2201
|
Abstract
Membrane cholesterol impinges on signal transduction in several ways, which is highlighted in particular by the Hedgehog signaling pathway. In Hedgehog signaling, cholesterol is important for ligand biogenesis, as well as for signal transduction in receiving cells. Hedgehog ligands are post-translationally modified by cholesterol, and the Hedgehog receptor, Patched, is structurally similar to the Niemann-Pick C1 protein, which functions in intracellular lipid transport. Although the exact role of cholesterol in Hedgehog signal transduction remains elusive and is probably multifaceted, studies over the past year have implicated raft membrane subdomains, cholesterol transport and a link between protein and lipid trafficking in endocytic compartments.
Collapse
Affiliation(s)
- J P Incardona
- Department of Biological Structure and Center for Developmental Biology, University of Washington, Seattle 98195, USA. jincar@u. washington.edu
| | | |
Collapse
|
2202
|
Li XM, Smaby JM, Momsen MM, Brockman HL, Brown RE. Sphingomyelin interfacial behavior: the impact of changing acyl chain composition. Biophys J 2000; 78:1921-31. [PMID: 10733971 PMCID: PMC1300785 DOI: 10.1016/s0006-3495(00)76740-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Sphingomyelins (SMs) containing homogeneous acyl chains with 12, 14, 16, 18, 24, or 26 carbons were synthesized and characterized using an automated Langmuir-type film balance. Surface pressure was monitored as a function of lipid molecular area at constant temperatures between 10 degrees C and 30 degrees C. SM containing lauroyl (12:0) acyl chains displayed only liquid-expanded behavior. Increasing the length of the saturated acyl chain (e.g., 14:0, 16:0, or 18:0) resulted in liquid-expanded to condensed two-dimensional phase transitions at many temperatures in the 10-30 degrees C range. Similar behavior was observed for SMs with lignoceroyl (24:0) or (cerotoyl) 26:0 acyl chains, but isotherms showed only condensed behavior at 10 and 15 degrees C. Insights into the physico-mechanical in-plane interactions occurring within the different SM phases and accompanying changes in SM phase state were provided by analyzing the interfacial area compressibility moduli. At similar surface pressures, SM fluid phases were less compressible than those of phosphatidylcholines with similar chain structures. The area per molecule and compressibility of SM condensed phases depended upon the length of the saturated acyl chain and upon spreading temperature. Spreading of SMs with very long saturated acyl chains at temperatures 30-35 degrees below T(m) resulted in condensed films with lower in-plane compressibilities, but consistently larger cross-sectional molecular areas than the condensed phases achieved by spreading at temperatures only 10-20 degrees below T(m). This behavior is discussed in terms of the enhancement of SM lateral aggregation by temperature reduction, a common approach used during domain isolation from biomembranes.
Collapse
Affiliation(s)
- X M Li
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | | | | | | | | |
Collapse
|
2203
|
Funatsu N, Kumanogoh H, Sokawa Y, Maekawa S. Identification of gelsolin as an actin regulatory component in a triton insoluble low density fraction (raft) of newborn bovine brain. Neurosci Res 2000; 36:311-7. [PMID: 10771109 DOI: 10.1016/s0168-0102(99)00125-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A membrane microdomain enriched in cholesterol and glycosphingolipids, or so called 'raft' region, was found to contain many signal transducing proteins such as GPI-anchored cell adhesion molecules, trimeric G proteins, and protein tyrosine kinases. In previous studies, we showed that the raft region obtained from rat brain contains two cytoskeletal proteins, tubulin and actin, as the major components in addition to these signal transducing proteins. In this study, to know the biochemical mechanisms regulating the cytoskeletal organization in this region, actin regulatory activities in raft were surveyed. We found the presence of a Ca(2+)-dependent actin nucleation promoting activity in raft. The solubilization and column fractionation of this activity combined with western blotting and immunoprecipitation showed that gelsolin is one of the actin regulatory proteins in raft.
Collapse
Affiliation(s)
- N Funatsu
- Department of Biotechnology, Faculty of Textile Science, Kyoto Institute of Technology, Kyoto, Japan
| | | | | | | |
Collapse
|
2204
|
Holowka D, Sheets ED, Baird B. Interactions between Fc(epsilon)RI and lipid raft components are regulated by the actin cytoskeleton. J Cell Sci 2000; 113 ( Pt 6):1009-19. [PMID: 10683149 DOI: 10.1242/jcs.113.6.1009] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies showed that crosslinking of IgE-Fc(epsilon)RI complexes on RBL-2H3 mast cells causes their association with isolated detergent-resistant membranes, also known as lipid rafts, in a cholesterol-dependent process that precedes initiation of signaling by these receptors. To investigate these interactions on intact cells, we examined the co-redistribution of raft components with crosslinked IgE-Fc(epsilon)RI using confocal microscopy. After several hours of crosslinking at 4 degrees C, the glycosylphosphatidylinositol-linked protein Thy-1 and the Src-family tyrosine kinase Lyn co-redistribute with IgE-Fc(epsilon)RI in large patches at the plasma membrane. Under these conditions, F-actin also undergoes dramatic co-segregation with Fc(epsilon)RI and raft components but is dispersed following a brief warm-up to 37 degrees C. When crosslinking of IgE-Fc(epsilon)RI is initiated at higher temperatures, co-redistribution of raft components with patched Fc(epsilon)RI is not readily detected unless stimulated F-actin polymerization is inhibited by cytochalasin D. In parallel, cytochalasin D converts transient antigen-stimulated tyrosine phosphorylation to a more sustained response. Sucrose gradient analysis of lysed cells reveals that crosslinked IgE-Fc(epsilon)RI remains associated with lipid rafts throughout the time course of the transient phosphorylation response but undergoes a time-dependent shift to higher density that is prevented by cytochalasin D. Our results indicate that interactions between Lyn and crosslinked IgE-Fc(epsilon)RI are regulated by stimulated F-actin polymerization, and this is best explained by a segregation of anchored raft components from more mobile ones.
Collapse
Affiliation(s)
- D Holowka
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14853-1301, USA.
| | | | | |
Collapse
|
2205
|
Pralle A, Keller P, Florin EL, Simons K, Hörber J. Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J Cell Biol 2000; 148:997-1008. [PMID: 10704449 PMCID: PMC2174552 DOI: 10.1083/jcb.148.5.997] [Citation(s) in RCA: 740] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To probe the dynamics and size of lipid rafts in the membrane of living cells, the local diffusion of single membrane proteins was measured. A laser trap was used to confine the motion of a bead bound to a raft protein to a small area (diam < or = 100 nm) and to measure its local diffusion by high resolution single particle tracking. Using protein constructs with identical ectodomains and different membrane regions and vice versa, we demonstrate that this method provides the viscous damping of the membrane domain in the lipid bilayer. When glycosylphosphatidylinositol (GPI) -anchored and transmembrane proteins are raft-associated, their diffusion becomes independent of the type of membrane anchor and is significantly reduced compared with that of nonraft transmembrane proteins. Cholesterol depletion accelerates the diffusion of raft-associated proteins for transmembrane raft proteins to the level of transmembrane nonraft proteins and for GPI-anchored proteins even further. Raft-associated GPI-anchored proteins were never observed to dissociate from the raft within the measurement intervals of up to 10 min. The measurements agree with lipid rafts being cholesterol-stabilized complexes of 26 +/- 13 nm in size diffusing as one entity for minutes.
Collapse
Affiliation(s)
- A. Pralle
- Cell Biology and Biophysics, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | - P. Keller
- Cell Biology and Biophysics, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | - E.-L. Florin
- Cell Biology and Biophysics, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | - K. Simons
- Cell Biology and Biophysics, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | - J.K.H. Hörber
- Cell Biology and Biophysics, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| |
Collapse
|
2206
|
Navarrete Santos A, Roentsch J, Danielsen EM, Langner J, Riemann D. Aminopeptidase N/CD13 is associated with raft membrane microdomains in monocytes. Biochem Biophys Res Commun 2000; 269:143-8. [PMID: 10694491 DOI: 10.1006/bbrc.2000.2271] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ectopeptidases play important roles in cell activation, proliferation, and communication. Human monocytic cells express considerable amounts of aminopeptidase N/CD13, a transmembrane protein previously proposed to play a role in the regulation of neuropeptides and chemotactic mediators as well as in adhesion and cell-cell interactions. Here, we report for the first time that aminopeptidase N/CD13 in monocytes is partially localized in detergent-insoluble membrane microdomains enriched in cholesterol, glycolipids, and glycosylphosphoinositol-anchored proteins, referred to as "rafts." Raft fractions of monocytes were characterized by the presence of GM1 ganglioside as raft marker molecule and by the high level of tyrosine-phosphorylated proteins. Furthermore, similar to polarized cells, rafts in monocytic cells lack Na(+), K(+)-ATPase. Cholesterol depletion of monocytes by methyl-beta-cyclodextrin greatly reduces raft localization of aminopeptidase N/CD13 without affecting ala-p-nitroanilide cleaving activity of cells.
Collapse
Affiliation(s)
- A Navarrete Santos
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Strasse der OdF 6, Halle, D-06097, Germany.
| | | | | | | | | |
Collapse
|
2207
|
de Vries H, Hoekstra D. On the biogenesis of the myelin sheath: cognate polarized trafficking pathways in oligodendrocytes. Glycoconj J 2000; 17:181-90. [PMID: 11201789 DOI: 10.1023/a:1026533021994] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Oligodendrocytes, the myelinating cells of the central nervous system, are capable of transporting vast quantities of proteins and of lipids, in particular galactosphingolipids, to the myelin sheath. The sheath is continuous with the plasma membrane of the oligodendrocyte, but the composition of both membrane domains differs substantially. Given its high glycosphingolipid and cholesterol content the myelin sheath bears similarity to the lipid composition of the apical domain of a polarized cell. The question thus arises whether myelin components, like typical apical membrane proteins are transported by an apical-like trafficking mechanism to the sheath, involving a 'raft'-mediated mechanism. Indeed, the evidence indicates the presence of cognate apical and basolateral pathways in oligodendrocytes. However, all major myelin proteins do not participate in this pathway, and remarkably apical-like trafficking seems to be restricted to the oligodendrocyte cell body. In this review, we summarize the evidence on the existence of different trafficking pathways in the oligodendrocyte, and discuss possible mechanisms separating the oligodendrocyte's membrane domains.
Collapse
Affiliation(s)
- H de Vries
- Department of Membrane Cell Biology, Faculty of Medical Sciences, University of Groningen, The Netherlands
| | | |
Collapse
|
2208
|
Tansey MG, Baloh RH, Milbrandt J, Johnson EM. GFRalpha-mediated localization of RET to lipid rafts is required for effective downstream signaling, differentiation, and neuronal survival. Neuron 2000; 25:611-23. [PMID: 10774729 DOI: 10.1016/s0896-6273(00)81064-8] [Citation(s) in RCA: 236] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The GDNF family ligands (GFLs: GDNF, neurturin, persephin, and artemin) signal through RET and a gly-cosyl-phosphatidylinositol (GPI)-anchored coreceptor (GFRalpha1-alpha4) that binds ligand with high affinity and provides specificity. The importance of the GPI anchor is not fully understood; however, GPI-linked proteins cluster into lipid rafts, structures that may represent highly specialized signaling organelles. Here, we report that GPI-anchored GFRalpha1 recruits RET to lipid rafts after GDNF stimulation and results in RET/Src association. Disruption of RET localization using either transmembrane-anchored or soluble GFRalpha1 results in RET phosphorylation, but GDNF-induced intracellular signaling events are markedly attenuated as are neuronal differentiation and survival responses. Therefore, proper membrane localization of RET via interaction with a raft-localized, GPI-linked coreceptor is of fundamental importance in GFL signaling.
Collapse
Affiliation(s)
- M G Tansey
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
2209
|
Hoessli DC, Ilangumaran S, Soltermann A, Robinson PJ, Borisch B. Signaling through sphingolipid microdomains of the plasma membrane: the concept of signaling platform. Glycoconj J 2000; 17:191-7. [PMID: 11201790 DOI: 10.1023/a:1026585006064] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Transmembrane signaling requires modular interactions between signaling proteins, phosphorylation or dephosphorylation of the interacting protein partners and temporary elaboration of supramolecular structures, to convey the molecular information from the cell surface to the nucleus. Such signaling complexes at the plasma membrane are instrumental in translating the extracellular cues into intracellular signals for gene activation. In the most straightforward case, ligand binding promotes homodimerization of the transmembrane receptor which facilitates modular interactions between the receptor's cytoplasmic domains and intracellular signaling and adaptor proteins. For example, most growth factor receptors contain a cytoplasmic protein tyrosine kinase (PTK) domain and ligand-mediated receptor dimerization leads to cross phosphorylation of tyrosines in the receptor's cytoplasmic domains, an event that initiates the signaling cascade. In other signaling pathways where the receptors have no intrinsic kinase activity, intracellular nonreceptor PTKs (i.e. Src family PTKs, JAKs) are recruited to the cytoplasmic domain of the engaged receptor. Execution of these initial phosphorylations and their translation into efficient cellular stimulation requires concomitant activation of diverse signaling pathways. Availability of stable, preassembled matrices at the plasma membrane would facilitate scaffolding of a large array of receptors, coreceptors, tyrosine kinases and other signaling and adapter proteins, as it is the case in signaling via the T cell antigen receptor. The concept of the signaling platform has gained usage to characterize the membrane structure where many different membrane-bound components need to be assembled in a coordinated manner to carry out signaling. The structural basis of the signaling platform lies in preferential assembly of certain classes of lipids into distinct physical and functional compartments within the plasma membrane. These membrane microdomains or rafts (Figure 1) serve as privileged sites where receptors and proximal signaling molecules optimally interact. In this review, we shall discuss first how signaling platforms are assembled and how receptors and their signaling machinery could be functionally linked in such structures. The second part of our review will deal with selected examples of raft-based signaling pathways in T lymphocytes and NK cells to illustrate the ways in which rafts may facilitate signaling.
Collapse
Affiliation(s)
- D C Hoessli
- Department of Pathology, University of Geneva, Switzerland
| | | | | | | | | |
Collapse
|
2210
|
Kasahara K, Sanai Y. Functional roles of glycosphingolipids in signal transduction via lipid rafts. Glycoconj J 2000; 17:153-62. [PMID: 11201786 DOI: 10.1023/a:1026576804247] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The formation of glycosphingolipid (GSL)-cholesterol microdomains in cell membranes has been proposed to function as platforms for the attachment of lipid-modified proteins, such as glycosylphosphatidylinositol (GPI)-anchored proteins and src-family tyrosine kinases. The microdomains are postulated to be involved in GPI-anchored protein signaling via src-family kinase. Here, the functional roles of GSLs in signal transduction mediated by the microdomains are discussed. Antibodies against GSLs co-precipitate GPI-anchored proteins, src-family kinases and several components of the microdomains. Antibody-mediated crosslinking of GSLs, as well as that of GPI-anchored proteins, induces a rapid activation of src-family kinases and a transient increase in the tyrosine phosphorylation of several substrates. Enzymatic degradation of GSLs reduces the activation of src-family kinase and tyrosine phosphorylation by antibody-mediated crosslinking of GPI-anchored protein. Furthermore, GSLs can also modulate signal transduction of immunoreceptors and growth factor receptors in the microdomains. Thus, GSLs have important roles in signal transduction mediated by the microdomains.
Collapse
Affiliation(s)
- K Kasahara
- The Tokyo Metropolitan Institute of Medical Science, Tokyo Metropolitan Organization for Medical Research, Japan.
| | | |
Collapse
|
2211
|
Ott I, Miyagi Y, Miyazaki K, Heeb MJ, Mueller BM, Rao LV, Ruf W. Reversible regulation of tissue factor-induced coagulation by glycosyl phosphatidylinositol-anchored tissue factor pathway inhibitor. Arterioscler Thromb Vasc Biol 2000; 20:874-82. [PMID: 10712416 DOI: 10.1161/01.atv.20.3.874] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Endothelial and tumor cells synthesize tissue factor pathway inhibitor (TFPI-1), which regulates tissue factor (TF) function by TF. VIIa. Xa. TFPI-1 quaternary complex formation (where VIIa and Xa are coagulation factors) and by translocation of these complexes into glycosphingolipid-rich microdomains of the cell membrane. Recombinant TFPI-1 added exogenously to cells is targeted to a degradation pathway. This study analyzes whether quaternary complex formation with endogenous TFPI-1 results also in internalization and degradation. We demonstrate that endogenous TFPI-1 and recombinant TFPI-1 differ in their distribution on the cell surface. Recombinant TFPI-1 is found in phospholipid- and glycosphingolipid-rich membrane domains, whereas endogenous TFPI-1 preferentially localizes to glycosphingolipid-rich microdomains. On quaternary complex formation, endogenous TFPI-1 remains protease sensitive and accessible for antibodies on intact cells, demonstrating that it is not appreciably internalized. Rather, regulation of TF by TFPI-1 is restored within 12 hours, consistent with dissociation of quaternary complexes on the cell surface. Endogenous TFPI-1 can be released from the cell surface by phospholipase treatment, indicating that TFPI-1 either is a glycosyl phosphatidylinositol (GPI)-anchored protein or binds to a GPI-linked receptor. We demonstrate that expression of a recombinant GPI-anchored form of TFPI-1 targets TF. VIIa complexes to glycosphingolipid-rich membrane fractions. Thus, GPI anchoring of TFPI-1 is sufficient for regulation of TF. VIIa complex function by a pathway of reversible inhibition rather than internalization and degradation.
Collapse
Affiliation(s)
- I Ott
- Deutsches Herzzentrum, Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
2212
|
Abstract
Detergent insoluble sphingolipid-cholesterol enriched 'raft'-like membrane microdomains have been implicated in a variety of biological processes including sorting, trafficking, and signaling. Mutant cells and knockout animals of sphingolipid biosynthesis are clearly useful to understand the biological roles of lipid components in raft-like domains. It is suggested that raft-like domains distribute in internal vacuolar membranes as well as plasma membranes. In addition to sphingolipid-cholesterol-rich membrane domains, recent studies suggest the existence of another lipid-membrane domain in the endocytic pathway. This domain is enriched with a unique phospholipid, lysobisphosphatidic acid (LBPA) and localized in the internal membrane of multivesicular endosome. LBPA-rich membrane domains are involved in lipid and protein sorting within the endosomal system. Possible interaction between sphingolipids and LBPA in sphingolipid-storage disease is discussed.
Collapse
Affiliation(s)
- T Kobayashi
- Supra-Biomolecular System Research Group, Frontier Research System, The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama, Japan.
| | | |
Collapse
|
2213
|
Smith RM, Baibakov B, Ikebuchi Y, White BH, Lambert NA, Kaczmarek LK, Vogel SS. Exocytotic insertion of calcium channels constrains compensatory endocytosis to sites of exocytosis. J Cell Biol 2000; 148:755-67. [PMID: 10684256 PMCID: PMC2169375 DOI: 10.1083/jcb.148.4.755] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/1999] [Accepted: 01/20/2000] [Indexed: 12/15/2022] Open
Abstract
Proteins inserted into the cell surface by exocytosis are thought to be retrieved by compensatory endocytosis, suggesting that retrieval requires granule proteins. In sea urchin eggs, calcium influx through P-type calcium channels is required for retrieval, and the large size of sea urchin secretory granules permits the direct observation of retrieval. Here we demonstrate that retrieval is limited to sites of prior exocytosis. We tested whether channel distribution can account for the localization of retrieval at exocytotic sites. We find that P-channels reside on secretory granules before fertilization, and are translocated to the egg surface by exocytosis. Our study provides strong evidence that the transitory insertion of P-type calcium channels in the surface membrane plays an obligatory role in the mechanism coupling exocytosis and compensatory endocytosis.
Collapse
Affiliation(s)
| | | | | | | | - Nevin A. Lambert
- Medical College of Georgia, Augusta, Georgia 30912-2630
- Veterans Affairs Medical Center, Augusta, Georgia 30912-2630
| | | | | |
Collapse
|
2214
|
Verkade P, Harder T, Lafont F, Simons K. Induction of caveolae in the apical plasma membrane of Madin-Darby canine kidney cells. J Cell Biol 2000; 148:727-39. [PMID: 10684254 PMCID: PMC2169379 DOI: 10.1083/jcb.148.4.727] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In this paper, we have analyzed the behavior of antibody cross-linked raft-associated proteins on the surface of MDCK cells. We observed that cross-linking of membrane proteins gave different results depending on whether cross-linking occurred on the apical or basolateral plasma membrane. Whereas antibody cross-linking induced the formation of large clusters on the basolateral membrane, resembling those observed on the surface of fibroblasts (Harder, T., P. Scheiffele, P. Verkade, and K. Simons. 1998. J. Cell Biol. 929-942), only small ( approximately 100 nm) clusters formed on the apical plasma membrane. Cross-linked apical raft proteins e.g., GPI-anchored placental alkaline phosphatase (PLAP), influenza hemagglutinin, and gp114 coclustered and were internalized slowly ( approximately 10% after 60 min). Endocytosis occurred through surface invaginations that corresponded in size to caveolae and were labeled with caveolin-1 antibodies. Upon cholesterol depletion the internalization of PLAP was completely inhibited. In contrast, when a non-raft protein, the mutant LDL receptor LDLR-CT22, was cross-linked, it was excluded from the clusters of raft proteins and was rapidly internalized via clathrin-coated pits. Since caveolae are normally present on the basolateral membrane but lacking from the apical side, our data demonstrate that antibody cross-linking induced the formation of caveolae, which slowly internalized cross-linked clusters of raft-associated proteins.
Collapse
Affiliation(s)
- Paul Verkade
- European Molecular Biology Laboratory, Cell Biology and Biophysics Programme, D-69117 Heidelberg, Germany
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Thomas Harder
- European Molecular Biology Laboratory, Cell Biology and Biophysics Programme, D-69117 Heidelberg, Germany
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Frank Lafont
- European Molecular Biology Laboratory, Cell Biology and Biophysics Programme, D-69117 Heidelberg, Germany
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Kai Simons
- European Molecular Biology Laboratory, Cell Biology and Biophysics Programme, D-69117 Heidelberg, Germany
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
2215
|
Lin X, Mattjus P, Pike HM, Windebank AJ, Brown RE. Cloning and expression of glycolipid transfer protein from bovine and porcine brain. J Biol Chem 2000; 275:5104-10. [PMID: 10671554 PMCID: PMC2621014 DOI: 10.1074/jbc.275.7.5104] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycolipid transfer protein (GLTP) is a small (23-24 kDa), basic protein (pI congruent with 9.0) that accelerates the intermembrane transfer of various glycolipids. Here, we report the first cloning of cDNAs that encode the bovine and porcine GLTPs. The cDNA open reading frame for bovine GLTP was constructed by bridge-overlapping extension polymerase chain reaction (PCR) after obtaining partial coding cDNA clones by hot start, seminested, and rapid amplification of cDNA ends-PCR. The cDNA open reading frame for porcine GLTP was constructed by reverse transcriptase-PCR. The encoded amino acid sequences in the full-length bovine and porcine cDNAs were identical, consisting of 209 amino acid residues, and were nearly the same as the published sequence determined by Edman degradation. The cDNA encoded one additional amino acid at the N terminus (methionine), arginine at positions 10 and 200 instead of lysine, and threonine at position 65 instead of alanine. Expression of GLTP-cDNA in Escherichia coli using pGEX-6P-1 vector resulted in glutathione S-transferase (GST)-GLTP fusion protein. Regulation of growth and induction conditions led to approximately 50% of expressed fusion protein being soluble and active. Proteolytic cleavage of GST-GLTP fusion protein (bound to GST-Sepharose) and affinity purification resulted in fully active GLTP. Northern blot analyses of bovine tissues showed a single transcript of approximately 2.2 kilobases and the following hierarchy of mRNA levels: cerebrum > kidney > spleen congruent with lung congruent with cerebellum > liver > heart muscle. Reverse transcriptase-PCR analyses of mRNA levels supported the Northern blot results.
Collapse
Affiliation(s)
- X Lin
- Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | | | | | | | | |
Collapse
|
2216
|
Hansen GH, Niels-Christiansen LL, Thorsen E, Immerdal L, Danielsen EM. Cholesterol depletion of enterocytes. Effect on the Golgi complex and apical membrane trafficking. J Biol Chem 2000; 275:5136-42. [PMID: 10671559 DOI: 10.1074/jbc.275.7.5136] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intestinal brush border enzymes, including aminopeptidase N and sucrase-isomaltase, are associated with "rafts" (membrane microdomains rich in cholesterol and sphingoglycolipids). To assess the functional role of rafts in the present work, we studied the effect of cholesterol depletion on apical membrane trafficking in enterocytes. Cultured mucosal explants of pig small intestine were treated for 2 h with the cholesterol sequestering agent methyl-beta-cyclodextrin and lovastatin, an inhibitor of hydroxymethylglutaryl-coenzyme A reductase. The treatment reduced the cholesterol content >50%. Morphologically, the Golgi complex/trans-Golgi network was partially transformed into numerous 100-200 nm vesicles. By immunogold electron microscopy, aminopeptidase N was localized in these Golgi-derived vesicles as well as at the basolateral cell surface, indicating a partial missorting. Biochemically, the rates of the Golgi-associated complex glycosylation and association with rafts of newly synthesized aminopeptidase N were reduced, and less of the enzyme had reached the brush border membrane after 2 h of labeling. In contrast, the basolateral Na(+)/K(+)-ATPase was neither missorted nor raft-associated. Our results implicate the Golgi complex/trans-Golgi network in raft formation and suggest a close relationship between this event and apical membrane trafficking.
Collapse
Affiliation(s)
- G H Hansen
- Department of Medical Biochemistry and Genetics, the Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | | | | | | | | |
Collapse
|
2217
|
White IJ, Souabni A, Hooper NM. Comparison of the glycosyl-phosphatidylinositol cleavage/attachment site between mammalian cells and parasitic protozoa. J Cell Sci 2000; 113 ( Pt 4):721-7. [PMID: 10652264 DOI: 10.1242/jcs.113.4.721] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It was previously hypothesised that the requirements for glycosyl-phosphatidylinositol (GPI) anchoring in mammalian cells and parasitic protozoa are similar but not identical. We have investigated this by converting the GPI cleavage/attachment site in porcine membrane dipeptidase to that found in the trypanosomal variant surface glycoprotein 117 and expressing the resulting mutants in COS-1 cells. Changing the entire (omega), (omega)+1 and (omega)+2 triplet in membrane dipeptidase from Ser-Ala-Ala to Asp-Ser-Ser resulted in efficient GPI anchoring of the mutant proteins, as assessed by cell-surface activity assays and susceptibility to release by phosphatidylinositol-specific phospholipase C. Immunoelectrophoretic blot analysis with antibodies recognising epitopes either side of the native (omega) residue in porcine membrane dipeptidase, and expression of a mutant in which potential alternative cleavage/attachment sites were disrupted, indicated that alternative GPI cleavage/attachment sites had not been used. These results indicate that the requirements for GPI anchoring between mammalian and protozoal cells are not as different as previously suggested, and that rules for predicting the probability of a sequence acting as a GPI cleavage/attachment site need to be applied with caution.
Collapse
Affiliation(s)
- I J White
- School of Biochemistry, University of Leeds, Leeds LS2 9JT, UK
| | | | | |
Collapse
|
2218
|
Dumaual AC, Jenski LJ, Stillwell W. Liquid crystalline/gel state phase separation in docosahexaenoic acid-containing bilayers and monolayers. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1463:395-406. [PMID: 10675516 DOI: 10.1016/s0005-2736(99)00235-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The phase behavior of lipid mixtures containing 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine (18:0, 22:6 PC) with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) was studied with bilayers using differential scanning calorimetry (DSC), and with monolayers monitoring pressure/area isotherms and surface elasticity, and lipid domain formation followed by epifluorescence microscopy. From DSC studies it is concluded that DPPC/18:0, 22:6 PC phase separates into DPPC-rich and 18:0, 22:6 PC-rich phases. In monolayers, phase separation is indicated by changes in pressure-area isotherms implying phase separation where 18:0, 22:6 PC is 'squeezed out' of the remaining DPPC monolayer. Phase separation into lipid domains in the mixed PC monolayer is quantified by epifluorescence microscopy using the fluorescently labeled phospholipid membrane probe, 1, 2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl). These results further describe the ability of docosahexaenoic acid to participate in lipid phase separations in membranes.
Collapse
Affiliation(s)
- A C Dumaual
- Department of Biology, Indiana University-Purdue University at Indianapolis, 723 W. Michigan Street, Indianapolis, IN 46202-5132, USA
| | | | | |
Collapse
|
2219
|
Xu X, London E. The effect of sterol structure on membrane lipid domains reveals how cholesterol can induce lipid domain formation. Biochemistry 2000; 39:843-9. [PMID: 10653627 DOI: 10.1021/bi992543v] [Citation(s) in RCA: 393] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Detergent-insoluble membrane domains, enriched in saturated lipids and cholesterol, have been implicated in numerous biological functions. To understand how cholesterol promotes domain formation, the effect of various sterols and sterol derivatives on domain formation in mixtures of the saturated lipid dipalmitoylphosphatidylcholine (DPPC) and a fluorescence quenching analogue of an unsaturated lipid was compared. Quenching measurements demonstrated that several sterols (cholesterol, dihydrocholesterol, epicholesterol, and 25-hydroxycholesterol) promote formation of DPPC-enriched domains. Other sterols and sterol derivatives had little effect on domain formation (cholestane and lanosterol) or, surprisingly, strongly inhibit it (coprostanol, androstenol, cholesterol sulfate, and 4-cholestenone). The effect of sterols on domain formation was closely correlated with their effects on DPPC insolubility. Those sterols that promoted domain formation increased DPPC insolubility, whereas those sterols that inhibit domain formation decreased DPPC insolubility. The effects of sterols on the fluorescence polarization of diphenylhexatriene incorporated into DPPC-containing vesicles were also correlated with sterol structure. These experiments indicate that the effect of sterol on the ability of saturated lipids to form a tightly packed (i.e., tight in the sense that the lipids are closely packed with one another) and ordered state is the key to their effect on domain formation. Those sterols that promote tight packing of saturated lipids promote domain formation, while those sterols that inhibited tight packing of saturated lipids inhibited domain formation. The ability of some sterols to inhibit domain formation (i.e., act as "anti-cholesterols") should be a valuable tool for examining domain formation and properties in cells.
Collapse
Affiliation(s)
- X Xu
- Department of Biochemistry and Cell Biology and Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794-5215, USA
| | | |
Collapse
|
2220
|
Lipardi C, Nitsch L, Zurzolo C. Detergent-insoluble GPI-anchored proteins are apically sorted in fischer rat thyroid cells, but interference with cholesterol or sphingolipids differentially affects detergent insolubility and apical sorting. Mol Biol Cell 2000; 11:531-42. [PMID: 10679012 PMCID: PMC14791 DOI: 10.1091/mbc.11.2.531] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In contrast to Madin-Darby canine kidney cells, Fischer rat thyroid cells deliver the majority of endogenous glycosylphosphatidyl inositol (GPI)-anchored proteins to the basolateral surface. However, we report here that the GPI proteins Placental Alkaline Phosphatase (PLAP) and Neurotrophin Receptor-Placental Alkaline Phosphatase (NTR-PLAP) are apically localized in transfected Fischer rat thyroid cells. In agreement with the "raft hypothesis," which postulates the incorporation of GPI proteins into glycosphingolipids and cholesterol-enriched rafts, we found that both of these proteins were insoluble in Triton X-100 and floated into the lighter fractions of sucrose density gradients. However, disruption of lipid rafts by removal of cholesterol did not cause surface missorting of PLAP and NTR-PLAP, and the altered surface sorting of these proteins after Fumonisin B1 treatment did not correlate with reduced levels in Triton X-100 -insoluble fractions. Furthermore, in contrast to the GPI-anchored forms of both of these proteins, the secretory and transmembrane forms (in the absence of a basolateral cytoplasmic signal) were sorted to the apical surface without association with lipid microdomains. Together, these data demonstrate that the GPI anchor is required to mediate raft association but is not sufficient to determine apical sorting. They also suggest that signals present in the ectodomain of the proteins play a major role and that lipid rafts may facilitate the recognition of these signals in the trans-Golgi network, even though they are not required for apical sorting.
Collapse
Affiliation(s)
- C Lipardi
- Centro di Endocrinologia ed Oncologia Sperimentale del Consiglio Nazionale delle Ricerche-Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università degli Studi di Napoli "Federico II," 80131 Napoli, Italy
| | | | | |
Collapse
|
2221
|
Abstract
Ras proteins were identified through their association with cell transformation. Since then they have been shown to regulate cell growth, differentiation and apoptosis, as well as influencing processes such as cell migration and neuronal activity. Ras regulates a number of signalling molecules by translocating them to the plasma membrane for activation. An emerging concept is that Ras acts as a branchpoint in signal transduction because it orchestrates the activity of multiple signalling pathways to regulate diverse cellular functions. This implies a degree of selectivity in the ability of Ras to activate particular arms of each pathway, but the mechanisms by which this is achieved are not known. Ras is also an important regulator of immune function and in this review, we summarise current understanding of Ras regulation and function and discuss some new aspects of Ras signalling where understanding is less clear.
Collapse
Affiliation(s)
- M F Olson
- CRC Centre for Cell and Molecular Biology, Chester Beatty Laboratories, Institute for Cancer Research, London, UK
| | | |
Collapse
|
2222
|
Gehrhardt S, Blume E, Cumme GA, Bublitz R, Rhode H, Horn A. Gel chromatographic characterization of the hydrophobic interaction of glycosylphosphatidylinositol-alkaline phosphatase with detergents. Biol Chem 2000; 381:161-72. [PMID: 10746748 DOI: 10.1515/bc.2000.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The interaction of a glycosylphosphatidylinositol (GPI) protein with different detergents was studied for the first time with a purified protein. Four differently hydrophobic fractions of GPI-alkaline phosphatase (GPI-AP) from calf intestine were used as model proteins. The mode of interaction was determined by investigating (i) the self-aggregation behaviour of the GPI-AP fractions, (ii) the interference of detergents with GPI-AP binding to octyl-Sepharose, and (iii) the elution of GPI-AP bound to octyl-Sepharose. It was shown that polyoxyethylene-type detergents surprisingly interact much stronger than n-octylglucoside with GPI-AP, which is in contrast to the known behaviour of GPI-proteins in natural membranes. Gel filtration chromatography of Triton X-100 at concentrations above the critical micellar concentration yields three different micelle species with apparent molecular weights of about 166, 54, and 16 kDa. GPI-AP fraction II, which is shown to bear only one anchor per dimer, does not bind to any of these micelles. We demonstrate that a complex is formed containing about 150 Triton X-100 molecules and about 4700 molecules of water per molecule of GPI-AP dimer. The experimental findings are in accordance with a simple geometrical model based on the physical data of fatty acids and the arrangement, mean size, and shape of Triton X-100 molecules.
Collapse
Affiliation(s)
- S Gehrhardt
- Institute of Biochemistry, Medical Faculty, Friedrich Schiller University, Jena, Germany
| | | | | | | | | | | |
Collapse
|
2223
|
Dillon SR, Mancini M, Rosen A, Schlissel MS. Annexin V binds to viable B cells and colocalizes with a marker of lipid rafts upon B cell receptor activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:1322-32. [PMID: 10640746 DOI: 10.4049/jimmunol.164.3.1322] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recombinant annexin V (rAnV) has been used to identify apoptotic cells based on its ability to bind phosphatidylserine (PS), a lipid normally restricted to the cytoplasmic face of the plasma membrane, but externalized early during apoptosis. However, this association of rAnV binding and apoptosis is not an obligatory one. We demonstrate that rAnV binds to a large fraction of murine B cells bearing selectable Ag receptors despite the fact that these cells are not apoptotic. Phosphatidylserine, which is uniformly distributed on resting B cells, is mobilized to co-cap with IgM on anti-IgM-treated B cells and to colocalize with GM1, a marker of lipid rafts. Cross-linking PS before anti-IgM treatment sequesters this lipid and alters signaling through IgM. Thus, PS exposed on the majority of B cells in vivo does not reflect early apoptosis, but, instead, plays a role in receptor-mediated signaling events.
Collapse
Affiliation(s)
- S R Dillon
- Department of Medicine, Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
2224
|
Abstract
Engagement of the T cell receptor leads to activation of several tyrosine kinases and phosphorylation of many intracellular proteins. This is followed by Ca2+ mobilization and activation of multiple biochemical pathways, including the Ras/MAPK cascade, and several downstream serine/threonine kinases. Membrane-associated adaptor proteins play an important role in T cell activation by coupling TCR ligation at the membrane to distal signalling cascades. Several new membrane associated adaptors have been identified in recent years. LAT (linker for activation of T cells) is an adaptor molecule, which following its phosphorylation associates with Grb2, Gads, PLC-gamma 1, and other signalling molecules. The functional importance of this molecule has been demonstrated by the study of LAT-deficient cell lines and LAT-deficient mice. Two other recently identified adaptor proteins, TRIM (T cell receptor interacting molecule) and SIT (SHP2-interacting transmembrane adaptor protein), which constitutively associate with several surface molecules, bind to PI3K and SHP2, respectively, after T cell activation and might also function in the TCR signalling pathway.
Collapse
Affiliation(s)
- W Zhang
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
2225
|
Ley S. Intracellular targeting of signalling proteins. Introduction. Semin Immunol 2000; 12:1-3. [PMID: 10723793 DOI: 10.1006/smim.2000.0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- S Ley
- Division of Cellular Immunology, National Institute for Medical Research, London, UK
| |
Collapse
|
2226
|
Abstract
Plasma membranes of many cell types contain domains enriched in specific lipids and cholesterol, called lipid rafts. In T lymphocytes, key T cell antigen receptor (TCR) signalling molecules associate with rafts, and disrupting raft-association of certain of these abrogates TCR signalling. The TCR itself associates with lipid rafts, and TCR cross-linking causes aggregation of raft-associated proteins. Furthermore, raft aggregation promotes tyrosine phosphorylation and recruitment of signalling proteins, but excludes the tyrosine phosphatase CD45. Together the data suggest that lipid rafts are important in controlling appropriate protein interactions in resting and activated T cells, and that aggregation of rafts following receptor ligation may be a general mechanism for promoting immune cell signalling.
Collapse
Affiliation(s)
- P W Janes
- Division of Membrane Biology, National Institute for Medical Research, Ridgeway, London, UK
| | | | | | | |
Collapse
|
2227
|
Demeule M, Jodoin J, Gingras D, Béliveau R. P-glycoprotein is localized in caveolae in resistant cells and in brain capillaries. FEBS Lett 2000; 466:219-24. [PMID: 10682831 DOI: 10.1016/s0014-5793(00)01087-5] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A significant proportion of P-glycoprotein (P-gp) and caveolin was co-localized in caveolae isolated from resistant (CH(R)C5) cells overexpressing P-gp and from drug-sensitive Chinese hamster ovary cells (AuxB1). The proportion of P-gp and caveolin associated with caveolar microdomains was higher in CH(R)C5 cells grown in the presence of P-gp substrates (cyclosporin A or colchicine) than in untreated CH(R)C5 cells. Coimmunoprecipitation of P-gp and caveolin from CH(R)C5 lysates suggests that there is a physical interaction between them. Furthermore, co-localization of P-gp and caveolin was found in caveolae from brain capillaries, indicating that this association also takes place in vivo.
Collapse
Affiliation(s)
- M Demeule
- Laboratoire de Médecine Moléculaire, Centre de Cancérologie Charles Bruneau-UQAM, Département de Chimie-Biochimie, Montréal, Canada
| | | | | | | |
Collapse
|
2228
|
Abstract
Domains rich in sphingolipids and cholesterol, or rafts, may organize signal transduction complexes at the plasma membrane. Raft lipids are believed to exist in a state similar to the liquid-ordered phase. It has been proposed that proteins with a high affinity for an ordered lipid environment will preferentially partition into rafts (Melkonian, K. A., Ostermeyer, A. G., Chen, J. Z., Roth, M. G., and Brown, D. A. (1999) J. Biol. Chem. 274, 3910-3917). We investigated the possibility that lipid-lipid interactions between lipid-modified proteins and raft lipids mediate targeting of proteins to these domains. G protein monomers or trimers were reconstituted in liposomes, engineered to mimic raft domains. Assay for partitioning of G proteins into rafts was based on Triton X-100 insolubility. Myristoylation and palmitoylation of Galpha(i) were necessary and sufficient for association with liposomes and partitioning into rafts. Strikingly, the amount of fatty-acylated Galpha(i) in rafts was significantly reduced when myristoylated Galpha(i) was thioacylated with cis-unsaturated fatty acids instead of saturated fatty acids such as palmitate. Prenylated betagamma subunits were excluded from rafts, whether reconstituted alone or with fatty-acylated alpha subunits. These results suggest that the structural difference between lipids that modify proteins is one basis for the selectivity of protein targeting to rafts.
Collapse
Affiliation(s)
- S Moffett
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
2229
|
Lou Z, Jevremovic D, Billadeau DD, Leibson PJ. A balance between positive and negative signals in cytotoxic lymphocytes regulates the polarization of lipid rafts during the development of cell-mediated killing. J Exp Med 2000; 191:347-54. [PMID: 10637278 PMCID: PMC2195747 DOI: 10.1084/jem.191.2.347] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/1999] [Accepted: 11/16/1999] [Indexed: 11/08/2022] Open
Abstract
Plasma membrane microdomains containing sphingolipids and cholesterol (lipid rafts) are enriched in signaling molecules. The cross-linking of certain types of cell surface receptors initiates the redistribution of these lipid rafts, resulting in the formation of signaling complexes. However, little is known about the regulation of the initial raft redistribution and whether negative regulatory signaling pathways target this phase of cellular activation. We used natural killer (NK) cells as a model to investigate the regulation of raft redistribution, as both positive and negative signals have been implicated in the development of their cellular function. Here we show that after NK cells form conjugates with sensitive tumor cells, rafts become polarized to the site of target recognition. This redistribution of lipid rafts requires the activation of both Src and Syk family protein tyrosine kinases. In contrast, engagement of major histocompatibility complex (MHC)-recognizing killer cell inhibitory receptors (KIRs) on NK cells by resistant, MHC-bearing tumor targets blocks raft redistribution. This inhibition is dependent on the catalytic activity of KIR-associated SHP-1, a Src homology 2 (SH2) domain containing tyrosine phosphatase. These results suggest that the influence of integrated positive and negative signals on raft redistribution critically influences the development of cell-mediated cytotoxicity.
Collapse
Affiliation(s)
- Zhenkun Lou
- Department of Pharmacology, Mayo Graduate and Medical Schools, Mayo Clinic, Rochester, Minnesota 55905
| | - Dragan Jevremovic
- Department of Immunology, Mayo Graduate and Medical Schools, Mayo Clinic, Rochester, Minnesota 55905
| | - Daniel D. Billadeau
- Department of Immunology, Mayo Graduate and Medical Schools, Mayo Clinic, Rochester, Minnesota 55905
| | - Paul J. Leibson
- Department of Immunology, Mayo Graduate and Medical Schools, Mayo Clinic, Rochester, Minnesota 55905
| |
Collapse
|
2230
|
Bang AG, Kintner C. Rhomboid and Star facilitate presentation and processing of the Drosophila TGF-α homolog Spitz. Genes Dev 2000. [DOI: 10.1101/gad.14.2.177] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Activation of the Drosophila epidermal growth factor receptor (DER) by the transmembrane ligand, Spitz (Spi), requires two additional transmembrane proteins, Rhomboid and Star. Genetic evidence suggests that Rhomboid and Star facilitate DER signaling by processing membrane-bound Spi (mSpi) to an active, soluble form. To test this model, we use an assay based on Xenopus animal cap explants in which Spi activation of DER is Rhomboid and Star dependent. We show that Spi is on the cell surface but is kept in an inactive state by its cytoplasmic and transmembrane domains; Rhomboid and Star relieve this inhibition, allowing Spi to signal. We show further that Spi is likely to be cleaved within its transmembrane domain. However, a mutant form of mSpi that is not cleaved still signals to DER in a Rhomboid and Star-dependent manner. These results suggest strongly that Rhomboid and Star act primarily to present an active form of Spi to DER, leading secondarily to the processing of Spi into a secreted form.
Collapse
|
2231
|
Affiliation(s)
- C L Abram
- SUGEN, 230 East Grand Avenue, South San Francisco, California, 94080, USA
| | | |
Collapse
|
2232
|
Kielian M, Chatterjee PK, Gibbons DL, Lu YE. Specific roles for lipids in virus fusion and exit. Examples from the alphaviruses. Subcell Biochem 2000; 34:409-55. [PMID: 10808340 DOI: 10.1007/0-306-46824-7_11] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Affiliation(s)
- M Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
2233
|
Shu L, Lee L, Chang Y, Holzman LB, Edwards CA, Shelden E, Shayman JA. Caveolar structure and protein sorting are maintained in NIH 3T3 cells independent of glycosphingolipid depletion. Arch Biochem Biophys 2000; 373:83-90. [PMID: 10620326 DOI: 10.1006/abbi.1999.1553] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glycosphingolipids have been proposed to be critical components of clustered lipids within cell membranes that serve as rafts for the attachment and sorting of proteins to the cell membrane. Density gradient centrifugation was used to isolate and to ascertain the lipid composition of caveolin-enriched membranes. These membranes demonstrated a significant enrichment of sphingolipids and cholesterol containing up to 20 and 30%, respectively, of the cellular glucosylceramide and lactosylceramide. A specific inhibitor of glucosylceramide synthase, d-threo-1-phenyl-2-palmitoyl-3-pyrrolidino-propanol, was used to test the hypothesis that glycosphingolipids are required for the sorting of proteins to caveolae. When NIH 3T3 cells were depleted of their glucosylceramide based glycosphingolipid mass, the caveolar structure remained intact as determined by electron microscopy and confocal microscopy. The caveolar proteins caveolin and annexin II sorted normally to caveolae, as determined by immunoblotting and confocal microscopy. When the GPI-linked protein B61 was inducibly expressed in these cells, sorting to caveolar membranes occurred normally, even in the presence of glucosylceramide depletion. These observations suggest that protein sorting to caveolae in fibroblasts occurs independently of glycosphingolipid synthesis.
Collapse
Affiliation(s)
- L Shu
- Department of Pharmacology, University of Michigan Medical School, Room 1560 MSRBII, Ann Arbor, Michigan, 48109-0676, USA
| | | | | | | | | | | | | |
Collapse
|
2234
|
Ilangumaran S, He HT, Hoessli DC. Microdomains in lymphocyte signalling: beyond GPI-anchored proteins. IMMUNOLOGY TODAY 2000; 21:2-7. [PMID: 10637551 DOI: 10.1016/s0167-5699(99)01494-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- S Ilangumaran
- Division of Experimental Therapeutics, Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Canada
| | | | | |
Collapse
|
2235
|
Manié SN, de Breyne S, Debreyne S, Vincent S, Gerlier D. Measles virus structural components are enriched into lipid raft microdomains: a potential cellular location for virus assembly. J Virol 2000; 74:305-11. [PMID: 10590118 PMCID: PMC111540 DOI: 10.1128/jvi.74.1.305-311.2000] [Citation(s) in RCA: 185] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The process of measles virus (MV) assembly and subsequent budding is thought to occur in localized regions of the plasma membrane, to favor specific incorporation of viral components, and to facilitate the exclusion of host proteins. We demonstrate that during the course of virus replication, a significant proportion of MV structural proteins were selectively enriched in the detergent-resistant glycosphingolipids and cholesterol-rich membranes (rafts). Isolated rafts could infect the cell through a membrane fusion step and thus contained all of the components required to create a functional virion. However, they could be distinguished from the mature virions with regards to density and Triton X-100 resistance behavior. We further show that raft localization of the viral internal nucleoprotein and matrix protein was independent of the envelope glycoproteins, indicating that raft membranes could provide a platform for MV assembly. Finally, at least part of the raft MV components were included in the viral particle during the budding process. Taken together, these results strongly suggest a role for raft membranes in the processes of MV assembly and budding.
Collapse
Affiliation(s)
- S N Manié
- Immunité et Infections Virales, IVMC, CNRS-UCBL UMR5537, 69372 Lyon Cedex 08, France.
| | | | | | | | | |
Collapse
|
2236
|
Thiele C, Hannah MJ, Fahrenholz F, Huttner WB. Cholesterol binds to synaptophysin and is required for biogenesis of synaptic vesicles. Nat Cell Biol 2000; 2:42-9. [PMID: 10620806 DOI: 10.1038/71366] [Citation(s) in RCA: 429] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Here, to study lipid-protein interactions that contribute to the biogenesis of regulated secretory vesicles, we have developed new approaches by which to label proteins in vivo, using photoactivatable cholesterol and glycerophospholipids. We identify synaptophysin as a major specifically cholesterol-binding protein in PC12 cells and brain synaptic vesicles. Limited cholesterol depletion, which has little effect on total endocytic activity, blocks the biogenesis of synaptic-like microvesicles (SLMVs) from the plasma membrane. We propose that specific interactions between cholesterol and SLMV membrane proteins, such as synaptophysin, contribute to both the segregation of SLMV membrane constituents from plasma-membrane constituents, and the induction of synaptic-vesicle curvature.
Collapse
Affiliation(s)
- C Thiele
- Department of Neurobiology, University of Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany.
| | | | | | | |
Collapse
|
2237
|
Chuang FY, Sassaroli M, Unkeless JC. Convergence of Fc gamma receptor IIA and Fc gamma receptor IIIB signaling pathways in human neutrophils. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:350-60. [PMID: 10605030 DOI: 10.4049/jimmunol.164.1.350] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human neutrophils (PMNs) express two receptors for the Fc domain of IgG: the transmembrane FcgammaRIIA, whose cytosolic sequence contains an immunoreceptor tyrosine-based activation motif, and the GPI-anchored FcgammaRIIIB. Cross-linking of FcgammaRIIIB induces cell activation, but the mechanism is still uncertain. We have used mAbs to cross-link selectively each of the two receptors and to assess their signaling phenotypes and functional relation. Cross-linking of FcgammaRIIIB induces intracellular Ca2+ release and receptor capping. The Ca2+ response is blocked by wortmannin and by N,N-dimethylsphingosine, inhibitors of phosphatidylinositol 3-kinase and sphingosine kinase, respectively. Identical dose-response curves are obtained for the Ca2+ release stimulated by cross-linking FcgammaRIIA, implicating these two enzymes in a common signaling pathway. Wortmannin also inhibits capping of both receptors, but not receptor endocytosis. Fluorescence microscopy in double-labeled PMNs demonstrates that FcgammaRIIA colocalizes with cross-linked FcgammaRIIIB. The signaling phenotypes of the two receptors diverge only under frustrated phagocytosis conditions, where FcgammaRIIIB bound to substrate-immobilized Ab does not elicit cell spreading. We propose that FcgammaRIIIB signaling is conducted by molecules of FcgammaRIIA that are recruited to protein/lipid domains induced by clustered FcgammaRIIIB and, thus, are brought into juxtaposition for immunoreceptor tyrosine-based activation motif phosphorylation and activation of PMNs.
Collapse
Affiliation(s)
- F Y Chuang
- Department of Biochemistry, Mount Sinai School of Medicine, New York 10029, USA
| | | | | |
Collapse
|
2238
|
Vollmer JY, Alix P, Chollet A, Takeda K, Galzi JL. Subcellular compartmentalization of activation and desensitization of responses mediated by NK2 neurokinin receptors. J Biol Chem 1999; 274:37915-22. [PMID: 10608858 DOI: 10.1074/jbc.274.53.37915] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A functional fluorescent neurokinin NK2 receptor was constructed by joining enhanced green fluorescent protein to the amino-terminal end of the rat NK2 receptor and was expressed in human embryonic kidney cells. On cell suspensions, the binding of fluorescent Bodipy-labeled neurokinin A results in a saturatable and reversible decrease of NK2 receptor fluorescence via fluorescence resonance energy transfer. This can be quantified for nM to microM agonist concentrations and monitored in parallel with intracellular calcium responses. On single cells, receptor site occupancy and local agonist concentration can be determined in real time from the decrease in receptor fluorescence. Simultaneous measurement of intracellular calcium responses and agonist binding reveals that partial receptor site occupancy is sufficient to desensitize cellular response to a second agonist application to the same membrane area. Subsequent stimulation of a distal membrane area leads to a second response to agonist, provided that it had not been exposed to agonist during the first application. Together with persistent translocation of fluorescent protein kinase C to the membrane area exposed to agonist, the present data support that not only homologous desensitization but also heterologous desensitization of NK2 receptors is compartmentalized to discrete membrane domains.
Collapse
Affiliation(s)
- J Y Vollmer
- Département Récepteurs et Protéines Membranaires, CNRS UPR 9050, Ecole Supérieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, 67400 Illkirch, France
| | | | | | | | | |
Collapse
|
2239
|
Trotter KW, Fraser ID, Scott GK, Stutts MJ, Scott JD, Milgram SL. Alternative splicing regulates the subcellular localization of A-kinase anchoring protein 18 isoforms. J Cell Biol 1999; 147:1481-92. [PMID: 10613906 PMCID: PMC2174236 DOI: 10.1083/jcb.147.7.1481] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cAMP-dependent protein kinase (PKA) is localized to specific subcellular compartments by association with A-kinase anchoring proteins (AKAPs). AKAPs are a family of functionally related proteins that bind the regulatory (R) subunit of PKA with high affinity and target the kinase to specific subcellular organelles. Recently, AKAP18, a low molecular weight plasma membrane AKAP that facilitates PKA-mediated phosphorylation of the L-type Ca(2+) channel, was cloned. We now report the cloning of two additional isoforms of AKAP18, which we have designated AKAP18beta and AKAP18gamma, that arise from alternative mRNA splicing. The AKAP18 isoforms share a common R subunit binding site, but have distinct targeting domains. The original AKAP18 (renamed AKAP18alpha) and AKAP18beta target the plasma membrane when expressed in HEK-293 cells, while AKAP18gamma is cytosolic. When expressed in epithelial cells, AKAP18alpha is targeted to lateral membranes, whereas AKAP18beta is accumulated at the apical membrane. A 23-amino acid insert, following the plasma membrane targeting domain, facilitates the association of AKAP18beta with the apical membrane. The data suggest that AKAP18 isoforms are differentially targeted to modulate distinct intracellular signaling events. Furthermore, the data suggest that plasma membrane AKAPs may be targeted to subdomains of the cell surface, adding additional specificity in intracellular signaling.
Collapse
Affiliation(s)
- Kevin W. Trotter
- Department of Cell and Molecular Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Iain D.C. Fraser
- Howard Hughes Medical Institute, Vollum Institute, Portland, OR 97201
| | - Gregory K. Scott
- Howard Hughes Medical Institute, Vollum Institute, Portland, OR 97201
| | - M. Jackson Stutts
- Cystic Fibrosis/Pulmonary Research and Treatment Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - John D. Scott
- Howard Hughes Medical Institute, Vollum Institute, Portland, OR 97201
| | - Sharon L. Milgram
- Department of Cell and Molecular Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
2240
|
Huang CS, Zhou J, Feng AK, Lynch CC, Klumperman J, DeArmond SJ, Mobley WC. Nerve growth factor signaling in caveolae-like domains at the plasma membrane. J Biol Chem 1999; 274:36707-14. [PMID: 10593976 DOI: 10.1074/jbc.274.51.36707] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nerve growth factor (NGF) binding to its receptors TrkA and p75(NTR) enhances the survival, differentiation, and maintenance of neurons. Recent studies have suggested that NGF receptor activation may occur in caveolae or caveolae-like membranes (CLM). This is an intriguing possibility because caveolae have been shown to contain many of the signaling intermediates in the TrkA signaling cascade. To examine the membrane localization of TrkA and p75(NTR), we isolated caveolae from 3T3-TrkA-p75 cells and CLM from PC12 cells. Immunoblot analysis showed that TrkA and p75(NTR) were enriched about 13- and 25-fold, respectively, in caveolae and CLM. Binding and cross-linking studies demonstrated that the NGF binding to both TrkA and p75(NTR) was considerably enriched in CLM and that about 90% of high affinity binding to TrkA was present in CLM. When PC12 cells were treated with NGF, virtually all activated (i.e. tyrosine phosphorylated) TrkA was found in the CLM. Remarkably, in NGF-treated cells, it was only in CLM that activated TrkA was coimmunoprecipitated with phosphorylated Shc and PLCgamma. These results document a signaling role for TrkA in CLM and suggest that both TrkA and p75(NTR) signaling are initiated from these membranes.
Collapse
Affiliation(s)
- C S Huang
- Departments of Neurology and Neurological Sciences and Pediatrics and the Program in Neuroscience, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | | | |
Collapse
|
2241
|
Baird B, Sheets ED, Holowka D. How does the plasma membrane participate in cellular signaling by receptors for immunoglobulin E? Biophys Chem 1999; 82:109-19. [PMID: 10631794 DOI: 10.1016/s0301-4622(99)00110-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Accumulating evidence strongly supports the view that the plasma membrane participates in transmembrane signaling by IgE-receptors (IgE-Fc epsilon RI) through the formation of lipid-based domains, also known as rafts. Ongoing biochemical and biophysical experiments investigate the composition, structure, and dynamics of the corresponding membrane components and how these are related to functional coupling between Fc epsilon RI and Lyn tyrosine kinase to initiate signaling in mast cells.
Collapse
Affiliation(s)
- B Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853-1301, USA.
| | | | | |
Collapse
|
2242
|
Abstract
Recent studies have suggested that glycosphingolipid (GSL)-cholesterol microdomains in cell membranes may function as platforms for the attachment of lipid-modified proteins, such as glycosylphosphatidylinositol (GPI)-anchored proteins and src-family tyrosine kinases. The microdomains are proposed to be involved in membrane trafficking of GPI-anchored proteins and in signal transduction via src-family kinases. Here, the possible roles of GSLs in the physical properties of these microdomains, as well as in membrane trafficking and signal transduction, are discussed. Sphingolipid depletion inhibits the intracellular transport of GPI-anchored proteins in biosynthetic traffic and endocytosis via GPI-anchored proteins. Antibodies against GSLs as well as GPI-anchored proteins co-precipitate src-family kinases. Antibody-mediated cross-linking of GSLs, as well as that of GPI-anchored proteins, induces a transient increase in the tyrosine phosphorylation of several substrates. Thus, GSLs have important roles in lipid rafts.
Collapse
Affiliation(s)
- K Kasahara
- Department of Biochemical Cell Research, Tokyo Metropolitan Institute of Medical Science, Japan.
| | | |
Collapse
|
2243
|
Swamy MJ, Horváth LI, Brophy PJ, Marsh D. Interactions between lipid-anchored and transmembrane proteins. Spin-label ESR studies on avidin-biotinyl phosphatidylethanolamine in membrane recombinants with myelin proteolipid proteins. Biochemistry 1999; 38:16333-9. [PMID: 10587458 DOI: 10.1021/bi991601+] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Interactions between lipid-anchored and transmembrane proteins are relevant to the intracellular membrane sorting of glycosyl phosphatidylinositol-linked proteins. We have studied the interaction of a spin-labeled biotinyl diacyl phospholipid, with and without specifically bound avidin, with the myelin proteolipid protein (or the DM-20 isoform) reconstituted in dimyristoylphosphatidylcholine. Tetrameric avidin bound to the N-biotinyl lipid headgroup is a surface-anchored protein, and the myelin proteolipid is an integral protein containing four transmembrane helices. The electron spin resonance (ESR) spectrum of N-biotinyl phosphatidylethanolamine spin-labeled at the C-14 position of the sn-2 chain consists of two components in fluid-phase membranes of dimyristoylphosphatidylcholine containing the proteolipid. In the absence of avidin, this is characteristic of lipid-protein interactions with integral transmembrane proteins. The more motionally restricted component represents the lipid population in direct contact with the intramembranous surface of the integral protein, and the more mobile component corresponds to the bulk fluid lipid environment of the bilayer. In the presence of avidin, the biotin-lipid chains have reduced mobility because of the binding to avidin, even in the absence of the proteolipid [Swamy, M. J., and Marsh, D. (1997) Biochemistry 36, 7403-7407]. In the presence of the proteolipid, the major fraction of the avidin-anchored chains is further restricted in its mobility by interaction with the transmembrane protein. At a biotin-lipid concentration of 1 mol %, approximately 80% of the avidin-linked chains are restricted in membranes with a phosphatidylcholine:proteolipid molar ratio of 37:1. This relatively high stoichiometry of interaction can be explained when allowance is made for the closest interaction distance between the lipid-anchored avidin tetramer and the transmembrane proteolipid hexamer, without any specific interaction between the two types of membrane-associated proteins. The interaction is essentially one of steric exclusion, but the lipid chains are rendered more sensitive to interaction with the integral protein by being linked to avidin, even though they are removed from the immediate intramembrane protein-lipid interface. This could have implications for the tendency of lipid-anchored chains to associate with membrane domains with reduced lipid mobility.
Collapse
Affiliation(s)
- M J Swamy
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, Göttingen, Germany
| | | | | | | |
Collapse
|
2244
|
Ostermeyer AG, Beckrich BT, Ivarson KA, Grove KE, Brown DA. Glycosphingolipids are not essential for formation of detergent-resistant membrane rafts in melanoma cells. methyl-beta-cyclodextrin does not affect cell surface transport of a GPI-anchored protein. J Biol Chem 1999; 274:34459-66. [PMID: 10567427 DOI: 10.1074/jbc.274.48.34459] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent data suggest that membrane microdomains or rafts that are rich in sphingolipids and cholesterol are important in signal transduction and membrane trafficking. Two models of raft structure have been proposed. One proposes a unique role for glycosphingolipids (GSL), suggesting that GSL-head-group interactions are essential in raft formation. The other model suggests that close packing of the long saturated acyl chains found on both GSL and sphingomyelin plays a key role and helps these lipids form liquid-ordered phase domains in the presence of cholesterol. To distinguish between these models, we compared rafts in the MEB-4 melanoma cell line and its GSL-deficient derivative, GM-95. Rafts were isolated from cell lysates as detergent-resistant membranes (DRMs). The two cell lines had very similar DRM protein profiles. The yield of DRM protein was 2-fold higher in the parental than the mutant line, possibly reflecting cytoskeletal differences. The same amount of DRM lipid was isolated from both lines, and the lipid composition was similar except for up-regulation of sphingomyelin in the mutant that compensated for the lack of GSL. DRMs from the two lines had similar fluidity as measured by fluorescence polarization of diphenylhexatriene. Methyl-beta-cyclodextrin removed cholesterol from both cell lines with the same kinetics and to the same extent, and both a raft-associated glycosyl phosphatidylinositol-anchored protein and residual cholesterol showed the same distribution between DRMs and the detergent-soluble fraction after cholesterol removal in both cell lines. Finally, a glycosyl phosphatidylinositol-anchored protein was delivered to the cell surface at similar rates in the two lines, even after cholesterol depletion with methyl-beta-cyclodextrin. We conclude that GSL are not essential for the formation of rafts and do not play a major role in determining their properties.
Collapse
Affiliation(s)
- A G Ostermeyer
- Department of Biochemistry, State University of New York at Stony Brook, Stony Brook, New York 11794-5215, USA
| | | | | | | | | |
Collapse
|
2245
|
Benting J, Rietveld A, Ansorge I, Simons K. Acyl and alkyl chain length of GPI-anchors is critical for raft association in vitro. FEBS Lett 1999; 462:47-50. [PMID: 10580089 DOI: 10.1016/s0014-5793(99)01501-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We determined the acyl and alkyl chain composition of GPI-anchors isolated from MDCK and Fischer rat thyroid (FRT) cells. Both cell lines synthesize GPI-anchors containing C16/C18 or C18/C18 saturated acyl and alkyl chains. The GPI-anchored placental alkaline phosphatase (PLAP) expressed in both cells is raft-associated and PLAP purified from FRT cells is raft-associated in vitro when reconstituted into liposomes containing raft lipids. In contrast, the GPI-anchored variant surface glycoprotein from Trypanosoma brucei which contains C14 acyl and alkyl chains shows no significant raft association after reconstitution in vitro. These data indicate that the acyl and alkyl chain composition of GPI-anchors determines raft association.
Collapse
Affiliation(s)
- J Benting
- European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Programme, Postfach 102209, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | | | | | | |
Collapse
|
2246
|
Schlegel A, Wang C, Katzenellenbogen BS, Pestell RG, Lisanti MP. Caveolin-1 potentiates estrogen receptor alpha (ERalpha) signaling. caveolin-1 drives ligand-independent nuclear translocation and activation of ERalpha. J Biol Chem 1999; 274:33551-6. [PMID: 10559241 DOI: 10.1074/jbc.274.47.33551] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Estrogen receptor alpha (ERalpha) is a soluble protein that mediates the effects of the gonadal estrogens such as 17beta-estradiol. Upon ligand binding, a cytoplasmic pool of ERalpha translocates to the nucleus, where it acts as a transcription factor, driving the expression of genes that contain estrogen-response elements. The activity of ERalpha is regulated by a number of proteins, including cytosolic chaperones and nuclear cofactors. Here, we show that caveolin-1 potentiates ERalpha-mediated signal transduction. Coexpression of caveolin-1 and ERalpha resulted in ligand-independent translocation of ERalpha to the nucleus as shown by both cell fractionation and immunofluorescence microscopic studies. Similarly, caveolin-1 augmented both ligand-independent and ligand-dependent ERalpha signaling as measured using a estrogen-response element-based luciferase reporter assay. Caveolin-1-mediated activation of ERalpha was sensitive to a well known ER antagonist, 4-hydroxytamoxifen. However, much higher concentrations of tamoxifen were required to mediate inhibition in the presence of caveolin-1. Interestingly, caveolin-1 expression also synergized with a constitutively active, ligand-independent ERalpha mutant, dramatically illustrating the potent stimulatory effect of caveolin-1 in this receptor system. Taken together, our results identify caveolin-1 as a new positive regulator of ERalpha signal transduction.
Collapse
Affiliation(s)
- A Schlegel
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
2247
|
Munn AL, Heese-Peck A, Stevenson BJ, Pichler H, Riezman H. Specific sterols required for the internalization step of endocytosis in yeast. Mol Biol Cell 1999; 10:3943-57. [PMID: 10564282 PMCID: PMC25690 DOI: 10.1091/mbc.10.11.3943] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Sterols are major components of the plasma membrane, but their functions in this membrane are not well understood. We isolated a mutant defective in the internalization step of endocytosis in a gene (ERG2) encoding a C-8 sterol isomerase that acts in the late part of the ergosterol biosynthetic pathway. In the absence of Erg2p, yeast cells accumulate sterols structurally different from ergosterol, which is the major sterol in wild-type yeast. To investigate the structural requirements of ergosterol for endocytosis in more detail, several erg mutants (erg2Delta, erg6Delta, and erg2Deltaerg6Delta) were made. Analysis of fluid phase and receptor-mediated endocytosis indicates that changes in the sterol composition lead to a defect in the internalization step. Vesicle formation and fusion along the secretory pathway were not strongly affected in the ergDelta mutants. The severity of the endocytic defect correlates with changes in sterol structure and with the abundance of specific sterols in the ergDelta mutants. Desaturation of the B ring of the sterol molecules is important for the internalization step. A single desaturation at C-8,9 was not sufficient to support internalization at 37 degrees C whereas two double bonds, either at C-5,6 and C-7,8 or at C-5,6 and C-8,9, allowed internalization.
Collapse
Affiliation(s)
- A L Munn
- Biozentrum of the University of Basel, CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
2248
|
Sciorra VA, Morris AJ. Sequential actions of phospholipase D and phosphatidic acid phosphohydrolase 2b generate diglyceride in mammalian cells. Mol Biol Cell 1999; 10:3863-76. [PMID: 10564277 PMCID: PMC25685 DOI: 10.1091/mbc.10.11.3863] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Phosphatidylcholine (PC) is a major source of lipid-derived second messenger molecules that function as both intracellular and extracellular signals. PC-specific phospholipase D (PLD) and phosphatidic acid phosphohydrolase (PAP) are two pivotal enzymes in this signaling system, and they act in series to generate the biologically active lipids phosphatidic acid (PA) and diglyceride. The identity of the PAP enzyme involved in PLD-mediated signal transduction is unclear. We provide the first evidence for a functional role of a type 2 PAP, PAP2b, in the metabolism of PLD-generated PA. Our data indicate that PAP2b localizes to regions of the cell in which PC hydrolysis by PLD is taking place. Using a newly developed PAP2b-specific antibody, we have characterized the expression, posttranslational modification, and localization of endogenous PAP2b. Glycosylation and localization of PAP2b appear to be cell type and tissue specific. Biochemical fractionation and immunoprecipitation analyses revealed that PAP2b and PLD2 activities are present in caveolin-1-enriched detergent-resistant membrane microdomains. We found that PLD2 and PAP2b act sequentially to generate diglyceride within this specialized membrane compartment. The unique lipid composition of these membranes may provide a selective environment for the regulation and actions of enzymes involved in signaling through PC hydrolysis.
Collapse
Affiliation(s)
- V A Sciorra
- Department of Pharmacological Sciences and Institute for Cell and Developmental Biology, State University of New York, Stony Brook, New York 11794-8651, USA
| | | |
Collapse
|
2249
|
Ilangumaran S, Borisch B, Hoessli DC. Signal transduction via CD44: role of plasma membrane microdomains. Leuk Lymphoma 1999; 35:455-69. [PMID: 10609783 DOI: 10.1080/10428199909169610] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
CD44 is the principal cell surface receptor for extracellular matrix glycosaminoglycan hyaluronan. CD44-hyaluronan mediated cell adhesion is important in several pathophysiological processes such as inflammation and metastatic spread of cancer cells. It has been recently recognized that CD44 also functions as a signaling receptor in a variety of cell types. Cell stimulation by monoclonal anti-CD44 antibody or natural CD44 ligands activate several signaling pathways that culminate in cell proliferation, cytokine secretion, chemokine gene expression and cytolytic effector functions. One of the earliest signaling events following stimulation via CD44 is tyrosine phosphorylation of intracellular proteins substrates, and CD44 mediated cellular activation could be abolished by protein tyrosine kinase (PTK) inhibitors. The Src-family non-receptor PTKs such as Lck, Fyn, Lyn and Hck were shown to be coupled to CD44 via sphingolipid-rich microdomains (lipid rafts) of the plasma membrane. Studies on T cell receptor and IgE receptor mediated signaling in lymphocytes and mast cells have consolidated the notion that microdomains consist of signaling platforms where components of multiple signaling pathways are assembled. Co-isolation of CD44 with microdomains strongly suggests that CD44 generates cellular activation signals utilizing the signaling machinery of the plasma membrane microdomains.
Collapse
Affiliation(s)
- S Ilangumaran
- Department of Experirmental Therapeutics, Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Canada
| | | | | |
Collapse
|
2250
|
Wheeler RT, Shapiro L. Differential localization of two histidine kinases controlling bacterial cell differentiation. Mol Cell 1999; 4:683-94. [PMID: 10619016 DOI: 10.1016/s1097-2765(00)80379-2] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The bacterium C. crescentus coordinates cellular differentiation and cell cycle progression via a network of signal transduction proteins. Here, we demonstrate that the antagonistic DivJ and PleC histidine kinases that regulate polar differentiation are differentially localized as a function of the cell cycle. The DivJ kinase localizes to the stalked pole in response to a signal at the G1-to-S transition, while the PleC kinase is localized to the flagellar pole in swarmer and predivisional cells but is dispersed throughout the cell in the stalked cell. PleC, which is required for DivJ localization, may provide the cue at the G1-to-S transition that directs the polar positioning of DivJ. The dynamic positioning of signal transduction proteins may contribute to the regulation of polar differentiation at specific times during the bacterial cell cycle.
Collapse
Affiliation(s)
- R T Wheeler
- Department of Developmental Biology, Beckman Center, Stanford University School of Medicine, California 94305, USA
| | | |
Collapse
|