201
|
Teeuw J, Brouwer RM, Koenis MMG, Swagerman SC, Boomsma DI, Hulshoff Pol HE. Genetic Influences on the Development of Cerebral Cortical Thickness During Childhood and Adolescence in a Dutch Longitudinal Twin Sample: The Brainscale Study. Cereb Cortex 2018; 29:978-993. [DOI: 10.1093/cercor/bhy005] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Indexed: 01/05/2023] Open
Affiliation(s)
- Jalmar Teeuw
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, 5384 CX Utrecht, the Netherlands
| | - Rachel M Brouwer
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, 5384 CX Utrecht, the Netherlands
| | - Marinka M G Koenis
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, 5384 CX Utrecht, the Netherlands
| | - Suzanne C Swagerman
- Department of Biological Psychology, Vrije Universiteit Amsterdam, van der Boechorststraat 1, 1081 BT Amsterdam, the Netherlands
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, van der Boechorststraat 1, 1081 BT Amsterdam, the Netherlands
| | - Hilleke E Hulshoff Pol
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, 5384 CX Utrecht, the Netherlands
| |
Collapse
|
202
|
Bove RM. Why monkeys do not get multiple sclerosis (spontaneously): An evolutionary approach. EVOLUTION MEDICINE AND PUBLIC HEALTH 2018; 2018:43-59. [PMID: 29492266 PMCID: PMC5824939 DOI: 10.1093/emph/eoy002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/07/2017] [Indexed: 12/20/2022]
Abstract
The goal of this review is to apply an evolutionary lens to understanding the origins of multiple sclerosis (MS), integrating three broad observations. First, only humans are known to develop MS spontaneously. Second, humans have evolved large brains, with characteristically large amounts of metabolically costly myelin. This myelin is generated over long periods of neurologic development—and peak MS onset coincides with the end of myelination. Third, over the past century there has been a disproportionate increase in the rate of MS in young women of childbearing age, paralleling increasing westernization and urbanization, indicating sexually specific susceptibility in response to changing exposures. From these three observations about MS, a life history approach leads us to hypothesize that MS arises in humans from disruption of the normal homeostatic mechanisms of myelin production and maintenance, during our uniquely long myelination period. This review will highlight under-explored areas of homeostasis in brain development, that are likely to shed new light on the origins of MS and to raise further questions about the interactions between our ancestral genes and modern environments.
Collapse
Affiliation(s)
- Riley M Bove
- Department of Neurology, UCSF, San Francisco, CA, USA
| |
Collapse
|
203
|
Abstract
PURPOSE OF REVIEW This article reviews the rationale and approach to symptom management and lifestyle modifications in multiple sclerosis (MS). RECENT FINDINGS MS symptoms are important to treat because they affect quality of life and daily activity. Appreciation of cluster symptoms (where one symptom contributes to another), changes over time, and multimodality therapeutic approaches are guiding optimized symptom management. Equally important are lifestyle modifications that enhance central nervous system reserve and function. These modifications are the foundation for a health maintenance, wellness, and vascular risk factor control program. SUMMARY Symptom management and lifestyle modifications are important therapeutic targets to improve the lives of patients with MS.
Collapse
|
204
|
Stickel A, Kawa K, Walther K, Glisky E, Richholt R, Huentelman M, Ryan L. Age-Modulated Associations between KIBRA, Brain Volume, and Verbal Memory among Healthy Older Adults. Front Aging Neurosci 2018; 9:431. [PMID: 29375362 PMCID: PMC5767716 DOI: 10.3389/fnagi.2017.00431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 12/15/2017] [Indexed: 12/15/2022] Open
Abstract
The resource modulation hypothesis suggests that the influence of genes on cognitive functioning increases with age. The KIBRA single nucleotide polymorphism rs17070145, associated with episodic memory and working memory, has been suggested to follow such a pattern, but few studies have tested this assertion directly. The present study investigated the relationship between KIBRA alleles (T carriers vs. CC homozygotes), cognitive performance, and brain volumes in three groups of cognitively healthy adults-middle aged (ages 52-64, n = 38), young old (ages 65-72, n = 45), and older old (ages 73-92, n = 62)-who were carefully matched on potentially confounding variables including apolipoprotein ε4 status and hypertension. Consistent with our prediction, T carriers maintained verbal memory performance with increasing age while CC homozygotes declined. Voxel-based morphometric analysis of magnetic resonance images showed an advantage for T carriers in frontal white matter volume that increased with age. Focusing on the older old group, this advantage for T carriers was also evident in left lingual gyrus gray matter and several additional frontal white matter regions. Contrary to expectations, neither KIBRA nor the interaction between KIBRA and age predicted hippocampal volumes. None of the brain regions investigated showed a CC homozygote advantage. Taken together, these data suggest that KIBRA results in decreased verbal memory performance and lower brain volumes in CC homozygotes compared to T carriers, particularly among the oldest old, consistent with the resource modulation hypothesis.
Collapse
Affiliation(s)
- Ariana Stickel
- Cognition and Neuroimaging Laboratory, Department of Psychology, University of Arizona, Tucson, AZ, United States
| | - Kevin Kawa
- Cognition and Neuroimaging Laboratory, Department of Psychology, University of Arizona, Tucson, AZ, United States
| | - Katrin Walther
- Epilepsy Center Erlangen, Department of Neurology, University Hospital Erlangen, Erlangen, Germany
| | - Elizabeth Glisky
- Aging and Cognition Laboratory, Department of Psychology, University of Arizona, Tucson, AZ, United States
| | - Ryan Richholt
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Matt Huentelman
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Lee Ryan
- Cognition and Neuroimaging Laboratory, Department of Psychology, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
205
|
Morphometry and Development: Changes in Brain Structure from Birth to Adult Age. NEUROMETHODS 2018. [DOI: 10.1007/978-1-4939-7647-8_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
206
|
Czepielewski LS, Massuda R, Panizzutti B, Grun LK, Barbé-Tuana FM, Teixeira AL, Barch DM, Gama CS. Telomere Length and CCL11 Levels are Associated With Gray Matter Volume and Episodic Memory Performance in Schizophrenia: Evidence of Pathological Accelerated Aging. Schizophr Bull 2018; 44:158-167. [PMID: 28338779 PMCID: PMC5767949 DOI: 10.1093/schbul/sbx015] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Schizophrenia (SZ) is associated with increased somatic morbidity and mortality, in addition to cognitive impairments similar to those seen in normal aging, which may suggest that pathological accelerated aging occurs in SZ. Therefore, we aim to evaluate the relationships of age, telomere length (TL), and CCL11 (aging and inflammatory biomarkers, respectively), gray matter (GM) volume and episodic memory performance in individuals with SZ compared to healthy controls (HC). One hundred twelve participants (48 SZ and 64 HC) underwent clinical and memory assessments, structural MRI, and had their peripheral blood drawn for biomarkers analysis. Comparisons of group means and correlations were performed. Participants with SZ had decreased TL and GM volume, increased CCL11, and worse memory performance compared to HC. In SZ, shorter TL was related to increased CCL11, and both biomarkers were related to reduced GM volume, all of which were related to worse memory performance. Older age was only associated with reduced GM, but longer duration of illness was related with all the aforementioned variables. Younger age of disease onset was associated with increased CCL11 levels and worse memory performance. In HC, there were no significant correlations except between memory and GM. Our results are consistent with the hypothesis of accelerated aging in SZ. These results may indicate that it is not age itself, but the impact of the disease associated with a pathological accelerated aging that leads to impaired outcomes in SZ.
Collapse
Affiliation(s)
- Leticia Sanguinetti Czepielewski
- Molecular Psychiatry Laboratory, Hospital de Clinicas de Porto Alegre, Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Raffael Massuda
- Departamento de Psiquiatria, Universidade Federal do Paraná, Curitiba, Brazil
| | - Bruna Panizzutti
- Molecular Psychiatry Laboratory, Hospital de Clinicas de Porto Alegre, Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lucas Kich Grun
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Florencia María Barbé-Tuana
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Antonio Lucio Teixeira
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Deanna M Barch
- Department of Psychological & Brain Sciences, Washington University in St Louis, St Louis, MO,Department of Psychiatry and Radiology, Washington University in St Louis, St Louis, MO
| | - Clarissa S Gama
- Molecular Psychiatry Laboratory, Hospital de Clinicas de Porto Alegre, Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil,To whom correspondence should be addressed; Hospital de Clínicas de Porto Alegre/CPE, Molecular Psychiatry Laboratory, Rua Ramiro Barcelos, 2350, Prédio Anexo, 90035-903 Porto Alegre, Brazil; tel: +55-51-33598845, fax: +55-51-33598846, e-mail:
| |
Collapse
|
207
|
Opfer R, Ostwaldt AC, Sormani MP, Gocke C, Walker-Egger C, Manogaran P, De Stefano N, Schippling S. Estimates of age-dependent cutoffs for pathological brain volume loss using SIENA/FSL-a longitudinal brain volumetry study in healthy adults. Neurobiol Aging 2017; 65:1-6. [PMID: 29407463 DOI: 10.1016/j.neurobiolaging.2017.12.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 01/01/2023]
Abstract
Brain volume loss (BVL) has gained increasing interest for monitoring tissue damage in neurodegenerative diseases including multiple sclerosis (MS). In this longitudinal study, 117 healthy participants (age range 37.3-82.6 years) received at least 2 magnetic resonance imaging examinations. BVL (in %) was determined with the Structural Image Evaluation using Normalisation of Atrophy/FMRIB Software Library and annualized. Mean BVL per year was 0.15%, 0.30%, 0.46%, and 0.61% at ages 45, 55, 65, and 75 years, respectively. The corresponding BVL per year values of the age-dependent 95th percentiles were 0.52%, 0.77%, 1.05% and 1.45%. Pathological BVL can be assumed if an individual BVL per year exceeds these thresholds for a given age. The mean BVL per year determined in this longitudinal study was consistent with results from a cross-sectional study that was published recently. The cut-off for a pathological BVL per year at the age of 45 years (0.52%) was consistent with the cut-off suggested previously to distinguish between physiological and pathological BVL in MS patients. Different cut-off values, however, need to be considered when interpreting BVL assessed in cohorts of higher ages.
Collapse
Affiliation(s)
- Roland Opfer
- Neuroimmunology and Multiple Sclerosis Research, Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland; Jung diagnostics GmbH, Hamburg, Germany.
| | | | - Maria Pia Sormani
- Biostatistics Unit, Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Carola Gocke
- Medical Prevention Center Hamburg (MPCH), Hamburg, Germany
| | - Christine Walker-Egger
- Neuroimmunology and Multiple Sclerosis Research, Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Praveena Manogaran
- Neuroimmunology and Multiple Sclerosis Research, Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland; Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Sven Schippling
- Neuroimmunology and Multiple Sclerosis Research, Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
208
|
Kornguth S, Rutledge N, Perlaza G, Bray J, Hardin A. A Proposed Mechanism for Development of CTE Following Concussive Events: Head Impact, Water Hammer Injury, Neurofilament Release, and Autoimmune Processes. Brain Sci 2017; 7:E164. [PMID: 29257064 PMCID: PMC5742767 DOI: 10.3390/brainsci7120164] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 12/25/2022] Open
Abstract
During the past decade, there has been an increasing interest in early diagnosis and treatment of traumatic brain injuries (TBI) that lead to chronic traumatic encephalopathy (CTE). The subjects involved range from soldiers exposed to concussive injuries from improvised explosive devices (IEDs) to a significant number of athletes involved in repetitive high force impacts. Although the forces from IEDs are much greater by a magnitude than those from contact sports, the higher frequency associated with contact sports allows for more controlled assessment of the mechanism of action. In our study, we report findings in university-level women soccer athletes followed over a period of four and a half years from accession to graduation. Parameters investigated included T1-, T2-, and susceptibility-weighted magnetic resonance images (SWI), IMPACT (Immediate Post-Concussion Assessment and Cognitive Testing), and C3 Logix behavioral and physiological assessment measures. The MRI Studies show several significant findings: first, a marked increase in the width of sulci in the frontal to occipital cortices; second, an appearance of subtle hemorrhagic changes at the base of the sulci; third was a sustained reduction in total brain volume in several soccer players at a developmental time when brain growth is generally seen. Although all of the athletes successfully completed their college degree and none exhibited long term clinical deficits at the time of graduation, the changes documented by MRI represent a clue to the pathological mechanism following an injury paradigm. The authors propose that our findings and those of prior publications support a mechanism of injury in CTE caused by an autoimmune process associated with the release of neural proteins from nerve cells at the base of the sulcus from a water hammer injury effect. As evidence accumulates to support this hypothesis, there are pharmacological treatment strategies that may be able to mitigate the development of long-term disability from TBI.
Collapse
Affiliation(s)
- Steven Kornguth
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX 78712, USA.
- Department of Neurology Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Neal Rutledge
- Research Imaging Center, Austin Radiological Association, Austin, TX 78705, USA.
| | - Gabe Perlaza
- Department of Intercollegiate Athletics, The University of Texas, Austin, TX 78712, USA.
| | - James Bray
- Department of Intercollegiate Athletics, The University of Texas, Austin, TX 78712, USA.
- Department of Population Health, University of Texas, Austin, TX 78712, USA.
| | - Allen Hardin
- Department of Intercollegiate Athletics, The University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
209
|
Transcriptomic profiling of the human brain reveals that altered synaptic gene expression is associated with chronological aging. Sci Rep 2017; 7:16890. [PMID: 29203886 PMCID: PMC5715102 DOI: 10.1038/s41598-017-17322-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/22/2017] [Indexed: 11/23/2022] Open
Abstract
Aging is a biologically universal event, and yet the key events that drive aging are still poorly understood. One approach to generate new hypotheses about aging is to use unbiased methods to look at change across lifespan. Here, we have examined gene expression in the human dorsolateral frontal cortex using RNA- Seq to populate a whole gene co-expression network analysis. We show that modules of co-expressed genes enriched for those encoding synaptic proteins are liable to change with age. We extensively validate these age-dependent changes in gene expression across several datasets including the publically available GTEx resource which demonstrated that gene expression associations with aging vary between brain regions. We also estimated the extent to which changes in cellular composition account for age associations and find that there are independent signals for cellularity and aging. Overall, these results demonstrate that there are robust age-related alterations in gene expression in the human brain and that genes encoding for neuronal synaptic function may be particularly sensitive to the aging process.
Collapse
|
210
|
Barrett EJ, Liu Z, Khamaisi M, King GL, Klein R, Klein BEK, Hughes TM, Craft S, Freedman BI, Bowden DW, Vinik AI, Casellini CM. Diabetic Microvascular Disease: An Endocrine Society Scientific Statement. J Clin Endocrinol Metab 2017; 102:4343-4410. [PMID: 29126250 PMCID: PMC5718697 DOI: 10.1210/jc.2017-01922] [Citation(s) in RCA: 300] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 08/29/2017] [Indexed: 01/18/2023]
Abstract
Both type 1 and type 2 diabetes adversely affect the microvasculature in multiple organs. Our understanding of the genesis of this injury and of potential interventions to prevent, limit, or reverse injury/dysfunction is continuously evolving. This statement reviews biochemical/cellular pathways involved in facilitating and abrogating microvascular injury. The statement summarizes the types of injury/dysfunction that occur in the three classical diabetes microvascular target tissues, the eye, the kidney, and the peripheral nervous system; the statement also reviews information on the effects of diabetes and insulin resistance on the microvasculature of skin, brain, adipose tissue, and cardiac and skeletal muscle. Despite extensive and intensive research, it is disappointing that microvascular complications of diabetes continue to compromise the quantity and quality of life for patients with diabetes. Hopefully, by understanding and building on current research findings, we will discover new approaches for prevention and treatment that will be effective for future generations.
Collapse
Affiliation(s)
- Eugene J. Barrett
- Division of Endocrinology, Department of Medicine, University of Virginia, Charlottesville, Virginia 22908
| | - Zhenqi Liu
- Division of Endocrinology, Department of Medicine, University of Virginia, Charlottesville, Virginia 22908
| | - Mogher Khamaisi
- Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215
| | - George L. King
- Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215
| | - Ronald Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705
| | - Barbara E. K. Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705
| | - Timothy M. Hughes
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Suzanne Craft
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Barry I. Freedman
- Divisions of Nephrology and Endocrinology, Department of Internal Medicine, Centers for Diabetes Research, and Center for Human Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Donald W. Bowden
- Divisions of Nephrology and Endocrinology, Department of Internal Medicine, Centers for Diabetes Research, and Center for Human Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Aaron I. Vinik
- EVMS Strelitz Diabetes Center, Eastern Virginia Medical Center, Norfolk, Virginia 23510
| | - Carolina M. Casellini
- EVMS Strelitz Diabetes Center, Eastern Virginia Medical Center, Norfolk, Virginia 23510
| |
Collapse
|
211
|
Walker KA, Hoogeveen RC, Folsom AR, Ballantyne CM, Knopman DS, Windham BG, Jack CR, Gottesman RF. Midlife systemic inflammatory markers are associated with late-life brain volume: The ARIC study. Neurology 2017; 89:2262-2270. [PMID: 29093073 PMCID: PMC5705246 DOI: 10.1212/wnl.0000000000004688] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/08/2017] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To clarify the temporal relationship between systemic inflammation and neurodegeneration, we examined whether a higher level of circulating inflammatory markers during midlife was associated with smaller brain volumes in late life using a large biracial prospective cohort study. METHODS Plasma levels of systemic inflammatory markers (fibrinogen, albumin, white blood cell count, von Willebrand factor, and Factor VIII) were assessed at baseline in 1,633 participants (mean age 53 [5] years, 60% female, 27% African American) enrolled in the Atherosclerosis Risk in Communities Study. Using all 5 inflammatory markers, an inflammation composite score was created for each participant. We assessed episodic memory and regional brain volumes, using 3T MRI, 24 years later. RESULTS Each SD increase in midlife inflammation composite score was associated with 1,788 mm3 greater ventricular (p = 0.013), 110 mm3 smaller hippocampal (p = 0.013), 519 mm3 smaller occipital (p = 0.009), and 532 mm3 smaller Alzheimer disease signature region (p = 0.008) volumes, and reduced episodic memory (p = 0.046) 24 years later. Compared to participants with no elevated (4th quartile) midlife inflammatory markers, participants with elevations in 3 or more markers had, on average, 5% smaller hippocampal and Alzheimer disease signature region volumes. The association between midlife inflammation and late-life brain volume was modified by age and race, whereby younger participants and white participants with higher levels of systemic inflammation during midlife were more likely to show reduced brain volumes subsequently. CONCLUSIONS Our prospective findings provide evidence for what may be an early contributory role of systemic inflammation in neurodegeneration and cognitive aging.
Collapse
Affiliation(s)
- Keenan A Walker
- From the Departments of Neurology (K.A.W., R.F.G.) and Epidemiology (R.F.G.), Johns Hopkins University School of Medicine, Baltimore, MD; Section of Cardiology (R.C.H., C.M.B.), Baylor College of Medicine; Center for Cardiovascular Disease Prevention (R.C.H., C.M.B.), Houston Methodist DeBakey Heart and Vascular Center, TX; Division of Epidemiology and Community Health (A.R.F.), School of Public Health, University of Minnesota, Minneapolis; Departments of Neurology (D.S.K.) and Radiology (C.R.J.), Mayo Clinic, Rochester, MN; and Department of Medicine (B.G.W.), University of Mississippi Medical Center, Jackson.
| | - Ron C Hoogeveen
- From the Departments of Neurology (K.A.W., R.F.G.) and Epidemiology (R.F.G.), Johns Hopkins University School of Medicine, Baltimore, MD; Section of Cardiology (R.C.H., C.M.B.), Baylor College of Medicine; Center for Cardiovascular Disease Prevention (R.C.H., C.M.B.), Houston Methodist DeBakey Heart and Vascular Center, TX; Division of Epidemiology and Community Health (A.R.F.), School of Public Health, University of Minnesota, Minneapolis; Departments of Neurology (D.S.K.) and Radiology (C.R.J.), Mayo Clinic, Rochester, MN; and Department of Medicine (B.G.W.), University of Mississippi Medical Center, Jackson
| | - Aaron R Folsom
- From the Departments of Neurology (K.A.W., R.F.G.) and Epidemiology (R.F.G.), Johns Hopkins University School of Medicine, Baltimore, MD; Section of Cardiology (R.C.H., C.M.B.), Baylor College of Medicine; Center for Cardiovascular Disease Prevention (R.C.H., C.M.B.), Houston Methodist DeBakey Heart and Vascular Center, TX; Division of Epidemiology and Community Health (A.R.F.), School of Public Health, University of Minnesota, Minneapolis; Departments of Neurology (D.S.K.) and Radiology (C.R.J.), Mayo Clinic, Rochester, MN; and Department of Medicine (B.G.W.), University of Mississippi Medical Center, Jackson
| | - Christie M Ballantyne
- From the Departments of Neurology (K.A.W., R.F.G.) and Epidemiology (R.F.G.), Johns Hopkins University School of Medicine, Baltimore, MD; Section of Cardiology (R.C.H., C.M.B.), Baylor College of Medicine; Center for Cardiovascular Disease Prevention (R.C.H., C.M.B.), Houston Methodist DeBakey Heart and Vascular Center, TX; Division of Epidemiology and Community Health (A.R.F.), School of Public Health, University of Minnesota, Minneapolis; Departments of Neurology (D.S.K.) and Radiology (C.R.J.), Mayo Clinic, Rochester, MN; and Department of Medicine (B.G.W.), University of Mississippi Medical Center, Jackson
| | - David S Knopman
- From the Departments of Neurology (K.A.W., R.F.G.) and Epidemiology (R.F.G.), Johns Hopkins University School of Medicine, Baltimore, MD; Section of Cardiology (R.C.H., C.M.B.), Baylor College of Medicine; Center for Cardiovascular Disease Prevention (R.C.H., C.M.B.), Houston Methodist DeBakey Heart and Vascular Center, TX; Division of Epidemiology and Community Health (A.R.F.), School of Public Health, University of Minnesota, Minneapolis; Departments of Neurology (D.S.K.) and Radiology (C.R.J.), Mayo Clinic, Rochester, MN; and Department of Medicine (B.G.W.), University of Mississippi Medical Center, Jackson
| | - B Gwen Windham
- From the Departments of Neurology (K.A.W., R.F.G.) and Epidemiology (R.F.G.), Johns Hopkins University School of Medicine, Baltimore, MD; Section of Cardiology (R.C.H., C.M.B.), Baylor College of Medicine; Center for Cardiovascular Disease Prevention (R.C.H., C.M.B.), Houston Methodist DeBakey Heart and Vascular Center, TX; Division of Epidemiology and Community Health (A.R.F.), School of Public Health, University of Minnesota, Minneapolis; Departments of Neurology (D.S.K.) and Radiology (C.R.J.), Mayo Clinic, Rochester, MN; and Department of Medicine (B.G.W.), University of Mississippi Medical Center, Jackson
| | - Clifford R Jack
- From the Departments of Neurology (K.A.W., R.F.G.) and Epidemiology (R.F.G.), Johns Hopkins University School of Medicine, Baltimore, MD; Section of Cardiology (R.C.H., C.M.B.), Baylor College of Medicine; Center for Cardiovascular Disease Prevention (R.C.H., C.M.B.), Houston Methodist DeBakey Heart and Vascular Center, TX; Division of Epidemiology and Community Health (A.R.F.), School of Public Health, University of Minnesota, Minneapolis; Departments of Neurology (D.S.K.) and Radiology (C.R.J.), Mayo Clinic, Rochester, MN; and Department of Medicine (B.G.W.), University of Mississippi Medical Center, Jackson
| | - Rebecca F Gottesman
- From the Departments of Neurology (K.A.W., R.F.G.) and Epidemiology (R.F.G.), Johns Hopkins University School of Medicine, Baltimore, MD; Section of Cardiology (R.C.H., C.M.B.), Baylor College of Medicine; Center for Cardiovascular Disease Prevention (R.C.H., C.M.B.), Houston Methodist DeBakey Heart and Vascular Center, TX; Division of Epidemiology and Community Health (A.R.F.), School of Public Health, University of Minnesota, Minneapolis; Departments of Neurology (D.S.K.) and Radiology (C.R.J.), Mayo Clinic, Rochester, MN; and Department of Medicine (B.G.W.), University of Mississippi Medical Center, Jackson
| |
Collapse
|
212
|
Roberts DR, Albrecht MH, Collins HR, Asemani D, Chatterjee AR, Spampinato MV, Zhu X, Chimowitz MI, Antonucci MU. Effects of Spaceflight on Astronaut Brain Structure as Indicated on MRI. N Engl J Med 2017; 377:1746-1753. [PMID: 29091569 DOI: 10.1056/nejmoa1705129] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND There is limited information regarding the effects of spaceflight on the anatomical configuration of the brain and on cerebrospinal fluid (CSF) spaces. METHODS We used magnetic resonance imaging (MRI) to compare images of 18 astronauts' brains before and after missions of long duration, involving stays on the International Space Station, and of 16 astronauts' brains before and after missions of short duration, involving participation in the Space Shuttle Program. Images were interpreted by readers who were unaware of the flight duration. We also generated paired preflight and postflight MRI cine clips derived from high-resolution, three-dimensional imaging of 12 astronauts after long-duration flights and from 6 astronauts after short-duration flights in order to assess the extent of narrowing of CSF spaces and the displacement of brain structures. We also compared preflight ventricular volumes with postflight ventricular volumes by means of an automated analysis of T1-weighted MRIs. The main prespecified analyses focused on the change in the volume of the central sulcus, the change in the volume of CSF spaces at the vertex, and vertical displacement of the brain. RESULTS Narrowing of the central sulcus occurred in 17 of 18 astronauts after long-duration flights (mean flight time, 164.8 days) and in 3 of 16 astronauts after short-duration flights (mean flight time, 13.6 days) (P<0.001). Cine clips from a subgroup of astronauts showed an upward shift of the brain after all long-duration flights (12 astronauts) but not after short-duration flights (6 astronauts) and narrowing of CSF spaces at the vertex after all long-duration flights (12 astronauts) and in 1 of 6 astronauts after short-duration flights. Three astronauts in the long-duration group had optic-disk edema, and all 3 had narrowing of the central sulcus. A cine clip was available for 1 of these 3 astronauts, and the cine clip showed upward shift of the brain. CONCLUSIONS Narrowing of the central sulcus, upward shift of the brain, and narrowing of CSF spaces at the vertex occurred frequently and predominantly in astronauts after long-duration flights. Further investigation, including repeated postflight imaging conducted after some time on Earth, is required to determine the duration and clinical significance of these changes. (Funded by the National Aeronautics and Space Administration.).
Collapse
Affiliation(s)
- Donna R Roberts
- From the Department of Radiology and Radiological Science, Division of Neuroradiology (D.R.R., M.H.A., H.R.C., D.A., A.R.C., M.V.S., M.U.A.), and the Department of Neurology (M.I.C.), Medical University of South Carolina, Charleston; the Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany (M.H.A.); and the Department of Psychology, Normal College, Shihezi University, Xinjiang, China (X.Z.)
| | - Moritz H Albrecht
- From the Department of Radiology and Radiological Science, Division of Neuroradiology (D.R.R., M.H.A., H.R.C., D.A., A.R.C., M.V.S., M.U.A.), and the Department of Neurology (M.I.C.), Medical University of South Carolina, Charleston; the Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany (M.H.A.); and the Department of Psychology, Normal College, Shihezi University, Xinjiang, China (X.Z.)
| | - Heather R Collins
- From the Department of Radiology and Radiological Science, Division of Neuroradiology (D.R.R., M.H.A., H.R.C., D.A., A.R.C., M.V.S., M.U.A.), and the Department of Neurology (M.I.C.), Medical University of South Carolina, Charleston; the Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany (M.H.A.); and the Department of Psychology, Normal College, Shihezi University, Xinjiang, China (X.Z.)
| | - Davud Asemani
- From the Department of Radiology and Radiological Science, Division of Neuroradiology (D.R.R., M.H.A., H.R.C., D.A., A.R.C., M.V.S., M.U.A.), and the Department of Neurology (M.I.C.), Medical University of South Carolina, Charleston; the Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany (M.H.A.); and the Department of Psychology, Normal College, Shihezi University, Xinjiang, China (X.Z.)
| | - A Rano Chatterjee
- From the Department of Radiology and Radiological Science, Division of Neuroradiology (D.R.R., M.H.A., H.R.C., D.A., A.R.C., M.V.S., M.U.A.), and the Department of Neurology (M.I.C.), Medical University of South Carolina, Charleston; the Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany (M.H.A.); and the Department of Psychology, Normal College, Shihezi University, Xinjiang, China (X.Z.)
| | - M Vittoria Spampinato
- From the Department of Radiology and Radiological Science, Division of Neuroradiology (D.R.R., M.H.A., H.R.C., D.A., A.R.C., M.V.S., M.U.A.), and the Department of Neurology (M.I.C.), Medical University of South Carolina, Charleston; the Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany (M.H.A.); and the Department of Psychology, Normal College, Shihezi University, Xinjiang, China (X.Z.)
| | - Xun Zhu
- From the Department of Radiology and Radiological Science, Division of Neuroradiology (D.R.R., M.H.A., H.R.C., D.A., A.R.C., M.V.S., M.U.A.), and the Department of Neurology (M.I.C.), Medical University of South Carolina, Charleston; the Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany (M.H.A.); and the Department of Psychology, Normal College, Shihezi University, Xinjiang, China (X.Z.)
| | - Marc I Chimowitz
- From the Department of Radiology and Radiological Science, Division of Neuroradiology (D.R.R., M.H.A., H.R.C., D.A., A.R.C., M.V.S., M.U.A.), and the Department of Neurology (M.I.C.), Medical University of South Carolina, Charleston; the Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany (M.H.A.); and the Department of Psychology, Normal College, Shihezi University, Xinjiang, China (X.Z.)
| | - Michael U Antonucci
- From the Department of Radiology and Radiological Science, Division of Neuroradiology (D.R.R., M.H.A., H.R.C., D.A., A.R.C., M.V.S., M.U.A.), and the Department of Neurology (M.I.C.), Medical University of South Carolina, Charleston; the Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany (M.H.A.); and the Department of Psychology, Normal College, Shihezi University, Xinjiang, China (X.Z.)
| |
Collapse
|
213
|
Coupé P, Catheline G, Lanuza E, Manjón JV. Towards a unified analysis of brain maturation and aging across the entire lifespan: A MRI analysis. Hum Brain Mapp 2017; 38:5501-5518. [PMID: 28737295 PMCID: PMC6866824 DOI: 10.1002/hbm.23743] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/12/2017] [Accepted: 07/16/2017] [Indexed: 12/13/2022] Open
Abstract
There is no consensus in literature about lifespan brain maturation and senescence, mainly because previous lifespan studies have been performed on restricted age periods and/or with a limited number of scans, making results instable and their comparison very difficult. Moreover, the use of nonharmonized tools and different volumetric measurements lead to a great discrepancy in reported results. Thanks to the new paradigm of BigData sharing in neuroimaging and the last advances in image processing enabling to process baby as well as elderly scans with the same tool, new insights on brain maturation and aging can be obtained. This study presents brain volume trajectory over the entire lifespan using the largest age range to date (from few months of life to elderly) and one of the largest number of subjects (N = 2,944). First, we found that white matter trajectory based on absolute and normalized volumes follows an inverted U-shape with a maturation peak around middle life. Second, we found that from 1 to 8-10 y there is an absolute gray matter (GM) increase related to body growth followed by a GM decrease. However, when normalized volumes were considered, GM continuously decreases all along the life. Finally, we found that this observation holds for almost all the considered subcortical structures except for amygdala which is rather stable and hippocampus which exhibits an inverted U-shape with a longer maturation period. By revealing the entire brain trajectory picture, a consensus can be drawn since most of the previously discussed discrepancies can be explained. Hum Brain Mapp 38:5501-5518, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Pierrick Coupé
- University of Bordeaux, LaBRI, UMR 5800, PICTURATalenceF‐33400France
- CNRS, LaBRI, UMR 5800, PICTURATalenceF‐33400France
| | - Gwenaelle Catheline
- University of Bordeaux, CNRS, EPHE PSL Research University of, INCIA, UMR 5283BordeauxF‐33000, France
| | - Enrique Lanuza
- Department of Cell BiologyUniversity of ValenciaBurjassotValencia46100Spain
| | - José Vicente Manjón
- Instituto Universitario de Tecnologías de la Información y Comunicaciones (ITACA), Universitat Politècnica de València, Camino de Vera s/nValencia46022Spain
| | | |
Collapse
|
214
|
Melatonin Prevents the Harmful Effects of Obesity on the Brain, Including at the Behavioral Level. Mol Neurobiol 2017; 55:5830-5846. [DOI: 10.1007/s12035-017-0796-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/26/2017] [Indexed: 12/21/2022]
|
215
|
Gu Y, Vorburger R, Scarmeas N, Luchsinger JA, Manly JJ, Schupf N, Mayeux R, Brickman AM. Circulating inflammatory biomarkers in relation to brain structural measurements in a non-demented elderly population. Brain Behav Immun 2017; 65:150-160. [PMID: 28457809 PMCID: PMC5537030 DOI: 10.1016/j.bbi.2017.04.022] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 10/19/2022] Open
Abstract
The aim of this investigation was to determine whether circulating inflammatory biomarkers c-reactive protein (CRP), interleukin-6 (IL6), and alpha 1-antichymotrypsin (ACT) were related to structural brain measures assessed by magnetic resonance imaging (MRI). High-resolution structural MRI was collected on 680 non-demented elderly (mean age 80.1years) participants of a community-based, multiethnic cohort. Approximately three quarters of these participants also had peripheral inflammatory biomarkers (CRP, IL6, and ACT) measured using ELISA. Structural measures including brain volumes and cortical thickness (with both global and regional measures) were derived from MRI scans, and repeated MRI measures were obtained after 4.5years. Mean fractional anisotropy was used as the indicator of white matter integrity assessed with diffusion tensor imaging. We examined the association of inflammatory biomarkers with brain volume, cortical thickness, and white matter integrity using regression models adjusted for age, gender, ethnicity, education, APOE genotype, and intracranial volume. A doubling in CRP (b=-2.48, p=0.002) was associated with a smaller total gray matter volume, equivalent to approximately 1.5years of aging. A doubling in IL6 was associated with smaller total brain volume (b=-14.96, p<0.0001), equivalent to approximately 9years of aging. Higher IL6 was also associated with smaller gray matter (b=-6.52, p=0.002) and white matter volumes (b=-7.47, p=0.004). The volumes of most cortical regions including frontal, occipital, parietal, temporal, as well as subcortical regions including pallidum and thalamus were associated with IL6. In a model additionally adjusted for depression, vascular factors, BMI, and smoking status, the association between IL6 and brain volumes remained, and a doubling in ACT was marginally associated with 0.054 (p=0.001) millimeter thinner mean cortical thickness, equivalent to that of approximately 2.7years of aging. None of the biomarkers was associated with mean fractional anisotropy or longitudinal change of brain volumes and thickness. Among older adults, increased circulating inflammatory biomarkers were associated with smaller brain volume and cortical thickness but not the white matter tract integrity. Our preliminary findings suggest that peripheral inflammatory processes may be involved in the brain atrophy in the elderly.
Collapse
Affiliation(s)
- Yian Gu
- The Taub Institute for Research in Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States; The Department of Neurology, Columbia University, New York, NY, United States.
| | - Robert Vorburger
- The Taub Institute for Research in Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY
| | - Nikolaos Scarmeas
- The Taub Institute for Research in Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY,The Department of Neurology, Columbia University, New York, NY,The Gertrude H. Sergievsky Center, Columbia University, New York, NY,National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - José A. Luchsinger
- The Taub Institute for Research in Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY,The Department of Neurology, Columbia University, New York, NY,Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY,The Department of Epidemiology, Joseph P. Mailman School of Public Health, Columbia University, New York, NY
| | - Jennifer J. Manly
- The Taub Institute for Research in Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY,The Department of Neurology, Columbia University, New York, NY,The Gertrude H. Sergievsky Center, Columbia University, New York, NY
| | - Nicole Schupf
- The Taub Institute for Research in Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY,The Department of Neurology, Columbia University, New York, NY,The Department of Epidemiology, Joseph P. Mailman School of Public Health, Columbia University, New York, NY
| | - Richard Mayeux
- The Taub Institute for Research in Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY,The Department of Neurology, Columbia University, New York, NY,The Gertrude H. Sergievsky Center, Columbia University, New York, NY,The Department of Epidemiology, Joseph P. Mailman School of Public Health, Columbia University, New York, NY
| | - Adam M. Brickman
- The Taub Institute for Research in Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY,The Department of Neurology, Columbia University, New York, NY,The Gertrude H. Sergievsky Center, Columbia University, New York, NY
| |
Collapse
|
216
|
Porges EC, Woods AJ, Lamb DG, Williamson JB, Cohen RA, Edden RAE, Harris AD. Impact of tissue correction strategy on GABA-edited MRS findings. Neuroimage 2017; 162:249-256. [PMID: 28882635 DOI: 10.1016/j.neuroimage.2017.08.073] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/26/2017] [Accepted: 08/24/2017] [Indexed: 12/22/2022] Open
Abstract
Tissue composition impacts the interpretation of magnetic resonance spectroscopy metabolite quantification. The goal of applying tissue correction is to decrease the dependency of metabolite concentrations on the underlying voxel tissue composition. Tissue correction strategies have different underlying assumptions to account for different aspects of the voxel tissue fraction. The most common tissue correction is the CSF-correction that aims to account for the cerebrospinal fluid (CSF) fraction in the voxel, in which it is assumed there are no metabolites. More recently, the α-correction was introduced to account for the different concentrations of GABA+in gray matter and white matter. In this paper, we show that the selected tissue correction strategy can alter the interpretation of results using data from a healthy aging cohort with GABA+ measurements in a frontal and posterior voxel. In a frontal voxel, we show an age-related decline in GABA+ when either no tissue correction (R2 = 0.25, p < 0.001) or the CSF-correction is applied (R2 = 0.08, p < 0.01). When applying the α-correction to the frontal voxel data, we find no relationship between age and GABA+ (R2 = 0.02, p = 0.15). However, with the α-correction we still find that cognitive performance is correlated with GABA+ (R2 = 0.11, p < 0.01). These data suggest that in healthy aging, while there is normal atrophy in the frontal voxel, GABA+ in the remaining tissue is not decreasing on average. This indicates that the selection of tissue correction can significantly impact the interpretation of MRS results.
Collapse
Affiliation(s)
- Eric C Porges
- Center for Cognitive Aging and Memory (CAM), McKnight Brain Institute, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, 32608, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory (CAM), McKnight Brain Institute, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, 32608, USA; Department of Neuroscience, University of Florida, Gainesville, FL, 32608, USA
| | - Damon G Lamb
- Center for Cognitive Aging and Memory (CAM), McKnight Brain Institute, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, 32608, USA; Brain Rehabilitation and Research Center, Malcom Randall Veterans Affairs Medical Center, Gainesville, FL, USA; Center for Neuropsychological Studies, Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA
| | - John B Williamson
- Center for Cognitive Aging and Memory (CAM), McKnight Brain Institute, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, 32608, USA; Brain Rehabilitation and Research Center, Malcom Randall Veterans Affairs Medical Center, Gainesville, FL, USA; Center for Neuropsychological Studies, Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Ronald A Cohen
- Center for Cognitive Aging and Memory (CAM), McKnight Brain Institute, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, 32608, USA
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; FM Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Ashley D Harris
- Department of Radiology, University of Calgary, Calgary, AB, Canada; CAIR Program, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
217
|
Ge Q, Peng W, Zhang J, Weng X, Zhang Y, Liu T, Zang YF, Wang Z. Short-term apparent brain tissue changes are contributed by cerebral blood flow alterations. PLoS One 2017; 12:e0182182. [PMID: 28820894 PMCID: PMC5562307 DOI: 10.1371/journal.pone.0182182] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/13/2017] [Indexed: 01/16/2023] Open
Abstract
Structural MRI (sMRI)-identified tissue "growth" after neuropsychological training has been reported in many studies but the origins of those apparent tissue changes (ATC) still remain elusive. One possible contributor to ATC is brain perfusion since T1-weighted MRI, the tool used to identify ATC, is sensitive to perfusion-change induced tissue T1 alterations. To test the hypothetical perfusion contribution to ATC, sMRI data were acquired before and after short-term global and regional perfusion manipulations via intaking a 200 mg caffeine pill and performing a sensorimotor task. Caffeine intake caused a global CBF reduction and apparent tissue density reduction in temporal cortex, anterior cingulate cortex, and the limbic area; sensorimotor task induced CBF increase and apparent tissue increase in spatially overlapped brain regions. After compensating CBF alterations through a voxel-wise regression, the ATC patterns demonstrated in both experiments were substantially suppressed. These data clearly proved existence of the perfusion contribution to short-term ATC, and suggested a need for correcting perfusion changes in longitudinal T1-weighted structural MRI analysis if a short-term design is used.
Collapse
Affiliation(s)
- Qiu Ge
- Center for Cognition and Brain Disorders, Department of Psychology, Hangzhou Normal University, Hangzhou, China
| | - Wei Peng
- Center for Cognition and Brain Disorders, Department of Psychology, Hangzhou Normal University, Hangzhou, China
| | - Jian Zhang
- Department of Physics, Hangzhou Normal University, Hangzhou, China
| | - Xuchu Weng
- Center for Cognition and Brain Disorders, Department of Psychology, Hangzhou Normal University, Hangzhou, China
| | | | - Thomas Liu
- Department of Radiology, University of California San Diego, San Diego, United States of America
| | - Yu-Feng Zang
- Center for Cognition and Brain Disorders, Department of Psychology, Hangzhou Normal University, Hangzhou, China
| | - Ze Wang
- Center for Cognition and Brain Disorders, Department of Psychology, Hangzhou Normal University, Hangzhou, China
- Department of Radiology, Lewis Katz School of Medicine, Temple University, Philadelphia, United States of America
| |
Collapse
|
218
|
KARIBE H, HAYASHI T, NARISAWA A, KAMEYAMA M, NAKAGAWA A, TOMINAGA T. Clinical Characteristics and Outcome in Elderly Patients with Traumatic Brain Injury: For Establishment of Management Strategy. Neurol Med Chir (Tokyo) 2017; 57:418-425. [PMID: 28679968 PMCID: PMC5566701 DOI: 10.2176/nmc.st.2017-0058] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/18/2017] [Indexed: 01/21/2023] Open
Abstract
In recent years, instances of neurotrauma in the elderly have been increasing. This article addresses the clinical characteristics, management strategy, and outcome in elderly patients with traumatic brain injury (TBI). Falls to the ground either from standing or from heights are the most common causes of TBI in the elderly, since both motor and physiological functions are degraded in the elderly. Subdural, contusional and intracerebral hematomas are more common in the elderly than the young as the acute traumatic intracranial lesion. High frequency of those lesions has been proposed to be associated with increased volume of the subdural space resulting from the atrophy of the brain in the elderly. The delayed aggravation of intracranial hematomas has been also explained by such anatomical and physiological changes present in the elderly. Delayed hyperemia/hyperperfusion may also be a characteristic of the elderly TBI, although its mechanisms are not fully understood. In addition, widely used pre-injury anticoagulant and antiplatelet therapies may be associated with delayed aggravation, making the management difficult for elderly TBI. It is an urgent issue to establish preventions and treatments for elderly TBI, since its outcome has been remained poor for more than 40 years.
Collapse
MESH Headings
- Accidental Falls/statistics & numerical data
- Age Factors
- Aged
- Aged, 80 and over
- Anticoagulants/adverse effects
- Atrophy
- Brain/pathology
- Brain/physiopathology
- Brain Damage, Chronic/epidemiology
- Brain Damage, Chronic/etiology
- Brain Damage, Chronic/prevention & control
- Brain Edema/etiology
- Brain Edema/physiopathology
- Brain Injuries, Traumatic/complications
- Brain Injuries, Traumatic/epidemiology
- Brain Injuries, Traumatic/physiopathology
- Brain Injuries, Traumatic/therapy
- Comorbidity
- Disease Management
- Disease Progression
- Humans
- Hyperemia/physiopathology
- Intracranial Hemorrhage, Traumatic/etiology
- Intracranial Hemorrhage, Traumatic/physiopathology
- Platelet Aggregation Inhibitors/adverse effects
- Practice Guidelines as Topic
- Subdural Space/pathology
- Treatment Outcome
Collapse
Affiliation(s)
- Hiroshi KARIBE
- Department of Neurosurgery, Sendai City Hospital, Sendai, Miyagi, Japan
| | - Toshiaki HAYASHI
- Department of Neurosurgery, Sendai City Hospital, Sendai, Miyagi, Japan
| | - Ayumi NARISAWA
- Department of Neurosurgery, Sendai City Hospital, Sendai, Miyagi, Japan
| | - Motonobu KAMEYAMA
- Department of Neurosurgery, Sendai City Hospital, Sendai, Miyagi, Japan
| | - Atsuhiro NAKAGAWA
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Teiji TOMINAGA
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
219
|
Brouwer RM, Panizzon MS, Glahn DC, Hibar DP, Hua X, Jahanshad N, Abramovic L, de Zubicaray GI, Franz CE, Hansell NK, Hickie IB, Koenis MMG, Martin NG, Mather KA, McMahon KL, Schnack HG, Strike LT, Swagerman SC, Thalamuthu A, Wen W, Gilmore JH, Gogtay N, Kahn RS, Sachdev PS, Wright MJ, Boomsma DI, Kremen WS, Thompson PM, Hulshoff Pol HE. Genetic influences on individual differences in longitudinal changes in global and subcortical brain volumes: Results of the ENIGMA plasticity working group. Hum Brain Mapp 2017; 38:4444-4458. [PMID: 28580697 DOI: 10.1002/hbm.23672] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 12/12/2022] Open
Abstract
Structural brain changes that occur during development and ageing are related to mental health and general cognitive functioning. Individuals differ in the extent to which their brain volumes change over time, but whether these differences can be attributed to differences in their genotypes has not been widely studied. Here we estimate heritability (h2 ) of changes in global and subcortical brain volumes in five longitudinal twin cohorts from across the world and in different stages of the lifespan (N = 861). Heritability estimates of brain changes were significant and ranged from 16% (caudate) to 42% (cerebellar gray matter) for all global and most subcortical volumes (with the exception of thalamus and pallidum). Heritability estimates of change rates were generally higher in adults than in children suggesting an increasing influence of genetic factors explaining individual differences in brain structural changes with age. In children, environmental influences in part explained individual differences in developmental changes in brain structure. Multivariate genetic modeling showed that genetic influences of change rates and baseline volume significantly overlapped for many structures. The genetic influences explaining individual differences in the change rate for cerebellum, cerebellar gray matter and lateral ventricles were independent of the genetic influences explaining differences in their baseline volumes. These results imply the existence of genetic variants that are specific for brain plasticity, rather than brain volume itself. Identifying these genes may increase our understanding of brain development and ageing and possibly have implications for diseases that are characterized by deviant developmental trajectories of brain structure. Hum Brain Mapp 38:4444-4458, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rachel M Brouwer
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Matthew S Panizzon
- Department of Psychiatry, University of California, San Diego, California
| | - David C Glahn
- Department of Psychiatry, Yale University of Medicine, New Haven, Connecticut
| | - Derrek P Hibar
- Imaging Genetics Center, Keck School of Medicine of USC, Marina del Rey, California
| | - Xue Hua
- Imaging Genetics Center, Keck School of Medicine of USC, Marina del Rey, California
| | - Neda Jahanshad
- Imaging Genetics Center, Keck School of Medicine of USC, Marina del Rey, California
| | - Lucija Abramovic
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Greig I de Zubicaray
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia
| | - Carol E Franz
- Department of Psychiatry, University of California, San Diego, California
| | - Narelle K Hansell
- Queensland Brain Institute, University of Queensland, St. Lucia, QLD, Australia
| | - Ian B Hickie
- Clinical Research Unit, Brain & Mind Research Institute, University of Sydney, NSW, Australia
| | - Marinka M G Koenis
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Karen A Mather
- Centre for Healthy Brain Ageing, Psychiatry, University of New South Wales, Sydney, Australia
| | - Katie L McMahon
- Centre for Advanced Imaging, University of Queensland, St. Lucia, QLD, Australia
| | - Hugo G Schnack
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lachlan T Strike
- Queensland Brain Institute, University of Queensland, St. Lucia, QLD, Australia
| | - Suzanne C Swagerman
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain Ageing, Psychiatry, University of New South Wales, Sydney, Australia
| | - Wei Wen
- Centre for Healthy Brain Ageing, Psychiatry, University of New South Wales, Sydney, Australia
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina
| | - Nitin Gogtay
- National Institute of Mental Health, Bethesda, Maryland
| | - René S Kahn
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, Psychiatry, University of New South Wales, Sydney, Australia
| | - Margaret J Wright
- Queensland Brain Institute, University of Queensland, St. Lucia, QLD, Australia.,Centre for Advanced Imaging, University of Queensland, St. Lucia, QLD, Australia
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - William S Kremen
- Department of Psychiatry, University of California, San Diego, California
| | - Paul M Thompson
- Imaging Genetics Center, Keck School of Medicine of USC, Marina del Rey, California
| | - Hilleke E Hulshoff Pol
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
220
|
Kurth F, Cherbuin N, Luders E. Promising Links between Meditation and Reduced (Brain) Aging: An Attempt to Bridge Some Gaps between the Alleged Fountain of Youth and the Youth of the Field. Front Psychol 2017; 8:860. [PMID: 28611710 PMCID: PMC5447722 DOI: 10.3389/fpsyg.2017.00860] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 05/10/2017] [Indexed: 01/27/2023] Open
Abstract
Over the last decade, an increasing number of studies has reported a positive impact of meditation on cerebral aging. However, the underlying mechanisms for these seemingly brain-protecting effects are not well-understood. This may be due to the fact, at least partly, that systematic empirical meditation research has emerged only recently as a field of scientific scrutiny. Thus, on the one hand, critical questions remain largely unanswered; and on the other hand, outcomes of existing research require better integration to build a more comprehensive and holistic picture. In this article, we first review theories and mechanisms pertaining to normal (brain) aging, specifically focusing on telomeres, inflammation, stress regulation, and macroscopic brain anatomy. Then, we summarize existing research integrating the developing evidence suggesting that meditation exerts positive effects on (brain) aging, while carefully discussing possible mechanisms through which these effects may be mediated.
Collapse
Affiliation(s)
- Florian Kurth
- Department of Psychiatry and Biobehavioral Sciences, Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, UCLA School of MedicineLos Angeles, CA, United States
| | - Nicolas Cherbuin
- Centre for Research on Ageing Health and Wellbeing, Australian National UniversityCanberra, ACT, Australia
| | - Eileen Luders
- Department of Psychiatry and Biobehavioral Sciences, Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, UCLA School of MedicineLos Angeles, CA, United States.,Centre for Research on Ageing Health and Wellbeing, Australian National UniversityCanberra, ACT, Australia
| |
Collapse
|
221
|
Gholamzadeh S, Zarenezhad M, Montazeri M, Zareikordshooli M, Sadeghi G, Malekpour A, Hoseni S, Bahrani M, Hajatmand R. Statistical Analysis of Organ Morphometric Parameters and Weights in South Iranian Adult Autopsies. Medicine (Baltimore) 2017; 96:e6447. [PMID: 28538362 PMCID: PMC5457842 DOI: 10.1097/md.0000000000006447] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Organ weight is one important indicator to discern normal from abnormal condition in forensic pathology as well as in clinical medicine. The present study aimed to investigate morphometric parameters and organ weights of southern Iranian adults, which can be fundamental sources to be compared to abnormal cases.Morphometric parameters and weights of 6 organs (heart, liver, kidney, spleen, appendix, and brain), which were harvested from 501 southern Iranian adults (385 males and 116 females) during ordinary postmortem examination, were measured.All the organs were heavier in males than in females. Heart, brain, spleen, and right kidney were significantly heavier in males compared to females, but no significant difference was observed between the 2 sexes regarding the weights of the rest of the organs. Moreover, brain and heart became heavier as one got older and most organs were heavier in middle-aged individuals compared to other age groups. Furthermore, various types of correlations were observed between different organs' weights and body parameters.These results can be useful anatomical data for autopsy investigations, clinical practices, and research in southern Iran.
Collapse
|
222
|
|
223
|
Lukies MW, Watanabe Y, Tanaka H, Takahashi H, Ogata S, Omura K, Yorifuji S, Tomiyama N. Heritability of brain volume on MRI in middle to advanced age: A twin study of Japanese adults. PLoS One 2017; 12:e0175800. [PMID: 28426696 PMCID: PMC5398540 DOI: 10.1371/journal.pone.0175800] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 03/31/2017] [Indexed: 11/21/2022] Open
Abstract
Brain atrophy is part of the aging process and accelerated by neurodegenerative diseases, so an understanding of the background heritability of brain volume is essential. The purpose of this study was to determine the heritability of brain volume in middle to advanced age East Asian adults, an age group less studied and an ethnicity not previously studied. 3T magnetic resonance images were obtained and volumetric analyses conducted for a total of 74 individuals, 20 monozygotic twin pairs (mean age 61y min 41y max 75y) and 17 dizygotic twin pairs (mean age 64y min 41y max 85y). Total brain volume and a further seven regions were assessed, including lobar volumes, lateral divisions, and separated grey and white matter. Additive genetics and unique environment (AE) models for global brain volumes including total brain (90%), grey matter (91%) and white matter (84%) and many lobar volumes demonstrated high heritability in our study population. Our results present the heritability of brain volume in middle to advanced age as possibly higher in East Asian adults.
Collapse
Affiliation(s)
- Matthew W. Lukies
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoshiyuki Watanabe
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Suita, Japan
- * E-mail:
| | - Hisashi Tanaka
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hiroto Takahashi
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Soshiro Ogata
- Department of Health Promotion Science, Osaka University Graduate School of Medicine, Suita, Japan
- Osaka University Twin Research Group, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kayoko Omura
- Department of Public Health and Community Nursing, Mie Prefectural Nursing College, Mie, Japan
| | - Shiro Yorifuji
- Division of Functional Diagnostic Science, Osaka University Medical School, Suita, Japan
| | - Noriyuki Tomiyama
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Suita, Japan
| | | |
Collapse
|
224
|
de Dieuleveult AL, Siemonsma PC, van Erp JBF, Brouwer AM. Effects of Aging in Multisensory Integration: A Systematic Review. Front Aging Neurosci 2017; 9:80. [PMID: 28400727 PMCID: PMC5368230 DOI: 10.3389/fnagi.2017.00080] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/14/2017] [Indexed: 11/13/2022] Open
Abstract
Multisensory integration (MSI) is the integration by the brain of environmental information acquired through more than one sense. Accurate MSI has been shown to be a key component of successful aging and to be crucial for processes underlying activities of daily living (ADLs). Problems in MSI could prevent older adults (OA) to age in place and live independently. However, there is a need to know how to assess changes in MSI in individuals. This systematic review provides an overview of tests assessing the effect of age on MSI in the healthy elderly population (aged 60 years and older). A literature search was done in Scopus. Articles from the earliest records available to January 20, 2016, were eligible for inclusion if assessing effects of aging on MSI in the healthy elderly population compared to younger adults (YA). These articles were rated for risk of bias with the Newcastle-Ottawa quality assessment. Out of 307 identified research articles, 49 articles were included for final review, describing 69 tests. The review indicated that OA maximize the use of multiple sources of information in comparison to YA (20 studies). In tasks that require more cognitive function, or when participants need to adapt rapidly to a situation, or when a dual task is added to the experiment, OA have problems selecting and integrating information properly as compared to YA (19 studies). Additionally, irrelevant or wrong information (i.e., distractors) has a greater impact on OA than on YA (21 studies). OA failing to weigh sensory information properly, has not been described in previous reviews. Anatomical changes (i.e., reduction of brain volume and differences of brain areas' recruitment) and information processing changes (i.e., general cognitive slowing, inverse effectiveness, larger time window of integration, deficits in attentional control and increased noise at baseline) can only partly explain the differences between OA and YA regarding MSI. Since we have an interest in successful aging and early detection of MSI issues in the elderly population, the identified tests form a good starting point to develop a clinically useful toolkit to assess MSI in healthy OA.
Collapse
Affiliation(s)
- Alix L de Dieuleveult
- Predictive Health Technologies, Netherlands Organisation for Applied Scientific ResearchLeiden, Netherlands; Perceptual and Cognitive Systems, Netherlands Organisation for Applied Scientific ResearchSoesterberg, Netherlands
| | - Petra C Siemonsma
- Predictive Health Technologies, Netherlands Organisation for Applied Scientific ResearchLeiden, Netherlands; Thim van der Laan, University for PhysiotherapyNieuwegein, Netherlands; Faculty of Health, University of Applied Sciences LeidenLeiden, Netherlands
| | - Jan B F van Erp
- Perceptual and Cognitive Systems, Netherlands Organisation for Applied Scientific ResearchSoesterberg, Netherlands; Human Media Interaction, Electrical Engineering, Mathematics and Computer Science, University of TwenteEnschede, Netherlands
| | - Anne-Marie Brouwer
- Perceptual and Cognitive Systems, Netherlands Organisation for Applied Scientific Research Soesterberg, Netherlands
| |
Collapse
|
225
|
Knyazev GG, Savostyanov AN, Bocharov AV, Slobodskaya HR, Bairova NB, Tamozhnikov SS, Stepanova VV. Effortful control and resting state networks: A longitudinal EEG study. Neuroscience 2017; 346:365-381. [DOI: 10.1016/j.neuroscience.2017.01.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/14/2017] [Accepted: 01/17/2017] [Indexed: 10/20/2022]
|
226
|
Lindig T, Kotikalapudi R, Schweikardt D, Martin P, Bender F, Klose U, Ernemann U, Focke NK, Bender B. Evaluation of multimodal segmentation based on 3D T1-, T2- and FLAIR-weighted images - the difficulty of choosing. Neuroimage 2017; 170:210-221. [PMID: 28188918 DOI: 10.1016/j.neuroimage.2017.02.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/01/2017] [Accepted: 02/06/2017] [Indexed: 01/09/2023] Open
Abstract
Voxel-based morphometry is still mainly based on T1-weighted MRI scans. Misclassification of vessels and dura mater as gray matter has been previously reported. Goal of the present work was to evaluate the effect of multimodal segmentation methods available in SPM12, and their influence on identification of age related atrophy and lesion detection in epilepsy patients. 3D T1-, T2- and FLAIR-images of 77 healthy adults (mean age 35.8 years, 19-66 years, 45 females), 7 patients with malformation of cortical development (MCD) (mean age 28.1 years,19-40 years, 3 females), and 5 patients with left hippocampal sclerosis (LHS) (mean age 49.0 years, 25-67 years, 3 females) from a 3T scanner were evaluated. Segmentation based on T1-only, T1+T2, T1+FLAIR, T2+FLAIR, and T1+T2+FLAIR were compared in the healthy subjects. Clinical VBM results based on the different segmentation approaches for MCD and for LHS were compared. T1-only segmentation overestimated total intracranial volume by about 80ml compared to the other segmentation methods. This was due to misclassification of dura mater and vessels as GM and CSF. Significant differences were found for several anatomical regions: the occipital lobe, the basal ganglia/thalamus, the pre- and postcentral gyrus, the cerebellum, and the brainstem. None of the segmentation methods yielded completely satisfying results for the basal ganglia/thalamus and the brainstem. The best correlation with age could be found for the multimodal T1+T2+FLAIR segmentation. Highest T-scores for identification of LHS were found for T1+T2 segmentation, while highest T-scores for MCD were dependent on lesion and anatomical location. Multimodal segmentation is superior to T1-only segmentation and reduces the misclassification of dura mater and vessels as GM and CSF. Depending on the anatomical region and the pathology of interest (atrophy, lesion detection, etc.), different combinations of T1, T2 and FLAIR yield optimal results.
Collapse
Affiliation(s)
- Tobias Lindig
- Dept. of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany.
| | - Raviteja Kotikalapudi
- Dept. of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany; Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany.
| | - Daniel Schweikardt
- Dept. of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany.
| | - Pascal Martin
- Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany.
| | - Friedemann Bender
- Dept. of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany; Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany.
| | - Uwe Klose
- Dept. of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany.
| | - Ulrike Ernemann
- Dept. of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany.
| | - Niels K Focke
- Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany.
| | - Benjamin Bender
- Dept. of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany.
| |
Collapse
|
227
|
Jørgensen KN, Nesvåg R, Nerland S, Mørch-Johnsen L, Westlye LT, Lange EH, Haukvik UK, Hartberg CB, Melle I, Andreassen OA, Agartz I. Brain volume change in first-episode psychosis: an effect of antipsychotic medication independent of BMI change. Acta Psychiatr Scand 2017; 135:117-126. [PMID: 27925164 DOI: 10.1111/acps.12677] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/10/2016] [Indexed: 01/08/2023]
Abstract
OBJECTIVE The effect of antipsychotic medication on brain structure remains unclear. Given the prevalence of weight gain as a side-effect, body mass index (BMI) change could be a confounder. METHOD Patients with first-episode psychosis (n = 78) and healthy controls (n = 119) underwent two 1.5T MRI scans with a 1-year follow-up interval. siena (fsl 5.0) was used to measure whole-brain volume change. Weight and height were measured at both time points. Antipsychotic medication use at baseline and follow-up was converted into chlorpromazine equivalent dose and averaged. RESULTS Patients did not show significantly larger brain volume loss compared with healthy controls. In the whole sample (n = 197), BMI change was negatively associated with brain volume change (β = -0.19, P = 0.008); there was no interaction effect of group. Among patients, higher antipsychotic medication dosage was associated with greater brain volume loss (β = -0.45, P < 0.001). This association was not affected by adjusting for BMI change. CONCLUSION Weight gain was related to brain volume reductions to a similar degree among patients and controls. Antipsychotic dosage-related reductions of brain volume were not confounded by BMI change. Generalizability to contexts involving severe weight gain needs to be established. Furthermore, disentangling effects of medication from illness severity remains a challenge.
Collapse
Affiliation(s)
- K N Jørgensen
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway.,NORMENT and K.G. Jebsen Center for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - R Nesvåg
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway.,Norwegian Institute of Public Health, Oslo, Norway
| | - S Nerland
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - L Mørch-Johnsen
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway.,NORMENT and K.G. Jebsen Center for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - L T Westlye
- NORMENT and K.G. Jebsen Center for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.,Department of Psychology, University of Oslo, Oslo, Norway
| | - E H Lange
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway.,NORMENT and K.G. Jebsen Center for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - U K Haukvik
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway.,NORMENT and K.G. Jebsen Center for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - C B Hartberg
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway.,NORMENT and K.G. Jebsen Center for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - I Melle
- NORMENT and K.G. Jebsen Center for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - O A Andreassen
- NORMENT and K.G. Jebsen Center for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - I Agartz
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway.,NORMENT and K.G. Jebsen Center for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
228
|
Patel A, van Ginneken B, Meijer FJ, van Dijk EJ, Prokop M, Manniesing R. Robust cranial cavity segmentation in CT and CT perfusion images of trauma and suspected stroke patients. Med Image Anal 2017; 36:216-228. [DOI: 10.1016/j.media.2016.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 11/28/2022]
|
229
|
Lin H, Roberts RJ. Pharmacologic Consideration in the Elderly Trauma Patient. CURRENT TRAUMA REPORTS 2017. [DOI: 10.1007/s40719-017-0072-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
230
|
Schippling S, Ostwaldt AC, Suppa P, Spies L, Manogaran P, Gocke C, Huppertz HJ, Opfer R. Global and regional annual brain volume loss rates in physiological aging. J Neurol 2017; 264:520-528. [DOI: 10.1007/s00415-016-8374-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 12/31/2022]
|
231
|
Grinberg F, Maximov II, Farrher E, Neuner I, Amort L, Thönneßen H, Oberwelland E, Konrad K, Shah NJ. Diffusion kurtosis metrics as biomarkers of microstructural development: A comparative study of a group of children and a group of adults. Neuroimage 2017; 144:12-22. [DOI: 10.1016/j.neuroimage.2016.08.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 07/21/2016] [Accepted: 08/17/2016] [Indexed: 01/08/2023] Open
|
232
|
Abstract
Brain atrophy occurs at a faster rate in patients with multiple sclerosis (MS) than in healthy individuals. In three randomized, controlled, phase III trials, fingolimod reduced the annual rate of brain volume loss (BVL) in patients with relapsing MS (RMS) by approximately one-third relative to that in individuals receiving placebo or intramuscular interferon beta-1a. Analysis of brain volume changes during study extensions has shown that this reduced rate of BVL is sustained in patients with RMS receiving fingolimod continuously. Subgroup analyses of the core phase III and extension studies have shown that reductions in the rate of BVL are observed irrespective of levels of inflammatory lesion activity seen by magnetic resonance imaging at baseline and on study; levels of disability at baseline; and treatment history. The rate of BVL in these studies was predicted independently by T2 lesion and gadolinium-enhancing lesion burdens at baseline, and correlations observed between BVL and increasing levels of disability strengthened over time. In another phase III trial in patients with primary progressive MS (PPMS), fingolimod did not reduce BVL overall relative to placebo; however, consistent with findings in RMS, there was a treatment effect on BVL in patients with PPMS with gadolinium-enhancing lesion activity at baseline. The association between treatment effects on BVL and future accumulation of disability argues in favor of measuring BVL on a more routine basis and with a more structured approach than is generally the case in clinical practice. Despite several practical obstacles, progress is being made in achieving this goal.
Collapse
|
233
|
Structural brain imaging correlates of ASD and ADHD across the lifespan: a hypothesis-generating review on developmental ASD-ADHD subtypes. J Neural Transm (Vienna) 2016; 124:259-271. [PMID: 28000020 PMCID: PMC5285408 DOI: 10.1007/s00702-016-1651-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 11/11/2016] [Indexed: 12/22/2022]
Abstract
We hypothesize that it is plausible that biologically distinct developmental ASD-ADHD subtypes are present, each characterized by a distinct time of onset of symptoms, progression and combination of symptoms. The aim of the present narrative review was to explore if structural brain imaging studies may shed light on key brain areas that are linked to both ASD and ADHD symptoms and undergo significant changes during development. These findings may possibly pinpoint to brain mechanisms underlying differential developmental ASD-ADHD subtypes. To this end we brought together the literature on ASD and ADHD structural brain imaging symptoms and particularly highlight the adolescent years and beyond. Findings indicate that the vast majority of existing MRI studies has been cross-sectional and conducted in children, and sometimes did include adolescents as well, but without explicitly documenting on this age group. MRI studies documenting on age effects in adults with ASD and/or ADHD are rare, and if age is taken into account, only linear effects are examined. Data from various studies suggest that a crucial distinctive feature underlying different developmental ASD-ADHD subtypes may be the differential developmental thinning patterns of the anterior cingulate cortex and related connections towards other prefrontal regions. These regions are crucial for the development of cognitive/effortful control and socio-emotional functioning, with impairments in these features as key to both ASD and ADHD.
Collapse
|
234
|
Eshaghi A, Wottschel V, Cortese R, Calabrese M, Sahraian MA, Thompson AJ, Alexander DC, Ciccarelli O. Gray matter MRI differentiates neuromyelitis optica from multiple sclerosis using random forest. Neurology 2016; 87:2463-2470. [PMID: 27807185 PMCID: PMC5177679 DOI: 10.1212/wnl.0000000000003395] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 09/08/2016] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE We tested whether brain gray matter (GM) imaging measures can differentiate between multiple sclerosis (MS) and neuromyelitis optica (NMO) using random-forest classification. METHODS Ninety participants (25 patients with MS, 30 patients with NMO, and 35 healthy controls [HCs]) were studied in Tehran, Iran, and 54 (24 patients with MS, 20 patients with NMO, and 10 HCs) in Padua, Italy. Participants underwent brain T1 and T2/fluid-attenuated inversion recovery MRI. Volume, thickness, and surface of 50 cortical GM regions and volumes of the deep GM nuclei were calculated and used to construct 3 random-forest models to classify patients as either NMO or MS, and separate each patient group from HCs. Clinical diagnosis was the gold standard against which the accuracy was calculated. RESULTS The classifier distinguished patients with MS, who showed greater atrophy especially in deep GM, from those with NMO with an average accuracy of 74% (sensitivity/specificity: 77/72; p < 0.01). When we used thalamic volume (the most discriminating GM measure) together with the white matter lesion volume, the accuracy of the classification of MS vs NMO was 80%. The classifications of MS vs HCs and NMO vs HCs achieved higher accuracies (92% and 88%). CONCLUSIONS GM imaging biomarkers, automatically obtained from clinical scans, can be used to distinguish NMO from MS, even in a 2-center setting, and may facilitate the differential diagnosis in clinical practice. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that GM imaging biomarkers can distinguish patients with NMO from those with MS.
Collapse
Affiliation(s)
- Arman Eshaghi
- From the Queen Square MS Centre, Institute of Neurology (A.E., V.W., R.C., O.C.), Centre for Medical Image Computing (CMIC), Department of Computer Science (A.E., V.W., D.C.A.), and Faculty of Brain Sciences (A.J.T.), University College London, UK; MS Research Centre (A.E., M.A.S.), Neuroscience Institute, Tehran University of Medical Sciences, Iran; Advanced Neuroimaging Lab (M.C.), Neurology Clinic B, Department of Neurological and Movement Sciences, University of Verona; Neuroimaging Unit (M.C.), Euganea Medica, Padua, Italy; and National Institute of Health Research (NIHR) (A.J.T., O.C.), University College London Hospitals (UCLH) Biomedical Research Centre (BRC), London, UK.
| | - Viktor Wottschel
- From the Queen Square MS Centre, Institute of Neurology (A.E., V.W., R.C., O.C.), Centre for Medical Image Computing (CMIC), Department of Computer Science (A.E., V.W., D.C.A.), and Faculty of Brain Sciences (A.J.T.), University College London, UK; MS Research Centre (A.E., M.A.S.), Neuroscience Institute, Tehran University of Medical Sciences, Iran; Advanced Neuroimaging Lab (M.C.), Neurology Clinic B, Department of Neurological and Movement Sciences, University of Verona; Neuroimaging Unit (M.C.), Euganea Medica, Padua, Italy; and National Institute of Health Research (NIHR) (A.J.T., O.C.), University College London Hospitals (UCLH) Biomedical Research Centre (BRC), London, UK
| | - Rosa Cortese
- From the Queen Square MS Centre, Institute of Neurology (A.E., V.W., R.C., O.C.), Centre for Medical Image Computing (CMIC), Department of Computer Science (A.E., V.W., D.C.A.), and Faculty of Brain Sciences (A.J.T.), University College London, UK; MS Research Centre (A.E., M.A.S.), Neuroscience Institute, Tehran University of Medical Sciences, Iran; Advanced Neuroimaging Lab (M.C.), Neurology Clinic B, Department of Neurological and Movement Sciences, University of Verona; Neuroimaging Unit (M.C.), Euganea Medica, Padua, Italy; and National Institute of Health Research (NIHR) (A.J.T., O.C.), University College London Hospitals (UCLH) Biomedical Research Centre (BRC), London, UK
| | - Massimiliano Calabrese
- From the Queen Square MS Centre, Institute of Neurology (A.E., V.W., R.C., O.C.), Centre for Medical Image Computing (CMIC), Department of Computer Science (A.E., V.W., D.C.A.), and Faculty of Brain Sciences (A.J.T.), University College London, UK; MS Research Centre (A.E., M.A.S.), Neuroscience Institute, Tehran University of Medical Sciences, Iran; Advanced Neuroimaging Lab (M.C.), Neurology Clinic B, Department of Neurological and Movement Sciences, University of Verona; Neuroimaging Unit (M.C.), Euganea Medica, Padua, Italy; and National Institute of Health Research (NIHR) (A.J.T., O.C.), University College London Hospitals (UCLH) Biomedical Research Centre (BRC), London, UK
| | - Mohammad Ali Sahraian
- From the Queen Square MS Centre, Institute of Neurology (A.E., V.W., R.C., O.C.), Centre for Medical Image Computing (CMIC), Department of Computer Science (A.E., V.W., D.C.A.), and Faculty of Brain Sciences (A.J.T.), University College London, UK; MS Research Centre (A.E., M.A.S.), Neuroscience Institute, Tehran University of Medical Sciences, Iran; Advanced Neuroimaging Lab (M.C.), Neurology Clinic B, Department of Neurological and Movement Sciences, University of Verona; Neuroimaging Unit (M.C.), Euganea Medica, Padua, Italy; and National Institute of Health Research (NIHR) (A.J.T., O.C.), University College London Hospitals (UCLH) Biomedical Research Centre (BRC), London, UK
| | - Alan J Thompson
- From the Queen Square MS Centre, Institute of Neurology (A.E., V.W., R.C., O.C.), Centre for Medical Image Computing (CMIC), Department of Computer Science (A.E., V.W., D.C.A.), and Faculty of Brain Sciences (A.J.T.), University College London, UK; MS Research Centre (A.E., M.A.S.), Neuroscience Institute, Tehran University of Medical Sciences, Iran; Advanced Neuroimaging Lab (M.C.), Neurology Clinic B, Department of Neurological and Movement Sciences, University of Verona; Neuroimaging Unit (M.C.), Euganea Medica, Padua, Italy; and National Institute of Health Research (NIHR) (A.J.T., O.C.), University College London Hospitals (UCLH) Biomedical Research Centre (BRC), London, UK
| | - Daniel C Alexander
- From the Queen Square MS Centre, Institute of Neurology (A.E., V.W., R.C., O.C.), Centre for Medical Image Computing (CMIC), Department of Computer Science (A.E., V.W., D.C.A.), and Faculty of Brain Sciences (A.J.T.), University College London, UK; MS Research Centre (A.E., M.A.S.), Neuroscience Institute, Tehran University of Medical Sciences, Iran; Advanced Neuroimaging Lab (M.C.), Neurology Clinic B, Department of Neurological and Movement Sciences, University of Verona; Neuroimaging Unit (M.C.), Euganea Medica, Padua, Italy; and National Institute of Health Research (NIHR) (A.J.T., O.C.), University College London Hospitals (UCLH) Biomedical Research Centre (BRC), London, UK
| | - Olga Ciccarelli
- From the Queen Square MS Centre, Institute of Neurology (A.E., V.W., R.C., O.C.), Centre for Medical Image Computing (CMIC), Department of Computer Science (A.E., V.W., D.C.A.), and Faculty of Brain Sciences (A.J.T.), University College London, UK; MS Research Centre (A.E., M.A.S.), Neuroscience Institute, Tehran University of Medical Sciences, Iran; Advanced Neuroimaging Lab (M.C.), Neurology Clinic B, Department of Neurological and Movement Sciences, University of Verona; Neuroimaging Unit (M.C.), Euganea Medica, Padua, Italy; and National Institute of Health Research (NIHR) (A.J.T., O.C.), University College London Hospitals (UCLH) Biomedical Research Centre (BRC), London, UK
| |
Collapse
|
235
|
Making Brains run Faster: are they Becoming Smarter? SPANISH JOURNAL OF PSYCHOLOGY 2016; 19:E88. [DOI: 10.1017/sjp.2016.83] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AbstractA brief overview of structural and functional brain characteristics related to g is presented in the light of major neurobiological theories of intelligence: Neural Efficiency, P-FIT and Multiple-Demand system. These theories provide a framework to discuss the main objective of the paper: what is the relationship between individual alpha frequency (IAF) and g? Three studies were conducted in order to investigate this relationship: two correlational studies and a third study in which we experimentally induced changes in IAF by means of transcranial alternating current stimulation (tACS). (1) In a large scale study (n = 417), no significant correlations between IAF and IQ were observed. However, in males IAF positively correlated with mental rotation and shape manipulation and with an attentional focus on detail. (2) The second study showed sex-specific correlations between IAF (obtained during task performance) and scope of attention in males and between IAF and reaction time in females. (3) In the third study, individuals’ IAF was increased with tACS. The induced changes in IAF had a disrupting effect on male performance on Raven’s matrices, whereas a mild positive effect was observed for females. Neuro-electric activity after verum tACS showed increased desynchronization in the upper alpha band and dissociation between fronto-parietal and right temporal brain areas during performance on Raven’s matrices. The results are discussed in the light of gender differences in brain structure and activity.
Collapse
|
236
|
Alroughani R, Deleu D, El Salem K, Al-Hashel J, Alexander KJ, Abdelrazek MA, Aljishi A, Alkhaboori J, Al Azri F, Al Zadjali N, Hbahbih M, Sokrab TE, Said M, Rovira À. A regional consensus recommendation on brain atrophy as an outcome measure in multiple sclerosis. BMC Neurol 2016; 16:240. [PMID: 27881095 PMCID: PMC5121973 DOI: 10.1186/s12883-016-0762-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/15/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic autoimmune disease characterized by inflammatory and neurodegenerative processes leading to irreversible neurological impairment. Brain atrophy occurs early in the course of the disease at a rate greater than the general population. Brain volume loss (BVL) is associated with disability progression and cognitive impairment in patients with MS; hence its value as a potential target in monitoring and treating MS is discussed. METHODS A group of MS neurologists and neuro-radiologists reviewed the current literature on brain atrophy and discussed the challenges in assessing and implementing brain atrophy measurements in clinical practice. The panel used a voting system to reach a consensus and the votes were counted for the proposed set of questions for cognitive and brain atrophy assessments. RESULTS The panel of experts was able to identify recent studies, which demonstrated the correlation between BVL and future worsening of disability and cognition. The current evidence revealed that reduction of BVL could be achieved with different disease-modifying therapies (DMTs). BVL provided a better treatment and monitoring strategy when it is combined to the composite measures of "no evidence of disease activity" (NEDA). The panel recommended a set of cognitive assessment tools and MRI methods and software applications that may help in capturing and measuring the underlying MS pathology with high degree of specificity. CONCLUSION BVL was considered to be a useful measurement to longitudinally assess disease progression and cognitive function in patients with MS. Brain atrophy measurement was recommended to be incorporated into the concept of NEDA. Consequently, a consensus recommendation was reached in anticipation for implementation of the use of cognitive assessment and brain atrophy measurements on a regional level.
Collapse
Affiliation(s)
- Raed Alroughani
- Division of Neurology, Department of Medicine, Amiri Hospital, Kuwait City, Kuwait.
- Neurology Clinic, Dasman Diabetes Institute, Dasman, Kuwait.
| | - Dirk Deleu
- Division of Neurology (Neuroscience Institute), Hamad General Hospital, Doha, Qatar
| | - Khalid El Salem
- Department of Neurology, Jordan University of Science and Technology, King Abdullah University Hospital, Irbid, Jordan
| | - Jasem Al-Hashel
- Department of Neurology, Ibn Sina Hospital, Kuwait City, Kuwait
| | | | | | - Adel Aljishi
- Department of Neurology, Salmaniya Hospital & AGU, Manama, Bahrain
| | | | - Faisal Al Azri
- Department of Radiology, Sultan Qaboos University Hospital, Muscat, Oman
| | | | | | - Tag Eldin Sokrab
- Division of Neurology (Neuroscience Institute), Hamad General Center, Doha, Qatar
| | - Mohamed Said
- Medical Manger-Gulf Countries, Novartis pharmaceuticals, Dubai, United Arab Emirates
| | - Àlex Rovira
- Department of Radiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| |
Collapse
|
237
|
Mills KL, Goddings AL, Herting MM, Meuwese R, Blakemore SJ, Crone EA, Dahl RE, Güroğlu B, Raznahan A, Sowell ER, Tamnes CK. Structural brain development between childhood and adulthood: Convergence across four longitudinal samples. Neuroimage 2016; 141:273-281. [PMID: 27453157 PMCID: PMC5035135 DOI: 10.1016/j.neuroimage.2016.07.044] [Citation(s) in RCA: 354] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/18/2016] [Accepted: 07/20/2016] [Indexed: 12/21/2022] Open
Abstract
Longitudinal studies including brain measures acquired through magnetic resonance imaging (MRI) have enabled population models of human brain development, crucial for our understanding of typical development as well as neurodevelopmental disorders. Brain development in the first two decades generally involves early cortical grey matter volume (CGMV) increases followed by decreases, and monotonic increases in cerebral white matter volume (CWMV). However, inconsistencies regarding the precise developmental trajectories call into question the comparability of samples. This issue can be addressed by conducting a comprehensive study across multiple datasets from diverse populations. Here, we present replicable models for gross structural brain development between childhood and adulthood (ages 8-30years) by repeating analyses in four separate longitudinal samples (391 participants; 852 scans). In addition, we address how accounting for global measures of cranial/brain size affect these developmental trajectories. First, we found evidence for continued development of both intracranial volume (ICV) and whole brain volume (WBV) through adolescence, albeit following distinct trajectories. Second, our results indicate that CGMV is at its highest in childhood, decreasing steadily through the second decade with deceleration in the third decade, while CWMV increases until mid-to-late adolescence before decelerating. Importantly, we show that accounting for cranial/brain size affects models of regional brain development, particularly with respect to sex differences. Our results increase confidence in our knowledge of the pattern of brain changes during adolescence, reduce concerns about discrepancies across samples, and suggest some best practices for statistical control of cranial volume and brain size in future studies.
Collapse
Affiliation(s)
- Kathryn L Mills
- Department of Psychology, University of Oregon, Eugene, OR, USA; Center for Translational Neuroscience, University of Oregon, Eugene, OR, USA.
| | | | - Megan M Herting
- Department of Pediatrics, Keck School of Medicine at USC/Children's Hospital of Los Angeles, Los Angeles, CA, USA
| | - Rosa Meuwese
- Institute of Psychology, Leiden University, Leiden, The Netherlands; Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| | | | - Eveline A Crone
- Institute of Psychology, Leiden University, Leiden, The Netherlands; Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| | - Ronald E Dahl
- Institute of Human Development, University of California Berkeley, Berkeley, CA, USA
| | - Berna Güroğlu
- Institute of Psychology, Leiden University, Leiden, The Netherlands; Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| | - Armin Raznahan
- Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Elizabeth R Sowell
- Department of Pediatrics, Keck School of Medicine at USC/Children's Hospital of Los Angeles, Los Angeles, CA, USA
| | - Christian K Tamnes
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
238
|
Huo Y, Aboud K, Kang H, Cutting LE, Landman BA. Mapping Lifetime Brain Volumetry with Covariate-Adjusted Restricted Cubic Spline Regression from Cross-sectional Multi-site MRI. ACTA ACUST UNITED AC 2016; 9900:81-88. [PMID: 28191550 DOI: 10.1007/978-3-319-46720-7_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Understanding brain volumetry is essential to understand neurodevelopment and disease. Historically, age-related changes have been studied in detail for specific age ranges (e.g., early childhood, teen, young adults, elderly, etc.) or more sparsely sampled for wider considerations of lifetime aging. Recent advancements in data sharing and robust processing have made available considerable quantities of brain images from normal, healthy volunteers. However, existing analysis approaches have had difficulty addressing (1) complex volumetric developments on the large cohort across the life time (e.g., beyond cubic age trends), (2) accounting for confound effects, and (3) maintaining an analysis framework consistent with the general linear model (GLM) approach pervasive in neuroscience. To address these challenges, we propose to use covariate-adjusted restricted cubic spline (C-RCS) regression within a multi-site cross-sectional framework. This model allows for flexible consideration of non-linear age-associated patterns while accounting for traditional covariates and interaction effects. As a demonstration of this approach on lifetime brain aging, we derive normative volumetric trajectories and 95% confidence intervals from 5111 healthy patients from 64 sites while accounting for confounding sex, intracranial volume and field strength effects. The volumetric results are shown to be consistent with traditional studies that have explored more limited age ranges using single-site analyses. This work represents the first integration of C-RCS with neuroimaging and the derivation of structural covariance networks (SCNs) from a large study of multi-site, cross-sectional data.
Collapse
Affiliation(s)
- Yuankai Huo
- Department of Electrical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Katherine Aboud
- Department of Special Education, Vanderbilt University, Nashville, TN, USA
| | - Hakmook Kang
- Department of Biostatistics, Vanderbilt University, Nashville, TN, USA
| | - Laurie E Cutting
- Department of Special Education, Vanderbilt University, Nashville, TN, USA
| | - Bennett A Landman
- Department of Electrical Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
239
|
Pressman PS, Noniyeva Y, Bott N, Dutt S, Sturm V, Miller BL, Kramer JH. Comparing Volume Loss in Neuroanatomical Regions of Emotion versus Regions of Cognition in Healthy Aging. PLoS One 2016; 11:e0158187. [PMID: 27552103 PMCID: PMC4994935 DOI: 10.1371/journal.pone.0158187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 06/10/2016] [Indexed: 01/05/2023] Open
Abstract
Many emotional functions are relatively preserved in aging despite declines in several cognitive domains and physical health. High levels of happiness exist even among centenarians. To address the hypothesis of whether preservation of emotional function in healthy aging may relate to different rates of age-related volume loss across brain structures, we performed two volumetric analyses on structural magnetic resonance neuroimaging of a group of healthy aging research participants using Freesurfer version 5.1. Volumes selected as supporting cognition included bilateral midfrontal and lateral frontal gyri, lateral parietal and temporal cortex, and medial temporal lobes. Volumes supporting emotion included bilateral amygdala, rostral anterior cingulate, insula, orbitofrontal cortex, and nucleus accumbens. A cross-sectional analysis was performed using structural MRI scans from 258 subjects. We found no difference in proportional change between groups. A longitudinal mixed effects model was used to compare regional changes over time in a subset of 84 subjects. Again, there was no difference in proportional change over time. While our results suggest that aging does not collectively target cognitive brain regions more than emotional regions, subgroup analysis suggests relative preservation of the anterior cingulate cortex, with greater volume loss in the nucleus accumbens. Implications of these relative rates of age-related volume loss in healthy aging are discussed and merit further research.
Collapse
Affiliation(s)
- Peter S. Pressman
- Memory and Aging Center, Department of Neurology, University of California, 675 Nelson Rising Lane, Suite 190, San Francisco, California, 94158, United States of America
| | - Yuliana Noniyeva
- Memory and Aging Center, Department of Neurology, University of California, 675 Nelson Rising Lane, Suite 190, San Francisco, California, 94158, United States of America
| | - Nick Bott
- Memory and Aging Center, Department of Neurology, University of California, 675 Nelson Rising Lane, Suite 190, San Francisco, California, 94158, United States of America
| | - Shubir Dutt
- Memory and Aging Center, Department of Neurology, University of California, 675 Nelson Rising Lane, Suite 190, San Francisco, California, 94158, United States of America
| | - Virginia Sturm
- Memory and Aging Center, Department of Neurology, University of California, 675 Nelson Rising Lane, Suite 190, San Francisco, California, 94158, United States of America
| | - Bruce L. Miller
- Memory and Aging Center, Department of Neurology, University of California, 675 Nelson Rising Lane, Suite 190, San Francisco, California, 94158, United States of America
| | - Joel H. Kramer
- Memory and Aging Center, Department of Neurology, University of California, 675 Nelson Rising Lane, Suite 190, San Francisco, California, 94158, United States of America
| |
Collapse
|
240
|
Bootsman F, Brouwer RM, Schnack HG, Kemner SM, Hillegers MHJ, Sarkisyan G, van der Schot AC, Vonk R, Hulshoff Pol HE, Nolen WA, Kahn RS, van Haren NEM. A study of genetic and environmental contributions to structural brain changes over time in twins concordant and discordant for bipolar disorder. J Psychiatr Res 2016; 79:116-124. [PMID: 27218817 DOI: 10.1016/j.jpsychires.2016.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 04/13/2016] [Accepted: 04/29/2016] [Indexed: 01/02/2023]
Abstract
This is the first longitudinal twin study examining genetic and environmental contributions to the association between liability to bipolar disorder (BD) and changes over time in global brain volumes, and global and regional measures of cortical surface area, cortical thickness and cortical volume. A total of 50 twins from pairs discordant or concordant for BD (monozygotic: 8 discordant and 3 concordant pairs, and 1 patient and 3 co-twins from incomplete pairs; dizygotic: 6 discordant and 2 concordant pairs, and 1 patient and 7 co-twins from incomplete pairs) underwent magnetic resonance imaging twice. In addition, 57 twins from healthy twin pairs (15 monozygotic and 10 dizygotic pairs, and 4 monozygotic and 3 dizygotic subjects from incomplete pairs) were also scanned twice. Mean follow-up duration for all twins was 7.5 years (standard deviation: 1.5 years). Data were analyzed using structural equation modeling software OpenMx. The liability to BD was not associated with global or regional structural brain changes over time. Although we observed a subtle increase in cerebral white matter in BD patients, this effect disappeared after correction for multiple comparisons. Heritability of brain changes over time was generally low to moderate. Structural brain changes appear to follow similar trajectories in BD patients and healthy controls. Existing brain abnormalities in BD do not appear to progressively change over time, but this requires additional confirmation. Further study with large cohorts is recommended to assess genetic and environmental influences on structural brain abnormalities in BD, while taking into account the influence of lithium on the brain.
Collapse
Affiliation(s)
- F Bootsman
- University Medical Center Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands.
| | - R M Brouwer
- University Medical Center Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - H G Schnack
- University Medical Center Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - S M Kemner
- University Medical Center Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - M H J Hillegers
- University Medical Center Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - G Sarkisyan
- University Medical Center Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | | | - R Vonk
- Reinier van Arkel, 's-Hertogenbosch, The Netherlands
| | - H E Hulshoff Pol
- University Medical Center Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - W A Nolen
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, Groningen, The Netherlands
| | - R S Kahn
- University Medical Center Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - N E M van Haren
- University Medical Center Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| |
Collapse
|
241
|
Tatti E, Rossi S, Innocenti I, Rossi A, Santarnecchi E. Non-invasive brain stimulation of the aging brain: State of the art and future perspectives. Ageing Res Rev 2016; 29:66-89. [PMID: 27221544 DOI: 10.1016/j.arr.2016.05.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 05/01/2016] [Accepted: 05/13/2016] [Indexed: 12/19/2022]
Abstract
Favored by increased life expectancy and reduced birth rate, worldwide demography is rapidly shifting to older ages. The golden age of aging is not only an achievement but also a big challenge because of the load of the elderly on social and medical health care systems. Moreover, the impact of age-related decline of attention, memory, reasoning and executive functions on self-sufficiency emphasizes the need of interventions to maintain cognitive abilities at a useful degree in old age. Recently, neuroscientific research explored the chance to apply Non-Invasive Brain Stimulation (NiBS) techniques (as transcranial electrical and magnetic stimulation) to healthy aging population to preserve or enhance physiologically-declining cognitive functions. The present review will update and address the current state of the art on NiBS in healthy aging. Feasibility of NiBS techniques will be discussed in light of recent neuroimaging (either structural or functional) and neurophysiological models proposed to explain neural substrates of the physiologically aging brain. Further, the chance to design multidisciplinary interventions to maximize the efficacy of NiBS techniques will be introduced as a necessary future direction.
Collapse
|
242
|
Sormani MP, Kappos L, Radue EW, Cohen J, Barkhof F, Sprenger T, Piani Meier D, Häring D, Tomic D, De Stefano N. Defining brain volume cutoffs to identify clinically relevant atrophy in RRMS. Mult Scler 2016; 23:656-664. [DOI: 10.1177/1352458516659550] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objective: To define values of normalized brain volume (NBV) that can be categorized as low, medium, or high, according to baseline characteristics of relapsing-remitting multiple sclerosis (RRMS) patients. Methods: Expected NBV (eNBV) was calculated for each patient based on age, disease duration, sex, baseline Expanded Disability Status Scale (EDSS), and T2-lesion volume, entering these variables into a multiple regression model run on 2342 RRMS patients (pooled FREEDOMS/FREEDOMS-II population). According to the difference between their observed NBV and their eNBV, patients were classified as having low NBV, medium NBV, or high NBV. We evaluated whether these NBV categories were clinically meaningful by assessing correlation with disability worsening. Results: The distribution of differences between observed NBV and eNBV was used to categorize patients as having low NBV, medium NBV or high NBV. Taking the high-NBV group as reference, the hazard ratios (HRs) for 2-year disability worsening, adjusted for treatment effect, were 1.23 (95% confidence interval (CI): 0.92–1.63, p = 0.16) for the medium NBV and 1.75 (95% CI: 1.26–2.44, p = 0.001) for the low NBV. The predictive value of NBV groups was preserved over 4 years. Treatment effect appeared more evident in low-NBV patients (HR = 0.58) than in medium-NBV (HR = 0.72) and in high-NBV (HR = 0.80) patients; however, the difference was not significant ( p = 0.57). Conclusion: RRMS patients can be categorized into disability risk groups based on individual eNBV values according to baseline demographics and clinical characteristics.
Collapse
Affiliation(s)
- Maria Pia Sormani
- Biostatistics Unit, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Ludwig Kappos
- Neurological Clinic and Polyclinic, Departments of Medicine, Clinical Research, Biomedicine and Biomedical Engineering, University Hospital Basel, Basel, Switzerland
| | - Ernst-Wilhelm Radue
- Medical Image Analysis Center (MIAC), University Hospital Basel, Basel, Switzerland
| | - Jeffrey Cohen
- Neurological Institute, The Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Frederik Barkhof
- Department of Radiology, VU University Medical Center, Amsterdam, Netherlands
| | - Till Sprenger
- Department of Neurology, DKD Helios Klinik Wiesbaden, Wiesbaden, Germany
| | | | | | | | | |
Collapse
|
243
|
Daulatzai MA. Cerebral hypoperfusion and glucose hypometabolism: Key pathophysiological modulators promote neurodegeneration, cognitive impairment, and Alzheimer's disease. J Neurosci Res 2016; 95:943-972. [PMID: 27350397 DOI: 10.1002/jnr.23777] [Citation(s) in RCA: 274] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/06/2016] [Accepted: 05/07/2016] [Indexed: 02/06/2023]
Abstract
Aging, hypertension, diabetes, hypoxia/obstructive sleep apnea (OSA), obesity, vitamin B12/folate deficiency, depression, and traumatic brain injury synergistically promote diverse pathological mechanisms including cerebral hypoperfusion and glucose hypometabolism. These risk factors trigger neuroinflammation and oxidative-nitrosative stress that in turn decrease nitric oxide and enhance endothelin, Amyloid-β deposition, cerebral amyloid angiopathy, and blood-brain barrier disruption. Proinflammatory cytokines, endothelin-1, and oxidative-nitrosative stress trigger several pathological feedforward and feedback loops. These upstream factors persist in the brain for decades, upregulating amyloid and tau, before the cognitive decline. These cascades lead to neuronal Ca2+ increase, neurodegeneration, cognitive/memory decline, and Alzheimer's disease (AD). However, strategies are available to attenuate cerebral hypoperfusion and glucose hypometabolism and ameliorate cognitive decline. AD is the leading cause of dementia among the elderly. There is significant evidence that pathways involving inflammation and oxidative-nitrosative stress (ONS) play a key pathophysiological role in promoting cognitive dysfunction. Aging and several comorbid conditions mentioned above promote diverse pathologies. These include inflammation, ONS, hypoperfusion, and hypometabolism in the brain. In AD, chronic cerebral hypoperfusion and glucose hypometabolism precede decades before the cognitive decline. These comorbid disease conditions may share and synergistically activate these pathophysiological pathways. Inflammation upregulates cerebrovascular pathology through proinflammatory cytokines, endothelin-1, and nitric oxide (NO). Inflammation-triggered ONS promotes long-term damage involving fatty acids, proteins, DNA, and mitochondria; these amplify and perpetuate several feedforward and feedback pathological loops. The latter includes dysfunctional energy metabolism (compromised mitochondrial ATP production), amyloid-β generation, endothelial dysfunction, and blood-brain-barrier disruption. These lead to decreased cerebral blood flow and chronic cerebral hypoperfusion- that would modulate metabolic dysfunction and neurodegeneration. In essence, hypoperfusion deprives the brain from its two paramount trophic substances, viz., oxygen and nutrients. Consequently, the brain suffers from synaptic dysfunction and neuronal degeneration/loss, leading to both gray and white matter atrophy, cognitive dysfunction, and AD. This Review underscores the importance of treating the above-mentioned comorbid disease conditions to attenuate inflammation and ONS and ameliorate decreased cerebral blood flow and hypometabolism. Additionally, several strategies are described here to control chronic hypoperfusion of the brain and enhance cognition. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mak Adam Daulatzai
- Sleep Disorders Group, EEE Dept/MSE, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
244
|
|
245
|
Ho BC, Koeppel JA, Barry AB. Cerebral white matter correlates of delay discounting in adolescents. Behav Brain Res 2016; 305:108-14. [PMID: 26946275 PMCID: PMC5038584 DOI: 10.1016/j.bbr.2016.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 03/01/2016] [Indexed: 12/31/2022]
Abstract
The adolescent brain undergoes extensive structural white matter (WM) changes. Adolescence is also a critical time period during which cognitive, emotional and social maturation occurs in transition into adulthood. Compared to adults, adolescents are generally more impulsive with increased risk-taking behaviors. The goal of this study is to examine whether adolescent impulsivity may be related to cerebral WM maturation. In 89 healthy adolescents, we assessed impulsivity using the delay discounting task, and MRI WM volumes in brain regions previously implicated in delay discounting behaviors. We found that smaller delay discounting AUC (area under the curve) was associated with larger WM volumes in orbitofrontal, dorsolateral and medial prefrontal cortices (PFC) and motor cortex. There were no significant effects of AUC on WM volumes within somatosensory brain regions. In our sample, younger age was significantly associated with greater WM volumes in orbitofrontal and dorsolateral PFC subregions. Even after accounting for age-related effects, preference for immediate rewards (or greater impulsivity) still correlated with larger WM volumes in prefrontal regions known to mediate cognitive control. Our findings lend further support to the notion that reduced brain WM maturity may limit the ability in adolescents to forgo immediate rewards leading to greater impulsivity.
Collapse
Affiliation(s)
- Beng-Choon Ho
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
| | - Julie A Koeppel
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Amy B Barry
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
246
|
Zivadinov R, Jakimovski D, Gandhi S, Ahmed R, Dwyer MG, Horakova D, Weinstock-Guttman B, Benedict RRH, Vaneckova M, Barnett M, Bergsland N. Clinical relevance of brain atrophy assessment in multiple sclerosis. Implications for its use in a clinical routine. Expert Rev Neurother 2016; 16:777-93. [PMID: 27105209 DOI: 10.1080/14737175.2016.1181543] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Brain atrophy measurement in multiple sclerosis (MS) has become an important outcome for determining patients at risk for developing physical and cognitive disability. AREAS COVERED In this article, we discuss the methodological issues related to using this MRI metric routinely, in a clinical setting. Understanding trajectories of annualized whole brain, gray and white matter, thalamic volume loss, and enlargement of ventricular space in specific MS phenotypes is becoming increasingly important. Evidence is mounting that disease-modifying treatments exert a positive effect on slowing brain atrophy progression in MS. Expert Commentary: While there is a need to translate measurement of brain atrophy to clinical routine at the individual patient level, there are still a number of challenges to be met before this can actually happen, including how to account for biological confounding factors and pseudoatrophy, standardize acquisition and analyses parameters, which can influence the accuracy of the assessments.
Collapse
Affiliation(s)
- Robert Zivadinov
- a Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences , University at Buffalo, State University of New York , Buffalo , NY , USA.,b MR Imaging Clinical Translational Research Center, Jacobs School of Medicine and Biomedical Sciences , University at Buffalo, State University of New York , Buffalo , NY , USA
| | - Dejan Jakimovski
- a Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences , University at Buffalo, State University of New York , Buffalo , NY , USA
| | - Sirin Gandhi
- a Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences , University at Buffalo, State University of New York , Buffalo , NY , USA
| | - Rahil Ahmed
- a Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences , University at Buffalo, State University of New York , Buffalo , NY , USA
| | - Michael G Dwyer
- a Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences , University at Buffalo, State University of New York , Buffalo , NY , USA
| | - Dana Horakova
- c Department of Neurology and Center of Clinical Neuroscience , Charles University in Prague, First Faculty of Medicine and General University Hospital , Prague , Czech Republic
| | - Bianca Weinstock-Guttman
- d Jacobs Multiple Sclerosis Center, Department of Neurology, School of Medicine and Biomedical Sciences , University at Buffalo, State University of New York , Buffalo , NY , USA
| | - Ralph R H Benedict
- d Jacobs Multiple Sclerosis Center, Department of Neurology, School of Medicine and Biomedical Sciences , University at Buffalo, State University of New York , Buffalo , NY , USA
| | - Manuela Vaneckova
- e Department of Radiology, First Faculty of Medicine and General University Hospital , Charles University , Prague , Czech Republic
| | - Michael Barnett
- f Sydney Neuroimaging Analysis Centre; Brain & Mind Centre , University of Sydney , Sydney , Australia
| | - Niels Bergsland
- a Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences , University at Buffalo, State University of New York , Buffalo , NY , USA.,g IRCCS 'S.Maria Nascente' , Don Gnocchi Foundation , Milan , Italy
| |
Collapse
|
247
|
Mathes B, Khalaidovski K, Wienke AS, Schmiedt-Fehr C, Basar-Eroglu C. Maturation of the P3 and concurrent oscillatory processes during adolescence. Clin Neurophysiol 2016; 127:2599-609. [PMID: 27291879 DOI: 10.1016/j.clinph.2016.04.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 04/12/2016] [Accepted: 04/23/2016] [Indexed: 10/21/2022]
Abstract
OBJECTIVE During adolescence event-related modulations of the neural response may increase. For slow event-related components, such as the P3, this developmental change may be masked due to increased amplitude levels of ongoing delta and theta oscillations in adolescents. METHODS In a cross-sectional study design, EEG was measured in 51 participants between 13 and 24years. A visual oddball paradigm was used to elicit the P3. Our analysis focused on fronto-parietal activations within the P3 time-window and the concurrent time-frequency characteristics in the delta (∼0.5-4Hz) and theta (∼4-7Hz) band. RESULTS The parietal P3 amplitude was similar across the investigated age range, while the amplitude at frontal regions increased with age. The pre-stimulus amplitudes of delta and theta oscillations declined with age, while post-stimulus amplitude enhancement and inter-trial phase coherence increased. These changes affected fronto-parietal electrode sites. CONCLUSIONS The parietal P3 maximum seemed comparable for adolescents and young adults. Detailed analysis revealed that within the P3 time-window brain maturation during adolescence may lead to reduced spontaneous slow-wave oscillations, increased amplitude modulation and time precision of event-related oscillations, and altered P3 scalp topography. SIGNIFICANCE Time-frequency analyses may help to distinguish selective neurodevelopmental changes within the P3 time window.
Collapse
Affiliation(s)
- Birgit Mathes
- University of Bremen, Institute of Psychology and Cognition Research, Bremen, Germany; Centre for Cognitive Science, Bremen, Germany.
| | - Ksenia Khalaidovski
- University of Bremen, Institute of Psychology and Cognition Research, Bremen, Germany; Centre for Cognitive Science, Bremen, Germany
| | - Annika S Wienke
- University of Bremen, Institute of Psychology and Cognition Research, Bremen, Germany; Centre for Cognitive Science, Bremen, Germany
| | - Christina Schmiedt-Fehr
- University of Bremen, Institute of Psychology and Cognition Research, Bremen, Germany; Centre for Cognitive Science, Bremen, Germany
| | - Canan Basar-Eroglu
- University of Bremen, Institute of Psychology and Cognition Research, Bremen, Germany; Centre for Cognitive Science, Bremen, Germany
| |
Collapse
|
248
|
Lewis GJ, Cox SR, Booth T, Muñoz Maniega S, Royle NA, Valdés Hernández M, Wardlaw JM, Bastin ME, Deary IJ. Trait conscientiousness and the personality meta-trait stability are associated with regional white matter microstructure. Soc Cogn Affect Neurosci 2016; 11:1255-61. [PMID: 27013101 PMCID: PMC4967799 DOI: 10.1093/scan/nsw037] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/16/2016] [Indexed: 01/06/2023] Open
Abstract
Establishing the neural bases of individual differences in personality has been an enduring topic of interest. However, while a growing literature has sought to characterize grey matter correlates of personality traits, little attention to date has been focused on regional white matter correlates of personality, especially for the personality traits agreeableness, conscientiousness and openness. To rectify this gap in knowledge we used a large sample (n > 550) of older adults who provided data on both personality (International Personality Item Pool) and white matter tract-specific fractional anisotropy (FA) from diffusion tensor MRI. Results indicated that conscientiousness was associated with greater FA in the left uncinate fasciculus (β = 0.17, P < 0.001). We also examined links between FA and the personality meta-trait ‘stability’, which is defined as the common variance underlying agreeableness, conscientiousness, and neuroticism/emotional stability. We observed an association between left uncinate fasciculus FA and stability (β = 0.27, P < 0.001), which fully accounted for the link between left uncinate fasciculus FA and conscientiousness. In sum, these results provide novel evidence for links between regional white matter microstructure and key traits of human personality, specifically conscientiousness and the meta-trait, stability. Future research is recommended to replicate and address the causal directions of these associations.
Collapse
Affiliation(s)
- Gary J Lewis
- Department of Psychology, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
| | - Simon R Cox
- Department of Psychology Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh EH8 9JZ, UK Scottish Imaging Network, a Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK
| | - Tom Booth
- Department of Psychology Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh EH8 9JZ, UK
| | - Susana Muñoz Maniega
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh EH8 9JZ, UK Scottish Imaging Network, a Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK Brain Research Imaging Centre, Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Natalie A Royle
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh EH8 9JZ, UK Scottish Imaging Network, a Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK Brain Research Imaging Centre, Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Maria Valdés Hernández
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh EH8 9JZ, UK Scottish Imaging Network, a Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK Brain Research Imaging Centre, Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Joanna M Wardlaw
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh EH8 9JZ, UK Scottish Imaging Network, a Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK Brain Research Imaging Centre, Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Mark E Bastin
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh EH8 9JZ, UK Scottish Imaging Network, a Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK Brain Research Imaging Centre, Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Ian J Deary
- Department of Psychology Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh EH8 9JZ, UK
| |
Collapse
|
249
|
Lublin F, Miller DH, Freedman MS, Cree BAC, Wolinsky JS, Weiner H, Lubetzki C, Hartung HP, Montalban X, Uitdehaag BMJ, Merschhemke M, Li B, Putzki N, Liu FC, Häring DA, Kappos L. Oral fingolimod in primary progressive multiple sclerosis (INFORMS): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet 2016; 387:1075-1084. [PMID: 26827074 DOI: 10.1016/s0140-6736(15)01314-8] [Citation(s) in RCA: 326] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND No treatments have been approved for primary progressive multiple sclerosis. Fingolimod, an oral sphingosine 1-phosphate receptor modulator, is effective in relapse-onset multiple sclerosis, but has not been assessed in primary progressive multiple sclerosis. We assessed the safety and efficacy of fingolimod in patients with primary progressive multiple sclerosis. METHODS In INFORMS, a multicentre, double-blind, placebo-controlled parallel-group study, patients with primary progressive multiple sclerosis recruited across 148 centres in 18 countries were randomly allocated (1:1) with computer-generated blocks to receive oral fingolimod or placebo for at least 36 months and a maximum of 5 years. Patients were initially assigned to fingolimod 1·25 mg per day or placebo (cohort 1); however, after a protocol amendment on Nov 19, 2009, patients were switched in a masked manner to fingolimod 0·5 mg, whereas those on placebo continued on matching placebo. From then onwards, patients were assigned to receive fingolimod 0·5 mg/day or placebo (cohort 2). Key inclusion criteria were age 25-65 years, clinical diagnosis of primary progressive multiple sclerosis, 1 year or more of disease progression, and two of the following criteria: positive brain MRI; positive spinal cord MRI; or positive cerebrospinal fluid. Additional eligibility criteria included disease duration of 2-10 years and objective evidence of disability progression in the previous 2 years. Patients and study investigators were masked to group assignment. We used a novel primary composite endpoint based on change from baseline in Expanded Disability Status Scale (EDSS), 25' Timed-Walk Test, or Nine-Hole Peg Test to assess time to 3-month confirmed disability progression in study participants treated for at least 3 years. All randomised patients took at least one dose of study drug. The primary efficacy analysis included all patients in cohort 2 and those assigned to placebo in cohort 1. The safety analysis included all patients in cohorts 1 and 2. This study is registered with ClinicalTrials.gov, number NCT00731692. The study is now closed. FINDINGS 970 patients were randomly assigned between Sept 3, 2008, and Aug 30, 2011 (147 to fingolimod 1·25 mg and 133 to placebo in cohort 1; 336 to fingolimod 0·5 mg and 354 to placebo in cohort 2). The efficacy analysis set (n=823) consisted of 336 patients randomly allocated to fingolimod 0·5 mg and 487 to placebo. Baseline characteristics were similar across groups and representative of a primary progressive multiple sclerosis population (48% women, mean age 48·5 years [SD 8·4], mean EDSS 4·67 [SD 1·03], 87% free of gadolinium-enhancing lesions). By end of study, 3-month confirmed disability progression had occurred in 232 and 338 patients in the fingolimod and placebo groups, respectively, resulting in Kaplan-Meier estimates of 77·2% (95% CI 71·87-82·51) of patients in the fingolimod group versus 80·3% (73·31-87·25) of patients in the placebo group (risk reduction 5·05%; hazard ratio 0·95, 95% CI 0·80-1·12; p=0·544). Safety results were generally consistent with those of studies of fingolimod in patients with relapse-onset multiple sclerosis. Lymphopenia occurred in 19 (6%) patients in the fingolimod group versus none in the placebo group, bradycardia in five (1%) versus one (<1%), and first-degree atrioventricular block in three (1%) versus six (1%). Serious adverse events occurred in 84 (25%) patients in the fingolimod group and 117 (24%) in the placebo group, including macular oedema in six (2%) versus six (1%), and basal-cell carcinoma in 14 (4%) versus nine (2%). INTERPRETATION The anti-inflammatory effects of fingolimod did not slow disease progression in primary progressive multiple sclerosis. Therapeutic strategies for primary progressive multiple sclerosis might need different approaches to those used for relapse-onset multiple sclerosis. FUNDING Novartis Pharma AG.
Collapse
Affiliation(s)
- Fred Lublin
- The Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - David H Miller
- Queen Square MS Centre, UCL Institute of Neurology, London, UK
| | - Mark S Freedman
- The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Bruce A C Cree
- Multiple Sclerosis Center, University of California San Francisco, CA, USA
| | - Jerry S Wolinsky
- University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Howard Weiner
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Catherine Lubetzki
- University Paris 6, Salpêtrière Hospital APHP, Center of Clinical Investigation, Paris, France
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | | | | | | | - Bingbing Li
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | | | - Fonda C Liu
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | | | - Ludwig Kappos
- Departments of Medicine, Clinical Research, Biomedicine and Biomedical Engineering, University Hospital, University of Basel, Switzerland
| |
Collapse
|
250
|
|