201
|
Kausar A. Nanocone—versatile nanofiller for cutting-edge polymeric nanocomposite. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2022.2029894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Ayesha Kausar
- Nanosciences division, National Center for Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan
| |
Collapse
|
202
|
Chen R, He H, Hong XZ, Le Q, Sun K, Ouyang J. PEDOT:PSS as Stretchable Conductors with Good Wettability on the Substrate through the Simultaneous Plasticization and Secondary Doping with a Cationic or Anionic Surfactant. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rui Chen
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
- MOE Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, School of Energy & Power Engineering, Chongqing University, Chongqing 400044, China
| | - Hao He
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Xian Zheng Hong
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Qiujian Le
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Kuan Sun
- MOE Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, School of Energy & Power Engineering, Chongqing University, Chongqing 400044, China
| | - Jianyong Ouyang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
- NUS Research Institute, No. 16 South Huashan Road, Liangjiang New Area, Chongqing 401123, China
| |
Collapse
|
203
|
Liu YF, Gao XM, Li YF. Editorial: Recent Advances in Micro-Nanostructured Optoelectronic Devices. Front Chem 2022; 10:920807. [PMID: 35720992 PMCID: PMC9201209 DOI: 10.3389/fchem.2022.920807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yue-Feng Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, China
- *Correspondence: Yue-Feng Liu,
| | - Xiu-Min Gao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, China
| | - Yun-Fei Li
- Center for Advanced Laser Technology, Hebei University of Technology, Tianjin, China
- Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin, China
| |
Collapse
|
204
|
Zhao G, Zhou H, Jin G, Jin B, Geng S, Luo Z, Ge Z, Xu F. Rational Design of Electrically Conductive Biomaterials toward Excitable Tissues Regeneration. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
205
|
Li Y, Zhou X, Sarkar B, Gagnon-Lafrenais N, Cicoira F. Recent Progress on Self-Healable Conducting Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108932. [PMID: 35043469 DOI: 10.1002/adma.202108932] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Materials able to regenerate after damage have been the object of investigation since the ancient times. For instance, self-healing concretes, able to resist earthquakes, aging, weather, and seawater have been known since the times of ancient Rome and are still the object of research. During the last decade, there has been an increasing interest in self-healing electronic materials, for applications in electronic skin (E-skin) for health monitoring, wearable and stretchable sensors, actuators, transistors, energy harvesting, and storage devices. Self-healing materials based on conducting polymers are particularly attractive due to their tunable high conductivity, good stability, intrinsic flexibility, excellent processability and biocompatibility. Here recent developments are reviewed in the field of self-healing electronic materials based on conducting polymers, such as poly 3,4-ethylenedioxythiophene (PEDOT), polypyrrole (PPy), and polyaniline (PANI). The different types of healing, the strategies adopted to optimize electrical and mechanical properties, and the various possible healing mechanisms are introduced. Finally, the main challenges and perspectives in the field are discussed.
Collapse
Affiliation(s)
- Yang Li
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, Quebec, H3C 3A7, Canada
| | - Xin Zhou
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, Quebec, H3C 3A7, Canada
| | - Biporjoy Sarkar
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, Quebec, H3C 3A7, Canada
| | - Noémy Gagnon-Lafrenais
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, Quebec, H3C 3A7, Canada
| | - Fabio Cicoira
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, Quebec, H3C 3A7, Canada
| |
Collapse
|
206
|
|
207
|
Zhu D, Miao M, Du X, Peng Y, Wang Z, Liu S, Xing J. Long/Short Chain Crosslinkers-optimized and PEDOT:PSS-enhanced Covalent Double Network Hydrogels Rapidly Prepared under Green LED Irradiation as Flexible Strain Sensor. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
208
|
Tseng AC, Sakata T. Direct Electrochemical Signaling in Organic Electrochemical Transistors Comprising High-Conductivity Double-Network Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24729-24740. [PMID: 35587901 DOI: 10.1021/acsami.2c01779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In composite hydrogels, the high electrical performance of poly(3,4-ethylenedioxythiophene) complexed with poly(styrenesulfonate) (PEDOT:PSS) is integrated with complementary structural and electrochemical functions via a rationally designed poly(acrylamide) second network incorporating phenylboronic acid (PBA). Free-standing double-network hydrogels prepared by a simple one-pot radical polymerization exhibit state-of-the-art electrical conductivity (∼20 S cm-1 in phosphate buffered saline) while retaining a degree of hydration similar to that of biological soft tissues. Low resistance contacts to Au electrodes are formed via facile thermo-mechanical annealing and demonstrate stability over a month of continuous immersion, thus enabling hydrogels to serve as channels of organic electrochemical transistors (OECTs). Despite thicknesses of ∼100 μm, gating of hydrogel OECTs is efficient with transconductances gm ∼ 40 mS and on/off ratios of 103 in saturation mode operation, whereas sufficiently high conductivity enables linear mode operation (gm ∼ 1 mS at -10 mV drain bias). This drives a shift of sensing strategy toward detection of electrochemical signals originating within the bulky channel. A kinetic basis for glucose detection via diol esterification on PBA is identified as the coupling of PBA equilibrium to electrocatalyzed O2 reduction occurring on PEDOT in cathodic potentials. Hydrogel OECTs inherently amplify this direct electrochemical signal, demonstrating the viability of a new class of soft, structural biosensors.
Collapse
Affiliation(s)
- Alex C Tseng
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Toshiya Sakata
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
209
|
Rutkowska KA, Sobotka P, Grom M, Baczyński S, Juchniewicz M, Marchlewicz K, Dybko A. A Novel Approach for the Creation of Electrically Controlled LC:PDMS Microstructures. SENSORS (BASEL, SWITZERLAND) 2022; 22:4037. [PMID: 35684658 PMCID: PMC9185514 DOI: 10.3390/s22114037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023]
Abstract
This work presents research on unique optofluidic systems in the form of air channels fabricated in PDMS and infiltrated with liquid crystalline material. The proposed LC:PDMS structures represent an innovative solution due to the use of microchannel electrodes filled with a liquid metal alloy. The latter allows for the easy and dynamic reconfiguration of the system and eliminates technological issues experienced by other research groups. The paper discusses the design, fabrication, and testing methods for tunable LC:PDMS structures. Particular emphasis was placed on determining their properties after applying an external electric field, depending on the geometrical parameters of the system. The conclusions of the performed investigations may contribute to the definition of guidelines for both LC:PDMS devices and a new class of potential sensing elements utilizing polymers and liquid crystals in their structures.
Collapse
Affiliation(s)
- Katarzyna A. Rutkowska
- Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland; (P.S.); (M.G.); (S.B.)
| | - Piotr Sobotka
- Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland; (P.S.); (M.G.); (S.B.)
| | - Monika Grom
- Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland; (P.S.); (M.G.); (S.B.)
| | - Szymon Baczyński
- Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland; (P.S.); (M.G.); (S.B.)
| | - Marcin Juchniewicz
- Centre for Advanced Materials and Technologies (CEZAMAT), Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland;
| | - Kasper Marchlewicz
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (K.M.); (A.D.)
| | - Artur Dybko
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (K.M.); (A.D.)
| |
Collapse
|
210
|
Gao N, Huang X. Electropolymerization of EDOT in an anionic surfactant-stabilized hydrophobic ionic liquid-based microemulsion. Phys Chem Chem Phys 2022; 24:13793-13805. [PMID: 35612814 DOI: 10.1039/d1cp05933e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, an anionic surfactant [AOT]- (bis-(2-ethylhexyl) sulfosuccinate)-stabilized H2O/[Omim][PF6] (1-octyl-3-methylimidazolium hexafluorophosphate) microemulsion has been tested for the first time as a medium for the electropolymerization of 3,4-ethylenedioxythiophene (EDOT). To formulate AOT-stabilized [Omim][PF6]-based microemulsions of different water contents, the phase triangle was determined at 35 °C. Measurements of the conductivities of the microemulsions, their solubilization capacities toward EDOT and their catalytic effects on EDOT electrooxidation show that the present [AOT]--stabilized ionic liquid microemulsion is a good medium for EDOT electropolymerization. Studies on the process of the electropolymerization of EDOT in this [Omim][PF6]-based microemulsion indicate that the water content (i.e., microstructure) of the microemulsion medium is an important factor affecting the onset potential and the deposition rate of the PEDOT. The morphology and the doping level of the as-prepared PEDOT are also found to be correlated with the water content of the ionic liquid microemulsion. The microemulsion with higher water content results in a PEDOT with better electroactivity and higher doping levels. FTIR spectra and XPS analysis show that the PEDOT electrosynthesized in the microemulsion is co-doped by both [AOT]- and [PF6]-. Compared with the neat [Omim][PF6], the use of the ionic liquid microemulsions can reduce not only the consumption of the expensive ionic liquid, but also the onset potential for the electrooxidation of EDOT. Moreover, by tuning the water content of the medium, the electropolymerization of PEDOT and its electrochemical properties could be regulated accordingly. Under the identical deposited charge, the PEDOT originated from the high water content microemulsion (50% H2O μE) has a higher specific capacitance (124 F g-1) than that from neat [Omim][PF6] (117 F g-1). It follows that the present ionic liquid microemulsion is a good medium for EDOT electropolymerization. The present study opens up a new route for the green and low-cost electrochemical preparation of high-performance PEDOT.
Collapse
Affiliation(s)
- Na Gao
- Key Laboratory of Colloid and Interface Chemistry of the Education Ministry of China, Shandong University, Jinan 250100, China.
| | - Xirong Huang
- Key Laboratory of Colloid and Interface Chemistry of the Education Ministry of China, Shandong University, Jinan 250100, China.
| |
Collapse
|
211
|
Ramu P, Vimal SP, Suresh P, Sanmugam A, Saravanakumar U, Kumar RS, Almansour AI, Arumugam N, Vikraman D. Investigation of the one-step electrochemical deposition of graphene oxide-doped poly(3,4-ethylenedioxythiophene)-polyphenol oxidase as a dopamine sensor. RSC Adv 2022; 12:15575-15583. [PMID: 35685176 PMCID: PMC9125988 DOI: 10.1039/d2ra00791f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/14/2022] [Indexed: 12/04/2022] Open
Abstract
In this paper, we fabricated poly(3,4-ethylenedioxythiophene) (PEDOT)-graphene oxide-polyphenol oxidase (PEDOT-GO-PPO) as a dopamine sensor. The morphology of PEDOT-GO-PPO was observed using scanning electron microscopy. Cyclic voltammetry was conducted to study the oxidation-reduction characteristics of dopamine. To optimize the pH, potential and limit of detection of dopamine, the amperometric technique was employed. The found limit of detection was 8 × 10-9 M, and the linear range was from 5 × 10-8 to 8.5 × 10-5 M. The Michaelis-Menten constant (K m) was calculated to be 70.34 μM, and the activation energy of the prepared electrode was 32.75 kJ mol-1. The electrode shows no significant change in the interference study. The modified electrode retains up to 80% of its original activity after 2 months. In the future, the biosensor can be used for the quantification of dopamine in human urine samples. The present modified electrode constitutes a tool for the electrochemical analysis of dopamine.
Collapse
Affiliation(s)
- P Ramu
- Department of Electronics and Communication Engineering, Jaya Institute of Technology Tamilnadu India
| | - S P Vimal
- Department of Electronics and Communication Engineering, Jaya Institute of Technology Tamilnadu India
- Department of Electronics and Communication Engineering, Sri Ramakrishna Engineering College Coimbatore India
| | - P Suresh
- Department of Electronics and Communication Engineering, Vel Tech Rangarajan Dr Sagunthala R & D Institute of Science and Technology Chennai Tamilnadu 600062 India
| | - Anandhavelu Sanmugam
- Department of Applied Chemistry, Sri Vanketeswara College of Engineering Pennalur, Sriperambudur 602117 Chennai India
| | - U Saravanakumar
- Department of Electronics and Communication Engineering, Muthayammal Engineering College Rasipuram Tamilnadu India
| | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | | | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Dhanasekaran Vikraman
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul Seoul 04620 Korea
| |
Collapse
|
212
|
Li M, Huang GW, Li N, Liu Y, Qu CB, Huang Y. Flexible Cotton Fiber-Based Composite Films with Excellent Bending Stability and Conductivity at Cryogenic Temperature. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21486-21496. [PMID: 35471828 DOI: 10.1021/acsami.2c03199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The commonly used metal thin film or resin-based flexible composites cannot meet the requirement of cryogenic flexible conductive functional devices, which may be used in space exploration, biomedicine, and other science and technology fields facing a very low temperature environment, because of their poor fatigue and anti-bending properties at cryogenic temperature. In this work, a composite based on functionalized cotton fibers is proposed to achieve the application requirement of flexible electrical systems at cryogenic temperature. A conductive composite film with optimized strength and flexibility was obtained by controlling the size distribution of cotton fibers and adjusting the interaction force among the cotton fibers. The obtained composite film could endure over 10,000 times of bending at 77 K (-196 °C), with the resistance changing less than ±5%, indicating its excellent mechanical flexibility and electrical stability at cryogenic temperature. Finally, a demonstration was successfully conducted by applying the composite film as a flexible electrical connection to a robot arm, which worked at 77 K. This work might be a reference significance for the application of flexible conductors from room temperature to cryogenic temperature.
Collapse
Affiliation(s)
- Meng Li
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 Zhongguancun East Road, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gui-Wen Huang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 Zhongguancun East Road, Beijing 100190, P. R. China
| | - Na Li
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 Zhongguancun East Road, Beijing 100190, P. R. China
| | - Yu Liu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 Zhongguancun East Road, Beijing 100190, P. R. China
| | - Cheng-Bing Qu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 Zhongguancun East Road, Beijing 100190, P. R. China
| | - Yong Huang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 Zhongguancun East Road, Beijing 100190, P. R. China
| |
Collapse
|
213
|
Lee SW, Shin HJ, Park B, Shome S, Whang DR, Bae H, Chung S, Cho K, Ko SJ, Choi H, Chang DW. Effect of Electron-Withdrawing Chlorine Substituent on Morphological and Photovoltaic Properties of All Chlorinated D-A-Type Quinoxaline-Based Polymers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19785-19794. [PMID: 35420778 DOI: 10.1021/acsami.2c00764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The choice of the chlorine (Cl) atom as an electron-withdrawing substituent in conjugated polymers leads to a higher potential in the commercialization of polymer solar cells than its fluorine counterpart because of the versatility and cost-effectiveness of the chlorination process. In addition, the population and location of Cl substituents can significantly influence the photovoltaic characteristics of polymers. In this study, three chlorinated quinoxaline-based polymers were invented to examine the numerical and positioning effects of the Cl atom on their photovoltaic characteristics. The number of Cl substituents in the reference polymer, PBCl-Qx, was adjusted to three: two Cl atoms in the benzodithiophene-type D unit and one Cl atom in the quinoxaline-type A unit. Subsequently, two more Cl atoms were selectively introduced at the 4- and 5-positions of the alkylated thiophene moieties at the 2,3-positions of the quinoxaline moiety in PBCl-Qx to obtain the additional polymers PBCl-Qx4Cl and PBCl-Qx5Cl, respectively. The conventional PBCl-Qx4Cl device exhibited a better power conversion efficiency (PCE) of 12.95% as compared to those of PBCl-Qx (12.44%) and PBCl-Qx5Cl (11.82%) devices. The highest PCE of the device with PBCl-Qx4Cl was ascribed to an enhancement in the open-circuit voltage and fill factor induced by the deeper energy level of the highest occupied molecular orbital and the favorable morphological features in its blended film with Y6.
Collapse
Affiliation(s)
- Seok Woo Lee
- Department of Industrial Chemistry, Pukyong National University, 48513 Busan, Republic of Korea
| | - Hee Jeong Shin
- Department of Chemistry, Research Institute for Natural Science and Institute of Nano Science and Technology, Hanyang University, 04730 Seoul, Republic of Korea
| | - Byoungwook Park
- Division of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34113, Republic of Korea
| | - Sanchari Shome
- Department of Chemistry, Research Institute for Natural Science and Institute of Nano Science and Technology, Hanyang University, 04730 Seoul, Republic of Korea
| | - Dong Ryeol Whang
- Department of Advanced Materials, Hannam University, Daejeon 34054, Republic of Korea
| | - Hyemin Bae
- Division of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34113, Republic of Korea
| | - Sein Chung
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 37673 Gyeongbuk, Republic of Korea
| | - Kilwon Cho
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 37673 Gyeongbuk, Republic of Korea
| | - Seo-Jin Ko
- Division of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34113, Republic of Korea
| | - Hyosung Choi
- Department of Chemistry, Research Institute for Natural Science and Institute of Nano Science and Technology, Hanyang University, 04730 Seoul, Republic of Korea
| | - Dong Wook Chang
- Department of Industrial Chemistry, Pukyong National University, 48513 Busan, Republic of Korea
| |
Collapse
|
214
|
Solazzo M, Hartzell L, O’Farrell C, Monaghan MG. Beyond Chemistry: Tailoring Stiffness and Microarchitecture to Engineer Highly Sensitive Biphasic Elastomeric Piezoresistive Sensors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19265-19277. [PMID: 35452235 PMCID: PMC9073843 DOI: 10.1021/acsami.2c04673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Carbon-based nanoparticles and conductive polymers are two classes of materials widely used in the production of three-dimensional (3D) piezoresistive sensors. One conductive polymer, poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) has excellent stability and conductivity yet is limited in its application as a sensor, often existing upon a base, limiting its performance and potential. Despite much progress in the field of materials chemistry and polymer synthesis, one aspect we consider worthy of exploration is the impact that microstructure and stiffness may have on the sensitivity of 3D sensors. In this study, we report a strategy for fabricating biphasic electroactive sponges (EAS) that combine 3D porous PEDOT:PSS scaffolds possessing either an isotropic or anisotropic microarchitecture, infused with insulating elastomeric fillers of varying stiffness. When characterizing the electromechanical behavior of these EAS, a higher stiffness yields a higher strain gauge factor, with values as high as 387 for an isotropic microarchitecture infused with a stiff elastomer. The approach we describe is cost-effective and extremely versatile, by which one can fabricate piezoresistive sensors with adaptable sensitivity ranges and excellent high strain gauge factor with the underlying microarchitecture and insulant stiffness dictating this performance.
Collapse
Affiliation(s)
- Matteo Solazzo
- Department
of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
- Trinity
Centre for Biomedical Engineering, Trinity
College Dublin, Dublin 2, Ireland
| | - Linette Hartzell
- Department
of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
- Trinity
Centre for Biomedical Engineering, Trinity
College Dublin, Dublin 2, Ireland
| | - Ciara O’Farrell
- Department
of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
- Trinity
Centre for Biomedical Engineering, Trinity
College Dublin, Dublin 2, Ireland
| | - Michael G. Monaghan
- Department
of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
- Trinity
Centre for Biomedical Engineering, Trinity
College Dublin, Dublin 2, Ireland
- Advance
Materials and BioEngineering Research (AMBER) Centre at Trinity College Dublin and the Royal College of Surgeons
in Ireland, Dublin 2, Ireland
- CÚRAM,
Centre for Research in Medical Devices, National University of Ireland, Galway, Newcastle Road, H91 W2TY Galway, Ireland
| |
Collapse
|
215
|
Tringides CM, Mooney DJ. Materials for Implantable Surface Electrode Arrays: Current Status and Future Directions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107207. [PMID: 34716730 DOI: 10.1002/adma.202107207] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Surface electrode arrays are mainly fabricated from rigid or elastic materials, and precisely manipulated ductile metal films, which offer limited stretchability. However, the living tissues to which they are applied are nonlinear viscoelastic materials, which can undergo significant mechanical deformation in dynamic biological environments. Further, the same arrays and compositions are often repurposed for vastly different tissues rather than optimizing the materials and mechanical properties of the implant for the target application. By first characterizing the desired biological environment, and then designing a technology for a particular organ, surface electrode arrays may be more conformable, and offer better interfaces to tissues while causing less damage. Here, the various materials used in each component of a surface electrode array are first reviewed, and then electrically active implants in three specific biological systems, the nervous system, the muscular system, and skin, are described. Finally, the fabrication of next-generation surface arrays that overcome current limitations is discussed.
Collapse
Affiliation(s)
- Christina M Tringides
- Harvard Program in Biophysics, Harvard University, Cambridge, MA, 02138, USA
- Harvard-MIT Division in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - David J Mooney
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
216
|
Lee S, Cho WS, Park JY, Lee HJ, Lee JL, Lee KH, Hong K. Water Washable and Flexible Light-Emitting Fibers Based on Electrochemiluminescent Gels. ACS APPLIED MATERIALS & INTERFACES 2022; 14:17709-17718. [PMID: 35389205 DOI: 10.1021/acsami.2c01438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Herein, a new concept of device architecture to fabricate fibrous light-emitting devices is demonstrated based on an electrochemiluminescence (ECL) material for an electronic textile system. A unique feature of this work is that instead of conventional semiconductor materials, such as organics, perovskites, and quantum dots for fibrous light emitting devices, a solid-state ECL electrolyte gel is employed as a light-emitting layer. The solid-state ECL gel is prepared from a precursor solution composed of matrix polymer, ionic liquid, and ECL luminophore. From this, we successfully realize light-emitting fibers through a simple and cost-effective single-step dip-coating method in ambient air, without complicated multistep vacuum processes. The resulting fiber devices reliably operated under applied AC bias of ±2.5 V and showed luminance of 47 cd m-2. More importantly, the light-emitting fibers exhibited outstanding water resistance without any passivation layers, owing to the water immiscible and hydrophobic nature of the ECL gel. In addition, because of their simple structure, the fiber devices can be easily deformed and woven together with commercial knitwear by hand. Therefore, these results suggest a promising strategy for the development of practical fiber displays and contribute to progress in electronic textile technology.
Collapse
Affiliation(s)
- Seonjeong Lee
- Department of Materials Science and Engineering, Chungnam National University (CNU), Daejeon 34134, Republic of Korea
| | - Won Seok Cho
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jae Yong Park
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Han Ju Lee
- Department of Materials Science and Engineering, Chungnam National University (CNU), Daejeon 34134, Republic of Korea
| | - Jong-Lam Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Keun Hyung Lee
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
- Education and Research Center for Smart Energy and Materials, Inha University, Incheon 22212, Republic of Korea
| | - Kihyon Hong
- Department of Materials Science and Engineering, Chungnam National University (CNU), Daejeon 34134, Republic of Korea
| |
Collapse
|
217
|
Zhou X, Hao Y, Li Y, Peng J, Wang G, Ong W, Li N. MXenes: An emergent materials for packaging platforms and looking beyond. NANO SELECT 2022. [DOI: 10.1002/nano.202200023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Xing Zhou
- Faculty of Printing Packaging Engineering and Digital Media Technology Xi'an University of Technology Xi'an P. R. China
| | - Yaya Hao
- Faculty of Printing Packaging Engineering and Digital Media Technology Xi'an University of Technology Xi'an P. R. China
| | - Yaxin Li
- Faculty of Printing Packaging Engineering and Digital Media Technology Xi'an University of Technology Xi'an P. R. China
| | - Jiahe Peng
- Key Laboratory of Silicate Materials for Architectures & Research Center for Materials Genome Engineering Wuhan University of Technology Hubei P. R. China
| | - Guosheng Wang
- Faculty of Printing Packaging Engineering and Digital Media Technology Xi'an University of Technology Xi'an P. R. China
| | - Wee‐Jun Ong
- School of Energy and Chemical Engineering Xiamen University Malaysia Selangor Darul Ehsan Malaysia
| | - Neng Li
- Key Laboratory of Silicate Materials for Architectures & Research Center for Materials Genome Engineering Wuhan University of Technology Hubei P. R. China
- Shenzhen Research Institute of Wuhan University of Technology Shenzhen China
- School of Materials Science and Engineering Zhengzhou University Zhengzhou China
| |
Collapse
|
218
|
An Overview of Hierarchical Design of Textile-Based Sensor in Wearable Electronics. CRYSTALS 2022. [DOI: 10.3390/cryst12040555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Smart textiles have recently aroused tremendous interests over the world because of their broad applications in wearable electronics, such as human healthcare, human motion detection, and intelligent robotics. Sensors are the primary components of wearable and flexible electronics, which convert various signals and external stimuli into electrical signals. While traditional electronic sensors based on rigid silicon wafers can hardly conformably attach on the human body, textile materials including fabrics, yarns, and fibers afford promising alternatives due to their characteristics including light weight, flexibility, and breathability. Of fundamental importance are the needs for fabrics simultaneously having high electrical and mechanical performance. This article focused on the hierarchical design of the textile-based flexible sensor from a structure point of view. We first reviewed the selection of newly developed functional materials for textile-based sensors, including metals, conductive polymers, carbon nanomaterials, and other two-dimensional (2D) materials. Then, the hierarchical structure design principles on different levels from microscale to macroscale were discussed in detail. Special emphasis was placed on the microstructure control of fibers, configurational engineering of yarn, and pattern design of fabrics. Finally, the remaining challenges toward industrialization and commercialization that exist to date were presented.
Collapse
|
219
|
Liu G, Ma M, Meng H, Liu J, Zheng Y, Peng J, Wei S, Sun Y, Wang Y, Xie Y, Li J. In-situ self-assembly of bacterial cellulose/poly(3,4-ethylenedioxythiophene)-sulfonated nanofibers for peripheral nerve repair. Carbohydr Polym 2022; 281:119044. [DOI: 10.1016/j.carbpol.2021.119044] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 12/21/2022]
|
220
|
Shin G, Lee S, Park YL. Selective Patterning of Conductive Elastomers Embedded With Silver Powders and Carbon Nanotubes for Stretchable Electronics. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3153707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
221
|
Enshaei H, Molina BG, Puiggalí-Jou A, Saperas N, Alemán C. Polypeptide hydrogel loaded with conducting polymer nanoparticles as electroresponsive delivery system of small hydrophobic drugs. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
222
|
Li G, Huang K, Deng J, Guo M, Cai M, Zhang Y, Guo CF. Highly Conducting and Stretchable Double-Network Hydrogel for Soft Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200261. [PMID: 35170097 DOI: 10.1002/adma.202200261] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Conducting polymer hydrogels are promising materials in soft bioelectronics because of their tissue-like mechanical properties and the capability of electrical interaction with tissues. However, it is challenging to balance electrical conductivity and mechanical stretchability: pure conducting polymer hydrogels are highly conductive, but they are brittle; while incorporating the conducting network with a soft network to form a double network can improve the stretchability, its electrical conductivity significantly decreases. Here, the problem is addressed by concentrating a poorly crosslinked precursor hydrogel with a high content ratio of the conducting polymer to achieve a densified double-network hydrogel (5.5 wt% conducting polymer), exhibiting both high electrical conductivity (≈10 S cm-1 ) and a large fracture strain (≈150%), in addition to high biocompatibility, tissue-like softness, low swelling ratio, and desired electrochemical properties for bioelectronics. A surface grafting method is further used to form an adhesive layer on the conducting hydrogel, enabling robust and rapid bonding on the tissues. Furthermore, the proposed hydrogel is applied to show high-quality physiological signal recording and reliable, low-voltage electrical stimulation based on an in vivo rat model. This method provides an ideal strategy for rapid and reliable tissue-device integration with high-quality electrical communications.
Collapse
Affiliation(s)
- Gang Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Kaixi Huang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jue Deng
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Mengxue Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Minkun Cai
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuan Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chuan Fei Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
223
|
Wang S, Zuo G, Kim J, Sirringhaus H. Progress of Conjugated Polymers as Emerging Thermoelectric Materials. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
224
|
Banana Peel and Conductive Polymers-Based Flexible Supercapacitors for Energy Harvesting and Storage. ENERGIES 2022. [DOI: 10.3390/en15072471] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Flexible supercapacitors are highly demanding due to their wearability, washability, lightweight property and rollability. In this paper, a comprehensive review on flexible supercapacitors based on conductive polymers such as polypyrrole (PPy), polyaniline (PANI) and poly(3,4-ethylenedioxtthiophne)-polystyrene sulfonate (PEDOT:PSS). Methods of enhancing the conductivity of PEDOT:PSS polymer using various composites and chemical solutions have been reviewed in detail. Furthermore, supercapacitors based on carbonized banana peels and methods of activation have been discussed in point. This review covers the up-to-date progress achieved in conductive polymer-based materials for supercapacitor electrodes. The effect of various composites with PEDOT:PSS have been discussed. The review result indicated that flexible, stretchable, lightweight, washable, and disposable wearable electronics based on banana peel and conductive polymers are highly demanding.
Collapse
|
225
|
Zheng Y, Zhang S, Tok JBH, Bao Z. Molecular Design of Stretchable Polymer Semiconductors: Current Progress and Future Directions. J Am Chem Soc 2022; 144:4699-4715. [PMID: 35262336 DOI: 10.1021/jacs.2c00072] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Stretchable polymer semiconductors have advanced rapidly in the past decade as materials required to realize conformable and soft skin-like electronics become available. Through rational molecular-level design, stretchable polymer semiconductor films are now able to retain their electrical functionalities even when subjected to repeated mechanical deformations. Furthermore, their charge-carrier mobilities are on par with the best flexible polymer semiconductors, with some even exceeding that of amorphous silicon. The key advancements are molecular-design concepts that allow multiple strain energy-dissipation mechanisms, while maintaining efficient charge-transport pathways over multiple length scales. In this perspective article, we review recent approaches to confer stretchability to polymer semiconductors while maintaining high charge carrier mobilities, with emphasis on the control of both polymer-chain dynamics and thin-film morphology. Additionally, we present molecular design considerations toward intrinsically elastic semiconductors that are needed for reliable device operation under reversible and repeated deformation. A general approach involving inducing polymer semiconductor nanoconfinement allows for incorporation of several other desired functionalities, such as biodegradability, self-healing, and photopatternability, while enhancing the charge transport. Lastly, we point out future directions, including advancing the fundamental understanding of morphology evolution and its correlation with the change of charge transport under strain, and needs for strain-resilient polymer semiconductors with high mobility retention.
Collapse
Affiliation(s)
- Yu Zheng
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States.,Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Song Zhang
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Jeffrey B-H Tok
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
226
|
Abstract
Conductive polymers have attracted wide attention since their discovery due to their unique properties such as good electrical conductivity, thermal and chemical stability, and low cost. With different possibilities of preparation and deposition on surfaces, they present unique and tunable structures. Because of the ease of incorporating different elements to form composite materials, conductive polymers have been widely used in a plethora of applications. Their inherent mechanical tolerance limit makes them ideal for flexible devices, such as electrodes for batteries, artificial muscles, organic electronics, and sensors. As the demand for the next generation of (wearable) personal and flexible sensing devices is increasing, this review aims to discuss and summarize the recent manufacturing advances made on flexible electrochemical sensors.
Collapse
|
227
|
Li M, Pal A, Aghakhani A, Pena-Francesch A, Sitti M. Soft actuators for real-world applications. NATURE REVIEWS. MATERIALS 2022; 7:235-249. [PMID: 35474944 PMCID: PMC7612659 DOI: 10.1038/s41578-021-00389-7] [Citation(s) in RCA: 186] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/21/2021] [Indexed: 05/22/2023]
Abstract
Inspired by physically adaptive, agile, reconfigurable and multifunctional soft-bodied animals and human muscles, soft actuators have been developed for a variety of applications, including soft grippers, artificial muscles, wearables, haptic devices and medical devices. However, the complex performance of biological systems cannot yet be fully replicated in synthetic designs. In this Review, we discuss new materials and structural designs for the engineering of soft actuators with physical intelligence and advanced properties, such as adaptability, multimodal locomotion, self-healing and multi-responsiveness. We examine how performance can be improved and multifunctionality implemented by using programmable soft materials, and highlight important real-world applications of soft actuators. Finally, we discuss the challenges and opportunities for next-generation soft actuators, including physical intelligence, adaptability, manufacturing scalability and reproducibility, extended lifetime and end-of-life strategies.
Collapse
Affiliation(s)
- Meng Li
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Aniket Pal
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Amirreza Aghakhani
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Abdon Pena-Francesch
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
- Department of Materials Science and Engineering, Macromolecular Science and Engineering, Robotics Institute, University of Michigan, Ann Arbor, MI, USA
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland
- School of Medicine and College of Engineering, Koç University, Istanbul, Turkey
| |
Collapse
|
228
|
Wang J, Li Q, Li K, Sun X, Wang Y, Zhuang T, Yan J, Wang H. Ultra-High Electrical Conductivity in Filler-Free Polymeric Hydrogels Toward Thermoelectrics and Electromagnetic Interference Shielding. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109904. [PMID: 35064696 DOI: 10.1002/adma.202109904] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Conducting hydrogels have attracted much attention for the emerging field of hydrogel bioelectronics, especially poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT:PSS) based hydrogels, because of their great biocompatibility and stability. However, the electrical conductivities of hydrogels are often lower than 1 S cm-1 which are not suitable for digital circuits or applications in bioelectronics. Introducing conductive inorganic fillers into the hydrogels can improve their electrical conductivities. However, it may lead to compromises in compliance, biocompatibility, deformability, biodegradability, etc. Herein, a series of highly conductive ionic liquid (IL) doped PEDOT:PSS hydrogels without any conductive fillers is reported. These hydrogels exhibit high conductivities up to ≈305 S cm-1 , which is ≈8 times higher than the record of polymeric hydrogels without conductive fillers in literature. The high electrical conductivity results in enhanced areal thermoelectric output power for hydrogel-based thermoelectric devices, and high specific electromagnetic interference (EMI) shielding efficiency which is about an order in magnitude higher than that of state-of-the-art conductive hydrogels in literature. Furthermore, these stretchable (strain >30%) hydrogels exhibit fast self-healing, and shape/size-tunable properties, which are desirable for hydrogel bioelectronics and wearable organic devices. The results indicate that these highly conductive hydrogels are promising in applications such as sensing, thermoelectrics, EMI shielding, etc.
Collapse
Affiliation(s)
- Jing Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Qing Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Kuncai Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Xu Sun
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Yizhuo Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Tiantian Zhuang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Junjie Yan
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710054, China
- School of energy and power engineering, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Hong Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710054, China
- School of energy and power engineering, Xi'an Jiaotong University, Xi'an, 710054, China
- Zhejiang YunFeng New Materials Technology Co., Ltd, No. 755 Hongji Street, Jinghua Zhejiang, 321015, China
| |
Collapse
|
229
|
Berggren M, Głowacki ED, Simon DT, Stavrinidou E, Tybrandt K. In Vivo Organic Bioelectronics for Neuromodulation. Chem Rev 2022; 122:4826-4846. [PMID: 35050623 PMCID: PMC8874920 DOI: 10.1021/acs.chemrev.1c00390] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Indexed: 01/27/2023]
Abstract
The nervous system poses a grand challenge for integration with modern electronics and the subsequent advances in neurobiology, neuroprosthetics, and therapy which would become possible upon such integration. Due to its extreme complexity, multifaceted signaling pathways, and ∼1 kHz operating frequency, modern complementary metal oxide semiconductor (CMOS) based electronics appear to be the only technology platform at hand for such integration. However, conventional CMOS-based electronics rely exclusively on electronic signaling and therefore require an additional technology platform to translate electronic signals into the language of neurobiology. Organic electronics are just such a technology platform, capable of converting electronic addressing into a variety of signals matching the endogenous signaling of the nervous system while simultaneously possessing favorable material similarities with nervous tissue. In this review, we introduce a variety of organic material platforms and signaling modalities specifically designed for this role as "translator", focusing especially on recent implementation in in vivo neuromodulation. We hope that this review serves both as an informational resource and as an encouragement and challenge to the field.
Collapse
Affiliation(s)
- Magnus Berggren
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| | - Eric D. Głowacki
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
- Bioelectronics
Materials and Devices, Central European
Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech
Republic
| | - Daniel T. Simon
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| | - Eleni Stavrinidou
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| | - Klas Tybrandt
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| |
Collapse
|
230
|
Chitrakar C, Hedrick E, Adegoke L, Ecker M. Flexible and Stretchable Bioelectronics. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1664. [PMID: 35268893 PMCID: PMC8911085 DOI: 10.3390/ma15051664] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/30/2022]
Abstract
Medical science technology has improved tremendously over the decades with the invention of robotic surgery, gene editing, immune therapy, etc. However, scientists are now recognizing the significance of 'biological circuits' i.e., bodily innate electrical systems for the healthy functioning of the body or for any disease conditions. Therefore, the current trend in the medical field is to understand the role of these biological circuits and exploit their advantages for therapeutic purposes. Bioelectronics, devised with these aims, work by resetting, stimulating, or blocking the electrical pathways. Bioelectronics are also used to monitor the biological cues to assess the homeostasis of the body. In a way, they bridge the gap between drug-based interventions and medical devices. With this in mind, scientists are now working towards developing flexible and stretchable miniaturized bioelectronics that can easily conform to the tissue topology, are non-toxic, elicit no immune reaction, and address the issues that drugs are unable to solve. Since the bioelectronic devices that come in contact with the body or body organs need to establish an unobstructed interface with the respective site, it is crucial that those bioelectronics are not only flexible but also stretchable for constant monitoring of the biological signals. Understanding the challenges of fabricating soft stretchable devices, we review several flexible and stretchable materials used as substrate, stretchable electrical conduits and encapsulation, design modifications for stretchability, fabrication techniques, methods of signal transmission and monitoring, and the power sources for these stretchable bioelectronics. Ultimately, these bioelectronic devices can be used for wide range of applications from skin bioelectronics and biosensing devices, to neural implants for diagnostic or therapeutic purposes.
Collapse
Affiliation(s)
| | | | | | - Melanie Ecker
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76203, USA; (C.C.); (E.H.); (L.A.)
| |
Collapse
|
231
|
Kim HJ, Perera K, Liang Z, Bowen B, Mei J, Boudouris BW. Radical Polymer-Based Organic Electrochemical Transistors. ACS Macro Lett 2022; 11:243-250. [PMID: 35574776 DOI: 10.1021/acsmacrolett.1c00695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Organic electrochemical transistors (OECTs) are an emerging platform for bioelectronic applications. Significant effort has been placed in designing advanced polymers that simultaneously transport both charge and ions (i.e., macromolecules that are mixed conductors). However, the considerations for mixed organic conductors are often different from the established principles that are well-known in the solid-state organic electronics field; thus, the discovery of new OECT macromolecular systems is highly desired. Here, we demonstrate a new materials system by blending a radical polymer (i.e., a macromolecule with a nonconjugated backbone and with stable open-shell sites at its pendant group) with a frequently used conjugated polymer. Specifically, poly(4-glycidyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl) (PTEO) was blended with poly(3-hexylthiophene) (P3HT) to create thin films with distinct closed-shell and open-shell domains. Importantly, the sharp and unique oxidation-reduction (redox) potential associated with the radical moieties of the PTEO chain provided a distinct actuation feature to the blended films that modulated the ionic transport of the OECT devices. In turn, this led to controlled regulation of the doping of the P3HT phase in the composite film. By decoupling the ionic and electronic transport into two distinct phases and by using an ion transport phase with well-controlled redox activity, never-before-seen performance for a P3HT-based OECT was observed. That is, at loadings as low as 5% PTEO (by weight) OECTs achieved figure-of-merit (i.e., μC*) values >150 F V-1 cm-1 s-1, which place the performance on the same order as state-of-the-art conjugated polymers despite the relatively common conjugated macromolecular moiety implemented. As such, this effort presents a design platform by which to readily create a tailored OECT response through strategic macromolecular selection and polymer processing.
Collapse
Affiliation(s)
- Ho Joong Kim
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Kuluni Perera
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Zihao Liang
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Brennen Bowen
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Jianguo Mei
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Bryan W. Boudouris
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Avenue, West Lafayette, Indiana 47907, United States
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
232
|
Tan ZR, Xing YQ, Cheng JZ, Zhang G, Shen ZQ, Zhang YJ, Liao G, Chen L, Liu SY. EDOT-based conjugated polymers accessed via C-H direct arylation for efficient photocatalytic hydrogen production. Chem Sci 2022; 13:1725-1733. [PMID: 35282637 PMCID: PMC8826507 DOI: 10.1039/d1sc05784g] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/14/2022] [Indexed: 11/21/2022] Open
Abstract
3,4-Ethylene dioxythiophene (EDOT), as a monomer of commercial conductive poly(3,4-ethylene dioxythiophene) (PEDOT), has been facilely incorporated into a series of new π-conjugated polymer-based photocatalysts, i.e., BSO2-EDOT, DBT-EDOT, Py-EDOT and DFB-EDOT, through atom-economic C-H direct arylation polymerization (DArP). The photocatalytic hydrogen production (PHP) test shows that donor-acceptor (D-A)-type BSO2-EDOT renders the highest hydrogen evolution rate (HER) among the linear conjugated polymers (CPs) ever reported. A HER up to 0.95 mmol h-1/6 mg under visible light irradiation and an unprecedented apparent quantum yield of 13.6% at 550 nm are successfully achieved. Note that the photocatalytic activities of the C-H/C-Br coupling-derived EDOT-based CPs are superior to those of their counterparts derived from the classical C-Sn/C-Br Stille coupling, demonstrating that EDOT is a promising electron-rich building block which can be facilely integrated into CP-based photocatalysts. Systematic studies reveal that the enhanced water wettability by the integration of polar BSO2 with hydrophilic EDOT, the increased electron-donating ability by O-C p-π conjugation, the improved electron transfer by D-A architecture, broad light harvesting, and the nano-sized colloidal character in a H2O/NMP mixed solvent rendered BSO2-EDOT as one of the best CP photocatalysts toward PHP.
Collapse
Affiliation(s)
- Zhi-Rong Tan
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Chemistry, Jiangxi University of Science and Technology Ganzhou 341000 China
| | - Yu-Qin Xing
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Chemistry, Jiangxi University of Science and Technology Ganzhou 341000 China
| | - Jing-Zhao Cheng
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Chemistry, Jiangxi University of Science and Technology Ganzhou 341000 China
| | - Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University Tianjin 300072 China
| | - Zhao-Qi Shen
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Chemistry, Jiangxi University of Science and Technology Ganzhou 341000 China
| | - Yu-Jie Zhang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Chemistry, Jiangxi University of Science and Technology Ganzhou 341000 China
| | - Guangfu Liao
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences Wuhan 430074 China
| | - Long Chen
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University Tianjin 300072 China
| | - Shi-Yong Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Chemistry, Jiangxi University of Science and Technology Ganzhou 341000 China
| |
Collapse
|
233
|
Blau R, Chen AX, Polat B, Becerra LL, Runser R, Zamanimeymian B, Choudhary K, Lipomi DJ. Intrinsically Stretchable Block Copolymer Based on PEDOT:PSS for Improved Performance in Bioelectronic Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:4823-4835. [PMID: 35072473 DOI: 10.1021/acsami.1c18495] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The conductive polyelectrolyte complex poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is ubiquitous in research dealing with organic electronic devices (e.g., solar cells, wearable and implantable sensors, and electrochemical transistors). In many bioelectronic applications, the applicability of commercially available formulations of PEDOT:PSS (e.g., Clevios) is limited by its poor mechanical properties. Additives can be used to increase the compliance but pose a risk of leaching, which can result in device failure and increased toxicity (in biological settings). Thus, to increase the mechanical compliance of PEDOT:PSS without additives, we synthesized a library of intrinsically stretchable block copolymers. In particular, controlled radical polymerization using a reversible addition-fragmentation transfer process was used to generate block copolymers consisting of a block of PSS (of fixed length) appended to varying blocks of poly(poly(ethylene glycol) methyl ether acrylate) (PPEGMEA). These block copolymers (PSS(1)-b-PPEGMEA(x), where x ranges from 1 to 6) were used as scaffolds for oxidative polymerization of PEDOT. By increasing the lengths of the PPEGMEA segments on the PEDOT:[PSS(1)-b-PPEGMEA(1-6)] block copolymers, ("Block-1" to "Block-6"), or by blending these copolymers with PEDOT:PSS, the mechanical and electronic properties of the polymer can be tuned. Our results indicate that the polymer with the longest block of PPEGMEA, Block-6, had the highest fracture strain (75%) and lowest elastic modulus (9.7 MPa), though at the expense of conductivity (0.01 S cm-1). However, blending Block-6 with PEDOT:PSS to compensate for the insulating nature of the PPEGMEA resulted in increased conductivity [2.14 S cm-1 for Blend-6 (2:1)]. Finally, we showed that Block-6 outperforms a commercial formulation of PEDOT:PSS as a dry electrode for surface electromyography due to its favorable mechanical properties and better adhesion to skin.
Collapse
Affiliation(s)
- Rachel Blau
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, California 92093-0448, United States
| | - Alexander X Chen
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, California 92093-0448, United States
| | - Beril Polat
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, California 92093-0448, United States
| | - Laura L Becerra
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, California 92093-0448, United States
| | - Rory Runser
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, California 92093-0448, United States
| | - Beeta Zamanimeymian
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, California 92093-0448, United States
| | - Kartik Choudhary
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, California 92093-0448, United States
| | - Darren J Lipomi
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, California 92093-0448, United States
| |
Collapse
|
234
|
Yu C, Yao F, Li J. Rational design of injectable conducting polymer-based hydrogels for tissue engineering. Acta Biomater 2022; 139:4-21. [PMID: 33894350 DOI: 10.1016/j.actbio.2021.04.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022]
Abstract
Recently, injectable conducting polymer-based hydrogels (CPHs) have received increasing attention in tissue engineering owing to their controlled conductivity and minimally invasive procedures. Conducting polymers (CPs) are introduced into hydrogels to improve the electrical integration between hydrogels and host tissues and promote the repair of damaged tissues. Furthermore, endowing CPHs with in situ gelation or shear-thinning properties can reduce the injury size and inflammation caused by implanted surgery materials, which approaches the clinical transformation target of conductive biomaterials. Notably, functional CPs, including hydrophilic CP complexes, side-chain modified CPs, and conducting graft polymers, improve the water-dispersible and biocompatible properties of CPs and exhibit significant advantages in fabricating injectable CPHs under physiological conditions. This review discusses the recent progress in designing injectable hydrogels based on functional CPs. Their potential applications in neurological treatment, myocardial repair, and skeletal muscle regeneration are further highlighted. STATEMENT OF SIGNIFICANCE: Conducting polymer-based hydrogels (CPHs) have broad application prospects in the biomedical field. However, the low water dispersibility and processability of conducting polymers (CPs) make them challenging to form injectable CPHs uniformly. For the first time, this review summarizes the functionalization strategies to improve the hydrophilicity and biocompatibility of CPs, which provides unprecedented advantages for designing and fabricating the physical/chemical crosslinked injectable CPHs. Besides, future challenges and prospects for further clinical transformation of injectable CPHs for tissue engineering are presented. This review's content is of great significance for the treatment of electroactive tissues with limited self-regeneration, including neurological treatment, myocardial repair, and skeletal muscle regeneration. Therefore, it is inspiring for the tissue engineering research of biomaterials and medical practitioners.
Collapse
|
235
|
Esmaeili H, Patino-Guerrero A, Hasany M, Ansari MO, Memic A, Dolatshahi-Pirouz A, Nikkhah M. Electroconductive biomaterials for cardiac tissue engineering. Acta Biomater 2022; 139:118-140. [PMID: 34455109 PMCID: PMC8935982 DOI: 10.1016/j.actbio.2021.08.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/19/2022]
Abstract
Myocardial infarction (MI) is still the leading cause of mortality worldwide. The success of cell-based therapies and tissue engineering strategies for treatment of injured myocardium have been notably hindered due to the limitations associated with the selection of a proper cell source, lack of engraftment of engineered tissues and biomaterials with the host myocardium, limited vascularity, as well as immaturity of the injected cells. The first-generation approaches in cardiac tissue engineering (cTE) have mainly relied on the use of desired cells (e.g., stem cells) along with non-conductive natural or synthetic biomaterials for in vitro construction and maturation of functional cardiac tissues, followed by testing the efficacy of the engineered tissues in vivo. However, to better recapitulate the native characteristics and conductivity of the cardiac muscle, recent approaches have utilized electroconductive biomaterials or nanomaterial components within engineered cardiac tissues. This review article will cover the recent advancements in the use of electrically conductive biomaterials in cTE. The specific emphasis will be placed on the use of different types of nanomaterials such as gold nanoparticles (GNPs), silicon-derived nanomaterials, carbon-based nanomaterials (CBNs), as well as electroconductive polymers (ECPs) for engineering of functional and electrically conductive cardiac tissues. We will also cover the recent progress in the use of engineered electroconductive tissues for in vivo cardiac regeneration applications. We will discuss the opportunities and challenges of each approach and provide our perspectives on potential avenues for enhanced cTE. STATEMENT OF SIGNIFICANCE: Myocardial infarction (MI) is still the primary cause of death worldwide. Over the past decade, electroconductive biomaterials have increasingly been applied in the field of cardiac tissue engineering. This review article provides the readers with the leading advances in the in vitro applications of electroconductive biomaterials for cTE along with an in-depth discussion of injectable/transplantable electroconductive biomaterials and their delivery methods for in vivo MI treatment. The article also discusses the knowledge gaps in the field and offers possible novel avenues for improved cardiac tissue engineering.
Collapse
Affiliation(s)
- Hamid Esmaeili
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | | | - Masoud Hasany
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | | | - Adnan Memic
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Alireza Dolatshahi-Pirouz
- Department of Health Technology, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark; Department of Health Technology, Technical University of Denmark, Center for Intestinal Absorption and Transport of Biopharmaceuticals, 2800 Kgs, Lyngby, Denmark
| | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA; Biodesign Virginia G. Piper Center for Personalized Diagnostics, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
236
|
Abstract
![]()
Electronically interfacing with the
nervous system for the purposes
of health diagnostics and therapy, sports performance monitoring,
or device control has been a subject of intense academic and industrial
research for decades. This trend has only increased in recent years,
with numerous high-profile research initiatives and commercial endeavors.
An important research theme has emerged as a result, which is the
incorporation of semiconducting polymers in various devices that communicate
with the nervous system—from wearable brain-monitoring caps
to penetrating implantable microelectrodes. This has been driven by
the potential of this broad class of materials to improve the electrical
and mechanical properties of the tissue–device interface, along
with possibilities for increased biocompatibility. In this review
we first begin with a tutorial on neural interfacing, by reviewing
the basics of nervous system function, device physics, and neuroelectrophysiological
techniques and their demands, and finally we give a brief perspective
on how material improvements can address current deficiencies in this
system. The second part is a detailed review of past work on semiconducting
polymers, covering electrical properties, structure, synthesis, and
processing.
Collapse
Affiliation(s)
- Ivan B Dimov
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, U.K
| | - Maximilian Moser
- University of Oxford, Department of Chemistry, Oxford OX1 3TA, United Kingdom
| | - George G Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, U.K
| | - Iain McCulloch
- University of Oxford, Department of Chemistry, Oxford OX1 3TA, United Kingdom.,King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
237
|
Komaba K, Nomura N, Goto H. Electrochemical polymerization in a biological communication material. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2020.1809408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Kyoka Komaba
- Department of Material Science, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Nobuhiko Nomura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Japan
| | - Hiromasa Goto
- Department of Material Science, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
238
|
Tan P, Wang H, Xiao F, Lu X, Shang W, Deng X, Song H, Xu Z, Cao J, Gan T, Wang B, Zhou X. Solution-processable, soft, self-adhesive, and conductive polymer composites for soft electronics. Nat Commun 2022; 13:358. [PMID: 35042877 PMCID: PMC8766561 DOI: 10.1038/s41467-022-28027-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 01/04/2022] [Indexed: 02/07/2023] Open
Abstract
Soft electronics are rising electronic technologies towards applications spanning from healthcare monitoring to medical implants. However, poor adhesion strength and significant mechanical mismatches inevitably cause the interface failure of devices. Herein we report a self-adhesive conductive polymer that possesses low modulus (56.1-401.9 kPa), high stretchability (700%), high interfacial adhesion (lap-shear strength >1.2 MPa), and high conductivity (1-37 S/cm). The self-adhesive conductive polymer is fabricated by doping the poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) composite with a supramolecular solvent (β-cyclodextrin and citric acid). We demonstrated the solution process-based fabrication of self-adhesive conductive polymer-based electrodes for various soft devices, including alternating current electroluminescent devices, electromyography monitoring, and an integrated system for the visualization of electromyography signals during muscle training with an array of alternating current electroluminescent devices. The self-adhesive conductive polymer-based electronics show promising features to further develop wearable and comfortable bioelectronic devices with the physiological electric signals of the human body readable and displayable during daily activities.
Collapse
Affiliation(s)
- Peng Tan
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, P. R. China
| | - Haifei Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, P. R. China
| | - Furui Xiao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, P. R. China
| | - Xi Lu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, P. R. China
| | - Wenhui Shang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, P. R. China
| | - Xiaobo Deng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, P. R. China
| | - Huafeng Song
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, P. R. China
| | - Ziyao Xu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, P. R. China
| | - Junfeng Cao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, P. R. China
| | - Tiansheng Gan
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, P. R. China
| | - Ben Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, P. R. China
| | - Xuechang Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, P. R. China.
| |
Collapse
|
239
|
Pan J, Liu M, Li D, Zheng H, Zhang D. Overoxidized poly(3,4-ethylenedioxythiophene)-gold nanoparticles-graphene-modified electrode for the simultaneous detection of dopamine and uric acid in the presence of ascorbic acid. J Pharm Anal 2022; 11:699-708. [PMID: 35028174 PMCID: PMC8740388 DOI: 10.1016/j.jpha.2021.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/27/2021] [Accepted: 09/14/2021] [Indexed: 12/05/2022] Open
Abstract
An innovative, ternary nanocomposite composed of overoxidized poly(3,4-ethylenedioxythiophene) (OPEDOT), gold nanoparticles (AuNPs), and electrochemically reduced graphene oxide (ERGO) was prepared on a glassy carbon electrode (GCE) (OPEDOT–AuNPs–ERGO/GCE) through homogeneous chemical reactions and heterogeneous electrochemical methods. The morphology, composition, and structure of this nanocomposite were characterized by transmission electron microscopy, scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The electrochemical properties of the OPEDOT–AuNPs–ERGO/GCE were investigated by cyclic voltammetry using potassium ferricyanide and hexaammineruthenium(III) chloride redox probe systems. This modified electrode shows excellent electro-catalytic activity for dopamine (DA) and uric acid (UA) under physiological pH conditions, but inhibits the oxidation of ascorbic acid (AA). Linear voltammetric responses were obtained when DA concentrations of approximately 4.0–100 μM and UA concentrations of approximately 20–100 μM were used. The detection limits (S/N=3) for DA and UA were 1.0 and 5.0 μM, respectively, under physiological conditions and in the presence of 1.0 mM of AA. This developed method was applied to the simultaneous detection of DA and UA in human urine, where satisfactory recoveries from 96.7% to 105.0% were observed. This work demonstrates that the developed OPEDOT–AuNPs–ERGO ternary nanocomposite, with its excellent ion-selectivity and electro-catalytic activity, is a promising candidate for the simultaneous detection of DA and UA in the presence of AA in physiological and pathological studies. Facile preparation of graphene-based hybrid composite OPEDOT–AuNPs–ERGO onto GCE. The OPEDOT–AuNPs–ERGO/GCE was endued with excellent electrocatalytic activity and ion-selectivity. The OPEDOT–AuNPs–ERGO/GCE was found highly selective and sensitive determination of DA and UA in the presence of AA. The method is expected to be applied to the detection of DA and UA under physiological and pathological conditions.
Collapse
Affiliation(s)
- Junqiang Pan
- Department of Cardiovascular Medicine, Xi'an Central Hospital, Xi'an, 710003, China
| | - Mei Liu
- School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Dandan Li
- School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Haonan Zheng
- School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Dongdong Zhang
- School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Corresponding author.
| |
Collapse
|
240
|
Lou TJ, Wang JQ, Wang W, Wang T, Qian PF, Bao ZL, Jing LC, Yuan XT, Geng HZ. Tannic Acid‐Modified Single‐Walled Carbon nanotube/Zinc Oxide Nanoparticle Thin Films for UV‐Visible Semitransparent Photodiode Type Photodetectors. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202100208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Tian-Jiao Lou
- TGU: Tiangong University … No. 399 Binshui West Road, Xiqing District, Tianjin Tianjin CHINA
| | - Jing-Qi Wang
- TGU: Tiangong University … No. 399 Binshui West Road, Xiqing District, Tianjin Tianjin CHINA
| | - Wenyi Wang
- TGU: Tiangong University … No. 399 Binshui West Road, Xiqing District, Tianjin Tianjin CHINA
| | - Tao Wang
- TGU: Tiangong University … No. 399 Binshui West Road, Xiqing District, Tianjin Tianjin CHINA
| | - Peng-Fei Qian
- TGU: Tiangong University … No. 399 Binshui West Road, Xiqing District, Tianjin Tianjin CHINA
| | - Ze-Long Bao
- TGU: Tiangong University … No. 399 Binshui West Road, Xiqing District, Tianjin Tianjin CHINA
| | - Li-Chao Jing
- TGU: Tiangong University … No. 399 Binshui West Road, Xiqing District, Tianjin Tianjin CHINA
| | - Xiao-Tong Yuan
- Tiangong University … No. 399 Binshui West Road, Xiqing District, Tianjin Tianjin CHINA
| | - Hong-Zhang Geng
- Tiangong University School of Material Science and Engineering No 399, Binshui West Rd., Xiqing Dist. 300387 Tianjin CHINA
| |
Collapse
|
241
|
Zhang F, Zhang M, Liu S, Li C, Ding Z, Wan T, Zhang P. Application of Hybrid Electrically Conductive Hydrogels Promotes Peripheral Nerve Regeneration. Gels 2022; 8:41. [PMID: 35049576 PMCID: PMC8775167 DOI: 10.3390/gels8010041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/18/2021] [Accepted: 01/01/2022] [Indexed: 12/12/2022] Open
Abstract
Peripheral nerve injury (PNI) occurs frequently, and the prognosis is unsatisfactory. As the gold standard of treatment, autologous nerve grafting has several disadvantages, such as lack of donors and complications. The use of functional biomaterials to simulate the natural microenvironment of the nervous system and the combination of different biomaterials are considered to be encouraging alternative methods for effective tissue regeneration and functional restoration of injured nerves. Considering the inherent presence of an electric field in the nervous system, electrically conductive biomaterials have been used to promote nerve regeneration. Due to their singular physical properties, hydrogels can provide a three-dimensional hydrated network that can be integrated into diverse sizes and shapes and stimulate the natural functions of nerve tissue. Therefore, conductive hydrogels have become the most effective biological material to simulate human nervous tissue's biological and electrical characteristics. The principal merits of conductive hydrogels include their physical properties and their electrical peculiarities sufficient to effectively transmit electrical signals to cells. This review summarizes the recent applications of conductive hydrogels to enhance peripheral nerve regeneration.
Collapse
Affiliation(s)
- Fengshi Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (F.Z.); (M.Z.); (S.L.); (C.L.); (Z.D.); (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Meng Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (F.Z.); (M.Z.); (S.L.); (C.L.); (Z.D.); (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Songyang Liu
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (F.Z.); (M.Z.); (S.L.); (C.L.); (Z.D.); (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Ci Li
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (F.Z.); (M.Z.); (S.L.); (C.L.); (Z.D.); (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Zhentao Ding
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (F.Z.); (M.Z.); (S.L.); (C.L.); (Z.D.); (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Teng Wan
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (F.Z.); (M.Z.); (S.L.); (C.L.); (Z.D.); (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Peixun Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (F.Z.); (M.Z.); (S.L.); (C.L.); (Z.D.); (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| |
Collapse
|
242
|
Furlani F, Montanari M, Sangiorgi N, Saracino E, Campodoni E, Sanson A, Benfenati V, Tampieri A, Panseri S, Sandri M. Electroconductive and injectable hydrogels based on gelatin and PEDOT:PSS for mini-invasive approaches in nervous tissue regeneration. Biomater Sci 2022; 10:2040-2053. [DOI: 10.1039/d2bm00116k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work describes the development of electroconductive hydrogels as injectable matrices for neural tissue regeneration by exploiting a biocompatible conductive polymer – i.e. poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) – combined with a biomimetic...
Collapse
|
243
|
Cho KW, Sunwoo SH, Hong YJ, Koo JH, Kim JH, Baik S, Hyeon T, Kim DH. Soft Bioelectronics Based on Nanomaterials. Chem Rev 2021; 122:5068-5143. [PMID: 34962131 DOI: 10.1021/acs.chemrev.1c00531] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent advances in nanostructured materials and unconventional device designs have transformed the bioelectronics from a rigid and bulky form into a soft and ultrathin form and brought enormous advantages to the bioelectronics. For example, mechanical deformability of the soft bioelectronics and thus its conformal contact onto soft curved organs such as brain, heart, and skin have allowed researchers to measure high-quality biosignals, deliver real-time feedback treatments, and lower long-term side-effects in vivo. Here, we review various materials, fabrication methods, and device strategies for flexible and stretchable electronics, especially focusing on soft biointegrated electronics using nanomaterials and their composites. First, we summarize top-down material processing and bottom-up synthesis methods of various nanomaterials. Next, we discuss state-of-the-art technologies for intrinsically stretchable nanocomposites composed of nanostructured materials incorporated in elastomers or hydrogels. We also briefly discuss unconventional device design strategies for soft bioelectronics. Then individual device components for soft bioelectronics, such as biosensing, data storage, display, therapeutic stimulation, and power supply devices, are introduced. Afterward, representative application examples of the soft bioelectronics are described. A brief summary with a discussion on remaining challenges concludes the review.
Collapse
Affiliation(s)
- Kyoung Won Cho
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Hyuk Sunwoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Yongseok Joseph Hong
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Ja Hoon Koo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Jeong Hyun Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Seungmin Baik
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.,Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
244
|
Liu Z, Zou Y, Ji C, Chen X, Hou G, Zhang C, Wan X, Guo LJ, Zhao Y, Zhang X. Broad-Spectrum Ultrathin-Metal-Based Oxide/Metal/Oxide Transparent Conductive Films for Optoelectronic Devices. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58539-58551. [PMID: 34871497 DOI: 10.1021/acsami.1c16691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
High-quality transparent conductive materials are beneficial to improve the charge transfer and light transmittance and reduce the interface defects as well as the production cost of optoelectronic devices. A high threshold thickness of metal layer in oxide/metal/oxide (OMO) compound thin films leads to strong reflectance, especially in the near-infrared region, limiting the broad-spectrum device applications. Here, we propose a novel Zn doping strategy using the low-cost single-target sputtering technology to achieve the growth of Ag-Zn thin films (i.e., Zn-doped Ag) and introduce a trace amount of O2 to further obtain ultrathin Ag-Zn(O) films (thin-film thickness d ≤ 5 nm), which greatly improves the broad-spectrum characteristics of OMO films. Heterogeneous metal and gas doping technology effectively promotes the formation of two-dimensional continuous film growth. By combining the ultrathin Ag-Zn(O) layer with the MGZO (i.e., Mg- and Ga co-doped ZnO) oxide film grown by reactive plasma deposition, a typical broad-spectrum MGZO/Ag-Zn(O)/MGZO (50/5/50 nm)-OMO compound thin film exhibits an average transmittance of 91.6% in the wavelength range of 400-1200 nm and low sheet resistance. The broad-spectrum organic solar cells based on MGZO/Ag-Zn(O)/MGZO electrodes present a high power conversion efficiency of 15.35%, superior to those devices based on single-layer oxide electrodes. The distinguished performances are attributed to the ultrathin Ag-Zn(O) films in OMO, paving the way for applications in broad-spectrum optoelectronic and flexible electronic devices.
Collapse
Affiliation(s)
- Zhang Liu
- Institute of Photo-electronic Thin Film Devices and Technology, Key Laboratory of Photo-electronic Thin Film Devices and Technology of Tianjin, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Yalu Zou
- Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chengang Ji
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Xinliang Chen
- Institute of Photo-electronic Thin Film Devices and Technology, Key Laboratory of Photo-electronic Thin Film Devices and Technology of Tianjin, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Guofu Hou
- Institute of Photo-electronic Thin Film Devices and Technology, Key Laboratory of Photo-electronic Thin Film Devices and Technology of Tianjin, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Cong Zhang
- Institute of Photo-electronic Thin Film Devices and Technology, Key Laboratory of Photo-electronic Thin Film Devices and Technology of Tianjin, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Xiangjian Wan
- Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - L Jay Guo
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ying Zhao
- Institute of Photo-electronic Thin Film Devices and Technology, Key Laboratory of Photo-electronic Thin Film Devices and Technology of Tianjin, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Xiaodan Zhang
- Institute of Photo-electronic Thin Film Devices and Technology, Key Laboratory of Photo-electronic Thin Film Devices and Technology of Tianjin, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
245
|
Zhu H, Hu X, Liu B, Chen Z, Qu S. 3D Printing of Conductive Hydrogel-Elastomer Hybrids for Stretchable Electronics. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59243-59251. [PMID: 34870967 DOI: 10.1021/acsami.1c17526] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electronically conductive hydrogels integrated with dielectric elastomers show great promise in a wide range of applications, such as biomedical devices, soft robotics, and stretchable electronics. However, one big conundrum that impedes the functionality and performance of hydrogel-elastomer-based devices lies in the strict demands of device integration and the requirements for devices with satisfactory mechanical and electrical properties. Herein, the digital light processing three-dimensional (3D) printing method is used to fabricate 3D functional devices that bridge submillimeter-scale device resolution to centimeter-scale object size and simultaneously realize complex hybrid structures with strong adhesion interfaces and desired functionalities. The interconnected poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) network endows the PAAm hydrogel with high conductivity and superior electrical stability and poly(2-hydroxyethyl acrylate) functions as an insulating medium. The strong interfacial bonding between the hydrogel and elastomer is achieved by incomplete photopolymerization that ensures the stability of the hybrid structure. Lastly, applications of stretchable electronics illustrated as 3D-printed electroluminescent devices and 3D-printed capacitive sensors are conceptually demonstrated. This strategy will open up avenues to fabricate conductive hydrogel-elastomer hybrids in next-generation multifunctional stretchable electronics.
Collapse
Affiliation(s)
- Heng Zhu
- State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Xiaocheng Hu
- State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Binhong Liu
- State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Zhe Chen
- State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Shaoxing Qu
- State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
246
|
Yang GY, Wang SZ, Sun HT, Yao XM, Li CB, Li YJ, Jiang JJ. Ultralight, Conductive Ti 3C 2T x MXene/PEDOT:PSS Hybrid Aerogels for Electromagnetic Interference Shielding Dominated by the Absorption Mechanism. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57521-57531. [PMID: 34793675 DOI: 10.1021/acsami.1c13303] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
MXene aerogels with a porous microstructure are a promising electromagnetic interference (EMI) shielding material due to its low density and excellent electrical conductivity, which has attracted widespread attention. Compared with traditional EMI shielding materials that rely on reflection as the primary mechanism, MXene aerogels with absorption as the dominant mechanism have greater potential for development as a novel EMI shielding material because of its ability to reduce environmental contamination from reflected electromagnetic (EM) waves from materials. In this study, a novel Ti3C2Tx MXene/PEDOT:PSS hybrid aerogel was presented by freeze-drying and thermal annealing using few-layered Ti3C2Tx MXene and the conductive polymer poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS). PEDOT:PSS not only improved the gelling ability of Ti3C2Tx but also successfully established a conductive bridge between MXene nanosheets. The experimental results demonstrated that the hybrid aerogel exhibited an obvious porous microstructure, which was beneficial for the multiple scattering of EM waves within the materials. The EMI shielding effectiveness and specific shielding effectiveness reached up to 59 dB and 10,841 dB·cm2·g-1, respectively, while the SER/SET ratio value was only 0.05, indicating superior wave absorption performance. Furthermore, the good impedance matching, due to the electrical conductance loss and polarization loss effect of the composites, plays a critical role in their excellent wave absorption and EMI shielding performance. Therefore, this work provides a practical approach for designing and fabricating lightweight absorption-dominated EMI shielding materials.
Collapse
Affiliation(s)
- Guo-Yu Yang
- Shaanxi Engineering Research Center for Digital Manufacturing Technology, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Shao-Zhe Wang
- Shaanxi Engineering Research Center for Digital Manufacturing Technology, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Hong-Tai Sun
- Shaanxi Engineering Research Center for Digital Manufacturing Technology, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Xu-Ming Yao
- Shaanxi Engineering Research Center for Digital Manufacturing Technology, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Chuan-Bing Li
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, P. R. China
| | - Yu-Jun Li
- Shaanxi Engineering Research Center for Digital Manufacturing Technology, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Jian-Jun Jiang
- Shaanxi Engineering Research Center for Digital Manufacturing Technology, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| |
Collapse
|
247
|
Veeramuthu L, Venkatesan M, Benas JS, Cho CJ, Lee CC, Lieu FK, Lin JH, Lee RH, Kuo CC. Recent Progress in Conducting Polymer Composite/Nanofiber-Based Strain and Pressure Sensors. Polymers (Basel) 2021; 13:4281. [PMID: 34960831 PMCID: PMC8705576 DOI: 10.3390/polym13244281] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 01/11/2023] Open
Abstract
The Conducting of polymers belongs to the class of polymers exhibiting excellence in electrical performances because of their intrinsic delocalized π- electrons and their tunability ranges from semi-conductive to metallic conductive regime. Conducting polymers and their composites serve greater functionality in the application of strain and pressure sensors, especially in yielding a better figure of merits, such as improved sensitivity, sensing range, durability, and mechanical robustness. The electrospinning process allows the formation of micro to nano-dimensional fibers with solution-processing attributes and offers an exciting aspect ratio by forming ultra-long fibrous structures. This review comprehensively covers the fundamentals of conducting polymers, sensor fabrication, working modes, and recent trends in achieving the sensitivity, wide-sensing range, reduced hysteresis, and durability of thin film, porous, and nanofibrous sensors. Furthermore, nanofiber and textile-based sensory device importance and its growth towards futuristic wearable electronics in a technological era was systematically reviewed to overcome the existing challenges.
Collapse
Affiliation(s)
- Loganathan Veeramuthu
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan; (L.V.); (M.V.); (J.-S.B.)
| | - Manikandan Venkatesan
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan; (L.V.); (M.V.); (J.-S.B.)
| | - Jean-Sebastien Benas
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan; (L.V.); (M.V.); (J.-S.B.)
| | - Chia-Jung Cho
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan; (L.V.); (M.V.); (J.-S.B.)
| | - Chia-Chin Lee
- Department of Physical Medicine and Rehabilitation, Cheng Hsin General Hospital, Taipei 11220, Taiwan;
| | - Fu-Kong Lieu
- Department of Physical Medicine and Rehabilitation, Cheng Hsin General Hospital, Taipei 11220, Taiwan;
- Department of Physical Medicine and Rehabilitation, National Defense Medical Center, Taipei 11490, Taiwan
| | - Ja-Hon Lin
- Institute of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan;
| | - Rong-Ho Lee
- Department of Chemical Engineering, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Chi-Ching Kuo
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan; (L.V.); (M.V.); (J.-S.B.)
| |
Collapse
|
248
|
Chapman CAR, Cuttaz EA, Tahirbegi B, Novikov A, Petkos K, Koutsoftidis S, Drakakis EM, Goding JA, Green RA. Flexible Networks of Patterned Conducting Polymer Nanowires for Fully Polymeric Bioelectronics. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
| | - Estelle A. Cuttaz
- Department of Bioengineering Imperial College London South Kensington London SW7 2AZ UK
| | - Bogachan Tahirbegi
- Department of Bioengineering Imperial College London South Kensington London SW7 2AZ UK
| | - Alexey Novikov
- Department of Bioengineering Imperial College London South Kensington London SW7 2AZ UK
| | - Konstantinos Petkos
- Department of Bioengineering Imperial College London South Kensington London SW7 2AZ UK
- Center for Neurotechnology Imperial College London Prince Consort Road London SW7 2AZ UK
| | - Simos Koutsoftidis
- Department of Bioengineering Imperial College London South Kensington London SW7 2AZ UK
| | - Emmanuel M. Drakakis
- Department of Bioengineering Imperial College London South Kensington London SW7 2AZ UK
- Center for Neurotechnology Imperial College London Prince Consort Road London SW7 2AZ UK
| | - Josef A. Goding
- Department of Bioengineering Imperial College London South Kensington London SW7 2AZ UK
| | - Rylie A. Green
- Department of Bioengineering Imperial College London South Kensington London SW7 2AZ UK
| |
Collapse
|
249
|
Deng Y, Liu W, Cheung YK, Li Y, Hong W, Yu H. Curved display based on programming origami tessellations. MICROSYSTEMS & NANOENGINEERING 2021; 7:101. [PMID: 34917393 PMCID: PMC8642556 DOI: 10.1038/s41378-021-00319-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/26/2021] [Accepted: 10/05/2021] [Indexed: 06/14/2023]
Abstract
Curved displays have recently become very popular, with wide applications for both industry and consumers. However, built upon initially flat films, most flexible displays are often incompatible with general nondevelopable surfaces. In this paper, we report a method for producing curved displays of nondevelopable shapes by using a structure-mechanics-inspired functional optimization method to design tessellation patterns that fold into the desired shapes. Representative displays in spherical and saddle shapes are demonstrated. The microfabrication process is employed for manufacturing 2D flexible foldable circuit boards, pick-and-place technology is used for placing illuminant elements onto the boards, and mold guidance is used for folding 2-D sheets into curved 3D display prototypes. The proposed technology is feasible for mass production and advances the application of next-generation curved displays.
Collapse
Affiliation(s)
- Yang Deng
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Kowloon Hong Kong, SAR 999077 China
| | - Weixuan Liu
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong China
| | - Yik Kin Cheung
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Kowloon Hong Kong, SAR 999077 China
| | - Yongkai Li
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Kowloon Hong Kong, SAR 999077 China
| | - Wei Hong
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong China
| | - Hongyu Yu
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Kowloon Hong Kong, SAR 999077 China
| |
Collapse
|
250
|
Song Y, Dattatray Phule A, Yu Z, Zhang X, Du A, Wang H, Xiu Zhang Z. Lightweight and flexible silicone rubber foam with dopamine grafted multi-walled carbon nanotubes and silver nanoparticles using supercritical foaming technology: Its preparation and electromagnetic interference shielding performance. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|