201
|
Zheng N, Wang H, Zhu W, Li Y, Li H. Astragalus polysaccharide attenuates nonalcoholic fatty liver disease through THDCA in high-fat diet-fed mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117401. [PMID: 37967775 DOI: 10.1016/j.jep.2023.117401] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Astragalus polysaccharide (APS) extracted from Astragalus membranaceus (Fisch.) Bunge was proven to be effective in preventing high-fat diet (HFD) induced nonalcoholic fatty liver disease (NAFLD). However, the exact mechanisms were not completely elucidated. AIM OF THE STUDY The aim was to reveal the mechanisms of APS on preventing NAFLD from the aspects of regulating bile acids (BAs) homeostasis. MATERIALS AND METHODS Serum and liver BAs in HFD fed mice with or without APS intervention were quantified with an ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) system. The effect of APS on hepatic proteins involved in BAs synthesis were analyzed with Western blot. Finally, the effect of identified taurohyodeoxycholic acid (THDCA) that was significantly increased by APS on hepatic triglyceride (TG) accumulation was explored in vivo and in vitro. RESULTS APS regulated serum and liver BA profiles in HFD fed mice, especially increased serum THDCA. The levels of hepatic cholesterol 7a-hydroxylase (CYP7A1) and sterol 12a-hydroxylase (CYP8B1) which catalyzed the classical BAs synthesis pathway were significantly decreased by APS, while oxysterol 7a-hydroxylase (CYP7B1) which catalyzed the alternative BAs synthesis pathway was significantly increased by APS. THDCA reduced HFD-induced hepatic lipid accumulation and improved glucose homeostasis in mice, and decreased TG level in palmitic acid/oleic acid treated alpha mouse liver 12 (AML-12) cells. THDCA significantly downregulated the protein level of cluster of differentiation 36 (CD36) involved in fatty acid transport into the liver. Importantly, THDCA showed similar effect with APS in upregulating hepatic CYP7B1 and downregulating CYP7A1. CONCLUSION This study revealed the protective effect of APS on NAFLD was associated with the regulation on BA profiles, and proved the potential anti-NAFLD effect of THDCA, highlighting the involvement of BA metabolism in efficacy of herb-derived polysaccharides on metabolism.
Collapse
Affiliation(s)
- Ningning Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Hao Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Weize Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yan Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Houkai Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
202
|
Ding X, He X, Tang B, Lan T. Integrated traditional Chinese and Western medicine in the prevention and treatment of non-alcoholic fatty liver disease: future directions and strategies. Chin Med 2024; 19:21. [PMID: 38310315 PMCID: PMC10838467 DOI: 10.1186/s13020-024-00894-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/23/2024] [Indexed: 02/05/2024] Open
Abstract
Traditional Chinese medicine (TCM) has been widely used for several centuries for metabolic diseases, including non-alcoholic fatty liver disease (NAFLD). At present, NAFLD has become the most prevalent form of chronic liver disease worldwide and can progress to non-alcoholic steatohepatitis (NASH), cirrhosis, and even hepatocellular carcinoma. However, there is still a lack of effective treatment strategies in Western medicine. The development of NAFLD is driven by multiple mechanisms, including genetic factors, insulin resistance, lipotoxicity, mitochondrial dysfunction, endoplasmic reticulum stress, inflammation, gut microbiota dysbiosis, and adipose tissue dysfunction. Currently, certain drugs, including insulin sensitizers, statins, vitamin E, ursodeoxycholic acid and betaine, are proven to be beneficial for the clinical treatment of NAFLD. Due to its complex pathogenesis, personalized medicine that integrates various mechanisms may provide better benefits to patients with NAFLD. The holistic view and syndrome differentiation of TCM have advantages in treating NAFLD, which are similar to the principles of personalized medicine. In TCM, NAFLD is primarily classified into five types based on clinical experience. It is located in the liver and is closely related to spleen and kidney functions. However, due to the multi-component characteristics of traditional Chinese medicine, its application in the treatment of NAFLD has been considerably limited. In this review, we summarize the advances in the pathogenesis and treatment of NAFLD, drawn from both the Western medicine and TCM perspectives. We highlight that Chinese and Western medicine have complementary advantages and should receive increased attention in the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Xin Ding
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou, 510006, China
| | - Xu He
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou, 510006, China
| | - Bulang Tang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou, 510006, China
| | - Tian Lan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou, 510006, China.
- School of Pharmacy, Harbin Medical University, Harbin, 150086, China.
| |
Collapse
|
203
|
London RE. The aminosalicylate - folate connection. Drug Metab Rev 2024; 56:80-96. [PMID: 38230664 PMCID: PMC11305456 DOI: 10.1080/03602532.2024.2303507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024]
Abstract
Two aminosalicylate isomers have been found to possess useful pharmacological behavior: p-aminosalicylate (PAS, 4AS) is an anti-tubercular agent that targets M. tuberculosis, and 5-aminosalicylate (5AS, mesalamine, mesalazine) is used in the treatment of ulcerative colitis (UC) and other inflammatory bowel diseases (IBD). PAS, a structural analog of pABA, is biosynthetically incorporated by bacterial dihydropteroate synthase (DHPS), ultimately yielding a dihydrofolate (DHF) analog containing an additional hydroxyl group in the pABA ring: 2'-hydroxy-7,8-dihydrofolate. It has been reported to perturb folate metabolism in M. tuberculosis, and to selectively target M. tuberculosis dihydrofolate reductase (mtDHFR). Studies of PAS metabolism are reviewed, and possible mechanisms for its mtDHFR inhibition are considered. Although 5AS is a more distant structural relative of pABA, multiple lines of evidence suggest a related role as a pABA antagonist that inhibits bacterial folate biosynthesis. Structural data support the likelihood that 5AS is recognized by the DHPS pABA binding site, and its effects probably range from blocking pABA binding to formation of a dead-end dihydropterin-5AS adduct. These studies suggest that mesalamine acts as a gut bacteria-directed antifolate, that selectively targets faster growing, more folate-dependent species.
Collapse
Affiliation(s)
- Robert E. London
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709
| |
Collapse
|
204
|
Hu J, Chen K, Hong F, Gao G, Dai X, Yin H. METTL3 facilitates stemness properties and tumorigenicity of cancer stem cells in hepatocellular carcinoma through the SOCS3/JAK2/STAT3 signaling pathway. Cancer Gene Ther 2024; 31:228-236. [PMID: 38030810 DOI: 10.1038/s41417-023-00697-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/29/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023]
Abstract
Liver cancer stem cells (LCSCs) contribute to tumor recurrence and cancer cell proliferation in patients with hepatocellular carcinoma (HCC). METTL3-catalyzed m6A modification is relevant to the cancer stem cell (CSC) phenotype, including LCSCs. LCSCs were isolated from MHCC-97H and HepG2 cells through flow cytometry. UALCAN data were used to analyze the expression of METTL3 in liver hepatocellular carcinoma (LIHC) tissues. Loss- and gain-of-function experiments were utilized to assess the biological effects of METTL3 and SOCS3 on the proliferation and stemness phenotypes in vitro and in vivo. The mechanisms underlying the impact of METTL3 were explored using qPCR, MeRIP-qPCR, dual-luciferase reporter, and western blot assays. METTL3 was significantly upregulated in LIHC tissues according to the UALCAN database. METTL3 was highly expressed in LIHC and was significantly correlated with individual cancer stage, tumor grade and lymph node metastasis. Patients with low METTL3 expression had a longer overall survival time based on the data from UALCAN. In addition, the level of METTL3 was enhanced in LCSCs and decreased in non-LCSCs compared to HCC cells. Moreover, overexpression of METTL3 stimulated the proliferation and stemness of LCSCs in vitro and in vivo, while loss of METTL3 impeded it. Bioinformatics analysis combined with validation experiments determined that m6A was modified by METTL3-targeting SOCS3 mRNA. METTL3 had side effects regarding the stability of SOCS3 mRNA. SOCS3 overexpression impaired and SOCS3 depletion facilitated the development of LCSCs via the JAK2/STAT3 pathway. Furthermore, METTL3 depletion suppressed proliferation and stemness in LCSCs, which was restored by SOCS3 knockdown or colivelin treatment. We discovered that METTL3 facilitated the stemness and tumorigenicity of LCSCs by modifying SOCS3 mRNA with m6A.
Collapse
Affiliation(s)
- Jingjing Hu
- Department of Ultrasonography, Ningbo No. 2 Hospital, 315010, Ningbo, Zhejiang Province, P. R. China
| | - Ke Chen
- Ningbo City College of Vocational Technology, 315100, Ningbo, Zhejiang Province, P. R. China
| | - Fangfang Hong
- Department of Ultrasonography, Ningbo No. 2 Hospital, 315010, Ningbo, Zhejiang Province, P. R. China
| | - Guosheng Gao
- Clinical Laboratory, Ningbo No. 2 Hospital, 315010, Ningbo, Zhejiang Province, P. R. China
| | - Xiaoyu Dai
- Department of Anorectal Surgery, Ningbo No. 2 Hospital, 315010, Ningbo, Zhejiang Province, P. R. China
| | - Hua Yin
- Department of Ultrasonography, Ningbo No. 2 Hospital, 315010, Ningbo, Zhejiang Province, P. R. China.
| |
Collapse
|
205
|
Vestergaard MV, Allin KH, Eriksen C, Zakerska-Banaszak O, Arasaradnam RP, Alam MT, Kristiansen K, Brix S, Jess T. Gut microbiota signatures in inflammatory bowel disease. United European Gastroenterol J 2024; 12:22-33. [PMID: 38041519 PMCID: PMC10859715 DOI: 10.1002/ueg2.12485] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/10/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Inflammatory bowel diseases (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), affect millions of people worldwide with increasing incidence. OBJECTIVES Several studies have shown a link between gut microbiota composition and IBD, but results are often limited by small sample sizes. We aimed to re-analyze publicly available fecal microbiota data from IBD patients. METHODS We extracted original fecal 16S rRNA amplicon sequencing data from 45 cohorts of IBD patients and healthy individuals using the BioProject database at the National Center for Biotechnology Information. Unlike previous meta-analyses, we merged all study cohorts into a single dataset, including sex, age, geography, and disease information, based on which microbiota signatures were analyzed, while accounting for varying technical platforms. RESULTS Among 2518 individuals in the combined dataset, we discovered a hitherto unseen number of genera associated with IBD. A total of 77 genera associated with CD, of which 38 were novel associations, and a total of 64 genera associated with UC, of which 28 represented novel associations. Signatures were robust across different technical platforms and geographic locations. Reduced alpha diversity in IBD compared to healthy individuals, in CD compared to UC, and altered microbiota composition (beta diversity) in UC and especially in CD as compared to healthy individuals were found. CONCLUSIONS Combining original microbiota data from 45 cohorts, we identified a hitherto unseen large number of genera associated with IBD. Identification of microbiota features robustly associated with CD and UC may pave the way for the identification of new treatment targets.
Collapse
Affiliation(s)
- Marie Vibeke Vestergaard
- Center for Molecular Prediction of Inflammatory Bowel Disease, PREDICT, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | - Kristine H Allin
- Center for Molecular Prediction of Inflammatory Bowel Disease, PREDICT, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Gastroenterology & Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Carsten Eriksen
- Center for Molecular Prediction of Inflammatory Bowel Disease, PREDICT, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | | | - Ramesh P Arasaradnam
- Warwick Medical School & Cancer Research Centre, University of Leicester, Leicester, UK
| | - Mohammad T Alam
- Warwick Medical School & Cancer Research Centre, University of Leicester, Leicester, UK
- Department of Biology, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Karsten Kristiansen
- Center for Molecular Prediction of Inflammatory Bowel Disease, PREDICT, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Laboratory of Genomics and Molecular Medicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Susanne Brix
- Center for Molecular Prediction of Inflammatory Bowel Disease, PREDICT, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Tine Jess
- Center for Molecular Prediction of Inflammatory Bowel Disease, PREDICT, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Gastroenterology & Hepatology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
206
|
Cheng C, Yu F, Yuan G, Jia J. Update on N6-methyladenosine methylation in obesity-related diseases. Obesity (Silver Spring) 2024; 32:240-251. [PMID: 37989724 DOI: 10.1002/oby.23932] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 11/23/2023]
Abstract
Obesity is a chronic metabolic disease that is closely related to type 2 diabetes mellitus, cardiovascular diseases, nonalcoholic fatty liver disease, obstructive sleep apnea, and osteoarthritis. The prevalence of obesity is increasing rapidly every year and is recognized as a global public health problem. In recent years, the role of epigenetics in the development of obesity and related diseases has been recognized and is currently a research hotspot. N6-methyladenosine (m6A) methylation is the most abundant epigenetic modification in the eukaryotic RNA, including mRNA and noncoding RNA. Several studies have shown that the m6A modifications in the target mRNA and the corresponding m6A regulators play a significant role in lipid metabolism and are strongly associated with the pathogenesis of obesity-related diseases. In this review, the latest research findings regarding the role of m6A methylation in obesity and related metabolic diseases are summarized. The authors' aim is to highlight evidence that suggests the clinical utility of m6A modifications and the m6A regulators as novel early prediction biomarkers and precision therapeutics for obesity and obesity-related diseases.
Collapse
Affiliation(s)
- Caiqin Cheng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University; Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Fan Yu
- Department of Endocrinology and Metabolism, Jurong Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guoyue Yuan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University; Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jue Jia
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University; Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
207
|
Shao C, Han Y, Huang Y, Zhang Z, Gong T, Zhang Y, Tian X, Fang M, Han X, Li M. Targeting key RNA methylation enzymes to improve the outcome of colorectal cancer chemotherapy (Review). Int J Oncol 2024; 64:17. [PMID: 38131226 PMCID: PMC10783943 DOI: 10.3892/ijo.2023.5605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
RNA methylation modifications are closely linked to tumor development, migration, invasion and responses to various therapies. Recent studies have shown notable advancements regarding the roles of RNA methylation in tumor immunotherapy, the tumor microenvironment and metabolic reprogramming. However, research on the association between tumor chemoresistance and N6‑methyladenosine (m6A) methyltransferases in specific cancer types is still scarce. Colorectal cancer (CRC) is among the most common gastrointestinal cancers worldwide. Conventional chemotherapy remains the predominant treatment modality for CRC and chemotherapy resistance is the primary cause of treatment failure. The expression levels of m6A methyltransferases, including methyltransferase‑like 3 (METTL3), METTL14 and METTL16, in CRC tissue samples are associated with patients' clinical outcomes and chemotherapy efficacy. Natural pharmaceutical ingredients, such as quercetin, have the potential to act as METTL3 inhibitors to combat chemotherapy resistance in patients with CRC. The present review discussed the various roles of different types of key RNA methylation enzymes in the development of CRC, focusing on the mechanisms associated with chemotherapy resistance. The progress in the development of certain inhibitors is also listed. The potential of using natural remedies to develop antitumor medications that target m6A methylation is also outlined.
Collapse
Affiliation(s)
- Chiyun Shao
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, P.R. China
- No. 3 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Yanjie Han
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, P.R. China
- No. 3 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Yuying Huang
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, P.R. China
- No. 3 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Zhe Zhang
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, P.R. China
- No. 3 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Tao Gong
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, P.R. China
| | - Yajie Zhang
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, P.R. China
- Central Laboratory, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, P.R. China
| | - Xiaokang Tian
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, P.R. China
| | - Mingzhi Fang
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, P.R. China
| | - Xuan Han
- School of Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Min Li
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, P.R. China
| |
Collapse
|
208
|
Singh N, Anand SK, Sharma A, Singh S, Kakkar P, Srivastava V. Chitosan/alginate nanogel potentiate berberine uptake and enhance oxidative stress mediated apoptotic cell death in HepG2 cells. Int J Biol Macromol 2024; 257:128717. [PMID: 38081485 DOI: 10.1016/j.ijbiomac.2023.128717] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/21/2023] [Accepted: 12/08/2023] [Indexed: 12/18/2023]
Abstract
Biopolymer-based nanoscale drug delivery systems have become a promising approach to overcome the limitations associated with conventional chemotherapeutics used for cancer treatment. Herein, we reported to develop a hydrophilic nanogel (NG) composed of Chitosan (Chi) and sodium alginate (Alg) using the ion gelation method for delivering Berberine hydrochloride (BBR), an alkaloid obtained from Berberis aristata roots. The use of different nanocarriers for BBR delivery has been reported previously, but the bioavailability of these carriers was limited due to phagocytic uptake and poor systemic delivery. The developed NG showed enhanced stability and efficient entrapment of BBR ∼92 %, resulting in a significant increase in bioavailability. The pH-dependent release behavior demonstrated sustained and effective release of ∼86 %, ∼74 % and, ∼53 % BBR at pH 5.5, 6.6, and 7.4 respectively after 72h, indicating its potential as a drug carrier. Additionally, the cellular uptake of BBR was significantly higher ∼19 % in the BBR-NG (25 μM) than in bulk BBR (100 μM), leading to enhanced ROS generation, mitochondrial depolarisation, and inhibition of cell proliferation and colony formation in HepG2 cells. In summary, the results suggest that the Chi/Alg biopolymer-based nano-formulation could be an effective approach for delivering BBR and enhancing its cellular uptake, efficacy, and cytotoxicity.
Collapse
Affiliation(s)
- Neha Singh
- CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow-226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Sumit Kumar Anand
- CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow-226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India; Department of Pathology and Translational Pathobiology, LSU Health, Shreveport, LA-71103, USA
| | - Ankita Sharma
- CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow-226 001, Uttar Pradesh, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, Bijnor-Sisendi Road, Post Office Mati, Lucknow 226002, India
| | - Sukhveer Singh
- CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow-226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Poonam Kakkar
- CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow-226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| | - Vikas Srivastava
- CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow-226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
209
|
Teng Y, Tang H, Tao X, Huang Y, Fan Y. Ferrostatin 1 ameliorates UVB-induced damage of HaCaT cells by regulating ferroptosis. Exp Dermatol 2024; 33:e15018. [PMID: 38414007 DOI: 10.1111/exd.15018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/01/2024] [Accepted: 01/07/2024] [Indexed: 02/29/2024]
Abstract
Ferroptosis, a type of programmed cell death, occurs when there is oxidative stress and lipid peroxides. This condition is marked by lipid peroxidation that relies on iron and the reduction of cellular defences against oxidation. To investigate the effect of UVB irradiation on ferroptosis of human keratinocytes HaCaT cells, the cells were pretreated with Ferrostatin 1 (Fer-1, 10 μM), an ferroptosis inhibitor and then irradiated with UVB (20 mJ/cm2 ) for 30 min to detect related indexes of ferroptosis through MTT assay, quantitative real-time polymerase chain reaction, flow cytometry, reactive oxygen species (ROS) assay, western blotting. Results showed that UVB significantly reduced cell activity, promoted apoptosis and ROS level, whereas Fer-1 significantly increased cell activity, and reduced apoptosis and ROS level. In addition, UVB significantly reduced levels of ferroptosis-related proteins and skin barrier-related proteins, and increased levels of γ-H2AX and iron, whereas Fer-1 significantly increased their protein levels, and reduced levels of γ-H2AX and iron. Conjoint analysis of transcriptomic and proteomic revealed that UVB significantly reduced the levels of TIMP metallopeptidase inhibitor 3 (TIMP3), and coagulation factor II thrombin receptor (F2R), whereas Fer-1 significantly promoted the levels of TIMP3, and F2R. Therefore, our results indicated that Fer-1 significantly ameliorates UVB-induced damage of HaCaT cells by regulating the levels of TIMP3 and F2R.
Collapse
Affiliation(s)
- Yan Teng
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Zhejiang, China
| | - Hui Tang
- Graduate School of Clinical Medicine, Bengbu Medical College, Bengbu, China
| | - Xiaohua Tao
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Zhejiang, China
| | - Youming Huang
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Zhejiang, China
| | - Yibin Fan
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Zhejiang, China
| |
Collapse
|
210
|
Aydin A, Goktas Aydin S. Associations of serum uric acid levels and anthropometric parameters with non-alcoholic fatty liver disease in healthy individuals: innovative insights from a cross-sectional study. Curr Med Res Opin 2024; 40:209-215. [PMID: 38111962 DOI: 10.1080/03007995.2023.2296967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/15/2023] [Indexed: 12/20/2023]
Abstract
OBJECTIVE Non-alcoholic fatty liver disease (NAFLD is a spectrum of liver disease with a rising prevalence, ranging from simple steatosis to steatohepatitis and cirrhosis, where a significant minority face potential complications. Determining the predictive markers plays a crucial role. This study examined the relationship between serum uric acid (SUA) levels and NAFLD in healthy individuals and identified potential other predictors. MATERIAL AND METHODS A cohort of 2162 healthy participants attending routine check-up visits between February 2021 and May 2023 were included. Participants underwent abdominal ultrasound, uric acid measurements, and anthropometric assessments by TANITA. NAFLD was graded using a "hepatic steatosis score." Statistical analysis included nonparametric tests, chi-squared tests, Fisher's exact test, ROC curve analysis, and logistic regression. RESULTS The median age was 45 years (range:18-65). 1017 were male, and 1145 were female. Among the participants, 53.9%, 26.3%, 17.9%, and 1.9% exhibited Grade 0, 1, 2, and 3 hepatic steatosis, respectively. ROC analysis showed 80.0% sensitivity and 78.8% specificity for detecting grade 2 or higher hepatic steatosis with a cutoff value of 5.21 mg/dl of SUA (AUC = 0.82, p < 0.001, 95%CI 0.79-0.84). There were significant associations between elevated uric acid levels and NAFLD. Participants with higher body fat percentages, BMI values, and waist-to-hip ratios also demonstrated an increased prevalence of steatosis. Gender significantly influenced liver steatosis, with males exhibiting higher grades compared to females. Logistic regression analysis highlighted positive associations between NAFLD and body fat percentage, waist-to-hip ratio, and uric acid levels. Each unit increase in uric acid levels corresponded to a 2.5-fold increase in the odds of NAFLD (p < 0.001, 95% CI = 2.20-2.84). CONCLUSION Our findings suggest a significant relationship between serum uric acid levels and NAFLD in healthy individuals. Elevated uric acid levels, in conjunction with other anthropometric parameters, may serve as potential predictive markers for NAFLD.
Collapse
Affiliation(s)
- Ahmet Aydin
- Medical Faculty, Department of Internal Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Sabin Goktas Aydin
- Medical Faculty, Department of Internal Medicine, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
211
|
Yu L, Gao Y, Bao Q, Xu M, Lu J, Du W. Effects of N6-methyladenosine modification on metabolic reprogramming in digestive tract tumors. Heliyon 2024; 10:e24414. [PMID: 38293446 PMCID: PMC10826742 DOI: 10.1016/j.heliyon.2024.e24414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
N6-methyladenosine (m6A), the most abundant RNA modification within cells, participates in various biological and pathological processes, including self-renewal, invasion and proliferation, drug resistance, and stem cell characteristics. The m6A methylation plays a crucial role in tumors by regulating multiple RNA processes such as transcription, processing, and translation. Three protein types are primarily involved in m6A methylation: methyltransferases (such as METTL3, METTL14, ZC3H13, and KIAA1429), demethylases (such as FTO, ALKBH5), and RNA-binding proteins (such as the family of YTHDF, YTHDC1, YTHDC2, and IGF2BPs). Various metabolic pathways are reprogrammed in digestive tumors to meet the heightened growth demands and sustain cellular functionality. Recent studies have highlighted the extensive impact of m6A on the regulation of digestive tract tumor metabolism, further modulating tumor initiation and progression. Our review aims to provide a comprehensive understanding of the expression patterns, functional roles, and regulatory mechanisms of m6A in digestive tract tumor metabolism-related molecules and pathways. The characterization of expression profiles of m6A regulatory factors and in-depth studies on m6A methylation in digestive system tumors may provide new directions for clinical prediction and innovative therapeutic interventions.
Collapse
Affiliation(s)
- Liang Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yuan Gao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Qiongling Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Min Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Weibo Du
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| |
Collapse
|
212
|
Li Y, Peng X, Wang G, Zan B, Wang Y, Zou J, Tian T, Meng Q, Shi R, Wang T, Wu J, Ma Y. Identifying hepatoprotective mechanism and effective components of Yinchenzhufu decoction in chronic cholestatic liver injury using a comprehensive strategy based on metabolomics, molecular biology, pharmacokinetics, and cytology. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117060. [PMID: 37598769 DOI: 10.1016/j.jep.2023.117060] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In Traditional Chinese Medicine (TCM), cholestasis liver disease belongs to jaundice. Yinchenzhufu decoction (YCZFD) is a classic formula used for treating jaundice. AIM OF THE STUDY This study was aimed to investigate the potential mechanism and effective components of YCZFD in chronic cholestatic liver injury (CCLI). MATERIALS AND METHODS A chronic cholestatic mouse model induced by 3, 5-diethoxycarbonyl-1, 4-dihydroxychollidine was used to investigate the effect of YCZFD. Then, metabolomics was used to investigate the metabolites influenced by YCZFD. Serum and liver bile acid (BA) levels were measured using liquid chromatography coupled with triple quadruple mass spectrometry (LC-MS/MS), and the gene and protein expressions of BA transporters and metabolic enzymes were detected. Additionally, the pharmacokinetics of multiple components of YCZFD was explored to clarify the potential effective components. The effects of absorbed components of YCZFD on BA metabolism and transporter function, inflammation, and farnesoid X receptor (FXR) and pregnane X receptor (PXR) activation were analyzed using sandwich cultured rat hepatocytes, AML12 cells, and dual-luciferase receptor systems, respectively. RESULTS YCZFD decreased the liver damage in chronic cholestatic mice. Serum metabolomics results indicated that the main pathways influenced by YCZFD involved primary BA biosynthesis and arachidonic acid metabolism. YCZFD upregulated the expression of FXR, PXR, and BA efflux transporters and the metabolic enzymes of liver tissues, promoting BA excretion and metabolism in cholestatic mice. Additionally, YCZFD downregulated the expression of genes and proteins of the toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) pathway and decreased liver inflammation. The pharmacokinetic study indicated that multiple components showed different pharmacokinetic properties. Among the absorbed components of YCZFD, multiple components activated the transcription of FXR and PXR, regulated BA transporters and metabolic enzyme function, and reduced the gene expression of TLR4 and NF-κB1. CONCLUSION YCZFD can ameliorate CCLI by promoting the excretion and metabolism of BAs and inhibiting inflammation via the TLR4/NF-κB signaling pathway. The multiple components of YCZFD could act on BA homeostasis regulation and anti-inflammation, exhibiting a combined effect against CCLI.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Xiaotian Peng
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Guofeng Wang
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Bin Zan
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Yahang Wang
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Juan Zou
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Tian Tian
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Qian Meng
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Rong Shi
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Tianming Wang
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Jiasheng Wu
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Yueming Ma
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China; Shanghai Key Laboratory of Compound Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
213
|
Tidwell J, Wu GY. Unique Genetic Features of Lean NAFLD: A Review of Mechanisms and Clinical Implications. J Clin Transl Hepatol 2024; 12:70-78. [PMID: 38250459 PMCID: PMC10794266 DOI: 10.14218/jcth.2023.00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/11/2023] [Accepted: 08/04/2023] [Indexed: 01/23/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) affects 25% of the global population. About 20% have a normal body mass index (BMI) and a variant known as lean NAFLD. Unlike typical NAFLD cases associated with obesity and diabetes, lean NAFLD causes liver disease by mechanisms not related to excess weight or insulin resistance. Genetic disorders are among the major factors in developing lean NAFLD, and genome-wide association studies have identified several genes associated with the condition. This review aims to increase awareness by describing the genetic markers linked to NAFLD and the defects involved in developing lean NAFLD.
Collapse
Affiliation(s)
- Jasmine Tidwell
- Department of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - George Y. Wu
- Department of Medicine, University of Connecticut Health Center, Farmington, CT, USA
- Division of Gastroenterology-Hepatology, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
214
|
Ke C, Chen C, Yang M, Chen H, Li L, Ke Y. Revealing the mechanism of 755-nm long-pulsed alexandrite laser in inhibiting infantile hemangioma endothelial cells through transcriptome sequencing. Lasers Med Sci 2024; 39:37. [PMID: 38236327 PMCID: PMC10796541 DOI: 10.1007/s10103-023-03967-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/27/2023] [Indexed: 01/19/2024]
Abstract
Laser therapy has shown promising outcomes in treating infantile hemangiomas. However, the molecular mechanisms underlying laser treatment for IH remain incompletely elucidated. This study aimed to unravel the molecular mechanisms of laser therapy in IH treatment. We evaluated the inhibitory effects of laser treatment on the proliferation and promotion of apoptosis in human hemangioma endothelial cells (HemECs) through cell counting kit-8 (CCK-8) assay, Hoechst 33342 staining, and flow cytometric analysis. Transcriptome sequencing analysis of HemECs following laser treatment revealed a significant decrease in the expression level of the GSTM5 gene. The qRT-PCR and western blot analysis also showed that GSTM5 expression in HemECs was downregulated compared to human umbilical vein endothelial cells (HUVECs), and concomitantly, the p62-Nrf2 pathway was suppressed. Using siRNA to downregulate GSTM5 expression, we observed that inhibiting GSTM5 expression could restrain cell proliferation, elevate intracellular ROS levels, and induce apoptosis in HemECs. Furthermore, upon inhibition of the p62-Nrf2 pathway using p62-specific siRNA, a significant decrease in GSTM5 expression and an elevation in intracellular ROS levels were noted in laser-treated HemECs. These findings suggested that laser treatment may operate by inhibiting the p62-Nrf2 pathway, thereby downregulating GSTM5 expression, elevating ROS levels, and consequently inducing apoptosis in HemECs.
Collapse
Affiliation(s)
- Chen Ke
- Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Wenzhou, 325000, Zhejiang, China
| | - Changhan Chen
- Department of Cosmetology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, 325000, Zhejiang, China
| | - Ming Yang
- Department of Cosmetology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, 325000, Zhejiang, China
| | - Hao Chen
- Department of Cosmetology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, 325000, Zhejiang, China
| | - Liqun Li
- Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Wenzhou, 325000, Zhejiang, China.
| | - Youhui Ke
- Department of Cosmetology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, 325000, Zhejiang, China.
- Wenzhou Key Laboratory of Laser Cosmetology, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
215
|
Liu M, Yu B, Tian Y, Li F. Regulatory function and mechanism research for m6A modification WTAP via SUCLG2-AS1- miR-17-5p-JAK1 axis in AML. BMC Cancer 2024; 24:98. [PMID: 38233760 PMCID: PMC10795285 DOI: 10.1186/s12885-023-11687-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024] Open
Abstract
Acute myeloid leukemia (AML), characterized by the abnormal accumulation of immature marrow cells in the bone marrow, is a malignant tumor of the blood system. Currently, the pathogenesis of AML is not yet clear. Therefore, this study aims to explore the mechanisms underlying the development of AML. Firstly, we identified a competing endogenous RNA (ceRNA) SUCLG2-AS1-miR-17-5p-JAK1 axis through bioinformatics analysis. Overexpression of SUCLG2-AS1 inhibits proliferation, migration and invasion and promotes apoptosis of AML cells. Secondly, luciferase reporter assay and RIP assay validated that SUCLG2-AS1 functioned as ceRNA for sponging miR-17-5p, further leading to JAK1 underexpression. Additionally, the results of MeRIP-qPCR and m6A RNA methylation quantification indicted that SUCLG2-AS1(lncRNA) had higher levels of m6A RNA methylation compared with controls, and SUCLG2-AS1 is regulated by m6A modification of WTAP in AML cells. WTAP, one of the main regulatory components of m6A methyltransferase complexes, proved to be highly expressed in AML and elevated WTAP is associated with poor prognosis of AML patients. Taken together, the WTAP-SUCLG2-AS1-miR-17-5p-JAK1 axis played essential roles in the process of AML development, which provided a novel therapeutic target for AML.
Collapse
Affiliation(s)
- Miaomiao Liu
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, No.126 Xinmin Street, Changchun, Jilin, 130021, P.R. China
| | - Bingxin Yu
- Department of Ultrasonography, The Third Hospital of Jilin University, Changchun, Jilin, 130033, P.R. China
| | - Yong Tian
- Department of Human Anatomy, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin, 130021, P.R. China
| | - Fan Li
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, No.126 Xinmin Street, Changchun, Jilin, 130021, P.R. China.
- The Key Laboratory for Bionics Engineering, Ministry of Education, Jilin University, Changchun, 130021, P.R. China.
- Engineering Research Center for Medical Biomaterials of Jilin Province, Jilin University, Changchun, 130021, P.R. China.
- Key Laboratory for Health Biomedical Materials of Jilin Province, Jilin University, Changchun, 130021, P.R. China.
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, Xinjiang, 830017, P.R. China.
| |
Collapse
|
216
|
Xue Y, Wei Y, Cao L, Shi M, Sheng J, Xiao Q, Cheng Z, Luo T, Jiao Q, Wu A, Chen C, Zhong L, Zhang C. Protective effects of scutellaria-coptis herb couple against non-alcoholic steatohepatitis via activating NRF2 and FXR pathways in vivo and in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116933. [PMID: 37482263 DOI: 10.1016/j.jep.2023.116933] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Scutellaria-coptis herb couple (SC) is a classic herbal pair used in many Traditional Chinese Medicine (TCM) formulations in the treatment of endocrine and metabolic deseases. Diabetes mellitus and non-alcoholic steatohepatitis (NASH) are both endocrine and metabolic diseases. Previous studies have shown that SC has anti-diabetic effects. However, the effect and mechanism of SC against NASH remains unclear. AIM OF THE STUDY This study aimed to demonstrate the effect and mechanism of SC against NASH through the nuclear factor-erythroid 2-related factor 2 (Nrf2) and farnesoid X receptor (FXR) dual signaling pathways in vivo and in vitro. MATERIALS AND METHODS The high fat diet-fed rat model, and HepG2 and RAW264.7 cell models were used. Serum biochemical indexes and liver histopathological changes were examined. Metabolomics, transcriptomics, and flow cytometry were performed. RT-qPCR and western blot analysis were performed to provide expression of NRF2 and FXR pathway signal molecules during SC's anti-NASH treatment in vivo and in vitro. RESULTS SC had anti-NASH effects in vivo with significantly improvement of serum NASH biochemical index and hepatopathological structure; meanwhile, SC significantly elevated the expression levels of FXR protein in liver and intestinal tissues, and cholesterol 7a-hydroxylase (CYP7A1) protein in liver. The mRNA expression levels of Takeda G protein receptor 5 (TGR5), CYP7A1, fibroblast growth factor receptor-4 (FGFR4), FXR, small heterodimer partner (SHP), fibroblast growth factor 15/19 (FGF15/19) and glucagon-like peptide-1 (GLP-1) were significantly elevated by SC. SC reduced the levels of NorCA, isoLCA and α-MCA in the feces of NAFLD rats. In vitro, SC-containing serum (SC-CS) was found to significantly reduce intracellular lipid deposition, inhibit ROS production, reduce intracellular Malondialdehyde (MDA) and IL-1β levels, and enhance the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). Six differential genes closely related to oxidative stress and Nrf2 were identified by transcriptomic analysis. SC-CS up-regulated the expression of NRF2, and reduced the expression of TXNIP and Caspase-1 genes in RAW264.7 cells. In addition, SC-CS reduced the expression of Keap1 and NF-κB, and up-regulated the expression of Nrf2, heme oxygenase-1 (HO-1), quinone oxidoreductase 1 (NQO1), and SOD; SC-CS elevated the protein level of NRF2, and reduced the protein level of TXNIP in HepG2 cells. CONCLUSIONS the mechanisms of SC action against NASH was closely related to the simultaneous activations of both NRF2 and FXR signaling pathways. These findings provide a new insight into the anti-NASH application of SC in clinical settings and demonstrate the potential of SC in the treatment of NASH.
Collapse
Affiliation(s)
- Yanan Xue
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Yue Wei
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Lan Cao
- Research Center of Chinese Medicine Resources and Ethnic Medicine, Jiangxi University of Chinese Medicine, PR China
| | - Min Shi
- College of Life Science, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Junqing Sheng
- College of Life Science, Nanchang University, Nanchang, 330031, PR China
| | - Qin Xiao
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Ziwen Cheng
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Tao Luo
- First Affiliated Hospital of Nanchang University, 330006, PR China
| | - Quanhui Jiao
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Ailan Wu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Lingyun Zhong
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China.
| | - Changhua Zhang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China; Nanchang Research Institute, Sun Yat-sen University, Jiangxi, 330096, PR China.
| |
Collapse
|
217
|
Li Y, Zheng N, Gao X, Huang W, Wang H, Bao Y, Ge X, Tao X, Sheng L, Li H. The identification of material basis of Si Miao Formula effective for attenuating non-alcoholic fatty liver disease. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116988. [PMID: 37541401 DOI: 10.1016/j.jep.2023.116988] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/17/2023] [Accepted: 07/30/2023] [Indexed: 08/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Si Miao Formula (SMF), a traditional Chinese medicine, originated from the "Cheng Fang Bian Du" during the Qing Dynasty and is commonly employed for the treatment of gout and hyperuricemia. We have demonstrated the anti-NAFLD effect of SMF by regulating hepatic lipid metabolism in high fat and high sucrose (HFHS) feeding mice in our previous report. However, the material basis of SMF for its anti-NAFLD effect remains unknown. AIM OF THE STUDY To compare the effeciacy of different components of SMF and identify the material basis for its anti-NAFLD effect. MATERIALS AND METHODS In the present study, a "Leave-one out" strategy was adopted by removing one herb from SMF each time, and the anti-NAFLD effects of four decomposed recipes containing three herbs were evaluated in C57BL/6J mice fed with an HFHS diet for 16 weeks. The chemical components of SMF and the absorbed entities in serum were assayed using UHPLC-Q-Exactive-Orbitrap HRMS. Finally, a new chemical combination with four compounds (berberine, betaine, caffeic acid, p-coumaric acid, 2:2:1:1) were generated (SMF component composition, SMF_CC), and its anti-NAFLD effect was evaluated by comparing with the original SMF in the mouse model. RESULTS Varified effects on NAFLD mice were observed among the decomposed recipes of SMF, while the original SMF showed advantages over its decomposed recipes. A total of 111 chemicals were identified from SMF, and 21 of them were detected in serum after oral administration of SMF. Comparing to SMF, SMF_CC showed comparable anti-NAFLD effect in HFHS-diet-fed mice, which was associated with the inhibition of hepatic fatty acid synthesis and transport, as well as inflammation. CONCLUSION Our current results suggested that the original SMF was better than its decomposed recipes in NAFLD management, and the derived SMF_CC was also effective in inhibiting NAFLD formation, highlighting its potential of being a novel natural agent for NAFLD therapy.
Collapse
Affiliation(s)
- Yan Li
- Functional Metabolomics and Gut Microbiome Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Ningning Zheng
- Functional Metabolomics and Gut Microbiome Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xinxin Gao
- Functional Metabolomics and Gut Microbiome Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Wenjin Huang
- Functional Metabolomics and Gut Microbiome Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Hao Wang
- Functional Metabolomics and Gut Microbiome Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yiyang Bao
- Functional Metabolomics and Gut Microbiome Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xinyu Ge
- Functional Metabolomics and Gut Microbiome Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xin Tao
- Functional Metabolomics and Gut Microbiome Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Lili Sheng
- Functional Metabolomics and Gut Microbiome Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Houkai Li
- Functional Metabolomics and Gut Microbiome Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
218
|
Wang M, Li H, Liu C, Zhang Y, Wu Q, Yang Y. Lingguizhugan Decoction Improved Obesity by Modulating the Gut Microbiota and its Metabolites in Mice. Curr Drug Metab 2024; 25:276-287. [PMID: 38982915 DOI: 10.2174/0113892002289388240705113755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/06/2024] [Accepted: 06/13/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND The global obese population is rapidly increasing, urgently requiring the development of effective and safe weight-loss medications. The classic Chinese medicine formulation Lingguizhugan Decoction has exerted a significant anti-obesity effect. However, the underlying mechanism is still unclear. OBJECTIVE This study aimed to explore the mechanism of LGZGD in the treatment of obesity based on the gut microbiota and its metabolites. METHODS Three different dosages of LGZGD were gavaged to ob/ob mice for 8 weeks. Body mass and visceral fat mass were evaluated. Additionally, the changes in gut microbiota, fecal and plasma metabolites in mice after LGZGD treatment were analyzed by metagenomics and non-targeted metabolomics. RESULTS The results demonstrated a significant anti-obesity effect of LGZGD treatment in ob/ob mice. Furthermore, the metagenomic analysis revealed that LGZGD reduced the ratio of Firmicutes / Bacteroidetes (F to B) in the gut, restored gut microbiota diversity, and identified 3 enriched KEGG pathways, including energy metabolism, lipid metabolism, and energy production and conversion pathways. Based on non-targeted metabolomics analysis, 20 key metabolites in the feces and 30 key metabolites in the plasma responding to LGZGD treatment were identified, and the levels of Eicosapentaenoic acid (EPA) and Myristoleic acid (MA) might be the metabolites related to gut microbiota after LGZGD treatment. Their biological functions were mainly related to the metabolism pathway. CONCLUSIONS These findings suggested that LGZGD had therapeutic potential for obesity. The mechanism of LGZGD alleviating obesity was associated with improving dysbiosis of the gut microbiota. LDZGD affected gut microbiota-derived metabolites of EPA and MA and may act on energy metabolism pathways.
Collapse
Affiliation(s)
- Meiling Wang
- Traditional Chinese Medicine Department, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, China
- Guangdong Pharmaceutical University, Xiaoguwei Street, Panyu District, Guangzhou, China
| | - Hairong Li
- Guangdong Pharmaceutical University, Xiaoguwei Street, Panyu District, Guangzhou, China
| | - Chunmei Liu
- Guangdong Pharmaceutical University, Xiaoguwei Street, Panyu District, Guangzhou, China
| | - Yuanyuan Zhang
- Guangdong Pharmaceutical University, Xiaoguwei Street, Panyu District, Guangzhou, China
| | - Qian Wu
- Guangdong Pharmaceutical University, Xiaoguwei Street, Panyu District, Guangzhou, China
| | - Yubin Yang
- Traditional Chinese Medicine Department, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, China
| |
Collapse
|
219
|
Xue Y, Wei Y, Cao L, Shi M, Sheng J, Xiao Q, Cheng Z, Luo T, Jiao Q, Wu A, Chen C, Zhong L, Zhang C. Protective effects of scutellaria-coptis herb couple against non-alcoholic steatohepatitis via activating NRF2 and FXR pathways in vivo and in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116933. [DOI: https:/doi.org/10.1016/j.jep.2023.116933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2024]
|
220
|
Wu C, Li Y, Luo Y, Dai Y, Qin J, Liu N, Xu R, Li X, Zhang P. Analysis of glutathione Stransferase mu class 5 gene methylation as a prognostic indicator in low-grade gliomas. Technol Health Care 2024; 32:3925-3942. [PMID: 39031395 PMCID: PMC11612950 DOI: 10.3233/thc-231316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 05/22/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND Low-grade gliomas (LGG) are a variety of brain tumors that show different clinical outcomes. The methylation of the GSTM5 gene has been noted in the development of LGG, however, its prognostic importance remains uncertain. OBJECTIVE The objective of this study was to examine the correlation between GSTM5 DNA methylation and clinical outcomes in individuals diagnosed with LGG. METHODS Analysis of GSTM5 methylation levels in LGG samples was conducted using data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. The overall survival based on GSTM5 methylation status was evaluated using Kaplan-Meier curves. The DNA methylation heatmap for particular CpG sites in the GSTM5 gene was visualized using the "pheatmap" R package. RESULTS The study analyzed that LGG tumors had higher levels of GSTM5 methylation than normal tissues. There was an inverse relationship discovered between GSTM5 expression and methylation. LGG patients with hypermethylation of GSTM5 promoter experienced a positive outcome. Age, grade, and GSTM5 methylation were determined as independent prognostic factors in LGG through both univariate and multivariate Cox regression analyses. CONCLUSION Methylation of GSTM5 DNA, specifically at certain CpG sites, is linked to a positive outlook in patients with LGG. Utilizing the "pheatmap" R package to visualize GSTM5 methylation patterns offers important information for identifying prognostic markers and therapeutic targets in low-grade gliomas.
Collapse
Affiliation(s)
- Cuiying Wu
- Department of Neurosurgery, The Seventh Medical Centre of PLA General Hospital, Beijing, China
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yunjun Li
- Department of Neurosurgery, The Seventh Medical Centre of PLA General Hospital, Beijing, China
- Department of Neurosurgery, Senior Department of Neurosurgery, The First Medical Centre of PLA General Hospital, Beijing, China
| | - Yongchun Luo
- Department of Neurosurgery, Senior Department of Neurosurgery, The First Medical Centre of PLA General Hospital, Beijing, China
| | - Yiwu Dai
- Department of Neurosurgery, Senior Department of Neurosurgery, The First Medical Centre of PLA General Hospital, Beijing, China
| | - Jiazhen Qin
- Department of Neurosurgery, Senior Department of Neurosurgery, The First Medical Centre of PLA General Hospital, Beijing, China
| | - Ning Liu
- Department of Neurosurgery, The Seventh Medical Centre of PLA General Hospital, Beijing, China
| | - Ruxiang Xu
- Department of Neurosurgery, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xuezhen Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Peng Zhang
- Department of Neurosurgery, The Seventh Medical Centre of PLA General Hospital, Beijing, China
- Department of Neurosurgery, Senior Department of Neurosurgery, The First Medical Centre of PLA General Hospital, Beijing, China
| |
Collapse
|
221
|
Zhang M, Xiao B, Chen X, Ou B, Wang S. Physical exercise plays a role in rebalancing the bile acids of enterohepatic axis in non-alcoholic fatty liver disease. Acta Physiol (Oxf) 2024; 240:e14065. [PMID: 38037846 DOI: 10.1111/apha.14065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/09/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered as one of the most common diseases of lipid metabolism disorders, which is closely related to bile acids disorders and gut microbiota disorders. Bile acids are synthesized from cholesterol in the liver, and processed by gut microbiota in intestinal tract, and participate in metabolic regulation through the enterohepatic circulation. Bile acids not only promote the consumption and absorption of intestinal fat but also play an important role in biological metabolic signaling network, affecting fat metabolism and glucose metabolism. Studies have demonstrated that exercise plays an important role in regulating the composition and function of bile acid pool in enterohepatic axis, which maintains the homeostasis of the enterohepatic circulation and the health of the host gut microbiota. Exercise has been recommended by several health guidelines as the first-line intervention for patients with NAFLD. Can exercise alter bile acids through the microbiota in the enterohepatic axis? If so, regulating bile acids through exercise may be a promising treatment strategy for NAFLD. However, the specific mechanisms underlying this potential connection are largely unknown. Therefore, in this review, we tried to review the relationship among NAFLD, physical exercise, bile acids, and gut microbiota through the existing data and literature, highlighting the role of physical exercise in rebalancing bile acid and microbial dysbiosis.
Collapse
Affiliation(s)
- Minyu Zhang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Biyang Xiao
- College of Life Sciences, Zhaoqing University, Zhaoqing, China
| | - Xiaoqi Chen
- College of Life Sciences, Zhaoqing University, Zhaoqing, China
| | - Bingming Ou
- College of Life Sciences, Zhaoqing University, Zhaoqing, China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Songtao Wang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| |
Collapse
|
222
|
Townsel A, Jaffe M, Wu Y, Henry CJ, Haynes KA. The Epigenetic Landscape of Breast Cancer, Metabolism, and Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1465:37-53. [PMID: 39586992 DOI: 10.1007/978-3-031-66686-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Obesity is a risk factor for developing breast cancer, and significantly increases mortality rates in patients diagnosed with this disease. Drivers of this unfortunate relationships are multifactorial, with obesity-induced changes in the epigenetic state of breast cancer cells being identified as a critical mechanism that impact survival, metastasis, and therapeutic responses. Recent studies have investigated the epigenetic landscape of breast cancer to elucidate the molecular interplay between the breast tissue epigenome and its cellular microenvironment. This chapter highlights studies that demonstrates the impact of obesity on the epigenome and metabolome of breast cancer cells. Furthermore, we discuss how obesity impacts the efficacy of chemotherapy and epigenetic targeting drugs, including the emergence of drug-resistance clonal populations. Delineating the relationships between the obesity and epigenetic changes in breast cancer cells will help identify therapeutic strategies which could improve survival outcomes in the rapidly growing number of patients with obesity and cancer.
Collapse
Affiliation(s)
- Ashley Townsel
- Department of Cancer Biology, Emory School of Medicine, Atlanta, GA, USA
| | - Maya Jaffe
- Wallace H. Coulter Department of Biomedical Engineering, Emory School of Medicine, Atlanta, GA, USA
| | - Yifei Wu
- Wallace H. Coulter Department of Biomedical Engineering, Emory School of Medicine, Atlanta, GA, USA
| | - Curtis J Henry
- Department of Immunology and Microbiology, The University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Karmella A Haynes
- Wallace H. Coulter Department of Biomedical Engineering, Emory School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
223
|
Khaafi M, Tayarani-Najaran Z, Javadi B. Cinnamaldehyde as a Promising Dietary Phytochemical Against Metabolic Syndrome: A Systematic Review. Mini Rev Med Chem 2024; 24:355-369. [PMID: 37489782 DOI: 10.2174/1389557523666230725113446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND Metabolic syndrome (METS) is a set of unhealthy medical conditions considered essential health problems today. Cinnamaldehyde (CA) is the major phytochemical present in the essential oil of cinnamon and possesses antioxidant, anti-inflammatory, hypoglycemic, and antihyperlipidemic activities. AIM We aim to systematically review the effects of CA in preventing and attenuating METS components. Moreover, the cellular and molecular mechanisms of actions of CA, its pharmacokinetics features, and potential structure-activity relationship (SAR) were also surveyed. METHODS PubMed, Science Direct, Scopus, and Google Scholar were searched to retrieve the relevant papers. RESULTS CA possesses various anti-METS activities, including anti-inflammatory, antioxidant, antidiabetic, antidyslipidemia, antiobesity, and antihypertensive properties. Various molecular mechanisms such as stimulating pancreatic insulin release, exerting an insulinotropic effect, lowering lipid peroxidation as well as pancreatic islet oxidant and inflammatory toxicity, increasing the activities of pancreatic antioxidant enzymes, suppressing pro-inflammatory cytokines production, regulating the molecular signaling pathways of the PPAR-γ and AMPK in preadipocytes and preventing adipocyte differentiation and adipogenesis are involved in these activities. CONCLUSIONS CA would effectively hinder METS; however, no robust clinical data supporting these effects in humans is currently available. Accordingly, conducting clinical trials to evaluate the efficacy, safe dosage, pharmacokinetics characteristics, and possible unwanted effects of CA in humans would be of great importance.
Collapse
Affiliation(s)
- Mohaddeseh Khaafi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Tayarani-Najaran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Behjat Javadi
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Azadi Square, Pardis University Campus, P.O. Box: 9188617871, Mashhad, Iran
| |
Collapse
|
224
|
Pan J, Xie X, Sheng J, Ju C, Sun S, Cui F, Zhai W, Ming L. Construction and identification of lncRNA/circRNA-coregulated ceRNA networks in gemcitabine-resistant bladder carcinoma. Carcinogenesis 2023; 44:847-858. [PMID: 37787763 DOI: 10.1093/carcin/bgad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/24/2023] [Accepted: 10/02/2023] [Indexed: 10/04/2023] Open
Abstract
OBJECTIVES To explore the regulatory networks that underlie the development of chemoresistance in bladder cancer. METHODS We analyzed profiles of differentially expressed long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), microRNAs (miRNAs) and messenger RNA (mRNAs) in gemcitabine-resistant/sensitive bladder cancer cells using next-generation sequencing data. RESULTS Hundreds of differentially expressed lncRNAs and miRNAs and thousands of circRNAs and mRNAs were identified. Bioinformatics analysis revealed the chromosomal localizations, classification and coexpression of mRNAs, as well as candidates for cis and trans regulation by lncRNAs. Furthermore, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of differentially expressed mRNAs and circRNAs indicated important functional roles of coregulated RNAs, thus establishing competing endogenous RNA (ceRNA) and protein-protein interactions networks that may underlie chemoresistance in bladder cancer. We demonstrated that lncRNA LINP1 can act as a ceRNA by inhibiting miR-193a-5p to increase TP73 expression; and that lncRNA ESRG and hsa_circ_0075881 can simultaneously bind miR-324-3p to increase ST6GAL1 expression. Modulation of ceRNA network components using ablation and overexpression approaches contributed to gemcitabine resistance in bladder cancer cells. CONCLUSIONS These results elucidate mechanisms by which lncRNAs and circRNAs coregulate the development of bladder cancer cell resistance to gemcitabine, thus laying the foundation for future research to identify biomarkers and disease targets.
Collapse
Affiliation(s)
- Jingjing Pan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University and the Key Clinical Laboratory of Henan Province, Zhengzhou, China
| | - Xiaojuan Xie
- Shaanxi Center for Clinical Laboratory, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jinxiu Sheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University and the Key Clinical Laboratory of Henan Province, Zhengzhou, China
| | - Chenxi Ju
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University and the Key Clinical Laboratory of Henan Province, Zhengzhou, China
| | - Shuaijie Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University and the Key Clinical Laboratory of Henan Province, Zhengzhou, China
| | - Fangfang Cui
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Wen Zhai
- Department of Medical Genetics, Northwest Women's and Children's Hospital, Xi'an, China
| | - Liang Ming
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University and the Key Clinical Laboratory of Henan Province, Zhengzhou, China
| |
Collapse
|
225
|
Shin S, Kim J, Lee JY, Kim J, Oh CM. Mitochondrial Quality Control: Its Role in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). J Obes Metab Syndr 2023; 32:289-302. [PMID: 38049180 PMCID: PMC10786205 DOI: 10.7570/jomes23054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/27/2023] [Accepted: 09/30/2023] [Indexed: 12/06/2023] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease, is characterized by hepatic steatosis and metabolic dysfunction and is often associated with obesity and insulin resistance. Recent research indicates a rapid escalation in MASLD cases, with projections suggesting a doubling in the United States by 2030. This review focuses on the central role of mitochondria in the pathogenesis of MASLD and explores potential therapeutic interventions. Mitochondria are dynamic organelles that orchestrate hepatic energy production and metabolism and are critically involved in MASLD. Dysfunctional mitochondria contribute to lipid accumulation, inflammation, and liver fibrosis. Genetic associations further underscore the relationship between mitochondrial dynamics and MASLD susceptibility. Although U.S. Food and Drug Administration-approved treatments for MASLD remain elusive, ongoing clinical trials have highlighted promising strategies that target mitochondrial dysfunction, including vitamin E, metformin, and glucagon-like peptide-1 receptor agonists. In preclinical studies, novel therapeutics, including nicotinamide adenine dinucleotide+ precursors, urolithin A, spermidine, and mitoquinone, have shown beneficial effects, such as improving mitochondrial quality control, reducing oxidative stress, and ameliorating hepatic steatosis and inflammation. In conclusion, mitochondrial dysfunction is central to MASLD pathogenesis. The innovative mitochondria-targeted approaches discussed in this review offer a promising avenue for reducing the burden of MASLD and improving global quality of life.
Collapse
Affiliation(s)
- Soyeon Shin
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Jaeyoung Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Ju Yeon Lee
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Jun Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| |
Collapse
|
226
|
Chen HJ, Huang TX, Jiang YX, Chen X, Wang AF. Multifunctional roles of inflammation and its causative factors in primary liver cancer: A literature review. World J Hepatol 2023; 15:1258-1271. [PMID: 38223416 PMCID: PMC10784815 DOI: 10.4254/wjh.v15.i12.1258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/06/2023] [Accepted: 11/24/2023] [Indexed: 12/25/2023] Open
Abstract
Primary liver cancer is a severe and complex disease, leading to 800000 global deaths annually. Emerging evidence suggests that inflammation is one of the critical factors in the development of hepatocellular carcinoma (HCC). Patients with viral hepatitis, alcoholic hepatitis, and steatohepatitis symptoms are at higher risk of developing HCC. However, not all inflammatory factors have a pathogenic function in HCC development. The current study describes the process and mechanism of hepatitis development and its progression to HCC, particularly focusing on viral hepatitis, alcoholic hepatitis, and steatohepatitis. Furthermore, the roles of some essential inflammatory cytokines in HCC progression are described in addition to a summary of future research directions.
Collapse
Affiliation(s)
- Hong-Jin Chen
- Department of Pharmacology, School of Basic Medical Sciences, Translational Medicine Research Center, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
| | - Ting-Xiong Huang
- School of Clinical Medical, Translational Medicine Research Center, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
| | - Yu-Xi Jiang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou 325035, Zhejiang Province, China
| | - Xiong Chen
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
- Department of Endocrinology, The People's Hospital of Yuhuan, The Yuhuan Branch of The First Affiliated Hospital of Wenzhou Medical University, Yuhuan 317600, Zhejiang Province, China
| | - Ai-Fang Wang
- Department of Endocrinology, The People's Hospital of Yuhuan, The Yuhuan Branch of The First Affiliated Hospital of Wenzhou Medical University, Yuhuan 317600, Zhejiang Province, China.
| |
Collapse
|
227
|
Askari VR, Khosravi K, Baradaran Rahimi V, Garzoli S. A Mechanistic Review on How Berberine Use Combats Diabetes and Related Complications: Molecular, Cellular, and Metabolic Effects. Pharmaceuticals (Basel) 2023; 17:7. [PMID: 38275993 PMCID: PMC10819502 DOI: 10.3390/ph17010007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
Berberine (BBR) is an isoquinoline alkaloid that can be extracted from herbs such as Coptis, Phellodendron, and Berberis. BBR has been widely used as a folk medicine to treat various disorders. It is a multi-target drug with multiple mechanisms. Studies have shown that it has antioxidant and anti-inflammatory properties and can also adjust intestinal microbial flora. This review focused on the promising antidiabetic effects of BBR in several cellular, animal, and clinical studies. Based on previous research, BBR significantly reduced levels of fasting blood glucose, hemoglobin A1C, inflammatory cytokines, and oxidative stress markers. Furthermore, BBR stimulated insulin secretion and improved insulin resistance through different pathways, including up-regulation of protein expression of proliferator-activated receptor (PPAR)-γ, glucose transporter (GLUT) 4, PI3K/AKT, and AMP-activated protein kinase (AMPK) activation. Interestingly, it was demonstrated that BBR has protective effects against diabetes complications, such as diabetic-induced hepatic damage, cardiovascular disorders, nephropathy, and neuropathy. Furthermore, multiple clinical trial studies have emphasized the ameliorative effects of BBR in type 2 diabetic patients.
Collapse
Affiliation(s)
- Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran;
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Kimia Khosravi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 1696700, Iran;
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 1696700, Iran;
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, P. le Aldo Moro, 5, 00185 Rome, Italy
| |
Collapse
|
228
|
Shi H, Yuan X, Liu G, Fan W. Identifying and Validating GSTM5 as an Immunogenic Gene in Diabetic Foot Ulcer Using Bioinformatics and Machine Learning. J Inflamm Res 2023; 16:6241-6256. [PMID: 38145013 PMCID: PMC10748866 DOI: 10.2147/jir.s442388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/12/2023] [Indexed: 12/26/2023] Open
Abstract
Background A diabetic foot ulcer (DFU) is a serious, long-term condition associated with a significant risk of disability and mortality. However, research on its biomarkers is still limited. This study utilizes bioinformatics and machine learning methods to identify immune-related biomarkers for DFU and validates them through external datasets and animal experiments. Methods This study used bioinformatics and machine learning to analyze microarray data from the Gene Expression Omnibus (GEO) database to identify key genes associated with DFU. Animal experiments were conducted to validate these findings. This research employs the datasets GSE68183 and GSE80178 retrieved from the GEO database as the training dataset for building a gene machine learning model, and after conducting differential analysis on the data, this study used package glmnet and package e1071 to construct LASSO and SVM-RFE machine learning models, respectively. Subsequently, we validated the model using the training set and validation set (GSE134431). We conducted enrichment analysis, including GSEA and GSVA, on the model genes. We also performed immune functional analysis and immune-related analysis on the model genes. Finally, we conducted immunohistochemistry (IHC) validation on the model genes. Results This study identifies GSTM5 as a potential immune-related key target in DFU using machine learning and bioinformatics methods. Subsequent validation through external datasets and IHC experiments also confirms GSTM5 as a critical biomarker for DFU. The gene may be associated with T cells regulatory (Tregs) and T cells follicular helper, and it influences the NF-κB, GnRH, and MAPK signaling pathway. Conclusion This study identified and validated GSTM5 as a biomarker for DFU. This finding may potentially provide a target for immune therapy for DFU.
Collapse
Affiliation(s)
- Hongshuo Shi
- Department of Peripheral Vascular Surgery, Institute of Surgery of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xin Yuan
- Department of Peripheral Vascular Surgery, Institute of Surgery of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Guobin Liu
- Department of Peripheral Vascular Surgery, Institute of Surgery of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Weijing Fan
- Department of Peripheral Vascular Surgery, Institute of Surgery of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
229
|
Xiu W, Lin J, Hu Y, Tang H, Wu S, Yang C. Assessing multiple factors affecting the gut microbiome structure of very preterm infants. Braz J Med Biol Res 2023; 56:e13186. [PMID: 38088676 PMCID: PMC10712283 DOI: 10.1590/1414-431x2023e13186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
The composition and diversity of the gut microbiota are essential for the health and development of the immune system of infants. However, there is limited information on factors that influence the gut microbiota of very preterm infants. In this study, we analyzed factors that affect the gut microbiota of very preterm infants. The stool samples from 64 very preterm infants with a gestational age less than 32 weeks were collected for 16S rRNA gene sequencing. The infants were divided according to the delivery mode, antibiotic use during pregnancy, and feeding methods. The abundance of Proteobacteria was high in both cesarean (92.7%) and spontaneous (55.5%) delivery groups and then shifted to Firmicutes after the first week of birth. In addition, Proteobacteria was also the dominant phylum of infant gut microbiome for mothers with antibiotic use, with more than 50% after the first week of birth. In comparison, the dominant phylum for mothers without antibiotic use was Firmicutes. Proteobacteria level was also high in breastfeeding and mixed-feeding groups, consisting of more than 90% of the community. By contrast, Proteobacteria was the dominant phylum at the first week of birth but then shifted to Firmicutes for the formula-fed group. The alterations of gut microbiota in infants can affect their health condition during growth. This study confirmed that the different feeding types, delivery modes, and use of antibiotics during pregnancy can significantly affect the composition of the gut microbiota of very preterm infants.
Collapse
Affiliation(s)
- Wenlong Xiu
- Department of Neonatology, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Jiajia Lin
- Department of Neonatology, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yanhua Hu
- Department of Neonatology, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Heng Tang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Shuangchan Wu
- Institute of Medical Research, Northwestern Polytechnical University, Xian, Shanxi Province, China
| | - Changyi Yang
- Department of Neonatology, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
230
|
Wang Z, Wang X, Liu L, Guo X, Zhang H, Yin J, Lin R, Shao Y, Cai D. Fructose-bisphosphatase1 (FBP1) alleviates experimental osteoarthritis by regulating Protein crumbs homolog 3 (CRB3). Arthritis Res Ther 2023; 25:235. [PMID: 38049890 PMCID: PMC10694907 DOI: 10.1186/s13075-023-03221-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/25/2023] [Indexed: 12/06/2023] Open
Abstract
PURPOSE To identify the role of gluconeogenesis in chondrocytes in osteoarthritis (OA). MATERIALS AND METHODS Cartilage samples were collected from OA patients and C57 mice and were stained with Safranin O-Fast Green to determine the severity of OA. Periodic acid Schiff staining was used to characterize the contents of polysaccharides and SA-βGal staining was used to characterize the aging of chondrocytes. Immunohistochemistry and western blotting were used to detect fructose-bisphosphatase1 (FBP1), SOX9, MMP13, P21, and P16 in cartilage or chondrocyte. The mRNA levels of fbp1, mmp13, sox9, colX, and acan were analyzed by qPCR to evaluate the role of FBP1 in chondrocytes. RESULTS The level of polysaccharides in cartilage was reduced in OA and the expression of FBP1 was also reduced. We treated the chondrocytes with IL-1β to cause OA in vitro, and then made chondrocytes overexpress FBP1 with plasma. It shows that FBP1 alleviated the degeneration and senescence of chondrocytes in vitro and that it also showed the same effects in vivo experiments. To further understand the mechanism of FBP1, we screened the downstream protein of FBP1 and found that CRB3 was significantly downregulated. And we confirmed that CRB3 suppressed the degeneration and delayed senescence of chondrocytes. CONCLUSIONS FBP1 promoted the polysaccharide synthesis in cartilage and alleviated the degeneration of cartilage by regulating CRB3, so FBP1 is a potential target in treating OA.
Collapse
Affiliation(s)
- Zhuolun Wang
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third School of Clinical Medicine, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Xinjie Wang
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third School of Clinical Medicine, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Liangliang Liu
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third School of Clinical Medicine, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Xiongtian Guo
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, China
| | - Haiyan Zhang
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third School of Clinical Medicine, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Jianbing Yin
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, China
| | - Rengui Lin
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, China
| | - Yan Shao
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, China.
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third School of Clinical Medicine, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| | - Daozhang Cai
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, China.
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third School of Clinical Medicine, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
231
|
Zamanian MY, Sadeghi Ivraghi M, Khachatryan LG, Vadiyan DE, Bali HY, Golmohammadi M. A review of experimental and clinical studies on the therapeutic effects of pomegranate ( Punica granatum) on non-alcoholic fatty liver disease: Focus on oxidative stress and inflammation. Food Sci Nutr 2023; 11:7485-7503. [PMID: 38107091 PMCID: PMC10724645 DOI: 10.1002/fsn3.3713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 12/19/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is frequently linked to metabolic disorders and is prevalent in obese and diabetic patients. The pathophysiology of NAFLD involves multiple factors, including insulin resistance (IR), oxidative stress (OS), inflammation, and genetic predisposition. Recently, there has been an emphasis on the use of herbal remedies with many people around the world resorting to phytonutrients or nutraceuticals for treatment of numerous health challenges in various national healthcare settings. Pomegranate (Punica granatum) parts, such as juice, peel, seed and flower, have high polyphenol content and is well known for its antioxidant capabilities. Pomegranate polyphenols, such as hydrolyzable tannins, anthocyanins, and flavonoids, have high antioxidant capabilities that can help lower the OS and inflammation associated with NAFLD. The study aimed to investigate whether pomegranate parts could attenuate OS, inflammation, and other risk factors associated with NAFLD, and ultimately prevent the development of the disease. The findings of this study revealed that: 1. pomegranate juice contains hypoglycemic qualities that can assist manage blood sugar levels, which is vital for avoiding and treating NAFLD. 2. Polyphenols from pomegranate flowers increase paraoxonase 1 (PON1) mRNA and protein levels in the liver, which can help protect liver enzymes and prevent NAFLD. 3. Punicalagin (PU) is one of the major ellagitannins found in pomegranate, and PU-enriched pomegranate extract (PE) has been shown to inhibit HFD-induced hyperlipidemia and hepatic lipid deposition in rats. 4. Pomegranate fruit consumption, which is high in antioxidants, can decrease the activity of AST and ALT (markers of liver damage), lower TNF-α (a marker of inflammation), and improve overall antioxidant capacity in NAFLD patients. Overall, the polyphenols in pomegranate extracts have antioxidant, anti-inflammatory, hypoglycemic, and protective effects on liver enzymes, which can help prevent and manage NAFLD effects on liver enzymes, which can help prevent and manage NAFLD.
Collapse
Affiliation(s)
- Mohammad Yassin Zamanian
- Department of Physiology, School of MedicineHamadan University of Medical SciencesHamadanIran
- Department of Pharmacology and Toxicology, School of PharmacyHamadan University of Medical SciencesHamadanIran
| | | | - Lusine G. Khachatryan
- Department of Pediatric Diseases, N.F. Filatov Clinical Institute of Children's HealthI.M. Sechenov First Moscow State Medical University (Sechenov University)MoscowRussia
| | - Diana E. Vadiyan
- Institute of Dentistry, Department of Pediatric, Preventive Dentistry and OrthodonticsI.M. Sechenov First Moscow State Medical University (Sechenov University)MoscowRussia
| | | | | |
Collapse
|
232
|
Liu ZB, Fan XY, Wang CW, Ye X, Wu CJ. Potentially active compounds that improve PAD through angiogenesis: A review. Biomed Pharmacother 2023; 168:115634. [PMID: 37879211 DOI: 10.1016/j.biopha.2023.115634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/27/2023] Open
Abstract
Peripheral arterial disease (PAD) has been historically neglected, which has resulted in a lack of effective drugs in clinical practice. However, with the increasing prevalence of diseases like atherosclerosis and diabetes, the incidence of PAD is rising and cannot be ignored. Researchers are exploring the potential of promoting angiogenesis through exogenous compounds to improve PAD. This paper focuses on the therapeutic effect of natural products (Salidroside, Astragaloside IV, etc.) and synthetic compounds (Cilostazol, Dapagliflozin, etc.). Specifically, it examines how they can promote autocrine secretion of vascular endothelial cells, enhance cell paracrine interactions, and regulate endothelial progenitor cell function. The activation of these effects may be closely related to PI3K, AMPK, and other pathways. Overall, these exogenous compounds have promising therapeutic potential for PAD. This study aims to summarize the potential active compounds, provide a variety of options for the search for drugs for the treatment of PAD, and bring light to the treatment of patients.
Collapse
Affiliation(s)
- Zi-Bo Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xin-Yun Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chen-Wei Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xun Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chun-Jie Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu Univesity of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
233
|
Allemann MS, Lee P, Beer JH, Saeedi Saravi SS. Targeting the redox system for cardiovascular regeneration in aging. Aging Cell 2023; 22:e14020. [PMID: 37957823 PMCID: PMC10726899 DOI: 10.1111/acel.14020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 09/09/2023] [Accepted: 10/05/2023] [Indexed: 11/15/2023] Open
Abstract
Cardiovascular aging presents a formidable challenge, as the aging process can lead to reduced cardiac function and heightened susceptibility to cardiovascular diseases. Consequently, there is an escalating, unmet medical need for innovative and effective cardiovascular regeneration strategies aimed at restoring and rejuvenating aging cardiovascular tissues. Altered redox homeostasis and the accumulation of oxidative damage play a pivotal role in detrimental changes to stem cell function and cellular senescence, hampering regenerative capacity in aged cardiovascular system. A mounting body of evidence underscores the significance of targeting redox machinery to restore stem cell self-renewal and enhance their differentiation potential into youthful cardiovascular lineages. Hence, the redox machinery holds promise as a target for optimizing cardiovascular regenerative therapies. In this context, we delve into the current understanding of redox homeostasis in regulating stem cell function and reprogramming processes that impact the regenerative potential of the cardiovascular system. Furthermore, we offer insights into the recent translational and clinical implications of redox-targeting compounds aimed at enhancing current regenerative therapies for aging cardiovascular tissues.
Collapse
Affiliation(s)
- Meret Sarah Allemann
- Center for Molecular CardiologyUniversity of ZurichSchlierenSwitzerland
- Department of Internal MedicineCantonal Hospital BadenBadenSwitzerland
| | - Pratintip Lee
- Center for Molecular CardiologyUniversity of ZurichSchlierenSwitzerland
- Department of Internal MedicineCantonal Hospital BadenBadenSwitzerland
| | - Jürg H. Beer
- Center for Molecular CardiologyUniversity of ZurichSchlierenSwitzerland
- Department of Internal MedicineCantonal Hospital BadenBadenSwitzerland
| | - Seyed Soheil Saeedi Saravi
- Center for Translational and Experimental Cardiology, Department of CardiologyUniversity Hospital Zurich, University of ZurichSchlierenSwitzerland
| |
Collapse
|
234
|
Rodimova S, Bobrov N, Mozherov A, Elagin V, Karabut M, Ermakova P, Shchechkin I, Kozlov D, Krylov D, Gavrina A, Kashina A, Zagainov V, Zagaynova E, Kuznetsova D. The Effect of Diabetes Mellitus Type 1 on the Energy Metabolism of Hepatocytes: Multiphoton Microscopy and Fluorescence Lifetime Imaging. Int J Mol Sci 2023; 24:17016. [PMID: 38069338 PMCID: PMC10706954 DOI: 10.3390/ijms242317016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
A decrease in the regenerative potential of the liver during the development of non-alcoholic fatty liver disease (NAFLD), which is observed in the vast majority of patients with diabetes mellitus type 1, significantly increases the risk of postoperative liver failure. In this regard, it is necessary to develop new approaches for the rapid intraoperative assessment of the condition of liver tissue in the presence of concomitant liver pathology. A modern label-free approach based on multiphoton microscopy, second harmonic generation (SHG), and fluorescence lifetime imaging microscopy (FLIM) allow for the evaluation of the structure of liver tissue as well as the assessment of the metabolic state of hepatocytes, even at the cellular level. We obtained optical criteria and identified specific changes in the metabolic state of hepatocytes for a reduced liver regenerative potential in the presence of induced diabetes mellitus type 1. The obtained criteria will expand the possibilities for the express assessment of the structural and functional state of liver tissue in clinical practice.
Collapse
Affiliation(s)
- Svetlana Rodimova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia; (S.R.); (V.E.); (D.K.); (D.K.)
| | - Nikolai Bobrov
- The Volga District Medical Centre of Federal Medical and Biological Agency, 14 Ilinskaya St., 603000 Nizhny Novgorod, Russia
| | - Artem Mozherov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia; (S.R.); (V.E.); (D.K.); (D.K.)
- Laboratory of Molecular Genetic Research of the Institute of Clinical Medicine, Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| | - Vadim Elagin
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia; (S.R.); (V.E.); (D.K.); (D.K.)
| | - Maria Karabut
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia; (S.R.); (V.E.); (D.K.); (D.K.)
| | - Polina Ermakova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia; (S.R.); (V.E.); (D.K.); (D.K.)
| | - Ilya Shchechkin
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia; (S.R.); (V.E.); (D.K.); (D.K.)
- Laboratory of Molecular Genetic Research of the Institute of Clinical Medicine, Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| | - Dmitry Kozlov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia; (S.R.); (V.E.); (D.K.); (D.K.)
- Laboratory of Molecular Genetic Research of the Institute of Clinical Medicine, Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| | - Dmitry Krylov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia; (S.R.); (V.E.); (D.K.); (D.K.)
- Laboratory of Molecular Genetic Research of the Institute of Clinical Medicine, Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| | - Alena Gavrina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia; (S.R.); (V.E.); (D.K.); (D.K.)
- Laboratory of Molecular Genetic Research of the Institute of Clinical Medicine, Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| | - Aleksandra Kashina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia; (S.R.); (V.E.); (D.K.); (D.K.)
| | - Vladimir Zagainov
- The Volga District Medical Centre of Federal Medical and Biological Agency, 14 Ilinskaya St., 603000 Nizhny Novgorod, Russia
- Nizhny Novgorod Regional Clinical Oncologic Dispensary, 11/1 Delovaya St., 603126 Nizhny Novgorod, Russia
| | - Elena Zagaynova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia; (S.R.); (V.E.); (D.K.); (D.K.)
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya St., 119435 Moscow, Russia
| | - Daria Kuznetsova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia; (S.R.); (V.E.); (D.K.); (D.K.)
- Laboratory of Molecular Genetic Research of the Institute of Clinical Medicine, Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| |
Collapse
|
235
|
Jin Q, Qu H, Quan C. New insights into the regulation of METTL3 and its role in tumors. Cell Commun Signal 2023; 21:334. [PMID: 37996892 PMCID: PMC10732098 DOI: 10.1186/s12964-023-01360-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/20/2023] [Indexed: 11/25/2023] Open
Abstract
As one of the most abundant epigenetic modifications in RNA, N6-methyladenosine (m6A) affects RNA transcription, splicing, stability, and posttranscriptional translation. Methyltransferase-like 3 (METTL3), a key component of the m6A methyltransferase complex, dynamically regulates target genes expression through m6A modification. METTL3 has been found to play a critical role in tumorigenesis, tumor growth, metastasis, metabolic reprogramming, immune cell infiltration, and tumor drug resistance. As a result, the development of targeted drugs against METTL3 is becoming increasingly popular. This review systematically summarizes the factors that regulate METTL3 expression and explores the specific mechanisms by which METTL3 affects multiple tumor biological behaviors. We aim to provide fundamental support for tumor diagnosis and treatment, at the same time, to offer new ideas for the development of tumor-targeting drugs.
Collapse
Affiliation(s)
- Qiu Jin
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin, 130021, People's Republic of China
| | - Huinan Qu
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin, 130021, People's Republic of China.
| | - Chengshi Quan
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin, 130021, People's Republic of China.
| |
Collapse
|
236
|
Jung C, Park S, Kim H. Association between hypoglycemic agent use and the risk of occurrence of nonalcoholic fatty liver disease in patients with type 2 diabetes mellitus. PLoS One 2023; 18:e0294423. [PMID: 37992029 PMCID: PMC10664876 DOI: 10.1371/journal.pone.0294423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/02/2023] [Indexed: 11/24/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a growing health concern with increasing prevalence and associated health impacts. Although no approved drugs are available for the NAFLD treatment, several hypoglycemic agents have been investigated as promising therapeutic agents. We aimed to compare the risk of occurrence of NAFLD with respect to the use of different hypoglycemic agents in patients with type 2 diabetes. This retrospective cohort study used data from the National Health Insurance Service-National Sample Cohort of South Korea. Participants newly diagnosed with type 2 diabetes (2003-2019) were included in this study. Two new user-active comparator cohorts were assembled: Cohort 1, new users of thiazolidinediones (TZD) and dipeptidyl peptidase-4 inhibitors (DPP-4i), and Cohort 2, new users of sodium-glucose cotransporter-2 inhibitors (SGLT-2i) and DPP-4i. The occurrence of NAFLD was defined based claims that include diagnostic codes. Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated using Cox proportional hazard models in 1:3 propensity score (PS)-matched cohorts. For 65,224 patients newly diagnosed with type 2 diabetes, the overall prevalence of NAFLD was 42.6%. The PS-matched Cohort 1 included 6,351 and 2,117 new users of DPP-4i and TZD, respectively. Compared to DPP-4i, TZD use was associated with the decreased risk of NAFLD (HR, 0.66; 95% CI: 0.55-0.78). Cohort 2 consisted of 6,783 and 2,261 new users of DPP-4i and SGLT-2i, respectively; SGLT-2i use was associated with a decreased risk of NAFLD (HR, 0.93; 95% CI: 0.80-1.08). This population-based cohort study supports the clinical implications of prioritizing TZD and SGLT-2i over DPP-4i in reducing the risk of occurrence of NAFLD in patients with type 2 diabetes. However, the findings lacked statistical significance, highlighting the need for further verification studies.
Collapse
Affiliation(s)
- Choungwon Jung
- College of Pharmacy, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Soyoung Park
- College of Pharmacy, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Hyunah Kim
- College of Pharmacy, Sookmyung Women’s University, Seoul, Republic of Korea
- Drug Information Research Institute, Sookmyung Women’s University, Seoul, Republic of Korea
| |
Collapse
|
237
|
Elmileegy IMH, Waly HSA, Alghriany AAI, Abou Khalil NS, Mahmoud SMM, Negm EA. Gallic acid rescues uranyl acetate induced-hepatic dysfunction in rats by its antioxidant and cytoprotective potentials. BMC Complement Med Ther 2023; 23:423. [PMID: 37993853 PMCID: PMC10664358 DOI: 10.1186/s12906-023-04250-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND The liver was identified as a primary target organ for the chemo-radiological effects of uranyl acetate (UA). Although the anti-oxidant and anti-apoptotic properties of gallic acid (GA) make it a promising phytochemical to resist its hazards, there is no available data in this area of research. METHODS To address this issue, eighteen rats were randomly and equally divided into three groups. One group was received carboxymethyl cellulose (vehicle of GA) and kept as a control. The UA group was injected intraperitoneally with UA at a single dose of 5 mg/kg body weight. The third group (GA + UA group) was treated with GA orally at a dose of 100 mg/kg body weight for 14 days before UA exposure. UA was injected on the 15th day of the experiment in either the UA group or the GA + UA group. The biochemical, histological, and immunohistochemical findings in the GA + UA group were compared to both control and UA groups. RESULTS The results showed that UA exposure led to a range of adverse effects. These included elevated plasma levels of aspartate aminotransferase, lactate dehydrogenase, total protein, globulin, glucose, total cholesterol, triglycerides, low-density lipoprotein cholesterol, and very-low-density lipoprotein and decreased plasma levels of high-density lipoprotein cholesterol. The exposure also disrupted the redox balance, evident through decreased plasma total antioxidant capacity and hepatic nitric oxide, superoxide dismutase, reduced glutathione, glutathione-S-transferase, glutathione reductase, and glutathione peroxidase and increased hepatic oxidized glutathione and malondialdehyde. Plasma levels of albumin and alanine aminotransferase did not significantly change in all groups. Histopathological analysis revealed damage to liver tissue, characterized by deteriorations in tissue structure, excessive collagen accumulation, and depletion of glycogen. Furthermore, UA exposure up-regulated the immuno-expression of cleaved caspase-3 and down-regulated the immuno-expression of nuclear factor-erythroid-2-related factor 2 in hepatic tissues, indicating an induction of apoptosis and oxidative stress response. However, the pre-treatment with GA proved to be effective in mitigating these negative effects induced by UA exposure, except for the disturbances in the lipid profile. CONCLUSIONS The study suggests that GA has the potential to act as a protective agent against the adverse effects of UA exposure on the liver. Its ability to restore redox balance and inhibit apoptosis makes it a promising candidate for countering the harmful effects of chemo-radiological agents such as UA.
Collapse
Affiliation(s)
- Ibtisam M H Elmileegy
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, 71526, Egypt
| | - Hanan S A Waly
- Laboratory of Physiology, Department of Zoology and Entomology, Faculty of Science, Assiut University, Assiut, Egypt
| | | | - Nasser S Abou Khalil
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, 71526, Egypt.
- Department of Basic Medical Sciences, Faculty of Physical Therapy, Merit University, Sohag, Egypt.
| | - Sara M M Mahmoud
- Department of Physiology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Eman A Negm
- Department of Physiology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| |
Collapse
|
238
|
Wang H, Li H, Li Z, Feng L, Peng L. Evaluation of Prebiotic Activity of Stellariae Radix Polysaccharides and Its Effects on Gut Microbiota. Nutrients 2023; 15:4843. [PMID: 38004237 PMCID: PMC10675217 DOI: 10.3390/nu15224843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/30/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
This study aims to evaluate the prebiotic potential of polysaccharides derived from Stellariae Radix (SRPs) and explore their influence on the gut microbiota composition in mice. Lactobacillus acidophilus and Bifidobacterium longum were cultivated in an MRS medium, while their growth kinetics, clumping behavior, sugar utilization, pH variation, growth density, and probiotic index were meticulously monitored. Additionally, the impact of crude Stellariae Radix polysaccharides (CSRP) on the richness and diversity of gut microbiota in mice was assessed via 16S rDNA sequencing. The results demonstrated the remarkable ability of CSRPs to stimulate the proliferation of Lactobacillus acidophilus and Bifidobacterium longum. Moreover, the oral administration of CSRPs to mice led to a noticeable increase in beneficial bacterial populations and a concurrent decrease in detrimental bacterial populations within the intestinal flora. These findings provided an initial validation of CSRPs as a promising agent in maintaining the equilibrium of gut microbiota in mice, thereby offering a substantial theoretical foundation for developing Stellariae Radix as a prebiotic ingredient in various applications, including food, healthcare products, and animal feed. Furthermore, this study presented novel insights for the exploration and utilization of Stellariae Radix resources.
Collapse
Affiliation(s)
- Hong Wang
- School of Life Sciences, Ningxia University, Yinchuan 750021, China; (H.W.); (H.L.)
- College of Resource and Environment and Life Science, Ningxia Normal University, Guyuan 756000, China
| | - Haishan Li
- School of Life Sciences, Ningxia University, Yinchuan 750021, China; (H.W.); (H.L.)
| | - Zhenkai Li
- School of Life Sciences, Ningxia University, Yinchuan 750021, China; (H.W.); (H.L.)
| | - Lu Feng
- School of Life Sciences, Ningxia University, Yinchuan 750021, China; (H.W.); (H.L.)
| | - Li Peng
- School of Life Sciences, Ningxia University, Yinchuan 750021, China; (H.W.); (H.L.)
- Ningxia Natural Medicine Engineering Technology Research Center, Yinchuan 750021, China
| |
Collapse
|
239
|
Wu Y, Zeng Y, Ren Y, Yu J, Zhang Q, Xiao X. Insights into RNA N6-methyladenosine in Glucose and Lipid Metabolic Diseases and Their Therapeutic Strategies. Endocrinology 2023; 165:bqad170. [PMID: 37950364 DOI: 10.1210/endocr/bqad170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/20/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
The incidence of glucose and lipid metabolism diseases, including type 2 diabetes, obesity, metabolic syndrome, and nonalcoholic fatty liver disease, is rising, which places an enormous burden on people around the world. However, the mechanism behind these disorders remains incompletely understood. N6-methyladenosine (m6A) is 1 type of posttranscriptional RNA modification, and research has shown that it plays a crucial role in several metabolic diseases. m6A methylation is reversibly and dynamically regulated by methyltransferases (writers), demethylases (erasers), and m6A binding proteins (readers). Dysregulation of RNA m6A modification is related to different metabolic processes. Targeting RNA m6A methylation is a potential treatment strategy for these chronic metabolic diseases. This review discusses studies on RNA m6A modification in metabolic diseases and existing therapeutic drugs, with the aim of providing a concise perspective on its potential applications in managing metabolic disorders.
Collapse
Affiliation(s)
- Yifan Wu
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yuan Zeng
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yaolin Ren
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jie Yu
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Qian Zhang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
240
|
Hu M, Zhao X, Liu Y, Zhou H, You Y, Xue Z. Complex interplay of gut microbiota between obesity and asthma in children. Front Microbiol 2023; 14:1264356. [PMID: 38029078 PMCID: PMC10655108 DOI: 10.3389/fmicb.2023.1264356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Obesity is an important risk factor and common comorbidity of childhood asthma. Simultaneously, obesity-related asthma, a distinct asthma phenotype, has attracted significant attention owing to its association with more severe clinical manifestations, poorer disease control, and reduced quality of life. The establishment of the gut microbiota during early life is essential for maintaining metabolic balance and fostering the development of the immune system in children. Microbial dysbiosis influences host lipid metabolism, triggers chronic low-grade inflammation, and affects immune responses. It is intimately linked to the susceptibility to childhood obesity and asthma and plays a potentially crucial transitional role in the progression of obesity-related asthma. This review article summarizes the latest research on the interplay between asthma and obesity, with a particular focus on the mediating role of gut microbiota in the pathogenesis of obesity-related asthma. This study aims to provide valuable insight to enhance our understanding of this condition and offer preliminary evidence to support the development of therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | | | - Yannan You
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zheng Xue
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
241
|
Abdurehman D, Guoruoluo Y, Lu X, Li J, Abudulla R, Liu G, Xin X, Aisa HA. Optimization of preparation method of hepatoprotective active components from Coreopsis tinctoria Nutt. and its action mechanism in vivo. Biomed Pharmacother 2023; 167:115590. [PMID: 37776638 DOI: 10.1016/j.biopha.2023.115590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023] Open
Abstract
Capitula of Coreopsis tinctoria are widely used as a flower tea with great health benefits due to rich content of flavonoids and phenolic acids. The hepatoprotective effect of C. tinctoria and its bioactive basis have seldom been investigated until now. In the present study, capitula of C. tinctoria were extracted with a method optimized by response surface methodology (RSM) and BoxBehnken design (BBD) and further purified by macroporous resin HPD-300 to obtain a fraction (CE) enriched with flavonoids and phenolic acids. The contents of the four most abundant compounds, isookanin-7-O-β-d-glucoside (1), quercetigetin-7-O-β-d-glucoside (2), okanin (3), and marein (4), were determined by HPLC as 9.98, 5.21, 41.78 and 1.85 mg/g, respectively. Seventy-four compounds including fifity-five flavonoids, fifteen organic acids (twelve of them were phenolic compounds), and three coumarins were tentatively identified in CE by LC-HRMS/MS. In vivo hepatoprotective effect and potential mechanism of CE were studied with a high-fat diet-induced NASH mouse model. CE administration decreased the amount of weight gain, hepatic lipid, and sequentially improved dyslipidemia, inflammation, oxidative stress, and IR in HFD-fed mice. Molecular data revealed that CE inhibited hepatic inflammation by reducing NFκB/iNOS/COX-2/NLRP3/MAPK in the liver tissues and ameliorated oxidative stress by activating the Nrf2/HO-1 pathway. Modulation of inflammation and oxidative stress with CE may represent a promising target for the treatment of NAFLD and provide insight into the mechanism by which CE protects against obesity.
Collapse
Affiliation(s)
- Dilinare Abdurehman
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, Xinjiang, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yindengzhi Guoruoluo
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, Xinjiang, PR China
| | - Xueying Lu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, Xinjiang, PR China
| | - Jun Li
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, Xinjiang, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Rahima Abudulla
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, Xinjiang, PR China
| | - Geyu Liu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, Xinjiang, PR China
| | - Xuelei Xin
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, Xinjiang, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, Xinjiang, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
242
|
Wang Y, Zheng Y, Kuang L, Yang K, Xie J, Liu X, Shen S, Li X, Wu S, Yang Y, Shi J, Wu J, Wang Y. Effects of probiotics in patients with morbid obesity undergoing bariatric surgery: a systematic review and meta-analysis. Int J Obes (Lond) 2023; 47:1029-1042. [PMID: 37674033 PMCID: PMC10600003 DOI: 10.1038/s41366-023-01375-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/08/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND Probiotics are commonly used after bariatric surgery. However, uncertainty remains regarding their effects. The purpose of this systematic review was to assess the effect of probiotics in patients with morbid obesity undergoing bariatric surgery. METHODS PubMed, Cochrane Library, Embase, Science Direct, and Web of Science were searched from inception to April 4, 2023. No language restrictions were applied. Relevant randomized controlled trials and controlled clinical trials were included. We used the aggregated data extracted from the trials and assessed the heterogeneity. When severe heterogeneity was detected, a random effect model was used. All stages of the review were done by independent authors. RESULTS We screened 2024 references and included 11 randomized controlled trials and controlled clinical trials. Compared with the protocol groups, probiotics showed significant effects on regulating aspartate amino transferase level (MD = -4.32 U/L; 95% CI [-7.10, -1.53], p = 0.002), triglycerides (MD = -20.16 mg/dL; 95% CI [-34.51, -5.82], p = 0.006), weight (MD = -1.99 kg; 95% CI [-3.97, -0.01], p = 0.05), vitamin B12 (MD = 2.24 pg/dL; 95% CI [-0.02, 4.51], p = 0.05), dietary energy (MD = -151.03 kcal; 95% CI [-215.68, -86.37], p < 0.00001), dietary protein (MD = -4.48 g/day, 95% CI [-8.76, -0.20], p = 0.04), dietary carbohydrate (MD = -34.25 g/day, 95% CI [-44.87, -23.62], p < 0.00001), and dietary fiber (MD = -2.17 g/day, 95% CI [-3.21, -1.14], p < 0.0001). There were no severe side effects related to probiotics. CONCLUSIONS Our meta-analysis suggested that probiotics may delay the progression of liver function injury, improve lipid metabolism, reduce weight, and reduce food intake, although the effects on other indicators were insignificant. Probiotics may be helpful for patients undergoing bariatric surgery. The review was registered on PROSPERO (International prospective register of systematic reviews): CRD42023407970. No primary source of funding.
Collapse
Affiliation(s)
- Yuting Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Youwei Zheng
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Lirun Kuang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Keyu Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Jiaji Xie
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Xinde Liu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Shan Shen
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Xinchao Li
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Shiran Wu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Yuyi Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Jiafei Shi
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Jialiang Wu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Yong Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China.
| |
Collapse
|
243
|
Shrivastava S, Sharma A, Saxena N, Bhamra R, Kumar S. Addressing the preventive and therapeutic perspective of berberine against diabetes. Heliyon 2023; 9:e21233. [PMID: 38027723 PMCID: PMC10663750 DOI: 10.1016/j.heliyon.2023.e21233] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/20/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Diabetes has emerged as one the leading detrimental factors for human life expectancy worldwide. The disease is mainly considered as outcome of dysregulation in glucose metabolism, resulting in consistent high glucose concentration in blood. At initial stages, the diabetes particularly type 2 diabetes, is manageable by lifestyle interventions such as regular physical activity and diet with less carbohydrates. However, in advance stage, regular intake of external insulin dose and medicines like metformin are recommended. The long-term consumption of metformin is associated with several side effects such as nausea, vomiting, diarrhoea, lectic acidosis etc., In this scenario, several plant-based medicines have shown promising potential for the prevention and treatment of diabetes. Berberine is the bioactive compound present in the different plant parts of berberis family. Biochemical studies have shown that berberine improve insulin sensitivity and insulin secretion. Additionally, berberine induces glucose metabolism by activating AMPK signaling and inhibition of inflammation. A series of studies have demonstrated the antidiabetic potential of berberine at in vitro, pre-clinical and clinical trials. This review provides comprehensive details of preventive and therapeutic potential of berberine against diabetes.
Collapse
Affiliation(s)
- Suyesh Shrivastava
- ICMR-National Institute of Research in Tribal Health, Nagpur Road, Jabalpur-482003, India
| | - Anamika Sharma
- National Institute of Pharmaceutical and Education and Research 500037, Hyderabad, India
| | - Nishant Saxena
- ICMR-National Institute of Research in Tribal Health, Nagpur Road, Jabalpur-482003, India
| | - Rashmi Bhamra
- Global Research Institute of Pharmacy, Radour-135133, Haryana, India
| | - Sandeep Kumar
- ICMR-National Institute of Research in Tribal Health, Nagpur Road, Jabalpur-482003, India
| |
Collapse
|
244
|
Xing W, Li Y, Chen J, Hu Q, Liu P, Ge X, Lv J, Wang D. Association of APC Expression with Its Promoter Methylation Status and the Prognosis of Hepatocellular Carcinoma. Asian Pac J Cancer Prev 2023; 24:3851-3857. [PMID: 38019243 PMCID: PMC10772746 DOI: 10.31557/apjcp.2023.24.11.3851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023] Open
Abstract
OBJECTIVE The present study was aimed to investigate the APC expression, its promoter methylation status, the expression of β-Catenin, c-Myc and Cyclin D1 and further explore their prognostic value in Hepatocellular carcinoma (HCC). PATIENTS AND METHODS Serum samples from 90 HCC patients and 27 healthy donors were collected in this study. The methylation-specific PCR (MSP) was performed to evaluate promoter methylation status of APC gene. RT-qPCR was used to detect the mRNA expression of APC, β-Catenin, c-Myc and Cyclin D1, meanwhile the protein expression were analyzed by Western blot. RESULTS The positive rate of APC gene methylation in HCC patients (46.67%) was higher than healthy donors (11.11%). APC gene exhibited marked hypermethylation in the patients of TNM III-IV stage when compared to the patients of TNM I-II stage , the methylation status of APC gene was correlated with tumor size and lymph node metastasis whereas the APC gene methylation showed no relationship with the patient's sex and age. APC methylation may be associated with APC expression level, APC expression in HCC cells is silenced by aberrant promoter hypermethylation. In HCC patients with methylated APC, the mRNA and protein expression of β-Catenin, c-Myc and Cyclin D1 were higher than the unmethylated patient subgroup and healthy donors. CONCLUTIONS The downregulation of APC in HCC samples was associated with promoter hypermethylation. APC methylation could be used as a novel diagnostic biomarker in HCC, which was associated with regulation of Wnt/β-Catenin signal pathway.
Collapse
Affiliation(s)
- Wen Xing
- Department of Gerontology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China.
| | - Yujia Li
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, Anhui, China.
| | - Jiayi Chen
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, Anhui, China.
| | - Qianwen Hu
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, Anhui, China.
| | - Pengbo Liu
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, Anhui, China.
| | - Xinye Ge
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, Anhui, China.
| | - Jinglin Lv
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, Anhui, China.
| | - Dong Wang
- Department of Hepatobiliary Surgery, e First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China.
| |
Collapse
|
245
|
Wang J, Gu S, Qin B. Eosinophil and mast cell-derived exosomes promote integrity of intestinal mucosa via the NEAT1/miR-211-5p/glial cell line-derived neurotrophic factor axis in duodenum. ENVIRONMENTAL TOXICOLOGY 2023; 38:2595-2607. [PMID: 37466184 DOI: 10.1002/tox.23895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/31/2023] [Accepted: 07/01/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND Exosomes are applied as biomarkers in several diseases according to their disease-specific profiles. However, the exosomes effects in functional dyspepsia (FD) are still fragmentary. Here we examined the role of Eosinophil and mast cell derived-exosomes in FD progression. METHODS Fifty FD subjects and age- and sex-matched healthy controls were included in this retrospective cohort study. Duodenal mucosa and gastric juice were collected to analyze molecular difference. Eosinophil and mast cell were evaluated by immunofluorescence and microarray was subjected to examine the expression levels of NEAT1, miR-211-5p, and glial cell line-derived neurotrophic factor (GDNF), which were subsequently were tested by quantitative reverse transcription PCR (RT-qPCR) validation cohorts. CCK-8 assays, and wound healing assays were used to evaluate integrity of intestinal mucosal barrier in vitro. Rats' weights and gastric emptying rates were used as evaluation of FD severity in vivo. RESULTS Eosinophil and mast cell were enriched and secreted more exosomes in duodenal mucosa of FD patients. We identified differential lncRNAs that were consistently and significantly up regulated in FD cases. Of these, NEAT1 was further validated by RT-qPCR and had closely relationship with GDNF. MiR-211-5p level was found to be reduced in FD and negatively related with NEAT1 and GDNF. Furthermore, NEAT1and GDNF relived FD while miR-211-5p made symptoms worse. The NEAT1/miR-211-5p/GDNF axis had a good predictive ability for FD. CONCLUSIONS The NEAT1/miR-211-5p/GDNF could be a potential FD biomarker.
Collapse
Affiliation(s)
- Jue Wang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Sai Gu
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bo Qin
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
246
|
Zhu TW, Li XL. Berberine interacts with gut microbiota and its potential therapy for polycystic ovary syndrome. Clin Exp Pharmacol Physiol 2023; 50:835-843. [PMID: 37604463 DOI: 10.1111/1440-1681.13814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/03/2023] [Accepted: 08/01/2023] [Indexed: 08/23/2023]
Abstract
Berberine (BBR) is an isoquinoline alkaloid extracted from Chinese medicinal plants showing a tight correlation with gut microbiota. Polycystic ovary syndrome (PCOS) is a prevalent reproductive and endocrine disorder syndrome among women of childbearing age. Dysbiosis, the imbalance of intestinal microorganisms, is a potential factor that takes part in the pathogenesis of PCOS. Recent evidence indicates that berberine offers promise for treating PCOS. Here, we review the recent research on the interaction between berberine and intestinal microorganisms, including the changes in the structure of gut bacteria, the intestinal metabolites after BBR treatment, and the effect of gut microbiota on the bioavailability of BBR. We also discuss the therapeutic effect of BBR on PCOS in terms of gut microbiota and its potential mechanisms.
Collapse
Affiliation(s)
- Ting-Wei Zhu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China
- Shanghai Clinical Research Center for Gynecological Diseases (22MC1940200), Shanghai Urogenital System Diseases Research Center (2022ZZ01012), Shanghai, People's Republic of China
| | - Xue-Lian Li
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China
- Shanghai Clinical Research Center for Gynecological Diseases (22MC1940200), Shanghai Urogenital System Diseases Research Center (2022ZZ01012), Shanghai, People's Republic of China
| |
Collapse
|
247
|
Liu S, Liu J, Wu Y, Tan L, Luo Y, Ding C, Tang Z, Shi X, Fan W, Song S. Genistein upregulates AHR to protect against environmental toxin-induced NASH by inhibiting NLRP3 inflammasome activation and reconstructing antioxidant defense mechanisms. J Nutr Biochem 2023; 121:109436. [PMID: 37666477 DOI: 10.1016/j.jnutbio.2023.109436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
We have previously proven that the environmental toxin could accelerate the development and progression of nonalcoholic steatohepatitis (NASH). However, the underlying mechanism associated with such excessive inflammation hasn't been fully illustrated. Although Genistein has been well accepted for its capability in anti-inflammation and anti-oxidation, its effect in ameliorating contaminants-induced NASH still needs to be identified. In this study, using chickens and primary chicken hepatocytes as models, we found that NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome were over-activated in bromoacetic acid (BAA, one of the typical environmental toxins)-induced NASH, characterized by the infiltration of inflammatory cell, and the increase of NLRP3, Caspase-1 p20, and cytokines (IL-1β, IL-18) expressions. Interestingly, genistein treatment could recover these changes, with the signs of restored activities of anti-oxidases, decreased expressions of NLRP3 inflammasome components, and increased levels of elements in phase I metabolic system. The detailed mechanism was that, via up-regulating aryl hydrocarbon receptor (AHR), genistein lifted mRNA levels of Cyp1-related genes to reconstruct cytochrome P450 (CYP450) systems, and the raised AHR negatively regulated NLRP3 inflammasome activity to relieve inflammation. More important, the interaction and co-localization between AHR and NLRP3 was first proved, and genistein could promote the levels of AHR that interacted with NLRP3, which thereafter blocked the activation of NLRP3 inflammasome. Conclusively, in this research, we confirmed the AHR-dependent protective role of genistein in environmental toxin-linked NASH, which shed light on the potential precautions for contaminants-induced NASH.
Collapse
Affiliation(s)
- Shuhui Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Jiwen Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Yuting Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Lei Tan
- Administration for Market Regulation of Guangdong Province Key Laboratory of Supervision for Edible Agricultural Products, Shenzhen Centre of Inspection and Testing for Agricultural Products, Shenzhen, 518000, China
| | - Yan Luo
- Administration for Market Regulation of Guangdong Province Key Laboratory of Supervision for Edible Agricultural Products, Shenzhen Centre of Inspection and Testing for Agricultural Products, Shenzhen, 518000, China
| | - Chenchen Ding
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Zhihui Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Xizhi Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Wentao Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China.
| | - Suquan Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China.
| |
Collapse
|
248
|
Postwala H, Shah Y, Parekh PS, Chorawala MR. Unveiling the genetic and epigenetic landscape of colorectal cancer: new insights into pathogenic pathways. Med Oncol 2023; 40:334. [PMID: 37855910 DOI: 10.1007/s12032-023-02201-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/19/2023] [Indexed: 10/20/2023]
Abstract
Colorectal cancer (CRC) is a complex disease characterized by genetic and epigenetic alterations, playing a crucial role in its development and progression. This review aims to provide insights into the emerging landscape of these alterations in CRC pathogenesis to develop effective diagnostic tools and targeted therapies. Genetic alterations in signaling pathways such as Wnt/β-catenin, and PI3K/Akt/mTOR are pivotal in CRC development. Genetic profiling has identified distinct molecular subtypes, enabling personalized treatment strategies. Epigenetic modifications, including DNA methylation and histone modifications, also contribute to CRC pathogenesis by influencing critical cellular processes through gene silencing or activation. Non-coding RNAs have emerged as essential players in epigenetic regulation and CRC progression. Recent research highlights the interplay between genetic and epigenetic alterations in CRC. Genetic mutations can affect epigenetic modifications, leading to dysregulated gene expression and signaling cascades. Conversely, epigenetic changes can modulate genetic expression, amplifying or dampening the effects of genetic alterations. Advancements in understanding pathogenic pathways have potential clinical applications. Identifying genetic and epigenetic markers as diagnostic and prognostic biomarkers promises more accurate risk assessment and early detection. Challenges remain, including validating biomarkers and developing robust therapeutic strategies through extensive research and clinical trials. The dynamic nature of genetic and epigenetic alterations necessitates a comprehensive understanding of their temporal and spatial patterns during CRC progression. In conclusion, the genetic and epigenetic landscape of CRC is increasingly being unraveled, providing valuable insights into its pathogenesis. Integrating genetic and epigenetic knowledge holds great potential for improving diagnostics, prognostics, and personalized therapies in CRC. Continued research efforts are vital to translate these findings into clinical practice, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Humzah Postwala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Yesha Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Priyajeet S Parekh
- AV Pharma LLC, 1545 University Blvd N Ste A, Jacksonville, Florida, 32211, USA
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, 380009, Gujarat, India.
| |
Collapse
|
249
|
Liu C, Tang H, Hu N, Li T. Methylomics and cancer: the current state of methylation profiling and marker development for clinical care. Cancer Cell Int 2023; 23:242. [PMID: 37840147 PMCID: PMC10577916 DOI: 10.1186/s12935-023-03074-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023] Open
Abstract
Epigenetic modifications have long been recognized as an essential level in transcriptional regulation linking behavior and environmental conditions or stimuli with biological processes and disease development. Among them, methylation is the most abundant of these reversible epigenetic marks, predominantly occurring on DNA, RNA, and histones. Methylation modification is intimately involved in regulating gene transcription and cell differentiation, while aberrant methylation status has been linked with cancer development in several malignancies. Early detection and precise restoration of dysregulated methylation form the basis for several epigenetics-based therapeutic strategies. In this review, we summarize the current basic understanding of the regulation and mechanisms responsible for methylation modification and cover several cutting-edge research techniques for detecting methylation across the genome and transcriptome. We then explore recent advances in clinical diagnostic applications of methylation markers of various cancers and address the current state and future prospects of methylation modifications in therapies for different diseases, especially comparing pharmacological methylase/demethylase inhibitors with the CRISPRoff/on methylation editing systems. This review thus provides a resource for understanding the emerging role of epigenetic methylation in cancer, the use of methylation-based biomarkers in cancer detection, and novel methylation-targeted drugs.
Collapse
Affiliation(s)
- Chengyin Liu
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Georgetown University, Washington, DC, USA
| | - Han Tang
- BioChain (Beijing) Science & Technology Inc., Beijing, People's Republic of China
| | - Nana Hu
- BioChain (Beijing) Science & Technology Inc., Beijing, People's Republic of China
| | - Tianbao Li
- Department of Molecular Medicine, The University of Texas Health, San Antonio, USA.
| |
Collapse
|
250
|
Huang HC, Lee PN, Huang WC, Yang HY. Partial Replacement of Diet with Dehulled Adlay Ameliorates Hepatic Steatosis, Inflammation, Oxidative Stress, and Gut Dysbiosis in Rats with Nonalcoholic Fatty Liver Disease. Nutrients 2023; 15:4375. [PMID: 37892450 PMCID: PMC10610228 DOI: 10.3390/nu15204375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/27/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) has been increasing worldwide, and the average age at NAFLD diagnosis has been decreasing. Although some components of adlay can ameliorate lipid metabolism, oxidative stress, inflammatory response, and gut microbiota, few studies have explored the effects of the dietary intake of intact dehulled adlay on liver diseases. Therefore, in this study, we investigated the effects of the dietary intake of dehulled adlay on NAFLD progression and explored the potential underlying mechanisms. Rats were randomized into a control group; a high-fat, high-sucrose diet (60% total energy derived from fat and 9.4% from sucrose)-induced NAFLD group (N); or a high-fat, high-sucrose diet with dehulled adlay group (received the same amounts of dietary fiber and total energy as did the N group). The experimental duration was 16 weeks. The diet containing dehulled adlay mitigated hepatic fat accumulation, proinflammatory cytokine levels, and oxidative stress by regulating the AMPK-Nrf2-NLRP3 inflammasome pathway and ferroptosis. Additionally, the dietary intake of dehulled adlay modulated the composition of the gut microbiota. In conclusion, a diet containing dehulled adlay may decelerate the progression of NAFLD by ameliorating hepatic steatosis, inflammation, oxidative stress, and gut dysbiosis.
Collapse
Affiliation(s)
- Hsuan-Chih Huang
- Department of Nutritional Science, Fu Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang District, New Taipei City 24205, Taiwan
| | - Pei-Ni Lee
- Department of Nutrition, Taipei Hospital, Ministry of Health and Welfare, No. 127, Siyuan Rd., Xinzhuang District, New Taipei City 24250, Taiwan;
| | - Wen-Chih Huang
- Department of Anatomical Pathology, Taipei Institute of Pathology, No. 146, Sec. 3, Chongqing N. Rd., Datong District, Taipei City 10374, Taiwan
| | - Hsin-Yi Yang
- Department of Nutritional Science, Fu Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang District, New Taipei City 24205, Taiwan
| |
Collapse
|