201
|
Zhu Y, Wang R, Fan Z, Luo D, Cai G, Li X, Han J, Zhuo L, Zhang L, Zhang H, Li Y, Wu S. Taurine Alleviates Chronic Social Defeat Stress-Induced Depression by Protecting Cortical Neurons from Dendritic Spine Loss. Cell Mol Neurobiol 2023; 43:827-840. [PMID: 35435537 PMCID: PMC9958166 DOI: 10.1007/s10571-022-01218-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/22/2022] [Indexed: 12/15/2022]
Abstract
Abnormal amino acid metabolism in neural cells is involved in the occurrence and development of major depressive disorder. Taurine is an important amino acid required for brain development. Here, microdialysis combined with metabonomic analysis revealed that the level of taurine in the extracellular fluid of the cerebral medial prefrontal cortex (mPFC) was significantly reduced in mice with chronic social defeat stress (CSDS)-induced depression. Therefore, taurine supplementation may be usable an intervention for depression. We found that taurine supplementation effectively rescued immobility time during a tail suspension assay and improved social avoidance behaviors in CSDS mice. Moreover, taurine treatment protected CSDS mice from impairments in dendritic complexity, spine density, and the proportions of different types of spines. The expression of N-methyl D-aspartate receptor subunit 2A, an important synaptic receptor, was largely restored in the mPFC of these mice after taurine supplementation. These results demonstrated that taurine exerted an antidepressive effect by protecting cortical neurons from dendritic spine loss and synaptic protein deficits.
Collapse
Affiliation(s)
- Yuanyuan Zhu
- Department of Neurobiology, The School of Basic Medicine, The Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Rui Wang
- Department of Neurobiology, The School of Basic Medicine, The Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Ze Fan
- Department of Neurobiology, The School of Basic Medicine, The Fourth Military Medical University, Xi’an, 710032 Shaanxi China ,State Key Laboratory of Military Stomatology, Department of Anesthesiology, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Danlei Luo
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Guohong Cai
- Department of Neurobiology, The School of Basic Medicine, The Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Xinyang Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Jiao Han
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Lixia Zhuo
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Li Zhang
- Department of Neurobiology, The School of Basic Medicine, The Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Haifeng Zhang
- Department of Neurobiology, The School of Basic Medicine, The Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Yan Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Shengxi Wu
- Department of Neurobiology, The School of Basic Medicine, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
202
|
Jin Y, Liu X, Liang X, Liu J, Liu J, Han Z, Lu Q, Wang K, Meng B, Zhang C, Xu M, Guan J, Ma L, Zhou L. Resveratrol rescues cutaneous radiation-induced DNA damage via a novel AMPK/SIRT7/HMGB1 regulatory axis. Cell Death Dis 2023; 13:847. [PMID: 36587031 PMCID: PMC9805450 DOI: 10.1038/s41419-022-05281-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/10/2022] [Accepted: 09/16/2022] [Indexed: 01/02/2023]
Abstract
Cutaneous radiation injury (CRI) interrupts the scheduled process of radiotherapy and even compromises the life quality of patients. However, the current clinical options for alleviating CRI are relatively limited. Resveratrol (RSV) has been shown to be a promising protective agent against CRI; yet the mechanisms of RSV enhancing radioresistance were not fully elucidated and limited its clinical application. In this study, we demonstrate RSV promotes cutaneous radioresistance mainly through SIRT7. During ionizing radiation (IR) treatment, RSV indirectly phosphorylates and activates SIRT7 through AMPK, which is critical for maintaining the genome stability of keratinocytes. Immunoprecipitation and mass spectrometry identified HMGB1 to be the key interacting partner of SIRT7 to mediate the radioprotective function of RSV. Mechanistic study elucidated that SIRT7 interacts with and deacetylates HMGB1 to redistribute it into nucleus and "switch on" its function for DNA damage repair. Our findings establish a novel AMPK/SIRT7/HMGB1 regulatory axis that mediates the radioprotective function of RSV to alleviate IR-induced cutaneous DNA injury, providing an efficiently-curative option for patients with CRI during radiotherapy.
Collapse
Affiliation(s)
- Yi Jin
- grid.284723.80000 0000 8877 7471Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xingyuan Liu
- grid.284723.80000 0000 8877 7471Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiaoting Liang
- grid.284723.80000 0000 8877 7471Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jiabin Liu
- grid.284723.80000 0000 8877 7471Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jieyu Liu
- grid.284723.80000 0000 8877 7471Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zonglin Han
- Guangdong Experimental High School, Guangzhou, China
| | - Qianxin Lu
- grid.284723.80000 0000 8877 7471Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Ke Wang
- grid.284723.80000 0000 8877 7471Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Bingyao Meng
- grid.284723.80000 0000 8877 7471Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Chunting Zhang
- grid.284723.80000 0000 8877 7471Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Minna Xu
- grid.284723.80000 0000 8877 7471Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jian Guan
- grid.284723.80000 0000 8877 7471Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Ma
- grid.284723.80000 0000 8877 7471Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Liang Zhou
- grid.284723.80000 0000 8877 7471Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
203
|
Cheng Y, Wang Y, Yin R, Xu Y, Zhang L, Zhang Y, Yang L, Zhao D. Central role of cardiac fibroblasts in myocardial fibrosis of diabetic cardiomyopathy. Front Endocrinol (Lausanne) 2023; 14:1162754. [PMID: 37065745 PMCID: PMC10102655 DOI: 10.3389/fendo.2023.1162754] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Diabetic cardiomyopathy (DCM), a main cardiovascular complication of diabetes, can eventually develop into heart failure and affect the prognosis of patients. Myocardial fibrosis is the main factor causing ventricular wall stiffness and heart failure in DCM. Early control of myocardial fibrosis in DCM is of great significance to prevent or postpone the progression of DCM to heart failure. A growing body of evidence suggests that cardiomyocytes, immunocytes, and endothelial cells involve fibrogenic actions, however, cardiac fibroblasts, the main participants in collagen production, are situated in the most central position in cardiac fibrosis. In this review, we systematically elaborate the source and physiological role of myocardial fibroblasts in the context of DCM, and we also discuss the potential action and mechanism of cardiac fibroblasts in promoting fibrosis, so as to provide guidance for formulating strategies for prevention and treatment of cardiac fibrosis in DCM.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dong Zhao
- *Correspondence: Longyan Yang, ; Dong Zhao,
| |
Collapse
|
204
|
Endothelial-cell-mediated mechanism of coronary microvascular dysfunction leading to heart failure with preserved ejection fraction. Heart Fail Rev 2023; 28:169-178. [PMID: 35266091 PMCID: PMC9902427 DOI: 10.1007/s10741-022-10224-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/23/2022] [Indexed: 02/07/2023]
Abstract
Although the prevalence of heart failure with preserved ejection fraction (HFpEF) is growing worldwide, its complex pathophysiology has yet to be fully elucidated, and multiple hypotheses have all failed to produce a viable target for therapeutic action or provide effective treatment. Cardiac remodeling has long been considered an important mechanism of HFpEF. Strong evidence has been reported over the past years that coronary microvascular dysfunction (CMD), manifesting as structural and functional abnormalities of coronary microvasculature, also contributes to the evolution of HFpEF. However, the mechanisms of CMD are still not well understood and need to be studied further. Coronary microvascular endothelial cells (CMECs) are one of the most abundant cell types in the heart by number and active players in cardiac physiology and pathology. CMECs are not only important cellular mediators of cardiac vascularization but also play an important role in disease pathophysiology by participating in the inception and progression of cardiac remodeling. CMECs are also actively involved in the pathogenesis of CMD. Numerous studies have confirmed that CMD is closely related to cardiac remodeling. ECs may serve a critical function in mediating the connection between CMD and HFpEF. It follows that CMECs participate in the mechanism of CMD leading to HFpEF. In this review article, we focus on the role of CMD in the pathogenesis of HFpEF resulting from cardiac remodeling and highlight the subsequent complexity of the EC-mediated correlation between CMD and HFpEF.
Collapse
|
205
|
Kyselovic J, Masarik J, Kechemir H, Koscova E, Turudic II, Hamblin MR. Physical properties and biological effects of ceramic materials emitting infrared radiation for pain, muscular activity, and musculoskeletal conditions. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2023; 39:3-15. [PMID: 35510621 PMCID: PMC10084378 DOI: 10.1111/phpp.12799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 04/21/2022] [Accepted: 05/02/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND Up to 33% of the general population worldwide suffer musculoskeletal conditions, with low back pain being the single leading cause of disability globally. Multimodal therapeutic options are available to relieve the pain associated with muscular disorders, including physical, complementary, and pharmacological therapies. However, existing interventions are not disease modifying and have several limitations. METHOD Literature review. RESULTS In this context, the use of nonthermal infrared light delivered via patches, fabrics, and garments containing infrared-emitting bioceramic minerals have been investigated. Positive effects on muscular cells, muscular recovery, and reduced inflammation and pain have been reported both in preclinical and clinical studies. There are several hypotheses on how infrared may contribute to musculoskeletal pain relief, however, the full mechanism of action remains unclear. This article provides an overview of the physical characteristics of infrared radiation and its biological effects, focusing on those that could potentially explain the mechanism of action responsible for the relief of musculoskeletal pain. CONCLUSIONS Based on the current evidence, the following pathways have been considered: upregulation of endothelial nitric oxide synthase, increase in nitric oxide bioavailability, anti-inflammatory effects, and reduction in oxidative stress.
Collapse
Affiliation(s)
- Jan Kyselovic
- Clinical Research Unit, 5th Department of Internal Medicine, Faculty of Medicine, Comenius University, University Hospital Bratislava, Bratislava, Slovak Republic
| | - Jozef Masarik
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics, and Informatics, Comenius University Bratislava, Bratislava, Slovak Republic
| | - Hayet Kechemir
- Consumer Healthcare Medical Affairs Department, Sanofi CHC, Paris, France
| | - Eva Koscova
- Consumer Healthcare Medical Affairs Department, Bratislava, Slovakia
| | - Iva Igracki Turudic
- Consumer Healthcare Medical Affairs Department, Sanofi CHC, Frankfurt, Germany
| | - Michael Richard Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
206
|
Ssempijja F, Dare SS, Bukenya EEM, Kasozi KI, Kenganzi R, Fernandez EM, Vicente-Crespo M. Attenuation of Seizures, Cognitive Deficits, and Brain Histopathology by Phytochemicals of Imperata cylindrica (L.) P. Beauv (Poaceae) in Acute and Chronic Mutant Drosophila melanogaster Epilepsy Models. J Evid Based Integr Med 2023; 28:2515690X231160191. [PMID: 36866635 PMCID: PMC9989407 DOI: 10.1177/2515690x231160191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 08/09/2022] [Accepted: 02/06/2023] [Indexed: 03/04/2023] Open
Abstract
Imperata cylindrica is a globally distributed plant known for its antiepileptic attributes, but there is a scarcity of robust evidence for its efficacy. The study investigated neuroprotective attributes of Imperata cylindrica root extract on neuropathological features of epilepsy in a Drosophila melanogaster mutant model of epilepsy. It was conducted on 10-day-old (at the initiation of study) male post-eclosion bang-senseless paralytic Drosophila (parabss1) involved acute (1-3 h) and chronic (6-18 days) experiments; n = 50 flies per group (convulsions tests); n = 100 flies per group (learning/memory tests and histological examination). Administrations were done in 1 g standard fly food, per os. The mutant flies of study (parabss1) showed marked age-dependent progressive brain neurodegeneration and axonal degeneration, significant (P < 0.05) bang sensitivity and convulsions, and cognitive deficits due to up-regulation of the paralytic gene in our mutants. The neuropathological findings were significantly (P < 0.05) alleviated in dose and duration-dependent fashions to near normal/normal after acute and chronic treatment with extract similar to sodium valproate. Therefore, para is expressed in neurons of brain tissues in our mutant flies to bring about epilepsy phenotypes and behaviors of the current juvenile and old-adult mutant D. melanogaster models of epilepsy. The herb exerts neuroprotection by anticonvulsant and antiepileptogenic mechanisms in mutant D. melanogaster due to plant flavonoids, polyphenols, and chromones (1 and 2) which exert antioxidative and receptor or voltage-gated sodium ion channels' inhibitory properties, and thus causing reduced inflammation and apoptosis, increased tissue repair, and improved cell biology in the brain of mutant flies. The methanol root extract provides anticonvulsant and antiepileptogenic medicinal values which protect epileptic D. melanogaster. Therefore, the herb should be advanced for more experimental and clinical studies to confirm its efficacy in treating epilepsy.
Collapse
Affiliation(s)
- Fred Ssempijja
- Department of Anatomy, Faculty of Medicine, Mbarara University of Science and Technology, P.O Box 1410, Mbarara, Uganda
- Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O Box 71, Ishaka, Bushenyi, Uganda
| | - Samuel Sunday Dare
- Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O Box 71, Ishaka, Bushenyi, Uganda
- School of Medicine, Kabale University, P.O Box 317, Kabale, Uganda
| | - Edmund E. M. Bukenya
- Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O Box 71, Ishaka, Bushenyi, Uganda
- School of Medicine, Kabale University, P.O Box 317, Kabale, Uganda
| | | | - Ritah Kenganzi
- Department of Medical Laboratory Sciences, School of Allied Health Sciences, Kampala International University Teaching Hospital, P.O Box 71, Ishaka, Bushenyi, Uganda
| | - Edgar Mario Fernandez
- Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O Box 71, Ishaka, Bushenyi, Uganda
| | - Marta Vicente-Crespo
- Institute of Biomedical Research, Kampala International University Western Campus, P.O Box 71, Bushenyi, Uganda
- Department of Biochemistry, Faculty of Biomedical Sciences, Kampala International University Western Campus, P.O Box 71, Bushenyi, Uganda
| |
Collapse
|
207
|
Acosta-Casique A, Montes-Alvarado JB, Barragán M, Larrauri-Rodríguez KA, Perez-Gonzalez A, Delgado-Magallón A, Millán-Perez-Peña L, Rosas-Murrieta NH, Maycotte P. ERK activation modulates invasiveness and Reactive Oxygen Species (ROS) production in triple negative breast cancer cell lines. Cell Signal 2023; 101:110487. [PMID: 36216165 DOI: 10.1016/j.cellsig.2022.110487] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 11/30/2022]
Abstract
Triple negative breast cancer (TNBC) is the breast cancer subtype with the worst prognosis and still lacks a targeted therapy. In this study, we found increased ERK phosphorylation in TNBC cell lines and an important role for ERK in sustaining the migration of TNBC cells. Although ROS have been suggested to have an important role in sustaining MAPK signaling, antioxidant treatment increased ERK phosphorylation, probably suggesting increased invasive potential. Interestingly, treatment with PD0325901 (PD), a MEK inhibitor, decreased ROS levels in TNBC cells and decreased mitochondrial fragmentation in the MDAMB231 cell line. Our data supports an important role for MEK/ERK in TNBC, sustaining cellular migration, regulating mitochondrial dynamics and ROS production in this breast cancer subtype.
Collapse
Affiliation(s)
- Adilene Acosta-Casique
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Km 4.5 Carretera Atlixco-Metepec HGZ5, Puebla 74360, Mexico; Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), Ciudad Universitaria, Puebla 72570, Mexico
| | - José B Montes-Alvarado
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Km 4.5 Carretera Atlixco-Metepec HGZ5, Puebla 74360, Mexico
| | - Minuet Barragán
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Km 4.5 Carretera Atlixco-Metepec HGZ5, Puebla 74360, Mexico; Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), Ciudad Universitaria, Puebla 72570, Mexico
| | - Karen A Larrauri-Rodríguez
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Km 4.5 Carretera Atlixco-Metepec HGZ5, Puebla 74360, Mexico; Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), Ciudad Universitaria, Puebla 72570, Mexico
| | - Andrea Perez-Gonzalez
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Km 4.5 Carretera Atlixco-Metepec HGZ5, Puebla 74360, Mexico; Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), Ciudad Universitaria, Puebla 72570, Mexico
| | - Alam Delgado-Magallón
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Km 4.5 Carretera Atlixco-Metepec HGZ5, Puebla 74360, Mexico
| | - Lourdes Millán-Perez-Peña
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), Ciudad Universitaria, Puebla 72570, Mexico
| | - Nora H Rosas-Murrieta
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), Ciudad Universitaria, Puebla 72570, Mexico
| | - Paola Maycotte
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Km 4.5 Carretera Atlixco-Metepec HGZ5, Puebla 74360, Mexico.
| |
Collapse
|
208
|
Harb I, Ashour H, Rashed LA, Mostafa A, Samir M, Aboulhoda BE, El-Hanbuli H, Rashwan E, Mahmoud H. Nicorandil mitigates amiodarone-induced pulmonary toxicity and fibrosis in association with the inhibition of lung TGF-β1/PI3K/Akt1-p/mTOR axis in rats. Clin Exp Pharmacol Physiol 2023; 50:96-106. [PMID: 36208078 DOI: 10.1111/1440-1681.13728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 09/16/2022] [Accepted: 09/29/2022] [Indexed: 12/13/2022]
Abstract
The long-term side effect of the antiarrhythmic drug, amiodarone (AMIO), such as lung toxicity, remains a critical clinical issue. The previous knowledge denotes diverse antioxidant, anti-inflammatory, and antifibrotic properties of the anti-anginal drug, nicorandil (NI). Therefore, we aimed to investigate the possible protective effect of NI on pulmonary tissue remodelling following AMIO-induced lung toxicity. The included rats were assigned into four equal groups (n = 8): (1) control, (2) control group that received NI 10 mg kg-1 day-1 , (3) model group that received AMIO in a dose of 60 mg kg-1 day-1 , and (4) treated group (AMIO-NI) that were treated with AMIO plus NI as shown above. Drug administration continued for 10 weeks. AMIO resulted in deteriorated (p < 0.001) pulmonary functions accompanied by respiratory acidosis. AMIO showed an obvious histological injury score with intense collagen deposition, disturbed nitric oxide synthase enzymes (NOS/iNOS), and increased alpha smooth muscle actin expression. Furthermore, AMIO upregulated the transforming growth factor (TGF-β1)/phosphoinositide-3 kinase (PI3K)-Akt1-p/mammalian target of rapamycin (mTOR) axis, which determined the possible mechanism of AMIO on pulmonary remodelling. NI treatment significantly (p < 0.001) prevented the AMIO-induced lung toxicity, as well as inhibited the TGF-β1/PI3K/Akt1-p/mTOR axis in the lung tissue of rats. The results were confirmed by an in-vitro study. CONCLUSION: The current results revealed that NI was effective in preserving the lung structure and functions. Amelioration of the oxidative stress and modulation of TGF-β1/PI3K/Akt1-p/mTOR have been achieved. This study suggests NI administration as a preventive therapy from the serious pulmonary fibrosis side effect of AMIO.
Collapse
Affiliation(s)
- Inas Harb
- Department of Pharmacology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Hend Ashour
- Department of Physiology, Faculty of Medicine, KingKhalid University, Abha, Saudi Arabia.,Department of Physiology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Laila A Rashed
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Abeer Mostafa
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Mai Samir
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Hala El-Hanbuli
- Department of Pathology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Eman Rashwan
- Department of Physiology, Faculty of Medicine, Jouf University, Sakakah, Saudi Arabia.,Department of Physiology, Faculty of Medicine, Al-Azhar University, Assuit, Egypt
| | - Heba Mahmoud
- Department of Pharmacology, Faculty of Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
209
|
Zhang MW, Li XT, Zhang ZZ, Liu Y, Song JW, Liu XM, Chen YH, Wang N, Guo Y, Liang LR, Zhong JC. Elabela blunts doxorubicin-induced oxidative stress and ferroptosis in rat aortic adventitial fibroblasts by activating the KLF15/GPX4 signaling. Cell Stress Chaperones 2023; 28:91-103. [PMID: 36510036 PMCID: PMC9877260 DOI: 10.1007/s12192-022-01317-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Doxorubicin (DOX) is a chemotherapeutic drug for a variety of malignancies, while its application is restricted by the cardiovascular toxic effects characterized by oxidative stress. Ferroptosis is a novel iron-dependent regulated cell death driven by lipid peroxidation. Our study aimed to investigate the role of Elabela (ELA) in DOX-induced oxidative stress and ferroptosis. In cultured rat aortic adventitial fibroblasts (AFs), stimulation with DOX dramatically induced cytotoxicity with reduced cell viability and migration ability, and enhanced lactate dehydrogenase (LDH) activity. Importantly, ELA and ferrostatin-1 (Fer-1) mitigated DOX-mediated augmentation of reactive oxygen species (ROS) in rat aortic AFs, accompanied by upregulated levels of Nrf2, SLC7A11, GPX4, and GSH. In addition, ELA reversed DOX-induced dysregulation of apoptosis- and inflammation-related factors including Bax, Bcl2, interleukin (IL)-1β, IL6, IL-10, and CXCL1. Intriguingly, knockdown of Krüppel-like factor 15 (KLF15) by siRNA abolished ELA-mediated alleviation of ROS production and inflammatory responses. More importanly, KLF15 siRNA impeded the beneficial roles of ELA in DOX-pretreated rat aortic AFs by suppressing the Nrf2/SLC7A11/GPX4 signaling. In conclusion, ELA prevents DOX-triggered promotion of cytotoxicity, and exerts anti-oxidative and anti-ferroptotic effects in rat aortic AFs via activation of the KLF15/GPX4 signaling, indicating a promising therapeutic value of ELA in antagonizing DOX-mediated cardiovascular abnormality and disorders.
Collapse
Affiliation(s)
- Mi-Wen Zhang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xue-Ting Li
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Zhen-Zhou Zhang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Ying Liu
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jia-Wei Song
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xin-Ming Liu
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yi-Hang Chen
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Ning Wang
- Department of Geratology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ying Guo
- Department of Geratology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Li-Rong Liang
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - Jiu-Chang Zhong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
210
|
Choi HG, Kim SY, Chung J. The Risk of BPPV, Meniere's Disease, and Vestibular Neuronitis in Patients with Gout: A Longitudinal Follow-Up Study Using a National Health Screening Cohort. J Clin Med 2022; 12:jcm12010185. [PMID: 36614986 PMCID: PMC9821089 DOI: 10.3390/jcm12010185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
This study evaluated the impact of pre-existing gout on the occurrence of benign paroxysmal positional vertigo (BPPV), Meniere’s disease, and vestibular neuronitis, with the goal of identifying novel associations of gout with other comorbid diseases. The 2002−2019 Korean National Health Insurance Service Health Screening Cohort data were retrospectively analyzed. 23,827 patients with gout were matched to 95,268 controls without gout for age, sex, income, region of residence, and index date. The occurrence of BPPV, Meniere’s disease, and vestibular neuronitis was evaluated in both groups. The hazard ratios (HRs) of gout for BPPV, Meniere’s disease, and vestibular neuronitis were calculated using a stratified Cox proportional hazard model. Participants with gout demonstrated a 1.13-fold higher risk of BPPV (95% CI, 1.06−1.21, p < 0.001) and a 1.15-fold higher risk of Meniere’s disease (95% CI, 1.15−1.37, p < 0.001) than the matched control group. However, the HR for vestibular neuronitis was not significantly higher in the gout group (adjusted HR = 1.06, 95% CI, 0.93−1.21, p = 0.391). A previous history of gout was related to a higher risk of BPPV and Meniere’s disease. Additional studies are necessary to elucidate the mechanism underlying the relationship between gout and comorbid diseases such as BPPV and Meniere’s disease.
Collapse
Affiliation(s)
- Hyo Geun Choi
- Department of Otorhinolaryngology-Head & Neck Surgery, Hallym University College of Medicine, Anyang 14068, Republic of Korea
| | - So Young Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam 13488, Republic of Korea
| | - Juyong Chung
- Department of Otorhinolaryngology, Wonkwang University School of Medicine, 895 Muwang-ro, Iksan 54538, Republic of Korea
- Correspondence: ; Tel.: +82-63-859-1489; Fax: +82-63-858-3922
| |
Collapse
|
211
|
Combining mKate2-Kv1.3 Channel and Atto488-Hongotoxin for the Studies of Peptide Pore Blockers on Living Eukaryotic Cells. Toxins (Basel) 2022; 14:toxins14120858. [PMID: 36548755 PMCID: PMC9780825 DOI: 10.3390/toxins14120858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The voltage-gated potassium Kv1.3 channel is an essential component of vital cellular processes which is also involved in the pathogenesis of some autoimmune, neuroinflammatory and oncological diseases. Pore blockers of the Kv1.3 channel are considered as potential drugs and are used to study Kv1 channels' structure and functions. Screening and study of the blockers require the assessment of their ability to bind the channel. Expanding the variety of methods used for this, we report on the development of the fluorescent competitive binding assay for measuring affinities of pore blockers to Kv1.3 at the membrane of mammalian cells. The assay constituents are hongotoxin 1 conjugated with Atto488, fluorescent mKate2-tagged Kv1.3 channel, which was designed to improve membrane expression of the channel in mammalian cells, confocal microscopy, and a special protocol of image processing. The assay is implemented in the "mix and measure", format and allows the screening of Kv1.3 blockers, such as peptide toxins, that bind to the extracellular vestibule of the K+-conducting pore, and analyzing their affinity.
Collapse
|
212
|
Cao Z, Liu W, Bi B, Wu H, Cheng G, Zhao Z. Isoorientin ameliorates osteoporosis and oxidative stress in postmenopausal rats. PHARMACEUTICAL BIOLOGY 2022; 60:2219-2228. [PMID: 36382865 PMCID: PMC9673777 DOI: 10.1080/13880209.2022.2142614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/12/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
CONTEXT Isoorientin has many biological activities, including antioxidant, anti-inflammatory, antitumor. However, the effect of isoorientin on postmenopausal osteoporosis remains unclear. OBJECTIVE To evaluate the effect of isoorientin on postmenopausal osteoporosis. MATERIALS AND METHODS Sprague-Dawley rats were divided into five groups (n = 5): sham, model, 17-β-oestradiol (E2, 10 μg/kg/day), low-dose isoorientin (L-Iso, 50 mg/kg), and high-dose isoorientin (H-Iso, 100 mg/kg). The rats were ovariectomized, treated by gavage daily for 12 weeks, and serum and femur samples were collected. Bone mineral density, bone metabolism, and oxidative stress were assessed. H&E staining, immunohistochemistry, and western blotting were employed. RESULTS Isoorientin improved the bone mineral density of the lumbar vertebrae (2.01 ± 0.05 g/cm3 in H-Iso group vs. 1.74 ± 0.07 g/cm3 in model group) and femur (1.46 ± 0.06 g/cm3 vs. 1.19 ± 0.03 g/cm3), increased the trabecular bone number (1.97 ± 0.03 vs. 1.18 ± 0.13) and thickness (0.27 ± 0.02 vs. 0.16 ± 0.03 mm). Isoorientin decreased the separation degree of trabecular bone, ameliorated bone histomorphology changes, and significantly improved the mechanical properties. Isoorientin diminished MDA (by 60%) and increased SOD (by 49.2%), and GSH-Px (by 159%) activity. Furthermore, osteoprotegerin (OPG), nuclear factor erythroid 2-like 2 (Nrf2), haem oxygenase (HO-1), NAD(P)H quinone dehydrogenase 1(NQO1), and oestrogen receptor 1(ESR1) protein expression increased, while receptor activator of nuclear factor-κB ligand (RANKL) protein expression decreased after treatment. CONCLUSIONS Isoorientin ameliorates osteoporosis via upregulating OPG and Nrf2/ARE signalling, suggesting isoorientin maybe a potential therapeutic drug for PMOP.
Collapse
Affiliation(s)
- Zhilin Cao
- Department of Sports Medicine, Yantaishan Hospital, Yantai, China
| | - Wei Liu
- Department of Pathophysiology, Binzhou Medical University, Yantai, China
| | - Benjun Bi
- Department of Hand and Foot Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hao Wu
- Department of Sports Medicine, Yantaishan Hospital, Yantai, China
| | - Gong Cheng
- Department of Sports Medicine, Yantaishan Hospital, Yantai, China
| | - Zhongyuan Zhao
- Department of Articulation surgery, Yantaishan Hospital, Yantai, China
| |
Collapse
|
213
|
Wu J, Huang Y, Zhou X, Xiang Z, Yang Z, Meng D, Wu D, Zhang J, Yang J. ATF3 and its emerging role in atherosclerosis: a narrative review. Cardiovasc Diagn Ther 2022; 12:926-942. [PMID: 36605071 PMCID: PMC9808109 DOI: 10.21037/cdt-22-206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/08/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND OBJECTIVE Atherosclerosis (AS), is characterized by the subintima lipid accumulation and chronic inflammation inside the arterial wall, causing much mortality and morbidity worldwide. Activating transcription factor 3 (ATF3) is a member of ATF/cAMP-responsive element-binding (CREB) family of transcription factors, which acts as a master regulator of adaptive response. Recent studies have indicated the implicated role of ATF3 in atherogenesis and AS progression due to its impact on metabolic disorder, vascular injury, plaque formation, and stability. In this review, we summarize the current advances in the mechanism of ATF3 activation and the contribution of ATF3 in AS, highlighting vascular intrinsic and extrinsic mechanisms of how ATF3 influences the pathology of AS. METHODS The relevant literature (from origin to March 2022) was retrieved through PubMed research to explore the regulatory mechanism of ATF3 and the specific role of ATF3 in AS. Only English publications were reviewed in this paper. KEY CONTENT AND FINDINGS ATF3 acts as a key regulator of AS progression, which not only directly affects atherosclerotic lesions by regulating vascular homeostasis, but also gets involved in AS through systemic glucolipid metabolism and inflammatory response. The two different promoters, transcript variants, and post-translational modification in distinct cell types partly contribute to the regulatory diversity of ATF3 in AS. CONCLUSIONS ATF3 is a crucial transcription regulatory factor during atherogenesis and AS progression. Gaining a better understanding of how ATF3 affects vascular, metabolic, and immune homeostasis would advance the progress of ATF3-targeted therapy in AS.
Collapse
Affiliation(s)
- Jingyi Wu
- Department of Cardiology, the First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Yifan Huang
- Department of Cardiology, the First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Xiaoyan Zhou
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Zujin Xiang
- Department of Cardiology, the First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Zishu Yang
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Di Meng
- Department of Cardiology, the First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Di Wu
- Department of Cardiology, the First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Jing Zhang
- Department of Cardiology, the First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Jian Yang
- Department of Cardiology, the First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| |
Collapse
|
214
|
Brinks J, van Dijk EHC, Meijer OC, Schlingemann RO, Boon CJF. Choroidal arteriovenous anastomoses: a hypothesis for the pathogenesis of central serous chorioretinopathy and other pachychoroid disease spectrum abnormalities. Acta Ophthalmol 2022; 100:946-959. [PMID: 35179828 PMCID: PMC9790326 DOI: 10.1111/aos.15112] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/30/2022]
Abstract
The pachychoroid disease spectrum (PDS) includes several chorioretinal diseases that share specific choroidal abnormalities. Although their pathophysiological basis is poorly understood, diseases that are part of the PDS have been hypothesized to be the result of venous congestion. Within the PDS, central serous chorioretinopathy is the most common condition associated with vision loss, due to an accumulation of subretinal fluid in the macula. Central serous chorioretinopathy is characterized by distinct risk factors, most notably a high prevalence in males and exposure to corticosteroids. Interestingly, sex differences and corticosteroids are also strongly associated with specific types of arteriovenous anastomoses in the human body, including dural arteriovenous fistula and surgically created arteriovenous shunts. In this manuscript, we assess the potential of such arteriovenous anastomoses in the choroid as a causal mechanism of the PDS. We propose how this may provide a novel unifying concept on the pathophysiological basis of the PDS, and present cases in which this mechanism may play a role.
Collapse
Affiliation(s)
- Joost Brinks
- Department of OphthalmologyLeiden University Medical CentreLeidenThe Netherlands
| | - Elon H. C. van Dijk
- Department of OphthalmologyLeiden University Medical CentreLeidenThe Netherlands
| | - Onno C. Meijer
- Department of Medicine, Division of Endocrinology and MetabolismLeiden University Medical CentreLeidenThe Netherlands
| | - Reinier O. Schlingemann
- Department of Ophthalmology, Amsterdam University Medical CentresUniversity of AmsterdamAmsterdamThe Netherlands
- Department of OphthalmologyUniversity of Lausanne, Jules‐Gonin Eye Hospital, Fondation Asile des AveuglesLausanneSwitzerland
| | - Camiel J. F. Boon
- Department of OphthalmologyLeiden University Medical CentreLeidenThe Netherlands
- Department of Ophthalmology, Amsterdam University Medical CentresUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
215
|
Rex DAB, Suchitha GP, Palollathil A, Kanichery A, Prasad TSK, Dagamajalu S. The network map of urotensin-II mediated signaling pathway in physiological and pathological conditions. J Cell Commun Signal 2022; 16:601-608. [PMID: 35174439 PMCID: PMC9733756 DOI: 10.1007/s12079-022-00672-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
Abstract
Urotensin-II is a polypeptide ligand with neurohormone-like activity. It mediates downstream signaling pathways through G-protein-coupled receptor 14 (GPR14) also known as urotensin receptor (UTR). Urotensin-II is the most potent endogenous vasoconstrictor in mammals, promoting cardiovascular remodelling, cardiac fibrosis, and cardiomyocyte hypertrophy. It is also involved in other physiological and pathological activities, including neurosecretory effects, insulin resistance, atherosclerosis, kidney disease, and carcinogenic effects. Moreover, it is a notable player in the process of inflammatory injury, which leads to the development of inflammatory diseases. Urotensin-II/UTR expression stimulates the accumulation of monocytes and macrophages, which promote the adhesion molecules expression, chemokines activation and release of inflammatory cytokines at inflammatory injury sites. Therefore, urotensin-II turns out to be an important therapeutic target for the treatment options and management of associated diseases. The main downstream signaling pathways mediated through this urotensin-II /UTR system are RhoA/ROCK, MAPKs and PI3K/AKT. Due to the importance of urotensin-II systems in biomedicine, we consolidated a network map of urotensin-II /UTR signaling. The described signaling map comprises 33 activation/inhibition events, 31 catalysis events, 15 molecular associations, 40 gene regulation events, 60 types of protein expression, and 11 protein translocation events. The urotensin-II signaling pathway map is made freely accessible through the WikiPathways Database ( https://www.wikipathways.org/index.php/Pathway:WP5158 ). The availability of comprehensive urotensin-II signaling in the public resource will help understand the regulation and function of this pathway in normal and pathological conditions. We believe this resource will provide a platform to the scientific community in facilitating the identification of novel therapeutic drug targets for diseases associated with urotensin-II signaling.
Collapse
Affiliation(s)
- D. A. B. Rex
- grid.413027.30000 0004 1767 7704Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, 575018 India
| | - G. P. Suchitha
- grid.413027.30000 0004 1767 7704Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, 575018 India
| | - Akhina Palollathil
- grid.413027.30000 0004 1767 7704Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, 575018 India
| | - Anagha Kanichery
- grid.413027.30000 0004 1767 7704Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, 575018 India
| | - T. S. Keshava Prasad
- grid.413027.30000 0004 1767 7704Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, 575018 India
| | - Shobha Dagamajalu
- grid.413027.30000 0004 1767 7704Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, 575018 India
| |
Collapse
|
216
|
Xu L, He D, Wu Y, Shen L, Wang Y, Xu Y. Tanshinone IIA inhibits cardiomyocyte apoptosis and rescues cardiac function during doxorubicin-induced cardiotoxicity by activating the DAXX/MEK/ERK1/2 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154471. [PMID: 36182795 DOI: 10.1016/j.phymed.2022.154471] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/05/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Heart failure (HF) is a common cardiovascular syndrome. Tanshinone IIA (Tan IIA) is a pharmacologically active monomer that exerts a significant cardioprotective effect in the clinic; however, the specific mechanisms are not fully understood. PURPOSE We mainly investigated the protective effects of Tan IIA on doxorubicin (DOX)-induced HF. METHODS In an in vitro study, H9C2 and HL-1 cells were cultured and treated with DOX and Tan IIA for 24 h, we investigated the mechanism underlying Tan IIA-mediated protection. In an in vivo study, a model of DOX-induced HF was established in C57BL/6 mice that were divided into the six groups randomly: a control group, a DOX group, DOX groups treated with Tan IIA (DOX+Tan IIA) at dosages of 2.5, 5 and 10 mg/kg/day and DOX groups treated with N-acetylcysteine (NAC) at dosages of 200 mg/kg/day. RESULT The results demonstrated that Tan IIA significantly increased cell viability and protected against DOX-induced apoptosis. RNA-sequencing showed that the genes expression associated with the apoptotic signaling pathway was altered by Tan IIA. Among the differentially expressed genes, death-domain associated protein (DAXX), which plays an critical role in apoptotic signaling, exhibited increased expression under Tan IIA treatment. In addition, RNA interference was used to silence the expression of DAXX, which abolished Tan IIA-mediated protection against DOX-induced apoptosis; this effect was associated with extracellular signal-regulated protein kinase 1/2 (ERK1/2) and mitogen-activated protein kinase (MEK) expression. In the in vivo study, the echocardiography results revealed that heart function was rescued by Tan IIA, and the histomorphology results showed that Tan IIA prevented myocardial structural alteration and myofibril disruption. Furthermore, Tan IIA induced the expressions of DAXX, p-ERK1/2 and p-MEK. Tan IIA also inhibited apoptosis by suppressing the expression of cleaved caspase-8, p-P38 and cleaved caspase-3. CONCLUSION Our results provide novel interpretations into the important role of DAXX in DOX-induced cardiotoxicity and show that Tan IIA may be a novel agent strategy for HF treatment via activating the DAXX/MEK/ERK1/2 pathway.
Collapse
Affiliation(s)
- Linhao Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, #261 Huansha Road, Shangcheng District, Hangzhou, Zhejiang 310006, China; Translational Medicine Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Daqiang He
- Department of Laboratory Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Yirong Wu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, #261 Huansha Road, Shangcheng District, Hangzhou, Zhejiang 310006, China
| | - Lishui Shen
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, #261 Huansha Road, Shangcheng District, Hangzhou, Zhejiang 310006, China
| | - Yongmei Wang
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, #261 Huansha Road, Shangcheng District, Hangzhou, Zhejiang 310006, China
| | - Yizhou Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, #261 Huansha Road, Shangcheng District, Hangzhou, Zhejiang 310006, China.
| |
Collapse
|
217
|
Vora A, Di Pasquale A, Kolhapure S, Agrawal A, Agrawal S. The need for vaccination in adults with chronic (noncommunicable) diseases in India - lessons from around the world. Hum Vaccin Immunother 2022; 18:2052544. [PMID: 35416747 PMCID: PMC9225226 DOI: 10.1080/21645515.2022.2052544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Worldwide, chronic diseases (noncommunicable diseases [NCDs]) cause 41 million (71%) deaths annually. They are the leading cause of mortality in India, contributing to 60% of total deaths each year. Individuals with these diseases are more susceptible to vaccine-preventable diseases (VPDs) and have an increased risk of associated disease severity and complications. This poses a substantial burden on healthcare systems and economies, exemplified by the COVID-19 pandemic. Vaccines are an effective strategy to combat these challenges; however, utilization rates are inadequate. With India running one of the world’s largest COVID-19 vaccination programs, this presents an opportunity to improve vaccination coverage for all VPDs. Here we discuss the burden of VPDs in those with NCDs, the benefit of vaccinations, current challenges and possible strategies that may facilitate implementation and accessibility of vaccination programs. Effective vaccination will have a significant impact on the disease burden of both VPDs and NCDs and beyond.
What is already known on this topic?
Annually, chronic or noncommunicable diseases (NCDs) cause >40 million deaths worldwide and 60% of all deaths in India Adults with these diseases are more susceptible to vaccine-preventable diseases (VPDs); however, vaccine utilization is inadequate in this population
What is added by this report?
We highlight the benefits of vaccination in adults with NCDs that extend beyond disease prevention We discuss key challenges in implementing adult vaccination programs and provide practical solutions
What are the implications for public health practice?
Raising awareness about the benefits of vaccinations, particularly for those with NCDs, and providing national guidelines with recommendations from medical societies, will increase vaccine acceptance Adequate vaccine acceptance will reduce the VPD burden in this vulnerable population
Collapse
Affiliation(s)
- Agam Vora
- Department of Chest & TB, Dr. R. N. Cooper Municipal General Hospital, Mumbai, India
| | | | | | | | | |
Collapse
|
218
|
Lenzini L, Caroccia B, Seccia TM, Rossi GP. Peptidergic G Protein-Coupled Receptor Regulation of Adrenal Function: Bench to Bedside and Back. Endocr Rev 2022; 43:1038-1050. [PMID: 35436330 DOI: 10.1210/endrev/bnac011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Indexed: 11/19/2022]
Abstract
An altered secretion of adrenocortical and adrenomedullary hormones plays a role in the clinical syndromes of primary aldosteronism (PA), Cushing, and pheochromocytoma. Moreover, an altered production of adrenocortical hormones and/or an abnormal release of factors by the adrenal medulla are involved in several other diseases, including high blood pressure, congestive heart failure, liver cirrhosis, nephrotic syndrome, primary reninism, renovascular hypertension, Addison disease, Bartter, Gitelman, and virilization syndromes. Understanding the regulation of adrenal function and the interactions between adrenal cortex and medulla is, therefore, the prerequisite for mechanistic understanding of these disorders. Accumulating evidence indicates that the modulation of adrenal hormone biosynthesis is a process far more complex than originally thought, as it involves several factors, each cooperating with the other. Moreover, the tight vascular and neural interconnections between the adrenal cortex and medulla underlie physiologically relevant autocrine/paracrine interactions involving several peptides. Besides playing a pathophysiological role in common adrenal diseases, these complex mechanisms could intervene also in rare diseases, such as pheochromocytoma concomitant with adrenal Cushing or with PA, and PA co-occurring with Cushing, through mechanisms that remain to be fully understood at the molecular levels. Heterodimerization of G protein-coupled receptors (GPCRs) induced by peptide signaling is a further emerging new modulatory mechanism capable of finely tuning adrenal hormones synthesis and release. In this review we will examine current knowledge on the role of peptides that act via GPCRs in the regulation of adrenal hormone secretion with a particular focus on autocrine-paracrine signals.
Collapse
Affiliation(s)
- Livia Lenzini
- Emergency Medicine Unit, Center for blood pressure disorders -Regione Veneto and Specialized Center of Excellence for Hypertension of the European Society of Hypertension, Department of Medicine-DIMED, University of Padua, 35126 Padua, Italy
| | - Brasilina Caroccia
- Emergency Medicine Unit, Center for blood pressure disorders -Regione Veneto and Specialized Center of Excellence for Hypertension of the European Society of Hypertension, Department of Medicine-DIMED, University of Padua, 35126 Padua, Italy
| | - Teresa Maria Seccia
- Emergency Medicine Unit, Center for blood pressure disorders -Regione Veneto and Specialized Center of Excellence for Hypertension of the European Society of Hypertension, Department of Medicine-DIMED, University of Padua, 35126 Padua, Italy
| | - Gian Paolo Rossi
- Emergency Medicine Unit, Center for blood pressure disorders -Regione Veneto and Specialized Center of Excellence for Hypertension of the European Society of Hypertension, Department of Medicine-DIMED, University of Padua, 35126 Padua, Italy
| |
Collapse
|
219
|
Fu S, Liao L, Yang Y, Bai Y, Zeng Y, Wang H, Wen J. The pharmacokinetics profiles, pharmacological properties, and toxicological risks of dehydroevodiamine: A review. Front Pharmacol 2022; 13:1040154. [PMID: 36467053 PMCID: PMC9715618 DOI: 10.3389/fphar.2022.1040154] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/03/2022] [Indexed: 01/10/2024] Open
Abstract
Dehydroevodiamine (DHE) is a quinazoline alkaloid isolated from Evodiae Fructus (EF, Wuzhuyu in Chinese, Rutaceae family), a well-known traditional Chinese medicine (TCM) which is clinically applied to treat headache, abdominal pain, menstrual pain, abdominal distension, vomiting, acid regurgitation, etc. Modern research demonstrates that DHE is one of the main components of EF. In recent years, DHE has received extensive attention due to its various pharmacological activities. This review is the first to comprehensively summarize the current studies on pharmacokinetics profiles, pharmacological properties, and toxicological risks of DHE in diverse diseases. Pharmacokinetic studies have shown that DHE has a relatively good oral absorption effect in the mean concentration curves in rat plasma and high absorption in the gastrointestinal tract. In addition, distribution re-absorption and enterohepatic circulation may lead to multiple blood concentration peaks of DHE in rat plasma. DHE possesses a wide spectrum of pharmacological properties in the central nervous system, cardiovascular system, and digestive system. Moreover, DHE has anti-inflammatory effects via downregulating pro-inflammatory cytokines and inflammatory mediators. Given the favorable pharmacological activity, DHE is expected to be a potential drug candidate for the treatment of Alzheimer's disease, chronic stress, amnesia, chronic atrophic gastritis, gastric ulcers, and rheumatoid arthritis. In addition, toxicity studies have suggested that DHE has proarrhythmic effects and can impair bile acid homeostasis without causing hepatotoxicity. However, further rigorous and well-designed studies are needed to elucidate the pharmacokinetics, pharmacological effects, potential biological mechanisms, and toxicity of DHE.
Collapse
Affiliation(s)
- Shubin Fu
- Jiujiang Inspection and Testing Certification Center, Jiujiang, China
| | - Liying Liao
- Jiujiang Inspection and Testing Certification Center, Jiujiang, China
| | - Yi Yang
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Yan Bai
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Yan Zeng
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Haoyu Wang
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Jianxia Wen
- School of Food and Bioengineering, Xihua University, Chengdu, China
| |
Collapse
|
220
|
Sahoo A, Jena AK, Panda M. Experimental and clinical trial investigations of phyto-extracts, phyto-chemicals and phyto-formulations against oral lichen planus: A systematic review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115591. [PMID: 35963418 DOI: 10.1016/j.jep.2022.115591] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bio-assay guided phytoextracts and derived phytoconstituents reported having multipotent biological activities and nearly 60-80% of the global population still using natural regimens as an alternative therapeutic source. This study focused on the ethnopharmacological and experimental evidence of natural remedies that are effective in treating oral lichen planus (OLP), a chronic T-cell mediated autoimmune disease that is associated with oral cancer transmission. AIM OF THE REVIEW A number of studies have shown that antioxidants and antiinflammatory phytoextracts and phyto-constituents are effective against OLP. In this systematic review, we summarize the details of experimentally assessed ancient Traditional Chinese Medicine (TCM), Indian Ayurveda or Ayurvedic Medicine, and Japanese Kampo Medicine (JKM) regimens (crude extracts, individual phytochemicals, and phyto-formulations) that reduce oral lesion, severity index and pain associated with OLP based on studies conducted in vivo, in vitro, and in randomized controlled trials (RCTs). MATERIALS AND METHODS Experimental, clinical and RCT investigation reports were gathered and presented according to PRISMA-2020 format. Briefly, the information was obtained from PubMed, ScienceDirect, Wiley journal library, Scopus, Google Scholar with ClinicalTrials.gov (a clinical trial registry database operated by the National Library of Medicine in the United States). Further, individual phytochemical structures were verified from PubChem and ChemSpider databases and visualized by ChemDraw 18.0 software. RESULTS We summarized 11 crude phytoextracts, 7 individual phytochemicals, 9 crude formulations, 8 specific TCM and JKM herbal cocktails, and 6 RCTs/patents corroborated by multiple in vitro, in vivo and enzyme assay methods. Briefly, plants and their family name, used plant parts, reported phytochemicals and their chemical structure, treatment doses, and duration of each experiment were presented more concisely and scientifically. CONCLUSION Documentation of evidence-based natural ethnomedicines or remedies could be useful for promoting them as potential, cost-effective and less toxic alternatives or as complementary to commonly prescribed steroids towards the control of OLP.
Collapse
Affiliation(s)
- Alaka Sahoo
- Department of Skin & VD, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India.
| | - Ajaya K Jena
- Department of Skin & VD, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India
| | - Maitreyee Panda
- Department of Skin & VD, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India.
| |
Collapse
|
221
|
Silva M, Brand A, Novaes F, Rezende C. Cafestol, Kahweol and Their Acylated Derivatives: Antitumor Potential, Pharmacokinetics, and Chemopreventive Profile. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2141776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- M.A.E. Silva
- Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - A.L.M. Brand
- Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - F.J.M. Novaes
- Chemistry Department, Federal University of Viçosa, Viçosa, Brazil
| | - C.M Rezende
- Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
222
|
Singh D, Rai V, Agrawal DK. Non-Coding RNAs in Regulating Plaque Progression and Remodeling of Extracellular Matrix in Atherosclerosis. Int J Mol Sci 2022; 23:13731. [PMID: 36430208 PMCID: PMC9692922 DOI: 10.3390/ijms232213731] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/31/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
Non-coding RNAs (ncRNAs) regulate cell proliferation, migration, differentiation, inflammation, metabolism of clinically important biomolecules, and other cellular processes. They do not encode proteins but are involved in the regulatory network of various proteins that are directly related to the pathogenesis of diseases. Little is known about the ncRNA-associated mechanisms of atherosclerosis and related cardiovascular disorders. Remodeling of the extracellular matrix (ECM) is critical in the pathogenesis of atherosclerosis and related disorders; however, its regulatory proteins are the potential subjects to explore with special emphasis on epigenetic regulatory components. The activity of regulatory proteins involved in ECM remodeling is regulated by various ncRNA molecules, as evident from recent research. Thus, it is important to critically evaluate the existing literature to enhance the understanding of nc-RNAs-regulated molecular mechanisms regulating ECM components, remodeling, and progression of atherosclerosis. This is crucial since deregulated ECM remodeling contributes to atherosclerosis. Thus, an in-depth understanding of ncRNA-associated ECM remodeling may identify novel targets for the treatment of atherosclerosis and other cardiovascular diseases.
Collapse
Affiliation(s)
| | | | - Devendra K. Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
223
|
Liu M, Long X, Xu J, Chen M, Yang H, Guo X, Kang J, Ouyang Y, Luo G, Yang S, Zhou H. Hypertensive heart disease and myocardial fibrosis: How traditional Chinese medicine can help addressing unmet therapeutical needs. Pharmacol Res 2022; 185:106515. [DOI: 10.1016/j.phrs.2022.106515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/26/2022]
|
224
|
Leong IL, Yu CM, Shiao LR, Chan P, Wu KC, Leung YM. Sensitivity of Ca 2+-sensing receptor-transient receptor potential-mediated Ca 2+ influx to extracellular acidity in bEND.3 endothelial cells. CHINESE J PHYSIOL 2022; 65:277-281. [PMID: 36588353 DOI: 10.4103/0304-4920.365460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Ca2+-sensing receptors (CaSRs) are G protein-coupled receptors activated by elevated concentrations of extracellular Ca2+. In our previous works, we showed protein and functional expression of CaSR in mouse cerebral endothelial cell (EC) (bEND.3); the CaSR response (high Ca2+-elicited cytosolic [Ca2+] elevation) was unaffected by suppression of phospholipase C but in part involved Ca2+ influx through transient receptor potential V1 (TRPV1) channels. In this work, we investigated if extracellular acidity affected CaSR-mediated Ca2+ influx triggered by high (3 mM) Ca2+ (CaSR agonist), 3 mM spermine (CaSR agonist), and 10 mM cinacalcet (positive allosteric modulator of CaSR). Extracellular acidosis (pH 6.8 and pH 6.0) strongly suppressed cytosolic [Ca2+] elevation triggered by high Ca2+, spermine, and cinacalcet; acidosis also inhibited Mn2+ influx stimulated by high Ca2+ and cinacalcet. Purinoceptor-triggered Ca2+ response, however, was not suppressed by acidosis. Extracellular acidity also did not affect membrane potential, suggesting suppressed CaSR-mediated Ca2+ influx in acidity did not result from the reduced electrical driving force for Ca2+. Our results suggest Ca2+ influx through a putative CaSR-TRP complex in bEND.3 EC was sensitive to extracellular pH.
Collapse
Affiliation(s)
- Iat-Lon Leong
- Division of Cardiology, Department of Internal Medicine, Kiang Wu Hospital, Macau, China
| | - Chung-Ming Yu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Lian-Ru Shiao
- Department of Physiology, China Medical University, Taichung, Taiwan
| | - Paul Chan
- Division of Cardiology, Department of Medicine, Taipei Medical University Wan Fang Hospital, Taipei, Taiwan
| | - King-Chuen Wu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Chiayi; Department of Nursing, Chang Gung University of Science and Technology, Chiayi; Department of Information Management, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
| | - Yuk-Man Leung
- Department of Physiology, China Medical University, Taichung, Taiwan
| |
Collapse
|
225
|
Bioactive abietane diterpenes and benzofuran neolignans from the resins of Toxicodendron vernicifluum. Fitoterapia 2022; 163:105332. [DOI: 10.1016/j.fitote.2022.105332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/25/2022] [Accepted: 10/09/2022] [Indexed: 11/23/2022]
|
226
|
Ying Y, Gong L, Tao X, Ding J, Chen N, Yao Y, Liu J, Chen C, Zhu T, Jiang P. Genetic Knockout of TRPM2 Increases Neuronal Excitability of Hippocampal Neurons by Inhibiting Kv7 Channel in Epilepsy. Mol Neurobiol 2022; 59:6918-6933. [PMID: 36053438 DOI: 10.1007/s12035-022-02993-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/07/2022] [Indexed: 11/30/2022]
Abstract
Epilepsy is a chronic brain disease that makes serious cognitive and motor retardation. Ion channels affect the occurrence of epilepsy in various ways, but the mechanisms have not yet been fully elucidated. Transient receptor potential melastain2 (TRPM2) ion channel is a non-selective cationic channel that can permeate Ca2+ and critical for epilepsy. Here, TRPM2 gene knockout mice were used to generate a chronic kindling epilepsy model by PTZ administration in mice. We found that TRPM2 knockout mice were more susceptible to epilepsy than WT mice. Furthermore, the neuronal excitability in the hippocampal CA1 region of TRPM2 knockout mice was significantly increased. Compared with WT group, there were no significant differences in the input resistance and after hyperpolarization of CA1 neurons in TRPM2 knockout mice. Firing adaptation rate of hippocampal CA1 pyramidal neurons of TRPM2 knockout mice was lower than that of WT mice. We also found that activation of Kv7 channel by retigabine reduced the firing frequency of action potential in the hippocampal pyramidal neurons of TRPM2 knockout mice. However, inhibiting Kv7 channel increased the firing frequency of action potential in hippocampal pyramidal neurons of WT mice. The data suggest that activation of Kv7 channel can effectively reduce epileptic seizures in TRPM2 knockout mice. We conclude that genetic knockout of TRPM2 in hippocampal CA1 pyramidal neurons may increase neuronal excitability by inhibiting Kv7 channel, affecting the susceptibility to epilepsy. These findings may provide a potential therapeutic target for epilepsy.
Collapse
Affiliation(s)
- Yingchao Ying
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Lifen Gong
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiaohan Tao
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Junchao Ding
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Department of Pediatrics, Yiwu Maternal and Child Health Care Hospital, Yiwu, China
| | - Nannan Chen
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yinping Yao
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Department of Pediatrics, Shaoxing People's Hospital, Shaoxing, China
| | - Jiajing Liu
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Chen Chen
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Tao Zhu
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Peifang Jiang
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| |
Collapse
|
227
|
Eldesouki S, Qadri R, Abu Helwa R, Barqawi H, Bustanji Y, Abu-Gharbieh E, El-Huneidi W. Recent Updates on the Functional Impact of Kahweol and Cafestol on Cancer. Molecules 2022; 27:molecules27217332. [PMID: 36364160 PMCID: PMC9654648 DOI: 10.3390/molecules27217332] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/25/2022] Open
Abstract
Kahweol and cafestol are two diterpenes extracted from Coffea arabica beans that have distinct biological activities. Recent research describes their potential activities, which include anti-inflammatory, anti-diabetic, and anti-cancer properties, among others. The two diterpenes have been shown to have anticancer effects in various in vitro and in vivo cancer models. This review aims to shed light on the recent developments regarding the potential effects of kahweol and cafestol on various cancers. A systematic literature search through Google Scholar and PubMed was performed between February and May 2022 to collect updates about the potential effects of cafestol and kahweol on different cancers in in vitro and in vivo models. The search terms “Kahweol and Cancer” and “Cafestol and Cancer” were used in this literature review as keywords; the findings demonstrated that kahweol and cafestol exhibit diverse effects on different cancers in in vitro and in vivo models, showing pro-apoptotic, cytotoxic, anti-proliferative, and anti-migratory properties. In conclusion, the diterpenes kahweol and cafestol display significant anticancer effects, while remarkably unaffecting normal cells. Our results show that both kahweol and cafestol exert their actions on various cancers via inducing apoptosis and inhibiting cell growth. Additionally, kahweol acts by inhibiting cell migration.
Collapse
Affiliation(s)
- Salma Eldesouki
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Rama Qadri
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Rashid Abu Helwa
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hiba Barqawi
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Yasser Bustanji
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Eman Abu-Gharbieh
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence: (E.A.-G.); (W.E.-H.); Tel.: +971-65057289 (E.A.-G.); +971-65057222 (W.E.-H.)
| | - Waseem El-Huneidi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence: (E.A.-G.); (W.E.-H.); Tel.: +971-65057289 (E.A.-G.); +971-65057222 (W.E.-H.)
| |
Collapse
|
228
|
Chen YF, Wu KJ, Siao LR, Tsai HY. Trilinolein, a Natural Triacylglycerol, Protects Cerebral Ischemia through Inhibition of Neuronal Apoptosis and Ameliorates Intimal Hyperplasia via Attenuation of Migration and Modulation of Matrix Metalloproteinase-2 and RAS/MEK/ERK Signaling Pathway in VSMCs. Int J Mol Sci 2022; 23:12820. [PMID: 36361610 PMCID: PMC9658252 DOI: 10.3390/ijms232112820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/02/2022] [Accepted: 10/20/2022] [Indexed: 09/11/2023] Open
Abstract
Cerebrovascular disease is one of the leading causes of disability and death worldwide, and seeking a potential treatment is essential. Trilinolein (TriL) is a natural triacylglycerol presented in several plants. The effects of TriL on cerebrovascular diseases such as cerebral ischemia and carotid stenosis have never been studied. Accordingly, we investigated the protection of TriL on cerebral ischemia/reperfusion (I/R) and vascular smooth muscle cell (VSMC) migration in vivo and in vitro. The cerebral infarction area, the intima to media area (I/M ratio), and proliferating cell nuclear antigen (PCNA)-staining of the carotid artery were measured. Platelet-derived growth factor (PDGF)-BB-stimulated A7r5 cell migration and potential mechanisms of TriL were investigated by wound healing, transwell, and Western blotting. TriL (50, 100, and 200 mg/kg, p.o.) reduced: the cerebral infarction area; neurological deficit; TUNEL-positive apoptosis; intimal hyperplasia; and PCNA-positive cells in rodents. TriL (5, 10, and 20 µM) significantly inhibited PDGF-BB-stimulated A7r5 cell migration and reduced matrix metalloproteinase-2 (MMP-2), Ras, MEK, and p-ERK protein levels in PDGF-BB-stimulated A7r5 cells. TriL is protective in models of I/R-induced brain injury, carotid artery ligation-induced intimal hyperplasia, and VSMC migration both in vivo and in vitro. TriL could be potentially efficacious in preventing cerebral ischemia and cerebrovascular diseases.
Collapse
Affiliation(s)
- Yuh-Fung Chen
- Department of Pharmacology, China Medical University, Taichung 404333, Taiwan
- Department of Pharmacy, China Medical University Hospital, Taichung 404332, Taiwan
| | - Kuo-Jen Wu
- Department of Pharmacology, China Medical University, Taichung 404333, Taiwan
| | - Lian-Ru Siao
- Department of Pharmacology, China Medical University, Taichung 404333, Taiwan
| | - Huei-Yann Tsai
- Department of Pharmacy, China Medical University Hospital, Taichung 404332, Taiwan
| |
Collapse
|
229
|
Aminoglycosides use has a risk of acute kidney injury in patients without prior chronic kidney disease. Sci Rep 2022; 12:17212. [PMID: 36241669 PMCID: PMC9568559 DOI: 10.1038/s41598-022-21074-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 09/22/2022] [Indexed: 01/06/2023] Open
Abstract
The outcome of acute kidney injury (AKI) as a result of aminoglycosides (AGs) use remains uncertain in patients without prior chronic kidney disease (CKD). Therefore, we explored the outcomes of AGs use on AKI episodes associated with renal recovery and progress in patients without prior CKD in Taiwan. This was a retrospective cohort study by using the Taipei Medical University Research Database from January 2008 to December 2019. 43,259 individuals without CKD who had received parenteral AGs were enrolled. The exposed and unexposed groups underwent propensity score matching for age, gender, patients in intensive care unit/emergency admission, and covariates, except serum hemoglobin and albumin levels. We identified an exposed group of 40,547 patients who used AGs (median age, 54.4 years; 44.3% male) and an unexposed group of 40,547 patients without AG use (median age, 55.7 years; 45.5% male). There was the risk for AKI stage 1 (adjusted hazard ratio [HR] 1.34; 95% confidence interval [CI] 1.00-1.79; p = 0.05) in patients that used AGs in comparison with the control subjects. Moreover, patients using AGs were significantly associated neither with the progression to acute kidney disease (AKD) stages nor with the progression to end-stage renal disease (ESRD) on dialysis. Further analyzed, there was an increased risk of AKI episodes for serum albumin levels less than 3.0 g/dL and hemoglobin levels less than 11.6 g/dL. Among patients without prior CKD, AGs-used individuals were associated with AKI risks, especially those at relatively low albumin (< 3.0 g/dL) or low hemoglobin (< 11.6 g/dL). That could raise awareness of AGs prescription in those patients in clinical practice.
Collapse
|
230
|
Mao Y, Zhao K, Li P, Sheng Y. The emerging role of leptin in obesity-associated cardiac fibrosis: evidence and mechanism. Mol Cell Biochem 2022; 478:991-1011. [PMID: 36214893 DOI: 10.1007/s11010-022-04562-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 09/15/2022] [Indexed: 11/24/2022]
Abstract
Cardiac fibrosis is a hallmark of various cardiovascular diseases, which is quite commonly found in obesity, and may contribute to the increased incidence of heart failure arrhythmias, and sudden cardiac death in obese populations. As an endogenous regulator of adiposity metabolism, body mass, and energy balance, obesity, characterized by increased circulating levels of the adipocyte-derived hormone leptin, is a critical contributor to the pathogenesis of cardiac fibrosis. Although there are some gaps in our knowledge linking leptin and cardiac fibrosis, this review will focus on the interplay between leptin and major effectors involved in the pathogenesis underlying cardiac fibrosis at both cellular and molecular levels based on the current reports. The profibrotic effect of leptin is predominantly mediated by activated cardiac fibroblasts but may also involve cardiomyocytes, endothelial cells, and immune cells. Moreover, a series of molecular signals with a known profibrotic property is closely involved in leptin-induced fibrotic events. A more comprehensive understanding of the underlying mechanisms through which leptin contributes to the pathogenesis of cardiac fibrosis may open up a new avenue for the rapid emergence of a novel therapy for preventing or even reversing obesity-associated cardiac fibrosis.
Collapse
Affiliation(s)
- Yukang Mao
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, People's Republic of China.,Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Kun Zhao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Peng Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.
| | - Yanhui Sheng
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, People's Republic of China. .,Department of Cardiology, Jiangsu Province Hospital, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
231
|
Apaijit K, Pakdeechote P, Maneesai P, Meephat S, Prasatthong P, Bunbupha S. Hesperidin alleviates vascular dysfunction and remodelling in high-fat/high-fructose diet-fed rats by modulating oxidative stress, inflammation, AdipoR1, and eNOS expression. Tissue Cell 2022; 78:101901. [DOI: 10.1016/j.tice.2022.101901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 10/15/2022]
|
232
|
Kang HG, Woo SJ, Lee JY, Cho HJ, Ahn J, Yang YS, Jo YJ, Kim SW, Kim SJ, Sagong M, Lee JJ, Kang M, Park HS, Byeon SH, Kim SS, Kang SW, Park KH, Lee CS. Pathogenic Risk Factors and Associated Outcomes in the Bullous Variant of Central Serous Chorioretinopathy. Ophthalmol Retina 2022; 6:939-948. [PMID: 35476957 DOI: 10.1016/j.oret.2022.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
PURPOSE To compare the clinical features, treatments, and outcomes between bullous and chronic variants of central serous chorioretinopathy (CSC). DESIGN Retrospective, observational case series. PARTICIPANTS Sixty-two eyes of 44 patients with bullous-variant CSC (bvCSC) and 97 eyes of 85 patients with nonbullous CSC. METHODS We conducted a national survey between September 1, 2020, and March 31, 2021, of members of the Korean Retina Society and obtained data of patients with bvCSC from 11 retinal centers. A comparator group comprised consecutive chronic CSC patients without bullous detachment. MAIN OUTCOME MEASURES Baseline demographics and patient characteristics were compared between groups. Secondary outcomes included factors associated with visual prognosis within the bvCSC group. RESULTS Compared with the nonbullous CSC group, the bvCSC group presented at a younger age (49 vs. 52 years; P = 0.047) and with more bilateral involvement (41% vs. 14%; P < 0.001). Systemic corticosteroid use was more prevalent in the bvCSC group, both in terms of any exposure (50% vs. 20%; P = 0.001) and long-term exposure (36% vs. 9%; P < 0.001). The bvCSC group had distinct imaging features (all P < 0.05): retinal folding (64% vs. 1%), subretinal fibrin (75% vs. 13%), multiple retinal pigment epithelium tears (24% vs. 2%), and multifocal fluorescein leakages with terminal telangiectasia (36% vs. 1%). Although bvCSC patients had worse vision at diagnosis (20/80 vs. 20/44; P = 0.003), treatment response was more robust (fluid resolution by final follow-up, 84% vs. 68%; P = 0.034) even with conservative management, resulting in similar final vision (20/52 vs. 20/45; P = 0.52). History of kidney-related (odds ratio [OR] 5.4; 95% confidence interval [CI] 1.3-18.5; P = 0.045) and autoimmune/rheumatoid diseases (OR 25.4, 95% CI 2.8-195.0; P = 0.004) showed associations with the bvCSC group. Apart from vision at diagnosis (OR 0.1, 95% CI 0.05-0.36; P < 0.001), a history of renal transplantation was most predictive of visual prognoses for bvCSC eyes (OR 0.2, 95% CI 0.04-0.75; P = 0.020). CONCLUSIONS Bullous-variant CSC may be associated with pathogenic risk factors based on underlying medical conditions and systemic corticosteroid use. Poor vision at diagnosis and history of renal transplantation were associated with poor visual outcome.
Collapse
Affiliation(s)
- Hyun Goo Kang
- Department of Ophthalmology, Institute of Vision Research, Severance Eye Hospital, Yonsei University College of Medicine, Seoul, Korea; Translational Genome Informatics Laboratory, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Korea
| | - Se Joon Woo
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Joo Yong Lee
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Han Joo Cho
- Kim's Eye Hospital, Konyang University College of Medicine, Seoul, Korea
| | - Jeeyun Ahn
- Department of Ophthalmology, Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Korea
| | - Yun Sik Yang
- Department of Ophthalmology, Wonkwang University Hospital, Wonkwang University College of Medicine, Iksan, Korea
| | - Young-Joon Jo
- Department of Ophthalmology, Chungnam National University Hospital, Daejon, Korea
| | - Seong-Woo Kim
- Department of Ophthalmology, Korea University College of Medicine, Seoul, Korea
| | - Sang Jin Kim
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Min Sagong
- Department of Ophthalmology, Yeungnam University Hospital, Yeungnam University College of Medicine, Daegu, Korea
| | - Jae Jung Lee
- Department of Ophthalmology, Pusan National University Hospital, Pusan National University School of Medicine, Yangsan, Korea
| | - Minjae Kang
- Department of Ophthalmology, Institute of Vision Research, Severance Eye Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hyo Song Park
- Department of Ophthalmology, Institute of Vision Research, Severance Eye Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Suk Ho Byeon
- Department of Ophthalmology, Institute of Vision Research, Severance Eye Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Soo Kim
- Department of Ophthalmology, Institute of Vision Research, Severance Eye Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Se Woong Kang
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyu Hyung Park
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.
| | - Christopher Seungkyu Lee
- Department of Ophthalmology, Institute of Vision Research, Severance Eye Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
233
|
Erol I, Hazman Ö, Aksu M, Bulut E. Synergistic effect of ZnO nanoparticles and hesperidin on the antibacterial properties of chitosan. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1973-1997. [PMID: 35797143 DOI: 10.1080/09205063.2022.2099668] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
In this study, hesperidin (HSP) biological agent, which has strong antioxidant properties, was successfully transferred to ZnO nanoparticles, which were first synthesized by the hydrothermal method. Then, chitosan (CS)/ZnO-HSP nanocomposites were produced by adding different ratios of the ZnO-HSPs to the biodegradable CS biopolymer by hydrothermal method. The resulting materials were characterized using various biophysical strategies, including X-ray diffraction (XRD), Fourier transform infrared spectrometry, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy. The mean particle size of ZnO was estimated to be 29 nm from the XRD calculations and SEM measurements. The effect of the ZnO-HSPs on the thermal properties of pure CS was investigated by thermogravimetric analysis and differential scanning calorimetry techniques, and improvements were noted in the thermal properties of CS. While the Tg value of CS was 81 °C, this value increased by 13-94 °C with the addition of 6 wt% by weight of the ZnO-HSP. The antibacterial effect of materials was determined by the disc diffusion method. The ZnO-HSPs added to the CS caused the nanocomposites to have a remarkable effect against Escherichia coli and Staphylococcus aureus microorganisms. While the inhibition diameter of the CS against E. coli was 18.3, the same value increased to 22.3 for the composite containing 6 wt% the ZnO-HSP. The HSP increased the antioxidant capacity of both the ZnO-HSP particles and the CS/ZnO-HSP nanocomposites, reducing the toxic effects of ZnO nanoparticles. Thus, it was determined that the CS/ZnO-HSP nanocomposites did not have any cytotoxicity in healthy human cells. The fact that the produced nanocomposites exhibit antibacterial activity and do not harm human cells shows that they can be a safe product for health. From all these results, this triple hybrid system is hoped that it will be used in biomedical applications as a naturally-sourced, environmentally friendly, and cost-effective composite biomaterial by combining its antimicrobial and strong antioxidant properties.
Collapse
Affiliation(s)
- Ibrahim Erol
- Department of Chemistry, Faculty of Science and Arts, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Ömer Hazman
- Department of Chemistry, Faculty of Science and Arts, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Mecit Aksu
- Department of Chemistry, Faculty of Science and Arts, Düzce University, Düzce, Turkey
| | - Emine Bulut
- Department of Food Processing, Bolvadin Vocational School, Afyon Kocatepe University, Afyonkarahisar, Turkey
| |
Collapse
|
234
|
Wu W, Hendrix A, Nair S, Cui T. Nrf2-Mediated Dichotomy in the Vascular System: Mechanistic and Therapeutic Perspective. Cells 2022; 11:cells11193042. [PMID: 36231004 PMCID: PMC9563590 DOI: 10.3390/cells11193042] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 12/14/2022] Open
Abstract
Nuclear factor-erythroid 2-related factor 2 (Nrf2), a transcription factor, controls the expression of more than 1000 genes that can be clustered into different categories with distinct functions ranging from redox balance and metabolism to protein quality control in the cell. The biological consequence of Nrf2 activation can be either protective or detrimental in a context-dependent manner. In the cardiovascular system, most studies have focused on the protective properties of Nrf2, mainly as a key transcription factor of antioxidant defense. However, emerging evidence revealed an unexpected role of Nrf2 in mediating cardiovascular maladaptive remodeling and dysfunction in certain disease settings. Herein we review the role of Nrf2 in cardiovascular diseases with a focus on vascular disease. We discuss the negative effect of Nrf2 on the vasculature as well as the potential underlying mechanisms. We also discuss the clinical relevance of targeting Nrf2 pathways for the treatment of cardiovascular and other diseases.
Collapse
Affiliation(s)
- Weiwei Wu
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Andrew Hendrix
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Sharad Nair
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209, USA
- Columbia VA Health System, Wm. Jennings Bryan Dorn VA Medical Center, Columbia, SC 29209, USA
| | - Taixing Cui
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209, USA
- Columbia VA Health System, Wm. Jennings Bryan Dorn VA Medical Center, Columbia, SC 29209, USA
- Correspondence: ; Tel.: +1-803-216-3804
| |
Collapse
|
235
|
Nutraceutical Prevention of Diabetic Complications—Focus on Dicarbonyl and Oxidative Stress. Curr Issues Mol Biol 2022; 44:4314-4338. [PMID: 36135209 PMCID: PMC9498143 DOI: 10.3390/cimb44090297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/25/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Oxidative and dicarbonyl stress, driven by excess accumulation of glycolytic intermediates in cells that are highly permeable to glucose in the absence of effective insulin activity, appear to be the chief mediators of the complications of diabetes. The most pathogenically significant dicarbonyl stress reflects spontaneous dephosphorylation of glycolytic triose phosphates, giving rise to highly reactive methylglyoxal. This compound can be converted to harmless lactate by the sequential activity of glyoxalase I and II, employing glutathione as a catalyst. The transcription of glyoxalase I, rate-limiting for this process, is promoted by Nrf2, which can be activated by nutraceutical phase 2 inducers such as lipoic acid and sulforaphane. In cells exposed to hyperglycemia, glycine somehow up-regulates Nrf2 activity. Zinc can likewise promote glyoxalase I transcription, via activation of the metal-responsive transcription factor (MTF) that binds to the glyoxalase promoter. Induction of glyoxalase I and metallothionein may explain the protective impact of zinc in rodent models of diabetic complications. With respect to the contribution of oxidative stress to diabetic complications, promoters of mitophagy and mitochondrial biogenesis, UCP2 inducers, inhibitors of NAPDH oxidase, recouplers of eNOS, glutathione precursors, membrane oxidant scavengers, Nrf2 activators, and correction of diabetic thiamine deficiency should help to quell this.
Collapse
|
236
|
Can EGFR be a therapeutic target in breast cancer? Biochim Biophys Acta Rev Cancer 2022; 1877:188789. [PMID: 36064121 DOI: 10.1016/j.bbcan.2022.188789] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/20/2022]
Abstract
Epidermal growth factor receptor (EGFR) is highly expressed in certain cancer types and is involved in regulating the biological characteristics of cancer progression, including proliferation, metastasis, and drug resistance. Various medicines targeting EGFR have been developed and approved for several cancer types, such as lung and colon cancer. To date, however, EGFR inhibitors have not achieved satisfactory clinical results in breast cancer, which continues to be the most serious malignant tumor type in females. Therefore, clarifying the underlying mechanisms related to the ineffectiveness of EGFR inhibitors in breast cancer and developing new EGFR-targeted strategies (e.g., combination therapy) remain critical challenges. Various studies have demonstrated aberrant expression and maintenance of EGFR levels in breast cancer. In this review, we summarize the regulatory mechanisms underlying EGFR protein expression in breast cancer cells, including EGFR mutations, amplification, endocytic dysfunction, recycling acceleration, and degradation disorders. We also discuss potential therapeutic strategies that act directly or indirectly on EGFR, including reducing EGFR protein expression, treating the target protein to mediate precise clearance, and inhibiting non-EGFR signaling pathways. This review should provide new therapeutic perspectives for breast cancer patients with high EGFR expression.
Collapse
|
237
|
Li X, Yang Y, Zhang B, Lin X, Fu X, An Y, Zou Y, Wang JX, Wang Z, Yu T. Lactate metabolism in human health and disease. Signal Transduct Target Ther 2022; 7:305. [PMID: 36050306 PMCID: PMC9434547 DOI: 10.1038/s41392-022-01151-3] [Citation(s) in RCA: 523] [Impact Index Per Article: 174.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/17/2022] [Accepted: 08/09/2022] [Indexed: 12/29/2022] Open
Abstract
The current understanding of lactate extends from its origins as a byproduct of glycolysis to its role in tumor metabolism, as identified by studies on the Warburg effect. The lactate shuttle hypothesis suggests that lactate plays an important role as a bridging signaling molecule that coordinates signaling among different cells, organs and tissues. Lactylation is a posttranslational modification initially reported by Professor Yingming Zhao’s research group in 2019. Subsequent studies confirmed that lactylation is a vital component of lactate function and is involved in tumor proliferation, neural excitation, inflammation and other biological processes. An indispensable substance for various physiological cellular functions, lactate plays a regulatory role in different aspects of energy metabolism and signal transduction. Therefore, a comprehensive review and summary of lactate is presented to clarify the role of lactate in disease and to provide a reference and direction for future research. This review offers a systematic overview of lactate homeostasis and its roles in physiological and pathological processes, as well as a comprehensive overview of the effects of lactylation in various diseases, particularly inflammation and cancer.
Collapse
Affiliation(s)
- Xiaolu Li
- Center for Regenerative Medicine, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University; Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Bei Zhang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xiaotong Lin
- Department of Respiratory Medicine, Qingdao Municipal Hospital, Qingdao, 266011, China
| | - Xiuxiu Fu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China
| | - Yi An
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266555, China
| | - Yulin Zou
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China
| | - Jian-Xun Wang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Zhibin Wang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China.
| | - Tao Yu
- Center for Regenerative Medicine, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University; Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China.
| |
Collapse
|
238
|
Suppression of Ca 2+ oscillations by SERCA inhibition in human alveolar type 2 A549 cells: rescue by ochratoxin A but not CDN1163. Life Sci 2022; 308:120913. [PMID: 36037871 DOI: 10.1016/j.lfs.2022.120913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022]
Abstract
AIMS Lung type 2 alveolar cells, by secreting surfactant to lower surface tension, contribute to enhance lung compliance. Stretching, as a result of lung expansion, triggers type 1 alveolar cell to release ATP, which in turn stimulates Ca2+-dependent surfactant secretion by neighboring type 2 cells. In this report, we studied ATP-triggered Ca2+ signaling in human alveolar type 2 A549 cells. MAIN METHODS Ca2+ signaling was examined using microfluorimetric measurement with fura-2 as fluorescent dye. KEY FINDINGS Ca2+ oscillations triggered by ATP relied on inositol 1,4,5-trisphosphate-induced Ca2+ release and store-operated Ca2+ entry. Pathological conditions such as influenza virus infection and diabetes reportedly inhibit sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA). We found that a very mild inhibition of SERCA by cyclopiazonic acid (CPA) sufficed to decrease Ca2+ oscillation frequency and the percentage of cells exhibiting Ca2+ oscillations. Ochratoxin A (OTA), an activator of SERCA, could prevent the suppressive effects by CPA. Inhibition of SERCA by hydrogen peroxide also suppressed Ca2+ oscillations. Interestingly, hydrogen peroxide-induced inhibition was prevented by OTA but aggravated by CDN1163, an allosteric activator of SERCA. CDN1163 also had an untoward effect of releasing intracellular Ca2+. SIGNIFICANCE Different modes of activation of SERCA may determine the outcome of rescue of Ca2+ oscillations in case of SERCA inhibition in alveolar type 2 cells.
Collapse
|
239
|
Lipopolysaccharide affects energy metabolism and elevates nicotinamide N-methyltransferase level in human aortic endothelial cells (HAEC). Int J Biochem Cell Biol 2022; 151:106292. [PMID: 36038127 DOI: 10.1016/j.biocel.2022.106292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/10/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022]
Abstract
This study aimed to investigate the putative role of nicotinamide N-methyltransferase in the metabolic response of human aortic endothelial cells. This enzyme catalyses S-adenosylmethionine-mediated methylation of nicotinamide to methylnicotinamide. This reaction is accompanied by the reduction of the intracellular nicotinamide and S-adenosylmethionine content. This may affect NAD+ synthesis and various processes of methylation, including epigenetic modifications of chromatin. Particularly high activity of nicotinamide N-methyltransferase is detected in liver, many neoplasms as well as in various cells in stressful conditions. The elevated nicotinamide N-methyltransferase content was also found in endothelial cells treated with statins. Although the exogenous methylnicotinamide has been postulated to induce a vasodilatory response, the specific metabolic role of nicotinamide N-methyltransferase in vascular endothelium is still unclear. Treatment of endothelial cells with bacterial lipopolysaccharide evokes several metabolic and functional consequences which built a multifaceted physiological response of endothelium to bacterial infection. Among the spectrum of biochemical changes substantially elevated protein level of nicotinamide N-methyltransferase was particularly intriguing. Here it has been shown that silencing of the nicotinamide N-methyltransferase gene influences several changes which are observed in cells treated with lipopolysaccharide. They include altered energy metabolism and rearrangement of the mitochondrial network. A complete explanation of the mechanisms behind the protective consequences of the nicotinamide N-methyltransferase deficiency in cells treated with lipopolysaccharide needs further investigation.
Collapse
|
240
|
Sutkowy P, Wróblewska J, Wróblewski M, Nuszkiewicz J, Modrzejewska M, Woźniak A. The Impact of Exercise on Redox Equilibrium in Cardiovascular Diseases. J Clin Med 2022; 11:jcm11164833. [PMID: 36013072 PMCID: PMC9410476 DOI: 10.3390/jcm11164833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/05/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiovascular diseases constitute the most important public health problem in the world. They are characterized by inflammation and oxidative stress in the heart and blood. Physical activity is recognized as one of the best ways to prevent these diseases, and it has already been applied in treatment. Physical exercise, both aerobic and anaerobic and single and multiple, is linked to the oxidant–antioxidant imbalance; however, this leads to positive adaptive changes in, among others, the increase in antioxidant capacity. The goal of the paper was to discuss the issue of redox equilibrium in the human organism in the course of cardiovascular diseases to systemize updated knowledge in the context of exercise impacts on the organism. Antioxidant supplementation is also an important issue since antioxidant supplements still have great potential regarding their use as drugs in these diseases.
Collapse
|
241
|
Addressing the Neuroprotective Actions of Coffee in Parkinson’s Disease: An Emerging Nutrigenomic Analysis. Antioxidants (Basel) 2022; 11:antiox11081587. [PMID: 36009304 PMCID: PMC9405141 DOI: 10.3390/antiox11081587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Caffeine is one of the predominant dietary components and psychostimulants present in coffee, a widely appreciated beverage. Corroborating epidemiological and laboratory evidence have suggested an inverse association between the dietary intakes of coffee and the risk of Parkinson’s Disease (PD). Growing attention has been paid to the impact of coffee consumption and genetic susceptibility to PD pathogenesis. Coffee is believed to play prominent roles in mediating the gene makeup and influencing the onset and progression of PD. The current review documents a current discovery of the coffee × gene interaction for the protective management of PD. The evidence underlying its potent impacts on the adenosine receptors (A2AR), estrogen receptors (ESR), heme oxygenase (HO), toxicant responsive genes, nitric oxide synthase (NOS), cytochrome oxidase (Cox), familial parkinsonism genetic susceptibility loci, bone marrow stromal cell antigen 1 (BST1), glutamate receptor gene and apolipoprotein E (APOE) genotype expressions is outlined. Furthermore, the neuroprotective mechanisms of coffee for the amelioration of PD are elucidated.
Collapse
|
242
|
Cui C, Wang X, Zhang S, Wu H, Li M, Dong L, Yan C, Li D. Progesterone Reduces ATP-Induced Pyroptosis of SH-SY5Y Cells. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4827444. [PMID: 35993057 PMCID: PMC9391192 DOI: 10.1155/2022/4827444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/06/2022] [Accepted: 07/21/2022] [Indexed: 11/18/2022]
Abstract
Aim To investigate the mechanism of progesterone inhibiting the scorch death of SH-SY5Y cells induced by exogenous adenosine triphosphate (ATP). Methods SH-SY5Y cells with good logarithmic growth were used in the experiment. The cells were randomly divided into 5 groups: normal control group, DMSO group, BBG group, ATP group, and ATP+progesterone group. The cell survival rate of each group was measured by CCK-8 method. The expressions of P2X7 receptor, caspase-1, caspase-11, and IL-1β were detected by western blotting. Results (1) After SH-SY5Y cells were treated with ATP at different concentrations (1, 3, 6, and 9 mmol/L) for 2 hours, the cell survival rate decreased in a concentration-dependent manner compared with the normal blank group. The results showed that the optimal lethal concentration of ATP was 6 mmol/L. SH-SY5Y cells were preincubated with progesterone at different concentrations (3, 10, 30, and 100 nmol/L) for 30 minutes and then incubated with 6 mmol/L ATP. The cell survival rate of this group was significantly improved (P < 0.01). The optimal concentration of progesterone to improve cell survival and inhibit cell death was 30 nmol/L. (2) Compared to the control group, there was no significant difference (P > 0.05) in P2X7 receptor, caspase-1, caspase-11, and IL-1β with the DMSO group (0.001% DMSO, 24 h) and BBG group (bbg1 mmol/L, 24 h). (3) In the ATP group, the expression of P2X7 receptor and caspase-1 (the key protein of classical cell death pathway) increased significantly (P < 0.01), which was related to inflammatory factor IL-1β with consistent performance (P < 0.01). There was no significant change in caspase-11 (the key protein of nonclassical focal death pathway) (P > 0.05). (4) The expression of P2X7 receptor, caspase-1, and inflammatory factor IL-1β in the progesterone+ATP group was significantly downregulated (P < 0.01). There was no significant change in caspase-11 (P > 0.05). Conclusion Certain dose of progesterone can inhibit the focal death of SH-SY5Y cells induced by extracellular high concentration ATP. It can reduce the expression of P2X7 receptor, inhibit the conduction pathway of cell death, reduce the release of inflammatory factor IL-1β, and improve cell survival.
Collapse
Affiliation(s)
- Chang Cui
- Department of Pathophysiology, School of Basic Medicine, Sanquan College of Xinxiang Medical University, Xinxiang, 453003 Henan, China
| | - Xiaona Wang
- Pingdingshan Industrial Vocational and Technical College, Pingdingshan, 467000 Henan, China
| | - Siyu Zhang
- Department of Pathophysiology, School of Basic Medicine, Sanquan College of Xinxiang Medical University, Xinxiang, 453003 Henan, China
| | - Hui Wu
- Department of Pathophysiology, School of Basic Medicine, Sanquan College of Xinxiang Medical University, Xinxiang, 453003 Henan, China
| | - Meijie Li
- Department of Pathophysiology, School of Basic Medicine, Sanquan College of Xinxiang Medical University, Xinxiang, 453003 Henan, China
| | - Luoxiao Dong
- Department of Pathophysiology, School of Basic Medicine, Sanquan College of Xinxiang Medical University, Xinxiang, 453003 Henan, China
| | - Chongshuai Yan
- Department of Pathophysiology, School of Basic Medicine, Sanquan College of Xinxiang Medical University, Xinxiang, 453003 Henan, China
| | - Dongliang Li
- Department of Pathophysiology, School of Basic Medicine, Sanquan College of Xinxiang Medical University, Xinxiang, 453003 Henan, China
| |
Collapse
|
243
|
Mazurara GR, Dallagnol JCC, Chatenet D, Allen BG, Hébert TE. The complicated lives of GPCRs in cardiac fibroblasts. Am J Physiol Cell Physiol 2022; 323:C813-C822. [PMID: 35938678 DOI: 10.1152/ajpcell.00120.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of different G protein-coupled receptors (GPCRs) in the cardiovascular system is well understood in cardiomyocytes and vascular smooth muscle cells (VSMCs). In the former, stimulation of Gs-coupled receptors leads to increases in contractility, while stimulation of Gq-coupled receptors modulates cellular survival and hypertrophic responses. In VSMCs, stimulation of GPCRs also modulates contractile and cell growth phenotypes. Here, we will focus on the relatively less well studied effects of GPCRs in cardiac fibroblasts, focusing on key signalling events involved in the activation and differentiation of these cells. We also review the hierarchy of signalling events driving the fibrotic response and the communications between fibroblasts and other cells in the heart. We discuss how such events may be distinct depending on where the GPCRs and their associated signalling machinery are localized in these cells with an emphasis on nuclear membrane-localized receptors. Finally, we explore what such connections between cell surface and nuclear GPCR signalling might mean for cardiac fibrosis.
Collapse
Affiliation(s)
- Grace R Mazurara
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Juliana C C Dallagnol
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada.,Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), Université du Québec, Laval, Québec, Canada.,Research Center, Montreal Heart Institute, Montreal, Quebec, Canada
| | - David Chatenet
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), Université du Québec, Laval, Québec, Canada
| | - Bruce G Allen
- Research Center, Montreal Heart Institute, Montreal, Quebec, Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| |
Collapse
|
244
|
Sung LC, Chen CC, Liu SH, Chiu CC, Yang TY, Lin CH, Fan YA, Jian W, Lei MH, Yeh HT, Hsu MH, Hao WR, Liu JC. Effect of Influenza Vaccination on the Reduction of the Incidence of Chronic Kidney Disease and Dialysis in Patients with Type 2 Diabetes Mellitus. J Clin Med 2022; 11:jcm11154520. [PMID: 35956134 PMCID: PMC9369464 DOI: 10.3390/jcm11154520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Patients with type 2 diabetes mellitus (T2DM) have a higher risk of chronic kidney disease (CKD) due to vascular complications and chronic inflammation. T2DM contributes to a higher risk of mortality and morbidity related to influenza. In Taiwan, influenza vaccination is recommended for patients with T2DM. A previous meta-analysis reported the efficacy of influenza vaccination in reducing hospitalization and mortality in patients with diabetes; however, the renal protective effect of the vaccine remains unclear. This study evaluated whether influenza vaccination could reduce the incidence of CKD and dialysis in patients with T2DM. The study cohort included all patients aged ≥55 years who were diagnosed as having T2DM between 1 January 2000 and 31 December 2012, by using data from Taiwan’s National Health Insurance Research Database. Each patient was followed up with to assess factors associated with CKD. A time-dependent Cox proportional hazard regression model after adjustment for potential confounders was used to calculate the hazard ratio (HR) of CKD in the vaccinated and unvaccinated patients. The study population comprised 48,017 eligible patients with DM; 23,839 (49.7%) received influenza vaccination and the remaining 24,178 (50.3%) did not. The adjusted HRs (aHRs) for CKD/dialysis decreased in the vaccinated patients compared with the unvaccinated patients (influenza season, noninfluenza season, and all seasons: aHRs: 0.47/0.47, 0.48/0.49, and 0.48/0.48, respectively, all p < 0.0001). We observed similar protective effects against CKD during the influenza and noninfluenza seasons. Regardless of comorbidities or drug use, influenza vaccination was an independent protective factor. Furthermore, aHRs for CKD/dialysis were 0.71 (0.65−0.77)/0.77 (0.68−0.87), 0.57 (0.52−0.61)/0.69 (0.56−0.70), and 0.30 (0.28−0.33)/0.28 (0.24−0.31) in the patients who received 1, 2−3, and ≥4 vaccinations during the follow-up period, respectively. This population-based cohort study demonstrated that influenza vaccination exerts a dose-dependent and synergistic protective effect against CKD in the patients with T2DM with associated risk factors.
Collapse
Affiliation(s)
- Li-Chin Sung
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan; (L.-C.S.); (C.-C.C.); (C.-C.C.); (T.-Y.Y.); (Y.-A.F.)
- Taipei Heart Institute, Taipei Medical University, Taipei 110, Taiwan;
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Primary Care Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan;
| | - Chun-Chao Chen
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan; (L.-C.S.); (C.-C.C.); (C.-C.C.); (T.-Y.Y.); (Y.-A.F.)
- Taipei Heart Institute, Taipei Medical University, Taipei 110, Taiwan;
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Shih-Hao Liu
- Department of Primary Care Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan;
| | - Chun-Chih Chiu
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan; (L.-C.S.); (C.-C.C.); (C.-C.C.); (T.-Y.Y.); (Y.-A.F.)
- Taipei Heart Institute, Taipei Medical University, Taipei 110, Taiwan;
| | - Tsung-Yeh Yang
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan; (L.-C.S.); (C.-C.C.); (C.-C.C.); (T.-Y.Y.); (Y.-A.F.)
- Taipei Heart Institute, Taipei Medical University, Taipei 110, Taiwan;
| | - Cheng-Hsin Lin
- Taipei Heart Institute, Taipei Medical University, Taipei 110, Taiwan;
- Division of Cardiovascular Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
- Division of Cardiovascular Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yu-Ann Fan
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan; (L.-C.S.); (C.-C.C.); (C.-C.C.); (T.-Y.Y.); (Y.-A.F.)
- Taipei Heart Institute, Taipei Medical University, Taipei 110, Taiwan;
| | - William Jian
- Department of Emergency, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA;
| | - Meng-Huan Lei
- Cardiovascular Center, Lo-Hsu Medical Foundation Luodong Poh-Ai Hospital, Yilan 265, Taiwan;
| | - Hsien-Tang Yeh
- Department of Surgery, Lotung Poh-Ai Hospital, Luodong 265, Taiwan;
| | - Min-Huei Hsu
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei 110, Taiwan;
- Department of Neurosurgery, Wan-Fang Hospital, Taipei Medical University, Taipei 110, Taiwan
| | - Wen-Rui Hao
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan; (L.-C.S.); (C.-C.C.); (C.-C.C.); (T.-Y.Y.); (Y.-A.F.)
- Taipei Heart Institute, Taipei Medical University, Taipei 110, Taiwan;
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: (W.-R.H.); (J.-C.L.)
| | - Ju-Chi Liu
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan; (L.-C.S.); (C.-C.C.); (C.-C.C.); (T.-Y.Y.); (Y.-A.F.)
- Taipei Heart Institute, Taipei Medical University, Taipei 110, Taiwan;
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: (W.-R.H.); (J.-C.L.)
| |
Collapse
|
245
|
Nardi V, Franchi F, Prasad M, Fatica EM, Alexander MP, Bois MC, Lam J, Singh RJ, Meyer FB, Lanzino G, Xiong Y, Lutgens E, Lerman LO, Lerman A. Uric Acid Expression in Carotid Atherosclerotic Plaque and Serum Uric Acid Are Associated With Cerebrovascular Events. Hypertension 2022; 79:1814-1823. [PMID: 35656807 DOI: 10.1161/hypertensionaha.122.19247] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Uric acid (UA) concentration within carotid plaque and its association with cerebrovascular events have not been detected or quantified. Systemically, serum UA is a marker of inflammation and risk factor for atherosclerosis. However, its association with carotid plaque instability and stroke pathogenesis remains unclear. In patients undergoing carotid endarterectomy, we aimed to determine whether UA is present differentially in symptomatic versus asymptomatic carotid plaques and whether serum UA is associated with cerebrovascular symptoms (stroke, transient ischemic attack, or amaurosis fugax). METHODS Carotid atherosclerotic plaques were collected during carotid endarterectomy. The presence of UA was assessed using Gomori methenamine silver staining as well as anti-UA immunohistochemical staining and its quantity measured using an enzymatic colorimetric assay. Clinical information was obtained through a retrospective review of data. RESULTS UA was more commonly detected in symptomatic (n=23) compared with asymptomatic (n=9) carotid plaques by Gomori methenamine silver (20 [86.9%] versus 2 [22.2%]; P=0.001) and anti-UA immunohistochemistry (16 [69.5%] versus 1 [11.1%]; P=0.004). UA concentration was higher in symptomatic rather than asymptomatic plaques (25.1 [9.5] versus 17.9 [3.8] µg/g; P=0.021). Before carotid endarterectomy, serum UA levels were higher in symptomatic (n=341) compared with asymptomatic (n=146) patients (5.9 [interquartile range, 4.6-6.9] mg/dL versus 5.2 [interquartile range, 4.6-6.2] mg/dL; P=0.009). CONCLUSIONS The current study supports a potential role of UA as a potential tissue participant and a systemic biomarker in the pathogenesis of carotid atherosclerosis. UA may provide a mechanistic explanation for plaque instability and subsequent ischemic cerebrovascular events.
Collapse
Affiliation(s)
- Valentina Nardi
- Department of Cardiovascular Medicine (V.N., F.F., M.P., J.L., Y.X., E.L., A.L.), Mayo Clinic, Rochester, MN
| | - Federico Franchi
- Department of Cardiovascular Medicine (V.N., F.F., M.P., J.L., Y.X., E.L., A.L.), Mayo Clinic, Rochester, MN
| | - Megha Prasad
- Department of Cardiovascular Medicine (V.N., F.F., M.P., J.L., Y.X., E.L., A.L.), Mayo Clinic, Rochester, MN
| | - Erica M Fatica
- Department of Laboratory of Medicine and Pathology (E.M.F., M.P.A., M.C.B., R.J.S.), Mayo Clinic, Rochester, MN
| | - Mariam P Alexander
- Department of Laboratory of Medicine and Pathology (E.M.F., M.P.A., M.C.B., R.J.S.), Mayo Clinic, Rochester, MN
| | - Melanie C Bois
- Department of Laboratory of Medicine and Pathology (E.M.F., M.P.A., M.C.B., R.J.S.), Mayo Clinic, Rochester, MN
| | - Josephine Lam
- Department of Cardiovascular Medicine (V.N., F.F., M.P., J.L., Y.X., E.L., A.L.), Mayo Clinic, Rochester, MN
| | - Ravinder J Singh
- Department of Laboratory of Medicine and Pathology (E.M.F., M.P.A., M.C.B., R.J.S.), Mayo Clinic, Rochester, MN
| | - Fredric B Meyer
- Department of Neurosurgery (F.B.M., G.L.), Mayo Clinic, Rochester, MN
| | - Giuseppe Lanzino
- Department of Neurosurgery (F.B.M., G.L.), Mayo Clinic, Rochester, MN
| | - Yuning Xiong
- Department of Cardiovascular Medicine (V.N., F.F., M.P., J.L., Y.X., E.L., A.L.), Mayo Clinic, Rochester, MN
| | - Esther Lutgens
- Department of Cardiovascular Medicine (V.N., F.F., M.P., J.L., Y.X., E.L., A.L.), Mayo Clinic, Rochester, MN
| | - Lilach O Lerman
- Department of Nephrology and Hypertension (L.O.L.), Mayo Clinic, Rochester, MN
| | - Amir Lerman
- Department of Cardiovascular Medicine (V.N., F.F., M.P., J.L., Y.X., E.L., A.L.), Mayo Clinic, Rochester, MN
| |
Collapse
|
246
|
Blockade of protease-activated receptor 2 (PAR-2) attenuates vascular dyshomeostasis and liver dysfunction induced by dengue virus infection. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
247
|
Injectable hydrogels based on silk fibroin peptide grafted hydroxypropyl chitosan and oxidized microcrystalline cellulose for scarless wound healing. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129062] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
248
|
Rotariu D, Babes EE, Tit DM, Moisi M, Bustea C, Stoicescu M, Radu AF, Vesa CM, Behl T, Bungau AF, Bungau SG. Oxidative stress - Complex pathological issues concerning the hallmark of cardiovascular and metabolic disorders. Biomed Pharmacother 2022; 152:113238. [PMID: 35687909 DOI: 10.1016/j.biopha.2022.113238] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 12/07/2022] Open
Abstract
Oxidative stress is a complex biological process characterized by the excessive production of reactive oxygen species (ROS) that act as destroyers of the REDOX balance in the body and, implicitly, inducing oxidative damage. All the metabolisms are impaired in oxidative stress and even nucleic acid balance is influenced. ROS will promote structural changes of the tissues and organs due to interaction with proteins and phospholipids. The constellation of the cardiovascular risk factors (CVRFs) will usually develop in subjects with predisposition to cardiac disorders. Oxidative stress is usually related with hypertension (HTN), diabetes mellitus (DM), obesity and cardiovascular diseases (CVDs) like coronary artery disease (CAD), cardiomyopathy or heart failure (HF), that can develop in subjects with the above-mentioned diseases. Elements describing the complex relationship between CVD and oxidative stress should be properly explored and described because prevention may be the optimal approach. Our paper aims to expose in detail the complex physiopathology of oxidative stress in CVD occurrence and novelties regarding the phenomenon. Biomarkers assessing oxidative stress or therapy targeting specific pathways represent a major progress that actually change the outcome of subjects with CVD. New antioxidants therapy specific for each CVD represents a captivating and interesting future perspective with tremendous benefits on subject's outcome.
Collapse
Affiliation(s)
- Dragos Rotariu
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania.
| | - Emilia Elena Babes
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy of Oradea, University of Oradea, 410073 Oradea, Romania.
| | - Delia Mirela Tit
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania.
| | - Madalina Moisi
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy of Oradea, University of Oradea, 410073 Oradea, Romania.
| | - Cristiana Bustea
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy of Oradea, University of Oradea, 410073 Oradea, Romania.
| | - Manuela Stoicescu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy of Oradea, University of Oradea, 410073 Oradea, Romania.
| | - Andrei-Flavius Radu
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy of Oradea, University of Oradea, 410073 Oradea, Romania.
| | - Cosmin Mihai Vesa
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy of Oradea, University of Oradea, 410073 Oradea, Romania.
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India.
| | | | - Simona Gabriela Bungau
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania.
| |
Collapse
|
249
|
Cardioprotective Effect of Acetylsalicylic Acid in the Myocardial Ischemia-Reperfusion Model on Oxidative Stress Markers Levels in Heart Muscle and Serum. Antioxidants (Basel) 2022; 11:antiox11081432. [PMID: 35892634 PMCID: PMC9332077 DOI: 10.3390/antiox11081432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/10/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
Heart failure occurs in increased oxidative stress conditions, which contribute to the progression of pathological changes. Orally or intravenously administered acetylsalicylic acid (ASA, aspirin) is typically used in human patients with acute myocardial ischemia. The study used an experimental porcine ischemia-reperfusion model to evaluate the potential cardioprotective effect of intracoronary administered ASA on myocardial ischemia-reperfusion injury. The cardioprotective effect of ASA was evaluated by measuring selected oxidative stress markers levels in infarcted and non-infarcted myocardium 14 days after the procedure, and three times in serum, before the procedure, during the reperfusion process, and after 14-day recovery. The results showed that intracoronary administrated ASA reduced the oxidative stress. The level of oxidative stress, measured with the non-enzymatic markers total antioxidant capacity (TAC), total oxidative status (TOS), and malondialdehyde (MDA), and the enzymatic markers glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione S-transferase (GST), in heart tissue was significantly higher in a control group injected with saline. The level of oxidative stress in serum, measured with TAC, TOS, oxidative stress index (OSI), and lipofuscin (LF), was also higher in the control group than in animals injected with ASA. The confirmed cardioprotective effect of intracoronary administered ASA provides the foundation for further studies on ASA intracoronary application, which may lead to the development of a new therapy for the treatment of ischemia-reperfusion complications in humans.
Collapse
|
250
|
Wiedemann J, Coppes RP, van Luijk P. Radiation-induced cardiac side-effects: The lung as target for interacting damage and intervention. Front Oncol 2022; 12:931023. [PMID: 35936724 PMCID: PMC9354542 DOI: 10.3389/fonc.2022.931023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Radiotherapy is part of the treatment for many thoracic cancers. During this treatment heart and lung tissue can often receive considerable doses of radiation. Doses to the heart can potentially lead to cardiac effects such as pericarditis and myocardial fibrosis. Common side effects after lung irradiation are pneumonitis and pulmonary fibrosis. It has also been shown that lung irradiation has effects on cardiac function. In a rat model lung irradiation caused remodeling of the pulmonary vasculature increasing resistance of the pulmonary vascular bed, leading to enhanced pulmonary artery pressure, right ventricle hypertrophy and reduced right ventricle performance. Even more pronounced effects are observed when both, lung and heart are irradiated. The effects observed after lung irradiation show striking similarities with symptoms of pulmonary arterial hypertension. In particular, the vascular remodeling in lung tissue seems to have similar underlying features. Here, we discuss the similarities and differences of vascular remodeling observed after thoracic irradiation compared to those in pulmonary arterial hypertension patients and research models. We will also assess how this knowledge of similarities could potentially be translated into interventions which would be beneficial for patients treated for thoracic tumors, where dose to lung tissue is often unavoidable.
Collapse
Affiliation(s)
- Julia Wiedemann
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Robert P. Coppes
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Peter van Luijk
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- *Correspondence: Peter van Luijk,
| |
Collapse
|