201
|
Cattaruzza S, Perris R. Approaching theProteoglycome: Molecular Interactions of Proteoglycans and Their Functional Output. Macromol Biosci 2006; 6:667-80. [PMID: 16881045 DOI: 10.1002/mabi.200600100] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
[Image: see text] Through their diverse core protein modules and glycan/glycosaminoglycan moieties, proteoglycans may engage in numerous cellular and molecular interactions which are dispensable during embryogenesis, are essential for the maintenance of a healthy state and are prone to modulation in pathological conditions. Proteoglycan interactions may involve binding to other structural components of the ECM, to cell surface receptors, to membrane-associated components, and to soluble signaling molecules, which through this interaction may become entrapped in the ECM or sequestered at the cell surface. Understanding of these multiple interplays is therefore of paramount importance and requires a detailed mapping through what we define as the proteoglycome.
Collapse
Affiliation(s)
- Sabrina Cattaruzza
- Department of Evolutionary and Functional Biology, University of Parma, Viale delle Scienze 11/A, Parma (PR) 43100, Italy
| | | |
Collapse
|
202
|
Dityatev A, Frischknecht R, Seidenbecher CI. Extracellular matrix and synaptic functions. Results Probl Cell Differ 2006; 43:69-97. [PMID: 17068968 DOI: 10.1007/400_025] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Comprehensive analysis of neuromuscular junction formation and recent data on synaptogenesis and long-term potentiation in the central nervous system revealed a number of extracellular matrix (ECM) molecules regulating different aspects of synaptic differentiation and function. The emerging mechanisms comprise interactions of ECM components with their cell surface receptors coupled to tyrosine kinase activities (agrin, integrin ligands, and reelin) and interactions with ion channels and transmitter receptors (Narp, tenascin-R and tenascin-C). These interactions may shape synaptic transmission and plasticity of excitatory synapses either via regulation of Ca2+ entry and postsynaptic expression of transmitter receptors or via control of GABAergic inhibition. The ECM molecules, derived from both neurons and glial cells and secreted into the extracellular space in an activity-dependent manner, may also shape synaptic plasticity through setting diffusion constraints for neurotransmitters, trophic factors and ions.
Collapse
Affiliation(s)
- Alexander Dityatev
- Institut für Neurophysiologie und Pathophysiologie, Universitätsklinikum Hamburg-Eppendorf, Germany.
| | | | | |
Collapse
|
203
|
John N, Krügel H, Frischknecht R, Smalla KH, Schultz C, Kreutz MR, Gundelfinger ED, Seidenbecher CI. Brevican-containing perineuronal nets of extracellular matrix in dissociated hippocampal primary cultures. Mol Cell Neurosci 2006; 31:774-84. [PMID: 16503162 DOI: 10.1016/j.mcn.2006.01.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 12/29/2005] [Accepted: 01/11/2006] [Indexed: 10/25/2022] Open
Abstract
Perineuronal nets (PNN) are specialized extracellular matrix structures enwrapping CNS neurons, which are important regulators for neuronal and synaptic functions. Brevican, a chondroitin sulfate proteoglycan, is an integral component of PNN. Here, we have investigated the appearance of these structures in hippocampal primary cultures. The expression profile of brevican in mixed cultures resembles the in vivo pattern with a strong upregulation of all isoforms during the second and 3rd weeks in culture. Brevican is primarily synthesized by co-cultured glial fibrillary acidic protein (GFAP-)-positive astrocytes and co-assembles with its interaction partners in PNN-like structures on neuronal somata and neurites as identified by counterstaining with the PNN marker Vicia villosa lectin. Both excitatory and inhibitory synapses are embedded into PNN. Furthermore, axon initial segments are strongly covered by a dense brevican coat. Altogether, we show that mature primary cultures can form PNN, and that basic features of these extracellular matrix structures may be studied in vitro.
Collapse
Affiliation(s)
- Nora John
- Department for Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology Magdeburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
204
|
Cant NB, Benson CG. Wisteria floribunda lectin is associated with specific cell types in the ventral cochlear nucleus of the gerbil, Meriones unguiculatus. Hear Res 2006; 216-217:64-72. [PMID: 16497454 DOI: 10.1016/j.heares.2006.01.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Revised: 01/09/2006] [Accepted: 01/10/2006] [Indexed: 11/24/2022]
Abstract
The cochlear nucleus is made up of a number of diverse cell types with different anatomical and physiological properties. A plant lectin, Wisteria floribunda agglutinin, that recognizes specific carbohydrate residues in the extracellular matrix binds to some cell types in the ventral cochlear nucleus but not to cells in the dorsal cochlear nucleus. In the ventral cochlear nucleus, the most intensely labeled cells are octopus cells, a subset of multipolar cells and cochlear root neurons. The multipolar cells that are labeled may correspond to the population that projects to the inferior colliculus.
Collapse
Affiliation(s)
- Nell B Cant
- Department of Neurobiology, Duke University Medical Center, P.O. Box 3209, 213 Bryan Research Building, Durham, NC 27710, USA.
| | | |
Collapse
|
205
|
Brückner G, Szeöke S, Pavlica S, Grosche J, Kacza J. Axon initial segment ensheathed by extracellular matrix in perineuronal nets. Neuroscience 2006; 138:365-75. [PMID: 16427210 DOI: 10.1016/j.neuroscience.2005.11.068] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Revised: 10/20/2005] [Accepted: 11/29/2005] [Indexed: 11/27/2022]
Abstract
Perineuronal nets of extracellular matrix are associated with distinct types of neurons in the cerebral cortex and many subcortical regions. Large complexes of aggregating proteoglycans form a chemically specified microenvironment around the somata, proximal dendrites and the axon initial segment, including the presynaptic boutons attached to these domains. The subcellular distribution and the temporal course of postnatal formation suggest that perineuronal nets may be involved in the regulation of synaptic plasticity. Here we investigate structural and cytochemical characteristics of the extracellular matrix around axon initial segments virtually devoid of synaptic contacts. Wisteria floribunda agglutinin staining, the immunocytochemical detection of aggrecan and tenascin-R, as well as affinity-labeling of hyaluronan were used to analyze perineuronal nets associated with large motoneurons in the mouse superior colliculus. The molecular composition of perineuronal nets was divergent between neurons but was identical around the different cellular domains of the individual neurons. The axon initial segments largely devoid of synapses were covered by a continuous matrix sheath infiltrating the adjacent neuropil. The periaxonal zone penetrated by matrix components often increased in diameter along the initial segment from the axon hillock toward the myelinated part of the axon. The axonal and somatodendritic domains of perineuronal nets were concomitantly formed during the first three weeks of postnatal development. The common molecular properties and major structural features of subcellular perineuronal net domains were retained in organotypic midbrain slice cultures. The results support the hypothesis that the aggrecan-related extracellular matrix of perineuronal nets provides a continuous micromilieu for different subcellular domains performing integration and generation of the electrical activity of neurons.
Collapse
Affiliation(s)
- G Brückner
- Paul Flechsig Institute for Brain Research, Department of Neurochemistry, University of Leipzig, Jahnallee 59, D-04109 Leipzig, Germany.
| | | | | | | | | |
Collapse
|
206
|
Szigeti ZM, Matesz C, Szekely G, Felszeghy S, Bácskai T, Halasi G, Mészár Z, Módis L. Distribution of hyaluronan in the central nervous system of the frog. J Comp Neurol 2006; 496:819-31. [PMID: 16628618 DOI: 10.1002/cne.20960] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The qualitative and quantitative distribution pattern of hyaluronan (HA), a component of the extracellular matrix (ECM), was studied in the frog central nervous system by using a highly specific HA probe and digital image analysis. HA reaction was observed in both the white and the gray matter, showing a very intense staining around the perikarya and dendrites in the perineuronal net (PN). In the telencephalon, strong reaction was found in different parts of the olfactory system, in the pallium, and in the amygdala. In the diencephalon, intensive staining was found in the nucleus of Bellonci, the dorsal habenula, the lateral and central thalamic nuclei, and the subependymal zone of the third ventricle. In the mesencephalon, layers of optic tectum displayed different intensities, with the strongest reaction in layers B, D, F, 3, and 5. Other structures of the mesencephalon showed regional differences. The PN was especially intensively stained around the perikarya of the toral nuclei, the oculomotor and trochlear nuclei, and the basal optic nucleus. In the rhombencephalon, the granular layer of cerebellum, the vestibulocochlear nuclei, the superior olive, the spinal tract of the trigeminal nerve, and parts of the reticular formation showed the most intense reaction in the PN. In the spinal cord, considerable HA staining was found in the white matter and around the perikarya of motoneurons. The present study is the first description of the HA-positive areas of frog brain and spinal cord demonstrating the heterogeneity of HA distribution in the frog central nervous system.
Collapse
Affiliation(s)
- Zsuzsa M Szigeti
- Department of Anatomy, Histology and Embryology, University of Debrecen, Medical and Health Science Center, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
207
|
Syková E, Vorísek I, Mazel T, Antonova T, Schachner M. Reduced extracellular space in the brain of tenascin-R- and HNK-1-sulphotransferase deficient mice. Eur J Neurosci 2005; 22:1873-80. [PMID: 16262627 DOI: 10.1111/j.1460-9568.2005.04375.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tenascin-R (TN-R), a large extracellular glycoprotein, is an important component of the adult brain's extracellular matrix (ECM); tenascin-C (TN-C) is expressed mainly during early development, while human natural killer 1 (HNK-1) is a sulphated carbohydrate epitope that attaches to these molecules, modifying their adhesive properties. To assess their influence on extracellular space (ECS) volume and geometry, we used the real-time iontophoretic method to measure ECS volume fraction alpha and tortuosity lambda, and diffusion-weighted magnetic resonance imaging (MRI) to measure the apparent diffusion coefficient of water (ADC(W)). Measurements were performed in vivo in the cortex and CA1 hippocampal region of TN-R-, TN-C- and HNK-1 sulphotransferase (ST)-deficient adult mice and their wild-type littermate controls. In both cortex and hippocampus, the lack of TN-R or HNK-1 sulphotransferase resulted in a significant decrease in alpha and lambda. Compared with controls, alpha in TN-R-/- and ST-/- mice decreased by 22-26% and 9-15%, respectively. MRI measurements revealed a decreased ADC(W) in the cortex, hippocampus and thalamus. ADC(W) reflected the changes in alpha; the decrease in lambda indicated fewer diffusion obstacles in the ECS, presumably due to a decreased macromolecular content. No significant changes were found in TN-C-/- animals. We conclude that in TN-R-/- and ST-/- mice, which show morphological, electrophysiological and behavioural abnormalities, the ECS is reduced and its geometry altered. TN-R, as an important component of the ECM, appears to maintain an optimal distance between cells. The altered diffusion of neuroactive substances in the brain will inevitably affect extrasynaptic transmission, neuron-glia interactions and synaptic efficacy.
Collapse
Affiliation(s)
- Eva Syková
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídenská 1083, 142 20 Prague 4, Czech Republic.
| | | | | | | | | |
Collapse
|
208
|
Abstract
Classic studies have recognized neurons and three glial elements in the central nervous system (CNS) - astrocytes, oligodendrocytes and microglia. The identification of novel glia that specifically express the NG2 chondroitin sulphate proteoglycan (CSPG) raises the possibility of a fifth element. Until recently, all NG2-expressing glia were considered to be oligodendrocyte precursor cells (OPCs) that persist in the adult CNS to generate oligodendrocytes throughout life. However, this narrow view of the function of 'NG2-glia' is being challenged. The majority of NG2-expressing glia in the adult CNS are a distinct class of cells that we have called 'synantocytes' (from the Greek synanto for contact). Synantocytes are stellate cells, with large process arborizations, and are exquisitely related to neurons. Individual cells traverse white and grey matter and form multiple contacts with neurons, astrocytes, oligodendrocytes and myelin. Synantocytes are an integral component of the 'tetrapartite' synapse, and provide a potential integrative neuron-glial communications pathway. Neuronal activity, glutamate and adenosine triphosphate (ATP) act on synantocyte receptors and evoke raised intracellular calcium. It remains to be seen whether this serves a physiological function, but synantocytes may be specialized to monitor signals from neurons and glia, and to respond to changes in the integrity of the CNS via their specific contacts and ion channel and receptor profiles. The general consequences of synantocyte activation are proliferation and phenotypic changes, resulting in glial scar formation, or regeneration of oligodendrocytes, and possibly neurons.
Collapse
Affiliation(s)
- Arthur M Butt
- Wolfson Centre for Age Related Diseases, King's College, London, UK.
| | | | | | | | | |
Collapse
|
209
|
Baig S, Wilcock GK, Love S. Loss of perineuronal net N-acetylgalactosamine in Alzheimer's disease. Acta Neuropathol 2005; 110:393-401. [PMID: 16133543 DOI: 10.1007/s00401-005-1060-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Revised: 06/09/2005] [Accepted: 06/20/2005] [Indexed: 12/22/2022]
Abstract
The perineuronal net (PN), a specialised region of extracellular matrix, is interposed between the neuronal cell surface and astrocytic processes. It is involved in the buffering of ions, in the development, stabilisation and remodelling of synapses and in the regulating the neuronal microenvironment particularly around the parvalbumin-positive GABAergic neurons. We have investigated the relative preservation of Wisteria floribunda agglutinin (WFA)-positive PNs and parvalbumin-positive neurons in Alzheimer's disease (AD), and the relationship of WFA-positive PNs to parenchymal tau, amyloid beta-peptide (Abeta) and MHC class II antigen (a marker of activated microglia), in paraffin sections of 100 cases with AD and 45 controls. The density of PNs that could be labelled with WFA, which binds to the N-acetylgalactosamine (GalNAc) residues of chondroitin sulphate proteoglycans, was reduced by about 2/3 in AD (P<0.001). In contrast, the density of parvalbumin-positive neurons did not differ significantly between AD and controls. Combined fluorescence imaging showed granular disintegration of WFA labelling around some parvalbumin-positive neurons. There was no significant difference in the amount of phosphorylated tau, Abeta or MHC class II antigen in areas with and without WFA-positive PNs. In AD, there is marked loss of PN GalNAc that is not topographically related to neurofibrillary pathology, parenchymal Abeta load or activated microglia. Although the parvalbumin-positive neurons themselves are relatively spared, the loss of PN GalNAc, which maintains a polyanionic microenvironment around neurons, is likely to impair the function of these inhibitory interneurons. This could in turn lead to increased activity of the glutamatergic and other neurons onto which they synapse.
Collapse
Affiliation(s)
- Shabnam Baig
- Department of Clinical Science at North Bristol, Care of the Elderly, Frenchay Hospital, University of Bristol, Bristol, UK.
| | | | | |
Collapse
|
210
|
Hayashi N, Miyata S, Yamada M, Kamei K, Oohira A. Neuronal expression of the chondroitin sulfate proteoglycans receptor-type protein-tyrosine phosphatase beta and phosphacan. Neuroscience 2005; 131:331-48. [PMID: 15708477 DOI: 10.1016/j.neuroscience.2004.11.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2004] [Indexed: 12/30/2022]
Abstract
Receptor-type protein-tyrosine phosphatase beta (RPTPbeta) and its spliced variant phosphacan are major components of chondroitin sulfate proteoglycans in the CNS. In this study, expression and localization of RPTPbeta and phosphacan were examined in developing neurons by immunological analyses using 6B4, 3F8, and anti-PTP antibodies and reverse transcription-polymerase chain reaction (RT-PCR). Light microscopic immunohistochemistry showed that 6B4 RPTPbeta/phosphacan immunoreactivity was observed around neurons in the cortical plate. Further ultrastructural observation showed that 6B4 RPTPbeta/phosphacan immunoreactivity was observed mainly at the membrane of migrating neurons and radial glia. Immunocytochemical analysis revealed that RPTPbeta immunoreactivity was observed in cultured cerebral, hippocampal, and cerebellar neurons in addition to type-1 and type-2 astrocytes. Western analysis further demonstrated that the shorter receptor form of RPTPbeta (sRPTPbeta) was detected from cell lysate of cortical and hippocampal neurons using 6B4 and anti-PTP antibodies, while sRPTPbeta of cerebellar neurons and type-1 astrocytes was recognized only by anti-PTP antibody. Phosphacan was detected from neuronal culture supernatants of cortical, hippocampal, and cerebellar neurons, but not from type-1 astrocytes using 6B4 and 3F8 antibodies. RT-PCR analysis demonstrated the prominent expression of sRPTPbeta and phosphacan mRNAs in cortical neurons, and that of sRPTPbeta mRNA in type-1 astrocytes. During culture development of cortical neurons, the immunoreactivity of 6B4 sRPTPbeta was observed entirely on the neuronal surface including somata, dendrites, axons, and growth cones at earlier stages of cortical neuronal culture such as stages 2 and 3, while, after longer culture, 6B4 sRPTPbeta immunoreactivity in stages 4 and 5 neurons was detected at dendrites and somata and disappeared from axons, and was not observed over axonal terminals and postsynaptic spines. These results demonstrate that neurons are able to express sRPTPbeta on their cellular surface and to secrete phosphacan, and neuronal expression of sRPTPbeta may modulate neuronal differentiation including neuritogenesis and synaptogenesis.
Collapse
Affiliation(s)
- N Hayashi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | | | | | | | | |
Collapse
|
211
|
Lundell A, Olin AI, Mörgelin M, al-Karadaghi S, Aspberg A, Logan DT. Structural basis for interactions between tenascins and lectican C-type lectin domains: evidence for a crosslinking role for tenascins. Structure 2005; 12:1495-506. [PMID: 15296743 DOI: 10.1016/j.str.2004.05.021] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Revised: 05/19/2004] [Accepted: 05/29/2004] [Indexed: 10/26/2022]
Abstract
The C-terminal G3 domains of lecticans mediate crosslinking to diverse extracellular matrix (ECM) proteins during ECM assembly, through their C-type lectin (CLD) subdomains. The structure of the rat aggrecan CLD in a Ca(2+)-dependent complex with fibronectin type III repeats 3-5 of rat tenascin-R provides detailed support for such crosslinking. The CLD loops bind Ca2+ like other CLDs, but no carbohydrate binding is observed or possible. This is thus the first example of a direct Ca(2+)-dependent protein-protein interaction of a CLD. Surprisingly, tenascin-R does not coordinate the Ca2+ ions directly. Electron microscopy confirms that full-length tenascin-R and tenascin-C crosslink hyaluronan-aggrecan complexes. The results are significant for the binding of all lectican CLDs to tenascin-R and tenascin-C. Comparison of the protein interaction surface with that of P-selectin in complex with the PGSL-1 peptide suggests that direct protein-protein interactions of Ca(2+)-binding CLDs may be more widespread than previously appreciated.
Collapse
Affiliation(s)
- Anna Lundell
- Department of Molecular Biophysics, Lund University, Box 124, S-221 00 Lund, Sweden
| | | | | | | | | | | |
Collapse
|
212
|
Miyata S, Nishimura Y, Hayashi N, Oohira A. Construction of perineuronal net-like structure by cortical neurons in culture. Neuroscience 2005; 136:95-104. [PMID: 16182457 DOI: 10.1016/j.neuroscience.2005.07.031] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2005] [Revised: 07/08/2005] [Accepted: 07/16/2005] [Indexed: 11/25/2022]
Abstract
Perineuronal nets consisting of chondroitin sulfate proteoglycans and hyaluronic acid are associated with distinct neuronal populations in mammalian brain. Whether neurons or glia cells produce these surface-associated chondroitin sulfate proteoglycan perineuronal nets has remained in question. In the present study, we observed perineuronal net-like structure by rat cortical neurons in dissociated culture using Wisteria floribunda aggulutinin, hyaluronic acid binding protein, and the antibodies recognizing chondroitin sulfate proteoglycans. The double labeling experiments showed that perineuronal net-like structure labeled with Wisteria floribunda aggulutinin was observed often at parvalbumin-positive neurons in dissociated cortical culture without glia. Perineuronal net-like structure was not seen at the early stage of culture, but they became visible concomitantly with neuronal maturation after longer culture. High magnification observation further demonstrated that Wisteria floribunda aggulutinin labeling on cortical neurons was seen as numerous puncta along surface of somata and proximal dendrites, but not axons and synapses. Perineuronal net-like structure on cultured neurons was also visualized using chondroitin sulfate proteoglycan-specific antibodies and hyaluronic acid binding protein. Double labeling study demonstrated that perineuronal net-like structure in cultured cortical neurons was composed of chondroitin sulfate proteoglycans such as neurocan and phosphacan. The hyaluronidase treatment of live neurons abolished cellular labeling of hyaluronic acid binding protein and concomitantly diminished that of Wisteria floribunda aggulutinin. These results indicate that cultured cortical neurons are able to construct perineuronal net-like structure without glial cells.
Collapse
Affiliation(s)
- S Miyata
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | | | | | | |
Collapse
|
213
|
Carulli D, Rhodes KE, Brown DJ, Bonnert TP, Pollack SJ, Oliver K, Strata P, Fawcett JW. Composition of perineuronal nets in the adult rat cerebellum and the cellular origin of their components. J Comp Neurol 2005; 494:559-77. [PMID: 16374793 DOI: 10.1002/cne.20822] [Citation(s) in RCA: 243] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The decrease in plasticity that occurs in the central nervous system during postnatal development is accompanied by the appearance of perineuronal nets (PNNs) around the cell body and dendrites of many classes of neuron. These structures are composed of extracellular matrix molecules, such as chondroitin sulfate proteoglycans (CSPGs), hyaluronan (HA), tenascin-R, and link proteins. To elucidate the role played by neurons and glial cells in constructing PNNs, we studied the expression of PNN components in the adult rat cerebellum by immunohistochemistry and in situ hybridization. In the deep cerebellar nuclei, only large excitatory neurons were surrounded by nets, which contained the CSPGs aggrecan, neurocan, brevican, versican, and phosphacan, along with tenascin-R and HA. Whereas both net-bearing neurons and glial cells were the sources of CSPGs and tenascin-R, only the neurons expressed the mRNA for HA synthases (HASs), cartilage link protein, and link protein Bral2. In the cerebellar cortex, Golgi neurons possessed PNNs and also synthesized HASs, cartilage link protein, and Bral2 mRNAs. To see whether HA might link PNNs to the neuronal cell surface by binding to a receptor, we investigated the expression of the HA receptors CD44, RHAMM, and LYVE-1. No immunolabelling for HA receptors on the membrane of net-bearing neurons was found. We therefore propose that HASs, which can retain HA on the cell surface, may act as a link between PNNs and neurons. Thus, HAS and link proteins might be key molecules for PNN formation and stability.
Collapse
Affiliation(s)
- Daniela Carulli
- Cambridge Centre for Brain Repair, University of Cambridge, Cambridge CB2 2PY, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
214
|
Miyata S, Akagi A, Hayashi N, Watanabe K, Oohira A. Activity-dependent regulation of a chondroitin sulfate proteoglycan 6B4 phosphacan/RPTPbeta in the hypothalamic supraoptic nucleus. Brain Res 2004; 1017:163-71. [PMID: 15261112 DOI: 10.1016/j.brainres.2004.05.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2004] [Indexed: 01/06/2023]
Abstract
The hypothalamic magnocellular neurons, synthesizing arginine vasopressin (AVP) and oxytocin, are well known to show structural plasticity during chronic physiological stimulation. We have previously reported that 6B4 phosphacan/receptor-type protein-tyrosine phosphatasebeta (RPTPbeta), a chondroitin sulfate proteoglycan is highly expressed in the supraoptic nucleus (SON) of adult hypothalamus. Here, we undertook to study the activity-dependent regulation of 6B4 phosphacan/RPTPbeta in this system. Double labeling confocal microscopy demonstrated in the SON that 6B4 phosphacan/RPTPbeta-immunoreactive perineuronal nets were seen around AVP-containing somata and dendrites and its distribution pattern was well coincided with that of TAG-1. Quantitative immunohistochemical and Western analyses showed that 1-week salt loading, known as the chronic physiological stimulation for inducing the structural changes such as synaptic remodeling and direct neuronal membrane apposition, decreased 6B4 phosphacan/RPTPbeta levels in the SON, but did not alter TAG-1 levels. The 6B4 phosphacan/RPTPbeta levels were returned to control basal values within 3 weeks after the cessation of the chronic stimulation. Activity-dependent decreases in 6B4 phosphacan/RPTPbeta levels of the SON were confirmed when Western and immunohistochemical samples were digested with chondroitinase ABC, indicating that the decrease in 6B4 phosphacan/RPTPbeta levels was due to disappearance of 6B4 phosphacan/RPTPbeta core protein rather than increase in chondroitin sulfate glycosaminoglycans. With electron microscopy, the electron-dense immunoproducts for 6B4 phosphacan/RPTPbeta were found on the membrane surface of axons and glial processes, but not at synaptic junctions in control SON, and its immunoreactivity was eliminated with the chronic salt loading. The present results indicate that the levels of 6B4 phosphacan/RPTPbeta are regulated with activity-dependent manner and may be concerned with the structural plasticity seen in the SON.
Collapse
Affiliation(s)
- Seiji Miyata
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-8585, Japan.
| | | | | | | | | |
Collapse
|
215
|
Becker CG, Schweitzer J, Feldner J, Schachner M, Becker T. Tenascin-R as a repellent guidance molecule for newly growing and regenerating optic axons in adult zebrafish. Mol Cell Neurosci 2004; 26:376-89. [PMID: 15234343 DOI: 10.1016/j.mcn.2004.03.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Revised: 02/23/2004] [Accepted: 03/03/2004] [Indexed: 10/26/2022] Open
Abstract
In adult fish, in contrast to mammals, new optic axons are continuously added to the optic projection, and optic axons regrow after injury. Thus, pathfinding of optic axons during development, adult growth, and adult regeneration may rely on the same guidance cues. We have shown that tenascin-R, a component of the extracellular matrix, borders the optic pathway in developing zebrafish and acts as a repellent guidance molecule for optic axons. Here we analyze tenascin-R expression patterns along the unlesioned and lesioned optic pathway of adult zebrafish and test the influence of tenascin-R on growing optic axons of adult fish in vitro. Within intraretinal fascicles of optic axons and in the optic nerve, newly added optic axons grow in a tenascin-R immunonegative pathway, which is bordered by tenascin-R immunoreactivity. In the brain, tenascin-R expression domains in the ventral diencephalon, in non-retinorecipient pretectal nuclei and in some tectal layers closely border the optic pathway in unlesioned animals and during axon regrowth. We mimicked these boundary situations with a sharp substrate border of tenascin-R in vitro. Optic axons emanating from adult retinal explants were repelled by tenascin-R substrate borders. This is consistent with a function of tenascin-R as a repellent guidance molecule in boundaries for adult optic axons. Thus, tenascin-R may guide newly added and regenerating optic axons by a contact-repellent mechanism in the optic pathway of adult fish.
Collapse
Affiliation(s)
- Catherina G Becker
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, D-20246 Hamburg, Germany.
| | | | | | | | | |
Collapse
|
216
|
Yagi T, Terada N, Baba T, Ohno S. Immunolocalization of laminin-alpha1-like antigens around synapses in mouse cerebellar perineuronal nets. ACTA ACUST UNITED AC 2004; 34:559-65. [PMID: 14626346 DOI: 10.1023/a:1026044517888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The hypothesis that extracellular matrix components may be related to neuronal development in the mouse cerebellar cortex was verified with immunohistochemistry by using an antibody against laminin-alpha1, a major extracellular matrix protein in various tissues. A commercially available polyclonal antibody, raised against the carboxyl-terminal 20-amino acid peptide of laminin-alpha1 was used. Some positive immunoreaction products were localized around large GABAergic interneurons in granular layers and others were around neurons in deep cerebellar nuclei. At the electron microscope level, diaminobenzidine immunoreaction products were localized around presynaptic boutons and in intercellular matrices around interneurons. Such immunoreaction products could be detected at postnatal day 20, when most of cerebellar synapses are assumed to be established. It has been known that a special feature of extracellular matrix, termed perineuronal nets, exists around specific subpopulation of neurons. In the mouse cerebellum, the present findings suggest that laminin itself or laminin-like-antigens exists in the perineuronal nets in relation to inhibitory neuron synapses.
Collapse
Affiliation(s)
- Takashi Yagi
- Department of Anatomy, Faculty of Medicine, University of Yamanashi, Tamaho, Yamanashi 409-3898, Japan
| | | | | | | |
Collapse
|
217
|
Brenneke F, Bukalo O, Dityatev A, Lie AA. Mice deficient for the extracellular matrix glycoprotein tenascin-r show physiological and structural hallmarks of increased hippocampal excitability, but no increased susceptibility to seizures in the pilocarpine model of epilepsy. Neuroscience 2004; 124:841-55. [PMID: 15026125 DOI: 10.1016/j.neuroscience.2003.11.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2003] [Indexed: 11/30/2022]
Abstract
Recognition molecules provide important cues for neuronal survival, axonal fasciculation, axonal pathfinding, synaptogenesis, synaptic plasticity, and regeneration. Our previous studies revealed a link between perisomatic inhibition and the extracellular matrix glycoprotein tenascin-R (TN-R). Therefore, we here studied neuronal excitability and epileptic susceptibility in mice constitutively deficient in TN-R. In vitro analysis of populational spikes in hippocampal slices of TN-R-deficient mice revealed a significant increase in multiple spikes in the CA1 region, as compared with wild-type mice. This difference between genotypes was only partially reduced after blockade of GABA(A) receptors with picrotoxin, indicating a deficit in GABAergic inhibition and an increase in intrinsic excitability of CA1 pyramidal cells in TN-R-deficient mice. Using a battery of immunohistochemical markers and histological stainings, we were able to identify two abnormalities in the hippocampus of TN-R-deficient mice possibly related to increased excitability: the high number of glial fibrillary acidic protein-positive astrocytes and low number of calretinin-positive interneurons in the CA1 and CA3 regions. In order to test whether the revealed abnormalities give rise to increased susceptibility to seizures in TN-R-deficient mice, we used the pilocarpine model of epilepsy. No genotype-specific differences were found with regard to the time-course of pilocarpine-induced and spontaneous seizures, neuronal cell loss, aberrant sprouting and distribution of synaptic and inhibitory interneuron markers. However, pilocarpine-induced astrogliosis and reduction in calretinin-positive interneurons were less pronounced in TN-R mutants, thereby resulting in an occlusion of effects induced by TN-R deficiency and pilocarpine. Thus, TN-R-deficient mutants show several electrophysiological and morphological hallmarks of increased neuronal excitability, which, however, do not give rise to more accelerated or severe epileptogenesis in the pilocarpine model of epilepsy.
Collapse
Affiliation(s)
- F Brenneke
- Department of Epileptology, University of Bonn Medical Center, Sigmund-Freud Strasse 25, D-53127 Bonn, Germany
| | | | | | | |
Collapse
|
218
|
Gurevicius K, Gureviciene I, Valjakka A, Schachner M, Tanila H. Enhanced cortical and hippocampal neuronal excitability in mice deficient in the extracellular matrix glycoprotein tenascin-R. Mol Cell Neurosci 2004; 25:515-23. [PMID: 15033179 DOI: 10.1016/j.mcn.2003.12.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2003] [Revised: 11/24/2003] [Accepted: 12/02/2003] [Indexed: 11/17/2022] Open
Abstract
Mice deficient in the extracellular matrix protein tenascin-R (TN-R-/- mice) show several indices of impaired perisomatic inhibition in hippocampal slices. The present study examined electroencephalograms (EEGs) and auditory-evoked potentials (AEPs) in freely moving TN-R-/- and wild-type control mice, focusing on the hippocampal CA1 field and cerebral cortex. TN-R-/- mice expressed normal high-frequency oscillations (ripples) in CA1 and only a slight reduction of peak theta frequency. In contrast, their hippocampal gamma oscillations were significantly enhanced in amplitude. Also, the amplitude of the cortical EEG of TN-R-/- mice was increased over a wide frequency range. The amplitude of cortical and, to a lesser degree hippocampal, AEPs was clearly enhanced in TN-R-/- mice. In addition, response habituation to repeated sound stimuli was significantly attenuated in TN-R-/- mice. These findings indicate that tenascin-R is involved in the regulation of certain inhibitory mechanisms in the intact brain.
Collapse
Affiliation(s)
- K Gurevicius
- Department of Neuroscience and Neurology, University of Kuopio, 70211, Finland
| | | | | | | | | |
Collapse
|
219
|
Murakami T, Ohtsuka A. Perisynaptic barrier of proteoglycans in the mature brain and spinal cord. ACTA ACUST UNITED AC 2004; 66:195-207. [PMID: 14527161 DOI: 10.1679/aohc.66.195] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cell bodies and their dendrites of motor neurons, motor-related neurons, and certain other subsets of neurons such as GABAergic interneurons in the mature brain and spinal cord possess intensely negatively charged perineuronal or perisynaptic nets of proteoglycans which are linked to the nerve cell surface glycoproteins. These perineuronal nets of proteoglycans are digested by chondroitinase ABC, hyaluronidase, or collagenase, but not by endo-alpha-N-acetylgalactosaminidase, which is reactive to the nerve cell surface glycoproteins. Aggrecan, versican, neurocan, and brevican are members of a family of chondroitin sulfate proteoglycans that bind to hyaluronan. Neurocan- or brevican-deficient mice showed a regionally heterogeneous composition of proteoglycans in perineuronal nets. Aggrecan glycoforms contribute to the molecular heterogeneity of the perineuronal nets. Proteoglycans such as phosphacan are included in matrix-associated proteoglycans. The extracellular matrix glycoprotein tenascin-R is accumulated in the perineuronal nets. The perineuronal proteoglycans are produced by associated satellite astrocytes just before weaning, while the nerve cell surface glycoproteins are produced by the associated nerve cells at earlier stages after birth. The perineuronal proteoglycans may entrap the tissue fluid and form a perineuronal gel layer which protects the synapses as a "perisynaptic barrier". Degradation of the perineuronal proteoglycans or perisynaptic barrier by treatment with chondroitinase ABC or hyaluronidase reactivates the neuronal plasticity or promotes the functional recovery of a severed nervous system. Another set of perineuronal nets occurs, which are intensely positively charged and contain guanidino compounds. It is considered that these intensely positively charged nets are intermingled with the intensely negatively charged ones of proteoglycans.
Collapse
Affiliation(s)
- Takuro Murakami
- Department of Human Morphology, Functional Physiology, Biophysiological Science, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan.
| | | |
Collapse
|
220
|
Abstract
Carbohydrate-carrying molecules in the nervous system have important roles during development, regeneration and synaptic plasticity. Carbohydrates mediate interactions between recognition molecules, thereby contributing to the formation of a complex molecular meshwork at the cell surface and in the extracellular matrix. The tremendous structural diversity of glycan chains allows for immense combinatorial possibilities that might underlie the fine-tuning of cell-cell and cell-matrix interactions.
Collapse
Affiliation(s)
- Ralf Kleene
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, Martinistrasse 52, 20246 Hamburg, Germany
| | | |
Collapse
|
221
|
Saghatelyan A, de Chevigny A, Schachner M, Lledo PM. Tenascin-R mediates activity-dependent recruitment of neuroblasts in the adult mouse forebrain. Nat Neurosci 2004; 7:347-56. [PMID: 15034584 DOI: 10.1038/nn1211] [Citation(s) in RCA: 174] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Accepted: 02/24/2004] [Indexed: 11/09/2022]
Abstract
Neuroblasts arising in the adult forebrain that travel to the olfactory bulb use two modes of migration: tangentially, along the rostral migratory stream, and radially, in the core of the olfactory bulb where they start to ascend to the outer layers. Although the mechanisms of tangential migration have been extensively studied, the factors controlling radial migration remain unexplored. Here we report that the extracellular matrix glycoprotein tenascin-R, expressed in the adult mouse olfactory bulb, initiates both the detachment of neuroblasts from chains and their radial migration. Expression of tenascin-R is activity dependent, as it is markedly reduced by odor deprivation. Furthermore, grafting of tenascin-R-transfected cells into non-neurogenic regions reroutes migrating neuroblasts toward these regions. The identification of an extracellular microenvironment capable of directing migrating neuroblasts provides insights into the mechanisms regulating radial migration in the adult olfactory bulb and offers promising therapeutic venues for brain repair.
Collapse
Affiliation(s)
- Armen Saghatelyan
- Laboratory of Perception and Memory, CNRS URA 2182, Pasteur Institute, 25 rue du Dr. Roux, 75015 Paris Cedex, France
| | | | | | | |
Collapse
|
222
|
Brenneke F, Schachner M, Elger CE, Lie AA. Up-regulation of the extracellular matrix glycoprotein tenascin-R during axonal reorganization and astrogliosis in the adult rat hippocampus. Epilepsy Res 2004; 58:133-43. [PMID: 15120744 DOI: 10.1016/j.eplepsyres.2004.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2003] [Revised: 01/20/2004] [Accepted: 01/25/2004] [Indexed: 11/26/2022]
Abstract
Interactions between cells and extracellular matrix (ECM) molecules play a crucial role during brain development. The ECM glycoprotein tenascin-R (TN-R) has been implicated in the control of axon targeting, neural cell adhesion, migration and differentiation. Here, we have focused on the putative role of TN-R in chronic brain diseases involving increased neuronal excitability, as found in epilepsy. An episode of pilocarpine-induced status epilepticus (SE) led over a period of 3-30 days to neuron loss in the hippocampal hilus, CA3 and CA1 with reactive mossy fiber sprouting and astrogliosis in these regions. We found a focal up-regulation of granular TN-R immunoreactivity within the neuropil of segments of the CA3 pyramidal cell layer, the extent of this up-regulation paralleled the degree of pyramidal cell loss, mossy fiber sprouting and astrogliosis in these CA3 segments. In contrast, parvalbumin immunoreactivity and Wisteria floribundi agglutinin (WFA)-labeled perineuronal nets were reduced in CA3 segments with neuronal cell loss. The parallel development of increase in focal granular TN-R immunoreactivity, reactive mossy fiber sprouting and astrogliosis in CA3 implies a role for TN-R in axon targeting and synapse formation and/or in astrocytic targeting and interactions with the ECM during lesion-induced sprouting in the adult brain.
Collapse
Affiliation(s)
- Franziska Brenneke
- Department of Epileptology, University of Bonn Medical Center, Sigmund-Freud Street 25, 53127 Bonn, Germany
| | | | | | | |
Collapse
|
223
|
Rhodes KE, Fawcett JW. Chondroitin sulphate proteoglycans: preventing plasticity or protecting the CNS? J Anat 2004; 204:33-48. [PMID: 14690476 PMCID: PMC1571240 DOI: 10.1111/j.1469-7580.2004.00261.x] [Citation(s) in RCA: 234] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2003] [Indexed: 12/21/2022] Open
Abstract
It is well established that axonal regeneration in the adult CNS is largely unsuccessful. Numerous axon-inhibitory molecules are now known to be present in the injured CNS, and various strategies for overcoming these obstacles and enhancing CNS regeneration have been experimentally developed. Recently, the use of chondroitinase-ABC to treat models of CNS injury in vivo has proven to be highly beneficial towards regenerating axons, by degrading the axon-inhibitory chondroitin sulphate glycosaminoglycan chains found on many proteoglycans in the astroglial scar. This enzyme has now been shown to restore synaptic plasticity in the visual cortex of adult rats by disrupting perineuronal nets, which contain high levels of chondroitin sulphate proteoglycans (CS-PGs) and are expressed postnatally around groups of certain neurons in the normal CNS. The findings suggest exciting prospects for enhancing growth and plasticity in the adult CNS; however, some protective roles of CS-PGs in the CNS have also been demonstrated. Clearly many questions concerning the mechanisms regulating expression of extracellular matrix molecules in CNS pathology remain to be answered.
Collapse
Affiliation(s)
- K E Rhodes
- Cambridge Centre for Brain Repair, University of Cambridge, UK.
| | | |
Collapse
|
224
|
Freitag S, Schachner M, Morellini F. Behavioral alterations in mice deficient for the extracellular matrix glycoprotein tenascin-R. Behav Brain Res 2003; 145:189-207. [PMID: 14529817 DOI: 10.1016/s0166-4328(03)00109-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We investigated the behavior of mice deficient for the extracellular matrix (ECM) glycoprotein tenascin-R (TN-R) in comparison to their wild-type (WT) littermates. A longitudinal study including tests for exploration and anxiety, motor coordination and cognition was carried out. Mice were tested at different ages, ranging from 3 weeks to 11 months and under different housing conditions. TN-R deficient mice displayed decreased motivation to explore and an increased anxiety profile in the free choice open field (FCOF), open field (OF) and elevated plus maze (EPM) tests. Moreover, the anxiety level of TN-R deficient mice was more strongly influenced by environmental factors as compared to WT littermates. TN-R deficient mice showed motor coordination impairments in the wire hanging, Rotarod and pole test. Thus TN-R ablation leads to an altered behavioral phenotype in mice that may negatively affect their fitness under natural conditions.
Collapse
Affiliation(s)
- Sandra Freitag
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, Martinistr. 52, D-20246, Hamburg, Germany
| | | | | |
Collapse
|
225
|
Wegner F, Härtig W, Bringmann A, Grosche J, Wohlfarth K, Zuschratter W, Brückner G. Diffuse perineuronal nets and modified pyramidal cells immunoreactive for glutamate and the GABAA receptor α1 subunit form a unique entity in rat cerebral cortex. Exp Neurol 2003; 184:705-14. [PMID: 14769362 DOI: 10.1016/s0014-4886(03)00313-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2003] [Revised: 05/27/2003] [Accepted: 06/16/2003] [Indexed: 10/27/2022]
Abstract
Perineuronal nets (PNs) consisting of polyanionic chondroitin sulfate proteoglycans (CSPG) and other extracellular matrix components create an exceptional microenvironment around certain types of neurons. In rat neocortex, three types of PNs can be distinguished after staining with Wisteria floribunda agglutinin (WFA) by their different morphological structure: lattice-like PNs associated with subpopulations of nonpyramidal neurons, weakly labeled PNs showing a pyramidal morphology, and diffuse PNs that possess a thick, strongly labeled matrix sheath located mainly in layer VIb above the white matter. The type of neuron surrounded by diffuse nets has not been described so far. This study is focused on the cytochemical and morphological characteristics of neurons associated with diffusely contoured PNs in rat parietal cortex using immunocytochemical staining, intracellular injection, and retrograde tracing methods. Cells surrounded by diffuse PNs were glutamate-immunoreactive in contrast to nonpyramidal, net-associated neurons that showed immunoreactivity for GABA, the calcium-binding protein parvalbumin and the potassium channel subunit Kv3.1b. Both groups of PN-ensheathed cells were mostly immunoreactive for the GABA(A) receptor alpha1 subunit. Lucifer Yellow-injected neurons surrounded by diffuse PNs displayed the morphological properties of modified pyramidal cells with intracortical main axons. Many neurons with diffuse PNs were retrogradely labeled over a long distance after Fluoro-Gold tracer injection in the parietal cortex, but remained unlabeled after intrathalamic injection. We conclude that neurons associated with diffuse PNs are a subpopulation of glutamatergic modified pyramidal cells that could act as excitatory long-range intracortically projecting neurons.
Collapse
Affiliation(s)
- Florian Wegner
- Paul Flechsig Institute for Brain Research, University of Leipzig, D-04109 Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
226
|
Putthoff P, Akyüz N, Kutsche M, Zardi L, Borgmeyer U, Schachner M. Structure of the murine tenascin-R gene and functional characterisation of the promoter. Biochem Biophys Res Commun 2003; 308:940-9. [PMID: 12927810 DOI: 10.1016/s0006-291x(03)01506-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The tenascin-R (TN-R) gene encodes a multidomain extracellular matrix glycoprotein belonging to the tenascin family. It is detectable mainly in oligodendrocytes and neuronal subpopulations of the central nervous system. In this report, we describe the structure of the 5'-region of the mouse TN-R gene and characterise the activity of its promoter. By in silico cloning and genome walking, we have deduced the organisation of the gene and identified the promoter sequence by 5'-RACE technology. TN-R transcripts in adult mouse brain contain non-coding exons 1 and 2 as demonstrated by the reverse transcriptase-polymerase chain reaction. The promoter displays its activity in cultured cells of neural origin, but not in a fibroblast-like cell line or an undifferentiated teratocarcimoma cell line. As for the human and rat genes, the elements required for the full and cell type-specific activity of the promoter are contained in exon 1 and 167 bp upstream of this exon. The mouse TN-R promoter sequence is similar to that of rat and human in that it displays similarly unusual features: it lacks any classical TATA-box or CAAT-box, GC-rich regions or initiator elements. The promoter contains consensus sequences for binding of a variety of transcription factors, notably p53/p73 and glucocorticoid receptors.
Collapse
MESH Headings
- Animals
- Base Sequence
- Brain/embryology
- Cell Differentiation
- Cloning, Molecular
- DNA, Complementary/metabolism
- DNA-Binding Proteins/metabolism
- Exons
- Fibroblasts/metabolism
- Genes, Tumor Suppressor
- Genome
- Humans
- Mice
- Mice, Inbred C57BL
- Models, Genetic
- Molecular Sequence Data
- Neurons/metabolism
- Nuclear Proteins/metabolism
- Polymerase Chain Reaction
- Promoter Regions, Genetic
- Protein Binding
- RNA, Messenger/metabolism
- Rats
- Receptors, Glucocorticoid/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Nucleic Acid
- Species Specificity
- Tenascin/genetics
- Transcription, Genetic
- Transfection
- Tumor Cells, Cultured
- Tumor Protein p73
- Tumor Suppressor Protein p53/metabolism
- Tumor Suppressor Proteins
Collapse
Affiliation(s)
- Peggy Putthoff
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, Martinistrasse 52, Hamburg D-20246, Germany
| | | | | | | | | | | |
Collapse
|
227
|
Bekku Y, Su WD, Hirakawa S, Fässler R, Ohtsuka A, Kang JS, Sanders J, Murakami T, Ninomiya Y, Oohashi T. Molecular cloning of Bral2, a novel brain-specific link protein, and immunohistochemical colocalization with brevican in perineuronal nets☆. Mol Cell Neurosci 2003; 24:148-59. [PMID: 14550776 DOI: 10.1016/s1044-7431(03)00133-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The hyaluronan binding chondroitin sulphate proteoglycans, called lecticans, are the abundant extracellular matrix molecules in the developing and/or adult brain. The link proteins (LPs) are also known to be coordinately present in brain. We report here the molecular cloning and expression analysis of a novel member of LPs: Bral2, predominantly expressed in brain. The Bral2 mRNA expression is first detected at P20 and continued through adulthood, suggesting its functional importance and association with adult-type lecticans. The substantial immunoreactivity of Bral2 is found in several nuclei throughout the midbrain and hindbrain in a perineuronal net pattern. In situ hybridization revealed that Bral2 is synthesized by these neurons themselves, especially by the GABAergic neurons in the cerebellar cortex. Interestingly, the colocalization and synergic importance of Bral2 and brevican in the perineuronal nets is indicated by the comparative immunohistochemical analysis using wild-type and brevican-deficient mouse brain. Our results suggest that Bral2 is involved in the formation of extracellular matrix contributing to perineuronal nets and facilitate the understanding of a functional role of these extracellular matrices.
Collapse
MESH Headings
- Animals
- Axonal Transport/physiology
- Brain/cytology
- Brain/metabolism
- Brevican
- Cerebellum/cytology
- Cerebellum/metabolism
- Chondroitin Sulfate Proteoglycans/deficiency
- Chondroitin Sulfate Proteoglycans/genetics
- Chromosome Mapping
- Chromosomes, Human, Pair 19
- Cloning, Molecular
- DNA, Complementary/analysis
- DNA, Complementary/genetics
- Extracellular Matrix Proteins/genetics
- Extracellular Matrix Proteins/isolation & purification
- Humans
- Immunohistochemistry
- Lectins, C-Type
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Molecular Sequence Data
- Nerve Tissue Proteins/deficiency
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/isolation & purification
- Nerve Tissue Proteins/metabolism
- Neurons/cytology
- Neurons/metabolism
- Presynaptic Terminals/metabolism
- Proteoglycans/genetics
- Proteoglycans/isolation & purification
- Proteoglycans/metabolism
- RNA, Messenger/metabolism
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Versicans
Collapse
Affiliation(s)
- Yoko Bekku
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine and Dentistry, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
228
|
Brückner G, Grosche J, Hartlage-Rübsamen M, Schmidt S, Schachner M. Region and lamina-specific distribution of extracellular matrix proteoglycans, hyaluronan and tenascin-R in the mouse hippocampal formation. J Chem Neuroanat 2003; 26:37-50. [PMID: 12954529 DOI: 10.1016/s0891-0618(03)00036-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The extracellular matrix is known to show region-specific characteristics in the adult brain. Our comparative cytochemical study is focused on the laminar organisation of major extracellular matrix constituents in the murine hippocampal formation, including the regions CA1, CA2 and CA3 of the hippocampus proper, the dentate gyrus, the subiculum and the presubiculum. Components related to chondroitin sulphate proteoglycans were detected by N-acetylgalactosamine-binding Wisteria floribunda agglutinin, colloidal iron staining, and antibodies to different proteoglycan domains, including the Cat-301 and Cat-315 epitopes of aggrecan, as well as neurocan, brevican and phosphacan. The distribution patterns of these components were correlated with the patterns revealed for hyaluronan and the brain-specific extracellular matrix glycoprotein, tenascin-R, known to be ligands of extracellular matrix proteoglycans. Lectin binding clearly labelled perineuronal nets of the extracellular matrix around interneurons, which were preferentially located within or near the principal cell layers in all regions. In the hippocampus proper, the CA2 subfield showed an intense labelling of the neuropil around pyramidal cell bodies and the neuropil zones in the strata oriens and radiatum. These patterns were also seen after immunoreaction for chondroitin proteoglycan domains, brevican and phosphacan, as well as after detection of hyaluronan and tenascin-R. Characteristic laminar and intralaminar patterns were additionally expressed in the neuropil in all regions. In the dentate gyrus, the staining intensity for brevican, phosphacan and tenascin-R was predominant in the middle molecular layer, and for Cat-315 in the inner molecular layer, whereas immunoreactivity for neurocan increased within the outer molecular layer towards the hippocampal fissure. Our findings indicate that proteoglycans, hyaluronan and tenascin-R show differential patterns of co-expression in the individual regions and laminae of the hippocampal formation. The inhomogeneous composition of these major components suggests that the extracellular matrix is specifically adapted to the functional domains of intrahippocampal connections and afferent fibre systems.
Collapse
Affiliation(s)
- Gert Brückner
- Department of Neurochemistry, Paul Flechsig Institute for Brain Research, University of Leipzig, Jahnallee 59, D-04109 Leipzig, Germany.
| | | | | | | | | |
Collapse
|
229
|
Abstract
Sensory experience is known to shape the maturation of cortical circuits during development. A paradigmatic example is the effect of monocular deprivation on ocular dominance of visual cortical neurons. Although visual cortical plasticity has been widely studied since its initial discovery by Hubel and Wiesel >40 years ago, the description of the underlying molecular mechanisms has lagged behind. Several new findings are now beginning to close this gap. Recent data deepen our knowledge of the factors involved in the intercellular communication and intracellular signaling that mediate experience-dependent plasticity in the developing visual cortex. In addition, new findings suggest a role for the extracellular matrix in inhibition of ocular-dominance plasticity in the adult visual cortex.
Collapse
Affiliation(s)
- Nicoletta Berardi
- Laboratory of Neurophysiology, Institute of Neuroscience, Pisa, Italy
| | | | | | | |
Collapse
|
230
|
Affiliation(s)
- Alexander Dityatev
- Zentrum für Molekulare Neurobiologie, University of Hamburg, Martinistr. 52, 20246 Hamburg, Germany.
| | | |
Collapse
|
231
|
Neidhardt J, Fehr S, Kutsche M, Löhler J, Schachner M. Tenascin-N: characterization of a novel member of the tenascin family that mediates neurite repulsion from hippocampal explants. Mol Cell Neurosci 2003; 23:193-209. [PMID: 12812753 DOI: 10.1016/s1044-7431(03)00012-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Tenascin-N, a novel member of the tenascin family, was identified and shown to encode characteristic structural motifs of a cysteine-rich stretch, 3.5 epidermal growth factor-like repeats, 12 fibronectin type III homologous domains, and a fibrinogen-like domain. The third fibronectin type III homologous domain is altered by RNA splicing. Characterization of the expression of tenascin-N by in situ hybridization analysis assigned transcripts to many types of neurons in the central nervous system, to the medullary region in the kidney, and to resident macrophages of the T-cell zone in the splenic white pulp. By immunohistochemistry, tenascin-N expression is detectable in all brain regions, with a characteristic staining pattern in the hippocampus demarcating the CA3 region. Recombinantly expressed protein fragments of the alternatively spliced isoforms were presented in choice assays on patterned substrates to neurites and migrating neurons from hippocampal CA3 region explant cultures. The smaller splice variant inhibited neurite outgrowth or cell migration, whereas the longer splice form did not inhibit these functions. These observations suggest that the novel tenascin family member mediates specific repulsive properties on neurites and neurons by generating splice isoforms.
Collapse
Affiliation(s)
- John Neidhardt
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, Martinistrasse 52, D-20246, Hamburg, Germany
| | | | | | | | | |
Collapse
|
232
|
Nikonenko A, Schmidt S, Skibo G, Brückner G, Schachner M. Tenascin-R-deficient mice show structural alterations of symmetric perisomatic synapses in the CA1 region of the hippocampus. J Comp Neurol 2003; 456:338-49. [PMID: 12532406 DOI: 10.1002/cne.10537] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Accumulating evidence suggests that extracellular matrix (ECM) molecules play important roles in formation of synapses. Our previous electrophysiologic study of mice deficient in the extracellular matrix glycoprotein tenascin-R (TN-R) showed an impaired gamma-aminobutyric acid release at perisomatic inhibitory synapses in the CA1 pyramidal cell layer of the hippocampus. The present study investigated possible ultrastructural correlates of abnormal perisomatic inhibition. Topographic, morphometric, and stereologic methods were applied at the light and electron microscopic levels to quantify the density and spatial arrangement of cell bodies of CA1 pyramidal neurons and density and architecture of symmetric synapses formed on them in TN-R(-/-) and wild-type mice of different ages. The spatial arrangement of neuronal cell bodies in the CA1 pyramidal cell layer was found more diffuse and disordered in TN-R(-/-) mice than in wild-type animals. The coverage of the plasma membrane of pyramidal cell bodies by active zones of symmetric synapses was reduced by at least 40% in TN-R(-/-) animals compared with control animals. Further, the length of active zone profiles of perisomatic inhibitory synapses in the CA1 pyramidal cell layer was 8-14% smaller, whereas the number of active zones calculated per length unit of cell body profile was 30-40% smaller in TN-R mutants than in wild-type animals. The density and spatial arrangement of synaptic vesicles in the synaptic terminals provided ultrastructural evidence for reduced synaptic activity in TN-R mutants. Thus, TN-R appears to play an important role in the regulation of the number and architecture of perisomatic inhibitory synapses, which play crucial roles in the synchronization of neuronal activity and modulation of synaptic plasticity in the hippocampus.
Collapse
Affiliation(s)
- Alexander Nikonenko
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, 20246 Hamburg, Germany
| | | | | | | | | |
Collapse
|
233
|
Montag-Sallaz M, Montag D. Severe cognitive and motor coordination deficits in tenascin-R-deficient mice. GENES, BRAIN, AND BEHAVIOR 2003; 2:20-31. [PMID: 12882316 DOI: 10.1034/j.1601-183x.2003.00003.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The extracellular matrix molecule tenascin-R (TN-R), predominantly expressed in the central nervous system, has been implied in a variety of functions, e.g. during myelination, cerebellar neurite fasciculation and hippocampal long-term potentiation. In this study, we investigated in detail the impact of TN-R deficiency on the living animal by analyzing the behavior of TN-R-deficient mice. The general state, gross sensory functions, reflexes and motoric capabilities appeared normal. In contrast, motor coordination on the rota-rod was compromised in these mice, indicating a deficit in cerebellar functions. In the open field and the hole board, the mutants interact differently with their environment, probably due to differences in their exploratory behavior. TN-R-deficient mice were able to learn a reference memory task in the Morris water maze. In contrast to wild-type mice, the mutants displayed an alternative strategy; swimming around the pool using a stereotypical circling pattern, crossing all possible platform positions after relocation of the escape platform (reversal). These results, confirmed by relocating the platform in the center of the pool, suggest that TN-R-deficient mice may be impaired in constructing a goal-independent representation of space. In addition, a two-way active avoidance test (shuttle box) revealed a severe deficit in associative learning in TN-R-deficient mice. Our results support important functions of TN-R in vivo in the central nervous system, in particular in the cerebellum and the hippocampus.
Collapse
Affiliation(s)
- M Montag-Sallaz
- Neurogenetics Research Group, Leibniz Institute for Neurobiology, Brenneckestr., Magdeburg, Germany
| | | |
Collapse
|
234
|
Pizzorusso T, Medini P, Berardi N, Chierzi S, Fawcett JW, Maffei L. Reactivation of ocular dominance plasticity in the adult visual cortex. Science 2002; 298:1248-51. [PMID: 12424383 DOI: 10.1126/science.1072699] [Citation(s) in RCA: 1237] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In young animals, monocular deprivation leads to an ocular dominance shift, whereas in adults after the critical period there is no such shift. Chondroitin sulphate proteoglycans (CSPGs) are components of the extracellular matrix (ECM) inhibitory for axonal sprouting. We tested whether the developmental maturation of the ECM is inhibitory for experience-dependent plasticity in the visual cortex. The organization of CSPGs into perineuronal nets coincided with the end of the critical period and was delayed by dark rearing. After CSPG degradation with chondroitinase-ABC in adult rats, monocular deprivation caused an ocular dominance shift toward the nondeprived eye. The mature ECM is thus inhibitory for experience-dependent plasticity, and degradation of CSPGs reactivates cortical plasticity.
Collapse
|
235
|
Seidenbecher CI, Smalla KH, Fischer N, Gundelfinger ED, Kreutz MR. Brevican isoforms associate with neural membranes. J Neurochem 2002; 83:738-46. [PMID: 12390535 DOI: 10.1046/j.1471-4159.2002.01183.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Brevican is a neural-specific proteoglycan of the brain extracellular matrix, which is particularly abundant in the terminally differentiated CNS. It is expressed by neuronal and glial cells, and as a component of the perineuronal nets it decorates the surface of large neuronal somata and primary dendrites. One brevican isoform harbors a glycosylphosphatidylinositol anchor attachment site and, as shown by ethanolamine incorporation studies, is indeed glypiated in stably transfected HEK293 cells as well as in oligodendrocyte precursor Oli-neu cells. The major isoform is secreted into the extracellular space, although a significant amount appears to be tightly attached to the cell membrane, as it floats up in sucrose gradients. Flotation is sensitive to detergent treatment. Brevican is most prominent in the microsomal, light membrane and synaptosomal fractions of rat brain membrane preparations. The association with the particulate fraction is in part sensitive to chondroitinase ABC and phosphatidylinositol-specific phospholipase C treatment. Furthermore, brevican staining on the surface of hippocampal neurons in culture is diminished after hyaluronidase or chondroitinase ABC treatment. Taken together, this could provide a mechanism by which perineuronal nets are anchored on neuronal surfaces.
Collapse
Affiliation(s)
- Constanze I Seidenbecher
- AG Molecular Mechanisms of Plasticity, Department of Neurochemistry/Molecular Biology, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany.
| | | | | | | | | |
Collapse
|
236
|
Brakebusch C, Seidenbecher CI, Asztely F, Rauch U, Matthies H, Meyer H, Krug M, Böckers TM, Zhou X, Kreutz MR, Montag D, Gundelfinger ED, Fässler R. Brevican-deficient mice display impaired hippocampal CA1 long-term potentiation but show no obvious deficits in learning and memory. Mol Cell Biol 2002; 22:7417-27. [PMID: 12370289 PMCID: PMC135663 DOI: 10.1128/mcb.22.21.7417-7427.2002] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2002] [Revised: 06/10/2002] [Accepted: 07/16/2002] [Indexed: 12/20/2022] Open
Abstract
Brevican is a brain-specific proteoglycan which is found in specialized extracellular matrix structures called perineuronal nets. Brevican increases the invasiveness of glioma cells in vivo and has been suggested to play a role in central nervous system fiber tract development. To study the role of brevican in the development and function of the brain, we generated mice lacking a functional brevican gene. These mice are viable and fertile and have a normal life span. Brain anatomy was normal, although alterations in the expression of neurocan were detected. Perineuronal nets formed but appeared to be less prominent in mutant than in wild-type mice. Brevican-deficient mice showed significant deficits in the maintenance of hippocampal long-term potentiation (LTP). However, no obvious impairment of excitatory and inhibitory synaptic transmission was found, suggesting a complex cause for the LTP defect. Detailed behavioral analysis revealed no statistically significant deficits in learning and memory. These data indicate that brevican is not crucial for brain development but has restricted structural and functional roles.
Collapse
Affiliation(s)
- Cord Brakebusch
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
237
|
Adams I, Brauer K, Arélin C, Härtig W, Fine A, Mäder M, Arendt T, Brückner G. Perineuronal nets in the rhesus monkey and human basal forebrain including basal ganglia. Neuroscience 2002; 108:285-98. [PMID: 11734361 DOI: 10.1016/s0306-4522(01)00419-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Perineuronal nets of extracellular matrix have been shown to characterize the microenvironment of individual neurons and the chemoarchitecture of brain regions such as basal forebrain nuclei. Previous work has also demonstrated that neurons in the human cerebral cortex ensheathed by perineuronal nets rarely undergo cytoskeletal changes in Alzheimer's disease, suggesting a neuroprotective effect of extracellular matrix components. It is not known, however, whether or not perineuronal nets are absent in the microenvironment of the cholinergic basal forebrain neurons that are involved early in the cascade of neurodegeneration in humans. Therefore, the present study was undertaken to examine the distribution patterns of perineuronal nets in the basal forebrain of the higher primates, rhesus monkey and human. Cytochemical staining was performed with the lectin Wisteria floribunda agglutinin and a polyclonal antibody to core proteins of chondroitin sulfate proteoglycans in the perfusion-fixed tissue of rhesus monkeys. In human brains, perineuronal nets were only stained with the immunoreaction for chondroitin sulfate proteoglycans. The results showed similar characteristics in distribution patterns of perineuronal nets in the medial septum, the diagonal band of Broca, the basal nucleus of Meynert (Ch1-Ch4), the lateral septum, the caudate-putamen, and the globus pallidus in both species. Double-labelling revealed that the vast majority of cholinergic neurons, labelled either with antibodies to choline acetyltransferase or the low-affinity neurotrophin receptor p75(NTR), were not ensheathed by perineuronal nets. A small subpopulation of net-associated neurons in close proximity to or intermingled with cholinergic neurons of the Ch1-Ch4 cell groups was found to be immunoreactive for parvalbumin. In the caudate-putamen, a large number of the parvalbumin-positive neurons were surrounded by perineuronal nets, whereas in the external and internal segments of the globus pallidus the coincidence of both markers was nearly complete. The study demonstrates that perineuronal nets of extracellular matrix are associated with different types of non-cholinergic neurons in the primate basal forebrain. The absence of nets around cholinergic basal forebrain neurons may be related to their slow modulatory activity but may also contribute to their susceptibility to degeneration in Alzheimer's disease.
Collapse
Affiliation(s)
- I Adams
- Paul Flechsig Institute for Brain Research, University of Leipzig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
238
|
De-Miguel FF, Vargas J, Arias C, Escamilla C. Extracellular matrix glycoproteins inhibit neurite production by cultured neurons. J Comp Neurol 2002; 443:401-11. [PMID: 11807847 DOI: 10.1002/cne.10146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have analyzed the role of extracellular matrix glycoproteins in the formation of a bipolar outgrowth pattern of identified leech neurons in culture. Adult anterior pagoda (AP) neurons cultured on the inner surface of the ganglion capsules that surround central nervous system, generate two processes oriented in opposite directions. This pattern differs from those produced by these neurons cultured on other substrates, and is similar to the pattern of developing AP neurons at embryonic day 10. We used different lectins to identify subsets of glycoproteins in the extracellular matrix (ECM) of the capsules and to study their contribution to the formation of the bipolar outgrowth pattern. ECM glycoproteins binding to peanut agglutinin (PNA) or Galanthus nivalis aglutinin (GNA) lectins were detected in ganglion capsules and in ganglion extracts that had been separated by electrophoresis and blotted to nitrocellulose membranes. Four protein bands bound to PNA lectin and six other bands, including laminin subunits, bound to GNA lectin. Other lectins failed to recognize any of the proteins. For AP neurons cultured on capsules, addition of PNA lectin to the culture medium produced a dose-dependent increase in the number of primary neurites without affecting their shape, length or number of branch points. However, PNA lectin used as substrate did not affect sprouting of AP neurons. Our results suggest that PNA-binding extracellular matrix glycoproteins regulate the formation of the bipolar pattern of AP neurons by inhibiting the formation of neurites.
Collapse
Affiliation(s)
- Francisco F De-Miguel
- Departamento de Biofísica, Instituto de Fisiología Celular, UNAM, 04510, DF, México.
| | | | | | | |
Collapse
|
239
|
Wright JW, Kramár EA, Meighan SE, Harding JW. Extracellular matrix molecules, long-term potentiation, memory consolidation and the brain angiotensin system. Peptides 2002; 23:221-46. [PMID: 11814638 DOI: 10.1016/s0196-9781(01)00599-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Considerable evidence now suggests an interrelationship among long-term potentiation (LTP), extracellular matrix (ECM) reconfiguration, synaptogenesis, and memory consolidation within the mammalian central nervous system. Extracellular matrix molecules provide the scaffolding necessary to permit synaptic remodeling and contribute to the regulation of ionic and nutritional homeostasis of surrounding cells. These molecules also facilitate cellular proliferation, movement, differentiation, and apoptosis. The present review initially focuses on characterizing the ECM and the roles of cell adhesion molecules (CAMs), matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs), in the maintenance and degradation of the ECM. The induction and maintenance of LTP is described. Debate continues over whether LTP results in some form of synaptic strengthening and in turn promotes memory consolidation. Next, the contribution of CAMs and TIMPs to the facilitation of LTP and memory consolidation is discussed. Finally, possible roles for angiotensins, MMPs, and tissue plasminogen activators in the facilitation of LTP and memory consolidation are described. These enzymatic pathways appear to be very important to an understanding of dysfunctional memory diseases such as Alzheimer's disease, multiple sclerosis, brain tumors, and infections.
Collapse
Affiliation(s)
- John W Wright
- Department of Psychology, Washington State University, PO Box 644820, Pullman, WA 99164-4820, USA.
| | | | | | | |
Collapse
|
240
|
Zhou XH, Brakebusch C, Matthies H, Oohashi T, Hirsch E, Moser M, Krug M, Seidenbecher CI, Boeckers TM, Rauch U, Buettner R, Gundelfinger ED, Fässler R. Neurocan is dispensable for brain development. Mol Cell Biol 2001; 21:5970-8. [PMID: 11486035 PMCID: PMC87315 DOI: 10.1128/mcb.21.17.5970-5978.2001] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Neurocan is a component of the extracellular matrix in brain. Due to its inhibition of neuronal adhesion and outgrowth in vitro and its expression pattern in vivo it was suggested to play an important role in axon guidance and neurite growth. To study the role of neurocan in brain development we generated neurocan-deficient mice by targeted disruption of the neurocan gene. These mice are viable and fertile and have no obvious deficits in reproduction and general performance. Brain anatomy, morphology, and ultrastructure are similar to those of wild-type mice. Perineuronal nets surrounding neurons appear largely normal. Mild deficits in synaptic plasticity may exist, as maintenance of late-phase hippocampal long-term potentiation is reduced. These data indicate that neurocan has either a redundant or a more subtle function in the development of the brain.
Collapse
Affiliation(s)
- X H Zhou
- Department of Experimental Pathology, Lund University, 221 85 Lund, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Bukalo O, Schachner M, Dityatev A. Modification of extracellular matrix by enzymatic removal of chondroitin sulfate and by lack of tenascin-R differentially affects several forms of synaptic plasticity in the hippocampus. Neuroscience 2001; 104:359-69. [PMID: 11377840 DOI: 10.1016/s0306-4522(01)00082-3] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The extracellular matrix is a complex network of macromolecules including glycoproteins, polysaccharides and proteoglycans. Tenascin-R and chondroitin sulfate proteoglycans are essential components of hippocampal extracellular matrix co-localised in perineuronal nets on interneurons. Mutant mice deficient in expression of tenascin-R showed a two-fold reduction of long-term potentiation induced by theta-burst stimulation of Schaffer collaterals in the stratum radiatum of the CA1 region of the hippocampus, as compared to wild-type mice. The same reduction in potentiation was observed in slices from wild-type mice pretreated for 2h with chondroitinase ABC that completely removed chondroitin sulfates from the extracellular matrix. Treatment of slices from tenascin-R deficient animals with the enzyme did not further reduce potentiation in comparison with untreated slices from these mice, showing an occlusion of effects produced by removal of tenascin-R and chondroitin sulfates. However, the level of potentiation recorded immediately after theta-burst stimulation was significantly higher in wild-type than in tenascin-R deficient mice, whereas chondroitinase ABC had no significant effect on this short-term form of plasticity. Enzymatic treatment also did not affect short-term depression evoked by low-frequency stimulation, whereas this form of synaptic plasticity was reduced in tenascin-R deficient mice. In contrast, long-term depression in CA1 was impaired by digestion of chondroitin sulfates but appeared normal in tenascin-R mutants. Our data demonstrate that tenascin-R and chondroitin sulfate proteoglycans differentially modulate several forms of synaptic plasticity, suggesting that different mechanisms are involved.
Collapse
Affiliation(s)
- O Bukalo
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, Martinistrasse 52, D-20246, Hamburg, Germany
| | | | | |
Collapse
|
242
|
Murakami T, Kosaka M, Sato H, Ohtsuka A, Taguchi T. The intensely positively charged perineuronal net in the adult rat brain, with special reference to its reactions to oxine, chondroitinase ABC, hyaluronidase and collagenase. ARCHIVES OF HISTOLOGY AND CYTOLOGY 2001; 64:313-8. [PMID: 11575427 DOI: 10.1679/aohc.64.313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Light microscopic observations of healthy adult rat brain sections stained with anionic iron colloid indicated that 5-10% of neurons in the hippocampal subiculum and all neurons in the medial cerebellar nucleus possessed an intensely positively charged perineuronal net. This net was demonstrated to react to oxine, and therefore suggested to consist of guanidino compounds. It was further shown that the intensely positively charged perineuronal net, in accordance with the intensely negatively charged perineuronal net of proteoglycans, was digested by chondroitinase ABC, hyaluronidase, and collagenase, but not by endo-alphaN-acetylgalactosaminidase. This finding suggested that the former positively charged net might be linked to the latter negatively charged one.
Collapse
Affiliation(s)
- T Murakami
- Section of Human Morphology, Biophysiological Science, Graduate School of Medicine and Dentistry, Okayama University, Japan.
| | | | | | | | | |
Collapse
|