2151
|
Xiao Y, Zhou Y, Lu Y, Zhou K, Cai W. PHB2 interacts with LC3 and SQSTM1 is required for bile acids-induced mitophagy in cholestatic liver. Cell Death Dis 2018; 9:160. [PMID: 29416008 PMCID: PMC5833850 DOI: 10.1038/s41419-017-0228-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 12/19/2022]
Abstract
Mitophagy is a major pathway for clearance of injured mitochondria. However, whether mitophagy is involved in the cholestasis-induced damages of hepatic mitochondria remains unknown. We here aimed to investigate the molecular links between cholestasis and hepatic mitophagy. We show that mitophagy is increased significantly in livers of biliary atresia (BA) that is cholestatic disease in infants. The mitochondrial-toxicity bile acids treatment increases the activities of mitophagy in hepatocytes. Mechanistically, we find that the prohibitin 2 (PHB2) is crucial for cholestasis-mediated mitophagy in vitro. On the one hand, PHB2 binds the autophagosomal membrane-associated protein LC3 upon injured mitochondria via an LC3-interaction region domain. On the other hand, PHB2 forms a ternary protein complex with sequestosome 1 (SQSTM1) and LC3, leading to loading of LC3 onto the damaged mitochondria. Altogether, our study suggests that PHB2 is required for cholestasis-induced mitophagy via LC3 onto the injured mitochondria.
Collapse
Affiliation(s)
- Yongtao Xiao
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Ying Zhou
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Ying Lu
- Shanghai Institute of Pediatric Research, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Kejun Zhou
- Shanghai Institute of Pediatric Research, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Wei Cai
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China. .,Shanghai Institute of Pediatric Research, Shanghai, China. .,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.
| |
Collapse
|
2152
|
Mir J, Franken D, Andrabi SW, Ashraf M, Rao K. Impact of weight loss on sperm DNA integrity in obese men. Andrologia 2018; 50:e12957. [PMID: 29388233 DOI: 10.1111/and.12957] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2017] [Indexed: 12/01/2022] Open
Abstract
The objective of the study was to determine whether weight loss in obese men improves their fertility with respect to DNA fragmentation index and morphology. Collected fertility parameters included DFI and morphology. Body mass index (BMI) was calculated for all patients with comparisons to their fertility parameters before and after weight loss using paired t test and chi-square tests. The mean BMI was significantly higher in group 1, before weight loss (33.18 kg/m2 ), than in group 2, after weight loss (30.43 kg/m2 ). Overall, 53.3% of men had DFI <20% while 43.8% had a DFI between 20% and 40%, and 2.9% of men had DFI >40%. The mean DFI of participants was higher before weight loss (20.2%) and had improved significantly after weight loss (17.5%) (p = <.001). The weight loss had significant positive correlation with percentage of DFI. There was a significant improvement in morphology after weight loss (p = <.05). In one of the largest cohorts of male fertility and obesity, DFI and morphology demonstrated significant relationship with adiposity, possibly contributing to subfertility in this population.
Collapse
Affiliation(s)
- J Mir
- Department of Andrology, Milann Hospital, Bangalore, India
| | - D Franken
- Department of Obstetrics and Gynaecology, University of the Free State, Bloemfontein, South Africa
| | | | - M Ashraf
- Department of Andrology, Milann Hospital, Bangalore, India
| | - K Rao
- Department of Reproductive Medicine, Milann Hospital, Bangalore, India
| |
Collapse
|
2153
|
Eid N, Kondo Y. Ethanol-induced mitophagy in rat Sertoli cells: Implications for male fertility. Andrologia 2018; 50:e12820. [PMID: 28488740 DOI: 10.1111/and.12820] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2017] [Indexed: 01/01/2023] Open
Abstract
Autophagy is a pro-survival mechanism involving lysosomal degradation of damaged cellular components following multiple forms of cellular stress. There is currently a lack of literature on the mechanism, and specifically on mitophagy (selective autophagy of damaged pro-apoptotic mitochondria) in Sertoli cells (SCs). Against such a background, the authors induced mitophagy in SCs of adult male rats using a single injection of ethanol (5 g/kg) and observed mitophagy in the SCs via transmission electron microscopy 24 hr later. In addition, we briefly discussed the possible clinical implications of enhanced autophagy and mitophagy in stressed SCs in our model and in other models of acute stress (e.g., heat and transplantation stress). Further studies on SC autophagy are required, as a full understanding of the molecular mechanisms controlling autophagy in stressed SCs may have therapeutic implications for infertility treatment.
Collapse
Affiliation(s)
- N Eid
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Y Kondo
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical College, Takatsuki, Osaka, Japan
| |
Collapse
|
2154
|
Del Vento F, Vermeulen M, de Michele F, Giudice MG, Poels J, des Rieux A, Wyns C. Tissue Engineering to Improve Immature Testicular Tissue and Cell Transplantation Outcomes: One Step Closer to Fertility Restoration for Prepubertal Boys Exposed to Gonadotoxic Treatments. Int J Mol Sci 2018; 19:ijms19010286. [PMID: 29346308 PMCID: PMC5796232 DOI: 10.3390/ijms19010286] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 01/16/2018] [Accepted: 01/16/2018] [Indexed: 12/15/2022] Open
Abstract
Despite their important contribution to the cure of both oncological and benign diseases, gonadotoxic therapies present the risk of a severe impairment of fertility. Sperm cryopreservation is not an option to preserve prepubertal boys’ reproductive potential, as their seminiferous tubules only contain spermatogonial stem cells (as diploid precursors of spermatozoa). Cryobanking of human immature testicular tissue (ITT) prior to gonadotoxic therapies is an accepted practice. Evaluation of cryopreserved ITT using xenotransplantation in nude mice showed the survival of a limited proportion of spermatogonia and their ability to proliferate and initiate differentiation. However, complete spermatogenesis could not be achieved in the mouse model. Loss of germ cells after ITT grafting points to the need to optimize the transplantation technique. Tissue engineering, a new branch of science that aims at improving cellular environment using scaffolds and molecules administration, might be an approach for further progress. In this review, after summarizing the lessons learned from human prepubertal testicular germ cells or tissue xenotransplantation experiments, we will focus on the benefits that might be gathered using bioengineering techniques to enhance transplantation outcomes by optimizing early tissue graft revascularization, protecting cells from toxic insults linked to ischemic injury and exploring strategies to promote cellular differentiation.
Collapse
Affiliation(s)
- Federico Del Vento
- Gynecology-Andrology Unit, Medical School, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium; (F.D.V.); (M.V.); (F.d.M.); (M.G.G.)
| | - Maxime Vermeulen
- Gynecology-Andrology Unit, Medical School, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium; (F.D.V.); (M.V.); (F.d.M.); (M.G.G.)
| | - Francesca de Michele
- Gynecology-Andrology Unit, Medical School, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium; (F.D.V.); (M.V.); (F.d.M.); (M.G.G.)
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium;
| | - Maria Grazia Giudice
- Gynecology-Andrology Unit, Medical School, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium; (F.D.V.); (M.V.); (F.d.M.); (M.G.G.)
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium;
| | - Jonathan Poels
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium;
| | - Anne des Rieux
- Advanced Drug Delivery and Biomaterials Unit, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Christine Wyns
- Gynecology-Andrology Unit, Medical School, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium; (F.D.V.); (M.V.); (F.d.M.); (M.G.G.)
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium;
- Correspondence: ; Tel.: +32-2-764-95-01
| |
Collapse
|
2155
|
Eid N, Ito Y, Horibe A, Hamaoka H, Kondo Y. A Method for In Vivo Induction and Ultrastructural Detection of Mitophagy in Sertoli Cells. Methods Mol Biol 2018; 1748:103-112. [PMID: 29453568 DOI: 10.1007/978-1-4939-7698-0_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
An emerging body of evidences based on in vitro studies indicate that mitophagy (selective autophagic clearance of damaged mitochondria) is a prosurvival mechanism, specifically under exposure to various stressors. Sertoli cells (SCs) play essential roles in maintenance of spermatogenesis via paracrine interactions with germ cells and other somatic cells in the testis; however, studies investigating mitophagy in SCs are still very few. In this chapter, we give a brief review of mechanisms and detection methods of mitophagy in SCs based on our recent publications on animal models of ethanol toxicity and current literature. In addition, we provide a method for induction and ultrastructural identification of mitophagy in SCs of adult Wistar rats using a single intraperitoneal injection (5 g/kg) of ethanol. Proper understanding of mitophagy features and mechanisms in SCs may have therapeutic implications for infertility associated with alcoholism and other diseases characterized by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Nabil Eid
- Division of Life Sciences, Department of Anatomy and Cell Biology, Osaka Medical College, Osaka, Japan.
| | - Yuko Ito
- Division of Life Sciences, Department of Anatomy and Cell Biology, Osaka Medical College, Osaka, Japan
| | - Akio Horibe
- Division of Life Sciences, Department of Anatomy and Cell Biology, Osaka Medical College, Osaka, Japan
| | - Hitomi Hamaoka
- Division of Life Sciences, Department of Anatomy and Cell Biology, Osaka Medical College, Osaka, Japan
| | - Yoichi Kondo
- Division of Life Sciences, Department of Anatomy and Cell Biology, Osaka Medical College, Osaka, Japan
| |
Collapse
|
2156
|
Abstract
Autophagy is an important cellular homeostatic process, it degrades most long-lived proteins and some organelles by lysosome to provide raw materials for the survival of the cells during nutrient or energy deprivation condition. Autophagy is active in Sertoli cells and involved in many cellular processes. However, the precise role of autophagy in Sertoli cells is still largely unknown. Thus, the assessment of autophagy in Sertoli cells should be helpful for investigating the functional roles of autophagy in Sertoli cells. This chapter describes some methods for assessing autophagy in Sertoli cells, including detection of LC3 maturation/aggregation, transmission electron microscopy, half-life assessments of long-lived proteins, immunofluorescence microscopy, and co-localization of autophagy-targeted proteins with autophagy components or lysosomal proteins.
Collapse
Affiliation(s)
- Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jehangir Khan
- Zoology Department, Buner Campus, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China.
| |
Collapse
|
2157
|
Lu Y, Cederbaum AI. Cytochrome P450s and Alcoholic Liver Disease. Curr Pharm Des 2018; 24:1502-1517. [PMID: 29637855 PMCID: PMC6053342 DOI: 10.2174/1381612824666180410091511] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/30/2018] [Accepted: 04/06/2018] [Indexed: 12/19/2022]
Abstract
Alcohol consumption causes liver diseases, designated as Alcoholic Liver Disease (ALD). Because alcohol is detoxified by alcohol dehydrogenase (ADH), a major ethanol metabolism system, the development of ALD was initially believed to be due to malnutrition caused by alcohol metabolism in liver. The discovery of the microsomal ethanol oxidizing system (MEOS) changed this dogma. Cytochrome P450 enzymes (CYP) constitute the major components of MEOS. Cytochrome P450 2E1 (CYP2E1) in MEOS is one of the major ROS generators in liver and is considered to be contributive to ALD. Our labs have been studying the relationship between CYP2E1 and ALD for many years. Recently, we found that human CYP2A6 and its mouse analog CYP2A5 are also induced by alcohol. In mice, the alcohol induction of CYP2A5 is CYP2E1-dependent. Unlike CYP2E1, CYP2A5 protects against the development of ALD. The relationship of CYP2E1, CYP2A5, and ALD is a major focus of this review.
Collapse
Affiliation(s)
- Yongke Lu
- Department of Health Sciences, College of Public Health, East Tennessee State University
- Center of Excellence for Inflammation, Infectious Disease and Immunity, East Tennessee State University
| | - Arthur I. Cederbaum
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai
| |
Collapse
|
2158
|
Yurt KK, Kaplan S. As a painkiller: a review of pre- and postnatal non-steroidal anti-inflammatory drug exposure effects on the nervous systems. Inflammopharmacology 2017; 26:15-28. [DOI: 10.1007/s10787-017-0434-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 12/10/2017] [Indexed: 11/29/2022]
|
2159
|
Sugihara H, Miyaji K, Yamanouchi K, Matsuwaki T, Nishihara M. Progranulin deficiency leads to prolonged persistence of macrophages, accompanied with myofiber hypertrophy in regenerating muscle. J Vet Med Sci 2017; 80:346-353. [PMID: 29249750 PMCID: PMC5836776 DOI: 10.1292/jvms.17-0638] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Skeletal muscle has an ability to regenerate in response to injury due to the presence of satellite cells. Injury in skeletal muscle causes infiltration of pro-inflammatory macrophages (M1 macrophages) to remove necrotic myofibers, followed by their differentiation into anti-inflammatory macrophages (M2 macrophages) to terminate the inflammation. Since both M1 and M2 macrophages play important roles, coordinated regulation of their kinetics is important to complete muscle regeneration successfully. Progranulin (PGRN) is a pluripotent growth factor, having a protective role against the inflamed tissue. In the central nervous system, PGRN regulates inflammation by inhibiting the activation of microglia. Here we used muscle injury model of PGRN-knockout (PGRN-KO) mice to elucidate whether it has a role in the kinetics of macrophages during muscle regeneration. We found the prolonged persistence of macrophages at the late phase of regeneration in PGRN-KO mice, and these macrophages were suggested to be M2 macrophages since this was accompanied with an increased CD206 expression. We also observed muscle hypertrophy in PGRN-KO mice at the late stage of muscle regeneration. Since M2 macrophages are known to have a role in maturation of myofibers, this muscle hypertrophy may be due to the presence of increased number of M2 macrophages. Our results suggest that PGRN plays a role in the regulation of kinetics of macrophages for the systemic progress of muscle regeneration.
Collapse
Affiliation(s)
- Hidetoshi Sugihara
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kei Miyaji
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Keitaro Yamanouchi
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takashi Matsuwaki
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masugi Nishihara
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
2160
|
Amanullah A, Upadhyay A, Joshi V, Mishra R, Jana NR, Mishra A. Progressing neurobiological strategies against proteostasis failure: Challenges in neurodegeneration. Prog Neurobiol 2017; 159:1-38. [DOI: 10.1016/j.pneurobio.2017.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 06/01/2017] [Accepted: 08/25/2017] [Indexed: 02/07/2023]
|
2161
|
Zhang J, Lan Y, Sanyal S. Modulation of Lipid Droplet Metabolism-A Potential Target for Therapeutic Intervention in Flaviviridae Infections. Front Microbiol 2017; 8:2286. [PMID: 29234310 PMCID: PMC5712332 DOI: 10.3389/fmicb.2017.02286] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/06/2017] [Indexed: 12/21/2022] Open
Abstract
Lipid droplets (LDs) are endoplasmic reticulum (ER)-related dynamic organelles that store and regulate fatty acids and neutral lipids. They play a central role in cellular energy storage, lipid metabolism and cellular homeostasis. It has become evident that viruses have co-evolved in order to exploit host lipid metabolic pathways. This is especially characteristic of the Flaviviridae family, including hepatitis C virus (HCV) and several flaviviruses. Devoid of an appropriate lipid biosynthetic machinery of their own, these single-strand positive-sense RNA viruses can induce dramatic changes in host metabolic pathways to establish a favorable environment for viral multiplication and acquire essential components to facilitate their assembly and traffic. Here we have reviewed the current knowledge on the intracellular life cycle of those from the Flaviviridae family, with particular emphasis on HCV and dengue virus (DENV), and their association with the biosynthesis and metabolism of LDs, with the aim to identify potential antiviral targets for development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Jingshu Zhang
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Yun Lan
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Sumana Sanyal
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| |
Collapse
|
2162
|
Ahmed N, Liu Y, Chen H, Yang P, Waqas Y, Liu T, Gandahi JA, Huang Y, Wang L, Song X, Rajput IR, Wang T, Chen Q. Novel cellular evidence of lipophagy within the Sertoli cells during spermatogenesis in the turtle. Aging (Albany NY) 2017; 9:41-51. [PMID: 27750210 PMCID: PMC5310655 DOI: 10.18632/aging.101070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 09/30/2016] [Indexed: 01/01/2023]
Abstract
Spermatogenesis is a complex process producing haploid spermatozoa, and the formation of lipid droplets (LDs) within Sertoli cells is critical to maintaining normal spermatogenesis. However, the utilization of LDs within Sertoli cells is still largely unknown. In the present study, proliferation of spermatogonial cells had begun in May, whereas the meiotic cells occurred predominately in July and majority of spermiogenic cells were observed in the seminiferous tubules in October. However, TEM and Oil Red O staining demonstrated that a larger number of LDs had accumulated within the Sertoli cells in May compared to that in October. There were several LDs attached to the isolation membrane/phagophore, suggesting that the LDs may be a source of endogenous energy for the biogenesis of autophagosomes. The LDs were enclosed within the autophagosomes in May, whereas, autophagosomes and mitochondria were directly attached with large LDs within the Sertoli cells in October. Furthermore, immunohistochemistry results demonstrated the stronger localization of LC3 on the Sertoli cells in May than in October. This study is the first to provide clear evidence of the two different modes of lipophagy for lipid consumption within Sertoli cells, which is a key aspect of Sertoli germ cell communication during spermatogenesis.
Collapse
Affiliation(s)
- Nisar Ahmed
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China.,Faculty of Veterinary and Animal Sciences, LUAWMS, Uthal 90150, Pakistan
| | - Yi Liu
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Hong Chen
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Ping Yang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Yasir Waqas
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Tengfei Liu
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Jameel Ahmed Gandahi
- Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tando Jam 70060, Pakistan
| | - Yufei Huang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Lingling Wang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Xuejing Song
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | | | - Taozhi Wang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Qiusheng Chen
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| |
Collapse
|
2163
|
Zhang Z, Yao Z, Chen Y, Qian L, Jiang S, Zhou J, Shao J, Chen A, Zhang F, Zheng S. Lipophagy and liver disease: New perspectives to better understanding and therapy. Biomed Pharmacother 2017; 97:339-348. [PMID: 29091883 DOI: 10.1016/j.biopha.2017.07.168] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/10/2017] [Accepted: 07/30/2017] [Indexed: 02/07/2023] Open
Abstract
Intracellular lipid droplets (LDs) are remarkably dynamic and complex organelles that enact regulated storage and release of lipids to fulfil their fundamental roles in energy metabolism, membrane synthesis and provision of lipid-derived signaling molecules. The recent finding that LDs can be selectively degraded by the lysosomal pathway of autophagy through a process termed lipophagy has opened up a new understanding of how lipid metabolism regulates cellular physiology and pathophysiology. Many new functions for autophagic lipid metabolism have now been defined in various diseases including liver disease. Lipophagy was originally described in hepatocytes, where it is critical for maintaining cellular energy homeostasis in obesity and metabolic syndrome. In vitro and in vivo studies have demonstrated the selective uptake of LDs by autophagosomes, and inhibition of autophagy has been shown to reduce the β-oxidation of free fatty acids due to the increased accumulation of lipids and LDs. The identification of lipophagy as a new process dedicated to cellular lipid removal has mapped autophagy as an emerging player in cellular lipid metabolism. Pharmacological or genetic modulation of lipophagy might point to possible therapeutic strategies for combating a broad range of liver diseases. This review summarizes recent work focusing on lipophagy and liver disease as well as highlighting challenges and future directions of research. On the other hand, it also offers a glimpse into different strategies that have been used in experimental models to counteract excessive pathological lipophagy in the prevention and treatment of liver disease.
Collapse
Affiliation(s)
- Zili Zhang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhen Yao
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yifan Chen
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lei Qian
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shuoyi Jiang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jingyi Zhou
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiangjuan Shao
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Anping Chen
- Department of Pathology, School of Medicine, Saint Louis University, St Louis, MO 63104, USA
| | - Feng Zhang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shizhong Zheng
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
2164
|
Does Hypoxia Cause Carcinogenic Iron Accumulation in Alcoholic Liver Disease (ALD)? Cancers (Basel) 2017; 9:cancers9110145. [PMID: 29068390 PMCID: PMC5704163 DOI: 10.3390/cancers9110145] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 10/19/2017] [Accepted: 10/20/2017] [Indexed: 02/06/2023] Open
Abstract
Alcoholic liver disease (ALD) is a leading health risk worldwide. Hepatic iron overload is frequently observed in ALD patients and it is an important and independent factor for disease progression, survival, and the development of primary liver cancer (HCC). At a systemic level, iron homeostasis is controlled by the liver-secreted hormone hepcidin. Hepcidin regulation is complex and still not completely understood. It is modulated by many pathophysiological conditions associated with ALD, such as inflammation, anemia, oxidative stress/H2O2, or hypoxia. Namely, the data on hypoxia-signaling of hepcidin are conflicting, which seems to be mainly due to interpretational limitations of in vivo data and methodological challenges. Hence, it is often overlooked that hepcidin-secreting hepatocytes are physiologically exposed to 2–7% oxygen, and that key oxygen species such as H2O2 act as signaling messengers in such a hypoxic environment. Indeed, with the recently introduced glucose oxidase/catalase (GOX/CAT) system it has been possible to independently study hypoxia and H2O2 signaling. First preliminary data indicate that hypoxia enhances H2O2-mediated induction of hepcidin, pointing towards oxidases such as NADPH oxidase 4 (NOX4). We here review and discuss novel concepts of hypoxia signaling that could help to better understand hepcidin-associated iron overload in ALD.
Collapse
|
2165
|
Peavey MC, Reynolds CL, Szwarc MM, Gibbons WE, Valdes CT, DeMayo FJ, Lydon JP. A Novel Use of Three-dimensional High-frequency Ultrasonography for Early Pregnancy Characterization in the Mouse. J Vis Exp 2017. [PMID: 29155779 DOI: 10.3791/56207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
High-frequency ultrasonography (HFUS) is a common method to non-invasively monitor the real-time development of the human fetus in utero. The mouse is routinely used as an in vivo model to study embryo implantation and pregnancy progression. Unfortunately, such murine studies require pregnancy interruption to enable follow-up phenotypic analysis. To address this issue, we used three-dimensional (3-D) reconstruction of HFUS imaging data for early detection and characterization of murine embryo implantation sites and their individual developmental progression in utero. Combining HFUS imaging with 3-D reconstruction and modeling, we were able to accurately quantify embryo implantation site number as well as monitor developmental progression in pregnant C57BL6J/129S mice from 5.5 days post coitus (d.p.c.) through to 9.5 d.p.c. with the use of a transducer. Measurements included: number, location, and volume of implantation sites as well as inter-implantation site spacing; embryo viability was assessed by cardiac activity monitoring. In the immediate post-implantation period (5.5 to 8.5 d.p.c.), 3-D reconstruction of the gravid uterus in both mesh and solid overlay format enabled visual representation of the developing pregnancies within each uterine horn. As genetically engineered mice continue to be used to characterize female reproductive phenotypes derived from uterine dysfunction, this method offers a new approach to detect, quantify, and characterize early implantation events in vivo. This novel use of 3-D HFUS imaging demonstrates the ability to successfully detect, visualize, and characterize embryo-implantation sites during early murine pregnancy in a non-invasive manner. The technology offers a significant improvement over current methods, which rely on the interruption of pregnancies for gross tissue and histopathologic characterization. Here we use a video and text format to describe how to successfully perform ultrasounds of early murine pregnancy to generate reliable and reproducible data with reconstruction of the uterine form in mesh and solid 3-D images.
Collapse
Affiliation(s)
- Mary C Peavey
- Devision of Repreoductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Baylor College of Medicine; Department of Molecular and Cellular Biology, Baylor College of Medicine
| | | | | | - William E Gibbons
- Devision of Repreoductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Baylor College of Medicine
| | - Cecilia T Valdes
- Devision of Repreoductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Baylor College of Medicine
| | - Francesco J DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences;
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine;
| |
Collapse
|
2166
|
de Barros Araújo Júnior R, Gonzaga ICA, Fernandes GA, Lima ACG, Cortelazzi PST, de Oliveira RA, Nicolau RA. Low-intensity LED therapy (λ 640 ± 20 nm) on saphenectomy healing in patients who underwent coronary artery bypass graft: a randomized, double-blind study. Lasers Med Sci 2017; 33:103-109. [DOI: 10.1007/s10103-017-2354-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 10/03/2017] [Indexed: 12/14/2022]
|
2167
|
Lee AY, Jang Y, Hong SH, Chang SH, Park S, Kim S, Kang KS, Kim JE, Cho MH. Ephedrine-induced mitophagy via oxidative stress in human hepatic stellate cells. J Toxicol Sci 2017; 42:461-473. [PMID: 28717105 DOI: 10.2131/jts.42.461] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The herb Ephedra sinica (also known as Chinese ephedra or Ma Huang), used in traditional Chinese medicine, contains alkaloids identical to ephedrine and pseudoephedrine as its principal active constituents. Recent studies have reported that ephedrine has various side effects in the cardiovascular and nervous systems. In addition, herbal Ephedra, a plant containing many pharmacologically active alkaloids, principally ephedrine, has been reported to cause acute hepatitis. Many studies reported clinical cases, however, the cellular mechanism of liver toxicity by ephedrine remains unknown. In this study, we investigated hepatotoxicity and key regulation of mitophagy in ephedrine-treated LX-2 cells. Ephedrine triggered mitochondrial oxidative stress and depolarization. Mitochondrial swelling and autolysosome were observed in ephedrine-treated cells. Ephedrine also inhibited mitochondrial biogenesis, and the mitochondrial copy number was decreased. Parkin siRNA recovered the ephedrine-induced mitochondrial damage. Excessive mitophagy lead to cell death through imbalance of autophagic flux. Moreover, antioxidants and reducing Parkin level could serve as therapeutic targets for ephedrine-induced hepatotoxicity.
Collapse
Affiliation(s)
- Ah Young Lee
- Laboratory of Toxicology, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Korea
| | - Yoonjeong Jang
- Laboratory of Toxicology, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Korea
| | - Seong-Ho Hong
- Laboratory of Toxicology, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Korea.,Present address: New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Korea
| | - Seung-Hee Chang
- Laboratory of Toxicology, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Korea
| | - Sungjin Park
- Laboratory of Toxicology, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Korea.,Present address: Department of Pharmacology and Medical Science, Metabolic Diseases and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Korea
| | - Sanghwa Kim
- Laboratory of Toxicology, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Korea.,Graduate Group of Tumor Biology, Seoul National University, Korea
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Korea
| | - Ji-Eun Kim
- Laboratory of Toxicology, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Korea.,Present address: Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Canada
| | - Myung-Haing Cho
- Laboratory of Toxicology, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Korea.,Graduate School of Convergence Science and Technology, Seoul National University, Korea.,Graduate Group of Tumor Biology, Seoul National University, Korea.,Advanced Institute of Convergence Technology, Seoul National University, Korea.,Institute of GreenBio Science Technology, Seoul National University, Korea
| |
Collapse
|
2168
|
Hayasaka K, Ishida H, Kimura R, Nishimaki T. Spatial relationships of the bronchial arteries to the left recurrent laryngeal nerve in the sub-aortic arch area. Surg Today 2017; 48:346-351. [PMID: 28948403 DOI: 10.1007/s00595-017-1593-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/12/2017] [Indexed: 01/30/2023]
Abstract
PURPOSE To safely perform lymphadenectomy in the sub-aortic arch area during esophagectomy for esophageal cancer, we investigated the spatial relationships between the bronchial arteries (BAs) and the left recurrent laryngeal nerve (LRLN). METHODS For this macro-anatomical study, 72 cadavers were used. RESULTS Of the 195 dissected BAs, 15 (7.7%) arteries ran dorsally across the LRLN. Such a running pattern of the BA was found in 15 (20.8%) of the 72 cadavers. Fourteen (93.3%) of the 15 arteries ran anteriorly along the left side of the esophagus, and 13 (86.7%) passed further to the lateral side of the left main bronchus to reach the ventral surface of the tracheobronchus; we named this running pattern "Type III". Of the 51 arteries with the Type III pattern, 25.5% ran across the dorsal side of the LRLN. CONCLUSION Approximately 20% of the cadavers had BAs running dorsally to the LRLN in the sub-aortic arch area. Most of these arteries had the Type III pattern. One-quarter of the BAs with the Type III pattern showed this running pattern. Care must be practiced to safely perform lymphadenectomy for esophageal cancer in patients with Type III BAs.
Collapse
Affiliation(s)
- Ken Hayasaka
- Department of Digestive and General Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa, 903-0215, Japan.
| | - Hajime Ishida
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa, 903-0215, Japan
| | - Ryosuke Kimura
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa, 903-0215, Japan
| | - Tadashi Nishimaki
- Department of Digestive and General Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa, 903-0215, Japan
| |
Collapse
|
2169
|
Wang L, Zhou J, Yan S, Lei G, Lee CH, Yin XM. Ethanol-triggered Lipophagy Requires SQSTM1 in AML12 Hepatic Cells. Sci Rep 2017; 7:12307. [PMID: 28951592 PMCID: PMC5614958 DOI: 10.1038/s41598-017-12485-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/05/2017] [Indexed: 12/14/2022] Open
Abstract
Ethanol-induced hepatic lipophagy plays an important cytoprotective role against liver injury, but its mechanism is not fully determined. In the present study, ethanol-induced lipophagy was studied in an immortalized mouse hepatocyte line, AML12. We found that ethanol treatment elevated lipid content in these cells, which could be regulated by autophagy. To determine the potential mechanism, we investigated the role of a key adaptor molecule SQSTM1/p62. SQSTM1 can bind to LC3 on autophagosomes and ubiquitinated molecules on cargos, thus facilitating the autophagic engulfment of the cargo. We found that both LC3 and SQSTM1 could colocalize with lipid droplets (LDs) following ethanol treatment. Colocalization of LC3 with LDs was significantly inhibited by SQSTM1 knockdown, which also reduced ethanol-induced lipid elevation. In addition, increased ubiquitin signals were found to colocalize with SQSTM1 on LDs in response to ethanol. Moreover, the SQSTM1 signal was colocalized with that of perilipin1, a major protein on LDs. Finally, perilipin1 knockdown significantly altered ethanol-induced lipophagy. Taken together, these data support a model in which autophagosomes were directed to the LDs via SQSTM1, which bound to ubiquitinated proteins, possibly including perilipin 1, on LDs. This study provides a potential mechanistic explanation to how ethanol induces lipophagy in hepatocytes.
Collapse
Affiliation(s)
- Lin Wang
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Jun Zhou
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Center of Minimally Invasive Surgery, Xiangya 2nd Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Shengmin Yan
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Guangsheng Lei
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Chao-Hung Lee
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Xiao-Ming Yin
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
2170
|
Ramadori P, Cubero FJ, Liedtke C, Trautwein C, Nevzorova YA. Alcohol and Hepatocellular Carcinoma: Adding Fuel to the Flame. Cancers (Basel) 2017; 9:cancers9100130. [PMID: 28946672 PMCID: PMC5664069 DOI: 10.3390/cancers9100130] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 02/06/2023] Open
Abstract
Primary tumors of the liver represent the fifth most common type of cancer in the world and the third leading cause of cancer-related death. Case-control studies from different countries report that chronic ethanol consumption is associated with an approximately 2-fold increased odds ratio for hepatocellular carcinoma (HCC). Despite the substantial epidemiologic data in humans demonstrating that chronic alcohol consumption is a major risk factor for HCC development, the pathways causing alcohol-induced liver cancer are poorly understood. In this overview, we summarize the epidemiological evidence for the association between alcohol and liver cancer, review the genetic, oncogenic, and epigenetic factors that drive HCC development synergistically with ethanol intake and discuss the essential molecular and metabolic pathways involved in alcohol-induced liver tumorigenesis.
Collapse
Affiliation(s)
- Pierluigi Ramadori
- Department of Internal Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, D-52074 Aachen, Germany.
| | - Francisco Javier Cubero
- Department of Immunology, Complutense University School of Medicine, Madrid 28040, Spain.
- 13 de Octubre Health Research Institute (imas12), Madrid 28041, Spain.
| | - Christian Liedtke
- Department of Internal Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, D-52074 Aachen, Germany.
| | - Christian Trautwein
- Department of Internal Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, D-52074 Aachen, Germany.
| | - Yulia A Nevzorova
- Department of Internal Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, D-52074 Aachen, Germany.
- Department of Animal Physiology II, Faculty of Biology, Complutense University, Madrid 28040, Spain.
| |
Collapse
|
2171
|
Mutsuga M, Asaoka Y, Imura N, Miyoshi T, Togashi Y. Aminoglutethimide-induced lysosomal changes in adrenal gland in mice. ACTA ACUST UNITED AC 2017; 69:424-429. [DOI: 10.1016/j.etp.2017.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 03/16/2017] [Accepted: 04/03/2017] [Indexed: 10/19/2022]
|
2172
|
Kupffer cells activation promoted binge drinking-induced fatty liver by activating lipolysis in white adipose tissues. Toxicology 2017; 390:53-60. [DOI: 10.1016/j.tox.2017.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/23/2017] [Accepted: 09/01/2017] [Indexed: 02/07/2023]
|
2173
|
Amanullah A, Mishra R, Upadhyay A, Reddy PP, Das R, Mishra A. Indomethacin elicits proteasomal dysfunctions develops apoptosis through mitochondrial abnormalities. J Cell Physiol 2017; 233:1685-1699. [PMID: 28681929 DOI: 10.1002/jcp.26081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 07/05/2017] [Indexed: 01/04/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are a class of drugs that are mainly used to treat pain, inflammation, and fever via cyclooxygenase-2 (COX-2) inhibition. There are abundant findings that uncover the hidden critical chemotherapeutics potential of NSAIDs in cancer treatment. However, still the precise mechanism by which NSAIDs could be used as an effective anti-tumor agent in the prevention of carcinogenesis is not well understood. Here, we show that indomethacin, a well-known NSAID, induces proteasomal dysfunction that results in accumulation of unwanted proteins, mitochondrial abnormalities, and successively stimulate apoptosis in cells. We observed the interaction of indomethacin with proteasome and noticed the massive accumulation of intracellular ubiquitin-positive proteins, which might be due to the suppression of proteasome activities. Furthermore, we also found that exposure of indomethacin causes the accumulation of critical proteasomal substrates that consequently generate severe mitochondrial abnormalities and prompt up key apoptotic events in cells. Our results demonstrate how indomethacin affects normal proteasomal functions and induces mitochondrial apoptosis in cells. These findings also improve our current understanding of how NSAIDs can exhibit crucial anti-proliferative effects in cells. In near future, our findings may suggest a new possible strategy for the development of specific proteasome inhibitors in conjunction with other chemo-preventive anticancer agents.
Collapse
Affiliation(s)
- Ayeman Amanullah
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Ribhav Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Arun Upadhyay
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Pothula P Reddy
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Ranabir Das
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| |
Collapse
|
2174
|
Zefelippo A, Fornoni G. Right hepatic artery 'caterpillar hump' and dual cystic arteries: relevance of critical view of safety in a 'straightforward' cholecystectomy. BMJ Case Rep 2017; 2017:bcr-2017-221534. [PMID: 28801516 DOI: 10.1136/bcr-2017-221534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Arianna Zefelippo
- HBP Surgery and Liver Transplantation, Ospedale Maggiore Policlinico, Milano, Italy
| | - Gianluca Fornoni
- HBP Surgery and Liver Transplantation, Ospedale Maggiore Policlinico, Milano, Italy
| |
Collapse
|
2175
|
Rasineni K, Donohue TM, Thomes PG, Yang L, Tuma DJ, McNiven MA, Casey CA. Ethanol-induced steatosis involves impairment of lipophagy, associated with reduced Dynamin2 activity. Hepatol Commun 2017; 1:501-512. [PMID: 29152606 PMCID: PMC5678901 DOI: 10.1002/hep4.1063] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/11/2017] [Accepted: 05/17/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Lipid droplets (LDs), the organelles central to alcoholic steatosis, are broken down by lipophagy, a specialized form of autophagy. Here, we hypothesize that ethanol administration retards lipophagy by down-regulating Dynamin 2 (Dyn2), a protein that facilitates lysosome re-formation, contributing to hepatocellular steatosis. METHODS Primary hepatocytes were isolated from male Wistar rats fed Lieber-DeCarli control or EtOH liquid diets for 6-8 wk. Hepatocytes were incubated in complete medium (fed) or nutrient-free medium (fasting) with or without the Dyn2 inhibitor Dynasore or the Src inhibitor SU6656. Phosphorylated (active) forms of Src and Dyn2, and markers of autophagy were quantified by Western Blot. Co-localization of LDs-with autophagic machinery was determined by confocal microscopy. RESULTS In hepatocytes from pair-fed rats, LD breakdown was accelerated during fasting, as judged by smaller LDs and lower TG content when compared to hepatocytes in complete media. Fasting-induced TG loss in control hepatocytes was significantly blocked by either SU6656 or Dynasore. Compared to controls, hepatocytes from EtOH-fed rats had 66% and 40% lower content of pSrc and pDyn2, respectively, coupled with lower rate of fasting-induced TG loss. This slower rate of fasting-induced TG loss was blocked in cells co-incubated with Dynasore. Microscopic examination of EtOH-fed rat hepatocytes revealed increased co-localization of the autophagosome marker LC3 on LDs with a concomitant decrease in lysosome marker LAMP1. Whole livers and LD fractions of EtOH-fed rats exhibited simultaneous increase in LC3II and p62 over that of controls, indicating a block in lipophagy. CONCLUSION Chronic ethanol administration slowed the rate of hepatocyte lipophagy, owing in part to lower levels of phosphorylated Src kinase available to activate its substrate, Dyn2, thereby causing depletion of lysosomes for LD breakdown.
Collapse
Affiliation(s)
- Karuna Rasineni
- The Liver Study UnitVA Nebraska‐Western Iowa Health Care System (VA NWIHCS)OmahaNE
- Department of Internal MedicineUniversity of Nebraska Medical CenterOmahaNE
| | - Terrence M. Donohue
- The Liver Study UnitVA Nebraska‐Western Iowa Health Care System (VA NWIHCS)OmahaNE
- Department of Internal MedicineUniversity of Nebraska Medical CenterOmahaNE
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical CenterOmahaNE
- Department of Pathology and MicrobiologyCollege of Medicine, University of Nebraska Medical CenterOmahaNE
- Center for Environmental ToxicologyCollege of Public Health, University of Nebraska Medical CenterOmahaNE
| | - Paul G. Thomes
- The Liver Study UnitVA Nebraska‐Western Iowa Health Care System (VA NWIHCS)OmahaNE
- Department of Internal MedicineUniversity of Nebraska Medical CenterOmahaNE
| | - Li Yang
- The Liver Study UnitVA Nebraska‐Western Iowa Health Care System (VA NWIHCS)OmahaNE
- Department of Internal MedicineUniversity of Nebraska Medical CenterOmahaNE
- Tongji HospitalTongji University School of MedicineShanghaiChina
| | - Dean J. Tuma
- The Liver Study UnitVA Nebraska‐Western Iowa Health Care System (VA NWIHCS)OmahaNE
- Department of Internal MedicineUniversity of Nebraska Medical CenterOmahaNE
| | - Mark A. McNiven
- Department of Biochemistry and Molecular BiologyMayo Clinic College of MedicineRochesterMN
| | - Carol A. Casey
- The Liver Study UnitVA Nebraska‐Western Iowa Health Care System (VA NWIHCS)OmahaNE
- Department of Internal MedicineUniversity of Nebraska Medical CenterOmahaNE
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical CenterOmahaNE
| |
Collapse
|
2176
|
Zhang J, Jin PP, Gong M, Guo JH, Fang K, Yi QT, Zhu RJ. Roles of Fas/FasL-mediated apoptosis and inhibin B in the testicular dysfunction of rats with left-side varicocele. Andrologia 2017; 50. [PMID: 28722192 DOI: 10.1111/and.12850] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2017] [Indexed: 11/26/2022] Open
Affiliation(s)
- J. Zhang
- Department of Urology; Shanghai Pudong Hospital; Fudan University; Shanghai China
| | - P. P. Jin
- Center for Medical Research and Innovation; Shanghai Pudong Hospital; Fudan University; Shanghai China
| | - M. Gong
- Department of Urology; Shanghai Pudong Hospital; Fudan University; Shanghai China
| | - J. H. Guo
- Department of Urology; Shanghai Ninth People's Hospital; Shanghai JiaoTong University School of Medicine; Shanghai China
| | - K. Fang
- Department of Urology; Shanghai Pudong Hospital; Fudan University; Shanghai China
| | - Q. T. Yi
- Department of Urology; Shanghai Pudong Hospital; Fudan University; Shanghai China
| | - R. J. Zhu
- Department of Urology; Shanghai Pudong Hospital; Fudan University; Shanghai China
| |
Collapse
|
2177
|
Ali Mohamed MS, M.D. Graduate, University of Cologne, Germany. A new strategy and system for the ex vivo ovary perfusion and cryopreservation: An innovation. Int J Reprod Biomed 2017. [DOI: 10.29252/ijrm.15.6.323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
2178
|
Pourmasumi S, Sabeti P, Rahiminia T, Mangoli E, Tabibnejad N, Talebi AR. The etiologies of sperm DNA abnormalities in male infertility: An assessment and review. Int J Reprod Biomed 2017. [DOI: 10.29252/ijrm.15.6.331] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
2179
|
Zhang X, Yuan D, Sun Q, Xu L, Lee E, Lewis AJ, Zuckerbraun BS, Rosengart MR. Calcium/calmodulin-dependent protein kinase regulates the PINK1/Parkin and DJ-1 pathways of mitophagy during sepsis. FASEB J 2017; 31:4382-4395. [PMID: 28615325 DOI: 10.1096/fj.201601096rrr] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 06/06/2017] [Indexed: 11/11/2022]
Abstract
During sepsis and shock states, mitochondrial dysfunction occurs. Consequently, adaptive mechanisms, such as fission, fusion, and mitophagy, are induced to eliminate damaged portions or entire dysfunctional mitochondria. The regulatory PINK1/Parkin and DJ-1 pathways are strongly induced by mitochondrial depolarization, although a direct link between loss of mitochondrial membrane potential (ΔΨ) and mitophagy has not been identified. Mitochondria also buffer Ca2+, and their buffering capacity is dependent on ΔΨ Here, we characterize a role for calcium/calmodulin-dependent protein kinase (CaMK) I in the regulation of these mechanisms. Loss of ΔΨ with either pharmacologic depolarization or LPS leads to Ca2+-dependent mitochondrial recruitment and activation of CaMKI that precedes the colocalization of PINK1/Parkin and DJ-1. CaMKI is required and serves as both a PINK1 and Parkin kinase. The mechanisms operate in both immune and nonimmune cells and are induced in in vivo models of endotoxemia, sepsis, and hemorrhagic shock. These data support the idea that CaMKI links mitochondrial stress with the PINK1/Parkin and DJ-1 mechanisms of mitophagy.-Zhang, X., Yuan, D., Sun, Q., Xu, L., Lee, E., Lewis, A. J., Zuckerbraun, B. S., Rosengart, M. R. Calcium/calmodulin-dependent protein kinase regulates the PINK1/Parkin and DJ-1 pathways of mitophagy during sepsis.
Collapse
Affiliation(s)
- Xianghong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Du Yuan
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qian Sun
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Li Xu
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Emma Lee
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anthony J Lewis
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Brian S Zuckerbraun
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Matthew R Rosengart
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
| |
Collapse
|
2180
|
Krishnan A, Abdullah TS, Mounajjed T, Hartono S, McConico A, White T, LeBrasseur N, Lanza I, Nair S, Gores G, Charlton M. A longitudinal study of whole body, tissue, and cellular physiology in a mouse model of fibrosing NASH with high fidelity to the human condition. Am J Physiol Gastrointest Liver Physiol 2017; 312:G666-G680. [PMID: 28232454 PMCID: PMC6146305 DOI: 10.1152/ajpgi.00213.2016] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 02/14/2017] [Accepted: 02/14/2017] [Indexed: 01/31/2023]
Abstract
The sequence of events that lead to inflammation and fibrosing nonalcoholic steatohepatitis (NASH) is incompletely understood. Hence, we investigated the chronology of whole body, tissue, and cellular events that occur during the evolution of diet-induced NASH. Male C57Bl/6 mice were assigned to a fast-food (FF; high calorie, high cholesterol, high fructose) or standard-chow (SC) diet over a period of 36 wk. Liver histology, body composition, mitochondrial respiration, metabolic rate, gene expression, and hepatic lipid content were analyzed. Insulin resistance [homeostasis model assessment-insulin resistance (HOMA-IR)] increased 10-fold after 4 wk. Fibrosing NASH was fully established by 16 wk. Total hepatic lipids increased by 4 wk and remained two- to threefold increased throughout. Hepatic triglycerides declined from sixfold increase at 8 wk to threefold increase by 36 wk. In contrast, hepatic cholesterol levels steadily increased from baseline at 8 wk to twofold by 36 wk. The hepatic immune cell population altered over time with macrophages persisting beyond 16 wk. Mitochondrial oxygen flux rates of FF mice diet were uniformly lower with all the tested substrates (13-276 pmol·s-1·ml-1 per unit citrate synthase) than SC mice (17-394 pmol·s-1·ml-1 per unit citrate synthase) and was accompanied by decreased mitochondrial:nuclear gene copy number ratios after 4 wk. Metabolic rate was lower in FF mice. Mitochondrial glutathione was significantly decreased at 24 wk in FF mice. Expression of dismutases and catalase was also decreased in FF mice. The evolution of NASH in the FF diet-induced model is multiphasic, particularly in terms of hepatic lipid composition. Insulin resistance precedes hepatic inflammation and fibrosis. Mitochondrial dysfunction and depletion occur after the histological features of NASH are apparent. Collectively, these observations provide a unique overview of the sequence of changes that coevolve with the histological evolution of NASH.NEW & NOTEWORTHY This study demonstrates in a first of kind longitudinal analysis, the evolution of nonalcoholic steatohepatitis (NASH) on a fast-food diet-induced model. Key findings include 1) hepatic lipid composition changes in a multiphasic fashion as NASH evolves; 2) insulin resistance precedes hepatic inflammation and fibrosis, answering a longstanding chicken-and-egg question regarding the relationship of insulin resistance to liver histology in NASH; and 3) mitochondrial dysfunction and depletion occur after the histological features of NASH are apparent.
Collapse
Affiliation(s)
| | - Tasduq Sheikh Abdullah
- 2Indian Institute of Integrative Medicine, Council of Scientific and Industrial Research, Jammu and Kashmir, India;
| | - Taofic Mounajjed
- 3Division of Anatomic Pathology, Mayo Clinic, Rochester, Minnesota;
| | - Stella Hartono
- 4Division of Immunology, Mayo Clinic, Rochester, Minnesota;
| | - Andrea McConico
- 5Division of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota;
| | - Thomas White
- 6Robert and Arlene Kogod Centre for Aging, Mayo Clinic, Rochester, Minnesota;
| | - Nathan LeBrasseur
- 6Robert and Arlene Kogod Centre for Aging, Mayo Clinic, Rochester, Minnesota;
| | - Ian Lanza
- 7Division of Endocrinology, Mayo Clinic, Rochester, Minnesota; and
| | - Sreekumaran Nair
- 7Division of Endocrinology, Mayo Clinic, Rochester, Minnesota; and
| | - Gregory Gores
- 1Division of Gastroenterology, Mayo Clinic, Rochester, Minnesota;
| | - Michael Charlton
- Division of Gastroenterology, Mayo Clinic, Rochester, Minnesota; .,Division of Hepatology, Intermountain Healthcare, Salt Lake City, Utah
| |
Collapse
|
2181
|
Yang P, Ahmed N, Wang L, Chen H, Waqas Y, Liu T, Haseeb A, Bangulzai N, Huang Y, Chen Q. In vivo autophagy and biogenesis of autophagosomes within male haploid cells during spermiogenesis. Oncotarget 2017; 8:56791-56801. [PMID: 28915631 PMCID: PMC5593602 DOI: 10.18632/oncotarget.18221] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/26/2017] [Indexed: 01/04/2023] Open
Abstract
Autophagy is a unique catabolic pathway that is linked to several physiological processes. However, its role in the process of spermiogenesis is largely unknown. The aim of the current study was to determine the in vivo role of autophagy and the origin of autophagosome membrane biogenesis within male haploid cells. Our immunohistochemistry results demonstrated that LC3 and ATG7 localization were increased dramatically in round to elongated spermatids (haploid cells) towards the lumen of seminiferous tubules, however, poorly expressed in the early stages of germ cells near the basal membrane. Moreover, transmission electron microscopy revealed that the numbers of lysosomes and autophagosomes increased in the elongated spermatids as spermiogenesis progressed. However, no evidence was found for the presence of autophagosomes in the Sertoli cells, spermatogonia or early primary spermatocytes (diploid cells). Furthermore, TEM showed that many endoplasmic reticula were transformed into a “chrysanthemum flower center,” from which a double-layered isolation membrane appeared to develop into an autophagosome. This study provides novel evidence about the formation of autophagosomes through the chrysanthemum flower center from the endoplasmic reticulum, and suggests that autophagy may have an important role in the removal of extra cytoplasm within male haploid cells during spermiogenesis.
Collapse
Affiliation(s)
- Ping Yang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.,The Postdoctoral Research Station in Animal Science, College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Nisar Ahmed
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.,Department of Veterinary Anatomy & Histology, Faculty of Veterinary and Animal Sciences, LUAWMS, Uthal 90150, Pakistan
| | - Lingling Wang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong Chen
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yasir Waqas
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Tengfei Liu
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Abdul Haseeb
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Nasrullah Bangulzai
- Department of Veterinary Anatomy & Histology, Faculty of Veterinary and Animal Sciences, LUAWMS, Uthal 90150, Pakistan
| | - Yufei Huang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiusheng Chen
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2182
|
Horibe A, Eid N, Ito Y, Hamaoka H, Tanaka Y, Kondo Y. Upregulated Autophagy in Sertoli Cells of Ethanol-Treated Rats Is Associated with Induction of Inducible Nitric Oxide Synthase (iNOS), Androgen Receptor Suppression and Germ Cell Apoptosis. Int J Mol Sci 2017; 18:1061. [PMID: 28505146 PMCID: PMC5454973 DOI: 10.3390/ijms18051061] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/22/2017] [Accepted: 05/10/2017] [Indexed: 12/20/2022] Open
Abstract
This study was conducted to investigate the autophagic response of Sertoli cells (SCs) to acute ethanol toxicity using in vivo and in vitro models. Adult Wistar rats were intraperitoneally injected with either 5 g/kg ethanol or phosphate-buffered saline (for the control group) and sacrificed 0, 3, 6 and 24 h after injection. Compared to the control group, enhanced germ cell apoptosis was observed in the ethanol-treated rats (ETRs) in association with upregulation of iNOS and reduced expression of androgen receptor protein levels in SCs, which were resistant to apoptosis. Meanwhile, autophagy was upregulated in ETR SCs (peaking at 24 h) compared to the control group, as evidenced by transcription factor EB (TFEB) nuclear translocation, enhanced expression of microtubule-associated protein 1 light chain3-II (LC3-II), lysosome-associated membrane protein-2 (LAMP-2), pan cathepsin protein levels and reduced expression of p62. This upregulation of SC autophagy was confirmed ultrastructurally by enhanced formation of autophagic vacuoles and by immunofluorescent double labelling of autophagosomal and lysosomal markers. Study of cultured SCs confirmed enhanced autophagic response to ethanol toxicity, which was cytoprotective based on decreased viability of SCs upon blocking autophagy with 3-methyladenine (3-MA). The results highlighted the molecular mechanisms of prosurvival autophagy in ETR SCs for the first time, and may have significant implications for male fertility.
Collapse
Affiliation(s)
- Akio Horibe
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan.
| | - Nabil Eid
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan.
| | - Yuko Ito
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan.
| | - Hitomi Hamaoka
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan.
| | - Yoshihisa Tanaka
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan.
| | - Yoichi Kondo
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan.
| |
Collapse
|
2183
|
Sodium 4-phenylbutyric acid prevents murine acetaminophen hepatotoxicity by minimizing endoplasmic reticulum stress. J Gastroenterol 2017; 52:611-622. [PMID: 27599972 DOI: 10.1007/s00535-016-1256-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 08/26/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND Acetaminophen (APAP) overdose induces severe oxidative stress followed by hepatocyte apoptosis/necrosis. Previous studies have indicated that endoplasmic reticulum (ER) stress is involved in the cell death process. Therefore, we investigated the effect of the chemical chaperone 4-phenyl butyric acid (PBA) on APAP-induced liver injury in mice. METHODS Eight-week-old male C57Bl6/J mice were given a single intraperitoneal (i.p.) injection of APAP (450 mg/kg body weight), following which some were repeatedly injected with PBA (120 mg/kg body weight, i.p.) every 3 h starting at 0.5 h after the APAP challenge. All mice were then serially euthanized up to 12 h later. RESULTS PBA treatment dramatically ameliorated the massive hepatocyte apoptosis/necrosis that was observed 6 h after APAP administration. PBA also significantly prevented the APAP-induced increases in cleaved activating transcription factor 6 and phosphorylation of c-Jun N-terminal protein kinase and significantly blunted the increases in mRNA levels for binding immunoglobulin protein, spliced X-box binding protein-1, and C/EBP homologous protein. Moreover, PBA significantly prevented APAP-induced Bax translocation to the mitochondria, and the expression of heme oxygenase-1 mRNA and 4-hydroxynonenal. By contrast, PBA did not affect hepatic glutathione depletion following APAP administration, reflecting APAP metabolism. CONCLUSIONS PBA prevents APAP-induced liver injury even when an APAP challenge precedes its administration. The underlying mechanism of action most likely involves the prevention of ER stress-induced apoptosis/necrosis in the hepatocytes during APAP intoxication.
Collapse
|
2184
|
Sun A, Mu L, Hu X. Graphene Oxide Quantum Dots as Novel Nanozymes for Alcohol Intoxication. ACS APPLIED MATERIALS & INTERFACES 2017; 9:12241-12252. [PMID: 28322544 DOI: 10.1021/acsami.7b00306] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Alcohol overconsumption as a worldwide issue results in alcoholic liver disease (ALD), such as steatosis, alcoholic hepatitis, and cirrhosis. The treatment of ALD has been widely investigated but remains challenging. In this work, the protective effects of graphene oxide quantum dots (GOQDs) as novel nanozymes against alcohol overconsumption are discovered, and the specific mechanisms underlying these effects are elucidated via omics analysis. GOQDs dramatically alleviate the reduction of cell viability induced by ethanol and can act as nanozymes to accelerate ethanol metabolism and avoid the accumulation of toxic intermediates in cells. Mitochondrial damage and the excessive generation of free radicals were mitigated by GOQDs. The mechanisms underlying the cellular protective effects were also related to alterations in metabolic and protein signals, especially those involved in lipid metabolism. The moderately increased autophagy induced by GOQDs explained the removal of accumulated lipids and the subsequent elimination of excessive GOQDs. These findings suggest that GOQDs have an antagonistic capacity against the adverse effects caused by ethanol and provide new insights into the direct applications of GOQDs. In addition to traditional antioxidation, this work also establishes metabolomics and proteomics techniques as effective tools to discover the multiple functions of nanozymes.
Collapse
Affiliation(s)
- Anqi Sun
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Tianjin 300071, China
| | - Li Mu
- Institute of Agro-environmental Protection, Ministry of Agriculture , Tianjin 300191, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Tianjin 300071, China
| |
Collapse
|
2185
|
Habas K, Brinkworth MH, Anderson D. Diethylstilbestrol induces oxidative DNA damage, resulting in apoptosis of spermatogonial stem cells in vitro. Toxicology 2017; 382:117-121. [PMID: 28315349 DOI: 10.1016/j.tox.2017.03.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/19/2017] [Accepted: 03/11/2017] [Indexed: 01/28/2023]
Abstract
) in SSCs was detected using p-Nitro Blue Tetrazolium (NBT) assay. The viability of cells after DES treatment was examined in the CCK8 (cell counting kit-8) cytotoxicity assay. The results showed that DES-induced DNA damage causes an increase in intracellular superoxide anions which are reduced by the flavonoid, quercetin. Investigating the molecular mechanisms and biology of SSCs provides a better understanding of spermatogonial stem cell regulation in the testis.
Collapse
Affiliation(s)
- Khaled Habas
- Division of Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, Richmond Road, West Yorkshire, BD7 1DP, UK
| | - Martin H Brinkworth
- Division of Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, Richmond Road, West Yorkshire, BD7 1DP, UK
| | - Diana Anderson
- Division of Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, Richmond Road, West Yorkshire, BD7 1DP, UK.
| |
Collapse
|
2186
|
Eid N, Kondo Y. Parkin in cancer: Mitophagy-related/unrelated tasks. World J Hepatol 2017; 9:349-351. [PMID: 28321271 PMCID: PMC5340990 DOI: 10.4254/wjh.v9.i7.349] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/17/2017] [Accepted: 02/08/2017] [Indexed: 02/06/2023] Open
Abstract
Dysfunctional mitochondria may produce excessive reactive oxygen species, thus inducing DNA damage, which may be oncogenic if not repaired. As a major role of the PINK1-Parkin pathway involves selective autophagic clearance of damaged mitochondria via a process termed mitophagy, Parkin-mediated mitophagy may be a tumor-suppressive mechanism. As an alternative mechanism for tumor inhibition beyond mitophagy, Parkin has been reported to have other oncosuppressive functions such as DNA repair, negative regulation of cell proliferation and stimulation of p53 tumor suppressor function. The authors recently reported that acute ethanol-induced mitophagy in hepatocytes was associated with Parkin mitochondrial translocation and colocalization with accumulated 8-OHdG (a marker of DNA damage and mutagenicity). This finding suggests: (1) the possibility of Parkin-mediated repair of damaged mitochondrial DNA in hepatocytes of ethanol-treated rats (ETRs) as an oncosuppressive mechanism; and (2) potential induction of cytoprotective mitophagy in ETR hepatocytes if mitochondrial damage is too severe to be repaired. Below is a summary of the various roles Parkin plays in tumor suppression, which may or may not be related to mitophagy. A proper understanding of the various tasks performed by Parkin in tumorigenesis may help in cancer therapy by allowing the PINK1-Parkin pathway to be targeted.
Collapse
Affiliation(s)
- Nabil Eid
- Nabil Eid, Yoichi Kondo, Division of Life Sciences, Department of Anatomy and Cell Biology, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Yoichi Kondo
- Nabil Eid, Yoichi Kondo, Division of Life Sciences, Department of Anatomy and Cell Biology, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| |
Collapse
|
2187
|
Edogawa S, Takeuchi T, Kojima Y, Ota K, Harada S, Kuramoto T, Narabayashi K, Inoue T, Higuchi K. Current Topics of Strategy of NSAID-Induced Small Intestinal Lesions. Digestion 2017; 92:99-107. [PMID: 26279152 DOI: 10.1159/000437395] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Small intestinal mucosal injuries have been recently recognized as common complications associated with non-steroidal anti-inflammatory drugs (NSAIDs) because video capsule endoscopy and balloon enteroscopy are now available for the detection of small intestinal lesions. Small intestinal injury occurs not in an acid-dependent mechanism but by various factors such as enteric bacteria, bile acids, prostaglandin (PG) deficiency and topical factors (abnormal intestinal mucosal permeability, mitochondrial dysfunction, reactive oxygen species, endoplasmic reticulum stress and so on), and there is no well-established prophylactic approach. Several experimental and clinical studies found the effectiveness of some of the mucoprotective drugs, PG analogs, but not that of acid suppressants. Considering the effect of proton pump inhibitors (PPIs) for upper gastrointestinal (GI) disease and in the small intestine, the following 2 kinds of strategies against NSAID-induced GI injuries may be recommended. In patients with a high risk of upper GI disease (peptic ulcer etc.), simultaneous administration of a PPI (for upper GI disease) and a mucoprotective drug (for small intestine) is needed to prevent NSAID-induced GI injury. In other cases, an effective mucoprotective drug is enough for the protection of the entire digestive tract, that is, starting from the esophagus to the small intestine. These strategies may fulfill both economical and curative effects.
Collapse
Affiliation(s)
- Shoko Edogawa
- 2nd Department of Internal Medicine, Osaka Medical College, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
2188
|
Abstract
The concept of macroautophagy was established in 1963, soon after the discovery of lysosomes in rat liver. Over the 50 years since, studies of liver autophagy have produced many important findings. The liver is rich in lysosomes and possesses high levels of metabolic-stress-induced autophagy, which is precisely regulated by concentrations of hormones and amino acids. Liver autophagy provides starved cells with amino acids, glucose and free fatty acids for use in energy production and synthesis of new macromolecules, and also controls the quality and quantity of organelles such as mitochondria. Although the efforts of early investigators contributed markedly to our current knowledge of autophagy, the identification of autophagy-related genes represented a revolutionary breakthrough in our understanding of the physiological roles of autophagy in the liver. A growing body of evidence has shown that liver autophagy contributes to basic hepatic functions, including glycogenolysis, gluconeogenesis and β-oxidation, through selective turnover of specific cargos controlled by a series of transcription factors. In this Review, we outline the history of liver autophagy study, and then describe the roles of autophagy in hepatic metabolism under healthy and disease conditions, including the involvement of autophagy in α1-antitrypsin deficiency, NAFLD, hepatocellular carcinoma and viral hepatitis.
Collapse
Affiliation(s)
- Takashi Ueno
- Laboratory of Proteomics and Biomolecular Science, Research Support Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Masaaki Komatsu
- Department of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata 951-8510, Japan
| |
Collapse
|
2189
|
Peavey MC, Reynolds CL, Szwarc MM, Gibbons WE, Valdes CT, DeMayo FJ, Lydon JP. Three-Dimensional High-Frequency Ultrasonography for Early Detection and Characterization of Embryo Implantation Site Development in the Mouse. PLoS One 2017; 12:e0169312. [PMID: 28046063 PMCID: PMC5207679 DOI: 10.1371/journal.pone.0169312] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/14/2016] [Indexed: 12/14/2022] Open
Abstract
Ultrasonography is a powerful tool to non-invasively monitor in real time the development of the human fetus in utero. Although genetically engineered mice have served as valuable in vivo models to study both embryo implantation and pregnancy progression, such studies usually require sacrifice of parous mice for subsequent phenotypic analysis. To address this issue, we used three-dimensional (3-D) reconstruction in silico of high-frequency ultrasound (HFUS) imaging data for early detection and characterization of murine embryo implantation sites and their development in utero. With HFUS imaging followed by 3-D reconstruction, we were able to precisely quantify embryo implantation site number and embryonic developmental progression in pregnant C57BL6J/129S mice from as early as 5.5 days post coitus (d.p.c.) through to 9.5 d.p.c. using a VisualSonics Vevo 2100 (MS550S) transducer. In addition to measurements of implantation site number, location, volume and spacing, embryo viability via cardiac activity monitoring was also achieved. A total of 12 dams were imaged with HFUS with approximately 100 embryos examined per embryonic day. For the post-implantation period (5.5 to 8.5 d.p.c.), 3-D reconstruction of the gravid uterus in mesh or solid overlay format enabled visual representation in silico of implantation site location, number, spacing distances, and site volume within each uterine horn. Therefore, this short technical report describes the feasibility of using 3-D HFUS imaging for early detection and analysis of post-implantation events in the pregnant mouse with the ability to longitudinally monitor the development of these early pregnancy events in a non-invasive manner. As genetically engineered mice continue to be used to characterize female reproductive phenotypes, we believe this reliable and non-invasive method to detect, quantify, and characterize early implantation events will prove to be an invaluable investigative tool for the study of female infertility and subfertility phenotypes based on a defective uterus.
Collapse
Affiliation(s)
- Mary C. Peavey
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Baylor College of Medicine, Houston, Texas, United States of America
| | - Corey L. Reynolds
- Mouse Phenotyping Core, Baylor College of Medicine, Houston, Texas, United States of America
| | - Maria M. Szwarc
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - William E. Gibbons
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Baylor College of Medicine, Houston, Texas, United States of America
| | - Cecilia T. Valdes
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Baylor College of Medicine, Houston, Texas, United States of America
| | - Francesco J. DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina. United States of America
- * E-mail: (FJD); (JPL)
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail: (FJD); (JPL)
| |
Collapse
|
2190
|
Hayat M. Overview of Autophagy. AUTOPHAGY: CANCER, OTHER PATHOLOGIES, INFLAMMATION, IMMUNITY, INFECTION, AND AGING 2017:3-90. [DOI: 10.1016/b978-0-12-805420-8.00001-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2191
|
Chao X, Wang S, Ding WX. Cell Death in Alcohol-Induced Liver Injury. CELLULAR INJURY IN LIVER DISEASES 2017:119-142. [DOI: 10.1007/978-3-319-53774-0_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
2192
|
Hayat M. Overview of Autophagy. AUTOPHAGY: CANCER, OTHER PATHOLOGIES, INFLAMMATION, IMMUNITY, INFECTION, AND AGING 2017:1-122. [DOI: 10.1016/b978-0-12-812146-7.00001-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2193
|
Natarajan SK, Rasineni K, Ganesan M, Feng D, McVicker BL, McNiven MA, Osna NA, Mott JL, Casey CA, Kharbanda KK. Structure, Function and Metabolism of Hepatic and Adipose Tissue Lipid Droplets: Implications in Alcoholic Liver Disease. Curr Mol Pharmacol 2017; 10:237-248. [PMID: 26278390 PMCID: PMC4820363 DOI: 10.2174/1874467208666150817111727] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 08/07/2015] [Accepted: 08/07/2015] [Indexed: 02/08/2023]
Abstract
For more than 30 years, lipid droplets (LDs) were considered as an inert bag of lipid for storage of energy-rich fat molecules. Following a paradigm shift almost a decade ago, LDs are presently considered an active subcellular organelle especially designed for assembling, storing and subsequently supplying lipids for generating energy and membrane synthesis (and in the case of hepatocytes for VLDL secretion). LDs also play a central role in many other cellular functions such as viral assembly and protein degradation. Here, we have explored the structural and functional changes that occur in hepatic and adipose tissue LDs following chronic ethanol consumption in relation to their role in the pathogenesis of alcoholic liver injury.
Collapse
Affiliation(s)
- Sathish Kumar Natarajan
- Research Service, VA Nebraska-Western Iowa Health Care System (VA NWIHCS), and Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center
| | - Karuna Rasineni
- Research Service, VA Nebraska-Western Iowa Health Care System (VA NWIHCS), and Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Murali Ganesan
- Research Service, VA Nebraska-Western Iowa Health Care System (VA NWIHCS), and Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Dan Feng
- Research Service, VA Nebraska-Western Iowa Health Care System (VA NWIHCS), and Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Benita L. McVicker
- Research Service, VA Nebraska-Western Iowa Health Care System (VA NWIHCS), and Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Mark A. McNiven
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Natalia A. Osna
- Research Service, VA Nebraska-Western Iowa Health Care System (VA NWIHCS), and Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Justin L. Mott
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center
| | - Carol A. Casey
- Research Service, VA Nebraska-Western Iowa Health Care System (VA NWIHCS), and Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center
| | - Kusum K. Kharbanda
- Research Service, VA Nebraska-Western Iowa Health Care System (VA NWIHCS), and Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center
| |
Collapse
|
2194
|
Kitagishi Y, Nakano N, Ogino M, Ichimura M, Minami A, Matsuda S. PINK1 signaling in mitochondrial homeostasis and in aging (Review). Int J Mol Med 2016; 39:3-8. [PMID: 27959386 DOI: 10.3892/ijmm.2016.2827] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 12/06/2016] [Indexed: 11/05/2022] Open
Abstract
Mitochondrial dysfunction is involved in the pathology of Parkinson's disease, an age-associated neurodegenerative disorder. Phosphatase and tensin homolog (PTEN)-induced putative kinase protein 1 (PINK1) is responsible for the most common form of recessive Parkinson's disease. PINK1 is a mitochondrial kinase that is involved in mitrochondrial quality control and promotes cell survival. PINK1 has been shown to protect against neuronal cell death induced by oxidative stress. Accordingly, PINK1 deficiency is associated with mitochondrial dysfunction as well as increased oxidative cellular stress and subsequent neuronal cell death. In addition, several mitochondrial chaperone proteins have been shown to be substrates of the PINK1 kinase. In this review, we discuss recent studies concerning the signaling cascades and molecular mechanisms involved in the process of mitophagy, which is implicated in neurodegeneration and in related aging associated with oxidative stress. Particular attention will be given to the molecular mechanisms proposed to explain the effects of natural compounds and/or food ingredients against oxidative stress. Knowledge of the molecular mechanisms involved in this cellular protection could be critical for developing treatments to prevent and control excessive progression of neurodegenerative disorders.
Collapse
Affiliation(s)
- Yasuko Kitagishi
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya, Nishimachi, Nara 630-8506, Japan
| | - Noriko Nakano
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya, Nishimachi, Nara 630-8506, Japan
| | - Mako Ogino
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya, Nishimachi, Nara 630-8506, Japan
| | - Mayuko Ichimura
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya, Nishimachi, Nara 630-8506, Japan
| | - Akari Minami
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya, Nishimachi, Nara 630-8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya, Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
2195
|
Genetic ablation or pharmacologic inhibition of autophagy mitigated NSAID-associated gastric damages. J Mol Med (Berl) 2016; 95:405-416. [PMID: 27913816 DOI: 10.1007/s00109-016-1491-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/19/2016] [Accepted: 11/15/2016] [Indexed: 01/08/2023]
Abstract
Non-steroidal anti-inflammatory drug (NSAID)-associated endoplasmic reticulum (ER) stress (a cyclooxygenase-2-independent mechanism) and consequent autophagic cell death are responsible for NSAID-associated gastric damage. Therefore, alleviating cytotoxicity executed via ER stress and autophagy can be a strategy to prevent NSAID-associated gastric damage. Here, we explored whether genetic or pharmacologic inhibition of autophagy can mitigate NSAID-associated gastric damage in in vitro and in vivo models. To examine the effects of genetic inhibition of NSAID-associated autophagy, we administered indomethacin to RGM1 gastric mucosal cells transfected with shPERK, siLC3B, or shATG5 and microtubule-associated protein light chain 3B knock-out (LC3B-/-) mice. 3-Methyladenine (3-MA) or chloroquine (CQ) was used for pharmacologic inhibition of autophagy in both models. Indomethacin administration increased the expression of ER stress proteins including GRP78, ATF6, and CHOP. Indomethacin provoked the appearance of autophagic vesicles with the increased expression of ATG5 and LC3B-II. Genetic ablation of various ER stress genes significantly attenuated indomethacin-induced autophagy and apoptosis (p < 0.01), whereas knock-down of either ATG5 or LC3B significantly reduced indomethacin-induced cytotoxicity (p < 0.01). Testing each of the genes implicated in ER stress and autophagy showed that indomethacin leads to gastric cell apoptosis through autophagy induction consequent to ER stress. Pharmacological inhibition of autophagy with either 3-MA or CQ in rats or genetic ablation of LC3B in mice all had a significant rescuing effect against indomethacin-associated gastric damage (p < 0.01) and a decrease in molecular markers of autophagic and apoptotic gastric cells. In conclusion, preemptive autophagy inhibition can be a potential strategy to mitigate NSAID-associated gastric damage. KEY MESSAGES NSAID administration triggered ER stress and subsequent autophagy. Inhibition of autophagy resulted in attenuated NSAID-associated cytotoxicity. Autophagy inhibitors represent a novel strategy to prevent NSAID-associated gastric damage.
Collapse
|
2196
|
Nejad DB, Azandeh S, Gholami MR, Gharravi AM, Zhaleh M. Superficial palmar arch with Persistent median artery. J ANAT SOC INDIA 2016. [DOI: 10.1016/j.jasi.2017.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
2197
|
Glycycoumarin inhibits hepatocyte lipoapoptosis through activation of autophagy and inhibition of ER stress/GSK-3-mediated mitochondrial pathway. Sci Rep 2016; 6:38138. [PMID: 27901086 PMCID: PMC5128870 DOI: 10.1038/srep38138] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/07/2016] [Indexed: 01/04/2023] Open
Abstract
Herbal medicine as an alternative approach in the treatment of disease has drawn growing attention. Identification of the active ingredient is needed for effective utilization of the herbal medicine. Licorice is a popular herbal plant that is widely used to treat various diseases including liver diseases. Glycycoumarin (GCM) is a representative of courmarin compounds isolated from licorice. In the present study, the protective effect of GCM on hepatocyte lipoapoptosis has been evaluated using both cell culture model of palmitate-induced lipoapoptosis and animal model of non-alcoholic steatohepatitis (NASH). The results demonstrated for the first time that GCM was highly effective in suppressing hepatocyte lipoapoptosis in both in vitro and in vivo. Mechanistically, GCM was able to re-activate the impaired autophagy by lipid metabolic disorders. In line with the activation of autophagy, ER stress-mediated JNK and mitochondrial apoptotic pathway activation was inhibited by GCM both in vitro and in vivo. In addition, inactivation of GSK-3 might also contribute to the protective effect of GCM on hepatocyte lipoapoptosis. Our findings supported GCM as a novel active component of licorice against non-alcoholic fatty liver disease (NAFLD).
Collapse
|
2198
|
Zeng T, Zhang CL, Xiao M, Yang R, Xie KQ. Critical Roles of Kupffer Cells in the Pathogenesis of Alcoholic Liver Disease: From Basic Science to Clinical Trials. Front Immunol 2016; 7:538. [PMID: 27965666 PMCID: PMC5126119 DOI: 10.3389/fimmu.2016.00538] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/15/2016] [Indexed: 12/12/2022] Open
Abstract
Alcoholic liver disease (ALD) encompasses a spectrum of liver injury ranging from steatosis to steatohepatitis, fibrosis, and finally cirrhosis. Accumulating evidences have demonstrated that Kupffer cells (KCs) play critical roles in the pathogenesis of both chronic and acute ALD. It has become clear that alcohol exposure can result in increased hepatic translocation of gut-sourced endotoxin/lipopolysaccharide, which is a strong M1 polarization inducer of KCs. The activated KCs then produce a large amount of reactive oxygen species (ROS), pro-inflammatory cytokines, and chemokines, which finally lead to liver injury. The critical roles of KCs and related inflammatory cascade in the pathogenesis of ALD make it a promising target in pharmaceutical drug developments for ALD treatment. Several drugs (such as rifaximin, pentoxifylline, and infliximab) have been evaluated or are under evaluation for ALD treatment in randomized clinical trials. Furthermore, screening pharmacological regulators for KCs toward M2 polarization may provide additional therapeutic agents. The combination of these potentially therapeutic drugs with hepatoprotective agents (such as zinc, melatonin, and silymarin) may bring encouraging results.
Collapse
Affiliation(s)
- Tao Zeng
- Institute of Toxicology, School of Public Health, Shandong University , Jinan , China
| | - Cui-Li Zhang
- Institute of Toxicology, School of Public Health, Shandong University , Jinan , China
| | - Mo Xiao
- Institute of Toxicology, School of Public Health, Shandong University , Jinan , China
| | - Rui Yang
- Institute of Toxicology, School of Public Health, Shandong University , Jinan , China
| | - Ke-Qin Xie
- Institute of Toxicology, School of Public Health, Shandong University , Jinan , China
| |
Collapse
|
2199
|
Sauvat A, Zhou H, Leduc M, Gomes-da-Silva LC, Bezu L, Müller K, Forveille S, Liu P, Zhao L, Kroemer G, Kepp O. Automated Analysis of Fluorescence Colocalization: Application to Mitophagy. Methods Enzymol 2016; 588:219-230. [PMID: 28237103 DOI: 10.1016/bs.mie.2016.09.082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mitophagy is a peculiar form of organelle-specific autophagy that targets mitochondria. This process ensures cellular homeostasis, as it fosters the disposal of aged and damaged mitochondria that otherwise would be prone to produce reactive oxygen species and hence endanger genomic stability. Similarly, autophagic clearance of depolarized mitochondria plays a fundamental role in organismal homeostasis as exemplified by the link between Parkinson disease and impaired function of the mitophagy-mediating proteins PINK1 and Parkin. Here, we detail an image-based approach for the quantification of mitochondrial Parkin translocation, which is mechanistically important for the initiation of mitophagy.
Collapse
Affiliation(s)
- A Sauvat
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France; Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie, Paris, France
| | - H Zhou
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France; Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie, Paris, France; University of Paris Sud XI, Kremlin Bicêtre, France
| | - M Leduc
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France; Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie, Paris, France
| | - L C Gomes-da-Silva
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France; Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie, Paris, France; University of Coimbra, Coimbra, Portugal
| | - L Bezu
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France; Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie, Paris, France; University of Paris Sud XI, Kremlin Bicêtre, France
| | - K Müller
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France; Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie, Paris, France
| | - S Forveille
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France; Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie, Paris, France
| | - P Liu
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France; Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie, Paris, France; University of Paris Sud XI, Kremlin Bicêtre, France
| | - L Zhao
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France; Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie, Paris, France; University of Paris Sud XI, Kremlin Bicêtre, France
| | - G Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France; Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie, Paris, France; University of Paris Sud XI, Kremlin Bicêtre, France; University of Coimbra, Coimbra, Portugal; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden.
| | - O Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France; Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie, Paris, France.
| |
Collapse
|
2200
|
Psammomys obesus, a unique model of metabolic syndrome, inflammation and autophagy in the pathologic development of hepatic steatosis. C R Biol 2016; 339:475-486. [DOI: 10.1016/j.crvi.2016.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/08/2016] [Accepted: 08/08/2016] [Indexed: 02/07/2023]
|