201
|
Khan IM, Bishop JC, Gilbert S, Archer CW. Clonal chondroprogenitors maintain telomerase activity and Sox9 expression during extended monolayer culture and retain chondrogenic potential. Osteoarthritis Cartilage 2009; 17:518-28. [PMID: 19010695 DOI: 10.1016/j.joca.2008.08.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Accepted: 08/21/2008] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Articular cartilage contains mesenchymally derived chondroprogenitor cells that have the potential to be used for stem cell therapy. The aim of this study was to characterise the growth kinetics and properties of in vitro expanded cloned chondroprogenitors and determine if critical determinants of the progenitor phenotype were maintained or lost in culture. METHODS Chondroprogenitors were isolated from immature bovine metacarpalphalangeal joints by differential adhesion to fibronectin. Cloned colonies were expanded in vitro up to 50 population doublings (PD). Growth characteristics were assessed by cell counts, analysis of telomere length, telomerase activity, expression of senescence-associated beta-galactosidase activity and real-time quantitative polymerase chain reaction to analyse the gene expression patterns of sox9 and Notch-1 in chondroprogenitors. RESULTS Cloned chondroprogenitors exhibited exponential growth for the first 20 PD, then slower linear growth with evidence of replicative senescence at later passages. Mean telomere lengths of exponentially growing chondroprogenitors were significantly longer than dedifferentiated chondrocytes that had undergone a similar number of PD (P<0.05). Chondroprogenitors also had 2.6-fold greater telomerase activity. Chondroprogenitors maintained similar sox9 and lower Notch-1 mRNA levels compared to non-clonal dedifferentiated chondrocytes. Chondroprogenitors were induced to differentiate into cartilage in 3D pellet cultures, immunological investigation of sox9, Notch-1, aggrecan and proliferating cell nuclear antigen (PCNA) expression showed evidence of co-ordinated growth and differentiation within the cartilage pellet. CONCLUSION Clonal chondroprogenitors from immature articular cartilage provide a useful tool to understand progenitor cell biology from the perspective of cartilage repair. Comparisons with more mature progenitor populations may lead to greater understanding in optimising repair strategies.
Collapse
Affiliation(s)
- I M Khan
- Connective Tissue Laboratories, Cardiff University, Museum Avenue, Cardiff CF10 3US, Wales, UK
| | | | | | | |
Collapse
|
202
|
Candrian C, Bonacina E, Frueh JA, Vonwil D, Dickinson S, Wirz D, Heberer M, Jakob M, Martin I, Barbero A. Intra-individual comparison of human ankle and knee chondrocytes in vitro: relevance for talar cartilage repair. Osteoarthritis Cartilage 2009; 17:489-96. [PMID: 18980848 DOI: 10.1016/j.joca.2008.05.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 05/31/2008] [Indexed: 02/02/2023]
Abstract
OBJECTIVE As compared to knee chondrocytes (KC), talar chondrocytes (TC) have superior synthetic activity and increased resistance to catabolic stimuli. We investigated whether these properties are maintained after TC are isolated and expanded in vitro. METHODS Human TC and KC from 10 cadavers were expanded in monolayer and then cultured in pellets for 3 and 14 days or in hyaluronan meshes (Hyaff-11) for 14 and 28 days. Resulting tissues were assessed biochemically, histologically, biomechanically and by real-time reverse transcriptase-polymerase chain reaction (RT-PCR). The proteoglycan and collagen synthesis rates in the pellets were also measured following exposure to Interleukin-1 beta (IL-1 beta). RESULTS After 14 days of pellet culture, TC and KC expressed similar levels of type I collagen (CI) and type II collagen (CII) mRNA and the resulting tissues contained comparable amounts of glycosaminoglycans (GAG) and displayed similar staining intensities for CII. Also proteoglycan and collagen synthesis were similar in TC and KC pellets, and dropped to a comparable extent in response to IL-1 beta. Following 14 days of culture in Hyaff-11, TC and KC generated tissues with similar amounts of GAG and CI and CII. After 28 days, KC deposited significantly larger fractions of GAG and CII than TC, although the trend was not reflected in the measured biomechanical properties. CONCLUSION After isolation from their original matrices and culture expansion, TC and KC displayed similar biosynthetic activities, even in the presence of catabolic stimuli. These in vitro data suggest a possible equivalence of TC and KC as autologous cell sources for the repair of talar cartilage lesions.
Collapse
Affiliation(s)
- C Candrian
- Department of Surgery, University Hospital, Basel, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Bastiaansen-Jenniskens YM, Koevoet W, De Bart ACW, Zuurmond AM, Bank RA, Verhaar JAN, DeGroot J, van Osch GJVM. TGFbeta affects collagen cross-linking independent of chondrocyte phenotype but strongly depending on physical environment. Tissue Eng Part A 2009. [PMID: 19230128 DOI: 10.1089/tea.2007.0345] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transforming growth factor beta (TGFbeta) is often used in cartilage tissue engineering to increase matrix formation by cells with various phenotypes. However, adverse effects of TGFbeta, such as extensive crosslinking in cultured fibroblasts, have also been reported. Our goal was to study effects of TGFbeta on collagen cross-linking and evaluating the role of cellular phenotype and physical environment. We therefore used four different cell populations in two very different physical environments: primary and expanded chondrocytes and fibroblasts embedded in alginate gel and attached to tissue culture plastic. Matrix production, collagen cross-linking, and alpha-smooth muscle actin (alphaSMA) were analyzed during 4 weeks with or without 2.5 ng/ mL TGFbeta2. TGFbeta2 did not affect collagen deposition by primary cells. In expanded cells, TGFbeta2 increased collagen deposition. Chondrocytes and fibroblasts in monolayer produced more collagen cross-links with TGFbeta2. In alginate, primary and expanded cells displayed an unexpected decrease in collagen cross-linking with TGFbeta2. alphaSMA was not present in alginate cultures and barely upregulated by TGFbeta2. Organized alphaSMA fibers were present in all monolayer cultures and became more pronounced with TGFbeta2. This study demonstrates that the physical environment determined by the substrate used co-determines the response of cells to TGFbeta. The presence of mechanical stress, determined with alphaSMA-staining, is probably responsible for the increase in collagen cross-linking upon addition of TGFbeta.
Collapse
|
204
|
Taylor SE, Vaughan-Thomas A, Clements DN, Pinchbeck G, Macrory LC, Smith RKW, Clegg PD. Gene expression markers of tendon fibroblasts in normal and diseased tissue compared to monolayer and three dimensional culture systems. BMC Musculoskelet Disord 2009; 10:27. [PMID: 19245707 PMCID: PMC2651848 DOI: 10.1186/1471-2474-10-27] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 02/26/2009] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND There is a paucity of data regarding molecular markers that identify the phenotype of the tendon cell. This study aims to quantify gene expression markers that distinguish between tendon fibroblasts and other mesenchymal cells which may be used to investigate tenogenesis. METHODS Expression levels for 12 genes representative of musculoskeletal tissues, including the proposed tendon progenitor marker scleraxis, relative to validated reference genes, were evaluated in matched samples of equine tendon (harvested from the superficial digital flexor tendon), cartilage and bone using quantitative PCR (qPCR). Expression levels of genes associated with tendon phenotype were then evaluated in healthy, including developmental, and diseased equine tendon tissue and in tendon fibroblasts maintained in both monolayer culture and in three dimensional (3D) collagen gels. RESULTS Significantly increased expression of scleraxis was found in tendon compared with bone (P = 0.002) but not compared to cartilage. High levels of COL1A2 and scleraxis and low levels of tenascin-C were found to be most representative of adult tensional tendon phenotype. While, relative expression of scleraxis in developing mid-gestational tendon or in acute or chronically diseased tendon did not differ significantly from normal adult tendon, tenascin-C message was significantly upregulated in acutely injured equine tendon (P = 0.001). Relative scleraxis gene expression levels in tendon cell monolayer and 3D cultures were significantly lower than in normal adult tendon (P = 0.002, P = 0.02 respectively). CONCLUSION The findings of this study indicate that high expression of both COL1A2 and scleraxis, and low expression of tenascin-C is representative of a tensional tendon phenotype. The in vitro culture methods used in these experiments however, may not recapitulate the phenotype of normal tensional tendon fibroblasts in tissues as evidenced by gene expression.
Collapse
Affiliation(s)
- Sarah E Taylor
- Department of Veterinary Clinical Science, University of Liverpool, Neston, South Wirral, CH64 7TE, UK
| | - Anne Vaughan-Thomas
- Department of Veterinary Clinical Science, University of Liverpool, Neston, South Wirral, CH64 7TE, UK
| | - Dylan N Clements
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Veterinary Centre, Roslin, EH25 9RG, UK
| | - Gina Pinchbeck
- Department of Veterinary Clinical Science, University of Liverpool, Neston, South Wirral, CH64 7TE, UK
| | - Lisa C Macrory
- Department of Veterinary Clinical Science, University of Liverpool, Neston, South Wirral, CH64 7TE, UK
| | - Roger KW Smith
- Royal Veterinary College, Department of Veterinary Clinical Science, North Mymms, Northampton, UK
| | - Peter D Clegg
- Department of Veterinary Clinical Science, University of Liverpool, Neston, South Wirral, CH64 7TE, UK
| |
Collapse
|
205
|
Stoddart MJ, Grad S, Eglin D, Alini M. Cells and biomaterials in cartilage tissue engineering. Regen Med 2009; 4:81-98. [PMID: 19105618 DOI: 10.2217/17460751.4.1.81] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cartilage defects are notoriously difficult to repair and owing to the long-term prognosis of osteoarthritis, and a rapidly aging population, a need for new therapies is pressing. Cell-based therapies for cartilage regeneration were introduced into patients in the early 1990s. Since that time the technology has developed from a simple cell suspension to more complex 3D structures. Cells, both chondrocytes and stem cells, have been incorporated into scaffold material with the aim to better recreate the natural environment of the cell, while providing more structural support to withstand the large forces applied on the de novo tissue. This review aims to provide an overview of potential cell sources and different scaffold materials, which are in development for cartilage tissue engineering.
Collapse
Affiliation(s)
- Martin J Stoddart
- Biomaterials & Tissue Engineering, AO Research Institute, Davos Platz, Switzerland.
| | | | | | | |
Collapse
|
206
|
The Multipotency of Luteinizing Granulosa Cells Collected from Mature Ovarian Follicles. Stem Cells 2009; 27:210-9. [DOI: 10.1634/stemcells.2008-0233] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
207
|
Ear mesenchymal stem cells: an efficient adult multipotent cell population fit for rapid and scalable expansion. J Biotechnol 2008; 139:291-9. [PMID: 19136033 DOI: 10.1016/j.jbiotec.2008.12.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 12/09/2008] [Accepted: 12/15/2008] [Indexed: 12/19/2022]
Abstract
Bone marrow mesenchymal stem cells (BM-MSCs) have the potential to be used for tissue engineering. Nevertheless, they exhibit a low growth rate that limits their availability. In this work we use an alternative model of MSCs from the outer ear (ear mesenchymal stem cells, E-MSCs). These cells bear the characteristics of progenitor cells because of their ability to be differentiated into the three lineages of chondrocytes, osteocytes and adipocytes. This model cell population had a threefold higher cell growth rate compared to BM-MSCs. This allowed rapid testing of the scalability in microcarrier culture using bead-to-bead transfer and also enabled their expansion in a 1-l bioreactor. The cells were able to maintain their potential for differentiation into the above three lineages. Therefore, E-MSCs appear to be an attractive model for assessing a number of bioengineering parameters that may affect the behavior of adult stem cells in culture.
Collapse
|
208
|
Burkhardt JK, Halama D, Frerich B, Gaunitz F. Real-time RT-PCR discriminating mRNA encoding osteocalcin from unspecific targets. Anal Bioanal Chem 2008; 393:1351-5. [PMID: 19043696 DOI: 10.1007/s00216-008-2528-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 11/10/2008] [Accepted: 11/13/2008] [Indexed: 11/30/2022]
Abstract
Osteocalcin is a noncollagenous protein produced by osteoblasts and odontoblasts. It is used as a marker for bone formation in regenerative medical approaches. In addition, serum levels in humans are used to indicate bone turnover. Expression is usually determined by real-time reverse transcription PCR. Analysis of sequence data revealed that the frequently used primers for the determination of osteocalcin expression also detect the expression of messenger RNA (mRNA) encoding polyamine-modulated factor 1 (PMF1). In the present study we developed a method to determine the real amount of mRNA encoding osteocalcin. Bone-derived cells were treated with osteogenic differentiation medium and expression of osteocalcin was determined to test the method. It was found that the classic method that does not correct for PMF1 expression leads to overestimations as high as 70%.
Collapse
Affiliation(s)
- Jan-Karl Burkhardt
- Institute of Biochemistry, Medical Faculty, University of Leipzig, Johannisallee 30, 04103, Leipzig, Germany
| | | | | | | |
Collapse
|
209
|
Peng L, Jia Z, Yin X, Zhang X, Liu Y, Chen P, Ma K, Zhou C. Comparative analysis of mesenchymal stem cells from bone marrow, cartilage, and adipose tissue. Stem Cells Dev 2008; 17:761-73. [PMID: 18393634 DOI: 10.1089/scd.2007.0217] [Citation(s) in RCA: 260] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stem cells (MSCs) isolated from bone marrow (BM), cartilage, and adipose tissue (AT) possess the capacity for self-renewal and the potential for multilineage differentiation, and are therefore perceived as attractive sources of stem cells for cell therapy. However, MSCs from these different sources have different characteristics. We compared MSCs of adult Sprague Dawley rats derived from these three sources in terms of their immunophenotypic characterization, proliferation capacity, differentiation ability, expression of angiogenic cytokines, and anti-apoptotic ability. According to growth curve, cell cycle, and telomerase activity analyses, MSCs derived from adipose tissue (AT-MSCs) possess the highest proliferation potential, followed by MSCs derived from BM and cartilage (BM-MSCs and C-MSCs). In terms of multilineage differentiation, MSCs from all three sources displayed osteogenic, adipogenic, and chondrogenic differentiation potential. The result of realtime RT-PCR indicated that these cells all expressed angiogenic cytokines, with some differences in expression level. Flow cytometry and MTT analysis showed that C-MSCs possess the highest resistance toward hydrogen peroxide -induced apoptosis, while AT-MSCs exhibited high tolerance to serum deprivation-induced apoptosis. Both AT and cartilage are attractive alternatives to BM as sources for isolating MSCs, but these differences must be considered when choosing a stem cell source for clinical application.
Collapse
Affiliation(s)
- Linyi Peng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
210
|
Cegielski M, Dziewiszek W, Zabel M, Dzięgiel P, Iżycki D, Zatoński M, Bochnia M. Experimental application of xenogenous antlerogenic cells in replacement of auricular cartilage in rabbits. Xenotransplantation 2008; 15:374-83. [DOI: 10.1111/j.1399-3089.2008.00497.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
211
|
Mesenchymal stem cells as a potential pool for cartilage tissue engineering. Ann Anat 2008; 190:395-412. [DOI: 10.1016/j.aanat.2008.07.007] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 07/18/2008] [Indexed: 01/13/2023]
|
212
|
Grogan SP, Olee T, Hiraoka K, Lotz MK. Repression of chondrogenesis through binding of notch signaling proteins HES-1 and HEY-1 to N-box domains in the COL2A1 enhancer site. ARTHRITIS AND RHEUMATISM 2008; 58:2754-63. [PMID: 18759300 PMCID: PMC2786215 DOI: 10.1002/art.23730] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Notch signaling is implicated in the repression of mesenchymal stem cell (MSC) chondrogenic differentiation. The purpose of this study was to examine the mechanism of this repression and how it is modulated to permit chondrogenesis. METHODS Notch intracellular domain (NICD) protein levels were monitored via Western blotting throughout chondrogenic differentiation of human MSCs in pellet cultures. Overexpression of Notch signaling components and their effect on chondrogenesis was achieved by transfecting plasmids coding for NICD, HES-1, and HERP-2/HEY-1. COL2A1 and AGGRECAN expression was monitored via quantitative polymerase chain reaction analysis. Chromatin immunoprecipitation (ChIP) was used to test whether HES-1 and HEY-1 bind putative N-box domains in intron 1 of COL2A1. RESULTS High levels of NICD proteins were reduced during chondrogenesis of human MSCs, and this was mediated by transforming growth factor beta3 (TGFbeta3). COL2A1 gene expression was repressed following overexpression of NICD (2-fold) and HES-1 (3-fold) and was markedly repressed by overexpression of HEY-1 (80-fold). HEY-1 repressed AGGRECAN expression 10-fold, while NICD and HES-1 had no effect. We identified 2 putative N-box domains adjacent to, and part of, the SOX9 enhancer binding site located in intron 1 of COL2A1. ChIP studies showed that endogenous HES-1 and HEY-1 bound to these sites. Transducin-like enhancer, the HES-1 corepressor protein, was displaced during chondrogenic differentiation and following TGFbeta3 treatment. CONCLUSION These results reveal novel mechanisms by which Notch signaling represses gene expression. Notch signaling proteins act on the SOX9 binding site in the COL2A1 enhancer and prevent SOX9-mediated transcriptional activation of COL2A1 and, thus, chondrogenic differentiation.
Collapse
Affiliation(s)
- Shawn P Grogan
- The Division of Arthritis Research, The Scripps Research Institute, 10555 North Torrey Pines Road, MEM161, La Jolla, CA 92037, USA
| | - Tsaiwei Olee
- The Division of Arthritis Research, The Scripps Research Institute, 10555 North Torrey Pines Road, MEM161, La Jolla, CA 92037, USA
| | - Koji Hiraoka
- The Division of Arthritis Research, The Scripps Research Institute, 10555 North Torrey Pines Road, MEM161, La Jolla, CA 92037, USA
| | - Martin K Lotz
- The Division of Arthritis Research, The Scripps Research Institute, 10555 North Torrey Pines Road, MEM161, La Jolla, CA 92037, USA
| |
Collapse
|
213
|
Tew SR, Murdoch AD, Rauchenberg RP, Hardingham TE. Cellular methods in cartilage research: primary human chondrocytes in culture and chondrogenesis in human bone marrow stem cells. Methods 2008; 45:2-9. [PMID: 18442700 DOI: 10.1016/j.ymeth.2008.01.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 01/30/2008] [Indexed: 01/22/2023] Open
Abstract
Work in our laboratory has focused on the in vitro culture of both human articular chondrocytes and human mesenchymal stem cells to understand what controls their ability to synthesise an appropriate cartilage-like extracellular matrix containing a predominantly collagen type II fibrillar network embedded in an aggrecan-rich ECM. This review focuses on the methodologies that we have found to be successful with cartilage and bone marrow sources of human cells and comments on the many factors which may enable improved phenotypic performance once the cells are in a fully chondrogenic environment.
Collapse
Affiliation(s)
- Simon R Tew
- UK Centre for Tissue Engineering and Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | | | | | |
Collapse
|
214
|
Jones EA, Crawford A, English A, Henshaw K, Mundy J, Corscadden D, Chapman T, Emery P, Hatton P, McGonagle D. Synovial fluid mesenchymal stem cells in health and early osteoarthritis: detection and functional evaluation at the single-cell level. ACTA ACUST UNITED AC 2008; 58:1731-40. [PMID: 18512779 DOI: 10.1002/art.23485] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Arthritic synovial fluid (SF) contains mesenchymal stem cells (MSCs), which could simply reflect their shedding from diseased joint structures. This study used the bovine model to explore SF MSCs in health and enumerated them at the earliest stages of human osteoarthritis (OA) in radiographically normal joints. METHODS Clonogenicity and multipotentiality of normal bovine SF MSCs were compared with donor-matched bone marrow (BM) MSCs at the single-cell level. The colony-forming unit-fibroblastic assay was used for MSC enumeration. The XTT assay was employed to assess cell proliferation, and flow cytometry was used to investigate the marker phenotype of bovine and human SF MSCs. RESULTS Single MSCs were present in normal bovine SF, and 96% of them were able to expand at least 1 million-fold. These cells were CD271-, multipotential, considerably more clonogenic, and less adipogenic than matched BM MSCs. In both pellet assays and on polyglycolic acid scaffolds, SF clones displayed consistent chondrogenic differentiation, while BM clones were variable. MSCs were present in arthroscopically normal human joints and were increased 7-fold in early OA (P = 0.034). Their numbers correlated with numbers of free microscopic synovial tissue fragments (r = 0.826, P < 0.0001). OA SF had a growth-promoting effect on synovial MSCs. CONCLUSION This study confirms the presence of MSCs in normal SF and shows their numerical increase in early human OA. SF MSCs are likely to originate from synovium. These findings provide a platform for the exploration of the potential role of SF MSCs in joint homeostasis and for investigation of their utility in novel joint regeneration strategies.
Collapse
|
215
|
Egli RJ, Bastian JD, Ganz R, Hofstetter W, Leunig M. Hypoxic expansion promotes the chondrogenic potential of articular chondrocytes. J Orthop Res 2008; 26:977-85. [PMID: 18302236 DOI: 10.1002/jor.20603] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
For cell-based cartilage repair strategies, an ex vivo expansion phase is required to obtain sufficient numbers of cells needed for therapy. Although recent reports demonstrated the central role of oxygen for the function and differentiation of chondrocytes, a beneficial effect of low oxygen concentrations during the expansion of the cells to further improve their chondrogenic capacity has not been investigated.Therefore, freshly harvested bovine articular chondrocytes were grown in two-dimensional monolayer cultures at 1.5% and 21% O2 and redifferentiation was subsequently induced in three-dimensional micromass cultures at 1.5%, 5%, and 21% O2. Cells expanded at 1.5% O2 were characterized by low citrate synthase (aerobic energy metabolism)--and high LDH (anaerobic energy metabolism-activities,suggesting an anaerobic energy metabolism. Collagen type II mRNA was twofold higher in cells expanded at 1.5% as compared to expansion at 21% O2. Micromass cultures grown at 21% O2 showed up to a twofold increase in the tissue content of glycosaminoglycans when formed with cells expanded at 1.5% instead of 21% O2. However, no differences in the levels of transcripts and in the staining for collagen type II protein were observed in these micromass cultures. Hypoxia (1.5% and 5% O2) applied during micromass cultures gave rise to tissues with low contents of glycosaminoglycans only. In vivo, the chondrocytes are adapted to a hypoxic environment. Taking this into account, by applying 1.5% O2 in the expansion phase in the course of cell-based cartilage repair strategies, may result in a repair tissue with higher quality by increasing the content of glycosaminoglycans.
Collapse
Affiliation(s)
- Rainer J Egli
- Department of Clinical Research, Group for Bone Biology and Orthopaedic Research, University of Berne, Murtenstrasse 35, 3010 Berne, Switzerland.
| | | | | | | | | |
Collapse
|
216
|
McGonagle D, Jones E. A potential role for synovial fluid mesenchymal stem cells in ligament regeneration. Rheumatology (Oxford) 2008; 47:1114-6. [PMID: 18579618 DOI: 10.1093/rheumatology/ken236] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
217
|
da Silva Meirelles L, Caplan AI, Nardi NB. In search of the in vivo identity of mesenchymal stem cells. Stem Cells 2008; 26:2287-99. [PMID: 18566331 DOI: 10.1634/stemcells.2007-1122] [Citation(s) in RCA: 716] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In spite of the advances in the knowledge of adult stem cells (ASCs) during the past few years, their natural activities in vivo are still poorly understood. Mesenchymal stem cells (MSCs), one of the most promising types of ASCs for cell-based therapies, are defined mainly by functional assays using cultured cells. Defining MSCs in vitro adds complexity to their study because the artificial conditions may introduce experimental artifacts. Inserting these results in the context of the organism is difficult because the exact location and functions of MSCs in vivo remain elusive; the identification of the MSC niche is necessary to validate results obtained in vitro and to further the knowledge of the physiological functions of this ASC. Here we show an analysis of the evidence suggesting a perivascular location for MSCs, correlating these cells with pericytes, and present a model in which the perivascular zone is the MSC niche in vivo, where local cues coordinate the transition to progenitor and mature cell phenotypes. This model proposes that MSCs stabilize blood vessels and contribute to tissue and immune system homeostasis under physiological conditions and assume a more active role in the repair of focal tissue injury. The establishment of the perivascular compartment as the MSC niche provides a basis for the rational design of additional in vivo therapeutic approaches. This view connects the MSC to the immune and vascular systems, emphasizing its role as a physiological integrator and its importance in tissue repair/regeneration.
Collapse
Affiliation(s)
- Lindolfo da Silva Meirelles
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Avenida Bento Goncalves 9500, 91501-970 Porto Alegre RS, Brazil
| | | | | |
Collapse
|
218
|
Bastiaansen-Jenniskens YM, Koevoet W, de Bart AC, Zuurmond AM, Bank RA, Verhaar JA, DeGroot J, van Osch GJ. TGFβ Affects Collagen Cross-Linking Independent of Chondrocyte Phenotype but Strongly Depending on Physical Environment. Tissue Eng Part A 2008; 14:1059-66. [DOI: 10.1089/ten.tea.2007.0345] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yvonne Maria Bastiaansen-Jenniskens
- Department of Orthopaedics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- TNO Quality of Life, Business Unit BioSciences, Leiden, The Netherlands
| | - Wendy Koevoet
- Department of Otorhinolaryngology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | - Ruud A. Bank
- TNO Quality of Life, Business Unit BioSciences, Leiden, The Netherlands
- Department of Oral Cell Biology, Academic Center of Dentistry, Amsterdam, The Netherlands
| | - Jan A.N. Verhaar
- Department of Orthopaedics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jeroen DeGroot
- TNO Quality of Life, Business Unit BioSciences, Leiden, The Netherlands
| | - Gerjo J.V.M. van Osch
- Department of Orthopaedics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Otorhinolaryngology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
219
|
Morito T, Muneta T, Hara K, Ju YJ, Mochizuki T, Makino H, Umezawa A, Sekiya I. Synovial fluid-derived mesenchymal stem cells increase after intra-articular ligament injury in humans. Rheumatology (Oxford) 2008; 47:1137-43. [PMID: 18390894 DOI: 10.1093/rheumatology/ken114] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE The existence of mesenchymal stem cells (MSCs) in SF was previously reported. However, the behaviour and properties of MSCs derived from SF have not been fully elucidated. METHODS Human SFs were obtained from 19 knee joints with anterior cruciate ligament injury around the time of reconstruction surgery, and from three healthy volunteers. SF was plated, cultured and examined for colony-forming number, in vitro differentiation, surface epitopes and gene profiles. Also, rabbit synovium-MSCs were injected into the knee joint in a rabbit partial anterior cruciate ligament defect model, and the injected cells were traced. RESULTS SF-MSCs from IA ligament injury patients were 100 times more in number than those from healthy volunteers. Total colony number was positively correlated with post-injury period. No significant differences were observed among the cells derived from SF around the time of the surgery in relation to surface epitopes and differentiation potentials. Cluster analysis of gene profiles demonstrated that SF-MSCs were more similar to synovium MSCs than bone marrow MSCs. In rabbit experiments, the MSCs injected into the knee in which IA ligament was partially defective were observed more on the defected area than on the intact area of the ligament at 24 h. CONCLUSION We demonstrated that SF-MSCs, similar to synovium MSCs, increased in number after IA ligament injury and surgery without marked alteration of the properties.
Collapse
Affiliation(s)
- T Morito
- Section of Cartilage Regeneration, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | | | | | | | | | | | | | | |
Collapse
|
220
|
Lin L, Zhou C, Wei X, Hou Y, Zhao L, Fu X, Zhang J, Yu C. Articular cartilage repair using dedifferentiated articular chondrocytes and bone morphogenetic protein 4 in a rabbit model of articular cartilage defects. ACTA ACUST UNITED AC 2008; 58:1067-75. [DOI: 10.1002/art.23380] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
221
|
Bos PK, Kops N, Verhaar JAN, van Osch GJVM. Cellular origin of neocartilage formed at wound edges of articular cartilage in a tissue culture experiment. Osteoarthritis Cartilage 2008; 16:204-11. [PMID: 17681804 DOI: 10.1016/j.joca.2007.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Accepted: 06/13/2007] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The regeneration capacity of cartilage in general is limited. Complete repair of partial thickness articular cartilage has only been reported in a fetal sheep model. However, in long-term culture studies of articular cartilage explants we have observed outgrowth of chondrocytes and neocartilage formation at wound edges. This illustrates that under optimal circumstances articular cartilage is capable to regenerate hyaline cartilage. Recent studies suggest the presence of mesenchymal stem cells in articular cartilage. In the present study we investigated the origin of chondrocyte outgrowth and neocartilage formation at wound edges from immature and mature articular bovine cartilage explants in vitro, in order to understand which cells are responsible for repair. DESIGN Full-thickness explants from immature and mature animals were cultured for 4 weeks and superficial and deep zone cartilage explants of immature animals were separately cultured. RESULTS Significant more outgrowth was observed from immature explants as compared to mature explants. At wound edges of immature explants, this outgrowth showed high cell-densities, rounded cells, the extracellular matrix contained proteoglycans and collagen types I and II. We found proliferation activity both in the superficial zone and deep zone chondrocytes in immature explants, using the Ki67 proliferation marker. In the experiment culturing immature superficial and deep zone cartilage explants separately, there was abundant new tissue formation originating from deep cartilage and almost no outgrowth from the superficial cartilage. This indicates that neocartilage originates from chondrocytes in the deep zone cartilage and not from chondrocytes in the superficial zone cartilage. CONCLUSIONS Present data can help to understand wound healing in partial-thickness and full-thickness defects of immature and mature cartilage and can be of help in finding methods to stimulate the regeneration of articular cartilage.
Collapse
Affiliation(s)
- P K Bos
- Department of Orthopaedics, Erasmus MC, Rotterdam, The Netherlands.
| | | | | | | |
Collapse
|
222
|
Karlsson C, Stenhamre H, Sandstedt J, Lindahl A. Neither Notch1 Expression nor Cellular Size Correlate with Mesenchymal Stem Cell Properties of Adult Articular Chondrocytes. Cells Tissues Organs 2008; 187:275-85. [DOI: 10.1159/000113409] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2007] [Indexed: 01/20/2023] Open
|
223
|
Diaz-Romero J, Nesic D, Grogan SP, Heini P, Mainil-Varlet P. Immunophenotypic changes of human articular chondrocytes during monolayer culture reflect bona fide dedifferentiation rather than amplification of progenitor cells. J Cell Physiol 2007; 214:75-83. [PMID: 17559082 DOI: 10.1002/jcp.21161] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this study, a time-course comparison of human articular chondrocytes (HAC) and bone marrow-derived mesenchymal stem cells (MSC) immunophenotype was performed in order to determine similarities/differences between both cell types during monolayer culture, and to identify HAC surface markers indicative of dedifferentiation. Our results show that dedifferentiated HAC can be distinguished from MSC by combining CD14, CD90, and CD105 expression, with dedifferentiated HAC being CD14+/CD90bright/CD105dim and MSC being CD14-/CD90dim/CD105bright. Surface markers on MSC showed little variation during the culture, whereas HAC showed upregulation of CD90, CD166, CD49c, CD44, CD10, CD26, CD49e, CD151, CD51/61, and CD81, and downregulation of CD49a, CD54, and CD14. Thus, dedifferentiated HAC appear as a bona fide cell population rather than a small population of MSC amplified during monolayer culture. While most of the HAC surface markers showed major changes at the beginning of the culture period (Passage 1-2), CD26 was upregulated and CD49a downregulated at later stages of the culture (Passage 3-4). To correlate changes in HAC surface markers with changes in extracellular matrix gene expression during monolayer culture, CD14 and CD90 mRNA levels were combined into a new differentiation index and compared with the established differentiation indices based on the ratios of mRNA levels of collagen type II to I (COL2/COL1) and of aggrecan to versican (AGG/VER). A correlation of CD14/CD90 ratio at the mRNA and protein level with the AGG/VER ratio during HAC dedifferentiation in monolayer culture validated CD14/CD90 as a new membrane and mRNA based HAC differentiation index.
Collapse
Affiliation(s)
- Jose Diaz-Romero
- Osteoarticular Research Group, Institute of Pathology, University of Bern, Bern, Switzerland
| | | | | | | | | |
Collapse
|
224
|
Tsang KY, Chan D, Cheslett D, Chan WCW, So CL, Melhado IG, Chan TWY, Kwan KM, Hunziker EB, Yamada Y, Bateman JF, Cheung KMC, Cheah KSE. Surviving endoplasmic reticulum stress is coupled to altered chondrocyte differentiation and function. PLoS Biol 2007; 5:e44. [PMID: 17298185 PMCID: PMC1820825 DOI: 10.1371/journal.pbio.0050044] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Accepted: 12/13/2006] [Indexed: 11/19/2022] Open
Abstract
In protein folding and secretion disorders, activation of endoplasmic reticulum (ER) stress signaling (ERSS) protects cells, alleviating stress that would otherwise trigger apoptosis. Whether the stress-surviving cells resume normal function is not known. We studied the in vivo impact of ER stress in terminally differentiating hypertrophic chondrocytes (HCs) during endochondral bone formation. In transgenic mice expressing mutant collagen X as a consequence of a 13-base pair deletion in Col10a1 (13del), misfolded α1(X) chains accumulate in HCs and elicit ERSS. Histological and gene expression analyses showed that these chondrocytes survived ER stress, but terminal differentiation is interrupted, and endochondral bone formation is delayed, producing a chondrodysplasia phenotype. This altered differentiation involves cell-cycle re-entry, the re-expression of genes characteristic of a prehypertrophic-like state, and is cell-autonomous. Concomitantly, expression of Col10a1 and 13del mRNAs are reduced, and ER stress is alleviated. ERSS, abnormal chondrocyte differentiation, and altered growth plate architecture also occur in mice expressing mutant collagen II and aggrecan. Alteration of the differentiation program in chondrocytes expressing unfolded or misfolded proteins may be part of an adaptive response that facilitates survival and recovery from the ensuing ER stress. However, the altered differentiation disrupts the highly coordinated events of endochondral ossification culminating in chondrodysplasia. The assembly and folding of secreted proteins in the endoplasmic reticulum (ER) is exquisitely regulated by a complex mechanism that maintains an equilibrium between folded and unfolded proteins. Perturbation of this homeostasis induces ER stress, which, if not alleviated through ER stress signaling (ERSS), ultimately triggers cell death. Normal bone growth occurs through a highly coordinated differentiation program that yields specialized cartilage cells (chondrocytes); when this program is disrupted, chondrodysplasia, or malformed skeletons, can result. Chondrodysplasias caused by mutations that affect protein assembly and secretion are characterized by a disorganization of bony growth plates and distension of the ER. We tested whether these chondrodysplasia characteristics were linked to ERSS. By investigating the impact of ER stress on the cell fate of hypertrophic chondrocytes (HCs) in transgenic mice expressing mutations in collagen that prevent proper folding, we revealed a novel adaptive mechanism that helps alleviate the unfolded protein load. Instead of undergoing apoptosis, the HCs undergoing ER stress adapt, re-enter the cell cycle, and revert to a less-mature state in which expression of the mutant collagen is reduced. Our findings have broad implications for adaptive mechanisms to ER stress in vivo and for the pathophysiology underlying chondrodysplasias caused by mutations that impact on protein assembly and secretion. When subjected to ER stress (by expression of misfolded or unfolded proteins), hypertrophic chondrocytes undergo alterations to their developmental program that may be part of an adaptive response.
Collapse
Affiliation(s)
- Kwok Yeung Tsang
- Department of Biochemistry, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Danny Chan
- Department of Biochemistry, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Deborah Cheslett
- Department of Biochemistry, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Wilson C. W Chan
- Department of Biochemistry, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Chi Leong So
- Department of Biochemistry, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ian G Melhado
- Department of Biochemistry, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Tori W. Y Chan
- Department of Biochemistry, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kin Ming Kwan
- Department of Biochemistry, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ernst B Hunziker
- ITI Research Institute for Dental and Skeletal Biology, University of Bern, Bern, Switzerland
| | - Yoshihiko Yamada
- Craniofacial Developmental Biology and Regeneration Branch, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, United States of America
| | - John F Bateman
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Kenneth M. C Cheung
- Department of Orthopaedics and Traumatology, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kathryn S. E Cheah
- Department of Biochemistry, University of Hong Kong, Pokfulam, Hong Kong, China
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
225
|
De Bari C, Dell'accio F. Mesenchymal stem cells in rheumatology: a regenerative approach to joint repair. Clin Sci (Lond) 2007; 113:339-48. [PMID: 17824847 DOI: 10.1042/cs20070126] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The advent of biologics in rheumatology has considerably changed the evolution and prognosis of chronic inflammatory arthritis. The success of these new treatments has contributed to steering more attention to research focussed on repair and remodelling of joint tissues. Indeed, when the tissue damage is established, treatment options are very limited and the risk of progression towards joint destruction and failure remains high. Increasing evidence indicates that mesenchymal stem cells persist postnatally within joint tissues. It is postulated that they would function to safeguard joint homoeostasis and guarantee tissue remodelling and repair throughout life. Alterations in mesenchymal stem cell biology in arthritis have indeed been reported but a causal relationship has not been demonstrated, mainly because our current knowledge of mesenchymal stem cell niches and functions within the joint in health and disease is very limited. Nonetheless, mesenchymal stem cell technologies have attracted the attention of the biomedical research community as very promising tools to achieve the repair of joint tissues such as articular cartilage, subchondral bone, menisci and tendons. This review will outline stem-cell-mediated strategies for the repair of joint tissues, spanning from the use of expanded mesenchymal stem cell populations to therapeutic targeting of endogenous stem cells, resident in their native tissues, and related reparative signals in traumatic, degenerative and inflammatory joint disorders.
Collapse
Affiliation(s)
- Cosimo De Bari
- Department of Rheumatology, King's College London, London, UK.
| | | |
Collapse
|
226
|
Tallheden T, Brittberg M, Peterson L, Lindahl A. Human articular chondrocytes--plasticity and differentiation potential. Cells Tissues Organs 2007; 184:55-67. [PMID: 17361078 DOI: 10.1159/000098947] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2006] [Indexed: 12/14/2022] Open
Abstract
Articular cartilage has no or very low ability of self-repair, and untreated lesions may lead to the development of osteoarthritis. One method which has been proven to result in long-term repair of isolated lesions is autologous chondrocyte transplantation. In this method, culture-expanded chondrocytes isolated from full-thickness biopsies, taken from a non-weight-bearing area at the supromedial edge of the femoral condyle, are transplanted back to the patient under a cover of periosteum. The treatment is able to regenerate hyaline cartilage with long-term durability. Although the repair mechanism behind this treatment has not been fully elucidated, emerging data generated by microarray technologies reveal an interesting regeneration process involving cellular and molecular mechanisms found during fetal development. In hyaline cartilage, the human chondrocyte population is generally considered a homogenous cell population, but recently several investigators have demonstrated that cells isolated from human articular cartilage have stem cell properties and that the superficial layer contains such cells. This paper will discuss these recent data and their implications for future treatment strategies aiming to induce regeneration in articular cartilage surfaces.
Collapse
Affiliation(s)
- Tommi Tallheden
- Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg University, Goteborg, Sweden.
| | | | | | | |
Collapse
|
227
|
Abstract
Injuries to tendons are common in both human athletes as well as in animals, such as the horse, which are used for competitive purposes. Furthermore, such injuries are also increasing in prevalence in the ageing, sedentary population. Tendon diseases often respond poorly to treatment and require lengthy periods of rehabilitation. The tendon has a unique extracellular matrix, which has developed to withstand the mechanical demands of such tensile-load bearing structures. Following injury, any repair process is inadequate and results in tissue that is distinct from original tendon tissue. There is growing evidence for the key role of the tendon cell (tenocyte) in both the normal physiological homeostasis and regulation of the tendon matrix and the pathological derangements that occur in disease. In particular, the tenocyte is considered to have a major role in effecting the subclinical matrix degeneration that is thought to occur prior to clinical disease, as well as in the severe degradative events that occur in the tendon at the onset of clinical disease. Furthermore, the tenocyte is likely to have a central role in the production of the biologically inadequate fibrocartilaginous repair tissue that develops subsequent to tendinopathy. Understanding the biology of the tenocyte is central to the development of appropriate interventions and drug therapies that will either prevent the onset of disease, or lead to more rapid and appropriate repair of injured tendon. Central to this is a full understanding of the proteolytic response in the tendon in disease by such enzymes as metalloproteinases, as well as the control of the inappropriate fibrocartilaginous differentiation. Finally, it is important that we understand the role of both intrinsic and extrinsic cellular elements in the repair process in the tendon subsequent to injury.
Collapse
Affiliation(s)
- Peter D Clegg
- Department of Veterinary Clinical Science, University of Liverpool Veterinary Teaching Hospital, Leahurst, Neston, UK.
| | | | | |
Collapse
|
228
|
Richardson LE, Dudhia J, Clegg PD, Smith R. Stem cells in veterinary medicine--attempts at regenerating equine tendon after injury. Trends Biotechnol 2007; 25:409-16. [PMID: 17692415 DOI: 10.1016/j.tibtech.2007.07.009] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 06/04/2007] [Accepted: 07/26/2007] [Indexed: 01/29/2023]
Abstract
Stem cells have evoked considerable excitement in the animal-owning public because of the promise that stem cell technology could deliver tissue regeneration for injuries for which natural repair mechanisms do not deliver functional recovery and for which current therapeutic strategies have minimal effectiveness. This review focuses on the current use of stem cells within veterinary medicine, whose practitioners have used mesenchymal stem cells (MSCs), recovered from either bone marrow or adipose tissue, in clinical cases primarily to treat strain-induced tendon injury in the horse. The background on why this treatment has been advocated, the data supporting its use and the current encouraging outcome from clinical use in horses treated with bone-marrow-derived cells are presented together with the future challenges of stem-cell therapy for the veterinary community.
Collapse
Affiliation(s)
- Lucy E Richardson
- Department of Veterinary Clinical Sciences, The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK
| | | | | | | |
Collapse
|
229
|
Francioli SE, Martin I, Sie CP, Hagg R, Tommasini R, Candrian C, Heberer M, Barbero A. Growth factors for clinical-scale expansion of human articular chondrocytes: relevance for automated bioreactor systems. ACTA ACUST UNITED AC 2007; 13:1227-34. [PMID: 17518725 DOI: 10.1089/ten.2006.0342] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The expansion of chondrocytes in automated bioreactors for clinical use requires that a relevant number of cells be generated, starting from variable initial seeding densities in one passage and using autologous serum. We investigated whether the growth factor combination transforming growth factor beta 1/fibroblast growth factor 2/platelet-derived growth factor BB (TFP), recently shown to enhance the proliferation capacity of human articular chondrocytes (HACs), allows the efficiency of chondrocyte use to be increased at different seeding densities and percentages of human serum (HS). HACs were seeded at 1,000, 5,000, and 10,000 cells/cm2 in medium containing 10% fetal bovine serum or 10,000 cells/cm2 with 1%, 5%, or 10%HS. The chondrogenic capacity of post-expanded HACs was then assessed in pellet cultures. Expansion with TFP allowed a sufficient number of HACs to be obtained in one passage even at the lowest seeding density and HS percentage and variability in cartilage-forming capacity of HACs expanded under the different conditions to be reduced. Instead, larger variations and insufficient yields were found in the absence of TFP. By allowing large numbers of cells to be obtained, starting from a wide range of initial seeding densities and HS percentages, the use of TFP may represent a viable solution for the efficient expansion of HACs and addresses constraints of automated clinical bioreactor systems.
Collapse
Affiliation(s)
- Silvia-Elena Francioli
- Institute for Surgical Research and Hospital Management, University Hospital Basel, Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
230
|
Gan L, Kandel RA. In vitro cartilage tissue formation by Co-culture of primary and passaged chondrocytes. ACTA ACUST UNITED AC 2007; 13:831-42. [PMID: 17253927 DOI: 10.1089/ten.2006.0231] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Passaging chondrocytes to increase cell number is one way to overcome the major limitation to cartilage tissue engineering, which is obtaining sufficient numbers of chondrocytes to form large amounts of tissue. Because neighboring cells can influence cell phenotype and because passaging induces dedifferentiation, we examined whether coculture of primary and passaged bovine articular chondrocytes in 3-dimensional culture would form cartilage tissue in vitro. Chondrocytes passaged in monolayer culture up to 4 times were mixed with primary (nonpassaged) chondrocytes (5-40% of total cell number) and grown on filter inserts for up to 4 weeks. Passaged cells alone did not form cartilage, but with the addition of increasing numbers of primary chondrocytes, up to 20%, there was an increase in cartilage tissue formation as determined histologically and biochemically and demonstrated by increasing proteoglycan and collagen accumulation. The passaged cells appeared to be undergoing redifferentiation, as indicated by up-regulation of aggrecan, type II collagen, and SOX9 gene expression and decreased type I collagen expression. This switch in collagen type was confirmed using Western blots. Confocal microscopy showed that fluorescently labeled primary cells were distributed throughout the tissue. This coculture approach could provide a new way to solve the problem of limited cell number for cartilage tissue engineering.
Collapse
Affiliation(s)
- Lu Gan
- Mount Sinai Hospital, Toronto, Ontario, Canada
| | | |
Collapse
|
231
|
Mauck RL, Martinez-Diaz GJ, Yuan X, Tuan RS. Regional multilineage differentiation potential of meniscal fibrochondrocytes: implications for meniscus repair. Anat Rec (Hoboken) 2007; 290:48-58. [PMID: 17441197 DOI: 10.1002/ar.20419] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The knee menisci are wedge-shaped semilunar fibrocartilaginous structures that reside between the femur and tibia and function to transmit and distribute load. These structures have characteristics of both fibrous and cartilaginous tissues. The cartilage-like inner region and the fibrous vascularized outer region each has a distinct extracellular matrix, and resident meniscal fibrochondrocytes (MFCs) with distinct morphologies dependent on their location. Damage to the meniscus is common, and disruption of tissue structure and function result in erosion of the underlying articular cartilage. It has been observed that damage in the vascular periphery undergoes spontaneous repair, whereas damage of the inner region does not heal. While vascularity of the peripheral region plays a role in healing, recent findings have also suggested that local cellular composition influences local healing capacity. This study examined the variation in multipotential characteristics of cell populations isolated from different regions of the bovine meniscus. MFCs were isolated from the outer (vascular), inner (avascular), and horn (mixed) regions and induced toward chondrogenic, adipogenic, and osteogenic lineages. The results of this study suggest that MFCs from all regions of the meniscus possess a multilineage differentiation capability, particularly toward chondrogenesis and adipogenesis. MFCs from the outer region were most plastic, differentiating along all three mesenchymal lineages. These findings may underlie the experimental observation of improved integration of meniscus grafts from the outer zone and may have implications for developing strategies of cell-based meniscus repair.
Collapse
Affiliation(s)
- Robert L Mauck
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
232
|
Abstract
Cartilage repair is an ongoing medical challenge. Tissue engineered solutions to this problem rely on the availability of appropriately differentiated cells in sufficient numbers. This review discusses the potential of primary human articular chondrocytes and mesenchymal stem cells to fulfil this role. Chondrocytes have been transduced with a retrovirus containing the transcription factor SOX9, which permits a greatly improved response of the cells to three-dimensional culture systems, growth factor stimulation and hypoxic culture conditions. Human mesenchymal stem cells have been differentiated into chondrocytes using well-established methods, and the Notch signalling pathway has been studied in detail to establish its role during this process. Both approaches offer insights into these in vitro systems that are invaluable to understanding and designing future cartilage regeneration strategies.
Collapse
Affiliation(s)
- Timothy E Hardingham
- UK Centre for Tissue Engineering, Faculty of Life Sciences, University of Manchester, UK.
| | | | | |
Collapse
|
233
|
Scherberich A, Galli R, Jaquiery C, Farhadi J, Martin I. Three-dimensional perfusion culture of human adipose tissue-derived endothelial and osteoblastic progenitors generates osteogenic constructs with intrinsic vascularization capacity. Stem Cells 2007; 25:1823-9. [PMID: 17446558 DOI: 10.1634/stemcells.2007-0124] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this study, we aimed at generating osteogenic and vasculogenic constructs starting from the stromal vascular fraction (SVF) of human adipose tissue as a single cell source. SVF cells from human lipoaspirates were seeded and cultured for 5 days in porous hydroxyapatite scaffolds by alternate perfusion through the scaffold pores, eliminating standard monolayer (two-dimensional [2D]) culture. The resulting cell-scaffold constructs were either enzymatically treated to extract and characterize the cells or subcutaneously implanted in nude mice for 8 weeks to assess the capacity to form bone tissue and blood vessels. SVF cells were also expanded in 2D culture for 5 days and statically loaded in the scaffolds. The SVF yielded 5.9 +/- 3.5 x 10(5) cells per milliliter of lipoaspirate containing both mesenchymal progenitors (5.2% +/- 0.9% fibroblastic colony forming units) and endothelial-lineage cells (54% +/- 6% CD34+/CD31+ cells). After 5 days, the total cell number was 1.8-fold higher in 2D than in three-dimensional (3D) cultures, but the percentage of mesenchymal- and endothelial-lineage cells was similar (i.e., 65%-72% of CD90+ cells and 7%-9% of CD34+/CD31+ cells). After implantation, constructs from both conditions contained blood vessels stained for human CD31 and CD34, functionally connected to the host vasculature. Importantly, constructs generated under 3D perfusion, and not those based on 2D-expanded cells, reproducibly formed bone tissue. In conclusion, direct perfusion of human adipose-derived cells through ceramic scaffolds establishes a 3D culture system for osteoprogenitor and endothelial cells and generates osteogenic-vasculogenic constructs. It remains to be tested whether the presence of endothelial cells accelerates construct vascularization and could thereby enhance implanted cell survival in larger size implants. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Arnaud Scherberich
- Department of Surgery and Research, Institute for Surgical Research and Hospital Management, University Hospital Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
| | | | | | | | | |
Collapse
|
234
|
Intrinsic differentiation potential of adolescent human tendon tissue: an in-vitro cell differentiation study. BMC Musculoskelet Disord 2007; 8:16. [PMID: 17319938 PMCID: PMC1808058 DOI: 10.1186/1471-2474-8-16] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Accepted: 02/23/2007] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Tendinosis lesions show an increase of glycosaminoglycan amount, calcifications, and lipid accumulation. Therefore, altered cellular differentiation might play a role in the etiology of tendinosis. This study investigates whether adolescent human tendon tissue contains a population of cells with intrinsic differentiation potential. METHODS Cells derived from adolescent non-degenerative hamstring tendons were characterized by immunohistochemistry and FACS-analysis. Cells were cultured for 21 days in osteogenic, adipogenic, and chondrogenic medium and phenotypical evaluation was carried out by immunohistochemical and qPCR analysis. The results were compared with the results of similar experiments on adult bone marrow-derived stromal cells (BMSCs). RESULTS Tendon-derived cells stained D7-FIB (fibroblast-marker) positive, but alpha-SMA (marker for smooth muscle cells and pericytes) negative. Tendon-derived cells were 99% negative for CD34 (endothelial cell marker), and 73% positive for CD105 (mesenchymal progenitor-cell marker). In adipogenic medium, intracellular lipid vacuoles were visible and tendon-derived fibroblasts showed upregulation of adipogenic markers FABP4 (fatty-acid binding protein 4) and PPARG (peroxisome proliferative activated receptor gamma). In chondrogenic medium, some cells stained positive for collagen 2 and tendon-derived fibroblasts showed upregulation of collagen 2 and collagen 10. In osteogenic medium Von Kossa staining showed calcium deposition although osteogenic markers remained unaltered. Tendon-derived cells and BMCSs behaved largely comparable, although some distinct differences were present between the two cell populations. CONCLUSION This study suggests that our population of explanted human tendon cells has an intrinsic differentiation potential. These results support the hypothesis that there might be a role for altered tendon-cell differentiation in the pathophysiology of tendinosis.
Collapse
|
235
|
Monzani E, Facchetti F, Galmozzi E, Corsini E, Benetti A, Cavazzin C, Gritti A, Piccinini A, Porro D, Santinami M, Invernici G, Parati E, Alessandri G, La Porta CAM. Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential. Eur J Cancer 2007; 43:935-46. [PMID: 17320377 DOI: 10.1016/j.ejca.2007.01.017] [Citation(s) in RCA: 404] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 11/27/2006] [Accepted: 01/12/2007] [Indexed: 12/15/2022]
Abstract
The failure to eradicate most cancers and in particular melanoma may be as fundamental as a misidentification of the target. The identification of cancer stem/initiating cells within the tumour population with a crucial role for tumour formation may open new pharmacological perspectives. Our data show three main novelties for human melanoma: firstly, melanoma biopsy contains a subset of cells expressing CD133 (CD133+) and the latter is able to develop a Mart-1 positive tumour in NOD-SCID mice. Secondly, the WM115, a human melanoma cell line, has been found to express both CD133 and ABCG2 markers. This cell line grows as floating spheroids, expresses typical progenitors and mature neuronal/oligodendrocyte markers and is able to transdifferentiate into astrocytes or mesenchymal lineages under specific growth conditions. As in xenografts generated with CD133+ biopsy melanoma cells, those produced by the cell line displayed lower levels of CD133 and ABCG2. Thirdly, the WM115 cells express the most important angiogenic and lymphoangiogenic factors such as notch 4, prox1 and podoplanin which can cooperate in the development of the tumourigenic capability of melanoma in vivo. Therefore, in this study, we demonstrate the presence of stem/initiating subsets in melanoma both in biopsy and in an established melanoma cell line grown in vitro and in xenografts. Interestingly, considering that melanoma gives metastasis primarily through lymphatic vessels, herein, we demonstrated that a melanoma cell line expresses typical lymphoangiogenic factors.
Collapse
Affiliation(s)
- Elena Monzani
- Department of Biomolecular Science and Biotechnology, University of Milan, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Adesida AB, Grady LM, Khan WS, Millward-Sadler SJ, Salter DM, Hardingham TE. Human meniscus cells express hypoxia inducible factor-1alpha and increased SOX9 in response to low oxygen tension in cell aggregate culture. Arthritis Res Ther 2007; 9:R69. [PMID: 17640365 PMCID: PMC2206369 DOI: 10.1186/ar2267] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Revised: 07/06/2007] [Accepted: 07/18/2007] [Indexed: 12/19/2022] Open
Abstract
In previous work we demonstrated that the matrix-forming phenotype of cultured human cells from whole meniscus was enhanced by hypoxia (5% oxygen). Because the meniscus contains an inner region that is devoid of vasculature and an outer vascular region, here we investigate, by gene expression analysis, the separate responses of cells isolated from the inner and outer meniscus to lowered oxygen, and compared it with the response of articular chondrocytes. In aggregate culture of outer meniscus cells, hypoxia (5% oxygen) increased the expression of type II collagen and SOX9 (Sry-related HMG box-9), and decreased the expression of type I collagen. In contrast, with inner meniscus cells, there was no increase in SOX9, but type II collagen and type I collagen increased. The articular chondrocytes exhibited little response to 5% oxygen in aggregate culture, with no significant differences in the expression of these matrix genes and SOX9. In both aggregate cultures of outer and inner meniscus cells, but not in chondrocytes, there was increased expression of collagen prolyl 4-hydroxylase (P4H)alpha(I) in response to 5% oxygen, and this hypoxia-induced expression of P4H alpha(I) was blocked in monolayer cultures of meniscus cells by the hypoxia-inducible factor (HIF)-1alpha inhibitor (YC-1). In fresh tissue from the outer and inner meniscus, the levels of expression of the HIF-1alpha gene and downstream target genes (namely, those encoding P4H alpha(I) and HIF prolyl 4-hydroxylase) were significantly higher in the inner meniscus than in the outer meniscus. Thus, this study revealed that inner meniscus cells were less responsive to 5% oxygen tension than were outer meniscus cells, and they were both more sensitive than articular chondrocytes from a similar joint. These results suggest that the vasculature and greater oxygen tension in the outer meniscus may help to suppress cartilage-like matrix formation.
Collapse
Affiliation(s)
- Adetola B Adesida
- UK Centre for Tissue Engineering (UKCTE) and The Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
- CellCoTec, Professor Bronkhorstlaan 10-D, Bilthoven 3723 MB, The Netherlands
| | - Lisa M Grady
- UK Centre for Tissue Engineering (UKCTE) and The Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Wasim S Khan
- UK Centre for Tissue Engineering (UKCTE) and The Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - S Jane Millward-Sadler
- The University of Edinburgh, Queens Medical Research Inst, Little France Crescent, Edinburgh, EH16 4TJ, UK
- Division of Regenerative Medicine, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Donald M Salter
- The University of Edinburgh, Queens Medical Research Inst, Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Timothy E Hardingham
- UK Centre for Tissue Engineering (UKCTE) and The Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| |
Collapse
|
237
|
Grogan SP, Barbero A, Diaz-Romero J, Cleton-Jansen AM, Soeder S, Whiteside R, Hogendoorn PCW, Farhadi J, Aigner T, Martin I, Mainil-Varlet P. Identification of markers to characterize and sort human articular chondrocytes with enhanced in vitro chondrogenic capacity. ACTA ACUST UNITED AC 2007; 56:586-95. [PMID: 17265493 DOI: 10.1002/art.22408] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE To identify markers associated with the chondrogenic capacity of expanded human articular chondrocytes and to use these markers for sorting of more highly chondrogenic subpopulations. METHODS The chondrogenic capacity of chondrocyte populations derived from different donors (n = 21) or different clonal strains from the same cartilage biopsy specimen (n = 21) was defined based on the glycosaminoglycan (GAG) content of tissues generated using a pellet culture model. Selected cell populations were analyzed by microarray and flow cytometry. In some experiments, cells were sorted using antibodies against molecules found to be associated with differential chondrogenic capacity and again assessed in pellet cultures. RESULTS Significance Analysis of Microarrays indicated that chondrocytes with low chondrogenic capacity expressed higher levels of insulin-like growth factor 1 and of catabolic genes (e.g., matrix metalloproteinase 2, aggrecanase 2), while chondrocytes with high chondrogenic capacity expressed higher levels of genes involved in cell-cell or cell-matrix interactions (e.g., CD49c, CD49f). Flow cytometry analysis showed that CD44, CD151, and CD49c were expressed at significantly higher levels in chondrocytes with higher chondrogenic capacity. Flow cytometry analysis of clonal chondrocyte strains indicated that CD44 and CD151 could also identify more chondrogenic clones. Chondrocytes sorted for brighter CD49c or CD44 signal expression produced tissues with higher levels of GAG per DNA (up to 1.4-fold) and type II collagen messenger RNA (up to 3.4-fold) than did unsorted cells. CONCLUSION We identified markers that allow characterization of the capacity of monolayer-expanded chondrocytes to form in vitro cartilaginous tissue and enable enrichment for subpopulations with higher chondrogenic capacity. These markers might be used as a means to predict and possibly improve the outcome of cell-based cartilage repair techniques.
Collapse
|
238
|
|
239
|
Marsano A, Millward-Sadler SJ, Salter DM, Adesida A, Hardingham T, Tognana E, Kon E, Chiari-Grisar C, Nehrer S, Jakob M, Martin I. Differential cartilaginous tissue formation by human synovial membrane, fat pad, meniscus cells and articular chondrocytes. Osteoarthritis Cartilage 2007; 15:48-58. [PMID: 16891129 DOI: 10.1016/j.joca.2006.06.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Accepted: 06/17/2006] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To identify an appropriate cell source for the generation of meniscus substitutes, among those which would be available by arthroscopy of injured knee joints. METHODS Human inner meniscus cells, fat pad cells (FPC), synovial membrane cells (SMC) and articular chondrocytes (AC) were expanded with or without specific growth factors (Transforming growth factor-beta1, Fibroblast growth factor-2 and Platelet-derived growth factor bb, TFP) and then induced to form three-dimensional cartilaginous tissues in pellet cultures, or using a hyaluronan-based scaffold (Hyaff-11), in culture or in nude mice. Human native menisci were assessed as reference. RESULTS Cell expansion with TFP enhanced glycosaminoglycan (GAG) deposition by all cell types (up to 4.1-fold) and messenger RNA expression of collagen type II by FPC and SMC (up to 472-fold) following pellet culture. In all models, tissues generated by AC contained the highest fractions of GAG (up to 1.9% of wet weight) and were positively stained for collagen type II (specific of the inner avascular region of meniscus), type IV (mainly present in the outer vascularized region of meniscus) and types I, III and VI (common to both meniscus regions). Instead, inner meniscus, FPC and SMC developed tissues containing negligible GAG and no detectable collagen type II protein. Tissues generated by AC remained biochemically and phenotypically stable upon ectopic implantation. CONCLUSIONS Under our experimental conditions, only AC generated tissues containing relevant amounts of GAG and with cell phenotypes compatible with those of the inner and outer meniscus regions. Instead, the other investigated cell sources formed tissues resembling only the outer region of meniscus. It remains to be determined whether grafts based on AC will have the ability to reach the complex structural and functional organization typical of meniscus tissue.
Collapse
Affiliation(s)
- A Marsano
- Departments of Surgery and Research, University Hospital Basel, Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Steinert AF, Ghivizzani SC, Rethwilm A, Tuan RS, Evans CH, Nöth U. Major biological obstacles for persistent cell-based regeneration of articular cartilage. Arthritis Res Ther 2007; 9:213. [PMID: 17561986 PMCID: PMC2206353 DOI: 10.1186/ar2195] [Citation(s) in RCA: 236] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Hyaline articular cartilage, the load-bearing tissue of the joint, has very limited repair and regeneration capacities. The lack of efficient treatment modalities for large chondral defects has motivated attempts to engineer cartilage constructs in vitro by combining cells, scaffold materials and environmental factors, including growth factors, signaling molecules, and physical influences. Despite promising experimental approaches, however, none of the current cartilage repair strategies has generated long lasting hyaline cartilage replacement tissue that meets the functional demands placed upon this tissue in vivo. The reasons for this are diverse and can ultimately result in matrix degradation, differentiation or integration insufficiencies, or loss of the transplanted cells and tissues. This article aims to systematically review the different causes that lead to these impairments, including the lack of appropriate differentiation factors, hypertrophy, senescence, apoptosis, necrosis, inflammation, and mechanical stress. The current conceptual basis of the major biological obstacles for persistent cell-based regeneration of articular cartilage is discussed, as well as future trends to overcome these limitations.
Collapse
Affiliation(s)
- Andre F Steinert
- Orthopaedic Center for Musculoskeletal Research, König-Ludwig-Haus, Julius-Maximilians-University, Würzburg, Germany
| | - Steven C Ghivizzani
- Department of Orthopaedics and Rehabilitation, University of Florida, Gainesville, FL, USA
| | - Axel Rethwilm
- Institut für Virologie und Immunbiologie, Julius-Maximilians-University, Würzburg, Germany
| | - Rocky S Tuan
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | | | - Ulrich Nöth
- Orthopaedic Center for Musculoskeletal Research, König-Ludwig-Haus, Julius-Maximilians-University, Würzburg, Germany
| |
Collapse
|
241
|
Akeda K, An HS, Okuma M, Attawia M, Miyamoto K, Thonar EJMA, Lenz ME, Sah RL, Masuda K. Platelet-rich plasma stimulates porcine articular chondrocyte proliferation and matrix biosynthesis. Osteoarthritis Cartilage 2006; 14:1272-80. [PMID: 16820306 DOI: 10.1016/j.joca.2006.05.008] [Citation(s) in RCA: 267] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Accepted: 05/10/2006] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Platelet-rich plasma (PRP) is a fraction of plasma that contains high levels of multiple growth factors. The purpose of this study was to examine the effects of PRP on cell proliferation and matrix synthesis by porcine chondrocytes cultured in alginate beads, conditions that promote the retention of the chondrocytic phenotype, in order to determine the plausibility of using this plasma-derived material for engineering cartilage. DESIGN PRP and platelet-poor plasma (PPP) were prepared from adult porcine blood. Adult porcine chondrocytes were cultured in the presence of 10% PRP, 10% PPP or 10% fetal bovine serum (FBS) for 3 days. Cell proliferation, proteoglycan (PG) and collagen synthesis were quantified, and the structure of newly synthesized PG and collagen was characterized. RESULTS Treatment with 10% PRP resulted in a small but significant increase in DNA content (+11%, vs FBS; P<0.01; vs PPP; P<0.001). PG and collagen syntheses by the PRP-treated chondrocytes were markedly higher than those by chondrocytes treated by FBS or PPP (PG; PRP: +115% vs FBS; +151% vs PPP, both P<0.0001, collagen; PRP: +163% vs FBS; +163% vs PPP, both P<0.0001). Biochemical analyses revealed that treatment with PRP growth factors did not markedly affect the types of PGs and collagens produced by porcine chondrocytes, suggesting that the cells remained phenotypically stable in the presence of PRP. CONCLUSION PRP isolated from autologous blood may be useful as a source of anabolic growth factors for stimulating chondrocytes to engineer cartilage tissue.
Collapse
Affiliation(s)
- K Akeda
- Department of Orthopedic Surgery, Rush Medical College at Rush University Medical Center, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Shakibaei M, Seifarth C, John T, Rahmanzadeh M, Mobasheri A. Igf-I extends the chondrogenic potential of human articular chondrocytes in vitro: Molecular association between Sox9 and Erk1/2. Biochem Pharmacol 2006; 72:1382-95. [PMID: 17010943 DOI: 10.1016/j.bcp.2006.08.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 08/21/2006] [Accepted: 08/22/2006] [Indexed: 10/24/2022]
Abstract
Expansion of articular chondrocytes in monolayer culture leads to loss of the unique chondrocyte phenotype and the cells' redifferentiation capacity. Dedifferentiation of chondrocytes in monolayer culture is a challenging problem for autologous chondrocyte transplantation (ACT). It is well established that Igf-I exerts positive anabolic effects on chondrocytes in vivo and in vitro. Accordingly, in this study, we examined whether the anabolic insulin-like growth factor-I (Igf-I) is capable of extending the chondrogenic potential of dedifferentiated chondrocytes in vitro. Chondrocyte monolayers were cultured up to 10 passages. At each passage chondrocytes were stimulated with Igf-I (10ng/ml) and introduced to high-density cultures for up to 7 days. Expression of collagen type II, cartilage-specific proteoglycans, activated caspase-3, integrin beta1, extracellular signal-regulated kinase (Erk) and Sox9 was examined by Western blotting, immunoprecipitation and immunomorphological techniques. Monolayer chondrocytes rapidly lost their differentiated phenotype. When introduced to high-density cultures, only chondrocytes from P1-P4 redifferentiated. In contrast, Igf-I treated cells from P1 up to P7 redifferentiated and formed cartilage-like tissue in high-density culture. P8-P10 cells exhibited apoptotic alterations and produced significantly less matrix. Igf-I markedly increased expression of integrin beta1, Erk and Sox9. Immunoprecipitation revealed that phosphorylated Erk1/2 physically interacts with Sox9 in chondrocyte nuclei, suggesting a previously unreported functional association which was markedly enhanced by Igf-I. Treatment of chondrocyte cultures with Igf-I stabilizes chondrogenic potential, stimulates Sox9 and promotes molecular interactions between Erk and Sox9. These effects appear to be regulated by the integrin/MAPK signaling pathways.
Collapse
Affiliation(s)
- Mehdi Shakibaei
- Institute of Anatomy, Ludwig-Maximilians-University, Pettenkoferstrasse 11, 80336 Munich, Germany.
| | | | | | | | | |
Collapse
|
243
|
Yang KGA, Saris DBF, Geuze RE, Helm YJMVD, Rijen MHPV, Verbout AJ, Dhert WJA, Creemers LB. Impact of expansion and redifferentiation conditions on chondrogenic capacity of cultured chondrocytes. ACTA ACUST UNITED AC 2006; 12:2435-47. [PMID: 16995777 DOI: 10.1089/ten.2006.12.2435] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cartilage regeneration based on isolated and culture-expanded chondrocytes is studied in a variety of in vitro models, but with varying morphological quality of tissue synthesized. The goal of the present study was to investigate the extent of the influence of expansion and redifferentiation conditions on final tissue morphology by comparing 2 expansion and redifferentiation methods. Chondrocytes from 9 human donors were expanded in medium without growth factor supplementation (basic expansion condition [BEC]) or in medium with basic fibroblast growth factor (bFGF) supplementation (growth factor supplemented expansion condition [GFSEC]). After expansion, cells were either redifferentiated in pellet culture or seeded on collagen type II-coated filters. Post-expansion mRNA levels of collagen type I and II and Sox-5, -6, and 9, measured by semiquantitative real-time polymerase chain reaction (PCR), suggested that expansion in GFSEC results in increased dedifferentiation compared to BEC. However, after 28 days of redifferentiation culture, morphology of tissue synthesized by GFSEC-expanded chondrocytes scored significantly higher on the Bern scale compared to BEC (6.4 +/- 0.3 points vs. 4.5 +/- 0.3 points in pellet culture and 6.0 +/- 0.4 points vs. 4.5 +/- 0.3 points on collagen-coated filters; p < 0.05). Expansion in GFSEC compared to BEC increased proteoglycan (PG) synthesis rate at day 9 (4.0-fold in pellet culture and 1.9-fold on collagen-coated filters; p < 0.01), PG release (6.7-fold in pellet culture and 3.2-fold on collagen-coated filters; p < 0.001), and final PG content at day 28 (1.6-fold in pellet culture and 1.5-fold on collagen-coated filters; p < 0.05). Redifferentiation on collagen-coated filters compared to pellet culture increased PG synthesis rate at day 9 (5.2-fold in BEC-expanded chondrocytes and 2.6-fold in GFSEC-expanded chondrocytes; p < 0.01), PG release (4.2-fold in BEC-expanded chondrocytes and 3.1-fold in GFSECexpanded chondrocytes; p < 0.01), and final PG content (1.3-fold in BEC-expanded chondrocytes and 1.9- fold in GFSEC-expanded chondrocytes; p < 0.01). Moreover, as visualized via electron microscopy, chondrocytes and organization of extracellular matrix cultured on filters was more similar to those found for hyaline cartilage. In conclusion, chondrocyte expansion in GFSEC and redifferentiation on collagen-coated filters resulted in most optimal chondrogenesis.
Collapse
Affiliation(s)
- K G Auw Yang
- Department of Orthopaedics, University Medical Center, Utrecht, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
244
|
Rosowski M, Falb M, Tschirschmann M, Lauster R. Initiation of Mesenchymal Condensation in Alginate Hollow Spheres?A Useful Model for Understanding Cartilage Repair? Artif Organs 2006; 30:775-84. [PMID: 17026577 DOI: 10.1111/j.1525-1594.2006.00300.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A promising strategy for the regeneration of degenerated cartilage tissue structure in osteoarthritic joints is the use of mesenchymal precursor cells. These cells can be triggered to undergo differentiation into functional active chondrocytes resulting in newly synthesized cartilage. Because chondrogenic differentiation is initiated by the step of mesenchymal condensation in vitro, it is of great interest to fully characterize the first lineage specific step in vitro. Therefore, a modified culture system was developed which mimics the process in vitro and may finally help to identify the key factors that are essential for the induction of chondrogenic differentiation in vivo. Compared to other established 3D culture systems like alginate beads and micromass cultures, the use of alginate hollow spheres bears the advantage to analyze different phases of cell aggregation starting from a single cell suspension of previously isolated and expanded human primary cells of mesenchymal origin.
Collapse
Affiliation(s)
- Mark Rosowski
- University for Technology Berlin (TUB), Medical Biotechnology, Berlin, Germany.
| | | | | | | |
Collapse
|
245
|
Marsano A, Wendt D, Raiteri R, Gottardi R, Stolz M, Wirz D, Daniels AU, Salter D, Jakob M, Quinn TM, Martin I. Use of hydrodynamic forces to engineer cartilaginous tissues resembling the non-uniform structure and function of meniscus. Biomaterials 2006; 27:5927-34. [PMID: 16949667 DOI: 10.1016/j.biomaterials.2006.08.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Accepted: 08/11/2006] [Indexed: 11/21/2022]
Abstract
The aim of this study was to demonstrate that differences in the local composition of bi-zonal fibrocartilaginous tissues result in different local biomechanical properties in compression and tension. Bovine articular chondrocytes were loaded into hyaluronan-based meshes (HYAFF-11) and cultured for 4 weeks in mixed flask, a rotary Cell Culture System (RCCS), or statically. Resulting tissues were assessed histologically, immunohistochemically, by scanning electron microscopy and mechanically in different regions. Local mechanical analyses in compression and tension were performed by indentation-type scanning force microscopy and by tensile tests on punched out concentric rings, respectively. Tissues cultured in mixed flask or RCCS displayed an outer region positively stained for versican and type I collagen, and an inner region positively stained for glycosaminoglycans and types I and II collagen. The outer fibrocartilaginous capsule included bundles (up to 2 microm diameter) of collagen fibers and was stiffer in tension (up to 3.6-fold higher elastic modulus), whereas the inner region was stiffer in compression (up to 3.8-fold higher elastic modulus). Instead, molecule distribution and mechanical properties were similar in the outer and inner regions of statically grown tissues. In conclusion, exposure of articular chondrocyte-based constructs to hydrodynamic flow generated tissues with locally different composition and mechanical properties, resembling some aspects of the complex structure and function of the outer and inner zones of native meniscus.
Collapse
Affiliation(s)
- Anna Marsano
- Department of Surgery, Institute for Surgical research and Hospital Management, University Hospital Basel, Hebelstrasse 20, ZLF, Room 405, 4031 Basel, CH, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Hendriks J, Riesle J, Vanblitterswijk CA. Effect of Stratified Culture Compared to Confluent Culture in Monolayer on Proliferation and Differentiation of Human Articular Chondrocytes. ACTA ACUST UNITED AC 2006; 12:2397-405. [PMID: 16995774 DOI: 10.1089/ten.2006.12.2397] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
With conventional tissue culture of cells, it is generally assumed that when the available 2D substrate is fully occupied, growth ceases or is greatly reduced.However, in nature wound repair mostly involves proliferation of cells that are attracted to the defect site in a 3D environment.Hence, proliferation continues in 3D until the defect site is filled with cells contributing to repair tissue. With this in mind,we examined the growth behavior of human articular chondrocytes during stratified culture as opposed to routine culture to confluency. Additionally, we studied the influence of growth factors on proliferation during stratified culture and differentiation thereafter. Chondrocytes were cultured in monolayer on tissue culture plastic to confluency or stratified for an additional 7 days. Culture medium was based on DMEM with 10% serum and either supplemented with high concentrations of nonessential amino acids (NEAA) and ascorbic acid (AsAP), or instead with basic fibroblastic growth factor (bFGF), platelet-derived growth factor (PDBF-BB), and/or transforming growth factor beta1 (TGF-beta). After expansion, cells were harvested, counted, and their differentiation capacity was examined in pellet culture assay. It was shown that chondrocytes, cultured stratified proliferate exponentially for up to an additional 4 days and that cell yield increased 5-fold. Furthermore, during stratified culture the number of cells increased further in the presence of bFGF, PDBF-BB, and TGFbeta1 or high concentrations of NEAA and AsAP. Depending on donor variation and factors supplemented the cell yield ranged from 0.06 up to 1.1 million cells/cm2 at the second passage. During stratified culture in the presence of either bFGF and PDGF or high concentrations of NEAA and AsAP, exponential growth continued for up to 7 days. Finally, cells maintained their differentiation capacity when cultured stratified with or without growth factors (bFGF, TGF-beta, and PDGF), but not when cultured with high levels of AsAP and NEAA. In contrast to other 3D culture techniques like microcarrier or suspension culture, nutrient consumption remained the same as with conventional expansion. Because this allows culturing of clinically relevant amounts of chondrocytes without increasing the amount of serum, chondrocytes can be fully expanded in the presence autologous serum, avoiding the risk of viral and/or prion disease transmission associated with the use of animal-derived serum or serum replacers with animal-derived constituents.
Collapse
Affiliation(s)
- Jeanine Hendriks
- Institute of Biomedical Technology, Twente University, Bilthoven, the Netherlands.
| | | | | |
Collapse
|
247
|
Stoddart MJ, Ettinger L, Häuselmann HJ. Generation of a scaffold free cartilage-like implant from a small amount of starting material. J Cell Mol Med 2006; 10:480-92. [PMID: 16796813 PMCID: PMC3933135 DOI: 10.1111/j.1582-4934.2006.tb00413.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Introduction: An autologous cellular based treatment of a traumatic cartilage injury requires a procedure whereby a biopsy of healthy cartilage is removed from the patient and the cells isolated and expanded by monolayer passage. This increases the cell number to required levels but also leads to a de-differentiation of the cells. We aim to produce a scaffold-free, de-novo implant from a biopsy of cartilage. Methods: Bovine chondrocytes were isolated from a small biopsy and expanded. The chondrocytic phenotype of the monolayer expanded cells was recovered during a period of culture in alginate and the effect of factors such as IGF1, TFGβ1 and dexamethasone was investigated. Results: During the alginate culture period a pre-treatment with IGF1 and dexamethasone was shown to have little effect. IGF1 however increased the glycosaminoglycan/DNA (GAG/DNA) content on day 14 to 84.95±5ng/ng compared with 37.3±1.8ng/ng in the controls (P <0.001). 35S labeling demonstrated an increased GAG synthesis in the presence of IGF1 (P < 0.001). IGF1 also induced a increase of DNA content 1383±314ng/bead compared to 512±19ng/bead in the controls (P < 0.001).The cells were released from the alginate and cultured in a silicon mould for a further 14 days to obtain a three dimensional implant. Releasing the cells from the alginate and casting in a mould produced an implant of defined shape which contained no foreign material. After 31 days of culture the implants contained 152.4±13.14ng/ng GAG/DNA and 42.93±10.23ng/ng collagen II. Discussion: We believe alginate released chondrocytes provide a real alternative to artificial scaffolds.
Collapse
Affiliation(s)
- M J Stoddart
- Laboratory for Experimental Cartilage Research, Centre for Rheumatology and Bone Disease, Klinik Im ParkZürich, Switzerland
| | - L Ettinger
- Laboratory for Experimental Cartilage Research, Centre for Rheumatology and Bone Disease, Klinik Im ParkZürich, Switzerland
| | - H J Häuselmann
- Laboratory for Experimental Cartilage Research, Centre for Rheumatology and Bone Disease, Klinik Im ParkZürich, Switzerland
- * Correspondence to: Prof. Hans Jörg HÄUSELMANN, Laboratory for Experimental Cartilage Research, Centre for Rheumatology and Bone Disease, Klinik Im Park, Bellariastrasse 38, CH-8038 Zürich, Switzerland. Tel: +41 1 209 2402 Fax: +41 1 209 2424 E-mail:
| |
Collapse
|
248
|
Koerner J, Nesic D, Romero JD, Brehm W, Mainil-Varlet P, Grogan SP. Equine Peripheral Blood-Derived Progenitors in Comparison to Bone Marrow-Derived Mesenchymal Stem Cells. Stem Cells 2006; 24:1613-9. [PMID: 16769763 DOI: 10.1634/stemcells.2005-0264] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fibroblast-like cells isolated from peripheral blood of human, canine, guinea pig, and rat have been demonstrated to possess the capacity to differentiate into several mesenchymal lineages. The aim of this work was to investigate the possibility of isolating pluripotent precursor cells from equine peripheral blood and compare them with equine bone marrow-derived mesenchymal stem cells. Human mesenchymal stem cells (MSCs) were used as a control for cell multipotency assessment. Venous blood (n = 33) and bone marrow (n = 5) were obtained from adult horses. Mononuclear cells were obtained by Ficoll gradient centrifugation and cultured in monolayer, and adherent fibroblast-like cells were tested for their differentiation potential. Chondrogenic differentiation was performed in serum-free medium in pellet cultures as a three-dimensional model, whereas osteogenic and adipogenic differentiation were induced in monolayer culture. Evidence for differentiation was made via biochemical, histological, and reverse transcription-polymerase chain reaction evaluations. Fibroblast-like cells were observed on day 10 in 12 out of 33 samples and were allowed to proliferate until confluence. Equine peripheral blood-derived cells had osteogenic and adipogenic differentiation capacities comparable to cells derived from bone marrow. Both cell types showed a limited capacity to produce lipid droplets compared to human MSCs. This result may be due to the assay conditions, which are established for human MSCs from bone marrow and may not be optimal for equine progenitor cells. Bone marrow-derived equine and human MSCs could be induced to develop cartilage, whereas equine peripheral blood progenitors did not show any capacity to produce cartilage at the histological level. In conclusion, equine peripheral blood-derived fibroblast-like cells can differentiate into distinct mesenchymal lineages but have less multipotency than bone marrow-derived MSCs under the conditions used in this study.
Collapse
Affiliation(s)
- Jens Koerner
- Institute of Pathology, Tissue Engineering Unit, University of Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
249
|
Yang KGA, Saris DBF, Geuze RE, van Rijen MHP, van der Helm YJM, Verbout AJ, Creemers LB, Dhert WJA. Altered in vitro chondrogenic properties of chondrocytes harvested from unaffected cartilage in osteoarthritic joints. Osteoarthritis Cartilage 2006; 14:561-70. [PMID: 16735197 DOI: 10.1016/j.joca.2005.12.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Accepted: 12/12/2005] [Indexed: 02/02/2023]
Abstract
OBJECTIVE In vitro models of chondrogenesis often depart from chondrocytes harvested from less-affected areas of osteoarthritic joints. However, there are indications that these chondrocytes are phenotypically different from chondrocytes from healthy joints and thus might differ in their capacity to generate hyaline cartilage. The goal of this study was to compare the chondrogenic capacity of chondrocytes from healthy and OA joints. DESIGN Chondrocytes isolated from nine healthy and nine OA knee joints were expanded in monolayer for two passages. Chondrocytes from passages 1 and 2 were analyzed for expression of (de)differentiation and hypertrophy markers and were seeded at passage 2 on collagen-coated filters for redifferentiation culture to study cartilage matrix formation. RESULTS The collagen II/I mRNA ratio, reflecting differentiation, decreased from passage 1 to 2 in both chondrocytes from OA joints and chondrocytes from healthy joints (P<0.05), without a significant difference between the two donor types. At passage 1, levels of the cartilage transcription factors Sox-5, Sox-6 and Sox-9 appeared to be higher in chondrocytes from OA joints (n.s.), but this was not seen at passage 2. However, a clear difference was observed in collagen type X expression, which was high in chondrocytes from OA joints at both passages, while undetectable in chondrocytes from healthy joints (P<0.01). Tissue generated by chondrocytes from healthy joints redifferentiated for 28 days, showed a significantly better morphology, as assessed by histological scoring (P<0.01) and higher proteoglycan content (P<0.05), compared to chondrocytes from OA joints. Matrix turnover parameters, i.e., proteoglycan synthesis and degradation rate, were not significantly affected by donor tissue origin. CONCLUSIONS These results suggest that clear differences between chondrocytes from healthy and OA joints exist and that these are not completely abolished during the process of de- and redifferentiation. Therefore, in vitro cartilage regeneration models, which use chondrocytes from OA joints, should be interpreted with care.
Collapse
Affiliation(s)
- K G A Yang
- Department of Orthopaedics, University Medical Center Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
250
|
Martin I, Miot S, Barbero A, Jakob M, Wendt D. Osteochondral tissue engineering. J Biomech 2006; 40:750-65. [PMID: 16730354 DOI: 10.1016/j.jbiomech.2006.03.008] [Citation(s) in RCA: 234] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Accepted: 03/13/2006] [Indexed: 11/23/2022]
Abstract
Osteochondral defects (i.e., defects which affect both the articular cartilage and underlying subchondral bone) are often associated with mechanical instability of the joint, and therefore with the risk of inducing osteoarthritic degenerative changes. Current surgical limits in the treatment of complex joint lesions could be overcome by grafting osteochondral composite tissues, engineered by combining the patient's own cells with three-dimensional (3D) porous biomaterials of pre-defined size and shape. Various strategies have been reported for the engineering of osteochondral composites, which result from the use of one or more cell types cultured into single-component or composite scaffolds in a broad spectrum of compositions and biomechanical properties. The variety of concepts and models proposed by different groups for the generation of osteochondral grafts reflects that understanding of the requirements to restore a normal joint function is still poor. In order to introduce the use of engineered osteochondral composites in the routine clinical practice, it will be necessary to comprehensively address a number of critical issues, including those related to the size and shape of the graft to be generated, the cell type(s) and properties of the scaffold(s) to be used, the potential physical conditioning to be applied, the degree of functionality required, and the strategy for a cost-effective manufacturing. The progress made in material science, cell biology, mechanobiology and bioreactor technology will be key to support advances in this challenging field.
Collapse
Affiliation(s)
- Ivan Martin
- Department of Research and Institute for Surgical Research and Hospital Management, University Hospital of Basel, Hebelstrasse 20, 4031 Basel, Switzerland.
| | | | | | | | | |
Collapse
|