 30272823 DOI: 10.1002/jcp.26788] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 04/30/2018] [Indexed: 12/19/2022]
Abstract
Inhibition of osteoclasts formation and bone resorption by estrogen is very important in the etiology of postmenopausal osteoporosis. The mechanisms of this process are still not fully understood. Recent studies implicated an important role of microRNAs in estrogen-mediated responses in various cellular processes, including cell differentiation and proliferation. Thus, we hypothesized that these regulatory molecules might be implicated in the process of estrogen-decreased osteoclasts formation and bone resorption. Western blot, quantitative real-time polymerase chain reaction, tartrate-resistant acid phosphatase staining, pit formation assay and luciferase assay were used to investigate the role of microRNAs in estrogen-inhibited osteoclast differentiation and bone resorption. We found that estrogen could directly suppress receptor activator of nuclear factor B ligand/macrophage colony-stimulating factor-induced differentiation of bone marrow-derived macrophages into osteoclasts in the absence of stromal cell. MicroRNA-27a was significantly increased during the process of estrogen-decreased osteoclast differentiation. Overexpressing of microRNA-27a remarkably enhanced the inhibitory effect of estrogen on osteoclast differentiation and bone resorption, whereas which were alleviated by microRNA-27a depletion. Mechanistic studies showed that microRNA-27a inhibited peroxisome proliferator-activated receptor gamma (PPARγ) and adenomatous polyposis coli (APC) expression in osteoclasts through a microRNA-27a binding site within the 3'-untranslational region of PPARγ and APC. PPARγ and APC respectively contributed to microRNA-27a-decreased osteoclast differentiation and bone resorption. Taken together, these results showed that microRNA-27a may play a significant role in the process of estrogen-inhibited osteoclast differentiation and function.
Collapse
Affiliation(s)
- Lei Guo
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Kaizhe Chen
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jun Yuan
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ping Huang
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xing Xu
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Changwei Li
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Niandong Qian
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jin Qi
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhiliang Shao
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lianfu Deng
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chuan He
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiping Xu
- Orthopedic Sevice, Shanghai Fengxian District Center Hospital, Shanghai Jiaotong University Affiliated Sixth People's Hospital South Campus, Shanghai, China
| |
Collapse
|
2120
|
Stober VP, Johnson CG, Majors A, Lauer ME, Cali V, Midura RJ, Wisniewski HG, Aronica MA, Garantziotis S. TNF-stimulated gene 6 promotes formation of hyaluronan-inter-α-inhibitor heavy chain complexes necessary for ozone-induced airway hyperresponsiveness. J Biol Chem 2017; 292:20845-20858. [PMID: 29122888 PMCID: PMC5743062 DOI: 10.1074/jbc.m116.756627] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/27/2017] [Indexed: 11/06/2022] Open
Abstract
Exposure to pollutants, such as ozone, exacerbates airway inflammation and hyperresponsiveness (AHR). TNF-stimulated gene 6 (TSG-6) is required to transfer inter-α-inhibitor heavy chains (HC) to hyaluronan (HA), facilitating HA receptor binding. TSG-6 is necessary for AHR in allergic asthma, because it facilitates the development of a pathological HA-HC matrix. However, the role of TSG-6 in acute airway inflammation is not well understood. Here, we hypothesized that TSG-6 is essential for the development of HA- and ozone-induced AHR. TSG-6-/- and TSG-6+/+ mice were exposed to ozone or short-fragment HA (sHA), and AHR was assayed via flexiVent. The AHR response to sHA was evaluated in the isolated tracheal ring assay in tracheal rings from TSG-6-/- or TSG-6+/+, with or without the addition of exogenous TSG-6, and with or without inhibitors of Rho-associated, coiled-coil-containing protein kinase (ROCK), ERK, or PI3K. Smooth-muscle cells from mouse tracheas were assayed in vitro for signaling pathways. We found that TSG-6 deficiency protects against AHR after ozone (in vivo) or sHA (in vitro and in vivo) exposure. Moreover, TSG-6-/- tracheal ring non-responsiveness to sHA was reversed by exogenous TSG-6 addition. sHA rapidly activated RhoA, ERK, and Akt in airway smooth-muscle cells, but only in the presence of TSG-6. Inhibition of ROCK, ERK, or PI3K/Akt blocked sHA/TSG-6-mediated AHR. In conclusion, TSG-6 is necessary for AHR in response to ozone or sHA, in part because it facilitates rapid formation of HA-HC complexes. The sHA/TSG-6 effect is mediated by RhoA, ERK, and PI3K/Akt signaling.
Collapse
Affiliation(s)
- Vandy P Stober
- From the Immunity Inflammation and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Collin G Johnson
- From the Immunity Inflammation and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Alana Majors
- the Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, and
| | - Mark E Lauer
- the Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, and
| | - Valbona Cali
- the Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, and
| | - Ronald J Midura
- the Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, and
| | | | - Mark A Aronica
- the Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, and
| | - Stavros Garantziotis
- From the Immunity Inflammation and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709,
| |
Collapse
|
2121
|
Richter RP, Baranova NS, Day AJ, Kwok JC. Glycosaminoglycans in extracellular matrix organisation: are concepts from soft matter physics key to understanding the formation of perineuronal nets? Curr Opin Struct Biol 2017; 50:65-74. [PMID: 29275227 DOI: 10.1016/j.sbi.2017.12.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 01/19/2023]
Abstract
Conventional wisdom has it that proteins fold and assemble into definite structures, and that this defines their function. Glycosaminoglycans (GAGs) are different. In most cases the structures they form have a low degree of order, even when interacting with proteins. Here, we discuss how physical features common to all GAGs-hydrophilicity, charge, linearity and semi-flexibility-underpin the overall properties of GAG-rich matrices. By integrating soft matter physics concepts (e.g. polymer brushes and phase separation) with our molecular understanding of GAG-protein interactions, we can better comprehend how GAG-rich matrices assemble, what their properties are, and how they function. Taking perineuronal nets (PNNs)-a GAG-rich matrix enveloping neurons-as a relevant example, we propose that microphase separation determines the holey PNN anatomy that is pivotal to PNN functions.
Collapse
Affiliation(s)
- Ralf P Richter
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom; School of Physics and Astronomy, Faculty of Mathematics and Physical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom; Astbury Centre for Strucural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom; Biosurfaces Lab, CIC biomaGUNE, Paseo Miramon 182, 20014 San Sebastian, Spain.
| | - Natalia S Baranova
- Biosurfaces Lab, CIC biomaGUNE, Paseo Miramon 182, 20014 San Sebastian, Spain
| | - Anthony J Day
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| | - Jessica Cf Kwok
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom; Centre for Reconstructive Neuroscience, Institute of Experimental Medicine, Videnska 1083, 14220 Prague 4, Czech Republic.
| |
Collapse
|
2122
|
Walker JKL, Theriot BS, Ghio M, Trempus CS, Wong JE, McQuade VL, Liang J, Jiang D, Noble PW, Garantziotis S, Kraft M, Ingram JL. Targeted HAS2 Expression Lessens Airway Responsiveness in Chronic Murine Allergic Airway Disease. Am J Respir Cell Mol Biol 2017; 57:702-710. [PMID: 28787175 PMCID: PMC5765419 DOI: 10.1165/rcmb.2017-0095oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/24/2017] [Indexed: 01/02/2023] Open
Abstract
Hyaluronan (HA), a major component of the extracellular matrix, is secreted by airway structural cells. Airway fibroblasts in allergic asthma secrete elevated levels of HA in association with increased HA synthase 2 (HAS2) expression. Thus, we hypothesized that HA accumulation in the airway wall may contribute to airway remodeling and hyperresponsiveness in allergic airways disease. To examine this hypothesis, transgenic mice in which the α-smooth muscle actin (α-SMA) promoter drives HAS2 expression were generated. Mixed male and female α-SMA-HAS2 mice (HAS2+ mice, n = 16; HAS2- mice, n = 13) were sensitized via intraperitoneal injection and then chronically challenged with aerosolized ovalbumin (OVA) for 6 weeks. To test airway responsiveness, increasing doses of methacholine were delivered intravenously and airway resistance was measured using the forced oscillation technique. HA, cytokines, and cell types were analyzed in bronchoalveolar lavage fluid, serum, and whole lung homogenates. Lung sections were stained using antibodies specific for HA-binding protein (HABP) and α-SMA, as well as Masson's trichrome stain. Staining of lung tissue demonstrated significantly increased peribronchial HA, α-SMA, and collagen deposition in OVA-challenged α-SMA-HAS2+ mice compared with α-SMA-HAS2- mice. Unexpectedly, OVA-challenged α-SMA-HAS2+ mice displayed significantly reduced airway responsiveness to methacholine compared with similarly treated α-SMA-HAS2- mice. The total numbers of inflammatory cell types in the bronchoalveolar lavage fluid did not differ significantly between OVA-challenged α-SMA-HAS2+ mice and α-SMA-HAS2- mice. We conclude that allergen-challenged mice that overexpress HAS2 in myofibroblasts and smooth muscle cells develop increased airway fibrosis, which lessens airway hyperresponsiveness to bronchoconstrictors.
Collapse
Affiliation(s)
- Julia K. L. Walker
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
- School of Nursing, Duke University, Durham, North Carolina; and
| | - Barbara S. Theriot
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Michael Ghio
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Carol S. Trempus
- Laboratory of Immunity, Inflammation and Disease, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Jordan E. Wong
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Victoria L. McQuade
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Jiurong Liang
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Dianhua Jiang
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Paul W. Noble
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Stavros Garantziotis
- Laboratory of Immunity, Inflammation and Disease, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Monica Kraft
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Jennifer L. Ingram
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
2123
|
The JAK/STAT signaling pathway and photobiomodulation in chronic wound healing. Cytokine Growth Factor Rev 2017; 38:73-79. [DOI: 10.1016/j.cytogfr.2017.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 12/26/2022]
|
2124
|
Ungefroren H, Witte D, Rauch BH, Settmacher U, Lehnert H, Gieseler F, Kaufmann R. Proteinase-Activated Receptor 2 May Drive Cancer Progression by Facilitating TGF-β Signaling. Int J Mol Sci 2017; 18:E2494. [PMID: 29165389 PMCID: PMC5713460 DOI: 10.3390/ijms18112494] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 12/23/2022] Open
Abstract
The G protein-coupled receptor proteinase-activated receptor 2 (PAR2) has been implicated in various aspects of cellular physiology including inflammation, obesity and cancer. In cancer, it usually acts as a driver of cancer progression in various tumor types by promoting invasion and metastasis in response to activation by serine proteinases. Recently, we discovered another mode through which PAR2 may enhance tumorigenesis: crosstalk with transforming growth factor-β (TGF-β) signaling to promote TGF-β1-induced cell migration/invasion and invasion-associated gene expression in ductal pancreatic adenocarcinoma (PDAC) cells. In this chapter, we review what is known about the cellular TGF-β responses and signaling pathways affected by PAR2 expression, the signaling activities of PAR2 required for promoting TGF-β signaling, and the potential molecular mechanism(s) that underlie(s) the TGF-β signaling-promoting effect. Since PAR2 is activated through various serine proteinases and biased agonists, it may couple TGF-β signaling to a diverse range of other physiological processes that may or may not predispose cells to cancer development such as local inflammation, systemic coagulation and pathogen infection.
Collapse
Affiliation(s)
- Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein, D-23538 Lübeck, Germany.
- Department of General and Thoracic Surgery, University Hospital Schleswig-Holstein, D-24105 Kiel, Germany.
| | - David Witte
- First Department of Medicine, University Hospital Schleswig-Holstein, D-23538 Lübeck, Germany.
| | - Bernhard H Rauch
- Department of General Pharmacology, Institute of Pharmacology, University Medicine Greifswald, D-17487 Greifswald, Germany.
| | - Utz Settmacher
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, D-07747 Jena, Germany.
| | - Hendrik Lehnert
- First Department of Medicine, University Hospital Schleswig-Holstein, D-23538 Lübeck, Germany.
| | - Frank Gieseler
- First Department of Medicine, University Hospital Schleswig-Holstein, D-23538 Lübeck, Germany.
| | - Roland Kaufmann
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, D-07747 Jena, Germany.
| |
Collapse
|
2125
|
Midgley AC, Oltean S, Hascall V, Woods EL, Steadman R, Phillips AO, Meran S. Nuclear hyaluronidase 2 drives alternative splicing of CD44 pre-mRNA to determine profibrotic or antifibrotic cell phenotype. Sci Signal 2017; 10:10/506/eaao1822. [PMID: 29162741 DOI: 10.1126/scisignal.aao1822] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The cell surface protein CD44 is involved in diverse physiological processes, and its aberrant function is linked to various pathologies such as cancer, immune dysregulation, and fibrosis. The diversity of CD44 biological activity is partly conferred by the generation of distinct CD44 isoforms through alternative splicing. We identified an unexpected function for the ubiquitous hyaluronan-degrading enzyme, hyaluronidase 2 (HYAL2), as a regulator of CD44 splicing. Standard CD44 is associated with fibrotic disease, and its production is promoted through serine-arginine-rich (SR) protein-mediated exon exclusion. HYAL2 nuclear translocation was stimulated by bone morphogenetic protein 7, which inhibits the myofibroblast phenotype. Nuclear HYAL2 displaced SR proteins from the spliceosome, thus enabling HYAL2, spliceosome components (U1 and U2 small nuclear ribonucleoproteins), and CD44 pre-mRNA to form a complex. This prevented double-exon splicing and facilitated the inclusion of CD44 exons 11 and 12, which promoted the accumulation of the antifibrotic CD44 isoform CD44v7/8 at the cell surface. These data demonstrate previously undescribed mechanisms regulating CD44 alternative splicing events that are relevant to the regulation of cellular phenotypes in progressive fibrosis.
Collapse
Affiliation(s)
- Adam C Midgley
- Wales Kidney Research Unit, Systems Immunity University Research Institute, Division of Infection and Immunity, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Sebastian Oltean
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School,Exeter EX1 2LU, UK
| | - Vincent Hascall
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Emma L Woods
- Wales Kidney Research Unit, Systems Immunity University Research Institute, Division of Infection and Immunity, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Robert Steadman
- Wales Kidney Research Unit, Systems Immunity University Research Institute, Division of Infection and Immunity, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Aled O Phillips
- Wales Kidney Research Unit, Systems Immunity University Research Institute, Division of Infection and Immunity, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Soma Meran
- Wales Kidney Research Unit, Systems Immunity University Research Institute, Division of Infection and Immunity, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| |
Collapse
|
2126
|
陈 静, 韩 苏, 邹 秀, 邹 玉. [Association between hepatocyte growth factor in tears and corneal haze in rabbits early after epipolis laser in situ keratomileusis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:1551-1554. [PMID: 29180340 PMCID: PMC6779644 DOI: 10.3969/j.issn.1673-4254.2017.11.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To study the dynamic changes of levels of hepatocyte growth factor (HGF) in tears and their association with corneal haze in rabbits early after epipolis laser in situ keratomileusis (Epi-LASIK). METHODS Twenty-four New Zealand rabbits received Epi-LASIK with an ablation depth of 100 µm in one eye and of 150 µm in the other eye. Before and at 3, 7, 14, and 30 days after the surgery, the level of HGF in tears collected from the rabbits was measured using enzyme-linked immunosorbent assay (ELISA), and corneal haze was graded after surgery. RESULTS In all the rabbits, corneal epithelium healing occurred in 3 to 5 days after Epi-LASIK. Corneal haze appeared 3 days postoperatively in the rabbits accompanied by increased levels of HGF in tears. At 3, 7, 14, and 30 days after the surgery, the rabbits with an ablation depth of 150 µm showed more obvious corneal haze (P<0.05) and significantly higher levels of HGF in tears than those with an ablation depth of 100 µm (P<0.05). CONCLUSION In rabbits receiving Epi-LASIK, HGF levels in tears and the grade of corneal haze show a positive correlation early after the surgery and are both related with the depth of ablation.
Collapse
Affiliation(s)
- 静 陈
- />广州军区广州总医院眼科,广东 广州 510010Department of Ophthalmology, Guangzhou General Hospital of Guangzhou Command, Guangzhou 510010, China
| | - 苏宁 韩
- />广州军区广州总医院眼科,广东 广州 510010Department of Ophthalmology, Guangzhou General Hospital of Guangzhou Command, Guangzhou 510010, China
| | - 秀兰 邹
- />广州军区广州总医院眼科,广东 广州 510010Department of Ophthalmology, Guangzhou General Hospital of Guangzhou Command, Guangzhou 510010, China
| | - 玉平 邹
- />广州军区广州总医院眼科,广东 广州 510010Department of Ophthalmology, Guangzhou General Hospital of Guangzhou Command, Guangzhou 510010, China
| |
Collapse
|
2127
|
Estrogen Effects on Wound Healing. Int J Mol Sci 2017; 18:ijms18112325. [PMID: 29099810 PMCID: PMC5713294 DOI: 10.3390/ijms18112325] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/30/2017] [Accepted: 11/02/2017] [Indexed: 02/07/2023] Open
Abstract
Wound healing is a physiological process, involving three successive and overlapping phases—hemostasis/inflammation, proliferation, and remodeling—to maintain the integrity of skin after trauma, either by accident or by procedure. Any disruption or unbalanced distribution of these processes might result in abnormal wound healing. Many molecular and clinical data support the effects of estrogen on normal skin homeostasis and wound healing. Estrogen deficiency, for example in postmenopausal women, is detrimental to wound healing processes, notably inflammation and re-granulation, while exogenous estrogen treatment may reverse these effects. Understanding the role of estrogen on skin might provide further opportunities to develop estrogen-related therapy for assistance in wound healing.
Collapse
|
2128
|
Tanaka T, Furumatsu T, Miyazawa S, Fujii M, Inoue H, Kodama Y, Ozaki T. Hyaluronan stimulates chondrogenic gene expression in human meniscus cells. Connect Tissue Res 2017; 58:520-530. [PMID: 27898233 DOI: 10.1080/03008207.2016.1264944] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
UNLABELLED Purpose/Aim of the Study: Inner meniscus cells have a chondrocytic phenotype, whereas outer meniscus cells have a fibroblastic phenotype. In this study, we examined the effect of hyaluronan on chondrocytic gene expression in human meniscus cells. MATERIALS AND METHODS Human meniscus cells were prepared from macroscopically intact lateral meniscus. Inner and outer meniscus cells were obtained from the inner and outer halves of the meniscus. The cells were stimulated with hyaluronan diluted in Dulbecco's modified Eagle's medium without serum to the desired concentration (0, 10, 100, and 1000 μg/mL) for 2-7 days. Cellular proliferation, migration, and polymerase chain reaction analyses were performed for the inner and outer cells separately. Meniscal samples perforated by a 2 mm diameter punch were maintained for 3 weeks in hyaluronan-supplemented medium and evaluated by histological analyses. RESULTS Hyaluronan increased the proliferation and migration of both meniscus cell types. Moreover, cellular counts at the surface of both meniscal tissue perforations were increased by hyaluronan treatments. In addition, hyaluronan stimulated α1(II) collagen expression in inner meniscus cells. Accumulation of type II collagen at the perforated surface of both meniscal samples was induced by hyaluronan treatment. Hyaluronan did not induce type I collagen accumulation around the injured site of the meniscus. CONCLUSION Hyaluronan stimulated the proliferation and migration of meniscus cells. Our results suggest that hyaluronan may promote the healing potential of meniscus cells in damaged meniscal tissues.
Collapse
Affiliation(s)
- Takaaki Tanaka
- a Department of Orthopaedic Surgery , Okayama University Graduate School , Okayama , Japan
| | - Takayuki Furumatsu
- a Department of Orthopaedic Surgery , Okayama University Graduate School , Okayama , Japan
| | - Shinichi Miyazawa
- a Department of Orthopaedic Surgery , Okayama University Graduate School , Okayama , Japan
| | - Masataka Fujii
- a Department of Orthopaedic Surgery , Okayama University Graduate School , Okayama , Japan
| | - Hiroto Inoue
- a Department of Orthopaedic Surgery , Okayama University Graduate School , Okayama , Japan
| | - Yuya Kodama
- a Department of Orthopaedic Surgery , Okayama University Graduate School , Okayama , Japan
| | - Toshifumi Ozaki
- a Department of Orthopaedic Surgery , Okayama University Graduate School , Okayama , Japan
| |
Collapse
|
2129
|
Rose M, Meurer SK, Kloten V, Weiskirchen R, Denecke B, Antonopoulos W, Deckert M, Knüchel R, Dahl E. ITIH5 induces a shift in TGF-β superfamily signaling involving Endoglin and reduces risk for breast cancer metastasis and tumor death. Mol Carcinog 2017; 57:167-181. [PMID: 28940371 DOI: 10.1002/mc.22742] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 09/07/2017] [Accepted: 09/18/2017] [Indexed: 12/26/2022]
Abstract
ITIH5 has been proposed being a novel tumor suppressor in various tumor entities including breast cancer. Recently, ITIH5 was furthermore identified as metastasis suppressor gene in pancreatic carcinoma. In this study we aimed to specify the impact of ITIH5 on metastasis in breast cancer. Therefore, DNA methylation of ITIH5 promoter regions was assessed in breast cancer metastases using the TCGA portal and methylation-specific PCR (MSP). We reveal that the ITIH5 upstream promoter region is particularly responsible for ITIH5 gene inactivation predicting shorter survival of patients. Notably, methylation of this upstream ITIH5 promoter region was associated with disease progression, for example, abundantly found in distant metastases. In vitro, stably ITIH5-overexpressing MDA-MB-231 breast cancer clones were used to analyze cell invasion and to identify novel ITIH5-downstream targets. Indeed, ITIH5 re-expression suppresses invasive growth of MDA-MB-231 breast cancer cells while modulating expression of genes involved in metastasis including Endoglin (ENG), an accessory TGF-β receptor, which was furthermore co-expressed with ITIH5 in primary breast tumors. By performing in vitro stimulation of TGF-β signaling using TGF-β1 and BMP-2 we show that ITIH5 triggered a TGF-β superfamily signaling switch contributing to downregulation of targets like Id1, known to endorse metastasis. Moreover, ITIH5 predicts longer overall survival (OS) only in those breast tumors that feature high ENG expression or inversely regulated ID1 suggesting a clinical and functional impact of an ITIH5-ENG axis for breast cancer progression. Hence, we provide evidence that ITIH5 may represent a novel modulator of TGF-β superfamily signaling involved in suppressing breast cancer metastasis.
Collapse
Affiliation(s)
- Michael Rose
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Steffen K Meurer
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Vera Kloten
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Bernd Denecke
- IZKF Aachen, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Wiebke Antonopoulos
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Martina Deckert
- Department of Neuropathology, University of Cologne, Cologne, Germany
| | - Ruth Knüchel
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Edgar Dahl
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| |
Collapse
|
2130
|
Zhou Y, Zhang Q, Gao Y, Tan M, Zheng R, Zhao L, Zhang X. Induced pluripotent stem cell-conditioned medium suppresses pulmonary fibroblast-to-myofibroblast differentiation via the inhibition of TGF-β1/Smad pathway. Int J Mol Med 2017; 41:473-484. [PMID: 29115383 PMCID: PMC5746308 DOI: 10.3892/ijmm.2017.3199] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 09/18/2017] [Indexed: 01/11/2023] Open
Abstract
Therapeutic strategies based on stem cells have been shown to have potential in improving the condition of severe lung diseases. In this study, the suppressive effects of conditioned medium (CM) of induced pluripotent stem cells (iPSCs) on pulmonary fibroblast differentiation were investigated in a series of in vitro and in vivo experiments. Moreover, the underlying mechanisms through which iPSC-CM inhibited the differentiation of fibroblasts into myofibroblasts were explored as well. iPSCs were generated using a mouse 3-gene transfection method, myofibroblast-like cells were induced by incubating human fibroblasts with transforming growth factor-β1 (TGF-β1) and mouse models of pulmonary fibrosis (PF) were established by an injection of bleomycin. Based on these experiments, the effects of iPSC-CM on collagen accumulation, lung structure and the TGF-β1-mediated pathway were determined. It was found that treatment with iPSC-CM markedly reduced the proliferation of TGF-β1-exposed cells, and the activities of TGF-β1, Smad-2 and Smad-3. Accompanied by alterations in the expression of the indicated molecules, the lung structure of mice with PF was also markedly ameliorated. The present study confirmed the protective effects of iPSC-CM on lung tissue against PF, and it was also inferred that the ameliorating function of iPSC-CM on PF may be exerted through the blocking of TGF-β1/Smad signal transduction pathway.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, P.R. China
| | - Qiang Zhang
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, P.R. China
| | - Yuan Gao
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, P.R. China
| | - Mingqi Tan
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, P.R. China
| | - Rui Zheng
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, P.R. China
| | - Li Zhao
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, P.R. China
| | - Xiaoye Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, P.R. China
| |
Collapse
|
2131
|
A Central Bioactive Region of LTBP-2 Stimulates the Expression of TGF-β1 in Fibroblasts via Akt and p38 Signalling Pathways. Int J Mol Sci 2017; 18:ijms18102114. [PMID: 28991210 PMCID: PMC5666796 DOI: 10.3390/ijms18102114] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/21/2017] [Accepted: 09/26/2017] [Indexed: 12/31/2022] Open
Abstract
Latent transforming growth factor-β-1 binding protein-2 (LTBP-2) belongs to the LTBP-fibrillin superfamily of extracellular proteins. Unlike other LTBPs, LTBP-2 does not covalently bind transforming growth factor-β1 (TGF-β1) but appears to be implicated in the regulation of TGF-β1 bioactivity, although the mechanisms are largely unknown. In experiments originally designed to study the displacement of latent TGF-β1 complexes from matrix storage, we found that the addition of exogenous LTBP-2 to cultured human MSU-1.1 fibroblasts caused an increase in TGF-β1 levels in the medium. However, the TGF-β1 increase was due to an upregulation of TGF-β1 expression and secretion rather than a displacement of matrix-stored TGF-β1. The secreted TGF-β1 was mainly in an inactive form, and its concentration peaked around 15 h after addition of LTBP-2. Using a series of recombinant LTBP-2 fragments, the bioactivity was identified to a small region of LTBP-2 consisting of an 8-Cys motif flanked by four epidermal growth factor (EGF)-like repeats. The LTBP-2 stimulation of TGF-β expression involved the phosphorylation of both Akt and p38 mitogen-activated protein kinase (MAPK) signalling proteins, and specific inactivation of each protein individually blocked TGF-β1 increase. The search for the cell surface receptor mediating this LTBP-2 activity proved inconclusive. Inhibitory antibodies to integrins β1 and αVβ5 showed no reduction of LTBP-2 stimulation of TGF-β1. However, TGF-β1 upregulation was partially inhibited by anti-αVβ3 integrin antibodies, suggestive of a direct or indirect role for this integrin. Overall, the study indicates that LTBP-2 can directly upregulate cellular TGF-β1 expression and secretion by interaction with cells via a short central bioactive region. This may be significant in connective tissue disorders involving aberrant TGF-β1 signalling.
Collapse
|
2132
|
Dolivo DM, Larson SA, Dominko T. Fibroblast Growth Factor 2 as an Antifibrotic: Antagonism of Myofibroblast Differentiation and Suppression of Pro-Fibrotic Gene Expression. Cytokine Growth Factor Rev 2017; 38:49-58. [PMID: 28967471 DOI: 10.1016/j.cytogfr.2017.09.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 09/22/2017] [Indexed: 02/08/2023]
Abstract
Fibrosis is a pathological condition that is characterized by the replacement of dead or damaged tissue with a nonfunctional, mechanically aberrant scar, and fibrotic pathologies account for nearly half of all deaths worldwide. The causes of fibrosis differ somewhat from tissue to tissue and pathology to pathology, but in general some of the cellular and molecular mechanisms remain constant regardless of the specific pathology in question. One of the common mechanisms underlying fibroses is the paradigm of the activated fibroblast, termed the "myofibroblast," a differentiated mesenchymal cell with demonstrated contractile activity and a high rate of collagen deposition. Fibroblast growth factor 2 (FGF2), one of the members of the mammalian fibroblast growth factor family, is a cytokine with demonstrated antifibrotic activity in non-human animal, human, and in vitro models. FGF2 is highly pleiotropic and its receptors are present on many different cell types throughout the body, lending a great deal of variety to the potential mechanisms of FGF2 effects on fibrosis. However, recent reports demonstrate that a substantial contribution to the antifibrotic effects of FGF2 comes from the inhibitory effects of FGF2 on connective tissue fibroblasts, activated myofibroblasts, and myofibroblast progenitors. FGF2 demonstrates effects antagonistic towards fibroblast activation and towards mesenchymal transition of potential myofibroblast-forming cells, as well as promotes a gene expression paradigm more reminiscent of regenerative healing, such as that which occurs in the fetal wound healing response, than fibrotic resolution. With a better understanding of the mechanisms by which FGF2 alters the wound healing cascade and results in a shift away from scar formation and towards functional tissue regeneration, we may be able to further address the critical need of therapy for varied fibrotic pathologies across myriad tissue types.
Collapse
Affiliation(s)
- David M Dolivo
- Worcester Polytechnic Institute, Department of Biology and Biotechnology,100 Institute Road, Worcester, MA, 01609, United States
| | - Sara A Larson
- Worcester Polytechnic Institute, Department of Biology and Biotechnology,100 Institute Road, Worcester, MA, 01609, United States
| | - Tanja Dominko
- Worcester Polytechnic Institute, Department of Biology and Biotechnology,100 Institute Road, Worcester, MA, 01609, United States.
| |
Collapse
|
2133
|
Jia C, Luo B, Wang H, Bian Y, Li X, Li S, Wang H. Precise and Arbitrary Deposition of Biomolecules onto Biomimetic Fibrous Matrices for Spatially Controlled Cell Distribution and Functions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:10.1002/adma.201701154. [PMID: 28722137 PMCID: PMC6060368 DOI: 10.1002/adma.201701154] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/26/2017] [Indexed: 05/21/2023]
Abstract
Advances in nano-/microfabrication allow the fabrication of biomimetic substrates for various biomedical applications. In particular, it would be beneficial to control the distribution of cells and relevant biomolecules on an extracellular matrix (ECM)-like substrate with arbitrary micropatterns. In this regard, the possibilities of patterning biomolecules and cells on nanofibrous matrices are explored here by combining inkjet printing and electrospinning. Upon investigation of key parameters for patterning accuracy and reproducibility, three independent studies are performed to demonstrate the potential of this platform for: i) transforming growth factor (TGF)-β1-induced spatial differentiation of fibroblasts, ii) spatiotemporal interactions between breast cancer cells and stromal cells, and iii) cancer-regulated angiogenesis. The results show that TGF-β1 induces local fibroblast-to-myofibroblast differentiation in a dose-dependent fashion, and breast cancer clusters recruit activated stromal cells and guide the sprouting of endothelial cells in a spatially resolved manner. The established platform not only provides strategies to fabricate ECM-like interfaces for medical devices, but also offers the capability of spatially controlling cell organization for fundamental studies, and for high-throughput screening of various biomolecules for stem cell differentiation and cancer therapeutics.
Collapse
Affiliation(s)
- Chao Jia
- Department of Biomedical Engineering, Chemistry and Biological Sciences, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Bowen Luo
- Department of Biomedical Engineering, Chemistry and Biological Sciences, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Haoyu Wang
- Department of Biomedical Engineering, Chemistry and Biological Sciences, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Yongqian Bian
- Department of Biomedical Engineering, Chemistry and Biological Sciences, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
- Department of Burns and Plastics, Tangdu Hospital, Fourth Military Medical University, Shan Xi, Xi'an, 710038, China
| | - Xueyong Li
- Department of Burns and Plastics, Tangdu Hospital, Fourth Military Medical University, Shan Xi, Xi'an, 710038, China
| | - Shaohua Li
- Department of Surgery, Rutgers University-Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA
| | - Hongjun Wang
- Department of Biomedical Engineering, Chemistry and Biological Sciences, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| |
Collapse
|
2134
|
Patouraux S, Rousseau D, Bonnafous S, Lebeaupin C, Luci C, Canivet CM, Schneck AS, Bertola A, Saint-Paul MC, Iannelli A, Gugenheim J, Anty R, Tran A, Bailly-Maitre B, Gual P. CD44 is a key player in non-alcoholic steatohepatitis. J Hepatol 2017; 67:328-338. [PMID: 28323124 DOI: 10.1016/j.jhep.2017.03.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 02/01/2017] [Accepted: 03/02/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Cluster of differentiation (CD)44 regulates adipose tissue inflammation in obesity and hepatic leukocyte recruitment in a lithogenic context. However, its role in hepatic inflammation in a mouse model of steatohepatitis and its relevance in humans have not yet been investigated. We aimed to evaluated the contribution of CD44 to non-alcoholic steatohepatitis (NASH) development and liver injury in mouse models and in patients at various stages of non-alcoholic fatty liver disease (NAFLD) progression. METHODS The role of CD44 was evaluated in CD44-/- mice and after injections of an αCD44 antibody in wild-type mice challenged with a methionine- and choline-deficient diet (MCDD). In obese patients, hepatic CD44 (n=30 and 5 NASH patients with a second liver biopsy after bariatric surgery) and serum sCD44 (n=64) were evaluated. RESULTS Liver inflammation (including inflammatory foci number, macrophage and neutrophil infiltration and CCL2/CCR2 levels), liver injury and fibrosis strongly decreased in CD44-/- mice compared to wild-type mice on MCDD. CD44 deficiency enhanced the M2 polarization and strongly decreased the activation of macrophages by lipopolysaccharide (LPS), hepatocyte damage-associated molecular patterns (DAMPs) and saturated fatty acids. Neutralization of CD44 in mice with steatohepatitis strongly decreased the macrophage infiltration and chemokine ligand (CCL)2 expression with a partial correction of liver inflammation and injury. In obese patients, hepatic CD44 was strongly upregulated in NASH patients (p=0.0008) and correlated with NAFLD activity score (NAS) (p=0.001), ballooning (p=0.003), alanine transaminase (p=0.005) and hepatic CCL2 (p<0.001) and macrophage marker CD68 (p<0.001) expression. Correction of NASH was associated with a strong decrease in liver CD44+ cells. Finally, the soluble form of CD44 increased with severe steatosis (p=0.0005) and NASH (p=0.007). CONCLUSION Human and experimental data suggest that CD44 is a marker and key player of hepatic inflammation and its targeting partially corrects NASH. LAY SUMMARY Human and experimental data suggest that CD44, a cellular protein mainly expressed in immune cells, is a marker and key player of non-alcoholic steatohepatitis (NASH). Indeed, CD44 enhances the non-alcoholic fatty liver (NAFL) (hepatic steatosis) to NASH progression by regulating hepatic macrophage polarization (pro-inflammatory phenotype) and infiltration (macrophage motility and the MCP1/CCL2/CCR2 system). Targeting CD44 partially corrects NASH, making it a potential therapeutic strategy.
Collapse
Affiliation(s)
- Stéphanie Patouraux
- INSERM, U1065, C3M, Team 8 "Hepatic Complications in Obesity", Nice, France; Université Côte d'Azur, Nice, France; CHU of Nice, Biological Center, Pasteur Hôpital, Nice, France
| | - Déborah Rousseau
- INSERM, U1065, C3M, Team 8 "Hepatic Complications in Obesity", Nice, France; Université Côte d'Azur, Nice, France
| | - Stéphanie Bonnafous
- INSERM, U1065, C3M, Team 8 "Hepatic Complications in Obesity", Nice, France; Université Côte d'Azur, Nice, France; CHU of Nice, Digestive Center, Nice, France
| | - Cynthia Lebeaupin
- INSERM, U1065, C3M, Team 8 "Hepatic Complications in Obesity", Nice, France; Université Côte d'Azur, Nice, France
| | - Carmelo Luci
- INSERM, U1065, C3M, Team 8 "Hepatic Complications in Obesity", Nice, France; Université Côte d'Azur, Nice, France
| | - Clémence M Canivet
- INSERM, U1065, C3M, Team 8 "Hepatic Complications in Obesity", Nice, France; Université Côte d'Azur, Nice, France; CHU of Nice, Digestive Center, Nice, France
| | - Anne-Sophie Schneck
- INSERM, U1065, C3M, Team 8 "Hepatic Complications in Obesity", Nice, France; Université Côte d'Azur, Nice, France; CHU of Nice, Digestive Center, Nice, France
| | - Adeline Bertola
- INSERM, U1065, C3M, Team 8 "Hepatic Complications in Obesity", Nice, France; Université Côte d'Azur, Nice, France
| | - Marie-Christine Saint-Paul
- INSERM, U1065, C3M, Team 8 "Hepatic Complications in Obesity", Nice, France; Université Côte d'Azur, Nice, France; CHU of Nice, Biological Center, Pasteur Hôpital, Nice, France
| | - Antonio Iannelli
- INSERM, U1065, C3M, Team 8 "Hepatic Complications in Obesity", Nice, France; Université Côte d'Azur, Nice, France; CHU of Nice, Digestive Center, Nice, France
| | - Jean Gugenheim
- INSERM, U1065, C3M, Team 8 "Hepatic Complications in Obesity", Nice, France; Université Côte d'Azur, Nice, France; CHU of Nice, Digestive Center, Nice, France
| | - Rodolphe Anty
- INSERM, U1065, C3M, Team 8 "Hepatic Complications in Obesity", Nice, France; Université Côte d'Azur, Nice, France; CHU of Nice, Digestive Center, Nice, France
| | - Albert Tran
- INSERM, U1065, C3M, Team 8 "Hepatic Complications in Obesity", Nice, France; Université Côte d'Azur, Nice, France; CHU of Nice, Digestive Center, Nice, France
| | - Béatrice Bailly-Maitre
- INSERM, U1065, C3M, Team 8 "Hepatic Complications in Obesity", Nice, France; Université Côte d'Azur, Nice, France
| | - Philippe Gual
- INSERM, U1065, C3M, Team 8 "Hepatic Complications in Obesity", Nice, France; Université Côte d'Azur, Nice, France.
| |
Collapse
|
2135
|
Greco CT, Akins RE, Epps TH, Sullivan MO. Attenuation of Maladaptive Responses in Aortic Adventitial Fibroblasts through Stimuli-Triggered siRNA Release from Lipid-Polymer Nanocomplexes. ADVANCED BIOSYSTEMS 2017; 1:1700099. [PMID: 29392169 PMCID: PMC5788321 DOI: 10.1002/adbi.201700099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lipid-siRNA assemblies are modified with photo-responsive polymers to enable spatiotemporally-controlled silencing of interleukin 1 beta (IL1β) and cadherin 11 (CDH11), two genes that are essential drivers of maladaptive responses in human aortic adventitial fibroblasts (AoAFs). These hybrid nanocomplexes address the critical challenge of locally mitigating fibrotic actions that lead to the high rates of vascular graft failures. In particular, the lipid-polymer formulations provide potent silencing of IL1β and CDH11 that is precisely modulated by a photo-release stimulus. Moreover, a dynamic modeling framework is used to design a multi-dose siRNA regimen that sustains knockdown of both genes over clinically-relevant timescales. Multi-dose suppression illuminates a cooperative role for IL1β and CDH11 in pathogenic adventitial remodeling and is directly linked to desirable functional outcomes. Specifically, myofibroblast differentiation and cellular proliferation, two of the primary hallmarks of fibrosis, are significantly attenuated by IL1β silencing. Meanwhile, the effects of CDH11 siRNA treatment on differentiation become more pronounced at higher cell densities characteristic of constrictive adventitial remodeling in vivo. Thus, this work offers a unique formulation design for photo-responsive gene suppression in human primary cells and establishes a new dosing method to satisfy the critical need for local attenuation of fibrotic responses in the adventitium surrounding vascular grafts.
Collapse
Affiliation(s)
- Chad T Greco
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Robert E Akins
- Department of Biomedical Research, Nemours - Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Thomas H Epps
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
2136
|
Interaction of galectin-3 with MUC1 on cell surface promotes EGFR dimerization and activation in human epithelial cancer cells. Cell Death Differ 2017; 24:1937-1947. [PMID: 28731466 PMCID: PMC5635220 DOI: 10.1038/cdd.2017.119] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 06/09/2017] [Accepted: 06/20/2017] [Indexed: 01/08/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) is an important regulator of epithelial cell growth and survival in normal and cancerous tissues and is a principal therapeutic target for cancer treatment. EGFR is associated in epithelial cells with the heavily glycosylated transmembrane mucin protein MUC1, a natural ligand of galectin-3 that is overexpressed in cancer. This study reveals that the expression of cell surface MUC1 is a critical enhancer of EGF-induced EGFR activation in human breast and colon cancer cells. Both the MUC1 extracellular and intracellular domains are involved in EGFR activation but the predominant influence comes from its extracellular domain. Binding of galectin-3 to the MUC1 extracellular domain induces MUC1 cell surface polarization and increases MUC1–EGFR association. This leads to a rapid increase of EGFR homo-/hetero-dimerization and subsequently increased, and also prolonged, EGFR activation and signalling. This effect requires both the galectin-3 C-terminal carbohydrate recognition domain and its N-terminal ligand multi-merization domain. Thus, interaction of galectin-3 with MUC1 on cell surface promotes EGFR dimerization and activation in epithelial cancer cells. As MUC1 and galectin-3 are both commonly overexpressed in most types of epithelial cancers, their interaction and impact on EGFR activation likely makes important contribution to EGFR-associated tumorigenesis and cancer progression and may also influence the effectiveness of EGFR-targeted cancer therapy.
Collapse
|
2137
|
Polycomb group proteins: Novel molecules associated with ultraviolet A-induced photoaging of human skin. Exp Ther Med 2017; 14:2554-2562. [PMID: 28962194 PMCID: PMC5609303 DOI: 10.3892/etm.2017.4807] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 04/13/2017] [Indexed: 12/21/2022] Open
Abstract
Epigenetic repressor polycomb group (PcG) proteins are thought to serve a role in a number of cellular processes, including carcinogenesis, senescence, apoptosis and DNA repair. In the present study, long-wave ultraviolet A (UVA) was used to irradiate human skin fibroblasts (HSFs) and embryonic skin fibroblasts (ESFs) in order to simulate photoaging of the skin. The results of cell proliferation, apoptosis, hyaluronic acid (HA) content and reverse transcription-quantitative polymerase chain reaction assays revealed that the expression levels of genes encoding key PcG proteins (BMI-1 and EZH2) were altered. In addition, the expression levels of these genes were associated with the expression of enzymes that regulate HA synthesis. Furthermore, the expression levels of PcG proteins differed between HSFs and ESFs, suggesting that PcG proteins serve a role in altering HA synthesis during the UVA-induced fibroblast aging process. This signaling pathway may represent a novel molecular mechanism regulating the photoaging of the skin. The findings of the present study provide important insights into the underlying mechanisms of photoaging of the human skin. Further studies are required to clarify the molecular mechanisms underling skin aging and to identify targets for the clinical treatment of photoaging.
Collapse
|
2138
|
Sezgin E, Azbazdar Y, Ng XW, Teh C, Simons K, Weidinger G, Wohland T, Eggeling C, Ozhan G. Binding of canonical Wnt ligands to their receptor complexes occurs in ordered plasma membrane environments. FEBS J 2017. [PMID: 28626941 PMCID: PMC5599997 DOI: 10.1111/febs.14139] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
While the cytosolic events of Wnt/β‐catenin signaling (canonical Wnt signaling) pathway have been widely studied, only little is known about the molecular mechanisms involved in Wnt binding to its receptors at the plasma membrane. Here, we reveal the influence of the immediate plasma membrane environment on the canonical Wnt–receptor interaction. While the receptors are distributed both in ordered and disordered environments, Wnt binding to its receptors selectively occurs in more ordered membrane environments which appear to cointernalize with the Wnt‐receptor complex. Moreover, Wnt/β‐catenin signaling is significantly reduced when the membrane order is disturbed by specific inhibitors of certain lipids that prefer to localize at the ordered environments. Similarly, a reduction in Wnt signaling activity is observed in Niemann–Pick Type C disease cells where trafficking of ordered membrane lipid components to the plasma membrane is genetically impaired. We thus conclude that ordered plasma membrane environments are essential for binding of canonical Wnts to their receptor complexes and downstream signaling activity.
Collapse
Affiliation(s)
- Erdinc Sezgin
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, UK
| | - Yagmur Azbazdar
- Izmir International Biomedicine and Genome Institute (iBG-izmir), Dokuz Eylul University, Izmir, Turkey.,Department of Medical Biology and Genetics, Dokuz Eylul University Medical School, Izmir, Turkey
| | - Xue W Ng
- Department of Chemistry and Center for BioImaging Sciences, National University of Singapore, Singapore
| | - Cathleen Teh
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Kai Simons
- Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
| | - Gilbert Weidinger
- Institute of Biochemistry and Molecular Biology, Ulm University, Germany
| | - Thorsten Wohland
- Department of Chemistry and Center for BioImaging Sciences, National University of Singapore, Singapore
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, UK
| | - Gunes Ozhan
- Izmir International Biomedicine and Genome Institute (iBG-izmir), Dokuz Eylul University, Izmir, Turkey.,Department of Medical Biology and Genetics, Dokuz Eylul University Medical School, Izmir, Turkey
| |
Collapse
|
2139
|
Dai H, Jia G, Wang H, Yang J, Jiang H, Chu M. Epidermal growth factor receptor transactivation is involved in the induction of human hepatoma SMMC7721 cell proliferation by insufficient radiofrequency ablation. Oncol Lett 2017; 14:2463-2467. [PMID: 28789459 DOI: 10.3892/ol.2017.6463] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 05/05/2017] [Indexed: 01/01/2023] Open
Abstract
Our previous study revealed that insufficient radiofrequency ablation (RFA) promotes the malignancy of human hepatocellular carcinoma (HCC) SMMC7721 cells via the Ca2+/calmodulin-dependent protein kinase II (CaMKII)/extracellular signal-regulated kinase (ERK)-induced overexpression of vascular endothelial growth factor (VEGF). The aims of the present study were to address the involvement of epidermal growth factor receptor (EGFR) transactivation in the enhanced SMMC7721 cell proliferation induced by insufficient RFA, in addition to its association with the CaMKII/ERK/VEGF signaling cascade. SMMC7721 cells were subjected to a 47°C treatment regimen to simulate insufficient RFA. Cell proliferation was determined using MTT and colony formation assays. The expression levels of VEGF, CaMKII, phosphorylated (phospho)-CaMKII, ERK, phospho-ERK, EGFR and phospho-EGFR were analyzed using western blotting. The results demonstrated that the enhancement of SMMC7721 cell proliferation by the 47°C treatment regimen was significantly inhibited by exposure of the cells to AG178 (a specific inhibitor of EGFR). Furthermore, AG1478 exposure prevented the overexpression of VEGF and phosphorylation of ERK, but had no significant effects on CaMKII phosphorylation. By contrast, 47°C treatment-induced EGFR phosphorylation was inhibited by treatment with KN93 (a specific inhibitor of CaMKII). Overall, the results of the present study have suggested a role for EGFR transactivation in the RFA-promoted growth of residual HCC. Thus, targeting EGFR may represent a useful preventive and therapeutic strategy for RFA-induced HCC progression and recurrence.
Collapse
Affiliation(s)
- Hongliang Dai
- Department of Community Health Nursing, School of Nursing, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Guizhi Jia
- Department of Physiology, College of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Hongxin Wang
- Department of Pharmacology, College of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Jingming Yang
- Department of Pharmacognosy, College of Pharmacy, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Hua Jiang
- Department of Pharmacognosy, College of Pharmacy, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Minghui Chu
- Department of Community Health Nursing, School of Nursing, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| |
Collapse
|
2140
|
Wang J, Nie S, Cui SW, Wang Z, Phillips AO, Phillips GO, Li Y, Xie M. Structural characterization and immunostimulatory activity of a glucan from natural Cordyceps sinensis. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2017.01.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
2141
|
Abstract
Fibrosis is a major player in cardiovascular disease, both as a contributor to the development of disease, as well as a post-injury response that drives progression. Despite the identification of many mechanisms responsible for cardiovascular fibrosis, to date no treatments have emerged that have effectively reduced the excess deposition of extracellular matrix associated with fibrotic conditions. Novel treatments have recently been identified that hold promise as potential therapeutic agents for cardiovascular diseases associated with fibrosis, as well as other fibrotic conditions. The purpose of this review is to provide an overview of emerging antifibrotic agents that have shown encouraging results in preclinical or early clinical studies, but have not yet been approved for use in human disease. One of these agents is bone morphogenetic protein-7 (BMP7), which has beneficial effects in multiple models of fibrotic disease. Another approach discussed involves altering the levels of micro-RNA (miR) species, including miR-29 and miR-101, which regulate the expression of fibrosis-related gene targets. Further, the antifibrotic potential of agonists of the peroxisome proliferator-activated receptors will be discussed. Finally, evidence will be reviewed in support of the polypeptide hormone relaxin. Relaxin is long known for its extracellular remodeling properties in pregnancy, and is rapidly emerging as an effective antifibrotic agent in a number of organ systems. Moreover, relaxin has potent vascular and renal effects that make it a particularly attractive approach for the treatment of cardiovascular diseases. In each case, the mechanism of action and the applicability to various fibrotic diseases will be discussed.
Collapse
Affiliation(s)
- Benita L McVicker
- Research Service, VA Nebraska-Western Iowa Health Care System, OmahaNE, United States.,Division of Gastroenterology and Hepatology, University of Nebraska Medical Center, OmahaNE, United States
| | - Robert G Bennett
- Research Service, VA Nebraska-Western Iowa Health Care System, OmahaNE, United States.,The Division of Diabetes, Endocrinology, and Metabolism, Department of Internal Medicine, University of Nebraska Medical Center, OmahaNE, United States.,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, OmahaNE, United States
| |
Collapse
|
2142
|
Li J, Yao W, Zhang L, Bao L, Chen H, Wang D, Yue Z, Li Y, Zhang M, Hao C. Genome-wide DNA methylation analysis in lung fibroblasts co-cultured with silica-exposed alveolar macrophages. Respir Res 2017; 18:91. [PMID: 28499430 PMCID: PMC5429546 DOI: 10.1186/s12931-017-0576-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/08/2017] [Indexed: 01/14/2023] Open
Abstract
Background Exposure to crystalline silica is considered to increase the risk of lung fibrosis. The primary effector cell, the myofibroblast, plays an important role in the deposition of extracellular matrix (ECM). DNA methylation change is considered to have a potential effect on myofibroblast differentiation. Therefore, the present study was designed to investigate the genome-wide DNA methylation profiles of lung fibroblasts co-cultured with alveolar macrophages exposed to crystalline silica in vitro. Methods AM/fibroblast co-culture system was established. CCK8 was used to assess the toxicity of AMs. mRNA and protein expression of collagen I, α-SMA, MAPK9 and TGF-β1 of fibroblasts after AMs exposed to 100 μg /ml SiO2 for 0–, 24–, or 48 h were determined by means of quantitative real-time PCR, immunoblotting and immunohistochemistry. Genomic DNA of fibroblasts was isolated using MeDIP-Seq to sequence. R software, GO, KEGG and Cytoscape were used to analyze the data. Results SiO2 exposure increased the expression of collagen I and α-SMA in fibroblasts in co-culture system. Analysis of fibroblast methylome identified extensive methylation changes involved in several signaling pathways, such as the MAPK signaling pathway and metabolic pathways. Several candidates, including Tgfb1 and Mapk9, are hubs who can connect the gene clusters. MAPK9 mRNA expression was significantly higher in fibroblast exposed to SiO2 in co-culture system for 48 h. MAPK9 protein expression was increased at both 24-h and 48-h treatment groups. TGF-β1 mRNA expression of fibroblast has a time-dependent manner, but we didn’t observe the TGF-β1 protein expression. Conclusion Tgfb1 and Mapk9 are helpful to explore the mechanism of myofibroblast differentiation. The genome-wide DNA methylation profiles of fibroblasts in this experimental silicosis model will be useful for future studies on epigenetic gene regulation during myofibroblast differentiation. Electronic supplementary material The online version of this article (doi:10.1186/s12931-017-0576-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juan Li
- College of Public Health, Zhengzhou University, No.100, Kexue Road, Zhengzhou city, Henan province, China
| | - Wu Yao
- College of Public Health, Zhengzhou University, No.100, Kexue Road, Zhengzhou city, Henan province, China
| | - Lin Zhang
- College of Public Health, Zhengzhou University, No.100, Kexue Road, Zhengzhou city, Henan province, China
| | - Lei Bao
- College of Public Health, Zhengzhou University, No.100, Kexue Road, Zhengzhou city, Henan province, China
| | - Huiting Chen
- College of Public Health, Zhengzhou University, No.100, Kexue Road, Zhengzhou city, Henan province, China
| | - Di Wang
- College of Public Health, Zhengzhou University, No.100, Kexue Road, Zhengzhou city, Henan province, China
| | - Zhongzheng Yue
- College of Public Health, Zhengzhou University, No.100, Kexue Road, Zhengzhou city, Henan province, China
| | - Yiping Li
- College of Public Health, Zhengzhou University, No.100, Kexue Road, Zhengzhou city, Henan province, China
| | - Miao Zhang
- College of Public Health, Zhengzhou University, No.100, Kexue Road, Zhengzhou city, Henan province, China
| | - Changfu Hao
- College of Public Health, Zhengzhou University, No.100, Kexue Road, Zhengzhou city, Henan province, China.
| |
Collapse
|
2143
|
Zheng X, Qi C, Zhang S, Fang Y, Ning W. TGF-β1 induces Fstl1 via the Smad3-c-Jun pathway in lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 2017; 313:L240-L251. [PMID: 28495857 DOI: 10.1152/ajplung.00523.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 05/03/2017] [Accepted: 05/05/2017] [Indexed: 12/13/2022] Open
Abstract
Transforming growth factor (TGF)-β1 has long been regarded as a central mediator of tissue fibrosis. Follistatin-like 1 (Fstl1) is a crucial profibrotic glycoprotein that is upregulated in fibrotic lung tissues, and it promotes fibrogenesis via facilitating TGF-β signaling. Here we examined the signaling pathway by which TGF-β1 upregulates Fstl1 expression in mouse pulmonary fibroblasts. TGF-β1 regulated Fstl1 expression at both the transcriptional and translational levels. Although TGF-β1 rapidly activated the Smad, MAPK, and Akt pathways in lung fibroblasts, only Smad2/3 inhibition eliminated TGF-β1-induced Fstl1 expression. Analysis of the luciferase reporter activity identified a functional c-Jun transcription site in the Fstl1 promoter. Our results suggested a critical role for the Smad3-c-Jun pathway in the regulation of Fstl1 expression by TGF-β1 during fibrogenesis.
Collapse
Affiliation(s)
- Xiaohong Zheng
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Chao Qi
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Si Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yinshan Fang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Wen Ning
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
2144
|
Sasaki N, Itakura Y, Toyoda M. Sialylation regulates myofibroblast differentiation of human skin fibroblasts. Stem Cell Res Ther 2017; 8:81. [PMID: 28420408 PMCID: PMC5395757 DOI: 10.1186/s13287-017-0534-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/26/2017] [Accepted: 03/11/2017] [Indexed: 12/21/2022] Open
Abstract
Background Fibroblasts are key players in maintaining skin homeostasis and in orchestrating physiological tissue repair and skin regeneration. Dysfunctions in fibroblasts that occur with aging and the senescent process lead to the delayed healing observed in elderly people. The molecular mechanisms leading to fibroblast dysfunction during aging and the senescent process have not yet been clarified. Previously, changes in patterns of glycosylation were observed in fibroblasts in aging and the senescent process, but the effect of these changes on the function of fibroblasts has not been well documented. Here, we investigated whether changes in glycosylation during the process to senescence may have functional effects on fibroblasts. Methods The changes in cell surface glycans on skin fibroblasts during the process to senescence were examined in early-passage (EP) and late-passage (LP) skin fibroblasts by fluorescence-activated cell sorting analysis using lectins. The contributors to the changes in cell surface glycans were examined by real-time polymerase chain reaction or Western blot analysis. The effects of changes in glycosylation on proliferation, migration, induction of cellular senescence, and myofibroblast differentiation induced by transforming growth factor (TGF)-β1 stimulation were examined in EP fibroblasts. The changes in glycosylation were performed by GalNAc-α-O-benzyl or sialidase treatment. Results A decrease in sialylation of glycoproteins and an increase in sialidase NEU1 were observed in LP fibroblasts. The reduction of sialylation did not have any effect on proliferation, migration, or induction of cellular senescence. On the other hand, myofibroblast differentiation was inhibited by the reduction of sialylation, indicating that sialylation is important for myofibroblast differentiation. The localization of CD44 in lipid rafts, which is required for myofibroblast differentiation, was inhibited by the reduction of sialylation. Furthermore, reduced myofibroblast differentiation in LP fibroblasts was restored by a sialidase inhibitor. Conclusions Desialylation of CD44 with increased sialidase during the process to senescence reduced the localization of CD44 in lipid rafts after TGF-β1 stimulation, leading to the inhibition of myofibroblast differentiation. Thus, regulation of sialylation may be an attractive strategy for the prevention and regenerative therapy of age-related skin diseases, cosmetic skin alterations, and chronic wounds caused by delayed healing in elderly people. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0534-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Norihiko Sasaki
- Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Sakaecho 35-2, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Yoko Itakura
- Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Sakaecho 35-2, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Masashi Toyoda
- Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Sakaecho 35-2, Itabashi-ku, Tokyo, 173-0015, Japan.
| |
Collapse
|
2145
|
Ghatak S, Markwald RR, Hascall VC, Dowling W, Lottes RG, Baatz JE, Beeson G, Beeson CC, Perrella MA, Thannickal VJ, Misra S. Transforming growth factor β1 (TGFβ1) regulates CD44V6 expression and activity through extracellular signal-regulated kinase (ERK)-induced EGR1 in pulmonary fibrogenic fibroblasts. J Biol Chem 2017; 292:10465-10489. [PMID: 28389562 DOI: 10.1074/jbc.m116.752451] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 04/06/2017] [Indexed: 01/06/2023] Open
Abstract
The appearance of myofibroblasts is generally thought to be the underlying cause of the fibrotic changes that underlie idiopathic pulmonary fibrosis. However, the cellular/molecular mechanisms that account for the fibroblast-myofibroblast differentiation/activation in idiopathic pulmonary fibrosis remain poorly understood. We investigated the functional role of hyaluronan receptor CD44V6 (CD44 containing variable exon 6 (v6)) for differentiation of lung fibroblast to myofibroblast phenotype. Increased hyaluronan synthesis and CD44 expression have been detected in numerous fibrotic organs. Previously, we found that the TGFβ1/CD44V6 pathway is important in lung myofibroblast collagen-1 and α-smooth-muscle actin synthesis. Because increased EGR1 (early growth response-1) expression has been shown to appear very early and nearly coincident with the expression of CD44V6 found after TGFβ1 treatment, we investigated the mechanism(s) of regulation of CD44V6 expression in lung fibroblasts by TGFβ1. TGFβ1-mediated CD44V6 up-regulation was initiated through EGR1 via ERK-regulated transcriptional activation. We showed that TGFβ1-induced CD44V6 expression is through EGR1-mediated AP-1 (activator protein-1) activity and that the EGR1- and AP-1-binding sites in the CD44v6 promoter account for its responsiveness to TGFβ1 in lung fibroblasts. We also identified a positive-feedback loop in which ERK/EGR1 signaling promotes CD44V6 splicing and found that CD44V6 then sustains ERK signaling, which is important for AP-1 activity in lung fibroblasts. Furthermore, we identified that HAS2-produced hyaluronan is required for CD44V6 and TGFβRI co-localization and subsequent CD44V6/ERK1/EGR1 signaling. These results demonstrate a novel positive-feedback loop that links the myofibroblast phenotype to TGFβ1-stimulated CD44V6/ERK/EGR1 signaling.
Collapse
Affiliation(s)
- Shibnath Ghatak
- From the Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425,
| | - Roger R Markwald
- From the Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Vincent C Hascall
- the Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio 44195
| | - William Dowling
- From the Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425.,the College of Charleston, Charleston, South Carolina 29424
| | | | | | - Gyada Beeson
- Drug Discovery and Biomedical sciences, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Craig C Beeson
- Drug Discovery and Biomedical sciences, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Mark A Perrella
- the Division of Pulmonary and Critical Care Medicine, Department of Medicine, and the Department of Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, and
| | - Victor J Thannickal
- the Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294-0006
| | - Suniti Misra
- From the Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425,
| |
Collapse
|
2146
|
Groen N, Yuan H, Hebels DGAJ, Koçer G, Mbuyi F, LaPointe V, Truckenmüller R, van Blitterswijk CA, Habibović P, de Boer J. Linking the Transcriptional Landscape of Bone Induction to Biomaterial Design Parameters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1603259. [PMID: 27991696 DOI: 10.1002/adma.201603259] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/07/2016] [Indexed: 06/06/2023]
Abstract
New engineering possibilities allow biomaterials to serve as active orchestrators of the molecular and cellular events of tissue regeneration. Here, the molecular control of tissue regeneration for calcium phosphate (CaP)-based materials is established by defining the parameters critical for tissue induction and those are linked to the molecular circuitry controlling cell physiology. The material properties (microporosity, ion composition, protein adsorption) of a set of synthesized osteoinductive and noninductive CaP ceramics are parameterized and these properties are correlated to a transcriptomics profile of osteogenic cells grown on the materials in vitro. Using these data, a genetic network controlling biomaterial-induced bone formation is built. By isolating the complex material properties into single-parameter test conditions, it is verified that a subset of these genes is indeed controlled by surface topography and ions released from the ceramics, respectively. The gene network points to a decisive role for extracellular matrix deposition in osteoinduction by genes such as tenascin C and hyaluronic acid synthase 2, which are controlled by calcium and phosphate ions as well as surface topography. This work provides insight into the biomaterial composition and material engineering aspects of bone void filling and can be used as a strategy to explore the interface between biomaterials and tissue regeneration.
Collapse
Affiliation(s)
- Nathalie Groen
- Department of Tissue Regeneration, University of Twente, Drienerlolaan 5, 7522, NB, Enschede, The Netherlands
| | - Huipin Yuan
- MERLN Institute for Technology-inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229, ER, Maastricht, The Netherlands
- Xpand Biotechnology B.V, Professor Bronkhorstlaan 10, 3723, MB, Bilthoven, The Netherlands
| | - Dennie G A J Hebels
- MERLN Institute for Technology-inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229, ER, Maastricht, The Netherlands
| | - Gülistan Koçer
- Department of Tissue Regeneration, University of Twente, Drienerlolaan 5, 7522, NB, Enschede, The Netherlands
| | - Faustin Mbuyi
- Department of Tissue Regeneration, University of Twente, Drienerlolaan 5, 7522, NB, Enschede, The Netherlands
| | - Vanessa LaPointe
- MERLN Institute for Technology-inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229, ER, Maastricht, The Netherlands
| | - Roman Truckenmüller
- MERLN Institute for Technology-inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229, ER, Maastricht, The Netherlands
| | - Clemens A van Blitterswijk
- MERLN Institute for Technology-inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229, ER, Maastricht, The Netherlands
| | - Pamela Habibović
- MERLN Institute for Technology-inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229, ER, Maastricht, The Netherlands
| | - Jan de Boer
- Department of Tissue Regeneration, University of Twente, Drienerlolaan 5, 7522, NB, Enschede, The Netherlands
- MERLN Institute for Technology-inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229, ER, Maastricht, The Netherlands
| |
Collapse
|
2147
|
Kangas R, Törmäkangas T, Fey V, Pursiheimo J, Miinalainen I, Alen M, Kaprio J, Sipilä S, Säämänen AM, Kovanen V, Laakkonen EK. Aging and serum exomiR content in women-effects of estrogenic hormone replacement therapy. Sci Rep 2017; 7:42702. [PMID: 28195143 PMCID: PMC5307383 DOI: 10.1038/srep42702] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/10/2017] [Indexed: 01/08/2023] Open
Abstract
Exosomes participate in intercellular messaging by transporting bioactive lipid-, protein- and RNA-molecules and -complexes. The contents of the exosomes reflect the physiological status of an individual making exosomes promising targets for biomarker analyses. In the present study we extracted exosome microRNAs (exomiRs) from serum samples of premenopausal women (n = 8) and monozygotic postmenopausal twins (n = 10 female pairs), discordant for the use of estrogenic hormone replacement therapy (HRT), in order to see whether the age or/and the use of HRT associates with exomiR content. A total of 241 exomiRs were detected by next generation sequencing, 10 showing age, 14 HRT and 10 age +HRT -related differences. When comparing the groups, differentially expressed miRs were predicted to affect cell proliferation processes showing inactivation with younger age and HRT usage. MiR-106-5p, -148a-3p, -27-3p, -126-5p, -28-3p and -30a-5p were significantly associated with serum 17β-estradiol. MiRs formed two hierarchical clusters being indicative of positive or negative health outcomes involving associations with body composition, serum 17β-estradiol, fat-, glucose- and inflammatory markers. Circulating exomiR clusters, obtained by NGS, could be used as indicators of metabolic and inflammatory status affected by hormonal changes at menopause. Furthermore, the individual effects of HRT-usage could be evaluated based on the serum exomiR signature.
Collapse
Affiliation(s)
- Reeta Kangas
- Gerontology Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Timo Törmäkangas
- Gerontology Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Vidal Fey
- Department of Medical Biochemistry and Genetics, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Juha Pursiheimo
- Turku Clinical Sequencing Laboratory, University of Turku, Turku, Finland
| | | | - Markku Alen
- Department of Medical Rehabilitation, Oulu University Hospital, Oulu, Finland
- Center for Life Course Health Research, University of Oulu, Oulu, Finland
| | - Jaakko Kaprio
- National Institute for Health and Welfare, University of Helsinki, Helsinki, Finland
- Institute for Molecular Medicine FIMM, University of Helsinki, Helsinki, Finland
| | - Sarianna Sipilä
- Gerontology Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Anna-Marja Säämänen
- Department of Medical Biochemistry and Genetics, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Vuokko Kovanen
- Gerontology Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Eija K. Laakkonen
- Gerontology Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
2148
|
Gouw AM, Efe G, Barakat R, Preecha A, Mehdizadeh M, Garan SA, Brooks GA. Roles of estrogen receptor-alpha in mediating life span: the hypothalamic deregulation hypothesis. Physiol Genomics 2016; 49:88-95. [PMID: 28011880 DOI: 10.1152/physiolgenomics.00073.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In several species caloric restriction (CR) extends life span. In this paper we integrate data from studies on CR and other sources to articulate the hypothalamic deregulation hypothesis by which estrogen receptor-alpha (ER-α) signaling in the hypothalamus and limbic system affects life span under the stress of CR in mammals. ER-α is one of two principal estrogen-binding receptors differentially expressed in the amygdala, hippocampus, and several key hypothalamic nuclei: the arcuate nucleus (ARN), preoptic area (POA), ventromedial nucleus (VMN), antero ventral periventricular nucleus (AVPV), paraventricular nucleus (PVN), supraoptic nucleus (SON), and suprachiasmatic nucleus (SCN). Estradiol signaling via ER-α is essential in basal level functioning of reproductive cycle, sexually receptive behaviors, physiological stress responses, as well as sleep cycle, and other nonsexual behaviors. When an organism is placed under long-term CR, which introduces an external stress to this ER-α signaling, the reduction of ER-α expression is attenuated over time in the hypothalamus. This review paper seeks to characterize the downstream effects of ER-α in the hypothalamus and limbic system that affect normal endocrine functioning.
Collapse
Affiliation(s)
- Arvin M Gouw
- Lawrence Berkeley National Laboratories, Berkeley, California.,Center for Research and Education in Aging, University of California at Berkeley, Lawrence Berkeley National Laboratories, California; and.,Department of Integrative Biology, University of California at Berkeley, Berkeley, California
| | - Gizem Efe
- Lawrence Berkeley National Laboratories, Berkeley, California.,Center for Research and Education in Aging, University of California at Berkeley, Lawrence Berkeley National Laboratories, California; and
| | - Rita Barakat
- Lawrence Berkeley National Laboratories, Berkeley, California.,Center for Research and Education in Aging, University of California at Berkeley, Lawrence Berkeley National Laboratories, California; and
| | - Andrew Preecha
- Lawrence Berkeley National Laboratories, Berkeley, California.,Center for Research and Education in Aging, University of California at Berkeley, Lawrence Berkeley National Laboratories, California; and
| | - Morvarid Mehdizadeh
- Lawrence Berkeley National Laboratories, Berkeley, California.,Center for Research and Education in Aging, University of California at Berkeley, Lawrence Berkeley National Laboratories, California; and
| | - Steven A Garan
- Lawrence Berkeley National Laboratories, Berkeley, California.,Center for Research and Education in Aging, University of California at Berkeley, Lawrence Berkeley National Laboratories, California; and
| | - George A Brooks
- Center for Research and Education in Aging, University of California at Berkeley, Lawrence Berkeley National Laboratories, California; and .,Department of Integrative Biology, University of California at Berkeley, Berkeley, California
| |
Collapse
|
2149
|
Wang G, Jiao H, Zheng JN, Sun X. HSP27 regulates TGF-β mediated lung fibroblast differentiation through the Smad3 and ERK pathways. Int J Mol Med 2016; 39:183-190. [DOI: 10.3892/ijmm.2016.2813] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 11/15/2016] [Indexed: 11/06/2022] Open
|
2150
|
Yan W, Guo H, Suo F, Han C, Zheng H, Chen T. The effect of miR-146a on STAT1 expression and apoptosis in acute lymphoblastic leukemia Jurkat cells. Oncol Lett 2016; 13:151-154. [PMID: 28123535 PMCID: PMC5244898 DOI: 10.3892/ol.2016.5395] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 11/02/2016] [Indexed: 12/30/2022] Open
Abstract
The effect of miR-146a-dependent regulation of STAT1 on apoptosis in acute lymphoblastic leukemia (ALL) Jurkat cells was investigated. The miR-146a mimic and miR-146a inhibitor vectors were constructed in vitro, and experimental grouping was as follows: Control group (untreated Jurkat cells), empty vector group (Jurkat cells transfected with empty vector), agonist group (Jurkat cells transfected with miR-146a mimic) and the inhibitor group (Jurkat cells transfected with miR-146a inhibitor). Western blot analysis was used to observe the expression, respectively, of STAT1, p-STAT1 and Bcl-xL, and flow cytometry was used to test apoptosis in Jurkat cells. STAT1 and p-STAT1 expression in the agonist group was higher than that in the control and empty vector groups, but lower in the inhibitor group, and differences were statistically significant (P<0.05). The rate of apoptosis in the agonist group was significantly higher than that of the control group and blank vector group, and it was significantly lower in the inhibitor group (P<0.05). As a tumor suppressor, miR-146a can regulate expression of apoptosis-promoting factor STAT1, and anti-apoptosis factor Bcl-xL, and is able to promote apoptosis of ALL Jurkat cells.
Collapse
Affiliation(s)
- Weihong Yan
- Department of Pediatrics, Dongying People's Hospital, Dongying, Shangdong 257091, P.R. China
| | - Hua Guo
- Department of Pediatrics, Dongying People's Hospital, Dongying, Shangdong 257091, P.R. China
| | - Feng Suo
- Department of Radiology, Dongying People's Hospital, Dongying, Shangdong 257091, P.R. China
| | - Chunling Han
- Department of Pediatrics, Dongying People's Hospital, Dongying, Shangdong 257091, P.R. China
| | - Hua Zheng
- Department of Pediatrics, Dongying People's Hospital, Dongying, Shangdong 257091, P.R. China
| | - Tong Chen
- Department of Pediatrics, Dongying People's Hospital, Dongying, Shangdong 257091, P.R. China
| |
Collapse
|