201
|
Xia X, Fang Z, Qian Y, Zhou Y, Huang H, Xu F, Luo Z, Wang Q. Role of oxidative stress in the concurrent development of osteoporosis and tendinopathy: Emerging challenges and prospects for treatment modalities. J Cell Mol Med 2024; 28:e18508. [PMID: 38953556 PMCID: PMC11217991 DOI: 10.1111/jcmm.18508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024] Open
Abstract
Both osteoporosis and tendinopathy are widely prevalent disorders, encountered in diverse medical contexts. Whilst each condition has distinct pathophysiological characteristics, they share several risk factors and underlying causes. Notably, oxidative stress emerges as a crucial intersecting factor, playing a pivotal role in the onset and progression of both diseases. This imbalance arises from a dysregulation in generating and neutralising reactive oxygen species (ROS), leading to an abnormal oxidative environment. Elevated levels of ROS can induce multiple cellular disruptions, such as cytotoxicity, apoptosis activation and reduced cell function, contributing to tissue deterioration and weakening the structural integrity of bones and tendons. Antioxidants are substances that can prevent or slow down the oxidation process, including Vitamin C, melatonin, resveratrol, anthocyanins and so on, demonstrating potential in treating these overlapping disorders. This comprehensive review aims to elucidate the complex role of oxidative stress within the interlinked pathways of these comorbid conditions. By integrating contemporary research and empirical findings, our objective is to outline new conceptual models and innovative treatment strategies for effectively managing these prevalent diseases. This review underscores the importance of further in-depth research to validate the efficacy of antioxidants and traditional Chinese medicine in treatment plans, as well as to explore targeted interventions focused on oxidative stress as promising areas for future medical advancements.
Collapse
Affiliation(s)
- Xianting Xia
- Department of OrthopaedicsKunshan Sixth People's HospitalKunshanJiangsuChina
| | - Zhengyuan Fang
- The First Affiliated Hospital of Dalian Medical UniversityDalian Medical UniversityDalianLiaoningChina
| | - Yinhua Qian
- Department of OrthopaedicsKunshan Hospital of Chinese MedicineKunshanJiangsuChina
| | - Yu Zhou
- Department of OrthopaedicsKunshan Hospital of Chinese MedicineKunshanJiangsuChina
| | - Haoqiang Huang
- Department of OrthopaedicsKunshan Hospital of Chinese MedicineKunshanJiangsuChina
| | - Feng Xu
- Department of OrthopaedicsKunshan Hospital of Chinese MedicineKunshanJiangsuChina
| | - Zhiwen Luo
- Department of OrthopaedicsKunshan Hospital of Chinese MedicineKunshanJiangsuChina
- Department of Sports MedicineHuashan Hospital, Fudan UniverstiyShanghaiChina
| | - Qing Wang
- Department of OrthopaedicsKunshan Hospital of Chinese MedicineKunshanJiangsuChina
| |
Collapse
|
202
|
Yuan LH, Zhang LJ. Effects of CSF1R/p-ERK1/2 signaling pathway on RF/6A cells under high glucose conditions. Eur J Ophthalmol 2024; 34:1165-1173. [PMID: 38099815 DOI: 10.1177/11206721231219717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
OBJECTIVE This study analyzed how high glucose affects CSF1R and p-ERK1/2 expression in RF/6A cells. METHODS The cells were cultured as high glucose (HG) and normal control (C) groups, and CSF1R shRNA was introduced. Real time PCR was used to detect the expression of CSF1R and p-ERK1/2 mRNA. Western blot was used to detect the expression of CSF1R and p-ERK1/2 proteins. Cell Counting Kit 8 (CCK-8) method was used to detect cell proliferation, while flow cytometry was used to detect apoptosis in HREC. RESULTS Real-time PCR showed significantly raised CSF1R mRNA expression in HG. CSF1R inhibition lowered HG + LV shCSF1R CSF1R mRNA levels. Western blotting revealed higher CSF1R and p-ERK1/2 protein expression in HG than in C. Their expression level dropped after CSF1R inhibition. The number of tube-forming cells was higher in HG than in C, which reduced after CSF1R suppression. Inhibiting CSF1R also decreased cell proliferation and raised apoptosis. CONCLUSION Overall, under high glucose, CSF1R and p-ERK1/2 were highly expressed, leading to reduced cellular activity, and CSF1R inhibition helped alleviate this effect.
Collapse
Affiliation(s)
- Lin Hui Yuan
- Dalian Medical University, Dalian, China
- Department of Ophthalmology, the Third People's Hospital Affiliated to Dalian Medical University, Dalian, China
| | - Li Jun Zhang
- Dalian Medical University, Dalian, China
- Department of Ophthalmology, the Third People's Hospital Affiliated to Dalian Medical University, Dalian, China
| |
Collapse
|
203
|
Yang H, Shao ZH, Jin X, Chen JW. The critical role of P2XR/PGC-1α signalling pathway in hypoxia-mediated pyroptosis and M1/M2 phenotypic differentiation of mouse microglia. Eur J Neurosci 2024; 60:3629-3642. [PMID: 38697919 DOI: 10.1111/ejn.16363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/09/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024]
Abstract
Microglia are endogenous immune cells in the brain, and their pyroptosis and phenotype dichotomy are proved to play roles in neurodegenerative diseases. We investigated whether and how hypoxia affected pyroptosis and phenotype polarization in mouse microglia. Primary mouse microglia and BV2 microglia were exposed to hypoxia. Pyroptosis and M1/M2 phenotype were assessed by measuring gasdermin D truncation and M1/M2 surface marker expression. Mechanisms including purinergic ionotropic receptor (P2XR), peroxisome proliferator-activated receptor coactivator-1α (PGC-1α) and NOD-like receptor protein 3 (NLRP3) inflammasome were investigated. We reported hypoxia (90% N2, 5% O2 and 5% CO2) induced pyroptosis and promoted M1 phenotype polarization in primary mouse microglia and BV2 microglia, and the effect appeared after 6 h exposure. Although hypoxia (90% N2, 5% O2 and 5% CO2, 6 h) had no effect on P2X1R and P2X7R expression, it increased P2X4R expression and decreased PGC-1α expression. Interestingly, blockade of P2X4R or P2X7R abolished hypoxia-modulated PGC-1α expression, pyroptosis and M1 polarization. PGC-1α overexpression or overactivation alleviated hypoxia-induced pyroptosis and M1 polarization, while PGC-1α knockdown or deactivation promoted pyroptosis and M1 polarization under normoxic situation. Further, hypoxia induced NLRP3 expression and activated caspase-1 and induced the phosphorylation of NF-κB and reduced the phosphorylation of STAT3/6. NLRP3 inhibitor and caspase-1 inhibitor abolished hypoxia-induced pyroptosis, while NF-κB inhibitor and STAT phosphorylation inducer ameliorated hypoxia-induced M1 polarization. In addition, NF-κB activator and STAT3/6 inhibitor caused microglia M1 polarization under normoxic situation. We concluded in cultured mouse microglia, hypoxia may induce pyroptosis via P2XR/PGC-1α/NLRP3/caspase-1 pathway and trigger M1 polarization through P2XR/PGC-1α/NF-κB/STAT3/6 pathway.
Collapse
Affiliation(s)
- Hao Yang
- Department of Critical Care Medicine, Jing'an District Central Hospital of Shanghai, Fudan University, Shanghai, People's Republic of China
| | - Zhen-Hua Shao
- Department of Critical Care Medicine, Jing'an District Central Hospital of Shanghai, Fudan University, Shanghai, People's Republic of China
| | - Xian Jin
- Department of Critical Care Medicine, Jing'an District Central Hospital of Shanghai, Fudan University, Shanghai, People's Republic of China
| | - Jia-Wei Chen
- Department of Critical Care Medicine, Jing'an District Central Hospital of Shanghai, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
204
|
Xu Z, Zhou H, Li T, Yi Q, Thakur A, Zhang K, Ma X, Qin JJ, Yan Y. Application of biomimetic nanovaccines in cancer immunotherapy: A useful strategy to help combat immunotherapy resistance. Drug Resist Updat 2024; 75:101098. [PMID: 38833804 DOI: 10.1016/j.drup.2024.101098] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/06/2024]
Abstract
Breakthroughs in actual clinical applications have begun through vaccine-based cancer immunotherapy, which uses the body's immune system, both humoral and cellular, to attack malignant cells and fight diseases. However, conventional vaccine approaches still face multiple challenges eliciting effective antigen-specific immune responses, resulting in immunotherapy resistance. In recent years, biomimetic nanovaccines have emerged as a promising alternative to conventional vaccine approaches by incorporating the natural structure of various biological entities, such as cells, viruses, and bacteria. Biomimetic nanovaccines offer the benefit of targeted antigen-presenting cell (APC) delivery, improved antigen/adjuvant loading, and biocompatibility, thereby improving the sensitivity of immunotherapy. This review presents a comprehensive overview of several kinds of biomimetic nanovaccines in anticancer immune response, including cell membrane-coated nanovaccines, self-assembling protein-based nanovaccines, extracellular vesicle-based nanovaccines, natural ligand-modified nanovaccines, artificial antigen-presenting cells-based nanovaccines and liposome-based nanovaccines. We also discuss the perspectives and challenges associated with the clinical translation of emerging biomimetic nanovaccine platforms for sensitizing cancer cells to immunotherapy.
Collapse
Affiliation(s)
- Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Haiyan Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Tongfei Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Qiaoli Yi
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Abhimanyu Thakur
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Kui Zhang
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Xuelei Ma
- Department of Biotherapy, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China.
| | - Jiang-Jiang Qin
- Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
205
|
Melemenidis S, Knight JC, Kersemans V, Perez-Balderas F, Zarghami N, Soto MS, Cornelissen B, Muschel RJ, Sibson NR. In Vivo PET Detection of Lung Micrometastasis in Mice by Targeting Endothelial VCAM-1 Using a Dual-Contrast PET/MRI Probe. Int J Mol Sci 2024; 25:7160. [PMID: 39000268 PMCID: PMC11241628 DOI: 10.3390/ijms25137160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Current clinical diagnostic imaging methods for lung metastases are sensitive only to large tumours (1-2 mm cross-sectional diameter), and early detection can dramatically improve treatment. We have previously demonstrated that an antibody-targeted MRI contrast agent based on microparticles of iron oxide (MPIO; 1 μm diameter) enables the imaging of endothelial vascular cell adhesion molecule-1 (VCAM-1). Using a mouse model of lung metastasis, upregulation of endothelial VCAM-1 expression was demonstrated in micrometastasis-associated vessels but not in normal lung tissue, and binding of VCAM-MPIO to these vessels was evident histologically. Owing to the lack of proton MRI signals in the lungs, we modified the VCAM-MPIO to include zirconium-89 (89Zr, t1/2 = 78.4 h) in order to allow the in vivo detection of lung metastases by positron emission tomography (PET). Using this new agent (89Zr-DFO-VCAM-MPIO), it was possible to detect the presence of micrometastases within the lung in vivo from ca. 140 μm in diameter. Histological analysis combined with autoradiography confirmed the specific binding of the agent to the VCAM-1 expressing vasculature at the sites of pulmonary micrometastases. By retaining the original VCAM-MPIO as the basis for this new molecular contrast agent, we have created a dual-modality (PET/MRI) agent for the concurrent detection of lung and brain micrometastases.
Collapse
Affiliation(s)
- Stavros Melemenidis
- Department of Radiation Oncology, Stanford School of Medicine, Cancer Institute, Stanford University, Stanford, CA 94305, USA;
| | - James C. Knight
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;
| | - Veerle Kersemans
- Clinical Nuclear Medicine Imaging, Siemens Healthineers, 2595 BN The Hague, The Netherlands;
| | | | - Niloufar Zarghami
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; (N.Z.); (R.J.M.)
| | - Manuel Sarmiento Soto
- Department of Biochemistry and Molecular Biology, University of Seville, 41004 Seville, Spain;
| | - Bart Cornelissen
- Department of Nuclear Medicine, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
| | - Ruth J. Muschel
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; (N.Z.); (R.J.M.)
| | - Nicola R. Sibson
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; (N.Z.); (R.J.M.)
| |
Collapse
|
206
|
Valentino A, Conte R, Bousta D, Bekkari H, Di Salle A, Calarco A, Peluso G. Extracellular Vesicles Derived from Opuntia ficus-indica Fruit (OFI-EVs) Speed Up the Normal Wound Healing Processes by Modulating Cellular Responses. Int J Mol Sci 2024; 25:7103. [PMID: 39000212 PMCID: PMC11241772 DOI: 10.3390/ijms25137103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/18/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Plant-derived extracellular vesicles (EVs) have been recognized as important mediators of intercellular communication able to transfer active biomolecules across the plant and animal kingdoms. EVs have demonstrated an impressive array of biological activities, displaying preventive and therapeutic potential in mitigating various pathological processes. Indeed, the simplicity of delivering exogenous and endogenous bioactive molecules to mammalian cells with their low cytotoxicity makes EVs suitable agents for new therapeutic strategies for a variety of pathologies. In this study, EVs were isolated from Opuntia ficus-indica fruit (OFI-EVs) and characterized by particle size distribution, concentration, and bioactive molecule composition. OFI-EVs had no obvious toxicity and demonstrated a protective role in the inflammatory process and oxidative stress in vitro model of chronic skin wounds. The results demonstrated that pretreatment with OFI-EVs decreased the activity and gene expression of pro-inflammatory cytokines (IL-6, IL-8, and TNF-α) in the LPS-stimulated human leukemia monocytic cell line (THP-1). Furthermore, OFI-EVs promote the migration of human dermal fibroblasts (HDFs), speeding up the normal wound healing processes. This study sheds light, for the first time, on the role of OFI-EVs in modulating important biological processes such as inflammation and oxidation, thereby identifying EVs as potential candidates for healing chronic cutaneous wounds.
Collapse
Affiliation(s)
- Anna Valentino
- Research Institute on Terrestrial Ecosystems (IRET), CNR, Via Pietro Castellino 111, 80131 Naples, Italy; (R.C.); (A.D.S.); (G.P.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Raffaele Conte
- Research Institute on Terrestrial Ecosystems (IRET), CNR, Via Pietro Castellino 111, 80131 Naples, Italy; (R.C.); (A.D.S.); (G.P.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Dalila Bousta
- National Agency of Medicinal and Aromatic Plants Tounate, Taounate 34000, Morocco;
| | - Hicham Bekkari
- Laboratory of Biotechnology, Environment, Agrofood and Health (LBEAS), Fez 30000, Morocco;
| | - Anna Di Salle
- Research Institute on Terrestrial Ecosystems (IRET), CNR, Via Pietro Castellino 111, 80131 Naples, Italy; (R.C.); (A.D.S.); (G.P.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Anna Calarco
- Research Institute on Terrestrial Ecosystems (IRET), CNR, Via Pietro Castellino 111, 80131 Naples, Italy; (R.C.); (A.D.S.); (G.P.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
- Faculty of Medicine and Surgery, Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy
| | - Gianfranco Peluso
- Research Institute on Terrestrial Ecosystems (IRET), CNR, Via Pietro Castellino 111, 80131 Naples, Italy; (R.C.); (A.D.S.); (G.P.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
- Faculty of Medicine and Surgery, Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy
| |
Collapse
|
207
|
Yu XH, Li XR, Du ZR, Zhang Y, Fei Y, Tang WP, Li XW, Zhao Q. Effects of non-pharmacological interventions for adults with subjective cognitive decline: a network meta-analysis and component network meta-analysis. BMC Med 2024; 22:272. [PMID: 38937777 PMCID: PMC11209990 DOI: 10.1186/s12916-024-03491-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 06/17/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Non-pharmacological interventions have a myriad of available intervention options and contain multiple components. Whether specific components of non-pharmacological interventions or combinations are superior to others remains unclear. The main aim of this study is to compare the effects of different combinations of non-pharmacological interventions and their specific components on health-related outcomes in adults with subjective cognitive decline. METHODS PubMed, Embase, Cochrane, CINAHL, PsycINFO, CENTRAL, Web of Science, and China's two largest databases, CNKI and Wanfang, were searched from inception to 22nd, January 2023. Randomized controlled trials using non-pharmacological interventions and reporting health outcomes in adults with subjective cognitive decline were included. Two independent reviewers screened studies, extracted data, and assessed risk of bias. Component network meta-analysis was conducted employing an additive component model for network meta-analysis. This study followed the PRISMA reporting guideline and the PRISMA checklist is presented in Additional file 2. RESULTS A total of 39 trials with 2959 patients were included (range of mean ages, 58.79-77.41 years). Resistance exercise might be the optimal intervention for reducing memory complaints in adults with subjective cognitive decline; the surface under the cumulative ranking p score was 0.888, followed by balance exercise (p = 0.859), aerobic exercise (p = 0.832), and cognitive interventions (p = 0.618). Music therapy, cognitive training, transcranial direct current stimulation, mindfulness therapy, and balance exercises might be the most effective intervention components for improving global cognitive function (iSMD, 0.83; 95% CI, 0.36 to 1.29), language (iSMD, 0.31; 95% CI, 0.24 to 0.38), ability to perform activities of daily living (iSMD, 0.55; 95% CI, 0.21 to 0.89), physical health (iSMD, 3.29; 95% CI, 2.57 to 4.00), and anxiety relief (iSMD, 0.71; 95% CI, 0.26 to 1.16), respectively. CONCLUSIONS The form of physical activity performed appears to be more beneficial than cognitive interventions in reducing subjective memory complaints for adults with subjective cognitive decline, and this difference was reflected in resistance, aerobic, and balance exercises. Randomized clinical trials with high-quality and large-scale are warranted to validate the findings. TRIAL REGISTRATION PROSPERO registry number. CRD42022355363.
Collapse
Affiliation(s)
- Xiao-Hong Yu
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Xin-Ru Li
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Zhi-Run Du
- Department of Internal Neurology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Zhang
- School of Humanities and Health, Changzhou Vocational Institute of Textile and Garment, Changzhou, China
| | - Yang Fei
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Wen-Ping Tang
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Xian-Wen Li
- School of Nursing, Nanjing Medical University, Nanjing, China.
| | - Qing Zhao
- School of Public Health, Southern Medical University, Guangzhou, China
- School of Health Service Management, Southern Medical University, Guangzhou, China
| |
Collapse
|
208
|
Zhou P, Du X, Jia W, Feng K, Zhang Y. Engineered extracellular vesicles for targeted reprogramming of cancer-associated fibroblasts to potentiate therapy of pancreatic cancer. Signal Transduct Target Ther 2024; 9:151. [PMID: 38910148 PMCID: PMC11194278 DOI: 10.1038/s41392-024-01872-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 04/07/2024] [Accepted: 05/15/2024] [Indexed: 06/25/2024] Open
Abstract
Pancreatic cancer is one of the deadly malignancies with a significant mortality rate and there are currently few therapeutic options for it. The tumor microenvironment (TME) in pancreatic cancer, distinguished by fibrosis and the existence of cancer-associated fibroblasts (CAFs), exerts a pivotal influence on both tumor advancement and resistance to therapy. Recent advancements in the field of engineered extracellular vesicles (EVs) offer novel avenues for targeted therapy in pancreatic cancer. This study aimed to develop engineered EVs for the targeted reprogramming of CAFs and modulating the TME in pancreatic cancer. EVs obtained from bone marrow mesenchymal stem cells (BMSCs) were loaded with miR-138-5p and the anti-fibrotic agent pirfenidone (PFD) and subjected to surface modification with integrin α5-targeting peptides (named IEVs-PFD/138) to reprogram CAFs and suppress their pro-tumorigenic effects. Integrin α5-targeting peptide modification enhanced the CAF-targeting ability of EVs. miR-138-5p directly inhibited the formation of the FERMT2-TGFBR1 complex, inhibiting TGF-β signaling pathway activation. In addition, miR-138-5p inhibited proline-mediated collagen synthesis by directly targeting the FERMT2-PYCR1 complex. The combination of miR-138-5p and PFD in EVs synergistically promoted CAF reprogramming and suppressed the pro-cancer effects of CAFs. Preclinical experiments using the orthotopic stroma-rich and patient-derived xenograft mouse models yielded promising results. In particular, IEVs-PFD/138 effectively reprogrammed CAFs and remodeled TME, which resulted in decreased tumor pressure, enhanced gemcitabine perfusion, tumor hypoxia amelioration, and greater sensitivity of cancer cells to chemotherapy. Thus, the strategy developed in this study can improve chemotherapy outcomes. Utilizing IEVs-PFD/138 as a targeted therapeutic agent to modulate CAFs and the TME represents a promising therapeutic approach for pancreatic cancer.
Collapse
Affiliation(s)
- Pengcheng Zhou
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
- School of Medicine, Southeast University, Nanjing, China
| | - Xuanlong Du
- School of Medicine, Southeast University, Nanjing, China
| | - Weilu Jia
- School of Medicine, Southeast University, Nanjing, China
| | - Kun Feng
- Nanjing Medical University, Nanjing, China
| | - Yewei Zhang
- Hepatobiliary and Pancreatic Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
209
|
Abdoh Q, Alnees M, Kharraz L, Ayoub K, Darwish A, Awwad M, Najajra D, Khraim J, Awad W, Sbaih A, Turman S, Abu Hamdeh N. Prevalence of Helicobacter pylori resistance to certain antibiotics at An-Najah University Hospital: a cross-sectional study. Sci Rep 2024; 14:14542. [PMID: 38914675 PMCID: PMC11196700 DOI: 10.1038/s41598-024-63982-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/04/2024] [Indexed: 06/26/2024] Open
Abstract
Antibiotic resistance among bacteria is recognized as the primary factor contributing to the failure of treatment. In this research, our objective was to examine the prevalence of antibiotic resistance in H. pylori bacteria in Palestine. We enlisted 91 individuals suffering from dyspepsia, comprising 49 females and 42 males. These participants underwent esophagogastroduodenoscopy procedures with gastric biopsies. These biopsies were subsequently subjected to microbiological assessments and tested for their susceptibility to various antimicrobial drugs. Among the 91 patients, 38 (41.7%) exhibited the presence of H. pylori. Notably, Ciprofloxacin displayed the highest efficacy against H. pylori, followed by Levofloxacin, Moxifloxacin, and Amoxicillin, with resistance rates of 0%, 0%, 2.6%, and 18.4%, respectively. On the contrary, Metronidazole and Clarithromycin demonstrated the lowest effectiveness, with resistance percentages of 100% and 47.4%, respectively. The outcomes of this investigation emphasize that H. pylori strains within the Palestinian patient group exhibit substantial resistance to conventional first-line antibiotics like clarithromycin and metronidazole. However, alternative agents such as fluoroquinolones and amoxicillin remain efficacious choices. Consequently, we recommend favoring quinolone-based treatment regimens for H. pylori infections and adopting a more judicious approach to antibiotic usage among the Palestinian population.
Collapse
Affiliation(s)
- Qusay Abdoh
- Faculty of Medicine, An-Najah National University, Nablus, Palestine.
- Division of Gastroenterology, An-Najah National University Hospital, Nablus, Palestine.
| | - Mohammad Alnees
- Faculty of Medicine, An-Najah National University, Nablus, Palestine.
- Global Clinical Scholars Research Training Program, Harvard Medical School Postgraduate Medical Education, Boston, USA.
- Department of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.
| | - Lubna Kharraz
- Faculty of Medicine, An-Najah National University, Nablus, Palestine
| | - Khubaib Ayoub
- Faculty of Medicine, An-Najah National University, Nablus, Palestine
- Department of Internal Medicine, Specialized Araby Hospital, Nablus, Palestine
| | - Abdalaziz Darwish
- Faculty of Medicine, An-Najah National University, Nablus, Palestine
| | - Mahdi Awwad
- Faculty of Medicine, An-Najah National University, Nablus, Palestine
| | - Duha Najajra
- Faculty of Medicine, An-Najah National University, Nablus, Palestine
| | - Jana Khraim
- Faculty of Medicine, An-Najah National University, Nablus, Palestine
| | - Wafaa Awad
- Faculty of Medicine, An-Najah National University, Nablus, Palestine
| | - Aesha Sbaih
- Faculty of Medicine, An-Najah National University, Nablus, Palestine
| | - Safaa Turman
- Faculty of Medicine, An-Najah National University, Nablus, Palestine
| | - Nizar Abu Hamdeh
- Faculty of Medicine, An-Najah National University, Nablus, Palestine
| |
Collapse
|
210
|
Marunganathan V, Guru A, Panda SP, Arockiaraj J. Exploring Therapeutic Potential: A Comprehensive Review of Antimicrobial Peptides in Oral Cancer Management. Int J Pept Res Ther 2024; 30:43. [DOI: 10.1007/s10989-024-10621-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2024] [Indexed: 01/03/2025]
|
211
|
Zhou Z, Niu H, Bian M, Zhu C. Kidney tea [ Orthosiphon aristatus (Blume) Miq.] improves diabetic nephropathy via regulating gut microbiota and ferroptosis. Front Pharmacol 2024; 15:1392123. [PMID: 38962302 PMCID: PMC11220284 DOI: 10.3389/fphar.2024.1392123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/27/2024] [Indexed: 07/05/2024] Open
Abstract
Introduction Diabetic nephropathy (DN) is the leading cause of end-stage renal disease. Due to its complex pathogenesis, new therapeutic agents are urgently needed. Orthosiphon aristatus (Blume) Miq., commonly known as kidney tea, is widely used in DN treatment in China. However, the mechanisms have not been fully elucidated. Methods We used db/db mice as the DN model and evaluated the efficacy of kidney tea in DN treatment by measuring fasting blood glucose (FBG), serum inflammatory cytokines, renal injury indicators and histopathological changes. Furthermore, 16S rDNA gene sequencing, untargeted serum metabolomics, electron microscope, ELISA, qRT-PCR, and Western blotting were performed to explore the mechanisms by which kidney tea exerted therapeutic effects. Results Twelve polyphenols were identified from kidney tea, and its extract ameliorated FBG, inflammation and renal injury in DN mice. Moreover, kidney tea reshaped the gut microbiota, reduced the abundance of Muribaculaceae, Lachnoclostridium, Prevotellaceae_UCG-001, Corynebacterium and Akkermansia, and enriched the abundance of Alloprevotella, Blautia and Lachnospiraceae_NK4A136_group. Kidney tea altered the levels of serum metabolites in pathways such as ferroptosis, arginine biosynthesis and mTOR signaling pathway. Importantly, kidney tea improved mitochondrial damage, increased SOD activity, and decreased the levels of MDA and 4-HNE in the renal tissues of DN mice. Meanwhile, this functional tea upregulated GPX4 and FTH1 expression and downregulated ACSL4 and NCOA4 expression, indicating that it could inhibit ferroptosis in the kidneys. Conclusion Our findings imply that kidney tea can attenuate DN development by modulating gut microbiota and ferroptosis, which presents a novel scientific rationale for the clinical application of kidney tea.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongjuan Niu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Meng Bian
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunsheng Zhu
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
212
|
Wan R, Chen P, Guo S, Zhu J, Mei J, Mai CW, Luo Z. Editorial: The immunological regulation of extracellular vesicles on chronic diseases. Front Immunol 2024; 15:1442387. [PMID: 38957467 PMCID: PMC11217511 DOI: 10.3389/fimmu.2024.1442387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 06/10/2024] [Indexed: 07/04/2024] Open
Affiliation(s)
- Renwen Wan
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Peng Chen
- Department of Sports Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Shicheng Guo
- Department of Medical Genetics, University of Wisconsin (UW)-Madison, Madison, WI, United States
| | - Jinhong Zhu
- Department of Laboratory Medicine, Biobank Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Jie Mei
- The First Clinical Medicine College, Nanjing Medical University, Nanjing, China
| | - Chun Wai Mai
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, University College Sedaya International (UCSI), Kuala Lumpur, Malaysia
| | - Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
213
|
Cui L, Perini G, Augello A, Palmieri V, De Spirito M, Papi M. Plant-derived extracellular nanovesicles: a promising biomedical approach for effective targeting of triple negative breast cancer cells. Front Bioeng Biotechnol 2024; 12:1390708. [PMID: 38952670 PMCID: PMC11215178 DOI: 10.3389/fbioe.2024.1390708] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/28/2024] [Indexed: 07/03/2024] Open
Abstract
Introduction: Triple negative breast cancer (TNBC), a highly aggressive subtype accounting for 15-20% of all breast cancer cases, faces limited treatment options often accompanied by severe side effects. In recent years, natural extracellular nanovesicles derived from plants have emerged as promising candidates for cancer therapy, given their safety profile marked by non-immunogenicity and absence of inflammatory responses. Nevertheless, the potential anti-cancer effects of Citrus limon L.-derived extracellular nanovesicles (CLENs) for breast cancer treatment is still unexplored. Methods: In this study, we investigated the anti-cancer effects of CLENs on two TNBC cell lines (4T1 and HCC-1806 cells) under growth conditions in 2D and 3D culture environments. The cellular uptake efficiency of CLENs and their internalization mechanism were evaluated in both cells using confocal microscopy. Thereafter, we assessed the effect of different concentrations of CLENs on cell viability over time using a dual approach of Calcein-AM PI live-dead assay and CellTiter-Glo bioluminescence assay. We also examined the influence of CLENs on the migratory and evasion abilities of TNBC cells through wound healing and 3D Matrigel drop evasion assays. Furthermore, Western blot analysis was employed to investigate the effects of CLENs on the phosphorylation levels of phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), and extracellular signal- regulated kinase (ERK) expression. Results: We found that CLENs were internalized by the cells via endocytosis, leading to decreased cell viability, in a dose- and time-dependent manner. Additionally, the migration and evasion abilities of TNBC cells were significantly inhibited under exposed to 40 and 80 μg/mL CLENs. Furthermore, down-regulated expression levels of phosphorylated phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), and extracellular signal-regulated kinase (ERK), suggesting that the inhibition of cancer cell proliferation, migration, and evasion is driven by the inhibition of the PI3K/AKT and MAPK/ERK signaling pathways. Discussion: Overall, our results demonstrate the anti-tumor efficiency of CLENs against TNBC cells, highlighting their potential as promising natural anti-cancer agents for clinical applications in cancer treatment.
Collapse
Affiliation(s)
- Lishan Cui
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giordano Perini
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome, Italy
| | - Alberto Augello
- Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome, Italy
| | - Valentina Palmieri
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
- Istituto dei Sistemi Complessi, Consiglio nazionale delle ricerche (C.N.R.), Rome, Italy
| | - Marco De Spirito
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome, Italy
| | - Massimiliano Papi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome, Italy
| |
Collapse
|
214
|
Maimaiti M, Li C, Cheng M, Zhong Z, Hu J, Yang L, Zhang L, Hong Z, Song J, Pan M, Ma X, Cui S, Zhang P, Hao H, Wang C, Hu H. Blocking cGAS-STING pathway promotes post-stroke functional recovery in an extended treatment window via facilitating remyelination. MED 2024; 5:622-644.e8. [PMID: 38663402 DOI: 10.1016/j.medj.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/15/2024] [Accepted: 03/27/2024] [Indexed: 06/17/2024]
Abstract
BACKGROUND Ischemic stroke is a major cause of worldwide death and disability, with recombinant tissue plasminogen activator being the sole effective treatment, albeit with a limited treatment window. The cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) pathway is emerging as the major DNA-sensing pathway to invoke immune responses in neuroinflammatory disorders. METHODS By performing a series of neurobehavioral assessments, electrophysiological analysis, high-throughput sequencing, and cell-based assays based on the transient middle cerebral artery occlusion (tMCAO) mouse stroke model, we examined the effects and underlying mechanisms of genetic and pharmacological inhibition of the cGAS-STING pathway on long-term post-stroke neurological functional outcomes. FINDINGS Blocking the cGAS-STING pathway, even 3 days after tMCAO, significantly promoted functional recovery in terms of white matter structural and functional integrity as well as sensorimotor and cognitive functions. Mechanistically, the neuroprotective effects via inhibiting the cGAS-STING pathway were contributed not only by inflammation repression at the early stage of tMCAO but also by modifying the cell state of phagocytes to facilitate remyelination at the sub-acute phase. The activation of the cGAS-STING pathway significantly impeded post-stroke remyelination through restraining myelin debris uptake and degradation and hindering oligodendrocyte differentiation and maturation. CONCLUSIONS Manipulating the cGAS-STING pathway has an extended treatment window in promoting long-term post-stroke functional recovery via facilitating remyelination in a mouse stroke model. Our results highlight the roles of the cGAS-STING pathway in aggregating stroke pathology and propose a new way for improving functional recovery after ischemic stroke. FUNDING This work was primarily funded by the National Key R&D Program of China.
Collapse
Affiliation(s)
- Munire Maimaiti
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Chenhui Li
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| | - Mingxing Cheng
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Ziwei Zhong
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jiameng Hu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Lei Yang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Lele Zhang
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ze Hong
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinyi Song
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Mingyu Pan
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xiaonan Ma
- Cellular and Molecular Biology Center, China Pharmaceutical University, Nanjing, China
| | - Shufang Cui
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Peng Zhang
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haiping Hao
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism, China Pharmaceutical University, Nanjing, China; School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chen Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| | - Haiyang Hu
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China; Chongqing Innovation Institute of China Pharmaceutical University, Chongqing, China.
| |
Collapse
|
215
|
Li X, Qiao B, Wu Y, Deng N, Yuan J, Tan Z. Sishen Pill inhibits intestinal inflammation in diarrhea mice via regulating kidney-intestinal bacteria-metabolic pathway. Front Pharmacol 2024; 15:1360589. [PMID: 38915463 PMCID: PMC11194372 DOI: 10.3389/fphar.2024.1360589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/21/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Sishen Pill (SSP) has good efficacy in diarrhea with deficiency kidney-yang syndrome (DKYS), but the mechanism of efficacy involving intestinal microecology has not been elucidated. OBJECTIVE This study investigated the mechanism of SSP in regulating intestinal microecology in diarrhea with DKYS. METHODS Adenine combined with Folium sennae was used to construct a mouse model of diarrhea with DKYS and administered with SSP. The behavioral changes and characteristics of gut content microbiota and short-chain fatty acids (SCFAs) of mice were analyzed to explore the potential association between the characteristic bacteria, SCFAs, intestinal inflammatory and kidney function-related indicators. RESULTS After SSP intervention, the body weight and anal temperature of diarrhea with DKYS gradually recovered and approached the normal level. Lactobacillus johnsonii was significantly enriched, and propionic, butyric, isobutyric and isovaleric acids were elevated. Serum creatinine (Cr), interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α) levels of the mice were reduced, while serum blood urea nitrogen (BUN) and secretory immunoglobulin A (sIgA) in the colonic tissues were increased. Moreover, there were correlations between L. johnsonii, SCFAs, intestinal inflammatory, and kidney function. CONCLUSION SSP might suppress the intestinal inflammation by regulating the "L. johnsonii-propionic acid" pathway, thus achieving the effect of treating diarrhea with DKYS.
Collapse
Affiliation(s)
- Xiaoya Li
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Changsha, Hunan, China
- College of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Provincal Key Laboratory of Chronic Disease Prevention and Treatment of Integrated Traditional Chinese and Western Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Bo Qiao
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Changsha, Hunan, China
| | - Yueying Wu
- College of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Provincal Key Laboratory of Chronic Disease Prevention and Treatment of Integrated Traditional Chinese and Western Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Na Deng
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Changsha, Hunan, China
| | - Jiali Yuan
- College of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Provincal Key Laboratory of Chronic Disease Prevention and Treatment of Integrated Traditional Chinese and Western Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Zhoujin Tan
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Changsha, Hunan, China
| |
Collapse
|
216
|
Ja’afar NL, Mustapha M, Mohamed M, Hashim S. A Review of Post-Stroke Cognitive Impairment and the Potential Benefits of Stingless Bee Honey Supplementation. Malays J Med Sci 2024; 31:75-91. [PMID: 38984252 PMCID: PMC11229577 DOI: 10.21315/mjms2024.31.3.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/02/2023] [Indexed: 07/11/2024] Open
Abstract
Post-stroke cognitive impairment (PSCI) is a common decline in cognitive abilities that occurs within 3 months after a stroke. During recovery, stroke survivors often experience varying degrees of cognitive decline, with some patients experiencing permanent cognitive deficits. Thus, it is crucial to prioritise recovery and rehabilitation after a stroke to promote optimal protection of and improvement in cognitive function. Honey derived from stingless bees has been linked to various therapeutic properties, including neuroprotective effects. However, scientific evidence for the mechanisms through which these honey supplements enhance cognitive function remains limited. This narrative review aims to provide an overview of the causes of PSCI, current treatments, the biomarkers influencing cognition in post-stroke patients and the potential of stingless bee honey (SBH) as a neuroprotective agent against the progression of PSCI.
Collapse
Affiliation(s)
- Nor Liyana Ja’afar
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia
| | - Muzaimi Mustapha
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia
| | - Mahaneem Mohamed
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia
| | - Sabarisah Hashim
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia
| |
Collapse
|
217
|
Hajikarimloo B, Kavousi S, Jahromi GG, Mehmandoost M, Oraee-Yazdani S, Fahim F. Hyperbaric Oxygen Therapy as an Alternative Therapeutic Option for Radiation-Induced Necrosis Following Radiotherapy for Intracranial Pathologies. World Neurosurg 2024; 186:51-61. [PMID: 38325705 DOI: 10.1016/j.wneu.2024.01.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Radiotherapy (RT) is a feasible adjuvant therapeutic option for managing intracranial pathologies. One of the late complications of RT that frequently develops within months following RT is radiation necrosis (RN). Corticosteroids are the first-line therapeutic option for RNs; however, in case of unfavorable outcomes or intolerability, several other options, including bevacizumab, laser interstitial thermal therapy, surgery, and hyperbaric oxygen therapy (HBOT). Our goal was to investigate the feasibility and efficacy of the application of HBOT in RNs following RT and help physicians make decisions based on the latest data in the literature. METHODS We provide a comprehensive review of the literature on the current issues of utilization of HBOT in RNs. RESULTS We included 11 studies with a total of 46 patients who underwent HBOT. Most of the cases were diagnosed with brain tumors or arteriovenous malformations. Improvement was achieved in most of the cases. DISCUSSION HBOT is a noninvasive therapeutic intervention that can play a role in adjuvant therapy concurrent with RT and chemotherapy and treating RNs. HBOT resolves the RN through 3 mechanisms, including angiogenesis, anti-inflammatory modulation, and cellular repair. Previous studies demonstrated that HBOT is a feasible and well-tolerated therapeutic option that has shown promising results in improving clinical and radiological outcomes in intracranial RNs. Complications of HBOT are usually mild and reversible. CONCLUSIONS HBOT is a feasible and effective therapeutic option in steroid-refractory RNs and is associated with favorable outcomes and a low rate of side effects.
Collapse
Affiliation(s)
- Bardia Hajikarimloo
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Neurosurgery, Shohada Tajrish Hospital, Tehran, Iran
| | - Shahin Kavousi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Ghaffaripour Jahromi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Mehmandoost
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Oraee-Yazdani
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Neurosurgery, Shohada Tajrish Hospital, Tehran, Iran
| | - Farzan Fahim
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Neurosurgery, Shohada Tajrish Hospital, Tehran, Iran.
| |
Collapse
|
218
|
Yuan Y, Yang Y, Hu X, Zhang L, Xiong Z, Bai Y, Zeng J, Xu F. Effective dosage and mode of exercise for enhancing cognitive function in Alzheimer's disease and dementia: a systematic review and Bayesian Model-Based Network Meta-analysis of RCTs. BMC Geriatr 2024; 24:480. [PMID: 38824515 PMCID: PMC11143595 DOI: 10.1186/s12877-024-05060-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/08/2024] [Indexed: 06/03/2024] Open
Abstract
OBJECTIVE Research the dose-response relationship between overall and certain types of exercise and cognitive function in older adults with Alzheimer's disease and dementia. DESIGN Systemic and Bayesian Model-Based Network Meta-Analysis. METHODS In our study, we analyzed data from randomized controlled trials investigating the effects of different exercises on cognitive outcomes in older adults with AD. We searched the Web of Science, PubMed, Cochrane Central Register of Controlled Trials, and Embase up to November 2023. Using the Cochrane Risk of Bias tool (Rob2) for quality assessment and R software with the MBNMA package for data analysis, we determined standard mean differences (SMDs) and 95% confidence intervals (95%CrI) to evaluate exercise's impact on cognitive function in AD. RESULTS Twenty-seven studies with 2,242 AD patients revealed a nonlinear relationship between exercise and cognitive improvement in AD patients. We observed significant cognitive enhancements at an effective exercise dose of up to 1000 METs-min/week (SMDs: 0.535, SD: 0.269, 95% CrI: 0.023 to 1.092). The optimal dose was found to be 650 METs-min/week (SMDs: 0.691, SD: 0.169, 95% CrI: 0.373 to 1.039), with AE (Aerobic exercise) being particularly effective. For AE, the optimal cognitive enhancement dose was determined to be 660 METs-min/week (SMDs: 0.909, SD: 0.219, 95% CrI: 0.495 to 1.362). CONCLUSION Nonlinear dose-response relationship between exercise and cognitive improvement in Alzheimer's disease, with the optimal AE dose identified at 660 METs-min/week for enhancing cognitive function in AD.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Physical Education, Kunsan National University, Daehak-RoJeollabuk-Do, Gunsan-Si, 541150, Korea
| | - Yong Yang
- Laboratory of Kinesiology and Rehabilitation, School of Physical Education and Sport, Chaohu University, Hefei, 238000, China
| | - XiaoFei Hu
- The School of Physical Education, Handan University, Handan, 056005, China
| | - Lin Zhang
- Department of Rehabilitation, West China Hospital Sichuan University Jintang Hospital, Chengdu, 610499, China.
| | - Zhiyu Xiong
- The School of Physical Education and Health, East China Jiaotong University, Nanchang, 330013, China
| | - Ying Bai
- Department of Physical Education, Kunsan National University, Daehak-RoJeollabuk-Do, Gunsan-Si, 541150, Korea
| | - JiaLe Zeng
- The School of Physical Education, Jiangxi Normal University, Nanchang, 330224, China
| | - Feng Xu
- College of Physical Education, Fujian Normal University, FuZhou, 350007, China
| |
Collapse
|
219
|
Mao X, Li T, Qi W, Miao Z, Zhu L, Zhang C, Jin H, Pan H, Wang D. Advances in the study of plant-derived extracellular vesicles in the skeletal muscle system. Pharmacol Res 2024; 204:107202. [PMID: 38704110 DOI: 10.1016/j.phrs.2024.107202] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Plant-derived extracellular vesicles (PDEV) constitute nanoscale entities comprising lipids, proteins, nucleic acids and various components enveloped by the lipid bilayers of plant cells. These vesicles play a crucial role in facilitating substance and information transfer not only between plant cells but also across different species. Owing to its safety, stability, and the abundance of raw materials, this substance has found extensive utilization in recent years within research endeavors aimed at treating various diseases. This article provides an overview of the pathways and biological characteristics of PDEV, along with the prevalent methods employed for its isolation, purification, and storage. Furthermore, we comprehensively outline the therapeutic implications of diverse sources of PDEV in musculoskeletal system disorders. Additionally, we explore the utilization of PDEV as platforms for engineering drug carriers, aiming to delve deeper into the significance and potential contributions of PDEV in the realm of the musculoskeletal system.
Collapse
Affiliation(s)
- Xinning Mao
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University ( Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang Province 310000, PR China
| | - Tenghui Li
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University ( Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang Province 310000, PR China
| | - Weihui Qi
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University ( Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang Province 310000, PR China
| | - Zhimin Miao
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University ( Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang Province 310000, PR China
| | - Li Zhu
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University ( Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang Province 310000, PR China
| | - Chunchun Zhang
- Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou, Zhejiang Province 310007, PR China
| | - Hongting Jin
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
| | - Hao Pan
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University ( Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang Province 310000, PR China; Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, Zhejiang Province 310021, PR China; Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou, Zhejiang Province 310007, PR China.
| | - Dong Wang
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University ( Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang Province 310000, PR China; Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, Zhejiang Province 310021, PR China; Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou, Zhejiang Province 310007, PR China.
| |
Collapse
|
220
|
Zhang B, Deng L, Liu X, Hu Y, Wang W, Li M, Xu T, Pang L, Lv M. Transcranial direct current stimulation combined with swimming exercise improves the learning and memory abilities of vascular dementia rats by regulating microglia through miR-223-3p/PRMT8. Neurol Res 2024; 46:525-537. [PMID: 38563325 DOI: 10.1080/01616412.2024.2337517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Vascular dementia (VD) is the second most common type of dementia worldwide. Previous studies have proven that transcranial direct current stimulation (tDCS) has potential applications in relieving cognitive impairment in VD animal models. The purpose of this study was to probe the mechanism by which tDCS combined with swimming exercise improves the learning and memory abilities of VD model rats. METHOD The VD rat model was induced using the permanent bilateral common carotid artery occlusion (2-VO) method; tDCS was applied to the rats and then they took part in swimming exercises. Rat memory, platform crossing time, and platform crossing frequency were analyzed via a water maze experiment. Nerve damage in the cortex and hippocampal CA1 area of the rats was observed using Nissl staining. Western blotting, immunohistochemistry, immunofluorescence staining and reverse transcription quantitative polymerase chain reaction (RT - qPCR) were used to determine the expression of related proteins and genes. The levels of oxidative stress were detected by kits. RESULTS We demonstrated that VD model rats treated with tDCS combined with swimming exercise exhibited significant improvement in memory, and VD model rats exhibited significantly reduced neuronal loss in the hippocampus, and reduced microglial activation and M1 polarization. tDCS combined with swimming exercise protects VD model rats from oxidative stress through the miR-223-3p/protein arginine methyltransferase 8 (PRMT8) axis and inhibits the activation of the TLR4/NF-κB signaling pathway. CONCLUSION Our results suggest that tDCS combined with swimming exercise improved the learning and memory ability of VD model rats by regulating the expression of PRMT8 through miR-223-3p to affect microglial activation and M1 polarization.
Collapse
Affiliation(s)
- Bingxue Zhang
- Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, Yunnan, China
| | - Li Deng
- Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, Yunnan, China
| | - Xiaodan Liu
- Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, Yunnan, China
| | - Yao Hu
- Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, Yunnan, China
| | - Wenyi Wang
- Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, Yunnan, China
| | - Minghua Li
- Department of Neurology, Luoping County People's Hospital, Luoping, Yunnan, China
| | - Ting Xu
- Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, Yunnan, China
| | - Li Pang
- Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, Yunnan, China
| | - Meifen Lv
- Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, Yunnan, China
| |
Collapse
|
221
|
Kaimuangpak K, Rosalina R, Thumanu K, Weerapreeyakul N. Macromolecules with predominant β-pleated sheet proteins in extracellular vesicles released from Raphanus sativus L. var. caudatus Alef microgreens induce DNA damage-mediated apoptosis in HCT116 colon cancer cells. Int J Biol Macromol 2024; 269:132001. [PMID: 38702007 DOI: 10.1016/j.ijbiomac.2024.132001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/14/2024] [Accepted: 04/23/2024] [Indexed: 05/06/2024]
Abstract
Plant-derived bioactive macromolecules (i.e., proteins, lipids, and nucleic acids) were prepared as extracellular vesicles (EVs). Plant-derived EVs are gaining pharmaceutical research interest because of their bioactive components and delivery properties. The spherical nanosized EVs derived from Raphanus sativus L. var. caudatus Alef microgreens previously showed antiproliferative activity in HCT116 colon cancer cells from macromolecular compositions (predominantly proteins). To understand the mechanism of action, the biological activity studies, i.e., antiproliferation, cellular biochemical changes, DNA conformational changes, DNA damage, apoptotic nuclear morphological changes, apoptosis induction, and apoptotic pathways, were determined by neutral red uptake assay, synchrotron radiation-based Fourier transform infrared microspectroscopy, circular dichroism spectroscopy, comet assay, 4',6-diamidino-2-phenylindole (DAPI) staining, flow cytometry, and caspase activity assay, respectively. EVs inhibited HCT116 cell growth in concentration- and time-dependent manners, with a half-maximal inhibitory concentration of 675.4 ± 33.8 μg/ml at 48 h and a selectivity index of 1.5 ± 0.076. HCT116 treated with EVs mainly changed the cellular biochemical compositions in the nucleic acids and carbohydrates region. The DNA damage caused no changes in DNA conformation. The apoptotic nuclear morphological changes were associated with the increased apoptotic cell population. The apoptotic cell death was induced by both extrinsic and intrinsic pathways. EVs have potential as antiproliferative bioparticles.
Collapse
Affiliation(s)
- Karnchanok Kaimuangpak
- Graduate School (Research and Development in Pharmaceuticals Program), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Reny Rosalina
- Graduate School (Biomedical Sciences Program), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Kanjana Thumanu
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima 30000, Thailand.
| | - Natthida Weerapreeyakul
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand; Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
222
|
Nguyen CB, Vaishampayan UN. Clinical Applications of the Gut Microbiome in Genitourinary Cancers. Am Soc Clin Oncol Educ Book 2024; 44:e100041. [PMID: 38788173 DOI: 10.1200/edbk_100041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Recently recognized as one of the hallmarks of cancer, the microbiome consists of symbiotic microorganisms that play pivotal roles in carcinogenesis, the tumor microenvironment, and responses to therapy. With recent advances in microbiome metagenomic sequencing, a growing body of work has demonstrated that changes in gut microbiome composition are associated with differential responses to immune checkpoint inhibitors (ICIs) because of alterations in cytokine signaling and cytotoxic T-cell recruitment. Therefore, strategies to shape the gut microbiome into a more favorable, immunogenic profile may lead to improved responses with ICIs. Immunotherapy is commonly used in genitourinary (GU) cancers such as renal cell carcinoma, urothelial cancer, and to a limited extent, prostate cancer. However, a subset of patients do not derive clinical benefit with ICIs. Gut microbiome-based interventions are of particular interest given the potential to boost responses to ICIs in preclinical and early-phase prospective studies. Novel approaches using probiotic therapy (live bacterial supplementation) and fecal microbiota transplantation in patients with GU cancers are currently under investigation.
Collapse
Affiliation(s)
- Charles B Nguyen
- Division of Hematology/Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI
| | - Ulka N Vaishampayan
- Division of Hematology/Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI
| |
Collapse
|
223
|
Cao Y, Xu W, Liu Q. Alterations of the blood-brain barrier during aging. J Cereb Blood Flow Metab 2024; 44:881-895. [PMID: 38513138 PMCID: PMC11318406 DOI: 10.1177/0271678x241240843] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
The blood-brain barrier (BBB) is a complex and dynamic interface that regulates the exchange of molecules and cells between the blood and the central nervous system. It undergoes structural and functional changes during aging, which may compromise its integrity and contribute to the pathogenesis of neurodegenerative diseases. In recent years, advances in microscopy and high-throughput bioinformatics have allowed a more in-depth investigation of the aging mechanisms of BBB. This review summarizes age-related alterations of the BBB structure and function from six perspectives: endothelial cells, astrocytes, pericytes, basement membrane, microglia and perivascular macrophages, and fibroblasts, ranging from the molecular level to the human multi-system level. These basic components are essential for the proper functioning of the BBB. Recent imaging methods of BBB were also reviewed. Elucidation of age-associated BBB changes may offer insights into BBB homeostasis and may provide effective therapeutic strategies to protect it during aging.
Collapse
Affiliation(s)
- Yufan Cao
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weihai Xu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qing Liu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
224
|
Qin H, Suo S, Yang F, Hao P, Zhang X. The role of digestive system diseases in cerebrovascular disease: a comprehensive Mendelian randomization study. Front Neurol 2024; 15:1389352. [PMID: 38854966 PMCID: PMC11157012 DOI: 10.3389/fneur.2024.1389352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/13/2024] [Indexed: 06/11/2024] Open
Abstract
Background Cerebrovascular disease, among the most prevalent neurological disorders, poses a substantial threat to human health with its elevated mortality and disability rates, placing considerable strain on healthcare systems. Although several studies in recent years have suggested a potential association between digestive system diseases and cerebrovascular diseases, the findings remain inconsistent. Methods Genome-wide association study (GWAS) summary data for 12 digestive diseases and cerebrovascular diseases were used to conduct Mendelian randomization (MR) analysis. In this investigation, we endeavored to elucidate the causal relationship between digestive system diseases and cerebrovascular diseases. Employing a comprehensive approach, including two-sample MR (TSMR), multivariate MR (MVMR), and two-step MR analysis, we leveraged summary statistics data obtained from published GWAS. The primary analysis method employed was inverse variance weighted (IVW), with MR-Egger and weighted median (WM) as secondary methods. Sensitivity analysis included heterogeneity testing, horizontal multivariate testing, MR-PRESSO, and a "leave-one-out" method. Additionally, the F-statistic was utilized to assess the strength of instrumental variables, ensuring robust results. Results In the TSMR analysis, this study found a significant causal relationship between genetically predicted gastroesophageal reflux disease (GERD) and any stroke (AS), any ischemic stroke (AIS), large-artery atherosclerotic stroke (LAS), intracranial aneurysm (IA), and subarachnoid hemorrhage (SAH). In MVMR analysis, this study found that even after adjusting for systolic blood pressure (SBP), body mass index (BMI) and type 2 diabetes (T2D), the causal relationship remains exist. In the two-step MR mediation analysis, it was found that BMI, SBP and T2D play mediating role in the causal relationship between GERD and cerebrovascular diseases. Conclusion This study indicates a clear positive causal relationship between GERD and cerebrovascular diseases, and this causal association remains significant even after adjusting for BMI, SBP and T2D. The mediation MR analysis suggests that BMI, SBP and T2D may mediate the causal relationship between GERD and the risk of cerebrovascular diseases.
Collapse
Affiliation(s)
- Hao Qin
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Shihuan Suo
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Fan Yang
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| | - Pengfei Hao
- Department of Neurosurgery, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Xianfeng Zhang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
225
|
Chen Y, Meng H, Li Y, Zong H, Yu H, Liu H, Lv S, Huai L. The effect of rehabilitation time on functional recovery after arthroscopic rotator cuff repair: a systematic review and meta-analysis. PeerJ 2024; 12:e17395. [PMID: 38784392 PMCID: PMC11114118 DOI: 10.7717/peerj.17395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Objective We compared the effects of early and delayed rehabilitation on the function of patients after rotator cuff repair by meta-analysis to find effective interventions to promote the recovery of shoulder function. Methods This meta-analysis was registered in PROSPERO (CRD42023466122). We manually searched the randomized controlled trials (RCTs) in the Cochrane Library, Pubmed, Cochrane Library, EMBASE, the China National Knowledge Infrastructure (CNKI), the China VIP Database (VIP), and the Wanfang Database to evaluate the effect of early and delayed rehabilitation after arthroscopic shoulder cuff surgery on the recovery of shoulder joint function. Review Manager 5.3 software was used to analyze the extracted data. Then, the PEDro scale was employed to appraise the methodological quality of the included research. Results This research comprised nine RCTs and 830 patients with rotator cuff injuries. According to the findings of the meta-analysis, there was no discernible difference between the early rehabilitation group and the delayed rehabilitation group at six and twelve months after the surgery in terms of the VAS score, SST score, follow-up rotator cuff healing rate, and the rotator cuff retear rate at the final follow-up. There was no difference in the ASES score between the early and delayed rehabilitation groups six months after the operation. However, although the ASES score in the early rehabilitation group differed significantly from that in the delayed rehabilitation group twelve months after the operation, according to the analysis of the minimal clinically important difference (MCID), the results have no clinical significance. Conclusions The improvement in shoulder function following arthroscopic rotator cuff surgery does not differ clinically between early and delayed rehabilitation. When implementing rehabilitation following rotator cuff repair, it is essential to consider the paradoxes surrounding shoulder range of motion and tendon anatomic healing. A program that allows for flexible progression based on the patient's ability to meet predetermined clinical goals or criteria may be a better option.
Collapse
Affiliation(s)
- Yang Chen
- Department of Rehabilitation, Taian Maternal and Child Health Hospital, Taian, Shandong, China
| | - Hui Meng
- Department of Joint and Sports Medicine, Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Yuan Li
- Department of Rehabilitation, Taian Maternal and Child Health Hospital, Taian, Shandong, China
| | - Hui Zong
- Department of Rehabilitation, Taian Maternal and Child Health Hospital, Taian, Shandong, China
| | - Hongna Yu
- Department of Rehabilitation, Taian Maternal and Child Health Hospital, Taian, Shandong, China
| | - HaiBin Liu
- School of Sports Medicine and Rehabilitation, Shandong First Medical University, Taian, Shandong, China
| | - Shi Lv
- Department of Rehabilitation, Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Liang Huai
- School of Sports Medicine and Rehabilitation, Shandong First Medical University, Taian, Shandong, China
| |
Collapse
|
226
|
Jin Z, Na J, Lin X, Jiao R, Liu X, Huang Y. Plant-derived exosome-like nanovesicles: A novel nanotool for disease therapy. Heliyon 2024; 10:e30630. [PMID: 38765146 PMCID: PMC11098843 DOI: 10.1016/j.heliyon.2024.e30630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 05/21/2024] Open
Abstract
Exosomes are extracellular vesicles comprising bilayer phospholipid membranes and are secreted by eukaryotic cells. They are released via cellular exocytosis, contain DNA, RNA, proteins, and other substances, and participate in various cellular communications between tissues and organs. Since the discovery of exosomes in 1983, animal-derived exosomes have become a research focus for small-molecule drug delivery in biology, medicine, and other fields owing to their good biocompatibility and homing effects. Recent studies have found that plant-derived exosome-like nanovesicles (PELNVs) exhibit certain biological effects, such as anti-inflammatory and anti-tumor abilities, and have minimal toxic side effects. Because they are rich in active lipid molecules with certain pharmacological effects, PELNVs could be novel carriers for drug delivery. In this review, the biological formation and effects, isolation, and extraction of PELNVs, as well as characteristics of transporting drugs as carriers are summarized to provide new ideas and methods for future research on plant-derived exosome-like nanovesicles.
Collapse
Affiliation(s)
- Ze Jin
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jintong Na
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xia Lin
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Rong Jiao
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yong Huang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| |
Collapse
|
227
|
Latella R, Calzoni E, Urbanelli L, Cerrotti G, Porcellati S, Emiliani C, Buratta S, Tancini B. Isolation of Extracellular Vesicles from Agri-Food Wastes: A Novel Perspective in the Valorization of Agri-Food Wastes and By-Products. Foods 2024; 13:1492. [PMID: 38790792 PMCID: PMC11120153 DOI: 10.3390/foods13101492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Agri-food wastes generated by industrial food processing are valorized through the extraction of biomolecules to obtain value-added products useful for various industrial applications. In the present review, we describe the valuable by-products and bioactive molecules that can be obtained from agricultural wastes and propose extracellular vesicles (EVs) as innovative nutraceutical and therapeutic compounds that could be derived from agriculture residues. To support this idea, we described the general features and roles of EVs and focused on plant-derived extracellular vesicles (PDEVs) that are considered natural carriers of bioactive molecules and are involved in intercellular communication between diverse kingdoms of life. Consistently, PDEVs exert beneficial effects (anti-inflammatory, anti-tumor, and immune-modulatory) on mammalian cells. Although this research field is currently in its infancy, in the near future, the isolation of EVs and their use as nutraceutical tools could represent a new and innovative way to valorize waste from the agri-food industry in an ecofriendly way.
Collapse
Affiliation(s)
- Raffaella Latella
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (R.L.); (E.C.); (L.U.); (G.C.); (S.P.); (C.E.); (B.T.)
| | - Eleonora Calzoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (R.L.); (E.C.); (L.U.); (G.C.); (S.P.); (C.E.); (B.T.)
| | - Lorena Urbanelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (R.L.); (E.C.); (L.U.); (G.C.); (S.P.); (C.E.); (B.T.)
| | - Giada Cerrotti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (R.L.); (E.C.); (L.U.); (G.C.); (S.P.); (C.E.); (B.T.)
| | - Serena Porcellati
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (R.L.); (E.C.); (L.U.); (G.C.); (S.P.); (C.E.); (B.T.)
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (R.L.); (E.C.); (L.U.); (G.C.); (S.P.); (C.E.); (B.T.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Sandra Buratta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (R.L.); (E.C.); (L.U.); (G.C.); (S.P.); (C.E.); (B.T.)
| | - Brunella Tancini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (R.L.); (E.C.); (L.U.); (G.C.); (S.P.); (C.E.); (B.T.)
| |
Collapse
|
228
|
Song G, Zhao F, Ni R, Deng B, Chen S, Hu R, Zheng J, Peng Y, Liu H, Luo Y, Zhou Z, Huang G, Shen W. Epithelial cells derived exosomal miR-203a-3p facilitates stromal inflammation of type IIIA chronic prostatitis/chronic pelvic pain syndrome by targeting DUSP5 and increasing MCP-1 generation. J Nanobiotechnology 2024; 22:236. [PMID: 38724995 PMCID: PMC11084011 DOI: 10.1186/s12951-024-02513-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
Increased proinflammatory cytokines and infiltration of inflammatory cells in the stroma are important pathological features of type IIIA chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS-A), and the interaction between stromal cells and other cells in the inflammatory microenvironment is closely related to the inflammatory process of CP/CPPS-A. However, the interaction between stromal and epithelial cells remains unclear. In this study, inflammatory prostate epithelial cells (PECs) released miR-203a-3p-rich exosomes and facilitated prostate stromal cells (PSCs) inflammation by upregulating MCP-1 expression. Mechanistically, DUSP5 was identified as a novel target gene of miR-203a-3p and regulated PSCs inflammation through the ERK1/2/MCP-1 signaling pathway. Meanwhile, the effect of exosomes derived from prostatic fluids of CP/CPPS-A patients was consistent with that of exosomes derived from inflammatory PECs. Importantly, we demonstrated that miR-203a-3p antagomirs-loaded exosomes derived from PECs targeted the prostate and alleviated prostatitis by inhibiting the DUSP5-ERK1/2 pathway. Collectively, our findings provide new insights into underlying the interaction between PECs and PSCs in CP/CPPS-A, providing a promising therapeutic strategy for CP/CPPS-A.
Collapse
Affiliation(s)
- Guojing Song
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Fuhan Zhao
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Rongrong Ni
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Bingqian Deng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Saipeng Chen
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Ruimin Hu
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jun Zheng
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yiji Peng
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Heting Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yang Luo
- Department of Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Zhansong Zhou
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Gang Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Wenhao Shen
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
229
|
Liu S, Li W, Chen J, Li M, Geng Y, Liu Y, Wu W. The footprint of gut microbiota in gallbladder cancer: a mechanistic review. Front Cell Infect Microbiol 2024; 14:1374238. [PMID: 38774627 PMCID: PMC11106419 DOI: 10.3389/fcimb.2024.1374238] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/22/2024] [Indexed: 05/24/2024] Open
Abstract
Gallbladder cancer (GBC) is the most common malignant tumor of the biliary system with the worst prognosis. Even after radical surgery, the majority of patients with GBC have difficulty achieving a clinical cure. The risk of tumor recurrence remains more than 65%, and the overall 5-year survival rate is less than 5%. The gut microbiota refers to a variety of microorganisms living in the human intestine, including bacteria, viruses and fungi, which profoundly affect the host state of general health, disease and even cancer. Over the past few decades, substantial evidence has supported that gut microbiota plays a critical role in promoting the progression of GBC. In this review, we summarize the functions, molecular mechanisms and recent advances of the intestinal microbiota in GBC. We focus on the driving role of bacteria in pivotal pathways, such as virulence factors, metabolites derived from intestinal bacteria, chronic inflammatory responses and ecological niche remodeling. Additionally, we emphasize the high level of correlation between viruses and fungi, especially EBV and Candida spp., with GBC. In general, this review not only provides a solid theoretical basis for the close relationship between gut microbiota and GBC but also highlights more potential research directions for further research in the future.
Collapse
Affiliation(s)
- Shujie Liu
- Joint Program of Nanchang University and Queen Mary University of London, Jiangxi Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Weijian Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Jun Chen
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Maolan Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Yajun Geng
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Wenguang Wu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| |
Collapse
|
230
|
Perycz M, Dabrowski MJ, Jardanowska-Kotuniak M, Roura AJ, Gielniewski B, Stepniak K, Dramiński M, Ciechomska IA, Kaminska B, Wojtas B. Comprehensive analysis of the REST transcription factor regulatory networks in IDH mutant and IDH wild-type glioma cell lines and tumors. Acta Neuropathol Commun 2024; 12:72. [PMID: 38711090 PMCID: PMC11071216 DOI: 10.1186/s40478-024-01779-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 04/09/2024] [Indexed: 05/08/2024] Open
Abstract
The RE1-silencing transcription factor (REST) acts either as a repressor or activator of transcription depending on the genomic and cellular context. REST is a key player in brain cell differentiation by inducing chromatin modifications, including DNA methylation, in a proximity of its binding sites. Its dysfunction may contribute to oncogenesis. Mutations in IDH1/2 significantly change the epigenome contributing to blockade of cell differentiation and glioma development. We aimed at defining how REST modulates gene activation and repression in the context of the IDH mutation-related phenotype in gliomas. We studied the effects of REST knockdown, genome wide occurrence of REST binding sites, and DNA methylation of REST motifs in IDH wild type and IDH mutant gliomas. We found that REST target genes, REST binding patterns, and TF motif occurrence proximal to REST binding sites differed in IDH wild-type and mutant gliomas. Among differentially expressed REST targets were genes involved in glial cell differentiation and extracellular matrix organization, some of which were differentially methylated at promoters or gene bodies. REST knockdown differently impacted invasion of the parental or IDH1 mutant glioma cells. The canonical REST-repressed gene targets showed significant correlation with the GBM NPC-like cellular state. Interestingly, results of REST or KAISO silencing suggested the interplay between these TFs in regulation of REST-activated and repressed targets. The identified gene regulatory networks and putative REST cooperativity with other TFs, such as KAISO, show distinct REST target regulatory networks in IDH-WT and IDH-MUT gliomas, without concomitant DNA methylation changes. We conclude that REST could be an important therapeutic target in gliomas.
Collapse
Affiliation(s)
- Malgorzata Perycz
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- Computational Biology Group, Institute of Computer Science of the Polish Academy of Sciences, Warsaw, Poland
| | - Michal J Dabrowski
- Computational Biology Group, Institute of Computer Science of the Polish Academy of Sciences, Warsaw, Poland
| | - Marta Jardanowska-Kotuniak
- Computational Biology Group, Institute of Computer Science of the Polish Academy of Sciences, Warsaw, Poland
- Doctoral School of Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Adria-Jaume Roura
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Bartlomiej Gielniewski
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Karolina Stepniak
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Michał Dramiński
- Computational Biology Group, Institute of Computer Science of the Polish Academy of Sciences, Warsaw, Poland
| | - Iwona A Ciechomska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Bartosz Wojtas
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
- Laboratory of Sequencing, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
231
|
Abbey CA, Duran CL, Chen Z, Chen Y, Roy S, Coffell A, Sveeggen TM, Chakraborty S, Wells GB, Chang J, Bayless KJ. Identification of New Markers of Angiogenic Sprouting Using Transcriptomics: New Role for RND3. Arterioscler Thromb Vasc Biol 2024; 44:e145-e167. [PMID: 38482696 PMCID: PMC11043006 DOI: 10.1161/atvbaha.123.320599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/28/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND New blood vessel formation requires endothelial cells to transition from a quiescent to an invasive phenotype. Transcriptional changes are vital for this switch, but a comprehensive genome-wide approach focused exclusively on endothelial cell sprout initiation has not been reported. METHODS Using a model of human endothelial cell sprout initiation, we developed a protocol to physically separate cells that initiate the process of new blood vessel formation (invading cells) from noninvading cells. We used this model to perform multiple transcriptomics analyses from independent donors to monitor endothelial gene expression changes. RESULTS Single-cell population analyses, single-cell cluster analyses, and bulk RNA sequencing revealed common transcriptomic changes associated with invading cells. We also found that collagenase digestion used to isolate single cells upregulated the Fos proto-oncogene transcription factor. Exclusion of Fos proto-oncogene expressing cells revealed a gene signature consistent with activation of signal transduction, morphogenesis, and immune responses. Many of the genes were previously shown to regulate angiogenesis and included multiple tip cell markers. Upregulation of SNAI1 (snail family transcriptional repressor 1), PTGS2 (prostaglandin synthase 2), and JUNB (JunB proto-oncogene) protein expression was confirmed in invading cells, and silencing JunB and SNAI1 significantly reduced invasion responses. Separate studies investigated rounding 3, also known as RhoE, which has not yet been implicated in angiogenesis. Silencing rounding 3 reduced endothelial invasion distance as well as filopodia length, fitting with a pathfinding role for rounding 3 via regulation of filopodial extensions. Analysis of in vivo retinal angiogenesis in Rnd3 heterozygous mice confirmed a decrease in filopodial length compared with wild-type littermates. CONCLUSIONS Validation of multiple genes, including rounding 3, revealed a functional role for this gene signature early in the angiogenic process. This study expands the list of genes associated with the acquisition of a tip cell phenotype during endothelial cell sprout initiation.
Collapse
Affiliation(s)
- Colette A. Abbey
- Texas A&M Health, Department of Medical Physiology, Texas A&M School of Medicine, Bryan TX
- Department of Molecular & Cellular Medicine, Texas A&M School of Medicine, Bryan, TX
| | - Camille L. Duran
- Department of Molecular & Cellular Medicine, Texas A&M School of Medicine, Bryan, TX
| | - Zhishi Chen
- Center for Genomic and Precision Medicine, Institute of Biosciences and Technology, Houston, TX
| | - Yanping Chen
- Center for Genomic and Precision Medicine, Institute of Biosciences and Technology, Houston, TX
| | - Sukanya Roy
- Texas A&M Health, Department of Medical Physiology, Texas A&M School of Medicine, Bryan TX
| | - Ashley Coffell
- Department of Molecular & Cellular Medicine, Texas A&M School of Medicine, Bryan, TX
| | - Timothy M. Sveeggen
- Department of Molecular & Cellular Medicine, Texas A&M School of Medicine, Bryan, TX
| | - Sanjukta Chakraborty
- Texas A&M Health, Department of Medical Physiology, Texas A&M School of Medicine, Bryan TX
| | - Gregg B. Wells
- Department of Molecular & Cellular Medicine, Texas A&M School of Medicine, Bryan, TX
- Department of Cell Biology and Genetics, Texas A&M School of Medicine, Bryan, TX
| | - Jiang Chang
- Center for Genomic and Precision Medicine, Institute of Biosciences and Technology, Houston, TX
| | - Kayla J. Bayless
- Texas A&M Health, Department of Medical Physiology, Texas A&M School of Medicine, Bryan TX
- Department of Molecular & Cellular Medicine, Texas A&M School of Medicine, Bryan, TX
| |
Collapse
|
232
|
Liu J, Yang F, Hu J, Zhang X. Nanoparticles for efficient drug delivery and drug resistance in glioma: New perspectives. CNS Neurosci Ther 2024; 30:e14715. [PMID: 38708806 PMCID: PMC11071172 DOI: 10.1111/cns.14715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 05/07/2024] Open
Abstract
Gliomas are the most common primary tumors of the central nervous system, with glioblastoma multiforme (GBM) having the highest incidence, and their therapeutic efficacy depends primarily on the extent of surgical resection and the efficacy of postoperative chemotherapy. The role of the intracranial blood-brain barrier and the occurrence of the drug-resistant gene O6-methylguanine-DNA methyltransferase have greatly limited the efficacy of chemotherapeutic agents in patients with GBM and made it difficult to achieve the expected clinical response. In recent years, the rapid development of nanotechnology has brought new hope for the treatment of tumors. Nanoparticles (NPs) have shown great potential in tumor therapy due to their unique properties such as light, heat, electromagnetic effects, and passive targeting. Furthermore, NPs can effectively load chemotherapeutic drugs, significantly reduce the side effects of chemotherapeutic drugs, and improve chemotherapeutic efficacy, showing great potential in the chemotherapy of glioma. In this article, we reviewed the mechanisms of glioma drug resistance, the physicochemical properties of NPs, and recent advances in NPs in glioma chemotherapy resistance. We aimed to provide new perspectives on the clinical treatment of glioma.
Collapse
Affiliation(s)
- Jiyuan Liu
- Department of Neurosurgerythe First Hospital of China Medical UniversityShenyangChina
| | - Fan Yang
- Department of Cardiologythe Fourth Affiliated Hospital of China Medical UniversityShenyangChina
| | - Jinqu Hu
- Department of Neurosurgerythe First Hospital of China Medical UniversityShenyangChina
| | - Xiuchun Zhang
- Department of Neurologythe First Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
233
|
Bai C, Liu J, Zhang X, Li Y, Qin Q, Song H, Yuan C, Huang Z. Research status and challenges of plant-derived exosome-like nanoparticles. Biomed Pharmacother 2024; 174:116543. [PMID: 38608523 DOI: 10.1016/j.biopha.2024.116543] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
In recent years, there has been an increasing number of related studies on exosomes. Most studies have focused on exosomes derived from mammals, confirming the important role that exosomes play in cell communication. Plants, as a natural ingredient, plant-derived exosomes have been confirmed to have similar structures and functions to mammalian-derived exosomes. Plant-derived exosome-like nanoparticles (PELNs) are lipid bilayer membrane nanovesicles containing bioactive constituents such as miRNA, mRNA, protein, and lipids obtained from plant cells, that can participate in intercellular communication and mediate transboundary communication, have high bioavailability and low immunogenicity, are relatively safe, and have been shown to play an important role in maintaining cell homeostasis and preventing, and treating a variety of diseases. In this review, we describe the biogenesis, isolation and purification methods, structural composition, stability, safety, function of PELNs and challenges. The functions of PELNs in anti-inflammatory, antioxidant, antitumor and drug delivery are mainly described, and the status of research on exosome nanoparticles of Chinese herbal medicines is outlined. Overall, we summarized the importance of PELNs and the latest research results in this field and provided a theoretical basis for the future research and clinical application of PELNs.
Collapse
Affiliation(s)
- Chunmei Bai
- The Fifth Clinical Medical College of Shanxi Medical University, Xinjian South Road, Yingze District, Taiyuan City, Shanxi Province, 030001, China
| | - Jianrong Liu
- The Fifth Clinical Medical College of Shanxi Medical University, Xinjian South Road, Yingze District, Taiyuan City, Shanxi Province, 030001, China; Department of reproductive medicine of Shanxi Provincial People's Hospital, Shuangtaxi Street, Taiyuan City, 030012, China.
| | - Xumin Zhang
- The Fifth Clinical Medical College of Shanxi Medical University, Xinjian South Road, Yingze District, Taiyuan City, Shanxi Province, 030001, China
| | - Yang Li
- The Fifth Clinical Medical College of Shanxi Medical University, Xinjian South Road, Yingze District, Taiyuan City, Shanxi Province, 030001, China
| | - Qin Qin
- The Fifth Clinical Medical College of Shanxi Medical University, Xinjian South Road, Yingze District, Taiyuan City, Shanxi Province, 030001, China; Department of reproductive medicine of Shanxi Provincial People's Hospital, Shuangtaxi Street, Taiyuan City, 030012, China
| | - Haixia Song
- Department of reproductive medicine of Shanxi Provincial People's Hospital, Shuangtaxi Street, Taiyuan City, 030012, China
| | - Caixia Yuan
- Department of reproductive medicine of Shanxi Provincial People's Hospital, Shuangtaxi Street, Taiyuan City, 030012, China
| | - Ziwei Huang
- Department of reproductive medicine of Shanxi Provincial People's Hospital, Shuangtaxi Street, Taiyuan City, 030012, China
| |
Collapse
|
234
|
Han YZ, Du BX, Zhu XY, Wang YZY, Zheng HJ, Liu WJ. Lipid metabolism disorder in diabetic kidney disease. Front Endocrinol (Lausanne) 2024; 15:1336402. [PMID: 38742197 PMCID: PMC11089115 DOI: 10.3389/fendo.2024.1336402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
Diabetic kidney disease (DKD), a significant complication associated with diabetes mellitus, presents limited treatment options. The progression of DKD is marked by substantial lipid disturbances, including alterations in triglycerides, cholesterol, sphingolipids, phospholipids, lipid droplets, and bile acids (BAs). Altered lipid metabolism serves as a crucial pathogenic mechanism in DKD, potentially intertwined with cellular ferroptosis, lipophagy, lipid metabolism reprogramming, and immune modulation of gut microbiota (thus impacting the liver-kidney axis). The elucidation of these mechanisms opens new potential therapeutic pathways for DKD management. This research explores the link between lipid metabolism disruptions and DKD onset.
Collapse
Affiliation(s)
- Yi-Zhen Han
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Bo-Xuan Du
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xing-Yu Zhu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yang-Zhi-Yuan Wang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Hui-Juan Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wei-Jing Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
235
|
Zhang J, Chen Z, Chen Q. Advanced Nano-Drug Delivery Systems in the Treatment of Ischemic Stroke. Molecules 2024; 29:1848. [PMID: 38675668 PMCID: PMC11054753 DOI: 10.3390/molecules29081848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, the frequency of strokes has been on the rise year by year and has become the second leading cause of death around the world, which is characterized by a high mortality rate, high recurrence rate, and high disability rate. Ischemic strokes account for a large percentage of strokes. A reperfusion injury in ischemic strokes is a complex cascade of oxidative stress, neuroinflammation, immune infiltration, and mitochondrial damage. Conventional treatments are ineffective, and the presence of the blood-brain barrier (BBB) leads to inefficient drug delivery utilization, so researchers are turning their attention to nano-drug delivery systems. Functionalized nano-drug delivery systems have been widely studied and applied to the study of cerebral ischemic diseases due to their favorable biocompatibility, high efficiency, strong specificity, and specific targeting ability. In this paper, we briefly describe the pathological process of reperfusion injuries in strokes and focus on the therapeutic research progress of nano-drug delivery systems in ischemic strokes, aiming to provide certain references to understand the progress of research on nano-drug delivery systems (NDDSs).
Collapse
Affiliation(s)
- Jiajie Zhang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (J.Z.); (Z.C.)
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (J.Z.); (Z.C.)
| | - Qi Chen
- Interdisciplinary Institute for Medical Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
236
|
Hou L, Li Z, Guo X, Lv J, Chong Z, Xiao Y, Zhang L, Li Z. ITGAM is a critical gene in ischemic stroke. Aging (Albany NY) 2024; 16:6852-6867. [PMID: 38637126 PMCID: PMC11087101 DOI: 10.18632/aging.205729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/04/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Globally, ischemic stroke (IS) is ranked as the second most prevailing cause of mortality and is considered lethal to human health. This study aimed to identify genes and pathways involved in the onset and progression of IS. METHODS GSE16561 and GSE22255 were downloaded from the Gene Expression Omnibus (GEO) database, merged, and subjected to batch effect removal using the ComBat method. The limma package was employed to identify the differentially expressed genes (DEGs), followed by enrichment analysis and protein-protein interaction (PPI) network construction. Afterward, the cytoHubba plugin was utilized to screen the hub genes. Finally, a ROC curve was generated to investigate the diagnostic value of hub genes. Validation analysis through a series of experiments including qPCR, Western blotting, TUNEL, and flow cytometry was performed. RESULTS The analysis incorporated 59 IS samples and 44 control samples, revealing 226 DEGs, of which 152 were up-regulated and 74 were down-regulated. These DEGs were revealed to be linked with the inflammatory and immune responses through enrichment analyses. Overall, the ROC analysis revealed the remarkable diagnostic potential of ITGAM and MMP9 for IS. Quantitative assessment of these genes showed significant overexpression in IS patients. ITGAM modulation influenced the secretion of critical inflammatory cytokines, such as IL-1β, IL-6, and TNF-α, and had a distinct impact on neuronal apoptosis. CONCLUSIONS The inflammation and immune response were identified as potential pathological mechanisms of IS by bioinformatics and experiments. In addition, ITGAM may be considered a potential therapeutic target for IS.
Collapse
Affiliation(s)
- Lei Hou
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, P.R. China
- Department of Neurosurgery, Liaocheng People’s Hospital, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Liaocheng 252000, Shandong Province, P.R. China
| | - Zhongchen Li
- Department of Neurosurgery, Liaocheng People’s Hospital, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Liaocheng 252000, Shandong Province, P.R. China
| | - Xiaoli Guo
- Department of Pediatrics, Liaocheng People’s Hospital, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Liaocheng 252000, Shandong Province, P.R. China
| | - Jiatao Lv
- Department of Neurosurgery, Liaocheng People’s Hospital, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Liaocheng 252000, Shandong Province, P.R. China
| | - Zonglei Chong
- Department of Neurosurgery, Liaocheng People’s Hospital, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Liaocheng 252000, Shandong Province, P.R. China
| | - Yilei Xiao
- Department of Neurosurgery, Liaocheng People’s Hospital, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Liaocheng 252000, Shandong Province, P.R. China
| | - Liyong Zhang
- Department of Neurosurgery, Liaocheng People’s Hospital, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Liaocheng 252000, Shandong Province, P.R. China
| | - Zefu Li
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, P.R. China
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, Shandong Province, P.R. China
| |
Collapse
|
237
|
Chen Z, Zhou T, Luo H, Wang Z, Wang Q, Shi R, Li Z, Pang R, Tan H. HWJMSC-EVs promote cartilage regeneration and repair via the ITGB1/TGF-β/Smad2/3 axis mediated by microfractures. J Nanobiotechnology 2024; 22:177. [PMID: 38609995 PMCID: PMC11015550 DOI: 10.1186/s12951-024-02451-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
The current first-line treatment for repairing cartilage defects in clinical practice is the creation of microfractures (MF) to stimulate the release of mesenchymal stem cells (MSCs); however, this method has many limitations. Recent studies have found that MSC-derived extracellular vesicles (MSC-EVs) play an important role in tissue regeneration. This study aimed to verify whether MSC-EVs promote cartilage damage repair mediated by MFs and to explore the repair mechanisms. In vitro experiments showed that human umbilical cord Wharton's jelly MSC-EVs (hWJMSC-EVs) promoted the vitality of chondrocytes and the proliferation and differentiation ability of bone marrow-derived MSCs. This was mainly because hWJMSC-EVs carry integrin beta-1 (ITGB1), and cartilage and bone marrow-derived MSCs overexpress ITGB1 after absorbing EVs, thereby activating the transforming growth factor-β/Smad2/3 axis. In a rabbit knee joint model of osteochondral defect repair, the injection of different concentrations of hWJMSC-EVs into the joint cavity showed that a concentration of 50 µg/ml significantly improved the formation of transparent cartilage after MF surgery. Extraction of regenerated cartilage revealed that the changes in ITGB1, transforming growth factor-β, and Smad2/3 were directly proportional to the repair of regenerated cartilage. In summary, this study showed that hWJMSC-EVs promoted cartilage repair after MF surgery.
Collapse
Affiliation(s)
- Zhian Chen
- Graduate School, Kunming Medical University, Kunming, Yunnan, China
- Basic Medical Laboratory, People's Liberation Army Joint Logistic Support Force 920th Hospital, Kunming, Yunnan, China
| | - Tianhua Zhou
- Department of Orthopaedics, People's Liberation Army Joint Logistic Support Force 920th Hospital, Kunming, Yunnan, China
| | - Huan Luo
- Graduate School, Kunming Medical University, Kunming, Yunnan, China
| | - Zhen Wang
- Graduate School, Kunming Medical University, Kunming, Yunnan, China
| | - Qiang Wang
- Basic Medical Laboratory, People's Liberation Army Joint Logistic Support Force 920th Hospital, Kunming, Yunnan, China
| | - Rongmao Shi
- Department of Orthopaedics, People's Liberation Army Joint Logistic Support Force 920th Hospital, Kunming, Yunnan, China
| | - Zian Li
- Basic Medical Laboratory, People's Liberation Army Joint Logistic Support Force 920th Hospital, Kunming, Yunnan, China
| | - Rongqing Pang
- Basic Medical Laboratory, People's Liberation Army Joint Logistic Support Force 920th Hospital, Kunming, Yunnan, China.
| | - Hongbo Tan
- Department of Orthopaedics, People's Liberation Army Joint Logistic Support Force 920th Hospital, Kunming, Yunnan, China.
| |
Collapse
|
238
|
Peng Z, Qi B, Luo Z, Sun Y, Zhang X, Lin J, Pang J, Zhang P, Zhao Z, Wang X, Chen J. Agomir-122-loaded nanoparticles coated with cell membrane of activated fibroblasts to treat frozen shoulder based on homologous targeting. J Nanobiotechnology 2024; 22:165. [PMID: 38600567 PMCID: PMC11008019 DOI: 10.1186/s12951-024-02403-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
As a common musculoskeletal disorder, frozen shoulder is characterized by thickened joint capsule and limited range of motion, affecting 2-5% of the general population and more than 20% of patients with diabetes mellitus. Pathologically, joint capsule fibrosis resulting from fibroblast activation is the key event. The activated fibroblasts are proliferative and contractive, producing excessive collagen. Albeit high prevalence, effective anti-fibrosis modalities, especially fibroblast-targeting therapies, are still lacking. In this study, microRNA-122 was first identified from sequencing data as a potential therapeutic agent to antagonize fibroblast activation. Then, Agomir-122, an analog of microRNA-122, was loaded into poly(lactic-co-glycolic acid) (PLGA) nanoparticles (Agomir-122@NP), a carrier with excellent biocompatibility for the agent delivery. Moreover, relying on the homologous targeting effect, we coated Agomir-122@NP with the cell membrane derived from activated fibroblasts (Agomir-122@MNP), with an attempt to inhibit the proliferation, contraction, and collagen production of abnormally activated fibroblasts. After confirming the targeting effect of Agomir-122@MNP on activated fibroblasts in vitro, we proved that Agomir-122@MNP effectively curtailed fibroblasts activation, ameliorated joint capsule fibrosis, and restored range of motion in mouse models both prophylactically and therapeutically. Overall, an effective targeted delivery method was developed with promising translational value against frozen shoulder.
Collapse
Affiliation(s)
- Zhen Peng
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiaotong University, 85# Wujin Road, Hongkou District, Shanghai, 200080, China
| | - Beijie Qi
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Shanghai Medicine College, Fudan University, Shanghai, 201399, China
| | - Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200080, China
| | - Yaying Sun
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiaotong University, 85# Wujin Road, Hongkou District, Shanghai, 200080, China
| | - Xingyu Zhang
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiaotong University, 85# Wujin Road, Hongkou District, Shanghai, 200080, China
| | - Jinrong Lin
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200080, China
| | - Jinhui Pang
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiaotong University, 85# Wujin Road, Hongkou District, Shanghai, 200080, China
| | - Peng Zhang
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200080, China
| | - Zhihu Zhao
- Department of Orthopaedics, Tianjin Hospital, No. 406, Jiefangnan Road, Hexi District, Tianjin, 300000, China.
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, China.
| | - Jiwu Chen
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiaotong University, 85# Wujin Road, Hongkou District, Shanghai, 200080, China.
| |
Collapse
|
239
|
Lai C, Li R, Tang W, Liu J, Duan XDXF, Bao D, Liu H, Fu S. Metabolic Syndrome and Tendon Disease: A Comprehensive Review. Diabetes Metab Syndr Obes 2024; 17:1597-1609. [PMID: 38616994 PMCID: PMC11015851 DOI: 10.2147/dmso.s459060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/21/2024] [Indexed: 04/16/2024] Open
Abstract
Metabolic syndrome (MS) is a multifaceted pathological condition characterized by the atypical accumulation of various metabolic components such as central obesity or excess weight, hyperlipidemia, low-density lipoprotein (LDL), hypertension, and insulin resistance. Recently, MS has been recognized as a notable contributor to heart and circulatory diseases. In addition, with increasing research, the impact of MS on tendon repair and disease has gradually emerged. Recent studies have investigated the relationship between tendon healing and diseases such as diabetes, dyslipidemia, obesity, and other metabolic disorders. However, diabetes mellitus (DM), hypercholesterolemia, obesity, and various metabolic disorders often coexist and together constitute MS. At present, insulin resistance is considered the major pathological mechanism underlying MS, central obesity is regarded as the predominant factor responsible for it, and dyslipidemia and other metabolic diseases are known as secondary contributors to MS. This review aims to evaluate the current literature regarding the impact of various pathological conditions in MS on tendon recovery and illness, and to present a comprehensive overview of the effects of MS on tendon recovery and diseases, along with the accompanying molecular mechanisms.
Collapse
Affiliation(s)
- Canhao Lai
- Department of Bone and Joint, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| | - Ruichen Li
- Department of Bone and Joint, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| | - Weili Tang
- Department of Bone and Joint, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| | - Jinyu Liu
- Department of Bone and Joint, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| | - Xinfang D X F Duan
- Department of Bone and Joint, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| | - Dingsu Bao
- Department of Bone and Joint, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, People’s Republic of China
- Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Huan Liu
- Department of Bone and Joint, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| | - Shijie Fu
- Department of Bone and Joint, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| |
Collapse
|
240
|
Lonardo A. Association of NAFLD/NASH, and MAFLD/MASLD with chronic kidney disease: an updated narrative review. METABOLISM AND TARGET ORGAN DAMAGE 2024; 4. [DOI: 10.20517/mtod.2024.07] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Chronic kidney disease (CKD) and nonalcoholic fatty liver disease (NAFLD), metabolic dysfunction-associated fatty liver disease (MAFLD) and metabolic dysfunction-associated steatotic liver disease (MASLD) account for substantial financial burden worldwide. These alarming features call for enhanced efforts to prevent and manage the development and progression of CKD. Accumulating evidence supporting a causal role of NAFLD/MAFLD/MASLD-in CKD opens new horizons to achieve this aim. Recent epidemiological studies and meta-analyses exploring the association of NAFLD/MAFLD/MASLD with CKD and the characteristics of NAFLD/MAFLD/MASLD associated with the odds of incident CKD are discussed. The involved pathomechanisms, including the common soil hypothesis, genetics, gut dysbiosis, and portal hypertension, are examined in detail. Finally, lifestyle changes (diet and physical exercise), direct manipulation of gut microbiota, and drug approaches involving statins, renin-angiotensin-aldosterone system inhibitors, GLP-1 Receptor Agonists, Sodium-glucose cotransporter-2, pemafibrate, and vonafexor are examined within the context of prevention and management of CKD among those with NAFLD/MAFLD/MASLD. The evolving NAFLD/MAFLD/MASLD nomenclature may generate confusion among practicing clinicians and investigators. However, comparative studies investigating the pros and contra of different nomenclatures may identify the most useful definitions among NAFLD/MAFLD/MASLD and strategies to identify, prevent, and halt the onset and progression of CKD.
Collapse
|
241
|
Huang X, Hou B, Wang J, Li J, Shang L, Mao C, Dong L, Liu C, Feng F, Gao J, Peng B. Assessment of cheese sign and its association with vascular risk factors: Data from PUMCH dementia cohort. Chin Med J (Engl) 2024; 137:830-836. [PMID: 37415546 PMCID: PMC10997233 DOI: 10.1097/cm9.0000000000002785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND In the clinic, practitioners encounter many patients with an abnormal pattern of dense punctate magnetic resonance imaging (MRI) signal in the basal ganglia, a phenomenon known as "cheese sign". This sign is reported as common in cerebrovascular diseases, dementia, and old age. Recently, cheese sign has been speculated to consist of dense perivascular space (PVS). This study aimed to assess the lesion types of cheese sign and analyze the correlation between this sign and vascular disease risk factors. METHODS A total of 812 patients from Peking Union Medical College Hospital (PUMCH) dementia cohort were enrolled. We analyzed the relationship between cheese sign and vascular risk. For assessing cheese sign and defining its degree, the abnormal punctate signals were classified into basal ganglia hyperintensity (BGH), PVS, lacunae/infarctions and microbleeds, and counted separately. Each type of lesion was rated on a four-level scale, and then the sum was calculated; this total was defined as the cheese sign score. Fazekas and Age-Related White Matter Changes (ARWMC) scores were used to evaluate the paraventricular, deep, and subcortical gray/white matter hyperintensities. RESULTS A total of 118 patients (14.5%) in this dementia cohort were found to have cheese sign. Age (odds ratio [OR]: 1.090, 95% confidence interval [CI]: 1.064-1.120, P <0.001), hypertension (OR: 1.828, 95% CI: 1.123-2.983, P = 0.014), and stroke (OR: 1.901, 95% CI: 1.092-3.259, P = 0.025) were risk factors for cheese sign. There was no significant relationship between diabetes, hyperlipidemia, and cheese sign. The main components of cheese sign were BGH, PVS, and lacunae/infarction. The proportion of PVS increased with cheese sign severity. CONCLUSIONS The risk factors for cheese sign were hypertension, age, and stroke. Cheese sign consists of BGH, PVS, and lacunae/infarction.
Collapse
Affiliation(s)
- Xinying Huang
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Bo Hou
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jie Wang
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Jie Li
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Li Shang
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Chenhui Mao
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Liling Dong
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Caiyan Liu
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Feng Feng
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jing Gao
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Bin Peng
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
242
|
Cui X, Wang S, Xu S, Wang L, Dong S, Zhang R, Gao Z, Jiang L, Shen T, Guo Y, Zhou H. The Therapeutic Effect of Buyang Huanwu Decoction on Mild Cognitive Impairment (MCI) in Patients with Diabetes. Int J Neurosci 2024:1-9. [PMID: 38512025 DOI: 10.1080/00207454.2024.2334367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 03/22/2024]
Abstract
OBJECTIVE This study aims to comprehensively verify the efficacy of Buyang Huanwu Decoction in improving cognitive function in patients with diabetes. METHODS Patients clinically diagnosed with mild cognitive impairment (MCI) assigned to either the placebo group or the Buyang Huanwu Decoction group. After strict screening and exclusions, a total of 156 participants completed the clinical trial, with 76 in the placebo group and 80 in the Buyang Huanwu Decoction group. RESULTS After treatment, Buyang Huanwu Decoction group showed higher Mini-Mental State Examination and Montreal Cognitive Assessment scores compared to placebo (p < 0.05). Memory and Executive Screening, Boston Naming Test, and Animal Fluency Test scores were also higher in the treatment group (p < 0.05). No significant differences were found in DST and CDT scores (p > 0.05). Trail Making Test scores were lower in the treatment group (p < 0.05). No significant difference was observed between the two groups in terms of complications (p > 0.05). CONCLUSION Patients receiving Buyang Huanwu Decoction treatment demonstrated improvement in cognitive function, showing positive effects and providing preliminary evidence for the role of Buyang Huanwu Decoction in improving cognitive function in patients with diabetes. This suggests its potential for clinical application and further promotion.
Collapse
Affiliation(s)
- Ximing Cui
- Department of General Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shuang Wang
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shunjiang Xu
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei International Joint Research Center for Brain Science, Shijiazhuang, China
- Hebei Key Laboratory of Brain Science and Psychiatric Psychologic Disease, Shijiazhuang, China
| | - Lina Wang
- Department of Endocrinology and Metabolism, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shanshan Dong
- Department of Endocrinology and Metabolism, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Rui Zhang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei International Joint Research Center for Brain Science, Shijiazhuang, China
- Hebei Key Laboratory of Brain Science and Psychiatric Psychologic Disease, Shijiazhuang, China
| | - Zhaoyu Gao
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei International Joint Research Center for Brain Science, Shijiazhuang, China
- Hebei Key Laboratory of Brain Science and Psychiatric Psychologic Disease, Shijiazhuang, China
| | - Lei Jiang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei International Joint Research Center for Brain Science, Shijiazhuang, China
- Hebei Key Laboratory of Brain Science and Psychiatric Psychologic Disease, Shijiazhuang, China
| | - Tingting Shen
- Department of Endocrinology and Metabolism, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yingying Guo
- Department of Endocrinology and Metabolism, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Huimin Zhou
- Department of Endocrinology and Metabolism, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
243
|
Magni G, Riboldi B, Ceruti S. Human Glial Cells as Innovative Targets for the Therapy of Central Nervous System Pathologies. Cells 2024; 13:606. [PMID: 38607045 PMCID: PMC11011741 DOI: 10.3390/cells13070606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024] Open
Abstract
In vitro and preclinical in vivo research in the last 35 years has clearly highlighted the crucial physiopathological role of glial cells, namely astrocytes/microglia/oligodendrocytes and satellite glial cells/Schwann cells in the central and peripheral nervous system, respectively. Several possible pharmacological targets to various neurodegenerative disorders and painful conditions have therefore been successfully identified, including receptors and enzymes, and mediators of neuroinflammation. However, the translation of these promising data to a clinical setting is often hampered by both technical and biological difficulties, making it necessary to perform experiments on human cells and models of the various diseases. In this review we will, therefore, summarize the most relevant data on the contribution of glial cells to human pathologies and on their possible pharmacological modulation based on data obtained in post-mortem tissues and in iPSC-derived human brain cells and organoids. The possibility of an in vivo visualization of glia reaction to neuroinflammation in patients will be also discussed.
Collapse
Affiliation(s)
| | | | - Stefania Ceruti
- Laboratory of Pain Therapy and Neuroimmunology, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti, 9, 20133 Milan, Italy; (G.M.); (B.R.)
| |
Collapse
|
244
|
Yan X, Ma Y, Yan L, Li S, Xu Y. Neuropeptides as Potential Biomarkers in Vascular Dementia. J Integr Neurosci 2024; 23:66. [PMID: 38538218 DOI: 10.31083/j.jin2303066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/01/2023] [Accepted: 10/09/2023] [Indexed: 07/15/2024] Open
Abstract
Neuropeptides are endogenous active substances within the central and peripheral nervous systems that play important roles in a wide range of brain functions, including metabolism, food intake, social behavior, reproduction, learning, sleep, and wakefulness. This article reviews recent advances in the involvement of neuropeptides in vascular dementia. Neuropeptides are present in the brain as chemical signals and last for nearly 50 years. Peptide hormones are chemical signals of the endocrine system. Thus, neuropeptides are the most diverse class of signaling molecules in the brain, involving the genomes of many mammals, encoding neuropeptide precursors and many bioactive neuropeptides. Here the aim is to describe the recent advances in classical neuropeptides, as well as putative neuropeptides from other families, in the control of or as diagnostic tools for vascular dementia. Additionally, its molecular mechanisms are described to explore new avenues of treatment and early diagnosis, as there is increasing evidence that dysregulation of vascular processes is associated with different pathological conditions.
Collapse
Affiliation(s)
- Xue Yan
- Department of Traditional Chinese Medicine, Haikou Maternal and Child Health Hospital, 570102 Haikou, Hainan, China
| | - Yihong Ma
- Department of Rehabilitation, The Second Affiliated Hospital of Hainan Medical University, 570311 Haikou, Hainan, China
| | - Limin Yan
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, 570311 Haikou, Hainan, China
| | - Simin Li
- Stomatological Hospital, Southern Medical University, 510280 Guangzhou, Guangdong, China
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, 271000 Taian, Shandong, China
| |
Collapse
|
245
|
Tao P, Liu H, Hou G, Lu J, Xu Y. Kangxianling formula attenuates renal fibrosis by regulating gut microbiota. Eur J Med Res 2024; 29:183. [PMID: 38500195 PMCID: PMC10949625 DOI: 10.1186/s40001-024-01778-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/09/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Renal fibrosis (RF) produced adverse effect on kidney function. Recently, intestinal dysbiosis is a key regulator that promotes the formation of renal fibrosis. This study will focus on exploring the protective mechanism of Kangxianling Formula (KXL) on renal fibrosis from the perspective of intestinal flora. METHODS Unilateral Ureteral Obstruction (UUO) was used to construct rats' model with RF, and receive KXL formula intervention for 1 week. The renal function indicators were measured. Hematoxylin-eosin (HE), Masson and Sirus red staining were employed to detect the pathological changes of renal tissue in each group. The expression of α-SMA, Col-III, TGF-β, FN, ZO-1, and Occuludin was detected by immunofluorescence and immunohistochemistry. Rat feces samples were collected and analyzed for species' diversity using high-throughput sequencing 16S rRNA. RESULTS Rats in UUO groups displayed poor renal function as well as severe RF. The pro-fibrotic protein expression in renal tissues including α-SMA, Col-III, TGF-β and FN was increased in UUO rats, while ZO-1 and Occuludin -1 expression was downregulated in colon tissues. The above changes were attenuated by KXL treatment. 16S rRNA sequencing results revealed that compared with the sham group, the increased abundance of pathogenic bacteria including Acinetobacter, Enterobacter and Proteobacteria and the decreased abundance of beneficial bacteria including Actinobacteriota, Bifidobacteriales, Prevotellaceae, and Lactobacillus were found in UUO group. After the administration of KXL, the growth of potential pathogenic bacteria was reduced and the abundance of beneficial bacteria was enhanced. CONCLUSION KXL displays a therapeutical potential in protecting renal function and inhibiting RF, and its mechanism of action may be associated with regulating intestinal microbiota.
Collapse
Affiliation(s)
- Pengyu Tao
- Department of Nephrology, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haiyan Liu
- Department of Ultrasound, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Guangjian Hou
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jianrao Lu
- Department of Nephrology, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yukun Xu
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
246
|
Sasaki D, Suzuki H, Kusamori K, Itakura S, Todo H, Nishikawa M. Development of rice bran-derived nanoparticles with excellent anti-cancer activity and their application for peritoneal dissemination. J Nanobiotechnology 2024; 22:114. [PMID: 38493106 PMCID: PMC10943818 DOI: 10.1186/s12951-024-02381-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/07/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Rice bran a by-product of the rice milling process is currently underutilized. Recent studies have shown that plant-derived nanoparticles (pdNPs) can be mass-produced at a low cost and exhibit biological and therapeutic activities. Rice bran contains various anti-cancer compounds, including γ-oryzanol and γ-tocotrienol, and rice bran-derived nanoparticles (rbNPs) can be employed as novel therapeutic agents for cancer treatment. RESULTS Koshihikari rice bran was suspended in water, and the suspension was centrifuged and filtered through a 0.45-µm-pore size syringe filter. The filtrate was ultracentrifuged, and the precipitates were suspended to obtain rbNPs. The rbNPs were negatively charged exosome-like nanoparticles with an average diameter of approximately 130 nm. The rbNPs exhibited cytotoxic activities against cancer cells but not against normal cells. The cytotoxic activity of rbNPs to murine colon adenocarcinoma colon26 cells was significantly greater than DOXIL® or other pdNPs. The rbNPs induced cell cycle arrest and apoptosis, and reduced the expression of proliferative proteins, including β-catenin and cyclin D1. Intraperitoneal injections of rbNPs into mice bearing peritoneal dissemination of colon26 cells significantly suppressed tumor growth with no significant adverse effects. CONCLUSION These results indicated that rbNPs are promising nanoparticles, hold significant potential for anti-cancer applications, and are expected to play a vital role in cancer treatment.
Collapse
Affiliation(s)
- Daisuke Sasaki
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki, Noda, Chiba, 2641, 278-8510, Japan
| | - Hinako Suzuki
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki, Noda, Chiba, 2641, 278-8510, Japan
| | - Kosuke Kusamori
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki, Noda, Chiba, 2641, 278-8510, Japan
- Laboratory of Cellular Drug Discovery and Development, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki, Noda, Chiba, 2641, 278-8510, Japan
| | - Shoko Itakura
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki, Noda, Chiba, 2641, 278-8510, Japan
| | - Hiroaki Todo
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Makiya Nishikawa
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki, Noda, Chiba, 2641, 278-8510, Japan.
| |
Collapse
|
247
|
Jia XH, Wang SY, Sun AQ. Dietary fiber intake and its association with diabetic kidney disease in American adults with diabetes: A cross-sectional study. World J Diabetes 2024; 15:475-487. [PMID: 38591085 PMCID: PMC10999041 DOI: 10.4239/wjd.v15.i3.475] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/05/2024] [Accepted: 02/18/2024] [Indexed: 03/15/2024] Open
Abstract
BACKGROUND Dietary fiber (DF) intake may have a protective effect against type 2 diabetes (T2D); however, its relationship with diabetic kidney disease (DKD) remains unclear. AIM To investigate the potential association between DF intake and the prevalence of DKD in individuals diagnosed with T2D. METHODS This cross-sectional study used data from the National Health and Nutrition Examination Survey collected between 2005 and 2018. DF intake was assessed through 24-h dietary recall interviews, and DKD diagnosis in individuals with T2D was based on predefined criteria, including albuminuria, impaired glomerular filtration rate, or a combination of both. Logistic regression analysis was used to assess the association between DF intake and DKD, and comprehensive subgroup and sensitivity analyses were performed. RESULTS Among the 6032 participants, 38.4% had DKD. With lower DF intake-T1 (≤ 6.4 g/1000 kcal/day)-as a reference, the adjusted odds ratio for DF and DKD for levels T2 (6.5-10.0 g/1000 kcal/day) and T3 (≥ 10.1 g/1000 kcal/day) were 0.97 (95%CI: 0.84-1.12, P = 0.674) and 0.79 (95%CI: 0.68-0.92, P = 0.002), respectively. The subgroup analysis yielded consistent results across various demographic and health-related subgroups, with no statistically significant interactions (all P > 0.05). CONCLUSION In United States adults with T2D, increased DF intake may be related to reduced DKD incidence. Further research is required to confirm these findings.
Collapse
Affiliation(s)
- Xin-Hua Jia
- Department of Critical Care Medicine, Dezhou People’s Hospital, Dezhou 253000, Shandong Province, China
| | - Sheng-Yan Wang
- Department of Critical Care Medicine, Dezhou People’s Hospital, Dezhou 253000, Shandong Province, China
| | - Ai-Qin Sun
- Emergency Intensive Care Unit, Dezhou People’s Hospital, Dezhou 253000, Shandong Province, China
| |
Collapse
|
248
|
Wan R, Chen Y, Feng X, Luo Z, Peng Z, Qi B, Qin H, Lin J, Chen S, Xu L, Tang J, Zhang T. Exercise potentially prevents colorectal cancer liver metastases by suppressing tumor epithelial cell stemness via RPS4X downregulation. Heliyon 2024; 10:e26604. [PMID: 38439884 PMCID: PMC10909670 DOI: 10.1016/j.heliyon.2024.e26604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/15/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most prevalent tumor globally. The liver is the most common site for CRC metastasis, and the involvement of the liver is a common cause of death in patients with late-stage CRC. Consequently, mitigating CRC liver metastasis (CRLM) is key to improving CRC prognosis and increasing survival. Exercise has been shown to be an effective method of improving the prognosis of many tumor types. However, the ability of exercise to inhibit CRLM is yet to be thoroughly investigated. METHODS The GSE157600 and GSE97084 datasets were used for analysis. A pan-cancer dataset which was uniformly normalized was downloaded and analyzed from the UCSC database: TCGA, TARGET, GTEx (PANCAN, n = 19,131, G = 60,499). Several advanced bioinformatics analyses were conducted, including single-cell sequencing analysis, correlation algorithm, and prognostic screen. CRC tumor microarray (TMA) as well as cell/animal experiments are used to further validate the results of the analysis. RESULTS The greatest variability was found in epithelial cells from the tumor group. RPS4X was generally upregulated in all types of CRC, while exercise downregulated RPS4X expression. A lowered expression of RPS4X may prolong tumor survival and reduce CRC metastasis. RPS4X and tumor stemness marker-CD44 were highly positively correlated and knockdown of RPS4X expression reduced tumor stemness both in vitro and in vivo. CONCLUSION RPS4X upregulation may enhance CRC stemness and increase the odds of metastasis. Exercise may reduce CRC metastasis through the regulation of RPS4X.
Collapse
Affiliation(s)
- Renwen Wan
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yisheng Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xinting Feng
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zhen Peng
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Beijie Qi
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Affiliated Pudong Medical Center, Shanghai 201399, China
| | - Haocheng Qin
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jinrong Lin
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Liangfeng Xu
- Department of Gastroenterology, Sheyang County People's Hospital, Yancheng 224300, Jiangsu, China
| | - Jiayin Tang
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai 200127, China
| | - Ting Zhang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
249
|
Wu X, Tang J, Cheng B. Oral squamous cell carcinoma gene patterns connected with RNA methylation for prognostic prediction. Oral Dis 2024; 30:408-421. [PMID: 35934835 DOI: 10.1111/odi.14341] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To determine whether m6A/m1A/m5C/m7G/m6Am/Ψ-related genes influence the prognosis of a patient with oral squamous cell carcinoma. MATERIALS AND METHODS We investigated the changes in regulatory genes using publicly available data from The Cancer Genome Atlas. Consensus clustering by RNA methylation-related regulators was used to describe oral squamous cell carcinomas (OSCCs). Then, we developed the prediction model. The tumor microenvironment was investigated using ESTIMATE. Gene set enrichment analysis was used to determine whether pathways or cell types were enriched in different groups. The association between the model and immune-related risk scores was investigated using correlation analysis. RESULTS We found 22 gene signatures in this analysis and then developed a predictive model that reveals the genes that are highly connected to the overall survival of OSCC patients. The survival and death rates were substantially different in the two groups (high and low risk) classified by the risk scores. The validation cohort verified the phenotypic diversity and prognostic effects of these genes. CONCLUSION Our data reveal that immune cell infiltration, genetic mutation, and survival potential in OSCC patients are linked to m6A/m1A/m5C/m7G/m6Am/Ψ-related genes, and we constructed a dependable prognostic model for OSCC patients.
Collapse
Affiliation(s)
- Xuechen Wu
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiezhang Tang
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, China
| | - Bo Cheng
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
250
|
Ming A, Lorek E, Wall J, Schubert T, Ebert N, Galatzky I, Baum AK, Glanz W, Stober S, Mertens PR. Unveiling peripheral neuropathy and cognitive dysfunction in diabetes: an observational and proof-of-concept study with video games and sensor-equipped insoles. Front Endocrinol (Lausanne) 2024; 15:1310152. [PMID: 38495786 PMCID: PMC10941030 DOI: 10.3389/fendo.2024.1310152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/13/2024] [Indexed: 03/19/2024] Open
Abstract
Background Proactive screening for cognitive dysfunction (CD) and peripheral neuropathy (PNP) in elderly patients with diabetes mellitus is essential for early intervention, yet clinical examination is time-consuming and prone to bias. Objective We aimed to investigate PNP and CD in a diabetes cohort and explore the possibility of identifying key features linked with the respective conditions by machine learning algorithms applied to data sets obtained in playful games controlled by sensor-equipped insoles. Methods In a cohort of patients diagnosed with diabetes (n=261) aged over 50 years PNP and CD were diagnosed based on complete physical examination (neuropathy symptom and disability scores, and Montreal Cognitive Assessment). In an observational and proof-of-concept study patients performed a 15 min lasting gaming session encompassing tutorials and four video games with 5,244 predefined features. The steering of video games was solely achieved by modulating plantar pressure values, which were measured by sensor-equipped insoles in real-time. Data sets were used to identify key features indicating game performance with correlation regarding CD and PNP findings. Thereby, machine learning models (e.g. gradient boosting and lasso and elastic-net regularized generalized linear models) were set up to distinguish patients in the different groups. Results PNP was diagnosed in 59% (n=153), CD in 34% (n=89) of participants, and 23% (n=61) suffered from both conditions. Multivariable regression analyses suggested that PNP was positively associated with CD in patients with diabetes (adjusted odds ratio = 1.95; 95% confidence interval: 1.03-3.76; P=0.04). Predictive game features were identified that significantly correlated with CD (n=59), PNP (n=40), or both (n=59). These features allowed to set up classification models that were enriched by individual risk profiles (i.e. gender, age, weight, BMI, diabetes type, and diabetes duration). The obtained models yielded good predictive performance with the area under the receiver-operating-characteristic curves reaching 0.95 for CD without PNP, 0.83 for PNP without CD, and 0.84 for CD and PNP combined. Conclusions The video game-based assessment was able to categorize patients with CD and/or PNP with high accuracy. Future studies with larger cohorts are needed to validate these results and potentially enhance the discriminative power of video games.
Collapse
Affiliation(s)
- Antao Ming
- University Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Elisabeth Lorek
- University Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Janina Wall
- University Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Tanja Schubert
- University Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Nils Ebert
- University Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Imke Galatzky
- University Clinic for Neurology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Anne-Katrin Baum
- University Clinic for Neurology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Wenzel Glanz
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Sebastian Stober
- Artificial Intelligence Lab, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Peter R. Mertens
- University Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|