201
|
CYP1B1 Gene Analysis and Phenotypic Correlation in Portuguese Children with Primary Congenital Glaucoma. Eur J Ophthalmol 2015; 25:474-7. [DOI: 10.5301/ejo.5000618] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2015] [Indexed: 11/20/2022]
Abstract
Purpose To investigate the prevalence of CYP1B1 mutations in Portuguese children with primary congenital glaucoma (PCG) and to study the possible correlations between the mutation status and clinical features of the disease. Methods DNA sequencing analysis of the CYP1B1 gene was used to screen 21 children with PCG followed on Paediatric Ophthalmology and Medical Genetics consultations at D. Estefania's Hospital (Centro Hospitalar de Lisboa Central, Portugal). The effect of mutations on the phenotype of the patients was also assessed. Presence and type of mutations in CYP1B1 gene, age at diagnosis, bilaterality, age at first surgery, postoperative intraocular pressure and corneal diameter, final visual acuity, number of surgical reinterventions, and number of antiglaucoma medications required postoperatively were noted. Results Mutations in the CYP1B1 gene in 6 patients (28.57%) were detected, all compound heterozygotes. Seven types of mutations were identified: c.182G>A, c.317C>A, c.535delG, c.1064_1076del, c.1159G>A, c.1310C>T, and c.1390dupT. All patients with these mutations developed bilateral PCG, whereas in the group without mutations only 7 (46.67%) showed bilateral disease. Age at diagnosis was lower in the group of patients with these mutations (0.0 ± 0.00 vs 4.5 ± 2.63 months, p<0.01). In the remaining variables (age at first surgery, postoperative intraocular pressure and corneal diameter, final visual acuity, number of surgical reinterventions and antiglaucoma medications required postoperatively), no significant differences between the groups were detected (p>0.05 for all comparisons). Conclusions This study is the first to report the variety of mutations in the CYP1B1 gene in a group of Portuguese children with PCG and to describe 2 new mutations. Genetic analysis of PCG must be carried out, although it has not yet been possible to establish a genotype-phenotype correlation, with the exception of bilaterality and early age at diagnosis.
Collapse
|
202
|
Crippa M, Rusconi D, Castronovo C, Bestetti I, Russo S, Cereda A, Selicorni A, Larizza L, Finelli P. Familial intragenic duplication of ANKRD11 underlying three patients of KBG syndrome. Mol Cytogenet 2015; 8:20. [PMID: 25838844 PMCID: PMC4383199 DOI: 10.1186/s13039-015-0126-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/13/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND KBG syndrome, a rare autosomal disorder characterised by distinctive craniofacial and skeletal features and developmental delay, is caused by haploinsufficiency of the ANKRD11 gene. RESULTS Here we describe two siblings with multiple symptoms characteristic of KBG and their mother with a milder phenotype. In the siblings, array-based comparative genomic hybridization (array CGH) identified an intragenic microduplication affecting ANKRD11 that was absent from the parents' array CGH profiles. Microsatellite analysis revealed the maternal origin of the rearrangement and interphase fluorescent in situ hybridization (i-FISH) experiments identified the rearrangement in low-level mosaicism in the mother. Molecular characterisation of the duplication allele demonstrated the presence of two mutant ANKRD11 transcripts containing a premature stop codon and predicting a truncated non-functional protein. CONCLUSIONS Similarly to deletions and point mutations, this novel pathogenetic rearrangement causes haploinsufficiency of ANKRD11, resulting in KBG syndrome.
Collapse
Affiliation(s)
- Milena Crippa
- Medical Cytogenetics and Molecular Genetics Lab, IRCCS Istituto Auxologico Italiano, via Ariosto 13, Milano, 20145 Italy
| | - Daniela Rusconi
- Medical Cytogenetics and Molecular Genetics Lab, IRCCS Istituto Auxologico Italiano, via Ariosto 13, Milano, 20145 Italy
| | - Chiara Castronovo
- Medical Cytogenetics and Molecular Genetics Lab, IRCCS Istituto Auxologico Italiano, via Ariosto 13, Milano, 20145 Italy
| | - Ilaria Bestetti
- Medical Cytogenetics and Molecular Genetics Lab, IRCCS Istituto Auxologico Italiano, via Ariosto 13, Milano, 20145 Italy ; Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, via Viotti 3/5, Milano, 20133 Italy
| | - Silvia Russo
- Medical Cytogenetics and Molecular Genetics Lab, IRCCS Istituto Auxologico Italiano, via Ariosto 13, Milano, 20145 Italy
| | - Anna Cereda
- U.O.S Clinical Genetics and Pediatrics, MBBM Foundation San Gerardo Hospital, Via G. Pergolesi, 33, Monza, (MB) 20052 Italy
| | - Angelo Selicorni
- U.O.S Clinical Genetics and Pediatrics, MBBM Foundation San Gerardo Hospital, Via G. Pergolesi, 33, Monza, (MB) 20052 Italy
| | - Lidia Larizza
- Medical Cytogenetics and Molecular Genetics Lab, IRCCS Istituto Auxologico Italiano, via Ariosto 13, Milano, 20145 Italy
| | - Palma Finelli
- Medical Cytogenetics and Molecular Genetics Lab, IRCCS Istituto Auxologico Italiano, via Ariosto 13, Milano, 20145 Italy ; Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, via Viotti 3/5, Milano, 20133 Italy
| |
Collapse
|
203
|
Uric acid crystal could inhibit Numb-induced URAT1 lysosome degradation in uric acid nephropathy. J Physiol Biochem 2015; 71:217-26. [DOI: 10.1007/s13105-015-0399-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 03/03/2015] [Indexed: 10/23/2022]
|
204
|
Trevisson E, Ludwig K, Casarin A, Di Meglio A, Greggio NA, Manara R, Lenzini E, Clementi M, Salviati L. Ichthyosis and Kallmann syndrome: not always a contiguous gene syndrome. J Dermatol Sci 2015; 78:158-60. [PMID: 25726327 DOI: 10.1016/j.jdermsci.2015.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/23/2015] [Accepted: 02/07/2015] [Indexed: 11/19/2022]
Affiliation(s)
- Eva Trevisson
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, Italy.
| | - Kathrin Ludwig
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit; University of Padova, Italy
| | - Alberto Casarin
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, Italy
| | - Annamaria Di Meglio
- Laboratory of Hematology-Oncology, Department of Woman and Child Health, University of Padova, Italy
| | - Nella Augusta Greggio
- Pediatrics Endocrinology and Adolescence Unit, Department of Woman and Child Health, University of Padova, Italy
| | | | - Elisabetta Lenzini
- Molecular Cytogenetics Laboratory, Department of Woman and Child Health, University of Padova, Italy
| | - Maurizio Clementi
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, Italy
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, Italy
| |
Collapse
|
205
|
García-Romero MT, Arenas R. New insights into genes, immunity, and the occurrence of dermatophytosis. J Invest Dermatol 2015; 135:655-657. [PMID: 25666672 DOI: 10.1038/jid.2014.498] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Fungal infections in humans are among the most prevalent diseases globally. Superficial invasion by dermatophytes leads to skin, hair, and nail infection. Even though they have usually been associated with extrinsic conditions such as immunosuppression, environmental factors, and contaminated individuals, objects, or surfaces; people are not equally susceptible to dermatophyte infection, even when they have the same risk factors. This commentary summarizes findings that provide evidence of familial or genetic predisposition to fungal infection, mediated by innate and/or adaptive immunity.
Collapse
Affiliation(s)
| | - Roberto Arenas
- Section of Mycology, Hospital General Dr. Manuel Gea González, Mexico City, Mexico
| |
Collapse
|
206
|
Wu X, Zhang J, Liu H, Mian Y, Liang B, Xie H, Zhang S, Sun B, Zhou H. Organic Anion Transporter 1 Deficiency Accelerates Learning and Memory Impairment in tg2576 Mice by Damaging Dendritic Spine Morphology and Activity. J Mol Neurosci 2015; 56:730-8. [PMID: 25725783 DOI: 10.1007/s12031-015-0507-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 01/29/2015] [Indexed: 01/23/2023]
Abstract
To investigate whether and how organic anion transporter 1 (OAT1) is involved in the process of Alzheimer's disease (AD), we crossbred OAT1 knockout mice with tg2576, the widely used AD model mice. Results here showed the heterozygous OAT1-deficient tg2576 mice developed a learning- and memory-related behavior deficiency and higher soluble Abeta amount in early stage (3 months old). Furthermore, the heterozygous mice brain slice also showed impaired long-term potentiation (LTP) and spontaneous excitatory postsynaptic currents (sEPSC). By crossbreeding heterozygous OAT1-deficient tg2576 mice with Thy-1 YFP mice, we got autofluoresced (layer 4/5 cortical neuron) heterozygous mice. By using two-photon microscope in the direct observation of mice brain in vivo or single photon confocal on slices, compared with control tg2576 mice, we found that the OAT1-deficient mice showed a higher spine numbers but with a much lesser maturity extent. Finally, by using glutamate uncaging method, we induced chemical LTP in brain slices and found that OAT1-deficient mice showed abnormal chemical-induced LTP, which meant that the deficient behavior may be caused by abnormal spine morphology and activity. Our results indicated OAT1 may be involved in AD process by regulating spine morphology and activity.
Collapse
Affiliation(s)
- Xinlin Wu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-sen University, 58 Second Zhongshan Road, Guangzhou, 510080, China,
| | | | | | | | | | | | | | | | | |
Collapse
|
207
|
Xu H, Li Z, Wang T, Wang S, Liu J, Wang DW. Novel homozygous deletion of segmentalKAL1and entireSTScause Kallmann syndrome and X-linked ichthyosis in a Chinese family. Andrologia 2015; 47:1160-5. [PMID: 25597551 DOI: 10.1111/and.12397] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2014] [Indexed: 01/04/2023] Open
Affiliation(s)
- H. Xu
- Department of Urology; Tongji Hospital, Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Z. Li
- Department of Internal Medicine and Gene Therapy Center; Tongji Hospital, Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - T. Wang
- Department of Urology; Tongji Hospital, Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - S. Wang
- Department of Urology; Tongji Hospital, Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - J. Liu
- Department of Urology; Tongji Hospital, Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - D. W. Wang
- Department of Internal Medicine and Gene Therapy Center; Tongji Hospital, Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| |
Collapse
|
208
|
Toral-López J, González-Huerta LM, Cuevas-Covarrubias SA. X linked recessive ichthyosis: Current concepts. World J Dermatol 2015; 4:129. [DOI: 10.5314/wjd.v4.i3.129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 01/31/2015] [Accepted: 05/28/2015] [Indexed: 02/06/2023] Open
|
209
|
Pathogenesis of spinal cord injury induced edema and neuropathic pain: expression of multiple isoforms of wnk1. Ann Neurosci 2014; 21:97-103. [PMID: 25206073 PMCID: PMC4158783 DOI: 10.5214/ans.0972.7531.210305] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/06/2014] [Accepted: 06/27/2014] [Indexed: 01/15/2023] Open
Abstract
Background Neuropathic pain (NP) is a common occurrence following spinal cord injury (SCI). Identification of specific molecular pathways that are involved in pain syndromes has become a major priority in current SCI research. We have investigated the role of a cation-dependent chloride transporter, Cl-regulatory protein Na+-K+-Cl- 1 (NKCC1), phosphorylation profile of NKCC1 and its specific involvement in neuropathic pain following contusion SCI (cSCI) using a rat model. Administration of the NKCC1 inhibitor bumetanide (BU) increases the mean hindpaw withdrawal latency time (WLT), thermal hyperalgesia (TH) following cSCI. These results demonstrate implication of NKCC1 co-transporter and BUin SCI-induced neuropathic pain. The with-no-lysine (K)–1 (WNK1) kinase has been shown to be an important regulator of NKCC1 phosphorylation in many systems, including nocioception. Mutations in a neuronal-specific exon of WNK1 (HSN2) was identified in patients that have hereditary sensory neuropathy type II (HSANII) also implicates WNK1 in nocioception, such that these patients have loss of perception to pain, touch and heat. In our ongoing research we proposed two studies utilizing our contusion SCI (cSCI) NP model of rat. Purpose Study 1 aimed at NKCC1 expression and activity is up-regulated following cSCI in the early edema and chronic neuropathic pain phases. Study 2 aimed at identifying the expression profile of alternatively spliced WNK1 isoforms in animals exhibiting thermal hyperalgesia (TH) following cSCI. Methods Adult male Sprague Dawley rats (275–300 g) following laminectomy received cSCI at T9 with the NYU impactor-device II by dropping 10 g weight from the height of 12.5 mm. Control rats obtained laminectomy but no impaction. Following injury, functional recovery was assessed by BBB locomotor scores on day 1, 7, 14, 21, 35, and 42 and development of thermal hyperalgesia on day 21, 28, 35, and 42 day of injury by monitoring hind paw withdraw latency time (WLT) in seconds compared with the baseline data before injury. Results Increased NKCC1 may explain observed increase in magnetic resonance imaging (MRI) T2, exhibiting NKCC1 localization in neurons. This data supports NKCC1’s role in the pathogenesis of acute and chronic phases of injury, namely spinal cord edema and chronic phase neuropathic pain. NKCC1 dependent chloride influx requires the phosphorylation at specific residues. Probing for the HSN2 exon of WNK1 reveals two key findings: i) the HSN2 exon is found in alternatively spliced neuronal isoforms found at 250 kDa and 230 kDa; ii) the 250 kDa isoform is found only in tissue that is injured. Conclusions This data implicates the NKCC1/WNK1/WNK1HSN2 involvement in post-injury response that contributes to the development of neuropathic pain. Targeting this system may have therapeutic benefit.
Collapse
|
210
|
Garavelli L, Santoro L, Iori A, Gargano G, Braibanti S, Pedori S, Melli N, Frattini D, Zampini L, Galeazzi T, Padella L, Pepe S, Wischmeijer A, Rosato S, Ivanovski I, Iughetti L, Gelmini C, Bernasconi S, Superti-Furga A, Ballabio A, Gabrielli O. Multiple sulfatase deficiency with neonatal manifestation. Ital J Pediatr 2014; 40:86. [PMID: 25516103 PMCID: PMC4299397 DOI: 10.1186/s13052-014-0086-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/28/2014] [Indexed: 11/10/2022] Open
Abstract
Multiple Sulfatase Deficiency (MSD; OMIM 272200) is a rare autosomal recessive inborn error of metabolism caused by mutations in the sulfatase modifying factor 1 gene, encoding the formylglycine-generating enzyme (FGE), and resulting in tissue accumulation of sulfatides, sulphated glycosaminoglycans, sphingolipids and steroid sulfates. Less than 50 cases have been published so far. We report a new case of MSD presenting in the newborn period with hypotonia, apnoea, cyanosis and rolling eyes, hepato-splenomegaly and deafness. This patient was compound heterozygous for two so far undescribed SUMF1 mutations (c.191C > A; p.S64X and c.818A > G; p.D273G).
Collapse
Affiliation(s)
- Livia Garavelli
- Clinical Genetics Unit, Obstetric and Pediatric Department, Istituto di Ricovero e Cura a Carattere Scientifico, Arcispedale Santa Maria Nuova, Reggio Emilia, Italy.
| | | | - Alexandra Iori
- Clinical Genetics Unit, Obstetric and Pediatric Department, Istituto di Ricovero e Cura a Carattere Scientifico, Arcispedale Santa Maria Nuova, Reggio Emilia, Italy. .,Department of Medical and Surgical Sciences of Childhood and Adult, University of Modena and Reggio Emilia, Modena, Italy.
| | - Giancarlo Gargano
- Neonatal Intensive Care Unit, Obstetric and Pediatric Department, Istituto di Ricovero e Cura a Carattere Scientifico, Arcispedale Santa Maria Nuova, Reggio Emilia, Italy.
| | - Silvia Braibanti
- Neonatal Intensive Care Unit, Obstetric and Pediatric Department, Istituto di Ricovero e Cura a Carattere Scientifico, Arcispedale Santa Maria Nuova, Reggio Emilia, Italy.
| | - Simona Pedori
- Neonatal Intensive Care Unit, Obstetric and Pediatric Department, Istituto di Ricovero e Cura a Carattere Scientifico, Arcispedale Santa Maria Nuova, Reggio Emilia, Italy.
| | - Nives Melli
- Neonatal Intensive Care Unit, Obstetric and Pediatric Department, Istituto di Ricovero e Cura a Carattere Scientifico, Arcispedale Santa Maria Nuova, Reggio Emilia, Italy.
| | - Daniele Frattini
- Pediatric Neurology Unit, Obstetric and Pediatric Department, Istituto di Ricovero e Cura a Carattere Scientifico, Arcispedale Santa Maria Nuova, Reggio Emilia, Italy.
| | | | | | | | - Stefano Pepe
- Telethon Institute of Genetics and Medicine (TIGEM), Via Pietro Castellino 111, 80131, Naples, Italy.
| | - Anita Wischmeijer
- Clinical Genetics Unit, Obstetric and Pediatric Department, Istituto di Ricovero e Cura a Carattere Scientifico, Arcispedale Santa Maria Nuova, Reggio Emilia, Italy. .,Department of Medical Genetics, Policlinico Sant'Orsola-Malpighi, University of Bologna, Bologna, Italy.
| | - Simonetta Rosato
- Clinical Genetics Unit, Obstetric and Pediatric Department, Istituto di Ricovero e Cura a Carattere Scientifico, Arcispedale Santa Maria Nuova, Reggio Emilia, Italy.
| | - Ivan Ivanovski
- Clinical Genetics Unit, Obstetric and Pediatric Department, Istituto di Ricovero e Cura a Carattere Scientifico, Arcispedale Santa Maria Nuova, Reggio Emilia, Italy.
| | - Lorenzo Iughetti
- Department of Medical and Surgical Sciences of Childhood and Adult, University of Modena and Reggio Emilia, Modena, Italy.
| | - Chiara Gelmini
- Clinical Genetics Unit, Obstetric and Pediatric Department, Istituto di Ricovero e Cura a Carattere Scientifico, Arcispedale Santa Maria Nuova, Reggio Emilia, Italy.
| | | | - Andrea Superti-Furga
- Department of Pediatrics, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland.
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Via Pietro Castellino 111, 80131, Naples, Italy. .,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA. .,Jan and Dan Duncan Neurological Research Institute, Texas Children Hospital, Houston, TX, 77030, USA. .,Medical Genetics, Department of Translational Medicine, Federico II University, Via Pansini 5, 80131, Naples, Italy.
| | | |
Collapse
|
211
|
Abstract
Potential drug-drug interactions mediated by the ATP-binding cassette (ABC) transporter and solute carrier (SLC) transporter families are of clinical and regulatory concern. However, the endogenous functions of these drug transporters are not well understood. Discussed here is evidence for the roles of ABC and SLC transporters in the handling of diverse substrates, including metabolites, antioxidants, signalling molecules, hormones, nutrients and neurotransmitters. It is suggested that these transporters may be part of a larger system of remote communication ('remote sensing and signalling') between cells, organs, body fluid compartments and perhaps even separate organisms. This broader view may help to clarify disease mechanisms, drug-metabolite interactions and drug effects relevant to diabetes, chronic kidney disease, metabolic syndrome, hypertension, gout, liver disease, neuropsychiatric disorders, inflammatory syndromes and organ injury, as well as prenatal and postnatal development.
Collapse
Affiliation(s)
- Sanjay K Nigam
- Departments of Pediatrics, Medicine, and Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0693, USA
| |
Collapse
|
212
|
Youssof S, Schrader R, Bear D, Morrison L. Hip flexion weakness is associated with impaired mobility in oculopharyngeal muscular dystrophy: a retrospective study with implications for trial design. Neuromuscul Disord 2014; 25:238-46. [PMID: 25500011 DOI: 10.1016/j.nmd.2014.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 11/06/2014] [Accepted: 11/18/2014] [Indexed: 11/15/2022]
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is a rare myopathy for which validated outcome measures are lacking, posing a barrier to clinical trials. Our goal was to identify factors associated with impaired mobility in OPMD in order to guide development of surrogate endpoints in future clinical trials. One hundred forty-four individuals with OPMD were included in this retrospective, single-center study. We made novel use of parametric time-to-event analysis to model age at initial use of assistive device for ambulation. We hypothesized that limb weakness and other markers of disease severity are associated with earlier use of assistive devices. 23.6% of individuals (34/144) progressed to use of assistive devices (mean age 66.0 ± 9.6 y). Earlier age at assistive device was associated with hip flexion Medical Research Council grade ≤3 (p <0.0001), earlier disease onset (p <0.0001), and lack of blepharoptosis surgery (p = 0.011). Markers of dysphagia severity were not associated with earlier progression to assistive devices. Our study is the first to show a statistical association between hip flexion weakness and impaired mobility in OPMD, indicating that hip flexion strength could be explored as a surrogate endpoint for use in clinical trials. Since severity of disease features may be discordant within individuals, composite outcome measures are warranted.
Collapse
Affiliation(s)
- Sarah Youssof
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States.
| | - Ronald Schrader
- Clinical and Translational Science Center, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - David Bear
- Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Leslie Morrison
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| |
Collapse
|
213
|
Abstract
Gout is a common inflammatory arthritis triggered by the crystallization of uric acid within the joints. Gout affects millions worldwide and has an increasing prevalence. Recent research has been carried out to better qualify and quantify the risk factors predisposing individuals to gout. These can largely be broken into nonmodifiable risk factors, such as gender, age, race, and genetics, and modifiable risk factors, such as diet and lifestyle. Increasing knowledge of factors predisposing certain individuals to gout could potentially lead to improved preventive practices. This review summarizes the nonmodifiable and modifiable risk factors associated with development of gout.
Collapse
Affiliation(s)
- Lindsey A MacFarlane
- Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Seoyoung C Kim
- Division of Pharmacoepidemiology and Pharmacoeconomics, Brigham and Women's Hospital, 1620 Tremont Street, Suite 3030, Boston, MA 02120, USA; Division of Rheumatology, Allergy and Immunology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
214
|
Rudnicka L, Kwiatkowska M, Rakowska A, Czuwara J, Olszewska M. Alopecia areata. How not to miss Satoyoshi syndrome? J Dermatol 2014; 41:951-6. [DOI: 10.1111/1346-8138.12633] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 08/19/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Lidia Rudnicka
- Department of Dermatology; Medical University of Warsaw; Warsaw Poland
- Department of Neuropeptides; Mossakowski Medical Research Centre; Polish Academy of Sciences; Warsaw Poland
| | | | - Adriana Rakowska
- Department of Dermatology; Medical University of Warsaw; Warsaw Poland
| | - Joanna Czuwara
- Department of Dermatology; Medical University of Warsaw; Warsaw Poland
| | | |
Collapse
|
215
|
Hurba O, Mancikova A, Krylov V, Pavlikova M, Pavelka K, Stibůrková B. Complex analysis of urate transporters SLC2A9, SLC22A12 and functional characterization of non-synonymous allelic variants of GLUT9 in the Czech population: no evidence of effect on hyperuricemia and gout. PLoS One 2014; 9:e107902. [PMID: 25268603 PMCID: PMC4182324 DOI: 10.1371/journal.pone.0107902] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 08/18/2014] [Indexed: 11/24/2022] Open
Abstract
Objective Using European descent Czech populations, we performed a study of SLC2A9 and SLC22A12 genes previously identified as being associated with serum uric acid concentrations and gout. This is the first study of the impact of non-synonymous allelic variants on the function of GLUT9 except for patients suffering from renal hypouricemia type 2. Methods The cohort consisted of 250 individuals (150 controls, 54 nonspecific hyperuricemics and 46 primary gout and/or hyperuricemia subjects). We analyzed 13 exons of SLC2A9 (GLUT9 variant 1 and GLUT9 variant 2) and 10 exons of SLC22A12 by PCR amplification and sequenced directly. Allelic variants were prepared and their urate uptake and subcellular localization were studied by Xenopus oocytes expression system. The functional studies were analyzed using the non-parametric Wilcoxon and Kruskall-Wallis tests; the association study used the Fisher exact test and linear regression approach. Results We identified a total of 52 sequence variants (12 unpublished). Eight non-synonymous allelic variants were found only in SLC2A9: rs6820230, rs2276961, rs144196049, rs112404957, rs73225891, rs16890979, rs3733591 and rs2280205. None of these variants showed any significant difference in the expression of GLUT9 and in urate transport. In the association study, eight variants showed a possible association with hyperuricemia. However, seven of these were in introns and the one exon located variant, rs7932775, did not show a statistically significant association with serum uric acid concentration. Conclusion Our results did not confirm any effect of SLC22A12 and SLC2A9 variants on serum uric acid concentration. Our complex approach using association analysis together with functional and immunohistochemical characterization of non-synonymous allelic variants did not show any influence on expression, subcellular localization and urate uptake of GLUT9.
Collapse
Affiliation(s)
- Olha Hurba
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| | - Andrea Mancikova
- Charles University in Prague, Faculty of Science, Department of Cell Biology, Prague, Czech Republic
| | - Vladimir Krylov
- Charles University in Prague, Faculty of Science, Department of Cell Biology, Prague, Czech Republic
| | - Marketa Pavlikova
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| | | | - Blanka Stibůrková
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
- Institute of Rheumatology, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
216
|
Myers A, Bernstein JA, Brennan ML, Curry C, Esplin ED, Fisher J, Homeyer M, Manning MA, Muller EA, Niemi AK, Seaver LH, Hintz SR, Hudgins L. Perinatal features of the RASopathies: Noonan syndrome, cardiofaciocutaneous syndrome and Costello syndrome. Am J Med Genet A 2014; 164A:2814-21. [PMID: 25250515 DOI: 10.1002/ajmg.a.36737] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 07/24/2014] [Indexed: 11/08/2022]
Abstract
The RASopathies are a family of developmental disorders caused by heritable defects of the RAS/MAPK signaling pathway. While the postnatal presentation of this group of disorders is well known, the prenatal and neonatal findings are less widely recognized. We report on the perinatal presentation of 10 patients with Noonan syndrome (NS), nine with Cardiofaciocutaneous syndrome (CFCS) and three with Costello syndrome (CS), in conjunction with the results of a comprehensive literature review. The majority of perinatal findings in NS, CS, and CFCS are shared: polyhydramnios; prematurity; lymphatic dysplasia; macrosomia; relative macrocephaly; respiratory distress; hypotonia, as well as cardiac and renal anomalies. In contrast, fetal arrhythmia and neonatal hypoglycemia are relatively specific to CS. NS, CS, and CFCS should all be considered as a possible diagnosis in pregnancies with a normal karyotype and ultrasound findings of a RASopathy. Recognition of the common perinatal findings of these disorders should facilitate both their prenatal and neonatal diagnosis.
Collapse
Affiliation(s)
- Angela Myers
- Division of Medical Genetics, Department of Pediatrics, Stanford University, Stanford, California
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Simpson CL, Wojciechowski R, Oexle K, Murgia F, Portas L, Li X, Verhoeven VJM, Vitart V, Schache M, Hosseini SM, Hysi PG, Raffel LJ, Cotch MF, Chew E, Klein BEK, Klein R, Wong TY, van Duijn CM, Mitchell P, Saw SM, Fossarello M, Wang JJ, DCCT/EDIC Research Group, Polašek O, Campbell H, Rudan I, Oostra BA, Uitterlinden AG, Hofman A, Rivadeneira F, Amin N, Karssen LC, Vingerling JR, Döring A, Bettecken T, Bencic G, Gieger C, Wichmann HE, Wilson JF, Venturini C, Fleck B, Cumberland PM, Rahi JS, Hammond CJ, Hayward C, Wright AF, Paterson AD, Baird PN, Klaver CCW, Rotter JI, Pirastu M, Meitinger T, Bailey-Wilson JE, Stambolian D. Genome-wide meta-analysis of myopia and hyperopia provides evidence for replication of 11 loci. PLoS One 2014; 9:e107110. [PMID: 25233373 PMCID: PMC4169415 DOI: 10.1371/journal.pone.0107110] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 08/12/2014] [Indexed: 01/01/2023] Open
Abstract
Refractive error (RE) is a complex, multifactorial disorder characterized by a mismatch between the optical power of the eye and its axial length that causes object images to be focused off the retina. The two major subtypes of RE are myopia (nearsightedness) and hyperopia (farsightedness), which represent opposite ends of the distribution of the quantitative measure of spherical refraction. We performed a fixed effects meta-analysis of genome-wide association results of myopia and hyperopia from 9 studies of European-derived populations: AREDS, KORA, FES, OGP-Talana, MESA, RSI, RSII, RSIII and ERF. One genome-wide significant region was observed for myopia, corresponding to a previously identified myopia locus on 8q12 (p = 1.25×10(-8)), which has been reported by Kiefer et al. as significantly associated with myopia age at onset and Verhoeven et al. as significantly associated to mean spherical-equivalent (MSE) refractive error. We observed two genome-wide significant associations with hyperopia. These regions overlapped with loci on 15q14 (minimum p value = 9.11×10(-11)) and 8q12 (minimum p value 1.82×10(-11)) previously reported for MSE and myopia age at onset. We also used an intermarker linkage- disequilibrium-based method for calculating the effective number of tests in targeted regional replication analyses. We analyzed myopia (which represents the closest phenotype in our data to the one used by Kiefer et al.) and showed replication of 10 additional loci associated with myopia previously reported by Kiefer et al. This is the first replication of these loci using myopia as the trait under analysis. "Replication-level" association was also seen between hyperopia and 12 of Kiefer et al.'s published loci. For the loci that show evidence of association to both myopia and hyperopia, the estimated effect of the risk alleles were in opposite directions for the two traits. This suggests that these loci are important contributors to variation of refractive error across the distribution.
Collapse
Affiliation(s)
- Claire L. Simpson
- National Human Genome Research Institute, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Robert Wojciechowski
- National Human Genome Research Institute, National Institutes of Health, Baltimore, Maryland, United States of America
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Konrad Oexle
- Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Federico Murgia
- Institute of Population Genetics, National Research Council of Italy, Sassari, Italy
| | - Laura Portas
- Institute of Population Genetics, National Research Council of Italy, Sassari, Italy
| | - Xiaohui Li
- Institute for Translational Genomics and Population Sciences, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Virginie J. M. Verhoeven
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Veronique Vitart
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, United Kingdom
| | - Maria Schache
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - S. Mohsen Hosseini
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada, and DCCT/EDIC Research Group, The Diabetes Control and Complications Trial and Follow-up Study, The Biostatistics Center, The George Washington University, Rockville, Maryland, United States of America
| | - Pirro G. Hysi
- Department of Twin Research & Genetic Epidemiology, King's College London, St Thomas' Hospital, London, United Kingdom
| | - Leslie J. Raffel
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Mary Frances Cotch
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Emily Chew
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Barbara E. K. Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Ronald Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Tien Yin Wong
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
- Singapore Eye Research Institute, National University of Singapore, Singapore, Singapore
| | | | - Paul Mitchell
- Centre for Vision Research, Department of Ophthalmology and Westmead Millennium Institute, University of Sydney, Sydney, Australia
| | - Seang Mei Saw
- Department of Epidemiology and Public Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Maurizio Fossarello
- Dipartimento di Scienze Chirurgiche, Clinica Oculistica Universita' degli studi di Cagliari, Cagliari, Italy
| | - Jie Jin Wang
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
- Centre for Vision Research, Department of Ophthalmology and Westmead Millennium Institute, University of Sydney, Sydney, Australia
| | - DCCT/EDIC Research Group
- The Diabetes Control and Complications Trial and Follow-up Study, The Biostatistics Center, The George Washington University, Rockville, Maryland, United States of America
| | - Ozren Polašek
- Croatian Centre for Global Health, University of Split Medical School, Split, Croatia
| | - Harry Campbell
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Igor Rudan
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Ben A. Oostra
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - André G. Uitterlinden
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
- Netherlands Consortium for Healthy Ageing, Netherlands Genomics Initiative, The Hague, the Netherlands
| | - Albert Hofman
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Netherlands Consortium for Healthy Ageing, Netherlands Genomics Initiative, The Hague, the Netherlands
| | - Fernando Rivadeneira
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
- Netherlands Consortium for Healthy Ageing, Netherlands Genomics Initiative, The Hague, the Netherlands
| | - Najaf Amin
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Lennart C. Karssen
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Johannes R. Vingerling
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Angela Döring
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Thomas Bettecken
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Goran Bencic
- Department of Ophthalmology, Hospital “Sestre Milosrdnice”, Zagreb, Croatia
| | - Christian Gieger
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - H.-Erich Wichmann
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - James F. Wilson
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Cristina Venturini
- Department of Twin Research & Genetic Epidemiology, King's College London, St Thomas' Hospital, London, United Kingdom
| | - Brian Fleck
- Princess Alexandra Eye Pavilion, Edinburgh, United Kingdom
| | - Phillippa M. Cumberland
- MRC Centre of Epidemiology for Child Health, Institute of Child Health, University College London, London, United Kingdom
| | - Jugnoo S. Rahi
- MRC Centre of Epidemiology for Child Health, Institute of Child Health, University College London, London, United Kingdom
- Institute of Ophthalmology, University College London, London, United Kingdom
- Ulverscroft Vision Research Group, Institute of Child Health, University College London, London, United Kingdom
| | - Chris J. Hammond
- Department of Twin Research & Genetic Epidemiology, King's College London, St Thomas' Hospital, London, United Kingdom
| | - Caroline Hayward
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, United Kingdom
| | - Alan F. Wright
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew D. Paterson
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada, and DCCT/EDIC Research Group, The Diabetes Control and Complications Trial and Follow-up Study, The Biostatistics Center, The George Washington University, Rockville, Maryland, United States of America
| | - Paul N. Baird
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Caroline C. W. Klaver
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Jerome I. Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Mario Pirastu
- Institute of Population Genetics, National Research Council of Italy, Sassari, Italy
| | - Thomas Meitinger
- Institute of Human Genetics, Technische Universität München, Munich, Germany
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Joan E. Bailey-Wilson
- National Human Genome Research Institute, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Dwight Stambolian
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
218
|
Lozano R, Hagerman RJ, Duyzend M, Budimirovic DB, Eichler EE, Tassone F. Genomic studies in fragile X premutation carriers. J Neurodev Disord 2014; 6:27. [PMID: 25170347 PMCID: PMC4147387 DOI: 10.1186/1866-1955-6-27] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 04/08/2014] [Indexed: 11/11/2022] Open
Abstract
Background The FMR1 premutation is defined as having 55 to 200 CGG repeats in the 5′ untranslated region of the fragile X mental retardation 1 gene (FMR1). The clinical involvement has been well characterized for fragile X-associated tremor/ataxia syndrome (FXTAS) and fragile X-associated primary ovarian insufficiency (FXPOI). The behavior/psychiatric and other neurological manifestations remain to be specified as well as the molecular mechanisms that will explain the phenotypic variability observed in individuals with the FMR1 premutation. Methods Here we describe a small pilot study of copy number variants (CNVs) in 56 participants with a premutation ranging from 55 to 192 repeats. The participants were divided into four different clinical groups for the analysis: those with behavioral problems but no autism spectrum disorder (ASD); those with ASD but without neurological problems; those with ASD and neurological problems including seizures; and those with neurological problems without ASD. Results We found 12 rare CNVs (eight duplications and four deletions) in 11 cases (19.6%) that were not found in approximately 8,000 controls. Three of them were at 10q26 and two at Xp22.3, with small areas of overlap. The CNVs were more commonly identified in individuals with neurological involvement and ASD. Conclusions The frequencies were not statistically significant across the groups. There were no significant differences in the psychometric and behavior scores among all groups. Further studies are necessary to determine the frequency of second genetic hits in individuals with the FMR1 premutation; however, these preliminary results suggest that genomic studies can be useful in understanding the molecular etiology of clinical involvement in premutation carriers with ASD and neurological involvement.
Collapse
Affiliation(s)
- Reymundo Lozano
- MIND Institute, UC Davis Medical Center, Sacramento, 2825 50th Street, California, CA 95817, USA ; Department of Pediatrics, UC Davis Medical Center, Sacramento, CA, USA
| | - Randi J Hagerman
- MIND Institute, UC Davis Medical Center, Sacramento, 2825 50th Street, California, CA 95817, USA ; Department of Pediatrics, UC Davis Medical Center, Sacramento, CA, USA
| | - Michael Duyzend
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Dejan B Budimirovic
- Kennedy Krieger Institute, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA ; Howard Hughes Medical Institute, Seattle, WA, USA
| | - Flora Tassone
- MIND Institute, UC Davis Medical Center, Sacramento, 2825 50th Street, California, CA 95817, USA ; Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, Sacramento, CA, USA
| |
Collapse
|
219
|
Ouchi T, Nagao K, Hata Y, Otuka T, Inazumi T. Trichophyton Tonsurans Infection Manifesting as Multiple Concentric Annular Erythemas. J Dermatol 2014; 32:565-8. [PMID: 16335872 DOI: 10.1111/j.1346-8138.2005.tb00799.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a case of dermatophytosis in a Judo wrestler caused by Trichophyton tonsurans (T. tonsurans) with clinical features that mimicked the concentric rings of tinea imbricata. Tinea imbricata is a unique dermatophytosis caused by Trichophyton concentricum (T. concentricum), observed endemically in subtropical to torrid zones and characterized by impressive concentric rings. We found three similar cases of the dermatophytosis in the literature that were reported as tinea pseudoimbricata or tinea indecisiva. All of these cases were associated with systemic or local immunosuppression, perhaps simulating the mechanism of tinea imbricata, which is known to involve the lack of delayed type hypersensitivity to T. concentricum. These cases imply that iatrogenic immunosuppression may perhaps play an important role in the development of the unique clinical features mimicking tinea imbricata. Furthermore, three of the four cases, including the presented case, were caused by T. tonsurans. It may be necessary to consider T. tonsurans infection when multiple concentric erythemas are encountered.
Collapse
Affiliation(s)
- Takeshi Ouchi
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | |
Collapse
|
220
|
Esmer C, Díaz Zambrano S, Santos Díaz M, González Huerta L, Cuevas Covarrubias S, Bravo Oro A. Neuropatía sensitiva autonómica hereditaria tipo IIA: manifestaciones neurológicas y esqueléticas tempranas. An Pediatr (Barc) 2014; 80:254-8. [DOI: 10.1016/j.anpedi.2013.05.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 05/18/2013] [Indexed: 01/31/2023] Open
|
221
|
Pre-Descemet corneal dystrophy and X-linked ichthyosis associated with deletion of Xp22.31 containing the STS gene. Cornea 2014; 32:1283-7. [PMID: 23807007 DOI: 10.1097/ico.0b013e318298e176] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE To report the association of X-linked ichthyosis and pre-Descemet corneal dystrophy with a deletion of the steroid sulfatase gene (STS) detected with microarray-based comparative genomic hybridization (aCGH). METHODS A slit-lamp biomicroscopic examination and cutaneous examination were performed, after which a saliva sample was collected as a source of genomic DNA. Polymerase chain reaction amplification of each of the 10 exons of STS was performed, as was aCGH on genomic DNA to detect copy number variation. RESULTS The slit-lamp examination revealed punctate opacities in the posterior corneal stroma of each eye. The cutaneous examination demonstrated scaling and flaking skin of the arms and legs. Polymerase chain reaction amplification using primers designed to amplify each of the 10 exons of STS failed to produce any amplicons. Subsequently, aCGH performed on genomic DNA revealed a microdeletion in the Xp22.31 cytoband of approximately 1.7 megabases, containing STS. CONCLUSIONS The identification of a microdeletion within Xp22.3 containing STS with aCGH in an individual with suspected pre-Descemet corneal dystrophy and X-linked ichthyosis demonstrates the clinical utility of copy number variation analysis in confirming a presumptive clinical diagnosis.
Collapse
|
222
|
Ishihara M, Ogawa K, Suzuki Y, Kamei S, Ochiai T, Sonoo M. Adult-onset Satoyoshi syndrome with prominent laterality of clinical features. Intern Med 2014; 53:2811-6. [PMID: 25500444 DOI: 10.2169/internalmedicine.53.2958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We herein report the case of a patient with adult-onset Satoyoshi syndrome. Alopecia was detected on the patient's head, left leg and abdomen, with pigmentation on the left thigh and abdomen. Painful muscle spasms were also noted in the abdomen and left upper and lower extremities, and a sensory disturbance was present in the left thigh. A skin biopsy of this field showed lymphocyte infiltration, and the patient was found to be positive for antinuclear antibodies and rheumatoid factor. These clinical findings were atypical, as they were lateralized. This case is the first report of Satoyoshi syndrome associated with a sensory disturbance. The patient's histological findings and positivity for autoantibodies indicated the presence of immunological abnormalities in this case of Satoyoshi syndrome.
Collapse
Affiliation(s)
- Masaki Ishihara
- Division of Neurology, Department of Medicine, Nihon University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
223
|
Elias PM, Williams ML, Choi EH, Feingold KR. Role of cholesterol sulfate in epidermal structure and function: lessons from X-linked ichthyosis. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:353-61. [PMID: 24291327 DOI: 10.1016/j.bbalip.2013.11.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 11/13/2013] [Accepted: 11/20/2013] [Indexed: 02/07/2023]
Abstract
X-linked ichthyosis is a relatively common syndromic form of ichthyosis most often due to deletions in the gene encoding the microsomal enzyme, steroid sulfatase, located on the short area of the X chromosome. Syndromic features are mild or unapparent unless contiguous genes are affected. In normal epidermis, cholesterol sulfate is generated by cholesterol sulfotransferase (SULT2B1b), but desulfated in the outer epidermis, together forming a 'cholesterol sulfate cycle' that potently regulates epidermal differentiation, barrier function and desquamation. In XLI, cholesterol sulfate levels my exceed 10% of total lipid mass (≈1% of total weight). Multiple cellular and biochemical processes contribute to the pathogenesis of the barrier abnormality and scaling phenotype in XLI. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.
Collapse
Affiliation(s)
- Peter M Elias
- Dermatology Service, Department of Veterans Affairs Medical Center, and Department of Dermatology, University of California, San Francisco, CA USA.
| | - Mary L Williams
- Departments of Dermatology and Pediatrics, University of California, San Francisco, CA USA
| | - Eung-Ho Choi
- Department of Dermatology, Yonsei University, Wonju College of Medicine, Wonju, South Korea
| | - Kenneth R Feingold
- Medical Service, Department of Veterans Affairs Medical Center, and Department of Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
224
|
Recent advances in clinical neurogenetics. J Neurol 2013; 260:2451-7. [DOI: 10.1007/s00415-012-6757-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/06/2012] [Accepted: 11/09/2012] [Indexed: 11/24/2022]
|
225
|
Utokpat P, Panmontha W, Tongkobpetch S, Suphapeetiporn K, Shotelersuk V. Novel CTSK mutation resulting in an entire exon 2 skipping in a Thai girl with pycnodysostosis. Pediatr Int 2013; 55:651-5. [PMID: 24134756 DOI: 10.1111/ped.12091] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/02/2013] [Accepted: 02/19/2013] [Indexed: 11/30/2022]
Abstract
Pycnodysostosis is a rare autosomal recessive skeletal dysplasia characterized by osteosclerosis, short stature, acro-osteolysis of the distal phalanges, bone fragility and skull deformities. Mutations in the cathepsin K (CTSK) gene, which encodes a lysosomal cysteine protease highly expressed in osteoclasts, have been found to be responsible for the disease. We identified a Thai girl with pycnodysostosis. Her parents were first cousins. Polymerase chain reaction sequencing of the entire coding regions of CTSK of the proband's complementary DNA revealed that the whole exon 2 was skipped. We subsequently amplified exon 2 using genomic DNA, which showed that the patient was homozygous for a c.120G>A mutation. The mutation was located at the last nucleotide of exon 2. Its presence was confirmed by restriction enzyme analysis using BanI. The skipping of exon 2 eliminates the normal start codon. The mutation has never been previously reported, thus the current report expands the CTSK mutational spectrum.
Collapse
Affiliation(s)
- Pattarapa Utokpat
- Center of Excellence for Medical Genetics, Department of Pediatrics, Chulalongkorn University, Bangkok, Thailand; Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | | | | | | | | |
Collapse
|
226
|
Lu X, Li X, Zhao Y, Zheng Z, Guan S, Chan P. Contemporary epidemiology of gout and hyperuricemia in community elderly in Beijing. Int J Rheum Dis 2013; 17:400-7. [PMID: 24118986 DOI: 10.1111/1756-185x.12156] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaolan Lu
- Department of Rheumatology; Beijing Institute of Geriatrics; Xuanwu Hospital of Capital Medical University; Beijing China
- Department of Geriatrics; Beijing Institute of Geriatrics; Xuanwu Hospital of Capital Medical University; Beijing China
| | - Xiaoxia Li
- Department of Rheumatology; Beijing Institute of Geriatrics; Xuanwu Hospital of Capital Medical University; Beijing China
| | - Yi Zhao
- Department of Rheumatology; Beijing Institute of Geriatrics; Xuanwu Hospital of Capital Medical University; Beijing China
| | - Zheng Zheng
- Department of Geriatrics; Beijing Institute of Geriatrics; Xuanwu Hospital of Capital Medical University; Beijing China
| | - Shaochen Guan
- Department of Geriatrics; Beijing Institute of Geriatrics; Xuanwu Hospital of Capital Medical University; Beijing China
| | - Piu Chan
- Department of Geriatrics; Beijing Institute of Geriatrics; Xuanwu Hospital of Capital Medical University; Beijing China
| |
Collapse
|
227
|
Sagnelli A, Piscosquito G, Pareyson D. Inherited neuropathies: an update. J Neurol 2013; 260:2684-90. [PMID: 24061768 DOI: 10.1007/s00415-013-7113-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 09/11/2013] [Accepted: 09/12/2013] [Indexed: 01/21/2023]
Abstract
In this review, progress in hereditary neuropathy research published in the Journal of Neurology over the last 18 months is summarised.
Collapse
Affiliation(s)
- Anna Sagnelli
- Clinic of Central and Peripheral Degenerative Neuropathies Unit, Department of Clinical Neurosciences, IRCCS Foundation, "C. Besta" Neurological Institute, via Celoria 11, 20133, Milan, Italy
| | | | | |
Collapse
|
228
|
Bercier V. WNK1/HSN2 isoform and the regulation of KCC2 activity. Rare Dis 2013; 1:e26537. [PMID: 25003007 PMCID: PMC3933052 DOI: 10.4161/rdis.26537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 09/08/2013] [Accepted: 09/18/2013] [Indexed: 01/05/2023] Open
Abstract
Hereditary sensory and autonomic neuropathy type 2 is a rare autosomal recessive pathology presenting with early onset peripheral sensory defects. It arises from mutations affecting a specific isoform of the WNK1 kinase (with-no-lysine protein kinase 1) termed WNK1/HSN2. The role of WNK1 in the nervous system is not well understood. In our recent paper, we examined the effect of a pathological loss-of-function of the Wnk1/Hsn2 isoform on the development of the peripheral nervous system of the zebrafish embryo. Upon Wnk1/Hsn2 silencing using antisense morpholino oligonucleotides, we observed defects in the development of the sensory peripheral lateral line (PLL). Phenotypical embryos were also found to overexpress RNA for potassium-chloride cotransporter 2 (KCC2), a downstream target of WNK1 phosphorylation. Injection of recombinant mRNA for active KCC2, but not for inactive mutant KCC2-C568A, replicated the PLL defects observed in wnk1/hsn2 deficient animals, suggesting an essential role for WNK1/HSN2 in KCC2 regulation.
Collapse
Affiliation(s)
- Valérie Bercier
- Institut Curie; Centre de Recherche; CNRS UMR 3215/INSERM U934; Paris, France
| |
Collapse
|
229
|
Koepsell H. The SLC22 family with transporters of organic cations, anions and zwitterions. Mol Aspects Med 2013; 34:413-35. [PMID: 23506881 DOI: 10.1016/j.mam.2012.10.010] [Citation(s) in RCA: 296] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 08/18/2012] [Indexed: 12/14/2022]
Abstract
The SLC22 family contains 13 functionally characterized human plasma membrane proteins each with 12 predicted α-helical transmembrane domains. The family comprises organic cation transporters (OCTs), organic zwitterion/cation transporters (OCTNs), and organic anion transporters (OATs). The transporters operate as (1) uniporters which mediate facilitated diffusion (OCTs, OCTNs), (2) anion exchangers (OATs), and (3) Na(+)/zwitterion cotransporters (OCTNs). They participate in small intestinal absorption and hepatic and renal excretion of drugs, xenobiotics and endogenous compounds and perform homeostatic functions in brain and heart. Important endogeneous substrates include monoamine neurotransmitters, l-carnitine, α-ketoglutarate, cAMP, cGMP, prostaglandins, and urate. It has been shown that mutations of the SLC22 genes encoding these transporters cause specific diseases like primary systemic carnitine deficiency and idiopathic renal hypouricemia and are correlated with diseases such as Crohn's disease and gout. Drug-drug interactions at individual transporters may change pharmacokinetics and toxicities of drugs.
Collapse
Affiliation(s)
- Hermann Koepsell
- University of Würzburg, Institute of Anatomy and Cell Biology, Koellikerstr. 6, 97070 Würzburg, Germany.
| |
Collapse
|
230
|
Xp22.3 interstitial deletion: A recognizable chromosomal abnormality encompassing VCX3A and STS genes in a patient with X-linked ichthyosis and mental retardation. Gene 2013; 527:578-83. [DOI: 10.1016/j.gene.2013.06.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 06/06/2013] [Accepted: 06/07/2013] [Indexed: 12/18/2022]
|
231
|
Li C, Yu Q, Han L, Wang C, Chu N, Liu S. The hURAT1 rs559946 polymorphism and the incidence of gout in Han Chinese men. Scand J Rheumatol 2013; 43:35-42. [PMID: 23981340 DOI: 10.3109/03009742.2013.808375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVES Our previous study identified rs559946, a human urate transporter 1 (hURAT1) single nucleotide polymorphism (SNP), as being significantly associated with risk of primary hyperuricaemia (HUA) in a Han Chinese population. In the current study we aimed to identify the genetic effects of rs559946 on gout susceptibility in Han Chinese men. METHOD A total of 335 patients with gout and 376 healthy controls were recruited for a case-control association study. To examine the functional effect of rs559946, we performed luciferase reporter assays and an electrophoretic mobility shift assay (EMSA). RESULTS rs559946 was found to be significantly associated with gout susceptibility (p = 0.004), with T-allele carriers showing a decreased risk of gout [odds ratio (OR) 0.70, 95% confidence interval (CI) 0.55-0.89]. Multiple linear regression analysis identified a significant association between rs559946 genotypes and tophi. Luciferase reporter assays show increased transcriptional activity of the hURAT1 promoter with the C allele of rs559946. EMSA detected binding of nuclear proteins to both the T and C alleles, although increased binding was observed with the T allele. Cold competition assays suggest that rs559946 may bind within a glucocorticoid receptor (GR) binding motif. CONCLUSIONS Our study suggests that the rs559946 polymorphism is associated with increased HUA risk and may also contribute to gout development in Han Chinese men. The T to C substitution within rs559946 increased the transcriptional activity, and potentially increases gout susceptibility.
Collapse
Affiliation(s)
- C Li
- Shandong Provincial Key Laboratory of Metabolic Disease, The Affiliated Hospital of Qingdao University Medical College , Qingdao , China
| | | | | | | | | | | |
Collapse
|
232
|
SONG YIJIN, CHEN JING, YI ZHUWEN, DANG XIQIANG, CHENG DEHUA, WU XIAOCHUAN, TAN YUEQIU. Genetic analysis of a 12-year-old boy with X-linked ichthyosis in association with sclerosing glomerulonephritis. Mol Med Rep 2013; 8:1183-7. [DOI: 10.3892/mmr.2013.1625] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 06/20/2013] [Indexed: 11/06/2022] Open
|
233
|
Co-segregation of trichorhinophalangeal syndrome with a t(8;13)(q23.3;q21.31) familial translocation that appears to increase TRPS1 gene expression. Hum Genet 2013; 132:1287-99. [DOI: 10.1007/s00439-013-1333-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 06/25/2013] [Indexed: 11/26/2022]
|
234
|
George RL, Keenan RT. Genetics of hyperuricemia and gout: implications for the present and future. Curr Rheumatol Rep 2013; 15:309. [PMID: 23307580 DOI: 10.1007/s11926-012-0309-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gout is the most common inflammatory arthropathy and occurs in the setting of elevated serum urate levels. Gout is also known to be associated with multiple comorbidities including cardiovascular disease and the metabolic syndrome. Recent advances in research have increased our understanding and improved our knowledge of the pathophysiology of gout. Genome-wide association studies have permitted the identification of several new and common genetic factors that contribute to hyperuricemia and gout. Most of these are involved with the renal urate transport system (the uric acid transportasome), generally considered the most influential regulator of serum urate homeostasis. Thus far, SCL22A12, SCL2A9, and GLUT9 have been found to have the greatest variation and most influence on serum urate levels. However, genetics are only a part of the explanation in the development of hyperuricemia and gout. As results have been mixed, the role of known urate influential genes in gout's associated comorbidities remains unclear. Regardless, GWAS findings have expanded our understanding of the pathophysiology of hyperuricemia and gout, and will likely play a role in the development of future therapies and treatment of this ancient disease.
Collapse
Affiliation(s)
- Ronald L George
- Division of Rheumatology and Immunology, Duke University School of Medicine, DUMC, NC 27710, USA
| | | |
Collapse
|
235
|
Reis LM, Tyler RC, Muheisen S, Raggio V, Salviati L, Han DP, Costakos D, Yonath H, Hall S, Power P, Semina EV. Whole exome sequencing in dominant cataract identifies a new causative factor, CRYBA2, and a variety of novel alleles in known genes. Hum Genet 2013; 132:761-70. [PMID: 23508780 PMCID: PMC3683360 DOI: 10.1007/s00439-013-1289-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/07/2013] [Indexed: 01/05/2023]
Abstract
Pediatric cataracts are observed in 1-15 per 10,000 births with 10-25 % of cases attributed to genetic causes; autosomal dominant inheritance is the most commonly observed pattern. Since the specific cataract phenotype is not sufficient to predict which gene is mutated, whole exome sequencing (WES) was utilized to concurrently screen all known cataract genes and to examine novel candidate factors for a disease-causing mutation in probands from 23 pedigrees affected with familial dominant cataract. Review of WES data for 36 known cataract genes identified causative mutations in nine pedigrees (39 %) in CRYAA, CRYBB1, CRYBB3, CRYGC (2), CRYGD, GJA8 (2), and MIP and an additional likely causative mutation in EYA1; the CRYBB3 mutation represents the first dominant allele in this gene and demonstrates incomplete penetrance. Examination of crystallin genes not yet linked to human disease identified a novel cataract gene, CRYBA2, a member of the βγ-crystallin superfamily. The p.(Val50Met) mutation in CRYBA2 cosegregated with disease phenotype in a four-generation pedigree with autosomal dominant congenital cataracts with incomplete penetrance. Expression studies detected cryba2 transcripts during early lens development in zebrafish, supporting its role in congenital disease. Our data highlight the extreme genetic heterogeneity of dominant cataract as the eleven causative/likely causative mutations affected nine different genes, and the majority of mutant alleles were novel. Furthermore, these data suggest that less than half of dominant cataract can be explained by mutations in currently known genes.
Collapse
Affiliation(s)
- Linda M. Reis
- Department of Pediatrics and Children’s Research Institute, Medical College of Wisconsin, Milwaukee, WI, 53226 USA
| | - Rebecca C. Tyler
- Department of Pediatrics and Children’s Research Institute, Medical College of Wisconsin, Milwaukee, WI, 53226 USA
| | - Sanaa Muheisen
- Department of Pediatrics and Children’s Research Institute, Medical College of Wisconsin, Milwaukee, WI, 53226 USA
| | - Victor Raggio
- Genetics Department, School of Medicine, Montevideo, PC: 11600, Uruguay
| | - Leonardo Salviati
- Dept. of Woman and Child Health, University of Padova, 35128 Padova, Italy
| | - Dennis P. Han
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, WI 53226 USA
| | - Deborah Costakos
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, WI 53226 USA
| | - Hagith Yonath
- Sheba Medical Center, Tel Hashomer 52621 and Sackler School of Medicine, Tel Aviv University, Israel
| | - Sarah Hall
- Kadlec Regional Medical Center, Richland WA 99352 USA
| | - Patricia Power
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1 Canada
| | - Elena V. Semina
- Department of Pediatrics and Children’s Research Institute, Medical College of Wisconsin, Milwaukee, WI, 53226 USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226 USA
| |
Collapse
|
236
|
Bellomo G. Uric acid and chronic kidney disease: A time to act? World J Nephrol 2013; 2:17-25. [PMID: 24175261 PMCID: PMC3782226 DOI: 10.5527/wjn.v2.i2.17] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 03/25/2013] [Accepted: 04/11/2013] [Indexed: 02/06/2023] Open
Abstract
A role for uric acid in the pathogenesis and progression of renal disease had been proposed almost a century ago, but, too hastily dismissed in the early eighties. A body of evidence, mostly accumulated during the last decade, has led to a reappraisal of the influence of uric acid on hypertension, cardiovascular, and renal disease. The focus of this review will be solely on the relationship between serum uric acid and renal function and disease. We will review experimental evidence derived from animal and human studies, evidence gathered from a number of epidemiological studies, and from the few (up to now) studies of uric-acid-lowering therapy. Some space will be also devoted to the effects of uric acid in special populations, such as diabetics and recipients of kidney allografts. Finally we will briefly discuss the challenges of a trial of uric-acid-lowering treatment, and the recent suggestions on how to conduct such a trial.
Collapse
|
237
|
Lopez-Valdez J, Rivera-Vega MR, Gonzalez-Huerta LM, Cazarin J, Cuevas-Covarrubias S. Analysis of the KRT9 gene in a Mexican family with epidermolytic palmoplantar keratoderma. Pediatr Dermatol 2013; 30:354-8. [PMID: 23278372 DOI: 10.1111/pde.12027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epidermolytic palmoplantar keratoderma (EPPK), an autosomal-dominant genodermatosis, is the most frequently occurring hereditary palmoplantar keratoderma. EPPK is characterized by hyperkeratosis of the palms and soles. Approximately 90% of patients present with mutations in the KRT9 gene, which encodes for keratin 9. Many of these mutations are located within the highly conserved coil 1A region of the alpha-helical rod domain of keratin 9, an important domain for keratin heterodimerization. The objective was to assess the clinical and molecular characteristics of a Mexican family with EPPK. The clinical characteristics of members of this family were analyzed. The KRT9 gene of affected members was polymerase chain reaction amplified from genomic DNA and sequenced. All affected members of the family had hyperkeratosis of the palms and soles with knuckle pads. The R163W mutation in the KRT9 gene was present in all affected individuals who were tested. Although R163W is the most frequent KRT9 mutation in patients with EPPK, only two families have been reported with knuckle pads associated with this mutation. Our findings indicate that knuckle pads can be associated with EPPK and the R163W mutation in a family with a genetic background different from that described here.
Collapse
Affiliation(s)
- Jaime Lopez-Valdez
- Servicio de Genética, Hospital General de México, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, DF, México
| | | | | | | | | |
Collapse
|
238
|
Faiq M, Sharma R, Dada R, Mohanty K, Saluja D, Dada T. Genetic, Biochemical and Clinical Insights into Primary Congenital Glaucoma. J Curr Glaucoma Pract 2013; 7:66-84. [PMID: 26997785 PMCID: PMC4741182 DOI: 10.5005/jp-journals-10008-1140] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 04/09/2013] [Indexed: 12/21/2022] Open
Abstract
Glaucoma is an irreversible form of optic neuropathy in which the optic nerve suffers damage in a characteristic manner with optic nerve cupping and retinal ganglion cell death. Primary congenital glaucoma (PCG) is an idiopathic irreversible childhood blinding disorder which manifests at birth or within the first year of life. PCG presents with a classical triad of symptoms (viz epiphora, photophobia and blepharospasm) though there are many additional symptoms, including large eye ball and hazy cornea. The only anatomical anomaly found in PCG is trabecular meshwork (TM) dysgenesis. PCG is an inheritable disease with established genetic etiology. It transmits through autosomal recessive mode. A number of cases are sporadic also. Mutations in many genes have been found to be causative in PCG and many are yet to be found. Mutations in cytochrome P4501B1 (CYP1B1) gene have been found to be the predominant cause of PCG. Other genes that have been implicated in PCG etiology are myocilin, Forkhead-related transcription factor C1 (FOXC1) and latent transforming growth factor beta-binding protein 2 (LTBP2). Mutations in these genes have been reported from many parts of the world. In addition to this, mitochondrial genome mutations are also thought to be involved in its pathogenesis. There appears to be some mechanism involving more than one genetic factor. In this review, we will discuss the various clinical, biochemical and genetic aspects of PCG. We emphasize that etiology of PCG does not lie in a single gene or genetic factor. Research needs to be oriented into a direction where gene-gene interactions, ocular embryology, ophthalmic metabolism and systemic oxidative status need to be studied in order to understand this disorder. We also accentuate the need for ophthalmic genetic facilities in all ophthalmology setups. How to cite this article: Faiq M, Sharma R, Dada R, Mohanty K, Saluja D, Dada T. Genetic, Biochemical and Clinical Insights into Primary Congenital Glaucoma. J Current Glau Prac 2013;7(2):66-84.
Collapse
Affiliation(s)
- Muneeb Faiq
- Pursuing Doctorate, Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Reetika Sharma
- Resident, Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Rima Dada
- Additional Professor, Department of Anatomy, Laboratory for Molecular Reproduction and Genetics, All India Institute of Medical Sciences, New Delhi, India
| | - Kuldeep Mohanty
- Pursuing Doctorate, Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Daman Saluja
- Professor, Medical Biotechnology Laboratory, Dr BR Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi, India
| | - Tanuj Dada
- Additional Professor, Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
239
|
Vreeburg M, Sallevelt SCEH, Stegmann APA, van Geel M, Detisch YJHA, Schrander-Stumpel CTRM, van Steensel MAM, Marcus-Soekarman D. Cutaneous clues for diagnosing X-chromosomal disorders. Clin Genet 2013; 85:328-35. [PMID: 23578112 DOI: 10.1111/cge.12162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 04/05/2013] [Accepted: 04/05/2013] [Indexed: 11/28/2022]
Abstract
In a multidisciplinary outpatient clinic for hereditary skin diseases and/or syndromes involving the skin, 7% (30 of 409) of patients were found to have an abnormality involving the X chromosome, a mutation in a gene located on the X chromosome or a clinical diagnosis of an X-linked monogenetic condition. The collaboration of a dermatologist and a clinical geneticist proves to be very valuable in recognizing and diagnosing these conditions. By combining their specific expertize in counselling an individual patient, X-linked diagnoses were recognized and could be confirmed by molecular and/or cytogenetic studies in 24 of 30 cases. Mosaicism plays an important role in many X-linked hereditary skin disorders. From our experience, we extracted clinical clues for specialists working in the field of genetics and/or dermatology for considering X-linked disorders involving the skin.
Collapse
|
240
|
Meng DM, Zhou YJ, Wang L, Ren W, Cui LL, Han L, Qu ZH, Li CG, Zhao JJ. Polymorphisms in the NLRP3 gene and risk of primary gouty arthritis. Mol Med Rep 2013; 7:1761-6. [PMID: 23588528 DOI: 10.3892/mmr.2013.1429] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 03/21/2013] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the association between genetic variants in 17 tagSNPs of the NLRP3 gene and the susceptibility to primary gouty arthritis. A genotype-phenotype analysis of 480 primary gout and 480 control patients was performed. Samples from all the patients were collected from The Affiliated Hospital of Medical College (Qingdao, China). Seventeen tagSNPs of the NLRP3 gene were amplified using polymerase chain reaction (PCR) and MassARRAY technology was used for single nucleotide polymorphism (SNP) genotyping. The genetic frequency of rs7512998 was significantly different between the gout and control patients (P<0.05), whereas no significant differences were identified for the remaining SNPs. The 17 SNPs conformed to the Hardy-Weinberg equilibrium (HWE) in the control group (P>0.05). The haplotype association among the 17 SNPs of the NLRP3 gene indicated that no individual SNP was significantly associated with primary gouty arthritis. CTATCAGCGCCCAGTGC was the most common haplotype in the case and control groups, with a frequency of 0.224 and 0.243, respectively. However, the odds ratios (ORs) of the 8 haplotypes were not identified to be significantly associated with gouty arthritis (P>0.05 for all the 8 haplotypes). To the best of our knowledge, this is the first study to investigate the association between SNPs of the NLRP3 gene and the risk of primary gouty arthritis, although no significant association was identified. Further clinical studies and functional analysis are required to explore the potential associations between NLRP3 gene polymorphisms and the risk of primary gouty arthritis.
Collapse
Affiliation(s)
- Dong-Mei Meng
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Trent S, Davies W. Cognitive, behavioural and psychiatric phenotypes associated with steroid sulfatase deficiency. World J Transl Med 2013; 2:1-12. [DOI: 10.5528/wjtm.v2.i1.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 01/24/2013] [Accepted: 02/08/2013] [Indexed: 02/05/2023] Open
Abstract
The enzyme steroid sulfatase (STS) desulfates a variety of steroid compounds thereby altering their activity. STS is expressed in the skin, and its deficiency in this tissue has been linked to the dermatological condition X-linked ichthyosis. STS is also highly expressed in the developing and adult human brain, and in a variety of steroidogenic organs (including the placenta and gonads); therefore it has the potential to influence brain development and function directly and/or indirectly (through influencing the hormonal milieu). In this review, we first discuss evidence from human and animal model studies suggesting that STS deficiency might predispose to neurobehavioural abnormalities and certain psychiatric disorders. We subsequently discuss potential mechanisms that may underlie these vulnerabilities. The data described herein have potential implications for understanding the complete spectrum of clinical phenotypes associated with X-linked ichthyosis, and may indicate novel pathogenic mechanisms underlying psychological dysfunction in developmental disorders such as attention deficit hyperactivity disorder and Turner syndrome.
Collapse
|
242
|
Novel allelic variants and evidence for a prevalent mutation in URAT1 causing renal hypouricemia: biochemical, genetics and functional analysis. Eur J Hum Genet 2013; 21:1067-73. [PMID: 23386035 DOI: 10.1038/ejhg.2013.3] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/14/2012] [Accepted: 01/02/2013] [Indexed: 12/31/2022] Open
Abstract
Renal hypouricemia (RHUC) is a heterogeneous inherited disorder characterized by impaired tubular uric acid (UA) transport with severe complications, such as acute kidney injury (AKI). Type 1 is caused by a loss-of-function mutation in the SLC22A12 gene (URAT1), type 2 in the SLC2A9 gene (GLUT9). This article describes three Czech families with RHUC type 1. The serum UA in the probands was 0.9, 1.1 and 0.5 mg/dl and expressed as an increase in the fractional excretion of UA (48, 43 and 39%). The sequencing analysis of SLC22A12 revealed three novel variants: p.G366R, p.T467M and a deletion p.L415_G417del. A detailed metabolic investigation in proband C for progressive visual failure supported suspicion of neuronal ceroid lipofuscinosis type 7 conditioned by the mutation in the MFSD8 gene. Functional studies showed significantly decreased urate uptake and a mis-localized URAT1 signal in p.G366R, p.L415_G417del and p.T467M. Furthermore, colocalization studies showed accumulation of URAT1 protein in the endoplasmic reticulum. The findings suggest that loss-of-function mutations cause RHUC via loss of UA absorption partly by protein misfolding. However, they do not necessarily lead to AKI and a possible genotype-phenotype correlation was not proposed. Furthermore, results confirm an uneven geographical and ethnic distribution of SLC22A12 variants; the p.L415_G417del mutation predominates in the Roma ethnic group in the Czech Republic.
Collapse
|
243
|
Verhoeven WMA, Egger JIM, Hovens JE, Hoefsloot L. Kallmann syndrome and paranoid schizophrenia: a rare combination. BMJ Case Rep 2013; 2013:bcr-2012-007387. [PMID: 23329708 DOI: 10.1136/bcr-2012-007387] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Kallmann syndrome (KS) is a genetically heterogeneous and rare disorder characterised by the combination of hypothalamic hypogonadism and anosmia/hyposmia, a variable degree of intellectual disability and several somatic anomalies. In about one-third of the patients, mutations have been identified in at least seven different genes. Virtually no data are available about possible neuropsychiatric symptoms in KS. Here, a young adult male is described with a previous clinical diagnosis of KS and recent paranoid schizophrenia of which positive, but not negative symptoms, fully remitted upon treatment with antipsychotics. Neither genome-wide array analysis nor mutation analyses disclosed imbalances or mutations in any of presently known KS disease genes. This is the first report on a patient with KS and paranoid schizophrenia in whom extensive genetic analyses were performed. It is concluded that further studies are warranted in order to elucidate a possible increased risk for psychiatric symptoms in patients with KS.
Collapse
Affiliation(s)
- Willem M A Verhoeven
- Centre of Excellence for Neuropsychiatry, Vincent van Gogh Institute for Psychiatry, Venray, The Netherlands.
| | | | | | | |
Collapse
|
244
|
Schlotawa L, Radhakrishnan K, Baumgartner M, Schmid R, Schmidt B, Dierks T, Gärtner J. Rapid degradation of an active formylglycine generating enzyme variant leads to a late infantile severe form of multiple sulfatase deficiency. Eur J Hum Genet 2013; 21:1020-3. [PMID: 23321616 DOI: 10.1038/ejhg.2012.291] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 11/01/2012] [Accepted: 12/05/2012] [Indexed: 11/09/2022] Open
Abstract
Multiple sulfatase deficiency (MSD) is a rare inborn error of metabolism affecting posttranslational activation of sulfatases by the formylglycine generating enzyme (FGE). Due to mutations in the encoding SUMF1 gene, FGE's catalytic capacity is impaired resulting in reduced cellular sulfatase activities. Both, FGE protein stability and residual activity determine disease severity and have previously been correlated with the clinical MSD phenotype. Here, we report a patient with a late infantile severe course of disease. The patient is compound heterozygous for two so far undescribed SUMF1 mutations, c.156delC (p.C52fsX57) and c.390A>T (p.E130D). In patient fibroblasts, mRNA of the frameshift allele is undetectable. In contrast, the allele encoding FGE-E130D is expressed. FGE-E130D correctly localizes to the endoplasmic reticulum and has a very high residual molecular activity in vitro (55% of wildtype FGE); however, it is rapidly degraded. Thus, despite substantial residual enzyme activity, protein instability determines disease severity, which highlights that potential MSD treatment approaches should target protein folding and stabilization mechanisms.
Collapse
Affiliation(s)
- Lars Schlotawa
- Department of Pediatrics and Pediatric Neurology, Georg August University Göttingen, Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
245
|
Zarate YA, Dwivedi A, Bartel FO, Bellomo MA, Cathey SS, Champaigne NL, Clarkson LK, Dupont BR, Everman DB, Geer JS, Gordon BC, Lichty AW, Lyons MJ, Rogers RC, Saul RA, Schroer RJ, Skinner SA, Stevenson RE. Clinical utility of the X-chromosome array. Am J Med Genet A 2012. [PMID: 23208842 DOI: 10.1002/ajmg.a.35698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Previous studies have limited the use of specific X-chromosome array designed platforms to the evaluation of patients with intellectual disability. In this retrospective analysis, we reviewed the clinical utility of an X-chromosome array in a variety of scenarios. We divided patients according to the indication for the test into four defined categories: (1) autism spectrum disorders and/or developmental delay and/or intellectual disability (ASDs/DD/ID) with known family history of neurocognitive disorders; (2) ASDs/DD/ID without known family history of neurocognitive disorders; (3) breakpoint definition of an abnormality detected by a different cytogenetic test; and (4) evaluation of suspected or known X-linked conditions. A total of 59 studies were ordered with 27 copy number variants detected in 25 patients (25/59 = 42%). The findings were deemed pathogenic/likely pathogenic (16/59 = 27%), benign (4/59 = 7%) or uncertain (7/59 = 12%). We place particular emphasis on the utility of this test for the diagnostic evaluation of families affected with X-linked conditions and how it compares to whole genome arrays in this setting. In conclusion, the X-chromosome array frequently detects genomic alterations of the X chromosome and it has advantages when evaluating some specific X-linked conditions. However, careful interpretation and correlation with clinical findings is needed to determine the significance of such changes. When the X-chromosome array was used to confirm a suspected X-linked condition, it had a yield of 63% (12/19) and was useful in the evaluation and risk assessment of patients and families.
Collapse
|
246
|
Takagi S, Omae R, Makanga JO, Kawahara T, Inazu T. Simple and rapid detection method for the mutations in SLC22A12 that cause hypouricemia by allele-specific real-time polymerase chain reaction. Clin Chim Acta 2012; 415:330-3. [PMID: 23148994 DOI: 10.1016/j.cca.2012.10.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 10/26/2012] [Indexed: 01/26/2023]
Abstract
BACKGROUND Hypouricemia is a disorder that serum urate level is less than 2.0 mg/dl, and relatively common in the Japanese population, where the main genetic cause of hypouricemia is W258X and R90H mutations in human urate trasnsporter 1(SLC22A12). Small scale screening has relied on time-consuming traditional ways like polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Therefore, it is beneficial that we have an easy and rapid detection method for these mutations. METHODS In this report, we established a touchdown allele-specific real-time polymerase chain reaction (ASPCR) assay for detecting W258X and R90H mutations in SLC22A12, respectively. RESULTS Quantifiable discrimination was successfully achieved by ∆Ct value. Furthermore, we conducted W258X and R90H screening against 120 control genome sets, whereby frequency was 2.92% for W258X, and not detected for R90H, respectively. CONCLUSIONS The two mutations, W258X and R90H in SLC22A12 were successfully genotyped by an easy and rapid ASPCR assay.
Collapse
Affiliation(s)
- Shota Takagi
- Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | | | | | | | | |
Collapse
|
247
|
Yakut S, Cetin Z, Arman M, Akbas H, Manguoglu AE, Luleci G. Absence of the SLC22A12 gene mutation in Turkish population with primary gout disease. Rheumatol Int 2012; 33:2921-5. [PMID: 23129426 DOI: 10.1007/s00296-012-2533-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 10/21/2012] [Indexed: 11/30/2022]
Abstract
The aim of the study was to examine whether SLC22A12 gene mutations might be influenced in primary gout disease. We included 32 patients with diagnosis of primary gout disease and 100 healthy volunteers. DNA was purified from peripheral blood, and all exons of the SLC22A12 gene were sequenced. We did not find any mutations in the SLC22A12 gene in all of the patients, but found 5 polymorphisms in exons 1 (g.T258C, g.C246T), 2 (g.C1246T) and 8 (g.T8011C) and in intron 9 (g.C8577T). However, we have not found any significant differences in the frequency of the individual genotypes between patients with primary gout disease and control group. In addition, the polymorphisms were not associated with hyperuricemia in our patients with primary gout disease. There was no previously reported mutation/polymorphisms of SLC22A12 gene in Turkish population. Our study is the first one in Turkish population and suggests that there is no association between primary gout disease and SLC22A12 gene polymorphisms. Sequence changes in the promotor and intronic regions of SLC22A12 gene should be investigated further with larger case groups.
Collapse
Affiliation(s)
- Sezin Yakut
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, Antalya, Turkey,
| | | | | | | | | | | |
Collapse
|
248
|
Willemsen MH, de Leeuw N, de Brouwer AP, Pfundt R, Hehir-Kwa JY, Yntema HG, Nillesen WM, de Vries BB, van Bokhoven H, Kleefstra T. Interpretation of clinical relevance of X-chromosome copy number variations identified in a large cohort of individuals with cognitive disorders and/or congenital anomalies. Eur J Med Genet 2012; 55:586-98. [DOI: 10.1016/j.ejmg.2012.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Revised: 05/05/2012] [Accepted: 05/05/2012] [Indexed: 01/01/2023]
|
249
|
Clinical neurogenetics: recent advances. J Neurol 2012; 259:2255-60. [DOI: 10.1007/s00415-012-6602-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 06/25/2012] [Accepted: 06/28/2012] [Indexed: 10/28/2022]
|
250
|
Abstract
Gout is a common and very painful inflammatory arthritis caused by hyperuricaemia. This review provides an update on the genetics of hyperuricaemia and gout, including findings from genome-wide association studies. Most of the genes that associated with serum uric acid levels or gout are involved in the renal urate-transport system. For example, the urate transporter genes SLC2A9, ABCG2 and SLC22A12 modulate serum uric acid levels and gout risk. The net balance between renal urate absorption and secretion is a major determinant of serum uric acid concentration and loss-of-function mutations in SLC2A9 and SLC22A12 cause hereditary hypouricaemia due to reduced urate absorption and unopposed urate secretion. However, the variance in serum uric acid explained by genetic variants is small and their clinical utility for gout risk prediction seems limited because serum uric acid levels effectively predict gout risk. Urate-associated genes and genetically determined serum uric acid levels were largely unassociated with cardiovascular-metabolic outcomes, challenging the hypothesis of a causal role of serum uric acid in the development of cardiovascular disease. Strong pharmacogenetic associations between HLA-B*5801 alleles and severe allopurinol-hypersensitivity reactions were shown in Asian and European populations. Genetic testing for HLA-B*5801 alleles could be used to predict these potentially fatal adverse effects.
Collapse
|