201
|
Adami GR, O'Callaghan TN, Kolokythas A, Cabay RJ, Zhou Y, Schwartz JL. A loss of profilin-1 in late-stage oral squamous cell carcinoma. J Oral Pathol Med 2016; 46:489-495. [PMID: 27862305 DOI: 10.1111/jop.12523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND The genes for PFN1 and TMSB4 are both highly expressed in oral tissue and both encode actin monomer binding proteins thought to play a role in cell motility and possibly other crucial parts of tumor progression. METHODS Oral brush cytology of epithelium from oral squamous cell carcinoma (OSCC) was used to measure PFN1 and TMSB4 mRNA in OSCC, while immunohistochemical analysis of tissue was used to check protein levels. RESULTS High but variable expression of mRNAs encoding these two proteins was observed suggesting they may contribute to tumor characteristics in a subset of OSCCs. Both proteins were highly expressed in normal appearing basal epithelium, in the cytoplasm, and perinuclear area, while expression was minimal in upper epithelial layers. In OSCCs, expression of these proteins varied. In tumors classified as later stage, based on size and/or lymph node involvement, PFN1 levels were lower in tumor epithelium. A control gene, KRT13, showed expression in normal differentiated basal and suprabasal oral mucosa epithelial cells and as reported was lost in OSCC cells. CONCLUSION Loss of PFN1 in tumor cells has been associated with lymph node invasion and metastasis in other tumor types, strengthening the argument that the protein has the potential to be a tumor suppressor in late-stage OSCC.
Collapse
Affiliation(s)
- Guy R Adami
- Department of Oral Medicine and Diagnostics, Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Thomas N O'Callaghan
- Department of Oral Medicine and Diagnostics, Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Antonia Kolokythas
- Department of Oral and Maxillofacial Surgery, Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Robert J Cabay
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Yalu Zhou
- Department of Oral Medicine and Diagnostics, Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Joel L Schwartz
- Department of Oral Medicine and Diagnostics, Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
202
|
Ziwei Zhou, Yingyi Gui, Yang Z, Xiaoxia Liu, Lei Wang, Yin Zhang, Lin H, Wang J. Disease-specific protein complex detection in the human protein interaction network with a supervised learning method. 2016 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM) 2016:1296-1301. [DOI: 10.1109/bibm.2016.7822705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
203
|
Watanabe M, Nakano K, Kadin ME, Higashihara M, Watanabe T, Horie R. CD30 Induces Heat Shock Protein 90 and Signal Integration in Classic Hodgkin Lymphoma Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 187:163-175. [PMID: 27870927 DOI: 10.1016/j.ajpath.2016.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 08/16/2016] [Accepted: 09/12/2016] [Indexed: 11/29/2022]
Abstract
Previous studies report deregulation of multiple signaling pathways in classic Hodgkin lymphoma (cHL) cells. However, the mechanisms of how these pathways are integrated are not fully understood. Herein, we show involvement of cHL hallmark antigen CD30 in this process. CD30 facilitates phosphorylation of heat shock factor 1, activates heat shock promoter element, and induces heat shock protein (HSP) 90. CD30 repression and subsequent inhibition of HSP90 suppresses NF-κB, extracellular signal-regulated kinase, AKT, and STAT pathways in cHL cell lines. Thus, CD30-mediated induction of HSP90 appears to serve as a central hub for integration of intracellular signaling in cHL cells. We also show that CD30 induces HSP90 through phosphorylation of heat shock factor 1 via c-Jun N-terminal kinase in cHL cells. Although anaplastic large-cell lymphoma (ALCL) also is associated with CD30 overexpression, our experiments reveal that HSP90 induction in ALCL-bearing nucleophosmin-anaplastic lymphoma kinase (ALK) does not depend on CD30 but instead on ALK via c-Jun N-terminal kinase. Together, these results highlight a novel role for CD30 in mediating integration of signaling pathways of cHL cells while being replaced in this function by ALK in ALCL cells.
Collapse
Affiliation(s)
- Mariko Watanabe
- Department of Hematology, School of Medicine, Kitasato University, Minami-ku, Sagamihara, Kanagawa, Japan
| | - Kazumi Nakano
- Laboratory of Tumor Cell Biology, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | - Marshall E Kadin
- Department of Dermatology and Skin Surgery, Boston University School of Medicine, Roger Williams Medical Center, Providence, Rhode Island
| | - Masaaki Higashihara
- Department of Hematology, School of Medicine, Kitasato University, Minami-ku, Sagamihara, Kanagawa, Japan
| | - Toshiki Watanabe
- Laboratory of Tumor Cell Biology, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | - Ryouichi Horie
- Department of Hematology, School of Medicine, Kitasato University, Minami-ku, Sagamihara, Kanagawa, Japan; Division of Hematology, Department of Laboratory Sciences, School of Allied Health Sciences, Kitasato University, Minami-ku, Sagamihara, Kanagawa, Japan.
| |
Collapse
|
204
|
Darvin P, Joung YH, Kang DY, Sp N, Byun HJ, Hwang TS, Sasidharakurup H, Lee CH, Cho KH, Park KD, Lee HK, Yang YM. Tannic acid inhibits EGFR/STAT1/3 and enhances p38/STAT1 signalling axis in breast cancer cells. J Cell Mol Med 2016; 21:720-734. [PMID: 27862996 PMCID: PMC5345631 DOI: 10.1111/jcmm.13015] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/19/2016] [Indexed: 01/22/2023] Open
Abstract
Tannic acid (TA), a naturally occurring polyphenol, is a potent anti-oxidant with anti-proliferative effects on multiple cancers. However, its ability to modulate gene-specific expression of tumour suppressor genes and oncogenes has not been assessed. This work investigates the mechanism of TA to regulate canonical and non-canonical STAT pathways to impose the gene-specific induction of G1-arrest and apoptosis. Regardless of the p53 status and membrane receptors, TA induced G1-arrest and apoptosis in breast cancer cells. Tannic acid distinctly modulated both canonical and non-canonical STAT pathways, each with a specific role in TA-induced anti-cancer effects. Tannic acid enhanced STAT1 ser727 phosphorylation via upstream serine kinase p38. This STAT1 ser727 phosphorylation enhanced the DNA-binding activity of STAT1 and in turn enhanced expression of p21Waf1/Cip1 . However, TA binds to EGF-R and inhibits the tyrosine phosphorylation of both STAT1 and STAT3. This inhibition leads to the inhibition of STAT3/BCL-2 DNA-binding activity. As a result, the expression and mitochondrial localization of BCl-2 are declined. This altered expression and localization of mitochondrial anti-pore factors resulted in the release of cytochrome c and the activation of intrinsic apoptosis cascade involving caspases. Taken together, our results suggest that TA modulates EGF-R/Jak2/STAT1/3 and P38/STAT1/p21Waf1/Cip1 pathways and induce G1-arrest and intrinsic apoptosis in breast carcinomas.
Collapse
Affiliation(s)
- Pramod Darvin
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul, South Korea
| | - Youn Hee Joung
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul, South Korea
| | - Dong Young Kang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul, South Korea
| | - Nipin Sp
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul, South Korea
| | - Hyo Joo Byun
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul, South Korea
| | - Tae Sook Hwang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul, South Korea
| | - Hema Sasidharakurup
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham (Amrita University), Kollam, India
| | - Chi Ho Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, South Korea
| | - Kwang Hyun Cho
- National Institute of Animal Science, RDA, Cheonan, South Korea
| | - Kyung Do Park
- Department of Animal Biotechnology, Chonbuk National University, Jeonju, South Korea
| | - Hak Kyo Lee
- Department of Animal Biotechnology, Chonbuk National University, Jeonju, South Korea
| | - Young Mok Yang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul, South Korea
| |
Collapse
|
205
|
p53 Proteoforms and Intrinsic Disorder: An Illustration of the Protein Structure-Function Continuum Concept. Int J Mol Sci 2016; 17:ijms17111874. [PMID: 27834926 PMCID: PMC5133874 DOI: 10.3390/ijms17111874] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/27/2016] [Accepted: 11/03/2016] [Indexed: 01/10/2023] Open
Abstract
Although it is one of the most studied proteins, p53 continues to be an enigma. This protein has numerous biological functions, possesses intrinsically disordered regions crucial for its functionality, can form both homo-tetramers and isoform-based hetero-tetramers, and is able to interact with many binding partners. It contains numerous posttranslational modifications, has several isoforms generated by alternative splicing, alternative promoter usage or alternative initiation of translation, and is commonly mutated in different cancers. Therefore, p53 serves as an important illustration of the protein structure–function continuum concept, where the generation of multiple proteoforms by various mechanisms defines the ability of this protein to have a multitude of structurally and functionally different states. Considering p53 in the light of a proteoform-based structure–function continuum represents a non-canonical and conceptually new contemplation of structure, regulation, and functionality of this important protein.
Collapse
|
206
|
Sun W, Guo L, Shao G, Liu X, Guan Y, Su L, Zhao S. Suppression of LASP-1 attenuates the carcinogenesis of prostatic cancer cell lines: Key role of the NF-κB pathway. Oncol Rep 2016; 37:341-347. [PMID: 27840958 DOI: 10.3892/or.2016.5223] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/11/2016] [Indexed: 11/05/2022] Open
Abstract
Prostate cancer (PCa) is one of the most frequently diagnosed cancers among males worldwide and causes a considerable number of deaths each year. One of the newly explored targets for the development of therapies against PCa is LIM and SH3 protein 1 (LASP-1). In the present study, the function of LASP-1 in the oncogenesis and metastasis of PCa was investigated using a series of in vitro experiments. Moreover, the mechanism through which LASP-1 exerted its effect on the carcinogenesis of PCa was also explored. The expression levels of LASP-1 in clinical PCa specimens were determined both at the mRNA and protein levels. Afterwards, the activity of LASP-1 in human PCa cell lines PC3 and DU145 was inhibited using a short hairpin RNA (shRNA) interfering method. The effects of LASP-1 knockdown on the cell growth, apoptosis, cell cycle distribution, migration and invasion were assessed. It was demonstrated that the expression of LASP-1 was significantly higher in the clinical PCa tissues than the level in the corresponding para-carcinoma tissues. Following the knockdown of the LASP-1 gene in human PCa cell lines, the viability, migration and invasion of the cancer cells were decreased. It was also demonstrated that the change in the cell viability and motile ability were associated with an induction of cell apoptosis and G1 phase cell cycle arrest. Based on the results of the detection of the expression of NF-κB-related factors, it was indicated that LASP-1 may affect the carcinogenesis of PCa through a NF-κB inhibition-dependent manner. Although the detailed explanation of the mechanism of LASP-1 in the carcinogenesis of PCa requires further elucidation, the present study highlights the potential of LASP-1 as a promising therapeutic target to ameliorate the oncogenesis and metastasis of PCa.
Collapse
Affiliation(s)
- Wendong Sun
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Liqiang Guo
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Guangfeng Shao
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Xiangguo Liu
- Shandong University School of Life Sciences, Jinan, Shandong 250100, P.R. China
| | - Yong Guan
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Ling Su
- Shandong University School of Life Sciences, Jinan, Shandong 250100, P.R. China
| | - Shengtian Zhao
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
207
|
Tian X, Tian J, Tang X, Ma J, Wang S. Long non-coding RNAs in the regulation of myeloid cells. J Hematol Oncol 2016; 9:99. [PMID: 27680332 PMCID: PMC5041333 DOI: 10.1186/s13045-016-0333-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 09/22/2016] [Indexed: 12/21/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been attracting immense research interests. The relevance of lncRNAs in biological and physiological as well as in pathological processes has increased along with the understanding of their various regulatory mechanisms. Abundant studies have indicated that lncRNAs are involved in the differentiation, proliferation, activation, and initiation of apoptosis in different cell types. However, most studies about the regulating biology of lncRNAs are currently focused on cancer cells. This review is focused on the widely unexplored role of lncRNAs in the cell fate of myeloid cells. In this review, we summarize recent studies that have confirmed lncRNAs to be essential in the development of myeloid cells under normal and pathological conditions.
Collapse
Affiliation(s)
- Xinyu Tian
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, China.,Institute of Laboratory Medicine, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Jie Tian
- Institute of Laboratory Medicine, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Xinyi Tang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, China
| | - Jie Ma
- Institute of Laboratory Medicine, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, China. .,Institute of Laboratory Medicine, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
208
|
Guo H, Xing Y, Mu A, Li X, Li T, Bian X, Yang C, Zhang X, Liu Y, Wang X. Correlations between EGFR gene polymorphisms and pleural metastasis of lung adenocarcinoma. Onco Targets Ther 2016; 9:5257-70. [PMID: 27601918 PMCID: PMC5004999 DOI: 10.2147/ott.s97907] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Proliferation, growth, and differentiation of cells are strictly controlled by the signal system of epidermal growth factor receptor (EGFR). If any link of the EGFR signals system is interfered with or damaged, the proliferation, growth, and differentiation of cells would become uncontrolled. EGFR is overexpressed in a variety of malignant tumors, such as non-small-cell lung cancer, colorectal cancer and breast cancer. Results of the study have proved that EGFR overexpression is closely associated with mutations and variants of the EGFR genes, whose mutations and variants are associated with occurrence, metastasis, and prognosis of different types of tumors, including lung cancer. This study is aimed at investigating whether the polymorphisms of CA simple sequence repeat in intron 1 (CA-SSR1), -216G/T, and R497K in the EGFR are able to induce EGFR activation and whether overexpression is associated with pleural metastasis of lung adenocarcinoma. A total of 432 lung adenocarcinoma patients with pleural metastasis (metastasis group) and 424 patients with lung adenocarcinoma but without pleural metastasis (nonmetastasis group) were enrolled in this study. For all patients, the CA-SSR1 genotypes were determined by capillary electrophoresis, polymerase chain reaction amplification, and direct DNA sequencing, and the R497K and -216G/T genotypes were determined by polymerase chain reaction amplification and direct DNA sequencing. EGFR expression was evaluated by immunohistochemical staining in primary tumor tissues with different -216G/T, R497K, and CA-SSR1 genotypes. Our results showed significant differences between pleural metastasis and nonmetastasis groups in the genotype and allele distribution of -216G/T, R497K, and CA-SSR1 polymorphisms of the EGFR gene. The -216T allele, Arg allele, and shorter CA-SSR1 (<17) had significantly increased risks of pleural metastasis compared with the -216G allele, Lys allele, and longer CA-SSR1 (≥17), respectively. The expression of EGFR was higher in patients with genotypes of -216T/T or -216G/T, Arg/Arg or Arg/Lys, and shorter CA-SSR1 (<17) than that in patients with genotypes of -216G/G, Lys/Lys, and longer CA-SSR1 (≥17), respectively. These results indicate that -216G/T, R497K, and CA-SSR1 polymorphisms are associated with the risk of pleural metastasis of lung adenocarcinoma, which may be related to the overexpression of EGFR protein induced by -216G/T, R497K, and CA-SSR1 polymorphisms.
Collapse
Affiliation(s)
- Haisheng Guo
- Department of Oncology, Dongying People's Hospital
| | - Yunhui Xing
- Department of Tuberculosis, Shengli Hospital of Shengli Oil Field
| | - Ailan Mu
- Department of Oncology, Dongying People's Hospital
| | | | - Tingshan Li
- Personnel Department, Dongying People's Hospital, Dongying, Shandong, People's Republic of China
| | - Xia Bian
- Department of Oncology, Dongying People's Hospital
| | - Chunmei Yang
- Department of Oncology, Dongying People's Hospital
| | | | - Yuefen Liu
- Department of Oncology, Dongying People's Hospital
| | - Xunguo Wang
- Department of Oncology, Dongying People's Hospital
| |
Collapse
|
209
|
Wurster KD, Hummel F, Richter J, Giefing M, Hartmann S, Hansmann ML, Kreher S, Köchert K, Krappmann D, Klapper W, Hummel M, Wenzel SS, Lenz G, Janz M, Dörken B, Siebert R, Mathas S. Inactivation of the putative ubiquitin-E3 ligase PDLIM2 in classical Hodgkin and anaplastic large cell lymphoma. Leukemia 2016; 31:602-613. [PMID: 27538486 PMCID: PMC5339435 DOI: 10.1038/leu.2016.238] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 08/02/2016] [Accepted: 08/09/2016] [Indexed: 12/12/2022]
Abstract
Apart from its unique histopathological appearance with rare tumor cells embedded in an inflammatory background of bystander cells, classical Hodgkin lymphoma (cHL) is characterized by an unusual activation of a broad range of signaling pathways involved in cellular activation. This includes constitutive high-level activity of nuclear factor-κB (NF-κB), Janus kinase/signal transducer and activator of transcription (JAK/STAT), activator protein-1 (AP-1) and interferon regulatory factor (IRF) transcription factors (TFs) that are physiologically only transiently activated. Here, we demonstrate that inactivation of the putative ubiquitin E3-ligase PDLIM2 contributes to this TF activation. PDLIM2 expression is lost at the mRNA and protein levels in the majority of cHL cell lines and Hodgkin and Reed–Sternberg (HRS) cells of nearly all cHL primary samples. This loss is associated with PDLIM2 genomic alterations, promoter methylation and altered splicing. Reconstitution of PDLIM2 in HRS cell lines inhibits proliferation, blocks NF-κB transcriptional activity and contributes to cHL-specific gene expression. In non-Hodgkin B-cell lines, small interfering RNA-mediated PDLIM2 knockdown results in superactivation of TFs NF-κB and AP-1 following phorbol 12-myristate 13-acetate (PMA) stimulation. Furthermore, expression of PDLIM2 is lost in anaplastic large cell lymphoma (ALCL) that shares key biological aspects with cHL. We conclude that inactivation of PDLIM2 is a recurrent finding in cHL and ALCL, promotes activation of inflammatory signaling pathways and thereby contributes to their pathogenesis.
Collapse
Affiliation(s)
- K D Wurster
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - F Hummel
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - J Richter
- Institute of Human Genetics, Christian-Albrechts University Kiel, Kiel, Germany
| | - M Giefing
- Institute of Human Genetics, Christian-Albrechts University Kiel, Kiel, Germany.,Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - S Hartmann
- Dr Senckenberg Institute of Pathology, University of Frankfurt, Medical School, Frankfurt, Germany
| | - M-L Hansmann
- Dr Senckenberg Institute of Pathology, University of Frankfurt, Medical School, Frankfurt, Germany
| | - S Kreher
- Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - K Köchert
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - D Krappmann
- Research Unit Cellular Signal Integration, Helmholtz Zentrum München für Gesundheit und Umwelt, Neuherberg, Germany
| | - W Klapper
- Department of Pathology, Haematopathology Section and Lymph Node Registry, Christian-Albrechts University Kiel, Kiel, Germany
| | - M Hummel
- Institute of Pathology, Charité-Universitätsmedzin Berlin, Berlin, Germany
| | - S-S Wenzel
- Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - G Lenz
- Division of Translational Oncology, Department of Medicine A, University Hospital Münster, and Cluster of Excellence EXC 1003, Cells in Motion, Münster, Germany
| | - M Janz
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - B Dörken
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - R Siebert
- Institute of Human Genetics, Christian-Albrechts University Kiel, Kiel, Germany.,Institute of Human Genetics, University Hospital Ulm, Ulm, Germany
| | - S Mathas
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
210
|
Rajput P, Pandey V, Kumar V. Stimulation of ribosomal RNA gene promoter by transcription factor Sp1 involves active DNA demethylation by Gadd45-NER pathway. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1859:953-63. [PMID: 27156884 DOI: 10.1016/j.bbagrm.2016.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 04/23/2016] [Accepted: 05/04/2016] [Indexed: 01/29/2023]
Abstract
The well-studied Pol II transcription factor Sp1 has not been investigated for its regulatory role in rDNA transcription. Here, we show that Sp1 bound to specific sites on rDNA and localized into the nucleoli during the G1 phase of cell cycle to activate rDNA transcription. It facilitated the recruitment of Pol I pre-initiation complex and impeded the binding of nucleolar remodeling complex (NoRC) to rDNA resulting in the formation of euchromatin active state. More importantly, Sp1 also orchestrated the site-specific binding of Gadd45a-nucleotide excision repair (NER) complex resulting in active demethylation and transcriptional activation of rDNA. Interestingly, knockdown of Sp1 impaired rDNA transcription due to reduced engagement of the Gadd45a-NER complex and hypermethylation of rDNA. Thus, the present study unveils a novel role of Sp1 in rDNA transcription involving promoter demethylation.
Collapse
MESH Headings
- A549 Cells
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Nucleolus/metabolism
- DNA Methylation
- DNA Repair
- DNA, Ribosomal/genetics
- DNA, Ribosomal/metabolism
- Epigenesis, Genetic
- Euchromatin/chemistry
- Euchromatin/metabolism
- G1 Phase
- Genes, Reporter
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- HCT116 Cells
- HEK293 Cells
- Humans
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Promoter Regions, Genetic
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Signal Transduction
- Sp1 Transcription Factor/antagonists & inhibitors
- Sp1 Transcription Factor/genetics
- Sp1 Transcription Factor/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Pallavi Rajput
- Virology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Vijaya Pandey
- Virology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Vijay Kumar
- Virology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067, India.
| |
Collapse
|
211
|
Krappmann D, Vincendeau M. Mechanisms of NF-κB deregulation in lymphoid malignancies. Semin Cancer Biol 2016; 39:3-14. [DOI: 10.1016/j.semcancer.2016.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 12/17/2022]
|
212
|
Guo H, Cheng Y, Martinka M, McElwee K. High LIFr expression stimulates melanoma cell migration and is associated with unfavorable prognosis in melanoma. Oncotarget 2016; 6:25484-98. [PMID: 26329521 PMCID: PMC4694846 DOI: 10.18632/oncotarget.4688] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 07/13/2015] [Indexed: 11/25/2022] Open
Abstract
Increased or decreased expression of LIF receptor (LIFr) has been reported in several human cancers, including skin cancer, but its role in melanoma is unknown. In this study, we investigated the expression pattern of LIFr in melanoma and assessed its prognostic value. Using tissue microarrays consisting of 441 melanomas and 96 nevi, we found that no normal nevi showed high LIFr expression. LIFr staining was significantly increased in primary melanoma compared to dysplastic nevi (P = 0.0003) and further increased in metastatic melanoma (P = 0.0000). Kaplan–Meier survival curve and univariate Cox regression analyses showed that increased expression of LIFr was correlated with poorer 5-year patient survival (overall survival, P = 0.0000; disease-specific survival, P = 0.0000). Multivariate Cox regression analyses indicated that increased LIFr expression was an independent prognostic marker for primary melanoma (P = 0.036). LIFr knockdown inhibited melanoma cell migration in wound healing assays and reduced stress fiber formation. LIFr knockdown correlated with STAT3 suppression, but not YAP, suggesting that LIFr activation might stimulate melanoma cell migration through the STAT3 pathway. Our data indicate that strong LIFr expression identifies potentially highly malignant melanocytic lesions at an early stage and LIFr may be a potential target for the development of early intervention therapeutics.
Collapse
Affiliation(s)
- Hongwei Guo
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, Canada.,Department of Dermatology, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong, China
| | - Yabin Cheng
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, Canada
| | - Magdalena Martinka
- Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin McElwee
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, Canada
| |
Collapse
|
213
|
Birkenmeier K, Moll K, Newrzela S, Hartmann S, Dröse S, Hansmann ML. Basal autophagy is pivotal for Hodgkin and Reed-Sternberg cells' survival and growth revealing a new strategy for Hodgkin lymphoma treatment. Oncotarget 2016; 7:46579-46588. [PMID: 27366944 PMCID: PMC5216819 DOI: 10.18632/oncotarget.10300] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/19/2016] [Indexed: 12/19/2022] Open
Abstract
As current classical Hodgkin lymphoma (cHL) treatment strategies have pronounced side-effects, specific inhibition of signaling pathways may offer novel strategies in cHL therapy. Basal autophagy, a regulated catabolic pathway to degrade cell's own components, is in cancer linked with both, tumor suppression or promotion. The finding that basal autophagy enhances tumor cell survival would thus lead to immediately testable strategies for novel therapies. Thus, we studied its contribution in cHL.We found constitutive activation of autophagy in cHL cell lines and primary tissue. The expression of key autophagy-relevant proteins (e.g. Beclin-1, ULK1) and LC3 processing was increased in cHL cells, even in lymphoma cases. Consistently, cHL cells exhibited elevated numbers of autophagic vacuoles and intact autophagic flux. Autophagy inhibition with chloroquine or inactivation of ATG5 induced apoptosis and reduced proliferation of cHL cells. Chloroquine-mediated inhibition of basal autophagy significantly impaired HL growth in-vivo in NOD SCID γc-/- (NSG) mice. We found that basal autophagy plays a pivotal role in sustaining mitochondrial function.We conclude that cHL cells require basal autophagy for growth, survival and sustained metabolism making them sensitive to autophagy inhibition. This suggests basal autophagy as useful target for new strategies in cHL treatment.
Collapse
Affiliation(s)
- Katrin Birkenmeier
- Dr. Senckenberg Institute of Pathology, University Hospital of Frankfurt, 60596 Frankfurt am Main, Germany
| | - Katharina Moll
- Dr. Senckenberg Institute of Pathology, University Hospital of Frankfurt, 60596 Frankfurt am Main, Germany
| | - Sebastian Newrzela
- Dr. Senckenberg Institute of Pathology, University Hospital of Frankfurt, 60596 Frankfurt am Main, Germany
| | - Sylvia Hartmann
- Dr. Senckenberg Institute of Pathology, University Hospital of Frankfurt, 60596 Frankfurt am Main, Germany
| | - Stefan Dröse
- Clinic of Anesthesiology, Intensive-Care Medicine and Pain Therapy, Goethe-University Hospital, 60596 Frankfurt am Main, Germany
| | - Martin-Leo Hansmann
- Dr. Senckenberg Institute of Pathology, University Hospital of Frankfurt, 60596 Frankfurt am Main, Germany
| |
Collapse
|
214
|
Relevance of the Measles Virus Expression in Cancer - an Update. Pathol Oncol Res 2016; 22:661-6. [PMID: 27287391 DOI: 10.1007/s12253-016-0080-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 06/02/2016] [Indexed: 10/21/2022]
Abstract
Evidence of an association between classical Hodgkin lymphoma and the measles virus has previously been presented by our group. Arguments held against our thesis were reevaluated. Substantiation of a relationship between the measles virus and additional solid tumors was submitted. Moreover, a pathogenic pathway was suggested to support a possible contribution of the measles virus to the development of classical Hodgkin lymphoma. We have chosen to exclude a discussion of measles virotherapy, since this carries distinct implications. We now add new evidence regarding the expression of the measles virus phosphoprotein in a few cancers. We also suggest a role in this context for atypical measles syndrome in malignant tumors. Last, we propose a collaboration which may make the best, on the one hand of our cohort of classical Hodgkin lymphoma, half of which carry the measles virus expression in their tumor cells. The planned study will also look into the patients vaccination records and into a previous history of the measles disease. On the other hand, cohorts of patients diagnosed with late onset measles will be assessed for the eventual diagnosis of atypical measles syndrome and will be followed up for the subsequent development of a malignant tumor.
Collapse
|
215
|
Linke F, Zaunig S, Nietert MM, von Bonin F, Lutz S, Dullin C, Janovská P, Beissbarth T, Alves F, Klapper W, Bryja V, Pukrop T, Trümper L, Wilting J, Kube D. WNT5A: a motility-promoting factor in Hodgkin lymphoma. Oncogene 2016; 36:13-23. [DOI: 10.1038/onc.2016.183] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 03/23/2016] [Accepted: 04/18/2016] [Indexed: 12/24/2022]
|
216
|
Weniger MA, Küppers R. NF-κB deregulation in Hodgkin lymphoma. Semin Cancer Biol 2016; 39:32-9. [PMID: 27221964 DOI: 10.1016/j.semcancer.2016.05.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/17/2016] [Accepted: 05/20/2016] [Indexed: 12/17/2022]
Abstract
Hodgkin and Reed/Sternberg (HRS) cells in classical Hodgkin lymphoma (HL) show constitutive activity of both the canonical and non-canonical NF-κB signaling pathways. The central pathogenetic role of this activity is indicated from studies with HL cell lines, which undergo apoptosis upon NF-κB inhibition. Multiple factors contribute to the strong NF-κB activity of HRS cells. This includes interaction with other cells in the lymphoma microenvironment through CD30, CD40, BCMA and other receptors, but also recurrent somatic genetic lesions in various factors of the NF-κB pathway, including destructive mutations in negative regulators of NF-κB signaling (e.g. TNFAIP3, NFKBIA), and copy number gains of genes encoding positive regulators (e.g. REL, MAP3K14). In Epstein-Barr virus-positive cases of classical HL, the virus-encoded latent membrane protein 1 causes NF-κB activation by mimicking an active CD40 receptor. NF-κB activity is also seen in the tumor cells of the rare nodular lymphocyte predominant form of HL, but the causes for this activity are largely unclear.
Collapse
Affiliation(s)
- Marc A Weniger
- Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg-Essen, Virchowstr. 173, 45122 Essen, Germany
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg-Essen, Virchowstr. 173, 45122 Essen, Germany.
| |
Collapse
|
217
|
Cui XB, Zhang SM, Xu YX, Dang HW, Liu CX, Wang LH, Yang L, Hu JM, Liang WH, Jiang JF, Li N, Li Y, Chen YZ, Li F. PFN2, a novel marker of unfavorable prognosis, is a potential therapeutic target involved in esophageal squamous cell carcinoma. J Transl Med 2016; 14:137. [PMID: 27188458 PMCID: PMC4870769 DOI: 10.1186/s12967-016-0884-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/28/2016] [Indexed: 02/07/2023] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is one of the most aggressively malignant tumors with dismal prognosis. Profilin 2 (PFN2) is an actin-binding protein that regulates the dynamics of actin polymerization and plays a key role in cell motility. Recently, PFN2 have emerged as significant regulators of cancer processes. However, the clinical significance and biological function of PFN2 in ESCC remain unclear. Methods PFN2 protein expression was validated by immunohistochemistry (IHC) on tissue microarray from Chinese Han and Kazakh populations with ESCC. The associations among PFN2 expression, clinicopathological features, and prognosis of ESCC were analyzed. The effects on cell proliferation, invasion and migration were examined using MTT and Transwell assays. Markers of epithelial–mesenchymal transition (EMT) were detected by Western blot analysis. Results Compared with normal esophageal epithelium (NEE), PFN2 protein expression was markedly increased in low-grade intraepithelial neoplasia (LGIN), high-grade intraepithelial neoplasia (HGIN), and ESCC, increased gradually from LGIN to ESCC, and finally reached high grade in HGIN in the Han population. Similarly, PFN2 protein was more overexpressed in ESCC than in NEE in the Kazakh population. The results of Western blot analysis also showed that PFN2 expression was significantly higher in the ESCC tissue than in a matched adjacent non-cancerous tissue. PFN2 expression was positively correlated with invasion depth and lymph node metastasis. High PFN2 expression was significantly correlated with short overall survival (OS) (P = 0.023). Cox regression analysis revealed that PFN2 expression was an independent prognostic factor for poor OS in ESCC. Downregulation of PFN2 inhibited, rather than proliferated, cell invasion and migration, as well as induced an EMT phenotype, including increased expression of epithelial marker E-cadherin, decreased mesenchymal marker Vimentin, Snail, Slug and ZEB1, and morphological changes in ESCC cells in vitro. Conclusions Our findings demonstrate that PFN2 has a novel role in promoting ESCC progression and metastasis and portending a poor prognosis, indicating that PFN2 could act as an early biomarker of high-risk population. Targeting PFN2 may offer a promising therapeutic strategy for ESCC treatment. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-0884-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiao-Bin Cui
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, 832002, China.,Department of Pathology, Beijing ChaoYang Hospital, Capital Medical University, Beijing, 100020, China
| | - Shu-Mao Zhang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Yue-Xun Xu
- Department of Gynecology, Zhengzhou First People's Hospital, Zhengzhou, 450000, China
| | - Hong-Wei Dang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Chun-Xia Liu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Liang-Hai Wang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Lan Yang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Jian-Ming Hu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Wei-Hua Liang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Jin-Fang Jiang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Na Li
- Department of Oncology, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Yong Li
- Department of CT and MRI, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China.
| | - Yun-Zhao Chen
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, 832002, China.
| | - Feng Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, 832002, China. .,Department of Pathology, Beijing ChaoYang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
218
|
Abstract
The Hodgkin and Reed-Sternberg (HRS) tumor cells of classical Hodgkin lymphoma (HL), as well as the lymphocyte predominant (LP) cells of nodular lymphocyte predominant HL (NLPHL), are derived from mature B cells. However, HRS cells have largely lost their B-cell phenotype and show a very unusual expression of many markers of other hematopoietic cell lineages, which aids in the differential diagnosis between classical HL (cHL) and NLPHL and distinguishes cHL from all other hematopoietic malignancies. The bi- or multinucleated Reed-Sternberg cells most likely derive from the mononuclear Hodgkin cells through a process of incomplete cytokinesis. HRS cells show a deregulated activation of numerous signaling pathways, which is partly mediated by cellular interactions in the lymphoma microenvironment and partly by genetic lesions. In a fraction of cases, Epstein-Barr virus contributes to the pathogenesis of cHL. Recurrent genetic lesions in HRS cells identified so far often involve members of the nuclear factor-κB (NF-κB) and JAK/STAT pathways and genes involved in major histocompatibility complex expression. However, further lead transforming events likely remain to be identified. We here discuss the current knowledge on HL pathology and biology.
Collapse
Affiliation(s)
- Stephan Mathas
- Max-Delbrück-Center for Molecular Medicine, and Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sylvia Hartmann
- Dr. Senckenberg Institute of Pathology, University of Frankfurt, Medical School, Frankfurt/Main, Germany
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
219
|
de Oliveira KAP, Kaergel E, Heinig M, Fontaine JF, Patone G, Muro EM, Mathas S, Hummel M, Andrade-Navarro MA, Hübner N, Scheidereit C. A roadmap of constitutive NF-κB activity in Hodgkin lymphoma: Dominant roles of p50 and p52 revealed by genome-wide analyses. Genome Med 2016; 8:28. [PMID: 26988706 PMCID: PMC4794921 DOI: 10.1186/s13073-016-0280-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/17/2016] [Indexed: 12/02/2022] Open
Abstract
Background NF-κB is widely involved in lymphoid malignancies; however, the functional roles and specific transcriptomes of NF-κB dimers with distinct subunit compositions have been unclear. Methods Using combined ChIP-sequencing and microarray analyses, we determined the cistromes and target gene signatures of canonical and non-canonical NF-κB species in Hodgkin lymphoma (HL) cells. Results We found that the various NF-κB subunits are recruited to regions with redundant κB motifs in a large number of genes. Yet canonical and non-canonical NF-κB dimers up- and downregulate gene sets that are both distinct and overlapping, and are associated with diverse biological functions. p50 and p52 are formed through NIK-dependent p105 and p100 precursor processing in HL cells and are the predominant DNA binding subunits. Logistic regression analyses of combinations of the p50, p52, RelA, and RelB subunits in binding regions that have been assigned to genes they regulate reveal a cross-contribution of p52 and p50 to canonical and non-canonical transcriptomes. These analyses also indicate that the subunit occupancy pattern of NF-κB binding regions and their distance from the genes they regulate are determinants of gene activation versus repression. The pathway-specific signatures of activated and repressed genes distinguish HL from other NF-κB-associated lymphoid malignancies and inversely correlate with gene expression patterns in normal germinal center B cells, which are presumed to be the precursors of HL cells. Conclusions We provide insights that are relevant for lymphomas with constitutive NF-κB activation and generally for the decoding of the mechanisms of differential gene regulation through canonical and non-canonical NF-κB signaling. Electronic supplementary material The online version of this article (doi:10.1186/s13073-016-0280-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kivia A P de Oliveira
- Signal Transduction in Tumor Cells, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Eva Kaergel
- Signal Transduction in Tumor Cells, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Matthias Heinig
- Department of Computational Biology, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany.,Genetics and Genomics of Cardiovascular Diseases, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125, Berlin, Germany.,Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstr.1, 85764, Neuherberg, Germany
| | - Jean-Fred Fontaine
- Computational Biology and Data Mining, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125, Berlin, Germany.,Present address: Johannes Gutenberg University, 55128, Mainz, Germany
| | - Giannino Patone
- Genetics and Genomics of Cardiovascular Diseases, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Enrique M Muro
- Computational Biology and Data Mining, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125, Berlin, Germany.,Present address: Johannes Gutenberg University, 55128, Mainz, Germany
| | - Stephan Mathas
- Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany.,Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Michael Hummel
- Institute of Pathology, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Miguel A Andrade-Navarro
- Computational Biology and Data Mining, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125, Berlin, Germany.,Present address: Johannes Gutenberg University, 55128, Mainz, Germany
| | - Norbert Hübner
- Genetics and Genomics of Cardiovascular Diseases, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Claus Scheidereit
- Signal Transduction in Tumor Cells, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125, Berlin, Germany.
| |
Collapse
|
220
|
Ravi D, Beheshti A, Abermil N, Passero F, Sharma J, Coyle M, Kritharis A, Kandela I, Hlatky L, Sitkovsky MV, Mazar A, Gartenhaus RB, Evens AM. Proteasomal Inhibition by Ixazomib Induces CHK1 and MYC-Dependent Cell Death in T-cell and Hodgkin Lymphoma. Cancer Res 2016; 76:3319-31. [PMID: 26988986 DOI: 10.1158/0008-5472.can-15-2477] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 02/29/2016] [Indexed: 12/19/2022]
Abstract
Proteasome-regulated NF-κB has been shown to be important for cell survival in T-cell lymphoma and Hodgkin lymphoma models. Several new small-molecule proteasome inhibitors are under various stages of active preclinical and clinical development. We completed a comprehensive preclinical examination of the efficacy and associated biologic effects of a second-generation proteasome inhibitor, ixazomib, in T-cell lymphoma and Hodgkin lymphoma cells and in vivo SCID mouse models. We demonstrated that ixazomib induced potent cell death in all cell lines at clinically achievable concentrations. In addition, it significantly inhibited tumor growth and improved survival in T-cell lymphoma and Hodgkin lymphoma human lymphoma xenograft models. Through global transcriptome analyses, proteasomal inhibition showed conserved overlap in downregulation of cell cycle, chromatin modification, and DNA repair processes in ixazomib-sensitive lymphoma cells. The predicted activity for tumor suppressors and oncogenes, the impact on "hallmarks of cancer," and the analysis of key significant genes from global transcriptome analysis for ixazomib strongly favored tumor inhibition via downregulation of MYC and CHK1, its target genes. Furthermore, in ixazomib-treated lymphoma cells, we identified that CHK1 was involved in the regulation of MYC expression through chromatin modification involving histone H3 acetylation via chromatin immunoprecipitation. Finally, using pharmacologic and RNA silencing of CHK1 or the associated MYC-related mechanism, we demonstrated synergistic cell death in combination with antiproteasome therapy. Altogether, ixazomib significantly downregulates MYC and induces potent cell death in T-cell lymphoma and Hodgkin lymphoma, and we identified that combinatorial therapy with anti-CHK1 treatment represents a rational and novel therapeutic approach. Cancer Res; 76(11); 3319-31. ©2016 AACR.
Collapse
Affiliation(s)
- Dashnamoorthy Ravi
- Division of Hematology Oncology and Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts
| | - Afshin Beheshti
- Division of Hematology Oncology and Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts
| | - Nasséra Abermil
- Division of Hematology Oncology and Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts
| | - Frank Passero
- Division of Hematology Oncology and Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts
| | - Jaya Sharma
- Division of Hematology Oncology and Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts
| | - Michael Coyle
- Division of Hematology Oncology and Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts
| | - Athena Kritharis
- Division of Hematology Oncology and Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts
| | - Irawati Kandela
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois
| | - Lynn Hlatky
- Center of Cancer Systems Biology, Tufts University School of Medicine, Boston, Massachusetts
| | - Michail V Sitkovsky
- New England Inflammation and Tissue Protection Institute, Northeastern University, Boston, Massachusetts
| | - Andrew Mazar
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois
| | | | - Andrew M Evens
- Division of Hematology Oncology and Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts.
| |
Collapse
|
221
|
Chandrakesan P, Panneerselvam J, Qu D, Weygant N, May R, Bronze MS, Houchen CW. Regulatory Roles of Dclk1 in Epithelial Mesenchymal Transition and Cancer Stem Cells. ACTA ACUST UNITED AC 2016; 7. [PMID: 27335684 PMCID: PMC4913783 DOI: 10.4172/2157-2518.1000257] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The identification of functionally relevant subpopulations of therapy-resistant cancer cells is a challenge. These cells, intrinsically resistant to conventional therapy, can cause recurrence. Evidence has suggested that therapy-resistant cancer cells are likely epithelial–mesenchymal transition (EMT) cells and/or stem-like cells called cancer stem cells (CSCs). EMT, a normal embryological process that converts epithelial cells into mesenchymal cells, is frequently activated during cancer development and progression. CSCs are a small subpopulation of cancer cells within a tumor mass that have the ability to self-renew and maintain tumor-initiating capacity by giving rise to heterogeneous lineages of cancer cells that comprise the whole tumor. Although the origin of CSCs and EMT cells remains to be fully explored, a growing body of evidence has indicated that the biology of EMT and CSCs is strongly linked. Doublecortin-like kinase 1 (DCLK1), a cancer stem cell marker, is functionally involved in maintaining cancer stemness and the process of EMT important for cancer initiation, cancer metastasis, and secondary tumor formation. Therefore, targeting these cells may provide new strategies to overcome tumor heterogeneity, therapeutic resistance, and cancer relapse. In this review, we will provide a potential mechanistic link between EMT induction and the emergence of CSCs for the origin and progression of cancer. We will highlight the functional activity of DCLK1 in supporting EMT and cancer cell self-renewal, which will lead us to a better understanding of DCLK1 expression in cancer development and progression, and help us to develop targeted therapies for effective cancer treatment.
Collapse
Affiliation(s)
- P Chandrakesan
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Stephenson Oklahoma Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - J Panneerselvam
- Stephenson Oklahoma Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - D Qu
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Stephenson Oklahoma Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - N Weygant
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - R May
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - M S Bronze
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - C W Houchen
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Stephenson Oklahoma Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA; COARE Biotechnology, Oklahoma City, OK, USA
| |
Collapse
|
222
|
Bao Z, Duan C, Gong C, Wang L, Shen C, Wang C, Cui G. Protein phosphatase 1γ regulates the proliferation of human glioma via the NF-κB pathway. Oncol Rep 2016; 35:2916-26. [PMID: 26936744 DOI: 10.3892/or.2016.4644] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 12/23/2015] [Indexed: 11/06/2022] Open
Abstract
Protein phosphatase 1γ (PP1γ), a member of mammalian protein phosphatases, serine/threonine phosphatases, catalyzes the majority of protein dephosphorylation events and regulates diverse cellular processes, such as neuronal signaling, muscle contraction, glycogen synthesis, and cell proliferation. However, its expression and potential functions in human glioma is unclear. In this study, we detected the high expression of PP1γ and phosphorylated p65 (p-p65) in human glioma tissues. Besides, we demonstrated that upregulation of PP1γ was tightly related to poor 5-year survival via systemic statistical analysis. Employing serum-starved and re-feeding models of U251 and U87MG, we observed the increasing expression of PP1γ and p-p65 were accompanied by the cell proliferation markers cyclin D1 and proliferating cell nuclear antigen (PCNA). Employing depletion-PP1γ models, we found downregulated PP1γ and p-p65 compared with upregulated IκBα, which indicates the inhibition of NF-κB pathway, and flow cytometry analysis confirmed the weakened cell proliferation. Moreover, we found that the translocation of p65 into the nucleus was impaired. Collectively, we identified the positive correlation between upregulation of PP1γ and human glioma cell proliferation and that knock-down of PP1γ alleviated the glioma proliferation by reducing p65 transportation into the nucleus. The results showed that PP1γ could accelerate human glioma proliferation via the NF-κB pathway.
Collapse
Affiliation(s)
- Zhen Bao
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Chengwei Duan
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, Jiangsu, P.R. China
| | - Cheng Gong
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, P.R. China
| | - Liang Wang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, P.R. China
| | - Chaoyan Shen
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, Jiangsu, P.R. China
| | - Cheng Wang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, Jiangsu, P.R. China
| | - Gang Cui
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| |
Collapse
|
223
|
Ichikawa K, Ohshima D, Sagara H. Regulation of signal transduction by spatial parameters: a case in NF-κB oscillation. IET Syst Biol 2016; 9:41-51. [PMID: 26672147 DOI: 10.1049/iet-syb.2013.0020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
NF-κB is a transcription factor regulating expression of more than 500 genes, and its dysfunction leads to the autoimmune and inflammatory diseases. In malignant cancer cells, NF-κB is constitutively activated. Thus the elucidation of mechanisms for NF-κB regulation is important for the establishment of therapeutic treatment caused by incorrect NF-κB responses. Cytoplasmic NF-κB translocates to the nucleus by the application of extracellular stimuli such as cytokines. Nuclear NF-κB is known to oscillate with the cycle of 1.5-4.5 h, and it is thought that the oscillation pattern regulates the expression profiles of genes. In this review, first we briefly describe regulation mechanisms of NF-κB. Next, published computational simulations on the oscillation of NF-κB are summarised. There are at least 60 reports on the computational simulation and analysis of NF-κB oscillation. Third, the importance of a 'space' for the regulation of oscillation pattern of NF-κB is discussed, showing altered oscillation pattern by the change in spatial parameters such as diffusion coefficient, nuclear to cytoplasmic volume ratio (N/C ratio), and transport through nuclear membrane. Finally, simulations in a true intracellular space (TiCS), which is an intracellular 3D space reconstructed in a computer with organelles such as nucleus and mitochondria are discussed.
Collapse
|
224
|
Twarog NR, Low JA, Currier DG, Miller G, Chen T, Shelat AA. Robust Classification of Small-Molecule Mechanism of Action Using a Minimalist High-Content Microscopy Screen and Multidimensional Phenotypic Trajectory Analysis. PLoS One 2016; 11:e0149439. [PMID: 26886014 PMCID: PMC4757101 DOI: 10.1371/journal.pone.0149439] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 02/01/2016] [Indexed: 12/02/2022] Open
Abstract
Phenotypic screening through high-content automated microscopy is a powerful tool for evaluating the mechanism of action of candidate therapeutics. Despite more than a decade of development, however, high content assays have yielded mixed results, identifying robust phenotypes in only a small subset of compound classes. This has led to a combinatorial explosion of assay techniques, analyzing cellular phenotypes across dozens of assays with hundreds of measurements. Here, using a minimalist three-stain assay and only 23 basic cellular measurements, we developed an analytical approach that leverages informative dimensions extracted by linear discriminant analysis to evaluate similarity between the phenotypic trajectories of different compounds in response to a range of doses. This method enabled us to visualize biologically-interpretable phenotypic tracks populated by compounds of similar mechanism of action, cluster compounds according to phenotypic similarity, and classify novel compounds by comparing them to phenotypically active exemplars. Hierarchical clustering applied to 154 compounds from over a dozen different mechanistic classes demonstrated tight agreement with published compound mechanism classification. Using 11 phenotypically active mechanism classes, classification was performed on all 154 compounds: 78% were correctly identified as belonging to one of the 11 exemplar classes or to a different unspecified class, with accuracy increasing to 89% when less phenotypically active compounds were excluded. Importantly, several apparent clustering and classification failures, including rigosertib and 5-fluoro-2’-deoxycytidine, instead revealed more complex mechanisms or off-target effects verified by more recent publications. These results show that a simple, easily replicated, minimalist high-content assay can reveal subtle variations in the cellular phenotype induced by compounds and can correctly predict mechanism of action, as long as the appropriate analytical tools are used.
Collapse
Affiliation(s)
- Nathaniel R. Twarog
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Jonathan A. Low
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Duane G. Currier
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Greg Miller
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Anang A. Shelat
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
225
|
Zhong R, Bechill J, Spiotto MT. Loss of E2F1 Extends Survival and Accelerates Oral Tumor Growth in HPV-Positive Mice. Cancers (Basel) 2015; 7:2372-85. [PMID: 26670255 PMCID: PMC4695895 DOI: 10.3390/cancers7040895] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 11/15/2015] [Accepted: 11/26/2015] [Indexed: 12/26/2022] Open
Abstract
The Human Papillomavirus (HPV) is associated with several human cancers, including head and neck squamous cell carcinomas (HNSCCs). HPV expresses the viral oncogene E7 that binds to the retinoblastoma protein (RB1) in order to activate the E2F pathway. RB1 can mediate contradictory pathways-cell growth and cell death via E2F family members. Here, we assessed the extent to which E2F1 mediates lethality of HPV oncogenes. Ubiquitous expression of the HPV oncogenes E6 and E7 caused lethality in mice that was associated with focal necrosis in hepatocytes and pancreatic tissues. Furthermore, all organs expressing HPV oncogenes displayed up-regulation of several E2F1 target genes. The E2F1 pathway mediated lethality in HPV-positive mice because deletion of E2F1 increased survival of mice ubiquitously expressing HPV oncogenes. E2F1 similarly functioned as a tumor suppressor in HPV-positive oral tumors as tumors grew faster with homozygous loss of E2F1 compared to tumors with heterozygous loss of E2F1. Re-expression of E2F1 caused decreased clonogenicity in HPV-positive cancer cells. Our results indicate that HPV oncogenes activated the E2F1 pathway to cause lethality in normal mice and to suppress oral tumor growth. These results suggest that selective modulation of the E2F1 pathway, which is activated in HPV tumors, may facilitate tumor regression.
Collapse
Affiliation(s)
- Rong Zhong
- Department of Radiation and Cellular Oncology, The University of Chicago, 900 E. 57th Street, Chicago, IL 60637, USA.
| | - John Bechill
- Department of Radiation and Cellular Oncology, The University of Chicago, 900 E. 57th Street, Chicago, IL 60637, USA.
| | - Michael T Spiotto
- Department of Radiation and Cellular Oncology, The University of Chicago, 900 E. 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
226
|
Bhatia S, Reister S, Mahotka C, Meisel R, Borkhardt A, Grinstein E. Control of AC133/CD133 and impact on human hematopoietic progenitor cells through nucleolin. Leukemia 2015; 29:2208-2220. [PMID: 26183533 DOI: 10.1038/leu.2015.146] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 05/19/2015] [Accepted: 05/29/2015] [Indexed: 01/01/2023]
Abstract
AC133 is a prominent surface marker of CD34+ and CD34- hematopoietic stem/progenitor cell (HSPC) subsets. AC133+ HSPCs contain high progenitor cell activity and are capable of hematopoietic reconstitution. Furthermore, AC133 is used for prospective isolation of tumor-initiating cells in several hematological malignancies. Nucleolin is a multifunctional factor of growing and cancer cells, which is aberrantly active in certain hematological neoplasms, and serves as a candidate molecular target for cancer therapy. Nucleolin is involved in gene transcription and RNA metabolism and is prevalently expressed in HSPCs, as opposed to differentiated hematopoietic tissue. The present study dissects nucleolin-mediated activation of surface AC133 and its cognate gene CD133, via specific interaction of nucleolin with the tissue-dependent CD133 promoter P1, as a mechanism that crucially contributes to AC133 expression in CD34+ HSPCs. In mobilized peripheral blood (MPB)-derived HSPCs, nucleolin elevates colony-forming unit (CFU) frequencies and enriches granulocyte-macrophage CFUs. Furthermore, nucleolin amplifies long-term culture-initiating cells and also promotes long-term, cytokine-dependent maintenance of hematopoietic progenitor cells. Active β-catenin, active Akt and Bcl-2 levels in MPB-derived HSPCs are nucleolin-dependent, and effects of nucleolin on these cells partially rely on β-catenin activity. The study provides new insights into molecular network relevant to stem/progenitor cells in normal and malignant hematopoiesis.
Collapse
Affiliation(s)
- S Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich Heine University, Düsseldorf, Germany
| | - S Reister
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich Heine University, Düsseldorf, Germany
| | - C Mahotka
- Institute of Pathology, Heinrich Heine University, Düsseldorf, Germany
| | - R Meisel
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich Heine University, Düsseldorf, Germany
| | - A Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich Heine University, Düsseldorf, Germany
| | - E Grinstein
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
227
|
E-Ras improves the efficiency of reprogramming by facilitating cell cycle progression through JNK-Sp1 pathway. Stem Cell Res 2015; 15:481-494. [PMID: 26413787 DOI: 10.1016/j.scr.2015.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 08/26/2015] [Accepted: 09/14/2015] [Indexed: 11/20/2022] Open
Abstract
We have previously shown that pluripotent stem cells can be induced from adult somatic cells which were exposed to protein extracts isolated from mouse embryonic stem cells (mESC). Interestingly, generation of induced pluripotent stem (iPS) cells depended on the background of ES cell lines; possible by extracts from C57, but not from E14. Proteomic analysis of two different mES cell lines (C57 and E14) shows that embryonic Ras (E-Ras) is expressed differently in two mES cell lines; high level of E-Ras only in C57 mESC whose extracts allows iPS cells production from somatic cells. Here, we show that E-Ras augments the efficiency in reprogramming of fibroblast by promoting cell proliferation. We found that over-expression of E-Ras in fibroblast increased cell proliferation which was caused by specific up-regulation of cyclins D and E, not A or B, leading to the accelerated G1 to S phase transition. To figure out the common transcription factor of cyclins D and E, we used TRANSFAC database and selected SP1 as a candidate which was confirmed as enhancer of cyclins D and E by luciferase promoter assay using mutants. As downstream signaling pathways, E-Ras activated only c-Jun N-terminal kinases (JNK) but not ERK or p38. Inhibition of JNK prevented E-Ras-mediated induction of pSP1, cyclins D, E, and cell proliferation. Finally, E-Ras transduction to fibroblast enhanced the efficiency of iPS cell generation by 4 factors (Oct4/Klf4/Sox2/C-myc), which was prevented by JNK inhibitor. In conclusion, E-Ras stimulates JNK, enhances binding of Sp1 on the promoter of cyclins D and E, leading to cell proliferation. E-Ras/JNK axis is a critical mechanism to generate iPS cells by transduction of 4 factors or by treatment of mESC protein extracts.
Collapse
|
228
|
Tang YN, Ding WQ, Guo XJ, Yuan XW, Wang DM, Song JG. Epigenetic regulation of Smad2 and Smad3 by profilin-2 promotes lung cancer growth and metastasis. Nat Commun 2015; 6:8230. [DOI: 10.1038/ncomms9230] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/29/2015] [Indexed: 02/06/2023] Open
|
229
|
Jin L, Datta PK. Oncogenic STRAP functions as a novel negative regulator of E-cadherin and p21(Cip1) by modulating the transcription factor Sp1. Cell Cycle 2015; 13:3909-20. [PMID: 25483064 DOI: 10.4161/15384101.2014.973310] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We have previously reported the identification of a novel WD-domain protein, STRAP that plays a role in maintenance of mesenchymal morphology by regulating E-cadherin and that enhances tumorigenicity partly by downregulating CDK inhibitor p21(Cip1). However, the functional mechanism of regulation of E-cadherin and p21(Cip1) by STRAP is unknown. Here, we have employed STRAP knock out and knockdown cell models (mouse embryonic fibroblast, human cancer cell lines) to show how STRAP downregulates E-cadherin and p21(Cip1) by abrogating the binding of Sp1 to its consensus binding sites. Moreover, ChIP assays suggest that STRAP recruits HDAC1 to Sp1 binding sites in p21(Cip1) promoter. Interestingly, loss of STRAP can stabilize Sp1 by repressing its ubiquitination in G1 phase, resulting in an enhanced expression of p21(Cip1) by >4.5-fold and cell cycle arrest. Using Bioinformatics and Microarray analyses, we have observed that 87% mouse genes downregulated by STRAP have conserved Sp1 binding sites. In NSCLC, the expression levels of STRAP inversely correlated with that of Sp1 (60%). These results suggest a novel mechanism of regulation of E-cadherin and p21(Cip1) by STRAP by modulating Sp1-dependent transcription, and higher expression of STRAP in lung cancer may contribute to downregulation of E-cadherin and p21(Cip1) and to tumor progression.
Collapse
Key Words
- CDK2, cyclin-dependent kinase 2
- CDK4, cyclin-dependent kinase 4
- HDAC1, histone deacetylase 1
- HDAC2, histone deacetylase 2
- HDAC3, histone deacetylase 3
- HNF4, hepatocyte nuclear factor 4
- MEF, mouse embryonic fibroblast
- NF-YA, nuclear transcription factor Y subunit alpha
- PARP, poly (ADP-ribose) polymerase
- RNase, A ribonuclease A
- RhoA, Ras homolog gene family, member A
- STRAP
- STRAP, serine threonine kinase receptor-associated protein
- SWI/SNF, SWItch/Sucrose nonfermentable
- Sp/KLF, specificity protein/Krüppel-like factor
- Sp1
- Sp1, specificity protein 1
- TSA, trichostatin A
- TSS, transcription start site
- TβR I, II, TGF-β receptor I, II
- cell cycle
- p300/CBP, p300/ CREB-binding protein
- transcription factor
- ubiquitination
Collapse
Affiliation(s)
- Lin Jin
- a Division of Hematology and Oncology; Department of Medicine; UAB Comprehensive Cancer Center; University of Alabama at Birmingham ; Birmingham , AL USA
| | | |
Collapse
|
230
|
Coumans JVF, Gau D, Poljak A, Wasinger V, Roy P, Moens PDJ. Profilin-1 overexpression in MDA-MB-231 breast cancer cells is associated with alterations in proteomics biomarkers of cell proliferation, survival, and motility as revealed by global proteomics analyses. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 18:778-91. [PMID: 25454514 DOI: 10.1089/omi.2014.0075] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite early screening programs and new therapeutic strategies, metastatic breast cancer is still the leading cause of cancer death in women in industrialized countries and regions. There is a need for novel biomarkers of susceptibility, progression, and therapeutic response. Global analyses or systems science approaches with omics technologies offer concrete ways forward in biomarker discovery for breast cancer. Previous studies have shown that expression of profilin-1 (PFN1), a ubiquitously expressed actin-binding protein, is downregulated in invasive and metastatic breast cancer. It has also been reported that PFN1 overexpression can suppress tumorigenic ability and motility/invasiveness of breast cancer cells. To obtain insights into the underlying molecular mechanisms of how elevating PFN1 level induces these phenotypic changes in breast cancer cells, we investigated the alteration in global protein expression profiles of breast cancer cells upon stable overexpression of PFN1 by a combination of three different proteome analysis methods (2-DE, iTRAQ, label-free). Using MDA-MB-231 as a model breast cancer cell line, we provide evidence that PFN1 overexpression is associated with alterations in the expression of proteins that have been functionally linked to cell proliferation (FKPB1A, HDGF, MIF, PRDX1, TXNRD1, LGALS1, STMN1, LASP1, S100A11, S100A6), survival (HSPE1, HSPB1, HSPD1, HSPA5 and PPIA, YWHAZ, CFL1, NME1) and motility (CFL1, CORO1B, PFN2, PLS3, FLNA, FLNB, NME2, ARHGDIB). In view of the pleotropic effects of PFN1 overexpression in breast cancer cells as suggested by these new findings, we propose that PFN1-induced phenotypic changes in cancer cells involve multiple mechanisms. Our data reported here might also offer innovative strategies for identification and validation of novel therapeutic targets and companion diagnostics for persons with, or susceptibility to, breast cancer.
Collapse
Affiliation(s)
- Joëlle V F Coumans
- 1 School of Science and Technology, University of New England , Armidale, NSW, Australia
| | | | | | | | | | | |
Collapse
|
231
|
Jiang C, Veon W, Li H, Hallows KR, Roy P. Epithelial morphological reversion drives Profilin-1-induced elevation of p27(kip1) in mesenchymal triple-negative human breast cancer cells through AMP-activated protein kinase activation. Cell Cycle 2015; 14:2914-23. [PMID: 26176334 DOI: 10.1080/15384101.2015.1069929] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Profilin-1 (Pfn1) is an important regulator of actin polymerization that is downregulated in human breast cancer. Previous studies have shown Pfn1 has a tumor-suppressive effect on mesenchymal-like triple-negative breast cancer cells, and Pfn1-induced growth suppression is partly mediated by upregulation of cell-cycle inhibitor p27(kip1) (p27). In this study, we demonstrate that Pfn1 overexpression leads to accumulation of p27 through promoting AMPK activation and AMPK-dependent phosphorylation of p27 on T198 residue, a post-translational modification that leads to increased protein stabilization of p27. This pathway is mediated by Pfn1-induced epithelial morphological reversion of mesenchymal breast cancer through cadherin-mediated restoration of adherens junctions. These findings not only elucidate a potential mechanism of how Pfn1 may inhibit proliferation of mesenchymal breast cancer cells, but also highlight a novel pathway of cadherin-mediated p27 induction and therefore cell-cycle control in cells.
Collapse
Affiliation(s)
- Chang Jiang
- a Department of Bioengineering ; University of Pittsburgh ; Pittsburgh PA
| | - William Veon
- a Department of Bioengineering ; University of Pittsburgh ; Pittsburgh PA
| | - Hui Li
- b Department of Medicine ; Renal Electrolyte Division; University of Pittsburgh ; Pittsburgh PA
| | - Kenneth R Hallows
- b Department of Medicine ; Renal Electrolyte Division; University of Pittsburgh ; Pittsburgh PA.,c Department of Cell Biology ; University of Pittsburgh ; Pittsburgh PA
| | - Partha Roy
- a Department of Bioengineering ; University of Pittsburgh ; Pittsburgh PA.,d Magee Women's Research Institute; University of Pittsburgh ; Pittsburgh PA.,e Department of Pathology ; University of Pittsburgh ; PA
| |
Collapse
|
232
|
Wang MC, Li CL, Cui J, Jiao M, Wu T, Jing LI, Nan KJ. BMI-1, a promising therapeutic target for human cancer. Oncol Lett 2015; 10:583-588. [PMID: 26622537 DOI: 10.3892/ol.2015.3361] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 03/12/2015] [Indexed: 12/31/2022] Open
Abstract
BMI-1 oncogene is a member of the polycomb-group gene family and a transcriptional repressor. Overexpression of BMI-1 has been identified in various human cancer tissues and is known to be involved in cancer cell proliferation, cell invasion, distant metastasis, chemosensitivity and patient survival. Accumulating evidence has revealed that BMI-1 is also involved in the regulation of self-renewal, differentiation and tumor initiation of cancer stem cells (CSCs). However, the molecular mechanisms underlying these biological processes remain unclear. The present review summarized the function of BMI-1 in different human cancer types and CSCs, and discussed the signaling pathways in which BMI-1 is potentially involved. In conclusion, BMI-1 may represent a promising target for the prevention and therapy of various cancer types.
Collapse
Affiliation(s)
- Min-Cong Wang
- Department of Oncology, The First Affiliated Hospital, College of Medicine of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Chun-Li Li
- Department of Oncology, The First Affiliated Hospital, College of Medicine of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jie Cui
- Department of Oncology, The First Affiliated Hospital, College of Medicine of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Min Jiao
- Department of Oncology, The First Affiliated Hospital, College of Medicine of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Tao Wu
- Department of Oncology, The First Affiliated Hospital, College of Medicine of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - L I Jing
- Department of Oncology, The First Affiliated Hospital, College of Medicine of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ke-Jun Nan
- Department of Oncology, The First Affiliated Hospital, College of Medicine of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
233
|
Berger CM, Gaume X, Bouvet P. The roles of nucleolin subcellular localization in cancer. Biochimie 2015; 113:78-85. [PMID: 25866190 DOI: 10.1016/j.biochi.2015.03.023] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/29/2015] [Indexed: 01/10/2023]
Abstract
Nucleolin (NCL) is one of the most abundant non ribosomal protein of the nucleolus where it plays a central role in polymerase I transcription. NCL is also found outside of the nucleolus, in the nucleoplasm, cytoplasm as well as on the cell membrane. It acts in all cell compartments to control cellular homeostasis and therefore each cellular pool of NCL can play a different role in cancer development. NCL overexpression and its increased localization at the cell membrane is a common feature of several tumor cells. In cancer cells, NCL overexpression influences cell survival, proliferation and invasion through its action on different cellular pathways. In this review, we describe how the multiple functions of NCL that are associated to its multiple cellular localization can participate to the development of cancer.
Collapse
Affiliation(s)
- Caroline Madeleine Berger
- Département de Biologie, Master Biosciences, ENS de Lyon, Lyon, France; Ecole Normale Supérieure de Lyon, Laboratoire Joliot-Curie, CNRS USR 3010, 46 allée d'Italie, 69364 Lyon Cedex 7, France
| | - Xavier Gaume
- Ecole Normale Supérieure de Lyon, Laboratoire Joliot-Curie, CNRS USR 3010, 46 allée d'Italie, 69364 Lyon Cedex 7, France
| | - Philippe Bouvet
- Ecole Normale Supérieure de Lyon, Laboratoire Joliot-Curie, CNRS USR 3010, 46 allée d'Italie, 69364 Lyon Cedex 7, France.
| |
Collapse
|
234
|
Garcia M, Mauro JA, Ramsamooj M, Blanck G. Tumor suppressor genes are larger than apoptosis-effector genes and have more regions of active chromatin: Connection to a stochastic paradigm for sequential gene expression programs. Cell Cycle 2015; 14:2494-500. [PMID: 25945879 DOI: 10.1080/15384101.2015.1044179] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Apoptosis- and proliferation-effector genes are substantially regulated by the same transactivators, with E2F-1 and Oct-1 being notable examples. The larger proliferation-effector genes have more binding sites for the transactivators that regulate both sets of genes, and proliferation-effector genes have more regions of active chromatin, i.e, DNase I hypersensitive and histone 3, lysine-4 trimethylation sites. Thus, the size differences between the 2 classes of genes suggest a transcriptional regulation paradigm whereby the accumulation of transcription factors that regulate both sets of genes, merely as an aspect of stochastic behavior, accumulate first on the larger proliferation-effector gene "traps," and then accumulate on the apoptosis effector genes, thereby effecting sequential activation of the 2 different gene sets. As IRF-1 and p53 levels increase, tumor suppressor proteins are first activated, followed by the activation of apoptosis-effector genes, for example during S-phase pausing for DNA repair. Tumor suppressor genes are larger than apoptosis-effector genes and have more IRF-1 and p53 binding sites, thereby likewise suggesting a paradigm for transcription sequencing based on stochastic interactions of transcription factors with different gene classes. In this report, using the ENCODE database, we determined that tumor suppressor genes have a greater number of open chromatin regions and histone 3 lysine-4 trimethylation sites, consistent with the idea that a larger gene size can facilitate earlier transcriptional activation via the inclusion of more transactivator binding sites.
Collapse
Affiliation(s)
- Marlene Garcia
- a Department of Molecular Medicine ; Morsani College of Medicine; University of South Florida ; Tampa , FL USA
| | | | | | | |
Collapse
|
235
|
Dolatshad H, Pellagatti A, Fernandez-Mercado M, Yip BH, Malcovati L, Attwood M, Przychodzen B, Sahgal N, Kanapin AA, Lockstone H, Scifo L, Vandenberghe P, Papaemmanuil E, Smith CWJ, Campbell PJ, Ogawa S, Maciejewski JP, Cazzola M, Savage KI, Boultwood J. Disruption of SF3B1 results in deregulated expression and splicing of key genes and pathways in myelodysplastic syndrome hematopoietic stem and progenitor cells. Leukemia 2015; 29:1092-103. [PMID: 25428262 PMCID: PMC4430703 DOI: 10.1038/leu.2014.331] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/30/2014] [Accepted: 11/19/2014] [Indexed: 02/06/2023]
Abstract
The splicing factor SF3B1 is the most commonly mutated gene in the myelodysplastic syndrome (MDS), particularly in patients with refractory anemia with ring sideroblasts (RARS). We investigated the functional effects of SF3B1 disruption in myeloid cell lines: SF3B1 knockdown resulted in growth inhibition, cell cycle arrest and impaired erythroid differentiation and deregulation of many genes and pathways, including cell cycle regulation and RNA processing. MDS is a disorder of the hematopoietic stem cell and we thus studied the transcriptome of CD34(+) cells from MDS patients with SF3B1 mutations using RNA sequencing. Genes significantly differentially expressed at the transcript and/or exon level in SF3B1 mutant compared with wild-type cases include genes that are involved in MDS pathogenesis (ASXL1 and CBL), iron homeostasis and mitochondrial metabolism (ALAS2, ABCB7 and SLC25A37) and RNA splicing/processing (PRPF8 and HNRNPD). Many genes regulated by a DNA damage-induced BRCA1-BCLAF1-SF3B1 protein complex showed differential expression/splicing in SF3B1 mutant cases. This is the first study to determine the target genes of SF3B1 mutation in MDS CD34(+) cells. Our data indicate that SF3B1 has a critical role in MDS by affecting the expression and splicing of genes involved in specific cellular processes/pathways, many of which are relevant to the known RARS pathophysiology, suggesting a causal link.
Collapse
Affiliation(s)
- H Dolatshad
- LLR Molecular Haematology Unit, NDCLS, RDM, University of Oxford, Oxford, UK
| | - A Pellagatti
- LLR Molecular Haematology Unit, NDCLS, RDM, University of Oxford, Oxford, UK
| | - M Fernandez-Mercado
- LLR Molecular Haematology Unit, NDCLS, RDM, University of Oxford, Oxford, UK
| | - B H Yip
- LLR Molecular Haematology Unit, NDCLS, RDM, University of Oxford, Oxford, UK
| | - L Malcovati
- Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Molecular Medicine and Medical Therapy, University of Pavia, Pavia, Italy
| | - M Attwood
- LLR Molecular Haematology Unit, NDCLS, RDM, University of Oxford, Oxford, UK
| | - B Przychodzen
- Department of Translational Haematology and Oncology Research, Taussig Cancer Institute, Cleveland, OH, USA
| | - N Sahgal
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - A A Kanapin
- Department of Oncology, University of Oxford, Oxford, UK
| | - H Lockstone
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - L Scifo
- LLR Molecular Haematology Unit, NDCLS, RDM, University of Oxford, Oxford, UK
| | - P Vandenberghe
- Center for Human Genetics, Katholieke Universiteit Leuven/University Hospital Leuven, Leuven, Belgium
| | - E Papaemmanuil
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - C W J Smith
- Department of Biochemistry, Downing Site, University of Cambridge, Cambridge, UK
| | - P J Campbell
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - S Ogawa
- Cancer Genomics Projects, Graduate School of Medicine, Tokyo, Japan
| | - J P Maciejewski
- Department of Translational Haematology and Oncology Research, Taussig Cancer Institute, Cleveland, OH, USA
| | - M Cazzola
- Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Molecular Medicine and Medical Therapy, University of Pavia, Pavia, Italy
| | - K I Savage
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - J Boultwood
- LLR Molecular Haematology Unit, NDCLS, RDM, University of Oxford, Oxford, UK
| |
Collapse
|
236
|
Jia L, Huang Y, Zheng Y, Lyu M, Zhang C, Meng Z, Gan Y, Yu G. miR-375 inhibits cell growth and correlates with clinical outcomes in tongue squamous cell carcinoma. Oncol Rep 2015; 33:2061-71. [PMID: 25633534 DOI: 10.3892/or.2015.3759] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 12/10/2014] [Indexed: 11/06/2022] Open
Abstract
miR-375 has been implicated in various types of cancers. However, its role in tongue squamous cell carcinoma (TSCC) remains unclear. This study aimed to investigate the effects of miR-375 on cell growth and the prognosis of TSCC patients. Using quantitative reverse transcription-polymerase chain reaction, we evaluated miR-375 expression in TSCC samples and TSCC cell lines. The results showed that miR-375 expression was significantly reduced in the TSCC tissues and cell lines. A low level expression of miR-375 in TSCC patients was related to poor of prognosis. Moreover, the effects of miR-375 overexpression on cell proliferation, the cell cycle and the expression of Sp1 and cyclin D1 were examined in TSCC cells. We demonstrated that overexpression of miR-375 significantly inhibited the cell proliferation and cell cycle progression in TSCC cell lines. Overexpression of miR-375 inhibited Sp1 expression by targeting the 3' untranslated region of the Sp1 transcript. The knockdown of Sp1 expression resulted in the subsequent downregulation of cyclin D1. Taken together, our study suggests that miR-375 inhibits the cell growth, and its expression is correlated with clinical outcomes in TSCC.
Collapse
Affiliation(s)
- Lingfei Jia
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China
| | - Yiping Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China
| | - Yunfei Zheng
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China
| | - Mingyue Lyu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China
| | - Chunan Zhang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China
| | - Zhen Meng
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China
| | - Yehua Gan
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China
| | - Guangyan Yu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China
| |
Collapse
|
237
|
Intracellular signaling by cathepsin X: Molecular mechanisms and diagnostic and therapeutic opportunities in cancer. Semin Cancer Biol 2015; 31:76-83. [DOI: 10.1016/j.semcancer.2014.05.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 04/27/2014] [Accepted: 05/05/2014] [Indexed: 01/27/2023]
|
238
|
Cheng YJ, Zhu ZX, Zhou JS, Hu ZQ, Zhang JP, Cai QP, Wang LH. Silencing profilin-1 inhibits gastric cancer progression via integrin β1/focal adhesion kinase pathway modulation. World J Gastroenterol 2015; 21:2323-2335. [PMID: 25741138 PMCID: PMC4342907 DOI: 10.3748/wjg.v21.i8.2323] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/22/2014] [Accepted: 10/15/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the role of profilin-1 (PFN1) in gastric cancer and the underlying mechanisms.
METHODS: Immunohistochemical analysis, quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were performed to detect PFN1 expression in clinical gastric carcinoma and adjacent tissues, and the association of PFN1 expression with patient clinicopathological characteristics was analyzed. PFN1 was knocked down to investigate the role of this protein in cell proliferation and metastasis in the SGC-7901 cell line. To explore the underlying mechanisms, the expression of integrin β1 and the activity of focal adhesion kinase (FAK) and the downstream proteins extracellular-regulated kinase (ERK)1/2, P38 mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K), AKT and mammalian target of rapamycin (mTOR) were measured through Western blot or qRT-PCR analysis. Fibronectin (FN), a ligand of integrin β1, was used to verify the correlation between alterations in the integrin β1/FAK pathway and changes in tumor cell aggressiveness upon PFN1 perturbation.
RESULTS: Immunohistochemical, Western blot and qRT-PCR analyses revealed that PFN1 expression was higher at both the protein and mRNA levels in gastric carcinoma tissues compared with the adjacent tissues. In addition, high PFN1 expression (53/75, 70.4%) was correlated with tumor infiltration, lymph node metastasis and TNM stage in gastric cancer, but not with gender, age, location, tumor size, or histological differentiation. In vitro experiments showed that PFN1 knockdown inhibited the proliferation of SGC-7901 cells through the induction G0/G1 arrest. Silencing PFN1 inhibited cell migration and invasion and down-regulated the expression of matrix metalloproteinase (MMP)-2 and MMP9. Moreover, silencing PFN1 reduced the expression of integrin β1 at the protein level and inhibited the activity of FAK, and the downstream effectors ERK1/2, P38MAPK, PI3K, AKT and mTOR. FN-promoted cell proliferation and metastasis via the integrin β1/FAK pathway was ameliorated by PFN1 silencing.
CONCLUSION: These findings suggest that PFN1 plays a critical role in gastric carcinoma progression, and these effects are likely mediated through the integrin β1/FAK pathway.
Collapse
|
239
|
Lymphomagenesis in Hodgkin lymphoma. Semin Cancer Biol 2015; 34:14-21. [PMID: 25725205 DOI: 10.1016/j.semcancer.2015.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/06/2015] [Accepted: 02/10/2015] [Indexed: 02/07/2023]
Abstract
Hodgkin lymphoma (HL) accounts for approximately 0.6% of all new cancer cases, 10% of all lymphomas in the USA, leading to an approximate 9000 new cases per year. It is very unique in that the neoplastic Hodgkin and Reed-Sternberg (HRS) cells of classical HL account for only 1% of the tumor tissue in most cases, with various inflammatory cells including B-cells, T-cells, mast cells, macrophages, eosinophils, neutrophils, and plasma cells comprising the tumor microenvironment. Recent research has identified germinal center B-cells to be the cellular origin of HRS cells. Various transcription factor dysregulation in these neoplastic cells that explains for the loss of B-cell phenotype as well as acquisition of survival and anti-apoptotic features of HRS cells has been identified. Aberrant activation of nuclear factor-kappa B (NF-κB), Janus kinase (JAK)/signal transducer and activator of transcription (STAT), and phosphoinositide 3-kinase (PI3K) pathways play a central role in HL pathogenesis. Both intrinsic genetic mechanisms as well as extrinsic signals have been identified to account for the constitutive activation of these pathways. The extrinsic factors that regulate the activation of transcription pathways in HRS cells have also been studied in detail. Cytokines and chemokines produced both by the HRS cells as well as cells of the microenvironment of HL work in an autocrine and/or paracrine manner to promote survival of HRS cells as well as providing mechanisms for immune escape from the body's antitumor immunity. The understanding of various mechanisms involved in the lymphomagenesis of HL including the importance of its microenvironment has gained much interest in the use of these microenvironmental features as prognostic markers as well as potential treatment targets. In this article, we will review the pathogenesis of HL starting with the cellular origin of neoplastic cells and the mechanisms supporting its pathogenesis, especially focusing on the microenvironment of HL and its associated cytokines.
Collapse
|
240
|
Kuksin CA, Minter LM. The Link between Autoimmunity and Lymphoma: Does NOTCH Signaling Play a Contributing Role? Front Oncol 2015; 5:51. [PMID: 25759795 PMCID: PMC4338678 DOI: 10.3389/fonc.2015.00051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 02/11/2015] [Indexed: 12/17/2022] Open
Abstract
An association between certain autoimmune conditions and increased risk of developing lymphoma is well documented. Recent evidence points to NOTCH signaling as a strong driver of autoimmunity. Furthermore, a role for NOTCH in various lymphomas, including classical Hodgkin lymphoma, non-Hodgkin lymphoma, and T cell lymphoma has also been described. In this mini-review, we will outline what is known about involvement of NOTCH signaling in those autoimmune conditions, such as rheumatoid arthritis and primary Sjörgren’s syndrome, which show an increased risk for subsequent diagnosis of lymphoma. Furthermore, we will detail what is known about the lymphomas associated with these autoimmune conditions and how aberrant or sustained NOTCH signaling in the immune cells that mediate these diseases may contribute to lymphoma.
Collapse
Affiliation(s)
- Christina Arieta Kuksin
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst , Amherst, MA , USA
| | - Lisa M Minter
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst , Amherst, MA , USA ; Program in Molecular and Cellular Biology, University of Massachusetts Amherst , Amherst, MA , USA
| |
Collapse
|
241
|
Zhang D, Liang Y, Xie Q, Gao G, Wei J, Huang H, Li J, Gao J, Huang C. A novel post-translational modification of nucleolin, SUMOylation at Lys-294, mediates arsenite-induced cell death by regulating gadd45α mRNA stability. J Biol Chem 2015; 290:4784-4800. [PMID: 25561743 PMCID: PMC4335216 DOI: 10.1074/jbc.m114.598219] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 12/30/2014] [Indexed: 11/06/2022] Open
Abstract
Nucleolin is a ubiquitously expressed protein and participates in many important biological processes, such as cell cycle regulation and ribosomal biogenesis. The activity of nucleolin is regulated by intracellular localization and post-translational modifications, including phosphorylation, methylation, and ADP-ribosylation. Small ubiquitin-like modifier (SUMO) is a category of recently verified forms of post-translational modifications and exerts various effects on the target proteins. In the studies reported here, we discovered SUMOylational modification of human nucleolin protein at Lys-294, which facilitated the mRNA binding property of nucleolin by maintaining its nuclear localization. In response to arsenic exposure, nucleolin-SUMO was induced and promoted its binding with gadd45α mRNA, which increased gadd45α mRNA stability and protein expression, subsequently causing GADD45α-mediated cell death. On the other hand, ectopic expression of Mn-SOD attenuated the arsenite-generated superoxide radical level, abrogated nucleolin-SUMO, and in turn inhibited arsenite-induced apoptosis by reducing GADD45α expression. Collectively, our results for the first time demonstrate that nucleolin-SUMO at K294R plays a critical role in its nucleus sequestration and gadd45α mRNA binding activity. This novel biological function of nucleolin is distinct from its conventional role as a proto-oncogene. Therefore, our findings here not only reveal a new modification of nucleolin protein and its novel functional paradigm in mRNA metabolism but also expand our understanding of the dichotomous roles of nucleolin in terms of cancer development, which are dependent on multiple intracellular conditions and consequently the appropriate regulations of its modifications, including SUMOylation.
Collapse
Affiliation(s)
- Dongyun Zhang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987 and; Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yuguang Liang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987 and
| | - Qipeng Xie
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Guangxun Gao
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987 and
| | - Jinlong Wei
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987 and
| | - Jimin Gao
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987 and.
| |
Collapse
|
242
|
Li F, Zhang J, Arfuso F, Chinnathambi A, Zayed ME, Alharbi SA, Kumar AP, Ahn KS, Sethi G. NF-κB in cancer therapy. Arch Toxicol 2015; 89:711-31. [PMID: 25690730 DOI: 10.1007/s00204-015-1470-4] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/05/2015] [Indexed: 02/06/2023]
Abstract
The transcription factor nuclear factor kappa B (NF-κB) has attracted increasing attention in the field of cancer research from last few decades. Aberrant activation of this transcription factor is frequently encountered in a variety of solid tumors and hematological malignancies. NF-κB family members and their regulated genes have been linked to malignant transformation, tumor cell proliferation, survival, angiogenesis, invasion/metastasis, and therapeutic resistance. In this review, we highlight the diverse molecular mechanism(s) by which the NF-κB pathway is constitutively activated in different types of human cancers, and the potential role of various oncogenic genes regulated by this transcription factor in cancer development and progression. Additionally, various pharmacological approaches employed to target the deregulated NF-κB signaling pathway, and their possible therapeutic potential in cancer therapy is also discussed briefly.
Collapse
Affiliation(s)
- Feng Li
- Department of Pharmacology, Yong Loo Lin School of Medicine, Cancer Science Institute, National University of Singapore, Singapore, 117597, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Vockerodt M, Yap LF, Shannon-Lowe C, Curley H, Wei W, Vrzalikova K, Murray PG. The Epstein-Barr virus and the pathogenesis of lymphoma. J Pathol 2015; 235:312-22. [PMID: 25294567 DOI: 10.1002/path.4459] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/01/2014] [Accepted: 10/05/2014] [Indexed: 02/06/2023]
Abstract
Since the discovery in 1964 of the Epstein-Barr virus (EBV) in African Burkitt lymphoma, this virus has been associated with a remarkably diverse range of cancer types. Because EBV persists in the B cells of the asymptomatic host, it can easily be envisaged how it contributes to the development of B-cell lymphomas. However, EBV is also found in other cancers, including T-cell/natural killer cell lymphomas and several epithelial malignancies. Explaining the aetiological role of EBV is challenging, partly because the virus probably contributes differently to each tumour and partly because the available disease models cannot adequately recapitulate the subtle variations in the virus-host balance that exist between the different EBV-associated cancers. A further challenge is to identify the co-factors involved; because most persistently infected individuals will never develop an EBV-associated cancer, the virus cannot be working alone. This article will review what is known about the contribution of EBV to lymphoma development.
Collapse
Affiliation(s)
- Martina Vockerodt
- Centre for Human Virology and the School of Cancer Sciences, University of Birmingham, Birmingham, UK
| | | | | | | | | | | | | |
Collapse
|
244
|
Diamond MI, Cai S, Boudreau A, Carey CJ, Lyle N, Pappu RV, Swamidass SJ, Bissell M, Piwnica-Worms H, Shao J. Subcellular localization and Ser-137 phosphorylation regulate tumor-suppressive activity of profilin-1. J Biol Chem 2015; 290:9075-86. [PMID: 25681442 DOI: 10.1074/jbc.m114.619874] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Indexed: 12/18/2022] Open
Abstract
The actin-binding protein profilin-1 (Pfn1) inhibits tumor growth and yet is also required for cell proliferation and survival, an apparent paradox. We previously identified Ser-137 of Pfn1 as a phosphorylation site within the poly-l-proline (PLP) binding pocket. Here we confirm that Ser-137 phosphorylation disrupts Pfn1 binding to its PLP-containing ligands with little effect on actin binding. We find in mouse xenografts of breast cancer cells that mimicking Ser-137 phosphorylation abolishes cell cycle arrest and apoptotic sensitization by Pfn1 and confers a growth advantage to tumors. This indicates a previously unrecognized role of PLP binding in Pfn1 antitumor effects. Spatial restriction of Pfn1 to the nucleus or cytoplasm indicates that inhibition of tumor cell growth by Pfn1 requires its nuclear localization, and this activity is abolished by a phosphomimetic mutation on Ser-137. In contrast, cytoplasmic Pfn1 lacks inhibitory effects on tumor cell growth but rescues morphological and proliferative defects of PFN1 null mouse chondrocytes. These results help reconcile seemingly opposed cellular effects of Pfn1, provide new insights into the antitumor mechanism of Pfn1, and implicate Ser-137 phosphorylation as a potential therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Marc I Diamond
- From the Center for Alzheimer's and Neurodegenerative Diseases, University of Texas, Southwestern Medical Center, Dallas, Texas 75390
| | - Shirong Cai
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77230
| | - Aaron Boudreau
- Department of Laboratory Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California 94143
| | - Clifton J Carey
- Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Nicholas Lyle
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Rohit V Pappu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130
| | - S Joshua Swamidass
- Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Mina Bissell
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, and
| | - Helen Piwnica-Worms
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77230
| | - Jieya Shao
- Breast Oncology Program, Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
245
|
Sura R, Settivari RS, LeBaron MJ, Craig Rowlands J, Carney EW, Bhaskar Gollapudi B. A critical assessment of the methodologies to investigate the role of inhibition of apoptosis in rodent hepatocarcinogenesis. Toxicol Mech Methods 2015; 25:192-200. [DOI: 10.3109/15376516.2015.1007541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
246
|
Lee S, Park YH, Chung JS, Yoo YD. Romo1 and the NF-κB pathway are involved in oxidative stress-induced tumor cell invasion. Int J Oncol 2015; 46:2021-8. [PMID: 25673177 DOI: 10.3892/ijo.2015.2889] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 01/28/2015] [Indexed: 11/06/2022] Open
Abstract
Reactive oxygen species (ROS) are important contributors to tumor cell invasion. ROS enhanced by reactive oxygen species modulator 1 (Romo1) expression has been reported to increase invasive potential and constitutive activation of nuclear factor-κB (NF-κB) in hepatocellular carcinoma (HCC). Therefore, we investigated whether constitutive NF-κB activation due to Romo1 expression is associated with breast cancer tumor cell invasion. In this study, we show that oxidative stress-induced invasion is mediated by Romo1 expression. The Romo1-induced increase of invasive activity was blocked by an inhibitor of κB kinase (IKK). These results demonstrate that tumor cell invasion in response to oxidative stress is associated with Romo1 expression and the NF-κB signaling pathway. Romo1 is therefore a promising therapeutic target for diseases characterized by NF-κB deregulation.
Collapse
Affiliation(s)
- Sora Lee
- Laboratory of Molecular Cell Biology, Graduate School of Medicine, Korea University, Seoul 136‑705, Republic of Korea
| | - Yoon Hee Park
- Laboratory of Molecular Cell Biology, Graduate School of Medicine, Korea University, Seoul 136‑705, Republic of Korea
| | - Jin Sil Chung
- Laboratory of Molecular Cell Biology, Graduate School of Medicine, Korea University, Seoul 136‑705, Republic of Korea
| | - Young Do Yoo
- Laboratory of Molecular Cell Biology, Graduate School of Medicine, Korea University, Seoul 136‑705, Republic of Korea
| |
Collapse
|
247
|
Bisson F, Paquet C, Bourget JM, Zaniolo K, Rochette PJ, Landreville S, Damour O, Boudreau F, Auger FA, Guérin SL, Germain L. Contribution of Sp1 to Telomerase Expression and Activity in Skin Keratinocytes Cultured With a Feeder Layer. J Cell Physiol 2015; 230:308-17. [PMID: 24962522 DOI: 10.1002/jcp.24706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 06/20/2014] [Indexed: 12/31/2022]
Abstract
The growth of primary keratinocytes is improved by culturing them with a feeder layer. The aim of this study was to assess whether the feeder layer increases the lifespan of cultured epithelial cells by maintaining or improving telomerase activity and expression. The addition of an irradiated fibroblast feeder layer of either human or mouse origin (i3T3) helped maintain telomerase activity as well as expression of the transcription factor Sp1 in cultured keratinocytes. In contrast, senescence occurred earlier, together with a reduction of Sp1 expression and telomerase activity, in keratinocytes cultured without a feeder layer. Telomerase activity was consistently higher in keratinocytes grown on the three different feeder layers tested relative to cells grown without them. Suppression of Sp1 expression by RNA inhibition (RNAi) reduced both telomerase expression and activity in keratinocytes and also abolished their long-term growth capacity suggesting that Sp1 is a key regulator of both telomerase gene expression and cell cycle progression of primary cultured human skin keratinocytes. The results of the present study therefore suggest that the beneficial influence of the feeder layer relies on its ability to preserve telomerase activity in cultured human keratinocytes through the maintenance of stable levels of Sp1 expression.
Collapse
Affiliation(s)
- Francis Bisson
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Université Laval, Québec, Canada
- Centre de Recherche FRQS du CHU de Québec, Québec, Canada
| | - Claudie Paquet
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Université Laval, Québec, Canada
- Centre de Recherche FRQS du CHU de Québec, Québec, Canada
| | - Jean-Michel Bourget
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Université Laval, Québec, Canada
- Centre de Recherche FRQS du CHU de Québec, Québec, Canada
| | - Karine Zaniolo
- Centre de Recherche FRQS du CHU de Québec, Québec, Canada
- CUO-Recherche, Québec, Canada
| | - Patrick J Rochette
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Université Laval, Québec, Canada
- Centre de Recherche FRQS du CHU de Québec, Québec, Canada
- CUO-Recherche, Québec, Canada
- Département d'Ophtalmologie et ORL-Chirurgie Cervico-Faciale, Faculté de Médecine, Université Laval, Québec, Canada
| | - Solange Landreville
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Université Laval, Québec, Canada
- Centre de Recherche FRQS du CHU de Québec, Québec, Canada
- CUO-Recherche, Québec, Canada
- Département d'Ophtalmologie et ORL-Chirurgie Cervico-Faciale, Faculté de Médecine, Université Laval, Québec, Canada
| | - Odile Damour
- Banque de Tissus et Cellules HCL, Laboratoire des Substituts Cutanés (LSC) CNRS UPR-412, Hôpital Edouard Herriot, Lyon, France
| | - François Boudreau
- Département d'Anatomie et de Biologie Cellulaire, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Canada
| | - François A Auger
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Université Laval, Québec, Canada
- Centre de Recherche FRQS du CHU de Québec, Québec, Canada
- CUO-Recherche, Québec, Canada
- Département d'Ophtalmologie et ORL-Chirurgie Cervico-Faciale, Faculté de Médecine, Université Laval, Québec, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Sylvain L Guérin
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Université Laval, Québec, Canada
- Centre de Recherche FRQS du CHU de Québec, Québec, Canada
- CUO-Recherche, Québec, Canada
- Département d'Ophtalmologie et ORL-Chirurgie Cervico-Faciale, Faculté de Médecine, Université Laval, Québec, Canada
| | - Lucie Germain
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Université Laval, Québec, Canada
- Centre de Recherche FRQS du CHU de Québec, Québec, Canada
- CUO-Recherche, Québec, Canada
- Département d'Ophtalmologie et ORL-Chirurgie Cervico-Faciale, Faculté de Médecine, Université Laval, Québec, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, Canada
| |
Collapse
|
248
|
Valenzuela-Iglesias A, Sharma VP, Beaty BT, Ding Z, Gutierrez-Millan LE, Roy P, Condeelis JS, Bravo-Cordero JJ. Profilin1 regulates invadopodium maturation in human breast cancer cells. Eur J Cell Biol 2015; 94:78-89. [PMID: 25613364 PMCID: PMC4322761 DOI: 10.1016/j.ejcb.2014.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 12/08/2014] [Accepted: 12/17/2014] [Indexed: 01/23/2023] Open
Abstract
Invadopodia are actin-driven membrane protrusions that show oscillatory assembly and disassembly causing matrix degradation to support invasion and dissemination of cancer cells in vitro and in vivo. Profilin1, an actin and phosphoinositide binding protein, is downregulated in several adenocarcinomas and it is been shown that its depletion enhances invasiveness and motility of breast cancer cells by increasing PI(3,4)P2 levels at the leading edge. In this study, we show for the first time that depletion of profilin1 leads to an increase in the number of mature invadopodia and these assemble and disassemble more rapidly than in control cells. Previous work by Sharma et al. (2013a), has shown that the binding of the protein Tks5 with PI(3,4)P2 confers stability to the invadopodium precursor causing it to mature into a degradation-competent structure. We found that loss of profilin1 expression increases the levels of PI(3,4)P2 at the invadopodium and as a result, enhances recruitment of the interacting adaptor Tks5. The increased PI(3,4)P2-Tks5 interaction accelerates the rate of invadopodium anchorage, maturation, and turnover. Our results indicate that profilin1 acts as a molecular regulator of the levels of PI(3,4)P2 and Tks5 recruitment in invadopodia to control the invasion efficiency of invadopodia.
Collapse
Affiliation(s)
- A Valenzuela-Iglesias
- Department of Scientific and Technological Research DICTUS, University of Sonora, Hermosillo, Mexico.
| | - V P Sharma
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, United States; Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, United States
| | - B T Beaty
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, United States
| | - Z Ding
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - L E Gutierrez-Millan
- Department of Scientific and Technological Research DICTUS, University of Sonora, Hermosillo, Mexico
| | - P Roy
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States
| | - J S Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, United States; Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, United States.
| | - J J Bravo-Cordero
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, United States; Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, United States.
| |
Collapse
|
249
|
Chettimada S, Gupte R, Rawat D, Gebb SA, McMurtry IF, Gupte SA. Hypoxia-induced glucose-6-phosphate dehydrogenase overexpression and -activation in pulmonary artery smooth muscle cells: implication in pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2015; 308:L287-300. [PMID: 25480333 PMCID: PMC4338932 DOI: 10.1152/ajplung.00229.2014] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 12/01/2014] [Indexed: 11/22/2022] Open
Abstract
Severe pulmonary hypertension is a debilitating disease with an alarmingly low 5-yr life expectancy. Hypoxia, one of the causes of pulmonary hypertension, elicits constriction and remodeling of the pulmonary arteries. We now know that pulmonary arterial remodeling is a consequence of hyperplasia and hypertrophy of pulmonary artery smooth muscle (PASM), endothelial, myofibroblast, and stem cells. However, our knowledge about the mechanisms that cause these cells to proliferate and hypertrophy in response to hypoxic stimuli is still incomplete, and, hence, the treatment for severe pulmonary arterial hypertension is inadequate. Here we demonstrate that the activity and expression of glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the pentose phosphate pathway, are increased in hypoxic PASM cells and in lungs of chronic hypoxic rats. G6PD overexpression and -activation is stimulated by H2O2. Increased G6PD activity contributes to PASM cell proliferation by increasing Sp1 and hypoxia-inducible factor 1α (HIF-1α), which directs the cells to synthesize less contractile (myocardin and SM22α) and more proliferative (cyclin A and phospho-histone H3) proteins. G6PD inhibition with dehydroepiandrosterone increased myocardin expression in remodeled pulmonary arteries of moderate and severe pulmonary hypertensive rats. These observations suggest that altered glucose metabolism and G6PD overactivation play a key role in switching the PASM cells from the contractile to synthetic phenotype by increasing Sp1 and HIF-1α, which suppresses myocardin, a key cofactor that maintains smooth muscle cell in contractile state, and increasing hypoxia-induced PASM cell growth, and hence contribute to pulmonary arterial remodeling and pathogenesis of pulmonary hypertension.
Collapse
Affiliation(s)
- Sukrutha Chettimada
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Rakhee Gupte
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Dhwajbahadur Rawat
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Sarah A Gebb
- Department of Cell Biology and Neurosciences, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Ivan F McMurtry
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, Alabama; Department of Medicine, College of Medicine, University of South Alabama, Mobile, Alabama; and Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Sachin A Gupte
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama; Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| |
Collapse
|
250
|
Yang ZH, Zhou CL, Zhu H, Li JH, He CD. A functional SNP in the MDM2 promoter mediates E2F1 affinity to modulate cyclin D1 expression in tumor cell proliferation. Asian Pac J Cancer Prev 2015; 15:3817-23. [PMID: 24870800 DOI: 10.7314/apjcp.2014.15.8.3817] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The MDM2 oncogene, a negative regulator of p53, has a functional polymorphism in the promoter region (SNP309) that is associated with multiple kinds of cancers including non-melanoma skin cancer. SNP309 has been shown to associate with accelerated tumor formation by increasing the affinity of the transcriptional activator Sp1. It remains unknown whether there are other factors involved in the regulation of MDM2 transcription through a trans-regulatory mechanism. METHODS In this study, SNP309 was verified to be associated with overexpression of MDM2 in tumor cells. Bioinformatics predicts that the T to G substitution at SNP309 generates a stronger E2F1 binding site, which was confirmed by ChIP and luciferase assays. RESULTS E2F1 knockdown downregulates the expression of MDM2, which confirms that E2F1 is a functional upstream regulator. Furthermore, tumor cells with the GG genotype exhibited a higher proliferation rate than TT, correlating with cyclin D1 expression. E2F1 depletion significantly inhibits the proliferation capacity and downregulates cyclin D1 expression, especially in GG genotype skin fibroblasts. Notably, E2F1 siRNA effects could be rescued by cyclin D1 overexpression. CONCLUSION Taken together, a novel modulator E2F1 was identified as regulating MDM2 expression dependent on SNP309 and further mediates cyclin D1 expression and tumor cell proliferation. E2F1 might act as an important factor for SNP309 serving as a rate-limiting event in carcinogenesis.
Collapse
Affiliation(s)
- Zhen-Hai Yang
- Department of Dermatology, No.1 Hospital of China Medical University, Shenyang, China E-mail :
| | | | | | | | | |
Collapse
|