2251
|
Internally tagged ubiquitin: a tool to identify linear polyubiquitin-modified proteins by mass spectrometry. Nat Methods 2017; 14:504-512. [DOI: 10.1038/nmeth.4228] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/13/2017] [Indexed: 12/23/2022]
|
2252
|
Murray HC, Dun MD, Verrills NM. Harnessing the power of proteomics for identification of oncogenic, druggable signalling pathways in cancer. Expert Opin Drug Discov 2017; 12:431-447. [PMID: 28286965 DOI: 10.1080/17460441.2017.1304377] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Genomic and transcriptomic profiling of tumours has revolutionised our understanding of cancer. However, the majority of tumours possess multiple mutations, and determining which oncogene, or even which pathway, to target is difficult. Proteomics is emerging as a powerful approach to identify the functionally important pathways driving these cancers, and how they can be targeted therapeutically. Areas covered: The authors provide a technical overview of mass spectrometry based approaches for proteomic profiling, and review the current and emerging strategies available for the identification of dysregulated networks, pathways, and drug targets in cancer cells, with a key focus on the ability to profile cancer kinomes. The potential applications of mass spectrometry in the clinic are also highlighted. Expert opinion: The addition of proteomic information to genomic platforms - 'proteogenomics' - is providing unparalleled insight in cancer cell biology. Application of improved mass spectrometry technology and methodology, in particular the ability to analyse post-translational modifications (the PTMome), is providing a more complete picture of the dysregulated networks in cancer, and uncovering novel therapeutic targets. While the application of proteomics to discovery research will continue to rise, improved workflow standardisation and reproducibility is required before mass spectrometry can enter routine clinical use.
Collapse
Affiliation(s)
- Heather C Murray
- a School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, Priority Research Centre for Cancer Research, Innovation and Translation , University of Newcastle , Callaghan , NSW , Australia.,b Cancer Research Program , Hunter Medical Research Institute , Newcastle , NSW , Australia
| | - Matthew D Dun
- a School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, Priority Research Centre for Cancer Research, Innovation and Translation , University of Newcastle , Callaghan , NSW , Australia.,b Cancer Research Program , Hunter Medical Research Institute , Newcastle , NSW , Australia
| | - Nicole M Verrills
- a School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, Priority Research Centre for Cancer Research, Innovation and Translation , University of Newcastle , Callaghan , NSW , Australia.,b Cancer Research Program , Hunter Medical Research Institute , Newcastle , NSW , Australia
| |
Collapse
|
2253
|
Casanovas A, Pinto-Llorente R, Carrascal M, Abian J. Large-Scale Filter-Aided Sample Preparation Method for the Analysis of the Ubiquitinome. Anal Chem 2017; 89:3840-3846. [DOI: 10.1021/acs.analchem.6b04804] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Albert Casanovas
- Proteomics
Laboratory CSIC/UAB, Institute of Biomedical Research of Barcelona, Spanish National Research Council (IIBB-CSIC/IDIBAPS), E-08036 Barcelona, Spain
| | - Roberto Pinto-Llorente
- Proteomics
Laboratory CSIC/UAB, Institute of Biomedical Research of Barcelona, Spanish National Research Council (IIBB-CSIC/IDIBAPS), E-08036 Barcelona, Spain
| | - Montserrat Carrascal
- Proteomics
Laboratory CSIC/UAB, Institute of Biomedical Research of Barcelona, Spanish National Research Council (IIBB-CSIC/IDIBAPS), E-08036 Barcelona, Spain
| | - Joaquin Abian
- Proteomics
Laboratory CSIC/UAB, Institute of Biomedical Research of Barcelona, Spanish National Research Council (IIBB-CSIC/IDIBAPS), E-08036 Barcelona, Spain
- Autonomous University of Barcelona, E-08193 Bellaterra, Spain
| |
Collapse
|
2254
|
Winter M, Dokic I, Schlegel J, Warnken U, Debus J, Abdollahi A, Schnölzer M. Deciphering the Acute Cellular Phosphoproteome Response to Irradiation with X-rays, Protons and Carbon Ions. Mol Cell Proteomics 2017; 16:855-872. [PMID: 28302921 DOI: 10.1074/mcp.m116.066597] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/15/2017] [Indexed: 12/15/2022] Open
Abstract
Radiotherapy is a cornerstone of cancer therapy. The recently established particle therapy with raster-scanning protons and carbon ions landmarks a new era in the field of high-precision cancer medicine. However, molecular mechanisms governing radiation induced intracellular signaling remain elusive. Here, we present the first comprehensive proteomic and phosphoproteomic study applying stable isotope labeling by amino acids in cell culture (SILAC) in combination with high-resolution mass spectrometry to decipher cellular response to irradiation with X-rays, protons and carbon ions. At protein expression level limited alterations were observed 2 h post irradiation of human lung adenocarcinoma cells. In contrast, 181 phosphorylation sites were found to be differentially regulated out of which 151 sites were not hitherto attributed to radiation response as revealed by crosscheck with the PhosphoSitePlus database.Radiation-induced phosphorylation of the p(S/T)Q motif was the prevailing regulation pattern affecting proteins involved in DNA damage response signaling. Because radiation doses were selected to produce same level of cell kill and DNA double-strand breakage for each radiation quality, DNA damage responsive phosphorylation sites were regulated to same extent. However, differential phosphorylation between radiation qualities was observed for 55 phosphorylation sites indicating the existence of distinct signaling circuitries induced by X-ray versus particle (proton/carbon) irradiation beyond the canonical DNA damage response. This unexpected finding was confirmed in targeted spike-in experiments using synthetic isotope labeled phosphopeptides. Herewith, we successfully validated uniform DNA damage response signaling coexisting with altered signaling involved in apoptosis and metabolic processes induced by X-ray and particle based treatments.In summary, the comprehensive insight into the radiation-induced phosphoproteome landscape is instructive for the design of functional studies aiming to decipher cellular signaling processes in response to radiotherapy, space radiation or ionizing radiation per se Further, our data will have a significant impact on the ongoing debate about patient treatment modalities.
Collapse
Affiliation(s)
- Martin Winter
- From the ‡Functional Proteome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany.,§Translational Radiation Oncology, National Center for Tumor diseases (NCT), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, D-69120 Heidelberg, Germany.,¶German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Ivana Dokic
- §Translational Radiation Oncology, National Center for Tumor diseases (NCT), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, D-69120 Heidelberg, Germany.,¶German Cancer Consortium (DKTK), Heidelberg, Germany.,‖Heidelberg Ion Beam Therapy Center (HIT), Department of Radiation Oncology, University of Heidelberg Medical School, Im Neuenheimer Feld 450, D-69120 Heidelberg, Germany.,**Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Julian Schlegel
- §Translational Radiation Oncology, National Center for Tumor diseases (NCT), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, D-69120 Heidelberg, Germany.,¶German Cancer Consortium (DKTK), Heidelberg, Germany.,‖Heidelberg Ion Beam Therapy Center (HIT), Department of Radiation Oncology, University of Heidelberg Medical School, Im Neuenheimer Feld 450, D-69120 Heidelberg, Germany.,**Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Uwe Warnken
- From the ‡Functional Proteome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany
| | - Jürgen Debus
- §Translational Radiation Oncology, National Center for Tumor diseases (NCT), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, D-69120 Heidelberg, Germany.,¶German Cancer Consortium (DKTK), Heidelberg, Germany.,‖Heidelberg Ion Beam Therapy Center (HIT), Department of Radiation Oncology, University of Heidelberg Medical School, Im Neuenheimer Feld 450, D-69120 Heidelberg, Germany.,**Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Amir Abdollahi
- §Translational Radiation Oncology, National Center for Tumor diseases (NCT), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, D-69120 Heidelberg, Germany.,¶German Cancer Consortium (DKTK), Heidelberg, Germany.,‖Heidelberg Ion Beam Therapy Center (HIT), Department of Radiation Oncology, University of Heidelberg Medical School, Im Neuenheimer Feld 450, D-69120 Heidelberg, Germany.,**Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Martina Schnölzer
- From the ‡Functional Proteome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany;
| |
Collapse
|
2255
|
Weißer J, Ctortecka C, Busch CJ, Austin SR, Nowikovsky K, Uchida K, Binder CJ, Bennett KL. A Comprehensive Analytical Strategy To Identify Malondialdehyde-Modified Proteins and Peptides. Anal Chem 2017; 89:3847-3852. [PMID: 28248083 DOI: 10.1021/acs.analchem.6b05065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mass spectrometric-based proteomics is a powerful tool to analyze post-translationally modified proteins. Carbonylation modifications that result from oxidative lipid breakdown are a class of post-translational modifications that are poorly characterized with respect to protein targets and function. This is partly due to the lack of dedicated mass spectrometry-based technologies to facilitate the analysis of these modifications. Here, we present a comprehensive approach to identify malondialdehyde-modified proteins and peptides. Malondialdehyde is among the most abundant of the lipid peroxidation products; and malondialdehyde-derived adducts on proteins have been implicated in cardiovascular diseases, neurodegenerative disorders, and other clinical conditions. Our integrated approach targets three levels of the overall proteomic workflow: (i) sample preparation, by employing a targeted enrichment strategy; (ii) high-performance liquid chromatography, by using a gradient optimized for the separation of the modified peptides; and (iii) tandem mass spectrometry, by improving the spectral quality of very low-abundance peptides. By applying the optimized procedure to a whole cell lysate spiked with a low amount of malondialdehyde-modified proteins, we were able to identify up to 350 different modified peptides and localize the modification to a specific lysine residue. This methodology allows the comprehensive analysis of malondialdehyde-modified proteins.
Collapse
Affiliation(s)
- Juliane Weißer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences , 1090, Vienna, Austria
| | - Claudia Ctortecka
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences , 1090, Vienna, Austria
| | - Clara J Busch
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences , 1090, Vienna, Austria.,Department of Laboratory Medicine, Medical University of Vienna , 1090, Vienna, Austria
| | - Shane R Austin
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences , 1090, Vienna, Austria.,Department of Internal Medicine I, Medical University of Vienna , 1090, Vienna, Austria
| | - Karin Nowikovsky
- Department of Internal Medicine I, Medical University of Vienna , 1090, Vienna, Austria
| | - Koji Uchida
- Graduate School of Bioagricultural Sciences, Nagoya University , Nagoya 464-8601, Japan
| | - Christoph J Binder
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences , 1090, Vienna, Austria.,Department of Laboratory Medicine, Medical University of Vienna , 1090, Vienna, Austria
| | - Keiryn L Bennett
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences , 1090, Vienna, Austria
| |
Collapse
|
2256
|
Tanca A, Manghina V, Fraumene C, Palomba A, Abbondio M, Deligios M, Silverman M, Uzzau S. Metaproteogenomics Reveals Taxonomic and Functional Changes between Cecal and Fecal Microbiota in Mouse. Front Microbiol 2017; 8:391. [PMID: 28352255 PMCID: PMC5348496 DOI: 10.3389/fmicb.2017.00391] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/24/2017] [Indexed: 02/01/2023] Open
Abstract
Previous studies on mouse models report that cecal and fecal microbial communities may differ in the taxonomic structure, but little is known about their respective functional activities. Here, we employed a metaproteogenomic approach, including 16S rRNA gene sequencing, shotgun metagenomics and shotgun metaproteomics, to analyze the microbiota of paired mouse cecal contents (CCs) and feces, with the aim of identifying changes in taxon-specific functions. As a result, Gram-positive anaerobes were observed as considerably higher in CCs, while several key enzymes, involved in oxalate degradation, glutamate/glutamine metabolism, and redox homeostasis, and most actively expressed by Bacteroidetes, were clearly more represented in feces. On the whole, taxon and function abundance appeared to vary consistently with environmental changes expected to occur throughout the transit from the cecum to outside the intestine, especially when considering metaproteomic data. The results of this study indicate that functional and metabolic differences exist between CC and stool samples, paving the way to further metaproteogenomic investigations aimed at elucidating the functional dynamics of the intestinal microbiota.
Collapse
Affiliation(s)
- Alessandro Tanca
- Porto Conte Ricerche, Science and Technology Park of Sardinia Alghero, Italy
| | - Valeria Manghina
- Porto Conte Ricerche, Science and Technology Park of SardiniaAlghero, Italy; Department of Biomedical Sciences, University of SassariSassari, Italy
| | - Cristina Fraumene
- Porto Conte Ricerche, Science and Technology Park of Sardinia Alghero, Italy
| | - Antonio Palomba
- Porto Conte Ricerche, Science and Technology Park of Sardinia Alghero, Italy
| | - Marcello Abbondio
- Department of Biomedical Sciences, University of Sassari Sassari, Italy
| | - Massimo Deligios
- Department of Biomedical Sciences, University of Sassari Sassari, Italy
| | - Michael Silverman
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical SchoolBoston, MA, USA; Division of Infectious Diseases, Department of Pediatrics, Boston Children's HospitalBoston, MA, USA
| | - Sergio Uzzau
- Porto Conte Ricerche, Science and Technology Park of SardiniaAlghero, Italy; Department of Biomedical Sciences, University of SassariSassari, Italy
| |
Collapse
|
2257
|
Blattner M, Liu D, Robinson BD, Huang D, Poliakov A, Gao D, Nataraj S, Deonarine LD, Augello MA, Sailer V, Ponnala L, Ittmann M, Chinnaiyan AM, Sboner A, Chen Y, Rubin MA, Barbieri CE. SPOP Mutation Drives Prostate Tumorigenesis In Vivo through Coordinate Regulation of PI3K/mTOR and AR Signaling. Cancer Cell 2017; 31:436-451. [PMID: 28292441 PMCID: PMC5384998 DOI: 10.1016/j.ccell.2017.02.004] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/18/2016] [Accepted: 02/03/2017] [Indexed: 02/08/2023]
Abstract
Recurrent point mutations in SPOP define a distinct molecular subclass of prostate cancer. Here, we describe a mouse model showing that mutant SPOP drives prostate tumorigenesis in vivo. Conditional expression of mutant SPOP in the prostate dramatically altered phenotypes in the setting of Pten loss, with early neoplastic lesions (high-grade prostatic intraepithelial neoplasia) with striking nuclear atypia and invasive, poorly differentiated carcinoma. In mouse prostate organoids, mutant SPOP drove increased proliferation and a transcriptional signature consistent with human prostate cancer. Using these models and human prostate cancer samples, we show that SPOP mutation activates both PI3K/mTOR and androgen receptor signaling, effectively uncoupling the normal negative feedback between these two pathways.
Collapse
Affiliation(s)
- Mirjam Blattner
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Deli Liu
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Department of Urology, Weill Cornell Medicine, New York, NY 10065, USA; HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Brian D Robinson
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Dennis Huang
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Anton Poliakov
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dong Gao
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Srilakshmi Nataraj
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lesa D Deonarine
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Michael A Augello
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Department of Urology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Verena Sailer
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lalit Ponnala
- Computational Biology Service Unit, Cornell University, Ithaca, NY 14853, USA
| | - Michael Ittmann
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Departments of Pathology and Urology, and Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Andrea Sboner
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065, USA; Englander Institute for Precision Medicine of Weill Cornell Medicine, and New York-Presbyterian Hospital, New York, NY 10065, USA
| | - Yu Chen
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Medicine, MSKCC, New York, NY 10065, USA
| | - Mark A Rubin
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Department of Urology, Weill Cornell Medicine, New York, NY 10065, USA; Englander Institute for Precision Medicine of Weill Cornell Medicine, and New York-Presbyterian Hospital, New York, NY 10065, USA.
| | - Christopher E Barbieri
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Department of Urology, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
2258
|
Cristobal A, Marino F, Post H, van den Toorn HWP, Mohammed S, Heck AJR. Toward an Optimized Workflow for Middle-Down Proteomics. Anal Chem 2017; 89:3318-3325. [PMID: 28233997 PMCID: PMC5362747 DOI: 10.1021/acs.analchem.6b03756] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
Mass
spectrometry (MS)-based proteomics workflows can crudely be
classified into two distinct regimes, targeting either relatively
small peptides (i.e., 0.7 kDa < Mw <
3.0 kDa) or small to medium sized intact proteins (i.e., 10 kDa < Mw < 30 kDa), respectively, termed bottom-up
and top-down proteomics. Recently, a niche has started to be explored
covering the analysis of middle-range peptides (i.e., 3.0 kDa < Mw < 10 kDa), aptly termed middle-down proteomics.
Although middle-down proteomics can follow, in principle, a modular
workflow similar to that of bottom-up proteomics, we hypothesized
that each of these modules would benefit from targeted optimization
to improve its overall performance in the analysis of middle-range
sized peptides. Hence, to generate middle-range sized peptides from
cellular lysates, we explored the use of the proteases Asp-N and Glu-C
and a nonenzymatic acid induced cleavage. To increase the depth of
the proteome, a strong cation exchange (SCX) separation, carefully
tuned to improve the separation of longer peptides, combined with
reversed phase-liquid chromatography (RP-LC) using columns packed
with material possessing a larger pore size, was used. Finally, after
evaluating the combination of potentially beneficial MS settings,
we also assessed the peptide fragmentation techniques, including higher-energy
collision dissociation (HCD), electron-transfer dissociation (ETD),
and electron-transfer combined with higher-energy collision dissociation
(EThcD), for characterization of middle-range sized peptides. These
combined
improvements clearly improve the detection and sequence coverage of
middle-range peptides and should guide researchers to explore further
how middle-down proteomics may lead to an improved proteome coverage,
beneficial for, among other things, the enhanced analysis of (co-occurring)
post-translational modifications.
Collapse
Affiliation(s)
- Alba Cristobal
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research, Utrecht University , Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center , Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Fabio Marino
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research, Utrecht University , Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center , Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Harm Post
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research, Utrecht University , Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center , Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Henk W P van den Toorn
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research, Utrecht University , Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center , Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Shabaz Mohammed
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research, Utrecht University , Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center , Padualaan 8, 3584 CH Utrecht, The Netherlands.,Departments of Chemistry and Biochemistry, University of Oxford , New Biochemistry Building, South Parks Road, Oxford, OX1 3QU Oxfordshire, United Kingdom
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research, Utrecht University , Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center , Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
2259
|
Ragelle H, Naba A, Larson BL, Zhou F, Prijić M, Whittaker CA, Del Rosario A, Langer R, Hynes RO, Anderson DG. Comprehensive proteomic characterization of stem cell-derived extracellular matrices. Biomaterials 2017; 128:147-159. [PMID: 28327460 DOI: 10.1016/j.biomaterials.2017.03.008] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/27/2017] [Accepted: 03/05/2017] [Indexed: 01/06/2023]
Abstract
In the stem-cell niche, the extracellular matrix (ECM) serves as a structural support that additionally provides stem cells with signals that contribute to the regulation of stem-cell function, via reciprocal interactions between cells and components of the ECM. Recently, cell-derived ECMs have emerged as in vitro cell culture substrates to better recapitulate the native stem-cell microenvironment outside the body. Significant changes in cell number, morphology and function have been observed when mesenchymal stem cells (MSC) were cultured on ECM substrates as compared to standard tissue-culture polystyrene (TCPS). As select ECM components are known to regulate specific stem-cell functions, a robust characterization of cell-derived ECM proteomic composition is critical to better comprehend the role of the ECM in directing cellular processes. Here, we characterized and compared the protein composition of ECM produced in vitro by bone marrow-derived MSC, adipose-derived MSC and neonatal fibroblasts from different donors, employing quantitative proteomic methods. Each cell-derived ECM displayed a specific and unique matrisome signature, yet they all shared a common set of proteins. We evaluated the biological response of cells cultured on the different matrices and compared them to cells on standard TCPS. The matrices lead to differential survival and gene-expression profiles among the cell types and as compared to TCPS, indicating that the cell-derived ECMs influence each cell type in a different manner. This general approach to understanding the protein composition of different tissue-specific and cell-derived ECM will inform the rational design of defined systems and biomaterials that recapitulate critical ECM signals for stem-cell culture and tissue engineering.
Collapse
Affiliation(s)
- Héloïse Ragelle
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Alexandra Naba
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Benjamin L Larson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Fangheng Zhou
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Miralem Prijić
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Charles A Whittaker
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Amanda Del Rosario
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Richard O Hynes
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, 02138, USA
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
2260
|
Xia Q, Zhao Y, Wang J, Qiao W, Zhang D, Yin H, Xu D, Chen F. Proteomic analysis of cell cycle arrest and differentiation induction caused by ATPR, a derivative of all-trans retinoic acid, in human gastric cancer SGC-7901 cells. Proteomics Clin Appl 2017; 11. [PMID: 28164444 DOI: 10.1002/prca.201600099] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 12/31/2016] [Accepted: 02/02/2017] [Indexed: 12/16/2022]
Abstract
PURPOSE 4-amino-2-trifluoromethyl-phenyl retinate (ATPR) was reported to potentially inhibit proliferation and induce differentiation activity in some tumor cells. In this study, a proteomics approach was used to investigate the possible mechanism by screening the differentially expressed protein profiles of SGC-7901 cells before and after ATPR-treatment in vitro. EXPERIMENTAL DESIGN Peptides digested from the total cellular proteins were analyzed by reverse phase LC-MS/MS followed by a label-free quantification analysis. The SEQUEST search engine was used to identify proteins and bioinformatics resources were used to investigate the involved pathways for the differentially expressed proteins. RESULTS Thirteen down-regulated proteins were identified in the ATPR-treated group. Bioinformatics analysis showed that the effects of ATPR on 14-3-3ε might potentially involve the PI3K-AKT-FOXO pathway and P27Kip1 expression. Western blot and RT-PCR analysis showed that ATPR could inhibit AKT phosphorylation, up-regulate the expression of FOXO1A and P27Kip1 at both the protein and mRNA levels, and down-regulate the cytoplasmic expression of cyclin E and CDK2. ATPR-induced G0/G1 phase arrest and differentiation can be ablated if the P27kip1 gene is silenced with sequence-specific siRNA or in 14-3-3ε overexpression of SGC-7901 cells. CONCLUSION AND CLINICAL RELEVANCE ATPR might cause cell cycle arrest and differentiation in SGC-7901 cells by simultaneously inhibiting the phosphorylation of AKT and down-regulating 14-3-3ε. This change would then enhance the inhibition of cyclin E/CDK2 by up-regulating FOXO1A and P27Kip1. Our findings could be of value for finding new drug targets and for developing more effective differentiation inducer.
Collapse
Affiliation(s)
- Quan Xia
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yingli Zhao
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiali Wang
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Wenhao Qiao
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Dongling Zhang
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hao Yin
- Chromatography and Mass Spectrometry Lab Hefei National Laboratory for Physical Science at Microscale, University of Science and Technology of China, Hefei, China
| | - Dujuan Xu
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Feihu Chen
- School of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
2261
|
Glisovic-Aplenc T, Gill S, Spruce LA, Smith IR, Fazelinia H, Shestova O, Ding H, Tasian SK, Aplenc R, Seeholzer SH. Improved surfaceome coverage with a label-free nonaffinity-purified workflow. Proteomics 2017; 17. [PMID: 28116781 DOI: 10.1002/pmic.201600344] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/05/2017] [Accepted: 01/19/2017] [Indexed: 01/17/2023]
Abstract
The proteins of the cellular plasma membrane (PM) perform important functions relating to homeostasis and intercellular communication. Due to its overall low cellular abundance, amphipathic character, and low membrane-to-cytoplasm ratio, the PM proteome has been challenging to isolate and characterize, and is poorly represented in standard LC-MS/MS analyses. In this study, we employ sucrose gradient ultracentrifugation for the enrichment of the PM proteome, without chemical labeling and affinity purification, together with GeLCMS and use subsequent bioinformatics tools to select proteins associated with the PM/cell surface, herein referred to as the surfaceome. Using this methodology, we identify over 1900 cell surface associated proteins in a human acute myeloid leukemia cell line. These surface proteins comprise almost 50% of all detected cellular proteins, a number that substantially exceeds the depth of coverage in previously published studies describing the leukemia surfaceome.
Collapse
Affiliation(s)
- Tina Glisovic-Aplenc
- Division of Oncology, Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Saar Gill
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Lynn A Spruce
- Protein and Proteomics Core Facility, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Ian R Smith
- Protein and Proteomics Core Facility, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Hossein Fazelinia
- Protein and Proteomics Core Facility, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Olga Shestova
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Hua Ding
- Protein and Proteomics Core Facility, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Sarah K Tasian
- Division of Oncology, Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Richard Aplenc
- Division of Oncology, Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Steven H Seeholzer
- Protein and Proteomics Core Facility, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| |
Collapse
|
2262
|
Dambrun M, Dechavanne C, Emmanuel A, Aussenac F, Leduc M, Giangrande C, Vinh J, Dugoujon JM, Lefranc MP, Guillonneau F, Migot-Nabias F. Human Immunoglobulin Heavy Gamma Chain Polymorphisms: Molecular Confirmation Of Proteomic Assessment. Mol Cell Proteomics 2017; 16:824-839. [PMID: 28265047 DOI: 10.1074/mcp.m116.064733] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 02/01/2017] [Indexed: 11/06/2022] Open
Abstract
Immunoglobulin G (IgG) proteins are known for the huge diversity of the variable domains of their heavy and light chains, aimed at protecting each individual against foreign antigens. The IgG also harbor specific polymorphism concentrated in the CH2 and CH3-CHS constant regions located on the Fc fragment of their heavy chains. But this individual particularity relies only on a few amino acids among which some could make accurate sequence determination a challenge for mass spectrometry-based techniques.The purpose of the study was to bring a molecular validation of proteomic results by the sequencing of encoding DNA fragments. It was performed using ten individual samples (DNA and sera) selected on the basis of their Gm (gamma marker) allotype polymorphism in order to cover the main immunoglobulin heavy gamma (IGHG) gene diversity. Gm allotypes, reflecting part of this diversity, were determined by a serological method. On its side, the IGH locus comprises four functional IGHG genes totalizing 34 alleles and encoding the four IgG subclasses. The genomic study focused on the nucleotide polymorphism of the CH2 and CH3-CHS exons and of the intron. Despite strong sequence identity, four pairs of specific gene amplification primers could be designed. Additional primers were identified to perform the subsequent sequencing. The nucleotide sequences obtained were first assigned to a specific IGHG gene, and then IGHG alleles were deduced using a home-made decision tree reading of the nucleotide sequences. IGHG amino acid (AA) alleles were determined by mass spectrometry. Identical results were found at 95% between alleles identified by proteomics and those deduced from genomics. These results validate the proteomic approach which could be used for diagnostic purposes, namely for a mother-and-child differential IGHG detection in a context of suspicion of congenital infection.
Collapse
Affiliation(s)
- Magalie Dambrun
- From the ‡Institut de Recherche pour le Développement, UMR 216 Mère et enfant face aux infections tropicales, Paris, France.,§COMUE Sorbonne Paris Cité, Faculté de Pharmacie, Université Paris Descartes, Paris, France.,¶¶Magalie Dambrun, Célia Dechavanne and Alexandra Emmanuel contributed equally to this work
| | - Célia Dechavanne
- From the ‡Institut de Recherche pour le Développement, UMR 216 Mère et enfant face aux infections tropicales, Paris, France.,§COMUE Sorbonne Paris Cité, Faculté de Pharmacie, Université Paris Descartes, Paris, France.,¶¶Magalie Dambrun, Célia Dechavanne and Alexandra Emmanuel contributed equally to this work
| | - Alexandra Emmanuel
- From the ‡Institut de Recherche pour le Développement, UMR 216 Mère et enfant face aux infections tropicales, Paris, France.,§COMUE Sorbonne Paris Cité, Faculté de Pharmacie, Université Paris Descartes, Paris, France.,¶ESPCI Paris, PSL Research University, Spectrométrie de Masse Biologique et Protéomique (SMBP), CNRS USR 3149, Paris, France.,¶¶Magalie Dambrun, Célia Dechavanne and Alexandra Emmanuel contributed equally to this work
| | - Florentin Aussenac
- From the ‡Institut de Recherche pour le Développement, UMR 216 Mère et enfant face aux infections tropicales, Paris, France.,§COMUE Sorbonne Paris Cité, Faculté de Pharmacie, Université Paris Descartes, Paris, France
| | - Marjorie Leduc
- ‖Plate-forme protéomique de l'Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Chiara Giangrande
- ¶ESPCI Paris, PSL Research University, Spectrométrie de Masse Biologique et Protéomique (SMBP), CNRS USR 3149, Paris, France
| | - Joëlle Vinh
- ¶ESPCI Paris, PSL Research University, Spectrométrie de Masse Biologique et Protéomique (SMBP), CNRS USR 3149, Paris, France
| | - Jean-Michel Dugoujon
- **Laboratoire d'Anthropologie Moléculaire et Imagerie de Synthèse, UMR 5288, CNRS et Université Paul Sabatier Toulouse III, Toulouse, France
| | - Marie-Paule Lefranc
- ‡‡IMGT®, the international ImMunoGeneTics information system®, Laboratoire d'ImmunoGénétique Moléculaire, LIGM, Institut de Génétique Humaine, IGH, UMR 9002, CNRS et Université de Montpellier, Montpellier, France.,§§Institut Universitaire de France, Paris, France
| | - François Guillonneau
- ‖Plate-forme protéomique de l'Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,‖‖François Guillonneau and Florence Migot-Nabias contributed equally to this work
| | - Florence Migot-Nabias
- From the ‡Institut de Recherche pour le Développement, UMR 216 Mère et enfant face aux infections tropicales, Paris, France; .,§COMUE Sorbonne Paris Cité, Faculté de Pharmacie, Université Paris Descartes, Paris, France.,‖‖François Guillonneau and Florence Migot-Nabias contributed equally to this work
| |
Collapse
|
2263
|
Rieder V, Blank-Landeshammer B, Stuhr M, Schell T, Biß K, Kollipara L, Meyer A, Pfenninger M, Westphal H, Sickmann A, Rahnenführer J. DISMS2: A flexible algorithm for direct proteome- wide distance calculation of LC-MS/MS runs. BMC Bioinformatics 2017; 18:148. [PMID: 28253837 PMCID: PMC5335755 DOI: 10.1186/s12859-017-1514-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 01/31/2017] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The classification of samples on a molecular level has manifold applications, from patient classification regarding cancer treatment to phylogenetics for identifying evolutionary relationships between species. Modern methods employ the alignment of DNA or amino acid sequences, mostly not genome-wide but only on selected parts of the genome. Recently proteomics-based approaches have become popular. An established method for the identification of peptides and proteins is liquid chromatography-tandem mass spectrometry (LC-MS/MS). First, protein sequences from MS/MS spectra are identified by means of database searches, given samples with known genome-wide sequence information, then sequence based methods are applied. Alternatively, de novo peptide sequencing algorithms annotate MS/MS spectra and deduce peptide/protein information without a database. A newer approach independent of additional information is to directly compare unidentified tandem mass spectra. The challenge then is to compute the distance between pairwise MS/MS runs consisting of thousands of spectra. METHODS We present DISMS2, a new algorithm to calculate proteome-wide distances directly from MS/MS data, extending the algorithm compareMS2, an approach that also uses a spectral comparison pipeline. RESULTS Our new more flexible algorithm, DISMS2, allows for the choice of the spectrum distance measure and includes different spectra preprocessing and filtering steps that can be tailored to specific situations by parameter optimization. CONCLUSIONS DISMS2 performs well for samples from species with and without database annotation and thus has clear advantages over methods that are purely based on database search.
Collapse
Affiliation(s)
- Vera Rieder
- Department of Statistics, TU Dortmund University, Dortmund, Germany
| | | | - Marleen Stuhr
- Leibniz Center for Tropical Marine Ecology (ZMT), Bremen, Germany
| | - Tilman Schell
- Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Frankfurt, Germany
| | - Karsten Biß
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Laxmikanth Kollipara
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Achim Meyer
- Leibniz Center for Tropical Marine Ecology (ZMT), Bremen, Germany
| | - Markus Pfenninger
- Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Frankfurt, Germany
- Faculty of Biological Science, Institute for Ecology, Evolution and Diversity, Department of Molecular Ecology, Goethe University, Max-von-Laue-Straße 9, Frankfurt am Main, 60438 Germany
| | | | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
- Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
- Medizinische Fakultät, Medizinisches Proteom-Center (MPC), Ruhr-Universität Bochum, Universitätsstraße 150, Bochum, 44801 Germany
| | | |
Collapse
|
2264
|
Bayés À, Collins MO, Reig-Viader R, Gou G, Goulding D, Izquierdo A, Choudhary JS, Emes RD, Grant SGN. Evolution of complexity in the zebrafish synapse proteome. Nat Commun 2017; 8:14613. [PMID: 28252024 PMCID: PMC5337974 DOI: 10.1038/ncomms14613] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/15/2017] [Indexed: 11/09/2022] Open
Abstract
The proteome of human brain synapses is highly complex and is mutated in over 130 diseases. This complexity arose from two whole-genome duplications early in the vertebrate lineage. Zebrafish are used in modelling human diseases; however, its synapse proteome is uncharacterized, and whether the teleost-specific genome duplication (TSGD) influenced complexity is unknown. We report the characterization of the proteomes and ultrastructure of central synapses in zebrafish and analyse the importance of the TSGD. While the TSGD increases overall synapse proteome complexity, the postsynaptic density (PSD) proteome of zebrafish has lower complexity than mammals. A highly conserved set of ∼1,000 proteins is shared across vertebrates. PSD ultrastructural features are also conserved. Lineage-specific proteome differences indicate that vertebrate species evolved distinct synapse types and functions. The data sets are a resource for a wide range of studies and have important implications for the use of zebrafish in modelling human synaptic diseases.
Collapse
Affiliation(s)
- Àlex Bayés
- Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Bellaterra, Spain
| | - Mark O. Collins
- Department of Biomedical Science, The Centre for Membrane Interactions and Dynamics, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Rita Reig-Viader
- Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Bellaterra, Spain
| | - Gemma Gou
- Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Bellaterra, Spain
| | - David Goulding
- Pathogen Genomics, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Abril Izquierdo
- School of Veterinary Medicine and Science, University of Nottingham. Sutton Bonington Campus, Leicestershire LE12 5RD, UK
| | - Jyoti S. Choudhary
- Proteomic Mass Spectrometry, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Richard D. Emes
- School of Veterinary Medicine and Science, University of Nottingham. Sutton Bonington Campus, Leicestershire LE12 5RD, UK
- Advanced Data Analysis Centre, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK
| | - Seth G. N. Grant
- Genes to Cognition Programme, Centre for Clinical Brain Science, University of Edinburgh, Edinburgh EH16 4SB, UK
| |
Collapse
|
2265
|
Connor TM, Hoer S, Mallett A, Gale DP, Gomez-Duran A, Posse V, Antrobus R, Moreno P, Sciacovelli M, Frezza C, Duff J, Sheerin NS, Sayer JA, Ashcroft M, Wiesener MS, Hudson G, Gustafsson CM, Chinnery PF, Maxwell PH. Mutations in mitochondrial DNA causing tubulointerstitial kidney disease. PLoS Genet 2017; 13:e1006620. [PMID: 28267784 PMCID: PMC5360345 DOI: 10.1371/journal.pgen.1006620] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/21/2017] [Accepted: 02/07/2017] [Indexed: 11/19/2022] Open
Abstract
Tubulointerstitial kidney disease is an important cause of progressive renal failure whose aetiology is incompletely understood. We analysed a large pedigree with maternally inherited tubulointerstitial kidney disease and identified a homoplasmic substitution in the control region of the mitochondrial genome (m.547A>T). While mutations in mtDNA coding sequence are a well recognised cause of disease affecting multiple organs, mutations in the control region have never been shown to cause disease. Strikingly, our patients did not have classical features of mitochondrial disease. Patient fibroblasts showed reduced levels of mitochondrial tRNAPhe, tRNALeu1 and reduced mitochondrial protein translation and respiration. Mitochondrial transfer demonstrated mitochondrial transmission of the defect and in vitro assays showed reduced activity of the heavy strand promoter. We also identified further kindreds with the same phenotype carrying a homoplasmic mutation in mitochondrial tRNAPhe (m.616T>C). Thus mutations in mitochondrial DNA can cause maternally inherited renal disease, likely mediated through reduced function of mitochondrial tRNAPhe.
Collapse
Affiliation(s)
| | - Simon Hoer
- Cambridge Institute for Medical Research, University of Cambridge, United Kingdom
| | - Andrew Mallett
- Kidney Health Service, Royal Brisbane and Women’s Hospital, School of Medicine, The University of Queensland, Australia
| | - Daniel P. Gale
- UCL Centre for Nephrology, Royal Free Hospital, London, United Kingdom
| | | | - Viktor Posse
- Institute of Biomedicine, University of Gothenburg, Sweden
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, United Kingdom
| | - Pablo Moreno
- Cambridge Institute for Medical Research, University of Cambridge, United Kingdom
| | | | | | - Jennifer Duff
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Neil S. Sheerin
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - John A. Sayer
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Michael S. Wiesener
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Gavin Hudson
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | | | - Patrick H. Maxwell
- School of Clinical Medicine, Cambridge University, Cambridge, United Kingdom
| |
Collapse
|
2266
|
Rokyta DR, Ward MJ. Venom-gland transcriptomics and venom proteomics of the black-back scorpion (Hadrurus spadix) reveal detectability challenges and an unexplored realm of animal toxin diversity. Toxicon 2017; 128:23-37. [DOI: 10.1016/j.toxicon.2017.01.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 10/20/2022]
|
2267
|
The proteome of baker's yeast mitochondria. Mitochondrion 2017; 33:15-21. [DOI: 10.1016/j.mito.2016.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 08/12/2016] [Accepted: 08/13/2016] [Indexed: 01/29/2023]
|
2268
|
Jiao L, Zhang Y, Lu J. Overexpression of a stress-responsive U-box protein gene VaPUB affects the accumulation of resistance related proteins in Vitis vinifera 'Thompson Seedless'. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 112:53-63. [PMID: 28039816 DOI: 10.1016/j.plaphy.2016.12.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 05/25/2023]
Abstract
Many U-box proteins have been identified and characterized as important factors against environmental stresses such as chilling, heat, salinity and pathogen attack in plant. Our previous research reported the cloning of a novel U-box protein gene VaPUB from Vitis amurensis 'Zuoshanyi' grape and suggested a function of it in related to cold stress in the model plant Arabidopsis system. In this study, the role of VaPUB in response to biotic and abiotic stress was further analyzed in the homologous grapevine system by studying the transcript regulation and the protein accumulation in VaPUB transgenic vines. The expression analysis assay shown that VaPUB was significantly up-regulated 6 h after cold treatment and as early as 2 h post inoculation with Plasmopara viticola, a pathogen causing downy mildew disease in grapevine. Over-expressing VaPUB in V. Vinifera 'Thompson Seedless' affected the microstructure of leaves. The proteome assay shown that the accumulation of pathogenesis-related protein PR10 and many proteins involved in carbon and energy metabolism, oxidation reaction and protein metabolism were significantly altered in transgenic vines. In comparison with wild type plants, the expression level of PR10 family genes was significantly decreased in VaPUB transgenic vines under P. viticola treatment or cold stress. Results from this study showed that the U-box protein gene PUB quickly responded to both biotic stress and abiotic stress and significantly influenced the accumulation of resistance related proteins in grapevine.
Collapse
Affiliation(s)
- Li Jiao
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai, 200240, China
| | - Yali Zhang
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jiang Lu
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai, 200240, China.
| |
Collapse
|
2269
|
Duggal S, Jailkhani N, Midha MK, Rao KVS, Kumar A. Defining the Akt1 interactome data and delineating alterations in its composition as a function of cell cycle progression. Data Brief 2017; 11:252-257. [PMID: 28243621 PMCID: PMC5320063 DOI: 10.1016/j.dib.2017.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/17/2017] [Accepted: 02/08/2017] [Indexed: 11/17/2022] Open
Abstract
Akt1 is a multi-functional protein implicated in key cellular processes including regulation of proliferation, survival, metabolism and protein synthesis. Its functional diversity results through interactions with other proteins which change with changing context. This study was designed to capture proteins, which interact with Akt1 as the cell cycle progresses from G0 to G1S and then G2 phase. Such an insight might help us understand the role of Akt1 in cell cycle, which as of now is not well explored. Akt1 expressing HEK 293 cells were cultured in light, medium and heavy labeled SILAC media. Normal lysine and arginine were incorporated as light labels; 6 Da (Dalton) heavier isotopes of the same amino acids were used as medium labels; while for heavy labeling the isotopes were 8 and 10 Da heavier. Light labeled cells were arrested in G0 phase while medium and heavy labeled cells were arrested in G2 and G1S phases, respectively. Equal number of cells from each phase was pooled, lysed and subjected to Affinity Purification coupled to Mass Spectroscopy (AP-MS). The obtained Akt1 protein partners were observed to change as the cell cycle progressed from G0 to G1S and then to G2 phase. Additionally, SILAC labeling aided in quantitative estimation of changing association of a number of proteins which were common to two or more phases, with Akt1. Data are available via ProteomeXchange with identifier PXD005557.
Collapse
Affiliation(s)
- Shweta Duggal
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asif Ali Marg, New Delhi 110067, India
| | - Noor Jailkhani
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asif Ali Marg, New Delhi 110067, India
| | - Mukul Kumar Midha
- Drug Discovery Research Center (DDRC), Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Kanury V S Rao
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asif Ali Marg, New Delhi 110067, India; Drug Discovery Research Center (DDRC), Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Ajay Kumar
- Drug Discovery Research Center (DDRC), Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| |
Collapse
|
2270
|
Al Shweiki MR, Mönchgesang S, Majovsky P, Thieme D, Trutschel D, Hoehenwarter W. Assessment of Label-Free Quantification in Discovery Proteomics and Impact of Technological Factors and Natural Variability of Protein Abundance. J Proteome Res 2017; 16:1410-1424. [PMID: 28217993 DOI: 10.1021/acs.jproteome.6b00645] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We evaluated the state of label-free discovery proteomics focusing especially on technological contributions and contributions of naturally occurring differences in protein abundance to the intersample variability in protein abundance estimates in this highly peptide-centric technology. First, the performance of popular quantitative proteomics software, Proteome Discoverer, Scaffold, MaxQuant, and Progenesis QIP, was benchmarked using their default parameters and some modified settings. Beyond this, the intersample variability in protein abundance estimates was decomposed into variability introduced by the entire technology itself and variable protein amounts inherent to individual plants of the Arabidopsis thaliana Col-0 accession. The technical component was considerably higher than the biological intersample variability, suggesting an effect on the degree and validity of reported biological changes in protein abundance. Surprisingly, the biological variability, protein abundance estimates, and protein fold changes were recorded differently by the software used to quantify the proteins, warranting caution in the comparison of discovery proteomics results. As expected, ∼99% of the proteome was invariant in the isogenic plants in the absence of environmental factors; however, few proteins showed substantial quantitative variability. This naturally occurring variation between individual organisms can have an impact on the causality of reported protein fold changes.
Collapse
Affiliation(s)
- Mhd Rami Al Shweiki
- Research Group Proteome Analytics, Leibniz Institute of Plant Biochemistry , Weinberg 3, 06120 Halle (Saale), Germany
| | - Susann Mönchgesang
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry , Weinberg 3, 06120 Halle (Saale), Germany
| | - Petra Majovsky
- Research Group Proteome Analytics, Leibniz Institute of Plant Biochemistry , Weinberg 3, 06120 Halle (Saale), Germany
| | - Domenika Thieme
- Research Group Proteome Analytics, Leibniz Institute of Plant Biochemistry , Weinberg 3, 06120 Halle (Saale), Germany
| | - Diana Trutschel
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry , Weinberg 3, 06120 Halle (Saale), Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen , Stockumer Straße. 12, 58453 Witten, Germany.,Martin-Luther-University Halle-Wittenberg , Von-Seckendorff-Platz 1, 06120 Halle (Saale), Germany
| | - Wolfgang Hoehenwarter
- Research Group Proteome Analytics, Leibniz Institute of Plant Biochemistry , Weinberg 3, 06120 Halle (Saale), Germany
| |
Collapse
|
2271
|
Prophage WO genes recapitulate and enhance Wolbachia-induced cytoplasmic incompatibility. Nature 2017; 543:243-247. [PMID: 28241146 PMCID: PMC5358093 DOI: 10.1038/nature21391] [Citation(s) in RCA: 316] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 01/12/2017] [Indexed: 02/05/2023]
Abstract
The genus Wolbachia is an archetype of maternally inherited intracellular bacteria that infect the germline of numerous invertebrate species worldwide. They can selfishly alter arthropod sex ratios and reproductive strategies to increase the proportion of the infected matriline in the population. The most common reproductive manipulation is cytoplasmic incompatibility (CI), which results in embryonic lethality in crosses between infected males and uninfected females. Females infected with the same Wolbachia strain rescue this lethality. Despite more than 40 years of research1 and relevance to symbiont-induced speciation2,3, as well as control of arbovirus vectors4,5,6 and agricultural pests7, the bacterial genes underlying CI remain unknown. Here, we use comparative and transgenic approaches to demonstrate that two differentially transcribed, codiverging genes in the eukaryotic association module of prophage WO8 from Wolbachia strain wMel recapitulate and enhance CI. Dual expression in transgenic, uninfected males of Drosophila melanogaster crossed to uninfected females causes embryonic lethality. Each gene additively augments embryonic lethality in infected males crossed to uninfected females. Lethality associates with embryonic defects that parallel those of wild type CI and is notably rescued by wMel-infected embryos in all cases. The discovery of cytoplasmic incompatibility factor genes cifA and cifB pioneers genetic studies of prophage WO-induced reproductive manipulations and informs Wolbachia’s ongoing utility to control dengue and Zika transmission to humans.
Collapse
|
2272
|
Characterizing the O-glycosylation landscape of human plasma, platelets, and endothelial cells. Blood Adv 2017; 1:429-442. [PMID: 29296958 DOI: 10.1182/bloodadvances.2016002121] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/17/2017] [Indexed: 01/26/2023] Open
Abstract
The hemostatic system comprises platelet aggregation, coagulation, and fibrinolysis, and is critical to the maintenance of vascular integrity. Multiple studies indicate that glycans play important roles in the hemostatic system; however, most investigations have focused on N-glycans because of the complexity of O-glycan analysis. Here we performed the first systematic analysis of native-O-glycosylation using lectin affinity chromatography coupled to liquid chromatography mass spectrometry (LC-MS)/MS to determine the precise location of O-glycans in human plasma, platelets, and endothelial cells, which coordinately regulate hemostasis. We identified the hitherto largest O-glycoproteome from native tissue with a total of 649 glycoproteins and 1123 nonambiguous O-glycosites, demonstrating that O-glycosylation is a ubiquitous modification of extracellular proteins. Investigation of the general properties of O-glycosylation established that it is a heterogeneous modification, frequently occurring at low density within disordered regions in a cell-dependent manner. Using an unbiased screen to identify associations between O-glycosites and protein annotations we found that O-glycans were over-represented close (± 15 amino acids) to tandem repeat regions, protease cleavage sites, within propeptides, and located on a select group of protein domains. The importance of O-glycosites in proximity to proteolytic cleavage sites was further supported by in vitro peptide assays demonstrating that proteolysis of key hemostatic proteins can be inhibited by the presence of O-glycans. Collectively, these data illustrate the global properties of native O-glycosylation and provide the requisite roadmap for future biomarker and structure-function studies.
Collapse
|
2273
|
Groves JA, Maduka AO, O'Meally RN, Cole RN, Zachara NE. Fatty acid synthase inhibits the O-GlcNAcase during oxidative stress. J Biol Chem 2017; 292:6493-6511. [PMID: 28232487 DOI: 10.1074/jbc.m116.760785] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 02/10/2017] [Indexed: 01/01/2023] Open
Abstract
The dynamic post-translational modification O-linked β-N-acetylglucosamine (O-GlcNAc) regulates thousands of nuclear, cytoplasmic, and mitochondrial proteins. Cellular stress, including oxidative stress, results in increased O-GlcNAcylation of numerous proteins, and this increase is thought to promote cell survival. The mechanisms by which the O-GlcNAc transferase (OGT) and the O-GlcNAcase (OGA), the enzymes that add and remove O-GlcNAc, respectively, are regulated during oxidative stress to alter O-GlcNAcylation are not fully characterized. Here, we demonstrate that oxidative stress leads to elevated O-GlcNAc levels in U2OS cells but has little impact on the activity of OGT. In contrast, the expression and activity of OGA are enhanced. We hypothesized that this seeming paradox could be explained by proteins that bind to and control the local activity or substrate targeting of OGA, thereby resulting in the observed stress-induced elevations of O-GlcNAc. To identify potential protein partners, we utilized BioID proximity biotinylation in combination with stable isotopic labeling of amino acids in cell culture (SILAC). This analysis revealed 90 OGA-interacting partners, many of which exhibited increased binding to OGA upon stress. The associations of OGA with fatty acid synthase (FAS), filamin-A, heat shock cognate 70-kDa protein, and OGT were confirmed by co-immunoprecipitation. The pool of OGA bound to FAS demonstrated a substantial (∼85%) reduction in specific activity, suggesting that FAS inhibits OGA. Consistent with this observation, FAS overexpression augmented stress-induced O-GlcNAcylation. Although the mechanism by which FAS sequesters OGA remains unknown, these data suggest that FAS fine-tunes the cell's response to stress and injury by remodeling cellular O-GlcNAcylation.
Collapse
Affiliation(s)
- Jennifer A Groves
- From the Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185
| | - Austin O Maduka
- From the Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185.,the Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250, and
| | - Robert N O'Meally
- From the Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185.,the Mass Spectrometry and Proteomics Facility, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Robert N Cole
- From the Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185.,the Mass Spectrometry and Proteomics Facility, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Natasha E Zachara
- From the Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185,
| |
Collapse
|
2274
|
CLK-dependent exon recognition and conjoined gene formation revealed with a novel small molecule inhibitor. Nat Commun 2017; 8:7. [PMID: 28232751 PMCID: PMC5431906 DOI: 10.1038/s41467-016-0008-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 11/14/2016] [Indexed: 12/28/2022] Open
Abstract
CDC-like kinase phosphorylation of serine/arginine-rich proteins is central to RNA splicing reactions. Yet, the genomic network of CDC-like kinase-dependent RNA processing events remains poorly defined. Here, we explore the connectivity of genomic CDC-like kinase splicing functions by applying graduated, short-exposure, pharmacological CDC-like kinase inhibition using a novel small molecule (T3) with very high potency, selectivity, and cell-based stability. Using RNA-Seq, we define CDC-like kinase-responsive alternative splicing events, the large majority of which monotonically increase or decrease with increasing CDC-like kinase inhibition. We show that distinct RNA-binding motifs are associated with T3 response in skipped exons. Unexpectedly, we observe dose-dependent conjoined gene transcription, which is associated with motif enrichment in the last and second exons of upstream and downstream partners, respectively. siRNA knockdown of CLK2-associated genes significantly increases conjoined gene formation. Collectively, our results reveal an unexpected role for CDC-like kinase in conjoined gene formation, via regulation of 3′-end processing and associated splicing factors. The phosphorylation of serine/arginine-rich proteins by CDC-like kinase is a central regulatory mechanism for RNA splicing reactions. Here, the authors synthesize a novel small molecule CLK inhibitor and map CLK-responsive alternative splicing events and discover an effect on conjoined gene transcription.
Collapse
|
2275
|
Qin G, Ma J, Chen X, Chu Z, She YM. Methylated-antibody affinity purification to improve proteomic identification of plant RNA polymerase Pol V complex and the interacting proteins. Sci Rep 2017; 7:42943. [PMID: 28224978 PMCID: PMC5320500 DOI: 10.1038/srep42943] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/17/2017] [Indexed: 11/09/2022] Open
Abstract
Affinity purification followed by enzymatic digestion and mass spectrometry has been widely utilized for the sensitive detection of interacting proteins and protein complexes in various organisms. In plants, the method is technically challenging due to the low abundance proteins, non-specific binding and difficulties of eluting interacting proteins from antibody beads. In this report, we describe a strategy to modify antibodies by reductive methylation of lysines without affecting their binding properties, followed by on-bead digestion of bound proteins with endoproteinase Lys-C. By this method, the antibody remains intact and does not interfere with the downstream identification of interacting proteins. Non-specific binding proteins were excluded using 14N/15N-metabolic labeling of wild-type and the transgenic plant counterparts. The method was employed to identify 12 co-immunoprecipitated protein subunits in Pol V complex and to discover 17 potential interacting protein targets in Arabidopsis. Our results demonstrated that the modification of antibodies by reductive dimethylation can improve the reliability and sensitivity of identifying low-abundance proteins through on-bead digestion and mass spectrometry. We also show that coupling this technique with chemical crosslinking enables in-depth characterization of endogenous protein complexes and the protein-protein interaction networks including mapping the surface topology and post-translational modifications of interacting proteins.
Collapse
Affiliation(s)
- Guochen Qin
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 3888 Chenhua Road, Shanghai 201602, P. R. China
| | - Jun Ma
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 3888 Chenhua Road, Shanghai 201602, P. R. China
| | - Xiaomei Chen
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 3888 Chenhua Road, Shanghai 201602, P. R. China
| | - Zhaoqing Chu
- Shanghai Chenshan Plant Science Research Center and Shanghai Chenshan Botanic Garden, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 3888 Chenhua Road, Shanghai 201602, P. R. China
| | - Yi-Min She
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 3888 Chenhua Road, Shanghai 201602, P. R. China.,Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| |
Collapse
|
2276
|
Characterisation of urinary WFDC12 in small nocturnal basal primates, mouse lemurs (Microcebus spp.). Sci Rep 2017; 7:42940. [PMID: 28225021 PMCID: PMC5320513 DOI: 10.1038/srep42940] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/17/2017] [Indexed: 01/18/2023] Open
Abstract
Mouse lemurs are basal primates that rely on chemo- and acoustic signalling for social interactions in their dispersed social systems. We examined the urinary protein content of two mouse lemurs species, within and outside the breeding season, to assess candidates used in species discrimination, reproductive or competitive communication. Urine from Microcebus murinus and Microcebus lehilahytsara contain a predominant 10 kDa protein, expressed in both species by some, but not all, males during the breeding season, but at very low levels by females. Mass spectrometry of the intact proteins confirmed the protein mass and revealed a 30 Da mass difference between proteins from the two species. Tandem mass spectrometry after digestion with three proteases and sequencing de novo defined the complete protein sequence and located an Ala/Thr difference between the two species that explained the 30 Da mass difference. The protein (mature form: 87 amino acids) is an atypical member of the whey acidic protein family (WFDC12). Seasonal excretion of this protein, species difference and male-specific expression during the breeding season suggest that it may have a function in intra- and/or intersexual chemical signalling in the context of reproduction, and could be a cue for sexual selection and species recognition.
Collapse
|
2277
|
Hua X, Liu L, Fang Y, Shi Q, Li X, Chen Q, Shi K, Jiang Y, Zhou H, Yu Y. Colistin Resistance in Acinetobacter baumannii MDR-ZJ06 Revealed by a Multiomics Approach. Front Cell Infect Microbiol 2017; 7:45. [PMID: 28275586 PMCID: PMC5319971 DOI: 10.3389/fcimb.2017.00045] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/07/2017] [Indexed: 12/21/2022] Open
Abstract
Acinetobacter baumannii has emerged as an important opportunistic pathogen due to its ability to acquire resistance to most currently available antibiotics. Colistin is often considered as the last line of therapy for infections caused by multidrug-resistant A. baumannii (MDRAB). However, colistin-resistant A. baumannii strain has recently been reported. To explore how multiple drug-resistant A. baumannii responded to colistin resistance, we compared the genomic, transcriptional and proteomic profile of A. baumannii MDR-ZJ06 to the induced colistin-resistant strain ZJ06-200P5-1. Genomic analysis showed that lpxC was inactivated by ISAba1 insertion, leading to LPS loss. Transcriptional analysis demonstrated that the colistin-resistant strain regulated its metabolism. Proteomic analysis suggested increased expression of the RND efflux pump system and down-regulation of FabZ and β-lactamase. These alterations were believed to be response to LPS loss. In summary, the lpxC mutation not only established colistin resistance but also altered global gene expression.
Collapse
Affiliation(s)
- Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang UniversityHangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang ProvinceHangzhou, China
| | - Lilin Liu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang UniversityHangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang ProvinceHangzhou, China
| | - Youhong Fang
- The Children's Hospital, College of Medicine, Zhejiang University Hangzhou, China
| | - Qiucheng Shi
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang UniversityHangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang ProvinceHangzhou, China
| | - Xi Li
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital Hangzhou, China
| | - Qiong Chen
- Hangzhou First People's Hospital Hangzhou, China
| | - Keren Shi
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang UniversityHangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang ProvinceHangzhou, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang UniversityHangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang ProvinceHangzhou, China
| | - Hua Zhou
- Department of Respiratory, The First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang UniversityHangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang ProvinceHangzhou, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhou, China
| |
Collapse
|
2278
|
Swertfeger DK, Li H, Rebholz S, Zhu X, Shah AS, Davidson WS, Lu LJ. Mapping Atheroprotective Functions and Related Proteins/Lipoproteins in Size Fractionated Human Plasma. Mol Cell Proteomics 2017; 16:680-693. [PMID: 28223350 DOI: 10.1074/mcp.m116.066290] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/13/2017] [Indexed: 11/06/2022] Open
Abstract
HDL has been shown to possess a variety of cardio-protective functions, including removal of excess cholesterol from the periphery, and inhibition of lipoprotein oxidation. It has been proposed that various HDL subparticles exist, each with distinct protein and lipid compositions, which may be responsible for HDL's many functions. We hypothesized that HDL functions will co-migrate with the operational lipoprotein subspecies when separated by gel filtration chromatography. Plasma from 10 healthy male donors was fractionated and the protein composition of the phospholipid containing fractions was analyzed by mass spectrometry (MS). Each fraction was evaluated for its proteomic content as well as its ability to promote cholesterol efflux and protect low density lipoprotein (LDL) from free radical oxidation. For each function, several peaks of activity were identified across the plasma size gradient. Neither cholesterol efflux or LDL antioxidation activity correlated strongly with any single protein across the fractions. However, we identified multiple proteins that had strong correlations (r values >0.7, p < 0.01) with individual peaks of activity. These proteins fell into diverse functional categories, including those traditionally associated with lipid metabolism, as well as alternative complement cascade, innate immunity and clotting cascades and immunoglobulins. Additionally, the phospholipid and cholesterol concentration of the fractions correlated strongly with cholesterol efflux (r = 0.95 and 0.82 respectively), whereas the total protein content of the fractions correlated best with antioxidant activity across all fractions (r = 0.746). Furthermore, two previously postulated subspecies (apoA-I, apoA-II and apoC-1; as well as apoA-I, apoC-I and apoJ) were found to have strong correlations with both cholesterol efflux and antioxidation activity. Up till now, very little has been known about how lipoprotein composition mediates functions like cholesterol efflux and antioxidation.
Collapse
Affiliation(s)
- Debi K Swertfeger
- §Division of Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, Ohio 45229-3039
| | - Hailong Li
- §Division of Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, Ohio 45229-3039
| | - Sandra Rebholz
- §Division of Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, Ohio 45229-3039.,¶Center for Lipid and Arteriosclerosis Science, Department of Pathology and Laboratory Medicine, University of Cincinnati, 2120 East Galbraith Road, Cincinnati, Ohio 45237-0507
| | - Xiaoting Zhu
- §Division of Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, Ohio 45229-3039
| | - Amy S Shah
- ‖Division of Endocrinology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, Ohio 45229-3039
| | - W Sean Davidson
- ¶Center for Lipid and Arteriosclerosis Science, Department of Pathology and Laboratory Medicine, University of Cincinnati, 2120 East Galbraith Road, Cincinnati, Ohio 45237-0507
| | - Long J Lu
- From the ‡School of Information Management, Wuhan University, Wuhan 430072, China; .,§Division of Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, Ohio 45229-3039
| |
Collapse
|
2279
|
Benoit-Gelber I, Gruntjes T, Vinck A, van Veluw JG, Wösten HAB, Boeren S, Vervoort JJM, de Vries RP. Mixed colonies of Aspergillus niger and Aspergillus oryzae cooperatively degrading wheat bran. Fungal Genet Biol 2017; 102:31-37. [PMID: 28232095 DOI: 10.1016/j.fgb.2017.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 11/15/2022]
Abstract
In both natural and man-made environments, microorganisms live in mixed populations, while in laboratory conditions monocultures are mainly used. Microbial interactions are often described as antagonistic, but can also be neutral or cooperative, and are generally associated with a metabolic change of each partner and cause a change in the pattern of produced bioactive molecules. A. niger and A. oryzae are two filamentous fungi widely used in industry to produce various enzymes (e.g. pectinases, amylases) and metabolites (e.g. citric acid). The co-cultivation of these two fungi in wheat bran showed an equal distribution of the two strains forming mixed colonies with a broad range of carbohydrate active enzymes produced. This stable mixed microbial system seems suitable for subsequent commercial processes such as enzyme production. XlnR knock-out strains for both aspergilli were used to study the influence of plant cell wall degrading enzyme production on the fitness of the mixed culture. Microscopic observation correlated with quantitative PCR and proteomic data suggest that the XlnR Knock-out strain benefit from the release of sugars by the wild type strain to support its growth.
Collapse
Affiliation(s)
- I Benoit-Gelber
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; Microbiology, Utrecht University, Padualaan 8, 3584 Utrecht, The Netherlands.
| | - T Gruntjes
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - A Vinck
- Microbiology, Utrecht University, Padualaan 8, 3584 Utrecht, The Netherlands
| | - J G van Veluw
- Microbiology, Utrecht University, Padualaan 8, 3584 Utrecht, The Netherlands
| | - H A B Wösten
- Microbiology, Utrecht University, Padualaan 8, 3584 Utrecht, The Netherlands
| | - S Boeren
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | - J J M Vervoort
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | - R P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; Microbiology, Utrecht University, Padualaan 8, 3584 Utrecht, The Netherlands
| |
Collapse
|
2280
|
Proteomic Analysis of Mitochondria-Enriched Fraction Isolated from the Frontal Cortex and Hippocampus of Apolipoprotein E Knockout Mice Treated with Alda-1, an Activator of Mitochondrial Aldehyde Dehydrogenase (ALDH2). Int J Mol Sci 2017; 18:ijms18020435. [PMID: 28218653 PMCID: PMC5343969 DOI: 10.3390/ijms18020435] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/25/2017] [Accepted: 01/31/2017] [Indexed: 02/06/2023] Open
Abstract
The role of different genotypes of apolipoprotein E (apoE) in the etiology of Alzheimer’s disease is widely recognized. It has been shown that altered functioning of apoE may promote 4-hydroxynonenal modification of mitochondrial proteins, which may result in mitochondrial dysfunction, aggravation of oxidative stress, and neurodegeneration. Mitochondrial aldehyde dehydrogenase (ALDH2) is an enzyme considered to perform protective function in mitochondria by the detoxification of the end products of lipid peroxidation, such as 4-hydroxynonenal and other reactive aldehydes. The goal of our study was to apply a differential proteomics approach in concert with molecular and morphological techniques to elucidate the changes in the frontal cortex and hippocampus of apolipoprotein E knockout (apoE−/−) mice upon treatment with Alda-1—a small molecular weight activator of ALDH2. Despite the lack of significant morphological changes in the brain of apoE−/− mice as compared to age-matched wild type animals, the proteomic and molecular approach revealed many changes in the expression of genes and proteins, indicating the impairment of energy metabolism, neuroplasticity, and neurogenesis in brains of apoE−/− mice. Importantly, prolonged treatment of apoE−/− mice with Alda-1 led to the beneficial changes in the expression of genes and proteins related to neuroplasticity and mitochondrial function. The pattern of alterations implies mitoprotective action of Alda-1, however, the accurate functional consequences of the revealed changes require further research.
Collapse
|
2281
|
Sahr T, Rusniok C, Impens F, Oliva G, Sismeiro O, Coppée JY, Buchrieser C. The Legionella pneumophila genome evolved to accommodate multiple regulatory mechanisms controlled by the CsrA-system. PLoS Genet 2017; 13:e1006629. [PMID: 28212376 PMCID: PMC5338858 DOI: 10.1371/journal.pgen.1006629] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 03/06/2017] [Accepted: 02/09/2017] [Indexed: 01/09/2023] Open
Abstract
The carbon storage regulator protein CsrA regulates cellular processes post-transcriptionally by binding to target-RNAs altering translation efficiency and/or their stability. Here we identified and analyzed the direct targets of CsrA in the human pathogen Legionella pneumophila. Genome wide transcriptome, proteome and RNA co-immunoprecipitation followed by deep sequencing of a wild type and a csrA mutant strain identified 479 RNAs with potential CsrA interaction sites located in the untranslated and/or coding regions of mRNAs or of known non-coding sRNAs. Further analyses revealed that CsrA exhibits a dual regulatory role in virulence as it affects the expression of the regulators FleQ, LqsR, LetE and RpoS but it also directly regulates the timely expression of over 40 Dot/Icm substrates. CsrA controls its own expression and the stringent response through a regulatory feedback loop as evidenced by its binding to RelA-mRNA and links it to quorum sensing and motility. CsrA is a central player in the carbon, amino acid, fatty acid metabolism and energy transfer and directly affects the biosynthesis of cofactors, vitamins and secondary metabolites. We describe the first L. pneumophila riboswitch, a thiamine pyrophosphate riboswitch whose regulatory impact is fine-tuned by CsrA, and identified a unique regulatory mode of CsrA, the active stabilization of RNA anti-terminator conformations inside a coding sequence preventing Rho-dependent termination of the gap operon through transcriptional polarity effects. This allows L. pneumophila to regulate the pentose phosphate pathway and the glycolysis combined or individually although they share genes in a single operon. Thus the L. pneumophila genome has evolved to acclimate at least five different modes of regulation by CsrA giving it a truly unique position in its life cycle. The RNA binding protein CsrA is the master regulator of the bi-phasic life cycle of Legionella pneumophila governing virulence expression in this intracellular pathogen. Here, we have used deep sequencing of RNA enriched by co-immunoprecipitation with epitope-tagged CsrA to identify CsrA-associated transcripts at the genome level. We found 479 mRNAs or non-coding RNAs to be targets of CsrA. Among those major regulators including FleQ, the regulator of flagella expression, LqsR, the regulator of quorum sensing and RpoS implicated in stress response were identified. The expression of over 40 type IV secreted effector proteins important for intracellular survival and virulence are under the control of CsrA. Combined with transcriptomics, whole shotgun proteomics of a wild type and a CsrA mutant strain and functional analyses of several CsrA-targeted RNAs we identified the first riboswitch in L. pneumophila, a thiamine pyrophosphate riboswitch, and discovered a new mode of regulation by CsrA that allows L. pneumophila to regulate the pentose phosphate pathway and the glycolysis combined or individually although they share genes in a single operon. Our results further underline the indispensable role of CsrA in the life cycle of L. pneumophila and provide new insights into its regulatory roles and mechanisms.
Collapse
Affiliation(s)
- Tobias Sahr
- Institut Pasteur, Biologie des Bactéries Intracellulaires, Paris France
- CNRS UMR 3525, Paris, France
| | - Christophe Rusniok
- Institut Pasteur, Biologie des Bactéries Intracellulaires, Paris France
- CNRS UMR 3525, Paris, France
| | - Francis Impens
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Inserm U604, INRA Unité sous-contrat, Paris, France
- VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium
| | - Giulia Oliva
- Institut Pasteur, Biologie des Bactéries Intracellulaires, Paris France
- CNRS UMR 3525, Paris, France
| | - Odile Sismeiro
- Institut Pasteur, Transcriptome and EpiGenome, BioMics, Center for Innovation and Technological Research, Paris, France
| | - Jean-Yves Coppée
- Institut Pasteur, Transcriptome and EpiGenome, BioMics, Center for Innovation and Technological Research, Paris, France
| | - Carmen Buchrieser
- Institut Pasteur, Biologie des Bactéries Intracellulaires, Paris France
- CNRS UMR 3525, Paris, France
- * E-mail:
| |
Collapse
|
2282
|
The use of urinary proteomics in the assessment of suitability of mouse models for ageing. PLoS One 2017; 12:e0166875. [PMID: 28199320 PMCID: PMC5310860 DOI: 10.1371/journal.pone.0166875] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 11/04/2016] [Indexed: 12/27/2022] Open
Abstract
Ageing is a complex process characterised by a systemic and progressive deterioration of biological functions. As ageing is associated with an increased prevalence of age-related chronic disorders, understanding its underlying molecular mechanisms can pave the way for therapeutic interventions and managing complications. Animal models such as mice are commonly used in ageing research as they have a shorter lifespan in comparison to humans and are also genetically close to humans. To assess the translatability of mouse ageing to human ageing, the urinary proteome in 89 wild-type (C57BL/6) mice aged between 8–96 weeks was investigated using capillary electrophoresis coupled to mass spectrometry (CE-MS). Using age as a continuous variable, 295 peptides significantly correlated with age in mice were identified. To investigate the relevance of using mouse models in human ageing studies, a comparison was performed with a previous correlation analysis using 1227 healthy subjects. In mice and humans, a decrease in urinary excretion of fibrillar collagens and an increase of uromodulin fragments was observed with advanced age. Of the 295 peptides correlating with age, 49 had a strong homology to the respective human age-related peptides. These ortholog peptides including several collagen (N = 44) and uromodulin (N = 5) fragments were used to generate an ageing classifier that was able to discriminate the age among both wild-type mice and healthy subjects. Additionally, the ageing classifier depicted that telomerase knock-out mice were older than their chronological age. Hence, with a focus on ortholog urinary peptides mouse ageing can be translated to human ageing.
Collapse
|
2283
|
Reim D, Distler U, Halbedl S, Verpelli C, Sala C, Bockmann J, Tenzer S, Boeckers TM, Schmeisser MJ. Proteomic Analysis of Post-synaptic Density Fractions from Shank3 Mutant Mice Reveals Brain Region Specific Changes Relevant to Autism Spectrum Disorder. Front Mol Neurosci 2017; 10:26. [PMID: 28261056 PMCID: PMC5306440 DOI: 10.3389/fnmol.2017.00026] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/23/2017] [Indexed: 12/03/2022] Open
Abstract
Disruption of the human SHANK3 gene can cause several neuropsychiatric disease entities including Phelan-McDermid syndrome, autism spectrum disorder (ASD), and intellectual disability. Although, a wide array of neurobiological studies strongly supports a major role for SHANK3 in organizing the post-synaptic protein scaffold, the molecular processes at synapses of individuals harboring SHANK3 mutations are still far from being understood. In this study, we biochemically isolated the post-synaptic density (PSD) fraction from striatum and hippocampus of adult Shank3Δ11-/- mutant mice and performed ion-mobility enhanced data-independent label-free LC-MS/MS to obtain the corresponding PSD proteomes (Data are available via ProteomeXchange with identifier PXD005192). This unbiased approach to identify molecular disturbances at Shank3 mutant PSDs revealed hitherto unknown brain region specific alterations including a striatal decrease of several molecules encoded by ASD susceptibility genes such as the serine/threonine kinase Cdkl5 and the potassium channel KCa1.1. Being the first comprehensive analysis of brain region specific PSD proteomes from a Shank3 mutant line, our study provides crucial information on molecular alterations that could foster translational treatment studies for SHANK3 mutation-associated synaptopathies and possibly also ASD in general.
Collapse
Affiliation(s)
- Dominik Reim
- Institute for Anatomy and Cell Biology, Ulm UniversityUlm, Germany
- International Graduate School in Molecular Medicine, Ulm UniversityUlm, Germany
| | - Ute Distler
- Institute for Immunology, University Medical Center of the Johannes-Gutenberg University MainzMainz, Germany
- Focus Program Translational Neurosciences, University Medical Center of the Johannes-Gutenberg University MainzMainz, Germany
| | - Sonja Halbedl
- Institute for Anatomy and Cell Biology, Ulm UniversityUlm, Germany
- International Graduate School in Molecular Medicine, Ulm UniversityUlm, Germany
| | - Chiara Verpelli
- CNR Neuroscience InstituteMilan, Italy
- BIOMETRA, University of MilanMilan, Italy
| | - Carlo Sala
- CNR Neuroscience InstituteMilan, Italy
- BIOMETRA, University of MilanMilan, Italy
| | - Juergen Bockmann
- Institute for Anatomy and Cell Biology, Ulm UniversityUlm, Germany
| | - Stefan Tenzer
- Institute for Immunology, University Medical Center of the Johannes-Gutenberg University MainzMainz, Germany
| | | | - Michael J. Schmeisser
- Institute for Anatomy and Cell Biology, Ulm UniversityUlm, Germany
- Division of Neuroanatomy, Institute of Anatomy, Otto-von-Guericke UniversityMagdeburg, Germany
- Leibniz Institute for NeurobiologyMagdeburg, Germany
| |
Collapse
|
2284
|
Fielding CA, Weekes MP, Nobre LV, Ruckova E, Wilkie GS, Paulo JA, Chang C, Suárez NM, Davies JA, Antrobus R, Stanton RJ, Aicheler RJ, Nichols H, Vojtesek B, Trowsdale J, Davison AJ, Gygi SP, Tomasec P, Lehner PJ, Wilkinson GWG. Control of immune ligands by members of a cytomegalovirus gene expansion suppresses natural killer cell activation. eLife 2017; 6:e22206. [PMID: 28186488 PMCID: PMC5367895 DOI: 10.7554/elife.22206] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 02/09/2017] [Indexed: 01/31/2023] Open
Abstract
The human cytomegalovirus (HCMV) US12 family consists of ten sequentially arranged genes (US12-21) with poorly characterized function. We now identify novel natural killer (NK) cell evasion functions for four members: US12, US14, US18 and US20. Using a systematic multiplexed proteomics approach to quantify ~1300 cell surface and ~7200 whole cell proteins, we demonstrate that the US12 family selectively targets plasma membrane proteins and plays key roles in regulating NK ligands, adhesion molecules and cytokine receptors. US18 and US20 work in concert to suppress cell surface expression of the critical NKp30 ligand B7-H6 thus inhibiting NK cell activation. The US12 family is therefore identified as a major new hub of immune regulation.
Collapse
Affiliation(s)
- Ceri A Fielding
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Michael P Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Luis V Nobre
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Eva Ruckova
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Gavin S Wilkie
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Chiwen Chang
- Immunology Division, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Nicolás M Suárez
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - James A Davies
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Richard J Stanton
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Rebecca J Aicheler
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Hester Nichols
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Borek Vojtesek
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - John Trowsdale
- Immunology Division, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Andrew J Davison
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Peter Tomasec
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Paul J Lehner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Gavin W G Wilkinson
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
2285
|
Barnea E, Melamed Kadosh D, Haimovich Y, Satumtira N, Dorris ML, Nguyen MT, Hammer RE, Tran TM, Colbert RA, Taurog JD, Admon A. The Human Leukocyte Antigen (HLA)-B27 Peptidome in Vivo, in Spondyloarthritis-susceptible HLA-B27 Transgenic Rats and the Effect of Erap1 Deletion. Mol Cell Proteomics 2017; 16:642-662. [PMID: 28188227 DOI: 10.1074/mcp.m116.066241] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/05/2017] [Indexed: 01/20/2023] Open
Abstract
HLA-B27 is a class I major histocompatibility (MHC-I) allele that confers susceptibility to the rheumatic disease ankylosing spondylitis (AS) by an unknown mechanism. ERAP1 is an aminopeptidase that trims peptides in the endoplasmic reticulum for binding to MHC-I molecules. ERAP1 shows genetic epistasis with HLA-B27 in conferring susceptibility to AS. Male HLA-B27 transgenic rats develop arthritis and serve as an animal model of AS, whereas female B27 transgenic rats remain healthy. We used large scale quantitative mass spectrometry to identify over 15,000 unique HLA-B27 peptide ligands, isolated after immunoaffinity purification of the B27 molecules from the spleens of HLA-B27 transgenic rats. Heterozygous deletion of Erap1, which reduced the Erap1 level to less than half, had no qualitative or quantitative effects on the B27 peptidome. Homozygous deletion of Erap1 affected approximately one-third of the B27 peptidome but left most of the B27 peptidome unchanged, suggesting the possibility that some of the HLA-B27 immunopeptidome is not processed in the presence of Erap1. Deletion of Erap1 was permissive for the AS-like phenotype, increased mean peptide length and increased the frequency of C-terminal hydrophobic residues and of N-terminal Ala, Ser, or Lys. The presence of Erap1 increased the frequency of C-terminal Lys and Arg, of Glu and Asp at intermediate residues, and of N-terminal Gly. Several peptides of potential interest in AS pathogenesis, previously identified in human cell lines, were isolated. However, rats susceptible to arthritis had B27 peptidomes similar to those of non-susceptible rats, and no peptides were found to be uniquely associated with arthritis. Whether specific B27-bound peptides are required for AS pathogenesis remains to be determined. Data are available via ProteomeXchange with identifier PXD005502.
Collapse
Affiliation(s)
- Eilon Barnea
- From the ‡Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Dganit Melamed Kadosh
- From the ‡Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Yael Haimovich
- From the ‡Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Nimman Satumtira
- §Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-8884
| | - Martha L Dorris
- §Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-8884
| | - Mylinh T Nguyen
- ¶Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-8816
| | - Robert E Hammer
- ¶Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-8816
| | - Tri M Tran
- ‖NIAMS, National Institutes of Health, Bethesda, Maryland 20892-1560
| | - Robert A Colbert
- ‖NIAMS, National Institutes of Health, Bethesda, Maryland 20892-1560
| | - Joel D Taurog
- §Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-8884;
| | - Arie Admon
- From the ‡Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel;
| |
Collapse
|
2286
|
Worthington J, Spain G, Timms JF. Effects of ErbB2 Overexpression on the Proteome and ErbB Ligand-specific Phosphosignaling in Mammary Luminal Epithelial Cells. Mol Cell Proteomics 2017; 16:608-621. [PMID: 28174229 PMCID: PMC5383782 DOI: 10.1074/mcp.m116.061267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 01/30/2017] [Indexed: 12/12/2022] Open
Abstract
Most breast cancers arise from luminal epithelial cells, and 25–30% of these tumors overexpress the ErbB2/HER2 receptor that correlates with disease progression and poor prognosis. The mechanisms of ErbB2 signaling and the effects of its overexpression are not fully understood. Herein, stable isotope labeling by amino acids in cell culture (SILAC), expression profiling, and phosphopeptide enrichment of a relevant, non-transformed, and immortalized human mammary luminal epithelial cell model were used to profile ErbB2-dependent differences in protein expression and phosphorylation events triggered via EGF receptor (EGF treatment) and ErbB3 (HRG1β treatment) in the context of ErbB2 overexpression. Bioinformatics analysis was used to infer changes in cellular processes and signaling events. We demonstrate the complexity of the responses to oncogene expression and growth factor signaling, and we identify protein changes relevant to ErbB2-dependent altered cellular phenotype, in particular cell cycle progression and hyper-proliferation, reduced adhesion, and enhanced motility. Moreover, we define a novel mechanism by which ErbB signaling suppresses basal interferon signaling that would promote the survival and proliferation of mammary luminal epithelial cells. Numerous novel sites of growth factor-regulated phosphorylation were identified that were enhanced by ErbB2 overexpression, and we putatively link these to altered cell behavior and also highlight the importance of performing parallel protein expression profiling alongside phosphoproteomic analysis.
Collapse
Affiliation(s)
- Jenny Worthington
- From the ‡Women's Cancer, Institute for Women's Health, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Georgia Spain
- From the ‡Women's Cancer, Institute for Women's Health, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - John F Timms
- From the ‡Women's Cancer, Institute for Women's Health, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
2287
|
Schmölders J, Manske C, Otto A, Hoffmann C, Steiner B, Welin A, Becher D, Hilbi H. Comparative Proteomics of Purified Pathogen Vacuoles Correlates Intracellular Replication of Legionella pneumophila with the Small GTPase Ras-related protein 1 (Rap1). Mol Cell Proteomics 2017; 16:622-641. [PMID: 28183814 DOI: 10.1074/mcp.m116.063453] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 01/24/2017] [Indexed: 12/19/2022] Open
Abstract
Legionella pneumophila is an opportunistic bacterial pathogen that causes a severe lung infection termed "Legionnaires' disease." The pathogen replicates in environmental protozoa as well as in macrophages within a unique membrane-bound compartment, the Legionella-containing-vacuole (LCV). LCV formation requires the bacterial Icm/Dot type IV secretion system, which translocates ca. 300 "effector proteins" into host cells, where they target distinct host factors. The L. pneumophila "pentuple" mutant (Δpentuple) lacks 5 gene clusters (31% of the effector proteins) and replicates in macrophages but not in Dictyostelium discoideum amoeba. To elucidate the host factors defining a replication-permissive compartment, we compare here the proteomes of intact LCVs isolated from D. discoideum or macrophages infected with Δpentuple or the parental strain Lp02. This analysis revealed that the majority of host proteins are shared in D. discoideum or macrophage LCVs containing the mutant or the parental strain, respectively, whereas some proteins preferentially localize to distinct LCVs. The small GTPase Rap1 was identified on D. discoideum LCVs containing strain Lp02 but not the Δpentuple mutant and on macrophage LCVs containing either strain. The localization pattern of active Rap1 on D. discoideum or macrophage LCVs was confirmed by fluorescence microscopy and imaging flow cytometry, and the depletion of Rap1 by RNA interference significantly reduced the intracellular growth of L. pneumophila Thus, comparative proteomics identified Rap1 as a novel LCV host component implicated in intracellular replication of L. pneumophila.
Collapse
Affiliation(s)
- Johanna Schmölders
- From the ‡Max von Pettenkofer Institute, Ludwig-Maximilians University, Munich, Germany
| | - Christian Manske
- From the ‡Max von Pettenkofer Institute, Ludwig-Maximilians University, Munich, Germany
| | - Andreas Otto
- §Institute for Microbiology, Ernst Moritz Arndt University, Greifswald, Germany
| | - Christine Hoffmann
- From the ‡Max von Pettenkofer Institute, Ludwig-Maximilians University, Munich, Germany
| | - Bernhard Steiner
- ¶Institute of Medical Microbiology, University of Zürich, Switzerland
| | - Amanda Welin
- ¶Institute of Medical Microbiology, University of Zürich, Switzerland
| | - Dörte Becher
- §Institute for Microbiology, Ernst Moritz Arndt University, Greifswald, Germany;
| | - Hubert Hilbi
- From the ‡Max von Pettenkofer Institute, Ludwig-Maximilians University, Munich, Germany; .,¶Institute of Medical Microbiology, University of Zürich, Switzerland
| |
Collapse
|
2288
|
Zhang X, Smits AH, van Tilburg GBA, Jansen PWTC, Makowski MM, Ovaa H, Vermeulen M. An Interaction Landscape of Ubiquitin Signaling. Mol Cell 2017; 65:941-955.e8. [PMID: 28190767 DOI: 10.1016/j.molcel.2017.01.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 12/06/2016] [Accepted: 01/05/2017] [Indexed: 02/07/2023]
Abstract
Intracellular signaling via the covalent attachment of different ubiquitin linkages to protein substrates is fundamental to many cellular processes. Although linkage-selective ubiquitin interactors have been studied on a case-by-case basis, proteome-wide analyses have not been conducted yet. Here, we present ubiquitin interactor affinity enrichment-mass spectrometry (UbIA-MS), a quantitative interaction proteomics method that makes use of chemically synthesized diubiquitin to enrich and identify ubiquitin linkage interactors from crude cell lysates. UbIA-MS reveals linkage-selective diubiquitin interactions in multiple cell types. For example, we identify TAB2 and TAB3 as novel K6 diubiquitin interactors and characterize UCHL3 as a K27-linkage selective interactor that regulates K27 polyubiquitin chain formation in cells. Additionally, we show a class of monoubiquitin and K6 diubiquitin interactors whose binding is induced by DNA damage. We expect that our proteome-wide diubiquitin interaction landscape and established workflows will have broad applications in the ongoing efforts to decipher the complex language of ubiquitin signaling.
Collapse
Affiliation(s)
- Xiaofei Zhang
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen 6525, the Netherlands.
| | - Arne H Smits
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen 6525, the Netherlands
| | - Gabrielle B A van Tilburg
- Division of Cell Biology II, Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066CX, the Netherlands; Department of Chemical Immunology, Leiden University Medical Center, Albinusdreef 2, Leiden 2333ZA, the Netherlands
| | - Pascal W T C Jansen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen 6525, the Netherlands
| | - Matthew M Makowski
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen 6525, the Netherlands
| | - Huib Ovaa
- Division of Cell Biology II, Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066CX, the Netherlands; Department of Chemical Immunology, Leiden University Medical Center, Albinusdreef 2, Leiden 2333ZA, the Netherlands.
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen 6525, the Netherlands.
| |
Collapse
|
2289
|
Kappei D, Scheibe M, Paszkowski-Rogacz M, Bluhm A, Gossmann TI, Dietz S, Dejung M, Herlyn H, Buchholz F, Mann M, Butter F. Phylointeractomics reconstructs functional evolution of protein binding. Nat Commun 2017; 8:14334. [PMID: 28176777 PMCID: PMC5309834 DOI: 10.1038/ncomms14334] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 12/16/2016] [Indexed: 12/27/2022] Open
Abstract
Molecular phylogenomics investigates evolutionary relationships based on genomic data. However, despite genomic sequence conservation, changes in protein interactions can occur relatively rapidly and may cause strong functional diversification. To investigate such functional evolution, we here combine phylogenomics with interaction proteomics. We develop this concept by investigating the molecular evolution of the shelterin complex, which protects telomeres, across 16 vertebrate species from zebrafish to humans covering 450 million years of evolution. Our phylointeractomics screen discovers previously unknown telomere-associated proteins and reveals how homologous proteins undergo functional evolution. For instance, we show that TERF1 evolved as a telomere-binding protein in the common stem lineage of marsupial and placental mammals. Phylointeractomics is a versatile and scalable approach to investigate evolutionary changes in protein function and thus can provide experimental evidence for phylogenomic relationships.
Collapse
Affiliation(s)
- Dennis Kappei
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore.,Medical Systems Biology, UCC, University Hospital and Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstraße 74, Dresden D-01307, Germany
| | - Marion Scheibe
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, Mainz D-55128, Germany.,Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried D-82152, Germany
| | - Maciej Paszkowski-Rogacz
- Medical Systems Biology, UCC, University Hospital and Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstraße 74, Dresden D-01307, Germany
| | - Alina Bluhm
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, Mainz D-55128, Germany
| | - Toni Ingolf Gossmann
- Department of Animal &Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Sabrina Dietz
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, Mainz D-55128, Germany
| | - Mario Dejung
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, Mainz D-55128, Germany
| | - Holger Herlyn
- Institute of Anthropology, University of Mainz, Anselm-Franz-von-Bentzel-Weg 7, Mainz D-55099, Germany
| | - Frank Buchholz
- Medical Systems Biology, UCC, University Hospital and Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstraße 74, Dresden D-01307, Germany.,Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, Dresden D-01307, Germany.,German Cancer Research Center (DKFZ), Neuenheimer Feld 280, 69120 Heidelberg, Germany.,German Cancer Consortium (DKTK) partner site, Fetscherstr. 74, 01307 Dresden Germany.,National Center for Tumor Diseases (NCT), University Hospital Carl Gustav Carus, TU Dresden, Dresden D-01307, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried D-82152, Germany
| | - Falk Butter
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, Mainz D-55128, Germany
| |
Collapse
|
2290
|
Massafra V, Milona A, Vos HR, Burgering BMT, van Mil SWC. Quantitative liver proteomics identifies FGF19 targets that couple metabolism and proliferation. PLoS One 2017; 12:e0171185. [PMID: 28178326 PMCID: PMC5298232 DOI: 10.1371/journal.pone.0171185] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/18/2017] [Indexed: 12/14/2022] Open
Abstract
Fibroblast growth factor 19 (FGF19) is a gut-derived peptide hormone that is produced following activation of Farnesoid X Receptor (FXR). FGF19 is secreted and signals to the liver, where it contributes to the homeostasis of bile acid (BA), lipid and carbohydrate metabolism. FGF19 is a promising therapeutic target for the metabolic syndrome and cholestatic diseases, but enthusiasm for its use has been tempered by FGF19-mediated induction of proliferation and hepatocellular carcinoma. To inform future rational design of FGF19-variants, we have conducted temporal quantitative proteomic and gene expression analyses to identify FGF19-targets related to metabolism and proliferation. Mice were fasted for 16 hours, and injected with human FGF19 (1 mg/kg body weight) or vehicle. Liver protein extracts (containing “light” lysine) were mixed 1:1 with a spike-in protein extract from 13C6-lysine metabolically labelled mouse liver (containing “heavy” lysine) and analysed by LC-MS/MS. Our analyses provide a resource of FGF19 target proteins in the liver. 189 proteins were upregulated (≥ 1.5 folds) and 73 proteins were downregulated (≤ -1.5 folds) by FGF19. FGF19 treatment decreased the expression of proteins involved in fatty acid (FA) synthesis, i.e., Fabp5, Scd1, and Acsl3 and increased the expression of Acox1, involved in FA oxidation. As expected, FGF19 increased the expression of proteins known to drive proliferation (i.e., Tgfbi, Vcam1, Anxa2 and Hdlbp). Importantly, many of the FGF19 targets (i.e., Pdk4, Apoa4, Fas and Stat3) have a dual function in both metabolism and cell proliferation. Therefore, our findings challenge the development of FGF19-variants that fully uncouple metabolic benefit from mitogenic potential.
Collapse
Affiliation(s)
- Vittoria Massafra
- Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands
| | - Alexandra Milona
- Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands
| | - Harmjan R. Vos
- Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands
| | | | | |
Collapse
|
2291
|
Cantù C, Pagella P, Shajiei TD, Zimmerli D, Valenta T, Hausmann G, Basler K, Mitsiadis TA. A cytoplasmic role of Wnt/β-catenin transcriptional cofactors Bcl9, Bcl9l, and Pygopus in tooth enamel formation. Sci Signal 2017; 10:10/465/eaah4598. [PMID: 28174279 DOI: 10.1126/scisignal.aah4598] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Wnt-stimulated β-catenin transcriptional regulation is necessary for the development of most organs, including teeth. Bcl9 and Bcl9l are tissue-specific transcriptional cofactors that cooperate with β-catenin. In the nucleus, Bcl9 and Bcl9l simultaneously bind β-catenin and the transcriptional activator Pygo2 to promote the transcription of a subset of Wnt target genes. We showed that Bcl9 and Bcl9l function in the cytoplasm during tooth enamel formation in a manner that is independent of Wnt-stimulated β-catenin-dependent transcription. Bcl9, Bcl9l, and Pygo2 localized mainly to the cytoplasm of the epithelial-derived ameloblasts, the cells responsible for enamel production. In ameloblasts, Bcl9 interacted with proteins involved in enamel formation and proteins involved in exocytosis and vesicular trafficking. Conditional deletion of both Bcl9 and Bcl9l or both Pygo1 and Pygo2 in mice produced teeth with defective enamel that was bright white and deficient in iron, which is reminiscent of human tooth enamel pathologies. Overall, our data revealed that these proteins, originally defined through their function as β-catenin transcriptional cofactors, function in odontogenesis through a previously uncharacterized cytoplasmic mechanism, revealing that they have roles beyond that of transcriptional cofactors.
Collapse
Affiliation(s)
- Claudio Cantù
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Pierfrancesco Pagella
- Orofacial Development and Regeneration, Institute of Oral Biology, Center of Dental Medicine, University of Zurich, 8032 Zurich, Switzerland
| | - Tania D Shajiei
- Orofacial Development and Regeneration, Institute of Oral Biology, Center of Dental Medicine, University of Zurich, 8032 Zurich, Switzerland
| | - Dario Zimmerli
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Tomas Valenta
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - George Hausmann
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Konrad Basler
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland.
| | - Thimios A Mitsiadis
- Orofacial Development and Regeneration, Institute of Oral Biology, Center of Dental Medicine, University of Zurich, 8032 Zurich, Switzerland.
| |
Collapse
|
2292
|
Tanca A, Fraumene C, Manghina V, Palomba A, Abbondio M, Deligios M, Pagnozzi D, Addis MF, Uzzau S. Diversity and functions of the sheep faecal microbiota: a multi-omic characterization. Microb Biotechnol 2017; 10:541-554. [PMID: 28165194 PMCID: PMC5404191 DOI: 10.1111/1751-7915.12462] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/13/2016] [Accepted: 10/27/2016] [Indexed: 01/08/2023] Open
Abstract
Little is currently known on the microbial populations colonizing the sheep large intestine, despite their expected key role in host metabolism, physiology and immunity. This study reports the first characterization of the sheep faecal microbiota composition and functions, obtained through the application of a multi-omic strategy. An optimized protocol was first devised for DNA extraction and amplification from sheep stool samples. Then, 16S rDNA sequencing, shotgun metagenomics and shotgun metaproteomics were applied to unravel taxonomy, genetic potential and actively expressed functions and pathways respectively. Under a taxonomic perspective, the sheep faecal microbiota appeared globally comparable to that of other ruminants, with Firmicutes being the main phylum. In functional terms, we detected 2097 gene and 441 protein families, finding that the sheep faecal microbiota was primarily involved in catabolism. We investigated carbohydrate transport and degradation activities and identified phylum-specific pathways, such as methanogenesis for Euryarchaeota and acetogenesis for Firmicutes. Furthermore, our approach enabled the identification of proteins expressed by the eukaryotic component of the microbiota. Taken together, these findings unveil structure and role of the distal gut microbiota in sheep, and open the way to further studies aimed at elucidating its connections with management and dietary variables in sheep farming.
Collapse
Affiliation(s)
- Alessandro Tanca
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Tramariglio, Alghero, Italy
| | - Cristina Fraumene
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Tramariglio, Alghero, Italy
| | - Valeria Manghina
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Tramariglio, Alghero, Italy.,Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Antonio Palomba
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Tramariglio, Alghero, Italy.,Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Marcello Abbondio
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Massimo Deligios
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Daniela Pagnozzi
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Tramariglio, Alghero, Italy
| | - Maria Filippa Addis
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Tramariglio, Alghero, Italy
| | - Sergio Uzzau
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Tramariglio, Alghero, Italy.,Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
2293
|
Cerna H, Černý M, Habánová H, Šafářová D, Abushamsiya K, Navrátil M, Brzobohatý B. Proteomics offers insight to the mechanism behind Pisum sativum L. response to pea seed-borne mosaic virus (PSbMV). J Proteomics 2017; 153:78-88. [PMID: 27235724 DOI: 10.1016/j.jprot.2016.05.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/22/2016] [Accepted: 05/19/2016] [Indexed: 12/12/2022]
Abstract
Pea seed-borne mosaic virus (PSbMV) significantly reduces yields in a broad spectra of legumes. The eukaryotic translation initiation factor has been shown to confer resistance to this pathogen, thus implying that translation and proteome dynamics play a role in resistance. This study presents the results of a proteome-wide analysis of Pisum sativum L. response to PSbMV infection. LC-MS profiling of two contrasting pea cultivars, resistant (B99) and susceptible (Raman) to PSbMV infection, detected >2300 proteins, 116 of which responded to PSbMV ten and/or twenty days post-inoculation. These differentially abundant proteins are involved in number of processes that have previously been reported in the plant-pathogen response, including protein and amino acid metabolism, stress signaling, redox homeostasis, carbohydrate metabolism, and lipid metabolism. We complemented our proteome-wide analysis work with targeted analyses of free amino acids and selected small molecules, fatty acid profiling, and enzyme activity assays. Data from these additional experiments support our findings and validate the biological relevance of the observed proteome changes. We found surprising similarities in the resistant and susceptible cultivars, which implies that a seemingly unaffected plant, with no detectable levels of PSbMV, actively suppresses viral replication. BIOLOGICAL SIGNIFICANCE Plant resistance to PSbMV is connected to translation initiation factors, yet the processes involved are still poorly understood at the proteome level. To the best of our knowledge, this is the first survey of the global proteomic response to PSbMV in plants. The combination of label-free LC-MS profiling and two contrasting cultivars (resistant and susceptible) provided highly sensitive snapshots of protein abundance in response to PSbMV infection. PSbMV is a member of the largest family of plant viruses and our results are in accordance with previously characterized potyvirus-responsive proteomes. Hence, the results of this study can further extend our knowledge about these pathogens. We also show that even though no viral replication is detected in the PSbMV-resistant cultivar B99, it is still significantly affected by PSbMV inoculation.
Collapse
Affiliation(s)
- Hana Cerna
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | - Martin Černý
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | - Hana Habánová
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | - Dana Šafářová
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University in Olomouc 27, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic.
| | - Kifah Abushamsiya
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | - Milan Navrátil
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University in Olomouc 27, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic.
| | - Břetislav Brzobohatý
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| |
Collapse
|
2294
|
On-column trypsinization allows for re-use of matrix in modified multiplexed inhibitor beads assay. Anal Biochem 2017; 523:10-16. [PMID: 28167071 DOI: 10.1016/j.ab.2017.01.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/18/2017] [Accepted: 01/31/2017] [Indexed: 11/21/2022]
Abstract
The Multiplexed Inhibitor Bead (MIB) assay is a previously published quantitative proteomic MS-based approach to study cellular kinomes. A rather extensive procedure, need for multiple custom-made kinase inhibitors and an inability to re-use the MIB-columns, has limited its applicability. Here we present a modified MIB assay in which elution of bound proteins is facilitated by on-column trypsinization. We tested the modified MIB assay by analyzing extract from three human cancer cell lines treated with the cytotoxic drugs cisplatin or docetaxel. Using only three immobilized kinase inhibitors, we were able to detect about 6000 proteins, including ∼40% of the kinome, as well as other signaling, metabolic and structural proteins. The method is reproducible and the MIB-columns are re-usable without loss of performance. This makes the MIB assay a simple, affordable, and rapid assay for monitoring changes in cellular signaling.
Collapse
|
2295
|
Kovács J, Poór P, Kaschani F, Chandrasekar B, Hong TN, Misas-Villamil JC, Xin BT, Kaiser M, Overkleeft HS, Tari I, van der Hoorn RAL. Proteasome Activity Profiling Uncovers Alteration of Catalytic β2 and β5 Subunits of the Stress-Induced Proteasome during Salinity Stress in Tomato Roots. FRONTIERS IN PLANT SCIENCE 2017; 8:107. [PMID: 28217134 PMCID: PMC5289967 DOI: 10.3389/fpls.2017.00107] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 01/18/2017] [Indexed: 05/20/2023]
Abstract
The stress proteasome in the animal kingdom facilitates faster conversion of oxidized proteins during stress conditions by incorporating different catalytic β subunits. Plants deal with similar kind of stresses and also carry multiple paralogous genes encoding for each of the three catalytic β subunits. Here, we investigated the existence of stress proteasomes upon abiotic stress (salt stress) in tomato roots. In contrast to Arabidopsis thaliana, tomato has a simplified proteasome gene set with single genes encoding each β subunit except for two genes encoding β2. Using proteasome activity profiling on tomato roots during salt stress, we discovered a transient modification of the catalytic subunits of the proteasome coinciding with a loss of cell viability. This stress-induced active proteasome disappears at later time points and coincides with the need to degrade oxidized proteins during salt stress. Subunit-selective proteasome probes and MS analysis of fluorescent 2D gels demonstrated that the detected stress-induced proteasome is not caused by an altered composition of subunits in active proteasomes, but involves an increased molecular weight of both labeled β2 and β5 subunits, and an additional acidic pI shift for labeled β5, whilst labeled β1 remains mostly unchanged. Treatment with phosphatase or glycosidases did not affect the migration pattern. This stress-induced proteasome may play an important role in PCD during abiotic stress.
Collapse
Affiliation(s)
- Judit Kovács
- Department of Plant Biology, University of SzegedSzeged, Hungary
| | - Péter Poór
- Department of Plant Biology, University of SzegedSzeged, Hungary
| | - Farnusch Kaschani
- Chemical Biology, Fakultät für Biologie, Zentrum für Medizinische Biotechnologie, Universität Duisburg-EssenEssen, Germany
| | - Balakumaran Chandrasekar
- Plant Chemetics Laboratory, Department of Plant Sciences, University of OxfordOxford, UK
- Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Tram N. Hong
- Plant Chemetics Laboratory, Department of Plant Sciences, University of OxfordOxford, UK
- Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Johana C. Misas-Villamil
- Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding ResearchCologne, Germany
- Botanical Institute and Cluster of Excellence on Plant Sciences, University of CologneCologne, Germany
| | - Bo T. Xin
- Leiden Institute of Chemistry, Leiden UniversityLeiden, Netherlands
| | - Markus Kaiser
- Chemical Biology, Fakultät für Biologie, Zentrum für Medizinische Biotechnologie, Universität Duisburg-EssenEssen, Germany
| | | | - Irma Tari
- Department of Plant Biology, University of SzegedSzeged, Hungary
| | - Renier A. L. van der Hoorn
- Plant Chemetics Laboratory, Department of Plant Sciences, University of OxfordOxford, UK
- Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| |
Collapse
|
2296
|
Ramsey JS, Chavez JD, Johnson R, Hosseinzadeh S, Mahoney JE, Mohr JP, Robison F, Zhong X, Hall DG, MacCoss M, Bruce J, Cilia M. Protein interaction networks at the host-microbe interface in Diaphorina citri, the insect vector of the citrus greening pathogen. ROYAL SOCIETY OPEN SCIENCE 2017; 4:160545. [PMID: 28386418 PMCID: PMC5367280 DOI: 10.1098/rsos.160545] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 01/09/2017] [Indexed: 05/14/2023]
Abstract
The Asian citrus psyllid (Diaphorina citri) is the insect vector responsible for the worldwide spread of 'Candidatus Liberibacter asiaticus' (CLas), the bacterial pathogen associated with citrus greening disease. Developmental changes in the insect vector impact pathogen transmission, such that D. citri transmission of CLas is more efficient when bacteria are acquired by nymphs when compared with adults. We hypothesize that expression changes in the D. citri immune system and commensal microbiota occur during development and regulate vector competency. In support of this hypothesis, more proteins, with greater fold changes, were differentially expressed in response to CLas in adults when compared with nymphs, including insect proteins involved in bacterial adhesion and immunity. Compared with nymphs, adult insects had a higher titre of CLas and the bacterial endosymbionts Wolbachia, Profftella and Carsonella. All Wolbachia and Profftella proteins differentially expressed between nymphs and adults are upregulated in adults, while most differentially expressed Carsonella proteins are upregulated in nymphs. Discovery of protein interaction networks has broad applicability to the study of host-microbe relationships. Using protein interaction reporter technology, a D. citri haemocyanin protein highly upregulated in response to CLas was found to physically interact with the CLas coenzyme A (CoA) biosynthesis enzyme phosphopantothenoylcysteine synthetase/decarboxylase. CLas pantothenate kinase, which catalyses the rate-limiting step of CoA biosynthesis, was found to interact with a D. citri myosin protein. Two Carsonella enzymes involved in histidine and tryptophan biosynthesis were found to physically interact with D. citri proteins. These co-evolved protein interaction networks at the host-microbe interface are highly specific targets for controlling the insect vector responsible for the spread of citrus greening.
Collapse
Affiliation(s)
- J. S. Ramsey
- Robert W. Holley Center for Agriculture and Health, Emerging Pests and Pathogens Research Unit, USDA Agricultural Research Service, Ithaca, NY, USA
- Boyce Thompson Institute for Plant Research, Ithaca, NY, USA
- Author for correspondence: J. S. Ramsey e-mail:
| | - J. D. Chavez
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - R. Johnson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - S. Hosseinzadeh
- Boyce Thompson Institute for Plant Research, Ithaca, NY, USA
- Plant Pathology Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - J. E. Mahoney
- Boyce Thompson Institute for Plant Research, Ithaca, NY, USA
| | - J. P. Mohr
- Boyce Thompson Institute for Plant Research, Ithaca, NY, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - F. Robison
- Boyce Thompson Institute for Plant Research, Ithaca, NY, USA
| | - X. Zhong
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - D. G. Hall
- US Horticultural Research Laboratory, Subtropical Insects and Horticulture Research Unit, USDA Agricultural Research Service, Ft. Pierce, FL, USA
| | - M. MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - J. Bruce
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - M. Cilia
- Robert W. Holley Center for Agriculture and Health, Emerging Pests and Pathogens Research Unit, USDA Agricultural Research Service, Ithaca, NY, USA
- Boyce Thompson Institute for Plant Research, Ithaca, NY, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| |
Collapse
|
2297
|
Cho S, Irianto J, Discher DE. Mechanosensing by the nucleus: From pathways to scaling relationships. J Cell Biol 2017; 216:305-315. [PMID: 28043971 PMCID: PMC5294790 DOI: 10.1083/jcb.201610042] [Citation(s) in RCA: 257] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/05/2016] [Accepted: 12/14/2016] [Indexed: 01/01/2023] Open
Abstract
The nucleus is linked mechanically to the extracellular matrix via multiple polymers that transmit forces to the nuclear envelope and into the nuclear interior. Here, we review some of the emerging mechanisms of nuclear mechanosensing, which range from changes in protein conformation and transcription factor localization to chromosome reorganization and membrane dilation up to rupture. Nuclear mechanosensing encompasses biophysically complex pathways that often converge on the main structural proteins of the nucleus, the lamins. We also perform meta-analyses of public transcriptomics and proteomics data, which indicate that some of the mechanosensing pathways relaying signals from the collagen matrix to the nucleus apply to a broad range of species, tissues, and diseases.
Collapse
Affiliation(s)
- Sangkyun Cho
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104
| | - Jerome Irianto
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104
| | - Dennis E Discher
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
2298
|
Sadtler K, Sommerfeld SD, Wolf MT, Wang X, Majumdar S, Chung L, Kelkar DS, Pandey A, Elisseeff JH. Proteomic composition and immunomodulatory properties of urinary bladder matrix scaffolds in homeostasis and injury. Semin Immunol 2017; 29:14-23. [PMID: 28583764 PMCID: PMC8509637 DOI: 10.1016/j.smim.2017.05.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/05/2017] [Accepted: 05/25/2017] [Indexed: 01/09/2023]
Abstract
Urinary bladder matrix (UBM) is used clinically for management of wounds and reinforcement of surgical soft tissue repair, among other applications. UBM consists of the lamina propria and basal lamina of the porcine urinary bladder, and is decellularized as part of the process to manufacture the medical device. UBM is composed mainly of Collagen I, but also contains a wide variety of fibrillar and basement membrane collagens, glycoproteins, proteoglycans and ECM-associated factors. Upon application of the biomaterial in a traumatic or non-traumatic setting in a mouse model, there is a cascade of immune cells that respond to the damaged tissue and biomaterial. Here, through the use of multicolor flow cytometry, we describe the various cells that infiltrate the UBM scaffold in a subcutaneous and volumetric muscle injury model. A wide variety of immune cells are found in the UBM scaffold immune microenvironment (SIM) including F4/80+ macrophages, CD11c+ dendritic cells, CD3+ T cells and CD19+ B cells. A systemic IL-4 upregulation and a local M2-macrophage response were observed in the proximity of the implanted UBM. The recruitment and activation of these cells is dependent upon signals from the scaffold and communication between the different cell types present.
Collapse
Affiliation(s)
- Kaitlyn Sadtler
- David H. Koch Institute for Integrative Cancer Research, Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States; Department of Anesthesiology, Boston Children's Hospital, Boston, MA, United States; Translational Tissue Engineering Center, Wilmer Eye Institute, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sven D Sommerfeld
- Translational Tissue Engineering Center, Wilmer Eye Institute, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Matthew T Wolf
- Translational Tissue Engineering Center, Wilmer Eye Institute, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Xiaokun Wang
- Translational Tissue Engineering Center, Wilmer Eye Institute, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Shoumyo Majumdar
- Translational Tissue Engineering Center, Wilmer Eye Institute, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Liam Chung
- Translational Tissue Engineering Center, Wilmer Eye Institute, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Dhanashree S Kelkar
- McKusick-Nathans Institute of Genetic Medicine, Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jennifer H Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
2299
|
Nandan D, Thomas SA, Nguyen A, Moon KM, Foster LJ, Reiner NE. Comprehensive Identification of mRNA-Binding Proteins of Leishmania donovani by Interactome Capture. PLoS One 2017; 12:e0170068. [PMID: 28135300 PMCID: PMC5279761 DOI: 10.1371/journal.pone.0170068] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 12/28/2016] [Indexed: 12/23/2022] Open
Abstract
Leishmania are unicellular eukaryotes responsible for leishmaniasis in humans. Like other trypanosomatids, leishmania regulate protein coding gene expression almost exclusively at the post-transcriptional level with the help of RNA binding proteins (RBPs). Due to the presence of polycystronic transcription units, leishmania do not regulate RNA polymerase II-dependent transcription initiation. Recent evidence suggests that the main control points in gene expression are mRNA degradation and translation. Protein-RNA interactions are involved in every aspect of RNA biology, such as mRNA splicing, polyadenylation, localization, degradation, and translation. A detailed picture of these interactions would likely prove to be highly informative in understanding leishmania biology and virulence. We developed a strategy involving covalent UV cross-linking of RBPs to mRNA in vivo, followed by interactome capture using oligo(dT) magnetic beads to define comprehensively the mRNA interactome of growing L. donovani amastigotes. The protein mass spectrometry analysis of captured proteins identified 79 mRNA interacting proteins which withstood very stringent washing conditions. Strikingly, we found that 49 of these mRNA interacting proteins had no orthologs or homologs in the human genome. Consequently, these may represent high quality candidates for selective drug targeting leading to novel therapeutics. These results show that this unbiased, systematic strategy has the promise to be applicable to study the mRNA interactome during various biological settings such as metabolic changes, stress (low pH environment, oxidative stress and nutrient deprivation) or drug treatment.
Collapse
Affiliation(s)
- Devki Nandan
- Departments of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Sneha A. Thomas
- Departments of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Anne Nguyen
- Departments of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kyung-Mee Moon
- University of British Columbia, Centre for High-Throughput Biology and Department of Biochemistry & Molecular Biology, Vancouver, BC, Canada
| | - Leonard J. Foster
- University of British Columbia, Centre for High-Throughput Biology and Department of Biochemistry & Molecular Biology, Vancouver, BC, Canada
| | - Neil E. Reiner
- Departments of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- * E-mail:
| |
Collapse
|
2300
|
Herfs M, Longuespée R, Quick CM, Roncarati P, Suarez-Carmona M, Hubert P, Lebeau A, Bruyere D, Mazzucchelli G, Smargiasso N, Baiwir D, Lai K, Dunn A, Obregon F, Yang EJ, Pauw ED, Crum CP, Delvenne P. Proteomic signatures reveal a dualistic and clinically relevant classification of anal canal carcinoma. J Pathol 2017; 241:522-533. [DOI: 10.1002/path.4858] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/21/2016] [Accepted: 11/30/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Michael Herfs
- Laboratory of Experimental Pathology, GIGA-Cancer; University of Liège; Liège Belgium
| | - Rémi Longuespée
- Mass Spectrometry Laboratory, Systems Biology and Chemical Biology, GIGA-Research; University of Liège; Liège Belgium
| | - Charles M Quick
- Department of Pathology; University of Arkansas for Medical Sciences; Little Rock AR USA
| | - Patrick Roncarati
- Laboratory of Experimental Pathology, GIGA-Cancer; University of Liège; Liège Belgium
| | - Meggy Suarez-Carmona
- Laboratory of Experimental Pathology, GIGA-Cancer; University of Liège; Liège Belgium
| | - Pascale Hubert
- Laboratory of Experimental Pathology, GIGA-Cancer; University of Liège; Liège Belgium
| | - Alizée Lebeau
- Laboratory of Experimental Pathology, GIGA-Cancer; University of Liège; Liège Belgium
| | - Diane Bruyere
- Laboratory of Experimental Pathology, GIGA-Cancer; University of Liège; Liège Belgium
| | - Gabriel Mazzucchelli
- Mass Spectrometry Laboratory, Systems Biology and Chemical Biology, GIGA-Research; University of Liège; Liège Belgium
| | - Nicolas Smargiasso
- Mass Spectrometry Laboratory, Systems Biology and Chemical Biology, GIGA-Research; University of Liège; Liège Belgium
| | - Dominique Baiwir
- Mass Spectrometry Laboratory, Systems Biology and Chemical Biology, GIGA-Research; University of Liège; Liège Belgium
- GIGA Proteomic Facility; University of Liège; Liège Belgium
| | - Keith Lai
- Department of Pathology; University of Arkansas for Medical Sciences; Little Rock AR USA
| | - Andrew Dunn
- Department of Pathology; University of Arkansas for Medical Sciences; Little Rock AR USA
| | - Fabiola Obregon
- Department of Pathology; University of Arkansas for Medical Sciences; Little Rock AR USA
| | - Eric J Yang
- Department of Pathology, Division of Women's and Perinatal Pathology, Brigham and Women's Hospital; Harvard Medical School; Boston MA USA
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, Systems Biology and Chemical Biology, GIGA-Research; University of Liège; Liège Belgium
| | - Christopher P Crum
- Department of Pathology, Division of Women's and Perinatal Pathology, Brigham and Women's Hospital; Harvard Medical School; Boston MA USA
| | - Philippe Delvenne
- Laboratory of Experimental Pathology, GIGA-Cancer; University of Liège; Liège Belgium
| |
Collapse
|