201
|
Sangeet S, Khan A. An in-silico approach to identify bioactive phytochemicals from Houttuynia cordata Thunb. As potential inhibitors of human glutathione reductase. J Biomol Struct Dyn 2025; 43:2300-2319. [PMID: 38109166 DOI: 10.1080/07391102.2023.2294181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
Cellular infections are central to the etiology of various diseases, notably cancer and malaria. Counteracting cellular oxidative stress via the inhibition of glutathione reductase (GR) has emerged as a promising therapeutic strategy. Houttuynia cordata, a medicinal plant known for its potent antioxidant properties, has been the focus of our investigation. In this study, we conducted comprehensive in silico analyses involving the phytochemical constituents of H. cordata to identify potential natural GR inhibitors. Our methodological approach encompassed multiple in silico techniques, including molecular docking, molecular dynamics simulations, MMPBSA analysis, and dynamic cross-correlation analysis. Out of 13 docked phytochemicals, Quercetin, Quercitrin, and Sesamin emerged as particularly noteworthy due to their exceptional binding affinities for GR. Notably, our investigation demonstrated that Quercetin and Sesamin exhibited promising outcomes compared to the well-established pharmaceutical agent N-acetylcysteine (NAC). Molecular dynamics analyses provided insights into the ability of these phytochemicals to induce structural compaction and stabilization of the GR protein, as evidenced by changes in radius of gyration and solvent-accessible surface area. Moreover, MMPBSA analysis highlighted the crucial roles of specific residues, namely Gly27, Gly28, Ser51, His52, and Val61, in mediating essential interactions with these phytochemicals. Furthermore, an assessment of Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADME-Tox) profiles underscored the favourable drug-like attributes of these phytochemicals. Thus, the current findings underscore the immense potential of Houttuynia cordata phytochemicals as potent antioxidants with the capacity to combat a spectrum of maladies, including malaria and cancer. This study not only unveils novel therapeutic avenues but also underscores the distinctive outcomes and paramount significance of harnessing H. cordata phytochemicals for their efficacious antioxidant properties.
Collapse
Affiliation(s)
- Satyam Sangeet
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, India
- CompObelisk, Mirzapur, India
| | - Arshad Khan
- CompObelisk, Mirzapur, India
- Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, India
| |
Collapse
|
202
|
Giuliatti S, Benedetti AFF, Ramos RM, Petroli RJ, Domenice S, Mendonca BB, Batista RL. Hydropathic AF-2 variants in the androgen receptor gene among androgen insensitivity patients. Andrology 2025; 13:447-458. [PMID: 38923406 DOI: 10.1111/andr.13680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Androgen insensitivity syndrome (AIS) is a common condition among individuals with differences of sexual development (DSD) and results from germline allelic variants in the androgen receptor (AR) gene. Understanding the phenotypic consequences of AR allelic variants that disrupt the activation function 2 (AF2) region is essential to grasping its clinical significance. OBJECTIVES This study aims to provide insights into the phenotypic characteristics and clinical impact of AR mutations affecting the AF2 region in AIS patients. We achieve this by reviewing reported AR variants in the AF2 region among individuals with AIS, including identifying a new phenotype associated with the c.2138T>C variant (p.Leu713Pro) in the AR gene. MATERIALS AND METHODS We comprehensively reviewed AR variants within the AF2 region reported in AIS and applied molecular dynamics simulations to assess the impact of the p.Leu713Pro variant on protein dynamics. RESULTS Our review of reported AR variants in the AF2 region revealed a spectrum of phenotypic outcomes in AIS patients. Molecular dynamics simulations indicated that the p.Leu713Pro variant significantly alters the local dynamics of the AR protein and disrupts the correlation and covariance between variables. DISCUSSION The diverse phenotypic presentations observed among individuals with AR variants in the AF2 region highlight the complexity of AIS. The altered protein dynamics resulting from the p.Leu713Pro variant further emphasize the importance of the AF2 region in AR function. CONCLUSION Our study provides valuable insights into AR mutations' phenotypic characteristics and clinical impact on the AF2 region in AIS. Moreover, the disruption of protein dynamics underscores the significance of the AF2 region in AR function and its role in the pathogenesis of AIS.
Collapse
Affiliation(s)
- Silvana Giuliatti
- Department of Genetics, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Anna Flavia Figueredo Benedetti
- Developmental Endocrinology Unit, Hormone and Molecular Genetics Laboratory (LIM/42), Endocrinology Division, Internal Medicine Department, University of São Paulo (USP), São Paulo, Brazil
| | - Raquel Martinez Ramos
- Developmental Endocrinology Unit, Hormone and Molecular Genetics Laboratory (LIM/42), Endocrinology Division, Internal Medicine Department, University of São Paulo (USP), São Paulo, Brazil
| | - Reginaldo José Petroli
- Faculdade de Medicina da Universidade Federal de Alagoas (UFAL), Programa de Pós-Graduação em Ciências Médicas - UFAL, Alagoas, Brazil
| | - Sorahia Domenice
- Developmental Endocrinology Unit, Hormone and Molecular Genetics Laboratory (LIM/42), Endocrinology Division, Internal Medicine Department, University of São Paulo (USP), São Paulo, Brazil
| | - Berenice Bilharinho Mendonca
- Developmental Endocrinology Unit, Hormone and Molecular Genetics Laboratory (LIM/42), Endocrinology Division, Internal Medicine Department, University of São Paulo (USP), São Paulo, Brazil
| | - Rafael Loch Batista
- Developmental Endocrinology Unit, Hormone and Molecular Genetics Laboratory (LIM/42), Endocrinology Division, Internal Medicine Department, University of São Paulo (USP), São Paulo, Brazil
- Instituto do Câncer do Estado de São Paulo da Faculdade de Medicina da Universidade de São Paulo (ICESP), São Paulo, Brazil
| |
Collapse
|
203
|
Hu Z, Martí J. Unraveling atomic-scale mechanisms of GDP extraction catalyzed by SOS1 in KRAS-G12 and KRAS-D12 oncogenes. Comput Biol Med 2025; 186:109599. [PMID: 39731920 DOI: 10.1016/j.compbiomed.2024.109599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/30/2024]
Abstract
The guanine exchange factor SOS1 plays a pivotal role in the positive feedback regulation of the KRAS signaling pathway. Recently, the regulation of KRAS-SOS1 interactions and KRAS downstream effector proteins has emerged as a key focus in the development of therapies targeting KRAS-driven cancers. However, the detailed dynamic mechanisms underlying SOS1-catalyzed GDP extraction and the impact of KRAS mutations remain largely unexplored. In this study, we unveil and describe in atomic detail the primary mechanisms by which SOS1 facilitates GDP extraction from KRAS oncogenes. For GDP-bound wild-type KRAS (KRAS-G12), four critical amino acids (Lys811, Glu812, Lys939, and Glu942) are identified as essential for the catalytic function of SOS1. Notably, the KRAS-G12D mutation (KRAS-D12) significantly accelerates the rate of GDP extraction. The molecular basis of this enhancement are attributed to hydrogen bonding interactions between the mutant residue Asp12 and a positively charged pocket in the intrinsically disordered region (residues 807-818), comprising Ser807, Trp809, Thr810, and Lys811. These findings provide novel insights into SOS1-KRAS interactions and offer a foundation for developing anti-cancer strategies aimed at disrupting these mechanisms.
Collapse
Affiliation(s)
- Zheyao Hu
- Department of Physics, Polytechnic University of Catalonia-Barcelona Tech, B4-B5 Northern Campus UPC, Barcelona, 08034, Catalonia, Spain
| | - Jordi Martí
- Department of Physics, Polytechnic University of Catalonia-Barcelona Tech, B4-B5 Northern Campus UPC, Barcelona, 08034, Catalonia, Spain.
| |
Collapse
|
204
|
Kuna K, Ganta S, C. Akkiraju P, Dokuparthi SK, Hussain S, Enaganti S. Molecular dynamics simulation analysis of a modelled spermidine synthase from Yersinia pseudotuberculosis docked with cyclohexylamine. Bioinformation 2025; 21:210-219. [PMID: 40322713 PMCID: PMC12044185 DOI: 10.6026/973206300210210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 05/08/2025] Open
Abstract
The gram-negative bacterium Yersinia pestis is the causative agent of plague 1 and has been responsible for major pandemics in the past. Therefore, it is of interest to document the molecular docking and simulation analysis of spermidine synthase from Yersinia pseudotuberculosis with cyclohexylamine. The sequence and structure analysis showed an abundance of Leu, Val, Gly, Glu and Ala, the least presence of Trp and Cys, higher negatively charged residues and a GRAVY score of -0.125, suggesting the stability of the protein. The cyclohexylamine conformer 4-fluorocyclohexan-1-amine (CID 21027526) showed optimal binding features (-4.7 kcal/mol). Moreover, molecular dynamics simulation confirmed the stability of the ligand binding pocket for further validation and consideration in drug design and development.
Collapse
Affiliation(s)
- Krishna Kuna
- Department of Chemistry, University College of Science, Saifabad, Osmania University, Hyderabad-500004, Telangana, India
| | - Srinivas Ganta
- Department of RNA Therapeutic, SciGen Pharmaceutical Inc., Hauppauge, NewYork-11788, United States of America
| | - Pavan C. Akkiraju
- Department of Biotechnology, School of Allied Healthcare Sciences, Malla Reddy University, Hyderabad-500043, Telangana State, India
| | | | - Sardar Hussain
- Department of Biotechnology, Maharani's Science College for Women, Mysuru 570005, Karnataka, India
| | - Sreenivas Enaganti
- Department of Bioinformatics Averinbiotech Laboratories, No 208, 2nd Floor, Windsor Plaza, Nallakunta, Hyderabad-500044, Telangana, India
| |
Collapse
|
205
|
Aranda-García D, Stepniewski TM, Torrens-Fontanals M, García-Recio A, Lopez-Balastegui M, Medel-Lacruz B, Morales-Pastor A, Peralta-García A, Dieguez-Eceolaza M, Sotillo-Nuñez D, Ding T, Drabek M, Jacquemard C, Jakowiecki J, Jespers W, Jiménez-Rosés M, Jun-Yu-Lim V, Nicoli A, Orzel U, Shahraki A, Tiemann JKS, Ledesma-Martin V, Nerín-Fonz F, Suárez-Dou S, Canal O, Pándy-Szekeres G, Mao J, Gloriam DE, Kellenberger E, Latek D, Guixà-González R, Gutiérrez-de-Terán H, Tikhonova IG, Hildebrand PW, Filizola M, Babu MM, Di Pizio A, Filipek S, Kolb P, Cordomi A, Giorgino T, Marti-Solano M, Selent J. Large scale investigation of GPCR molecular dynamics data uncovers allosteric sites and lateral gateways. Nat Commun 2025; 16:2020. [PMID: 40016203 PMCID: PMC11868581 DOI: 10.1038/s41467-025-57034-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 02/07/2025] [Indexed: 03/01/2025] Open
Abstract
G protein-coupled receptors (GPCRs) constitute a functionally diverse protein family and are targets for a broad spectrum of pharmaceuticals. Technological progress in X-ray crystallography and cryogenic electron microscopy has enabled extensive, high-resolution structural characterisation of GPCRs in different conformational states. However, as highly dynamic events underlie GPCR signalling, a complete understanding of GPCR functionality requires insights into their conformational dynamics. Here, we present a large dataset of molecular dynamics simulations covering 60% of currently available GPCR structures. Our analysis reveals extensive local "breathing" motions of the receptor on a nano- to microsecond timescale and provides access to numerous previously unexplored receptor conformational states. Furthermore, we reveal that receptor flexibility impacts the shape of allosteric drug binding sites, which frequently adopt partially or completely closed states in the absence of a molecular modulator. We demonstrate that exploring membrane lipid dynamics and their interaction with GPCRs is an efficient approach to expose such hidden allosteric sites and even lateral ligand entrance gateways. The obtained insights and generated dataset on conformations, allosteric sites and lateral entrance gates in GPCRs allows us to better understand the functionality of these receptors and opens new therapeutic avenues for drug-targeting strategies.
Collapse
Affiliation(s)
- David Aranda-García
- Department of Medicine and Life Sciences, Pompeu Fabra University (UPF), Barcelona, Spain
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Tomasz Maciej Stepniewski
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- InterAx Biotech AG, Villigen, Switzerland
| | - Mariona Torrens-Fontanals
- Department of Medicine and Life Sciences, Pompeu Fabra University (UPF), Barcelona, Spain
- Acellera Labs, Barcelona, Spain
| | - Adrian García-Recio
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Marta Lopez-Balastegui
- Department of Medicine and Life Sciences, Pompeu Fabra University (UPF), Barcelona, Spain
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Brian Medel-Lacruz
- Department of Medicine and Life Sciences, Pompeu Fabra University (UPF), Barcelona, Spain
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Adrián Morales-Pastor
- Department of Medicine and Life Sciences, Pompeu Fabra University (UPF), Barcelona, Spain
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | | | - Miguel Dieguez-Eceolaza
- Department of Medicine and Life Sciences, Pompeu Fabra University (UPF), Barcelona, Spain
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - David Sotillo-Nuñez
- Department of Medicine and Life Sciences, Pompeu Fabra University (UPF), Barcelona, Spain
| | - Tianyi Ding
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Matthäus Drabek
- Department of Pharmaceutical Chemistry, University of Marburg, Marburg, Germany
| | - Célien Jacquemard
- Laboratoire d'Innovation Thérapeutique, University of Strasbourg, Strasbourg, France
| | - Jakub Jakowiecki
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
- Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Willem Jespers
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Mireia Jiménez-Rosés
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Birmingham and Nottingham, Midlands, UK
- Sygnature Discovery Ltd., Nottingham, UK
| | - Víctor Jun-Yu-Lim
- Department of Pharmaceutical Chemistry, University of Marburg, Marburg, Germany
| | - Alessandro Nicoli
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Urszula Orzel
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
- Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Aida Shahraki
- Department of Pharmaceutical Chemistry, University of Marburg, Marburg, Germany
| | - Johanna K S Tiemann
- Medizinische Fakultät, Institut für Medizinische Physik und Biophysik, Universität Leipzig, Leipzig, Germany
| | - Vicente Ledesma-Martin
- Department of Medicine and Life Sciences, Pompeu Fabra University (UPF), Barcelona, Spain
| | - Francho Nerín-Fonz
- Department of Medicine and Life Sciences, Pompeu Fabra University (UPF), Barcelona, Spain
| | - Sergio Suárez-Dou
- Department of Medicine and Life Sciences, Pompeu Fabra University (UPF), Barcelona, Spain
| | - Oriol Canal
- Department of Medicine and Life Sciences, Pompeu Fabra University (UPF), Barcelona, Spain
| | - Gáspár Pándy-Szekeres
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Medicinal Chemistry Research Group, HUN-REN Research Center for Natural Sciences, Budapest, Hungary
| | - Jiafei Mao
- Beijing National Laboratory for Molecular Sciences (BNLMS) and Center for Physicochemical Analysis and Measurement, Institute of Chemistry Chinese Academy of Science (ICCAS), Beijing, China
| | - David E Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Esther Kellenberger
- Laboratoire d'Innovation Thérapeutique, University of Strasbourg, Strasbourg, France
| | - Dorota Latek
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Ramon Guixà-González
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Hugo Gutiérrez-de-Terán
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Uppsala, Sweden
- Research Center in Nanomaterials and Nanotechnology (CINN/CSIC) and Health Institute of Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Irina G Tikhonova
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Peter W Hildebrand
- Institute of Medical Physics and Biophysics, Medical University Leipzig, Leipzig, Sachsen, Germany
| | - Marta Filizola
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M Madan Babu
- Department of Structural Biology and Center of Excellence for Data Driven Discovery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Antonella Di Pizio
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Chemoinformatics and Protein Modelling, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | | | - Peter Kolb
- Department of Pharmaceutical Chemistry, University of Marburg, Marburg, Germany
| | - Arnau Cordomi
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| | - Toni Giorgino
- Institute of Biophysics (IBF-CNR), National Research Council of Italy, Milano, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | | | - Jana Selent
- Department of Medicine and Life Sciences, Pompeu Fabra University (UPF), Barcelona, Spain.
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.
| |
Collapse
|
206
|
Liao Z, Xiao M, Chen J, Huang Z, Chen S, Liu Y, Huo S. Size-Dependent, Topology-Regulated, pH-Change-Tolerable, and Reversible Self-Assembly of Ultrasmall Nanoparticles. NANO LETTERS 2025. [PMID: 40013420 DOI: 10.1021/acs.nanolett.4c06646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
The multiscale ordering of colloidal nanoparticles (NPs) endows materials with diverse functions and performances. The controllable and predictable assembly of NPs is essential for the new generation of materials science. This study presents a topology-regulated self-assembly approach in an aqueous environment, utilizing polysorbate 20 (Tween-20) and ultrasmall gold nanoparticles (2, 4, and 8 nm AuNPs). The self-assembly process was governed by polyvalent hydrogen bonding interactions between the amphiphilic Tween-20 and tiopronin-capped NPs, with the amphipathic nature of Tween-20 primarily dictating the transformation from 1D to 3D structures. Notably, the NP size influences the assembly process, with the 2 nm particles demonstrating a well-regulated, pH-stable, and reversible assembly capability. Our findings provide a straightforward approach for controlling the assembly of simple nanoparticles and molecules into higher dimensional nano/microstructures, and close the knowledge gap in how NP size affects interactions within the assembly dynamics.
Collapse
Affiliation(s)
- Zhihuan Liao
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Menghan Xiao
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Junliang Chen
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Zhenkun Huang
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Shipeng Chen
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Yang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Shuaidong Huo
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
207
|
Ghasemitarei M, Taeb H, Ghorbi T, Yusupov M, Ala-Nissila T, Bogaerts A. The effect of cysteine oxidation on conformational changes of SARS-CoV-2 spike protein using atomistic simulations. Sci Rep 2025; 15:6890. [PMID: 40011543 PMCID: PMC11865280 DOI: 10.1038/s41598-025-90918-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/17/2025] [Indexed: 02/28/2025] Open
Abstract
The SARS-CoV-2 Spike (S) protein plays a central role in viral entry into host cells, making it a key target for therapeutic interventions. Oxidative stress, often triggered during viral infections, can cause oxidation of cysteine in this protein. Here we investigate the impact of cysteine oxidation, specifically the formation of cysteic acid, on the conformational dynamics of the SARS-CoV-2 S protein using atomistic simulations. In particular, we examine how cysteine oxidation influences the transitions of the S protein's receptor-binding domain (RBD) between "down" (inaccessible) and "up" (accessible) states, which are critical for host cell receptor engagement. Using solvent-accessible surface area (SASA) analysis, we identify key cysteine residues susceptible to oxidation. The results of targeted molecular dynamics (TMD) and umbrella sampling (US) simulations reveal that oxidation reduces the energy barrier for RBD transitions by approximately 30 kJ mol-1, facilitating conformational changes and potentially enhancing viral infectivity. Furthermore, we analyze the interactions between oxidized cysteine residues and glycans, as well as alterations in hydrogen bonds and salt bridges. Our results show that oxidation disrupts normal RBD dynamics, influencing the energy landscape of conformational transitions. Our work provides novel insights into the role of cysteine oxidation in modulating the structural dynamics of the SARS-CoV-2 S protein, highlighting potential targets for antiviral strategies aimed at reducing oxidative stress or modifying post-translational changes. These findings contribute to a deeper understanding of viral infectivity and pathogenesis under oxidative conditions.
Collapse
Affiliation(s)
- Maryam Ghasemitarei
- Department of Applied Physics, Aalto University, P.O. Box 15600, 00076, Aalto, Espoo, Finland.
| | - Hoda Taeb
- Department of Physics, Simon Fraser University, Burnaby, Canada
| | - Tayebeh Ghorbi
- Laboratory of Experimental Biophysics, Centre for Advanced Technologies, 100174, Tashkent, Uzbekistan
| | - Maksudbek Yusupov
- Institute of Fundamental and Applied Research, National Research University TIIAME, 100000, Tashkent, Uzbekistan
- Department of Information Technologies, Tashkent International University of Education, 100207, Tashkent, Uzbekistan
| | - Tapio Ala-Nissila
- Department of Applied Physics, Aalto University, P.O. Box 15600, 00076, Aalto, Espoo, Finland
- Interdisciplinary Centre for Mathematical Modelling and Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| | - Annemie Bogaerts
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610, Antwerp, Belgium
| |
Collapse
|
208
|
Liu Z, Liu W, Shen X, Jiang T, Li X, Liu H, Zheng Z. Molecular mechanism of type ib MET inhibitors and their potential for CNS tumors. Sci Rep 2025; 15:6926. [PMID: 40011494 PMCID: PMC11865562 DOI: 10.1038/s41598-025-85631-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/06/2025] [Indexed: 02/28/2025] Open
Abstract
The emergence of targeted therapies for MET exon 14 (METex14) skipping mutations has significantly changed the treatment landscape for NSCLC and other solid tumors. The skipping of METex14 results in activating the MET-HGF pathway and promoting tumor cell proliferation, migration, and preventing apoptosis. Type Ib MET inhibitors, designed to selectively target the "DFG-in" conformation of MET, characteristically bind to the ATP-binding pocket of MET in a U-shaped conformation, extending into the solvent-accessible region and interact strongly with residue Y1230 through π-π interactions, have shown remarkable efficacy in treating METex14-altered NSCLC, including cases with brain metastases (BMs). Notably, vebreltinib and capmatinib have demonstrated superior blood-brain barrier (BBB) permeability in both computational and experimental models, highlighting their potential for treating the central nervous system (CNS) metastases. P-glycoprotein (P-gp) is highly expressed in the BBB, which limits the brain uptake of many highly lipophilic drugs. Despite challenges posed by P-gp mediated efflux, vebreltinib has emerged as a promising candidate for CNS treatment due to its favorable pharmacokinetic profile and minimal susceptibility to P-gp efflux. This study underscores the importance of molecular dynamics simulations in predicting drug efficacy and BBB penetration, providing valuable insights for the development of CNS-targeted metastases therapies.
Collapse
Affiliation(s)
- Zhenhao Liu
- Divamics Inc., Suzhou, 215000, People's Republic of China
| | - Wenlang Liu
- Divamics Inc., Suzhou, 215000, People's Republic of China
| | - Xinyi Shen
- Divamics Inc., Suzhou, 215000, People's Republic of China
| | - Tao Jiang
- Divamics Inc., Suzhou, 215000, People's Republic of China
| | - Xionghao Li
- Divamics Inc., Suzhou, 215000, People's Republic of China
| | - Hao Liu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, Hubei, People's Republic of China.
| | - Zheng Zheng
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, Hubei, People's Republic of China.
| |
Collapse
|
209
|
Zaręba P, Drabczyk AK, Wnorowski A, Maj M, Rurka P, Malarz K, Latacz G, Nędza K, Ciura K, Greber KE, Boguszewska-Czubara A, Śliwa P, Kuliś J. Long-Chain Cyclic Arylguanidines as Multifunctional Serotonin Receptor Ligands with Antiproliferative Activity. ACS OMEGA 2025; 10:6446-6469. [PMID: 40028084 PMCID: PMC11866022 DOI: 10.1021/acsomega.4c06456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/22/2025] [Accepted: 01/30/2025] [Indexed: 03/05/2025]
Abstract
Recent investigations have shown serotonin's stimulatory effect on several types of cancers and carcinoid tumors. Nowadays there has been a significant increase in interest in 5-HT7 and 5-HT5A receptors in the context of cancer treatment. The possible role of 5-HT6R in the pathogenesis and progression of glioma remains an interesting and relatively unexplored issue. We developed a new group of long-chain 2-aminoquinazoline sulfonamides as new multifunctional serotonin receptor ligands, focused on 5-HT6R. The chosen group was further evaluated for antiproliferative effects on 1321N1 astrocytoma cells, along with U87MG, U-251, and LN-229 glioblastoma cell lines. Certain compounds were subjected to in vitro absorption, distribution, metabolism, excretion, and toxicity (ADMET) testing, for assessing factors such as lipophilicity, plasma protein binding, phospholipid affinity, potential for drug-drug interactions (DDI), membrane permeability (PAMPA), metabolic stability, and hepatotoxicity. Additionally, in vivo testing was performed using the Danio rerio model. The developed group includes the selective 5-HT6R antagonist PP 15, dual ligand for 5-HT1AR/5-HT6R PP 13, and dual ligand for 5-HT5AR/5-HT6R PP 10. The use of multifunctional ligands was associated with high anticancer activity both against selected glioma cell lines and other cancers (IC50 < 25 μM).
Collapse
Affiliation(s)
- Przemysław Zaręba
- Faculty
of Chemical Engineering and Technology, Department of Chemical Technology
and Environmental Analytics, Cracow University
of Technology, 24 Warszawska Street, 31-155 Cracow, Poland
| | - Anna K. Drabczyk
- Faculty
of Chemical Engineering and Technology, Department of Organic Chemistry
and Technology, Cracow University of Technology, 24 Warszawska Street, 31-155 Cracow, Poland
| | - Artur Wnorowski
- Department
of Biopharmacy, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland
| | - Maciej Maj
- Department
of Biopharmacy, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland
| | - Patryk Rurka
- Institute
of Physics, University of Silesia in Katowice, 1A 75 Pułku Piechoty Street, 41-500 Chorzow, Poland
| | - Katarzyna Malarz
- Institute
of Physics, University of Silesia in Katowice, 1A 75 Pułku Piechoty Street, 41-500 Chorzow, Poland
- Department
of Systems Biology and Engineering, Silesian
University of Technology, 11 Akademicka Street, 44-100 Gliwice, Poland
| | - Gniewomir Latacz
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Cracow, Poland
| | - Krystyna Nędza
- Department
of Medicinal Chemistry, Maj Institute of
Pharmacology − Polish Academy of Sciences, 12 Smętna Street, 31-343 Cracow, Poland
| | - Krzesimir Ciura
- Department
of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
- Laboratory
of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk, 63 Wita Stwosza Street, 80-308 Gdansk, Poland
| | - Katarzyna Ewa Greber
- Department
of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Anna Boguszewska-Czubara
- Department
of Medical Chemistry, Medical University
of Lublin, 4a Chodźki
Street, 20-093 Lublin, Poland
| | - Paweł Śliwa
- Faculty
of Chemical Engineering and Technology, Department of Organic Chemistry
and Technology, Cracow University of Technology, 24 Warszawska Street, 31-155 Cracow, Poland
| | - Julia Kuliś
- Faculty
of Chemical Engineering and Technology, Department of Chemical Technology
and Environmental Analytics, Cracow University
of Technology, 24 Warszawska Street, 31-155 Cracow, Poland
| |
Collapse
|
210
|
Qi X, Helland S, Lowe CD, Larson H, Cui J, Zheng R, Monahan M, Chen CL, De Yoreo J, Pfaendtner J, Cossairt B. Toward Computation-Guided Design of Tunable Organic-Inorganic CdS Quantum Dot Binary Superlattices. NANO LETTERS 2025. [PMID: 39999380 DOI: 10.1021/acs.nanolett.5c00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Combining the advantages of structural programmability in sequence-defined biomimetic molecules and the controllable packing geometry in nanoparticle superlattices, we demonstrate a self-assembled organic-inorganic superlattice whose structure can be altered with the slightest change in the sequence of the organic counterpart. Here, oleate-coated CdS quantum dots (QDs) form a square-packed superlattice with a 1:1 molar equivalence of a diblock amphiphilic peptoid (Nbrpe6Dig) in chloroform. In contrast, no apparent structure is observed in the organic solvent alone. Based on theoretical evidence, we show that the assembly is a binary superlattice where both the CdS QDs and the peptoids serve as building blocks and further predict a correlation between the superlattice structure and the peptoid sequence. The computationally guided prediction is validated by experiments where superlattice transformation is observed with modified peptoids. The mechanism identified in our work inspires new ways to control and tune organic-inorganic hybrid nanomaterial self-assembly.
Collapse
Affiliation(s)
- Xin Qi
- Department of Chemistry, Dartmouth College,Hanover, New Hampshire 03755, United States
| | - Sarah Helland
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Christopher D Lowe
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Helen Larson
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Jianming Cui
- Department of Chemistry, Dartmouth College,Hanover, New Hampshire 03755, United States
| | - Renyu Zheng
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
- Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Madison Monahan
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Chun-Long Chen
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
- Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - James De Yoreo
- Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Jim Pfaendtner
- Department of Chemical & Biomolecular Engineering, North Carolina State University,Raleigh, North Carolina 27695, United States
| | - Brandi Cossairt
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
211
|
Suh D, Schwartz R, Gupta PK, Zev S, Major DT, Im W. CHARMM-GUI EnzyDocker for Protein-Ligand Docking of Multiple Reactive States along a Reaction Coordinate in Enzymes. J Chem Theory Comput 2025; 21:2118-2128. [PMID: 39950957 PMCID: PMC11866752 DOI: 10.1021/acs.jctc.4c01691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025]
Abstract
Enzymes play crucial roles in all biological systems by catalyzing a myriad of chemical reactions. These reactions range from simple one-step processes to intricate multistep cascades. Predicting mechanistically appropriate binding modes along a reaction pathway for substrate, product, and all reaction intermediates and transition states is a daunting task. To address this challenge, special docking programs like EnzyDock have been developed. Yet, running such docking simulations is complicated due to the nature of multistep enzyme processes. This work presents CHARMM-GUI EnzyDocker, a web-based cyberinfrastructure designed to streamline the preparation and running of EnzyDock docking simulations. The development of EnzyDocker has been achieved through integration of existing CHARMM-GUI modules, such as PDB Reader and Manipulator, Ligand Designer, and QM/MM Interfacer. In addition, new functionalities have been developed to facilitate a one-stop preparation of multistate and multiscale docking systems and enable interactive and intuitive ligand modifications and flexible protein residues selections. A simple setup related to multiligand docking is automatized through intuitive user interfaces. EnzyDocker offers support for standard classical docking and QM/MM docking with CHARMM built-in semiempirical engines. Automated consensus restraints for incorporating experimental knowledge into the docking are facilitated via a maximum common substructure algorithm. To illustrate the robustness of EnzyDocker, we conducted docking simulations of three enzyme systems: dihydrofolate reductase, SARS-CoV-2 Mpro, and the diterpene synthase CotB2. In addition, we have created four tutorial videos about these systems, which can be found at https://www.charmm-gui.org/demo/enzydock. EnzyDocker is expected to be a valuable and accessible web-based tool that simplifies and accelerates the setup process for multistate docking for enzymes.
Collapse
Affiliation(s)
- Donghyuk Suh
- Department
of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Renana Schwartz
- Department
of Chemistry, Israel National Institute of Energy Storage (INIES)
and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Prashant Kumar Gupta
- Department
of Chemistry, Israel National Institute of Energy Storage (INIES)
and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Shani Zev
- Department
of Chemistry, Israel National Institute of Energy Storage (INIES)
and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Dan T. Major
- Department
of Chemistry, Israel National Institute of Energy Storage (INIES)
and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Wonpil Im
- Department
of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
212
|
Mohebbi A, Nabavi SPT, Naderi M, Sharifian K, Behnezhad F, Mohebbi M, Gholami A, Askari FS, Mirarab A, Monavari SH. Computer-aided drug repurposing & discovery for Hepatitis B capsid protein. In Silico Pharmacol 2025; 13:35. [PMID: 40018383 PMCID: PMC11861453 DOI: 10.1007/s40203-025-00314-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/22/2025] [Indexed: 03/01/2025] Open
Abstract
The primary objective of this study is to harness computer-aided drug repurposing (CADR) techniques to identify existing FDA-approved drugs that can potentially disrupt the assembly of the Hepatitis B Virus (HBV) core protein (HBcAg), an essential process in the virus's life cycle. By targeting this critical step, our study aims to expand the repertoire of therapeutic options for managing chronic Hepatitis B infection, a major global health challenge. Utilizing a combination of computational methods, including the CavityPlus server for ability to analyze druggable protein cavities and extract pharmacophore features and LigandScout for pharmacophore-based virtual screening of a vast library of FDA-approved drugs was conducted. Molecular dynamic simulation (MDS) was employed to evaluate the stability of HBcAg, complexed with Heteroaryldihydropyrimidine (HAP) and statins exhibiting particularly strong binding energies and conformational compatibility. Our approach focused on identifying pharmacophore features that align with known HBcAg inhibitors. The study identified several promising candidates, including Ciclopirox olamine, Voriconazole, Enasidenib, and statins, demonstrating potential interactions with HBc protein residues. Molecular docking further validated these interactions. The significance of these findings lies in their potential to offer new, effective therapeutic strategies for HBV treatment, particularly as alternatives to current therapies that often suffer from issues of viral resistance and adverse side effects. MDS analysis verified the robustness of HAP and statins by showing a high level of binding energies and compatibility with HBcAg. Our results provide a foundation for further experimental validation and underscore the utility of computer-aided drug repurposing as a rapid, cost-effective approach to drug discovery in antiviral research. This study contributes to our understanding of HBV biology and opens avenues for developing novel anti-HBV therapies based on repurposed drugs. The highlighted compound may also enhance the challenges of drug resistance when used as a combination therapy.
Collapse
Affiliation(s)
- Alireza Mohebbi
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Vista Aria Rena Gene, Inc., Gorgan, Golestan Province Iran
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Malihe Naderi
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
- Hiroshima Institute of Life Sciences, 7-21, Nishi Asahi-Machi, Minami-ku, Hiroshima-shi, Hiroshima 734-0002 Japan
| | - Kimia Sharifian
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farzane Behnezhad
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Mohebbi
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amytis Gholami
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sana Askari
- Vista Aria Rena Gene, Inc., Gorgan, Golestan Province Iran
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Azam Mirarab
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | | |
Collapse
|
213
|
Lazarenko D, Schmidt GP, Crowley MF, Beckham GT, Knott BC. Molecular Details of Polyester Decrystallization via Molecular Simulation. Macromolecules 2025; 58:1795-1803. [PMID: 40026450 PMCID: PMC11866931 DOI: 10.1021/acs.macromol.4c02130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 03/05/2025]
Abstract
Waste polyesters are a potential feedstock for recycled and upcycled products. These polymers are generally semicrystalline, which presents a challenge for chemical and biological recycling to monomers, and thus the thermodynamic work associated with polyester decrystallization is an important consideration in some depolymerization strategies. Here, we use molecular dynamics simulations to calculate the free energy required to decrystallize a single chain from the crystal surface of five commercially and scientifically important, semiaromatic polyesters (PET, PTT, PBT, PEN, and PEF) in water. Our results indicate the decrystallization work ranges from approximately 15 kcal/mol (PEN) to 8 kcal/mol (PEF) per repeat unit for chains in the middle of a crystal surface. The insight gained into the molecular interactions that form the structural basis of semicrystalline synthetic polyesters can guide the pursuit of more efficient plastic processing, which could include catalyst development, optimizing recycling conditions including pretreatment, enzyme and solvent selections, and design of new materials.
Collapse
Affiliation(s)
- Daria Lazarenko
- Renewable Resources and Enabling Sciences
Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Graham P. Schmidt
- Renewable Resources and Enabling Sciences
Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Michael F. Crowley
- Renewable Resources and Enabling Sciences
Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Gregg T. Beckham
- Renewable Resources and Enabling Sciences
Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Brandon C. Knott
- Renewable Resources and Enabling Sciences
Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| |
Collapse
|
214
|
Han B, Hu G, Chen X, Shi R, Li J. Flexibility-Induced Collective Behavior Drives Symmetry Breaking in Discrimination of Undesired Ions. JACS AU 2025; 5:1051-1059. [PMID: 40017761 PMCID: PMC11862943 DOI: 10.1021/jacsau.4c01278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/01/2025] [Accepted: 02/04/2025] [Indexed: 03/01/2025]
Abstract
Structure flexibility is essential for the biological function of proteins. At the same time, many proteins need to discriminate ligands with subtle differences, with one example being ion selectivity. Investigating the mechanisms by which flexible proteins achieve such precise discrimination is crucial for advancing our understanding of their functions. In this work, we study transporter KCC4, which undergoes continuous conformation changes during ion transport and can realize K+ over Na+ selectivity. Our findings reveal that the center of the binding site no longer represents a stable equilibrium for the undesired Na+, and its binding mode exhibits bifurcation. Interestingly, protein conformation fluctuation can induce collective behavior throughout the entire binding region, which contributes to this bifurcation. Thus, the symmetry of the binding mode decreases from the inherent T d symmetry to a C2v symmetry, and the binding stability of Na+ is largely reduced. A similar phenomenon is observed in a GPCR, β2-AR, where a less favored ligand forms a biased binding mode with reduced stability. The mechanism underlying the selectivity in such flexible regions could be interpreted as spontaneous symmetry breaking, which may represent a general mechanism by which flexible proteins achieve efficient ligand discrimination.
Collapse
Affiliation(s)
- Binming Han
- School of
Physics, Zhejiang University, Hangzhou 310058, P.R. China
| | - Guorong Hu
- School of
Physics, Zhejiang University, Hangzhou 310058, P.R. China
| | - Xiaosong Chen
- Advanced
Institute of Physics, Zhejiang University, Hangzhou 310058, P.R. China
- School of
Systems Science, Beijing Normal University, Beijing 100000, P.R. China
| | - Rui Shi
- School of
Physics, Zhejiang University, Hangzhou 310058, P.R. China
| | - Jingyuan Li
- School of
Physics, Zhejiang University, Hangzhou 310058, P.R. China
| |
Collapse
|
215
|
Ergüç A, Albayrak G, Muhammed MT, Karakuş F, Arzuk E, İnce-Ergüç E. Exploring the role of quercetin on doxorubicin and lapatinib-mediated cellular and mitochondrial responses using in vitro and in silico studies. J Chemother 2025:1-15. [PMID: 39988777 DOI: 10.1080/1120009x.2025.2471154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 02/25/2025]
Abstract
Doxorubicin (DOX) and lapatinib (LAP) have been reported to cause liver toxicity. The roles of mitochondrial and cellular responses in DOX and LAP mediated-hepatotoxicity have not been investigated with or without quercetin (QUE) in HepG2 cells sensitive to mitochondrial damage (high-glucose or galactose media) in addition to in silico studies. Our results revealed that cytosolic pathways might play role a in DOX-induced cytotoxicity rather than mitochondria. QUE exacerbated DOX-induced ATP depletion in both environments. Our data also indicated that cytosolic and mitochondrial pathways might play a role in LAP-induced cytotoxicity. Incubating QUE with LAP increased ATP levels in high-glucose media. Therefore, QUE might have protective effect against LAP-induced cytotoxicity resulting from cytosolic pathways. The findings from in vitro experiments that QUE increased DOX or LAP-induced mitochondrial dysfunction were confirmed by the results from in silico studies indicating that QUE incubated with LAP or DOX might increase mitochondrial dysfunction.
Collapse
Affiliation(s)
- Ali Ergüç
- Department of Pharmaceutical Toxicology, Ondokuz Mayıs University, Samsun, Turkey
- Department of Pharmaceutical Toxicology, İzmir Katip Çelebi University, İzmir, Turkey
| | - Gökay Albayrak
- Department of Pharmaceutical Botany, İzmir Katip Çelebi University, İzmir, Turkey
| | | | - Fuat Karakuş
- Department of Pharmaceutical Toxicology, Van Yuzuncu Yil University, Van, Turkey
| | - Ege Arzuk
- Department of Pharmaceutical Toxicology, Ege University, İzmir, Turkey
| | - Elif İnce-Ergüç
- Department of Pharmaceutical Toxicology, İzmir Katip Çelebi University, İzmir, Turkey
| |
Collapse
|
216
|
Han Y, Dawson JR, DeMarco KR, Rouen KC, Ngo K, Bekker S, Yarov-Yarovoy V, Clancy CE, Xiang YK, Ahn SH, Vorobyov I. Molecular simulations reveal intricate coupling between agonist-bound β-adrenergic receptors and G protein. iScience 2025; 28:111741. [PMID: 39898043 PMCID: PMC11787599 DOI: 10.1016/j.isci.2024.111741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/24/2024] [Accepted: 12/18/2024] [Indexed: 02/04/2025] Open
Abstract
G protein-coupled receptors (GPCRs) and G proteins transmit signals from hormones and neurotransmitters across cell membranes, initiating downstream signaling and modulating cellular behavior. Using advanced computer modeling and simulation, we identified atomistic-level structural, dynamic, and energetic mechanisms of norepinephrine (NE) and stimulatory G protein (Gs) interactions with β-adrenergic receptors (βARs), crucial GPCRs for heart function regulation and major drug targets. Our analysis revealed distinct binding behaviors of NE within β1AR and β2AR despite identical orthosteric binding pockets. β2AR had an additional binding site, explaining variations in NE binding affinities. Simulations showed significant differences in NE dissociation pathways and receptor interactions with the Gs. β1AR binds Gs more strongly, while β2AR induces greater conformational changes in the α subunit of Gs. Furthermore, GTP and GDP binding to Gs may disrupt coupling between NE and βAR, as well as between βAR and Gs. These findings may aid in designing precise βAR-targeted drugs.
Collapse
Affiliation(s)
- Yanxiao Han
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA
| | - John R.D. Dawson
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA
- Biophysics Graduate Group, University of California, Davis, Davis, CA 95616, USA
| | - Kevin R. DeMarco
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA
| | - Kyle C. Rouen
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA
- Biophysics Graduate Group, University of California, Davis, Davis, CA 95616, USA
| | - Khoa Ngo
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA
- Biophysics Graduate Group, University of California, Davis, Davis, CA 95616, USA
| | - Slava Bekker
- American River College, Sacramento, CA 95841, USA
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA
- Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA 95616, USA
- Center for Precision Medicine and Data Science, University of California, Davis, Davis, CA 95616, USA
| | - Colleen E. Clancy
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA
- Center for Precision Medicine and Data Science, University of California, Davis, Davis, CA 95616, USA
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - Yang K. Xiang
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
- VA Northern California Health Care System, Mather, CA 95655, USA
| | - Surl-Hee Ahn
- Department of Chemical Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Igor Vorobyov
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
217
|
Lee Y, Demes-Causse E, Yoo J, Jang SY, Jung S, Jaślan J, Hwang GS, Yoo J, De Angeli A, Lee S. Structural basis for malate-driven, pore lipid-regulated activation of the Arabidopsis vacuolar anion channel ALMT9. Nat Commun 2025; 16:1817. [PMID: 39979303 PMCID: PMC11842843 DOI: 10.1038/s41467-025-56940-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 02/04/2025] [Indexed: 02/22/2025] Open
Abstract
In plant cells, ALMTs are key plasma and vacuolar membrane-localized anion channels regulating plant responses to the environment. Vacuolar ALMTs control anion accumulation in plant cells and, in guard cells, they regulate stomata aperture. The activation of vacuolar ALMTs depends on voltage and cytosolic malate, but the underlying molecular mechanisms remain elusive. Here we report the cryo-EM structures of ALMT9 from Arabidopsis thaliana (AtALMT9), a malate-activated vacuolar anion channel, in plugged and unplugged lipid-bound states. In all these states, membrane lipids interact with the ion conduction pathway of AtALMT9. We identify two unplugged states presenting two distinct pore width profiles. Combining structural and functional analysis we identified conserved residues involved in ion conduction and in the pore lipid interaction. Molecular dynamics simulations revealed a peculiar anion conduction mechanism in AtALMT9. We propose a voltage-dependent activation mechanism based on the competition between pore lipids and malate at the cytosolic entrance of the channel.
Collapse
Affiliation(s)
- Yeongmok Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Elsa Demes-Causse
- IPSiM, CNRS, INRAE, Institut Agro, Université Montpellier, Montpellier, France
| | - Jaemin Yoo
- Department of Physics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Seo Young Jang
- Integrated Metabolomics Research Group, Metropolitan Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - Seoyeon Jung
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Justyna Jaślan
- IPSiM, CNRS, INRAE, Institut Agro, Université Montpellier, Montpellier, France
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Metropolitan Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Jejoong Yoo
- Department of Physics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Alexis De Angeli
- IPSiM, CNRS, INRAE, Institut Agro, Université Montpellier, Montpellier, France
| | - Sangho Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea.
- Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon, Republic of Korea.
- Department of Metabiohealth, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
218
|
Nketia PB, Manu P, Osei-Poku P, Kwarteng A. Phenazine Scaffolds as a Potential Allosteric Inhibitor of LasR Protein in Pseudomonas aeruginosa. Bioinform Biol Insights 2025; 19:11779322251319594. [PMID: 39991110 PMCID: PMC11843726 DOI: 10.1177/11779322251319594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 01/24/2025] [Indexed: 02/25/2025] Open
Abstract
Millions of individuals suffer from chronic infections caused by bacterial biofilms, resulting in significant loss of life. Pseudomonas aeruginosa stands out as a major culprit in causing such chronic infections, largely due to its antibiotic resistance. This pathogen poses a considerable threat in healthcare settings, particularly to critically ill and immunocompromised patients. The persistence of chronic and recurrent bacterial infections is often attributed to bacterial biofilms. Therefore, there is an urgent need to discover novel small molecules capable of efficiently eliminating biofilms independent of bacterial growth. In this project, an in silico drug discovery approach was employed to identify nine halogenated-phenazine compounds as allosteric inhibitors of the LasR protein. The LasR is a key transcription factor that triggers other quorum-sensing systems and plays a crucial role in biofilm formation and activation of virulence genes. By inhibiting LasR, specifically targeting its allosteric site, the dimerization of LasR and subsequent biofilm formation could be prevented. Molecular docking and simulations, coupled with binding energy calculations, identified five compounds with potential as anti-biofilm agents. These compounds exhibited higher binding affinities to the distal site, suggesting their structural capability to interact with allosteric site residues of the LasR protein. Based on these findings, it is proposed that these compounds could serve as promising leads for the treatment of biofilm and quorum-sensing-related infections.
Collapse
Affiliation(s)
- Prisca Baah Nketia
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Prince Manu
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Priscilla Osei-Poku
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Alexander Kwarteng
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
219
|
Martínez-Esquivias F, Guzmán-Flores JM, Pech-Santiago EO, Guerrero-Barrera AL, Delgadillo-Aguirre CK, Anaya-Esparza LM. Therapeutic Role of Quercetin in Prostate Cancer: A Study of Network Pharmacology, Molecular Docking, and Dynamics Simulation. Cell Biochem Biophys 2025:10.1007/s12013-025-01697-3. [PMID: 39966335 DOI: 10.1007/s12013-025-01697-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2025] [Indexed: 02/20/2025]
Abstract
Prostate cancer (PCa) is a major cause of cancer-related mortality in men. This study explores the anticancer potential of Quercetin, a polyphenolic compound with antioxidant and anti-inflammatory properties, by network pharmacology, molecular docking, and molecular dynamics simulation approaches. Target genes for Quercetin and PCa were identified from the bioinformatics databases MalaCards, Comparative Toxicogenomics Databases, SwissTargetPrediction, and Traditional Chinese Medicine Systems Pharmacology, and the obtained genes were matched using the Venny platform to find out the common genes. We obtained 11 preliminary genes and analyzed them in ShinyGO-0.77 databases to obtain genetic otology data. Then, we constructed a protein-protein interaction network in STRING, which enabled us to identify six hub genes AKT1, EGFR, MMP2, MMP9, PARP1, and ABCG2. Hub genes were analyzed in the TISIDB database for immune cell infiltration. Furthermore, a molecular docking study between the target proteins and Quercetin was performed in the SwissDock databases. Subsequently, we corroborated the docking with molecular dynamics studies using GROMACS software. Gene Ontology and KEGG pathway analyses revealed that Quercetin influences oxidative stress, mitochondrial function, and metalloproteinase activity. Immune cell infiltration analysis highlighted correlations between key genes and specific immune responses, suggesting a modulatory role of Quercetin in the tumor microenvironment. Finally, docking and molecular dynamics analysis showed that Quercetin has a stable interaction with the hub genes. In conclusion, these findings underline the potential of Quercetin to induce apoptosis, inhibit angiogenesis, and suppress metastasis, proposing it as a promising therapeutic tool for the treatment of PCa. However, additional experimental studies are required to translate these findings into clinical practice.
Collapse
Affiliation(s)
- Fernando Martínez-Esquivias
- Departamento de Ciencias de la Salud, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco, México.
| | - Juan Manuel Guzmán-Flores
- Departamento de Ciencias de la Salud, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco, México
| | - Edar O Pech-Santiago
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional: Ciudad de México, Mexico City, México
| | - Alma Lilian Guerrero-Barrera
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, CP, 20100, México
| | - Claudia Karina Delgadillo-Aguirre
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, CP, 20100, México
| | - Luis Miguel Anaya-Esparza
- Centro de Estudios para la Agricultura, la Alimentación y la Crisis Climática, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, 47620, México
| |
Collapse
|
220
|
Peng Y, Zhang C, Wu M, Bu G, Fan K, Chen X, Liang L, Zhang L. PX-MDsim: a rapid and efficient platform for large-scale construction of polyamide membranes via automated molecular dynamics simulations. RSC Adv 2025; 15:5906-5915. [PMID: 39990815 PMCID: PMC11843911 DOI: 10.1039/d4ra08955c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 02/10/2025] [Indexed: 02/25/2025] Open
Abstract
Polyamide (PA) membranes have attracted extensive attention due to their excellent separation performance in water treatment through reverse osmosis and nanofiltration processes. Although numerous molecular simulation studies attempt to explore their advantages from the microstructure, large-scale construction and simulation of PA membranes remain challenging, mainly due to the complexity and computational intensity of cross-linking reactions of polymers in molecular dynamics simulations. This paper introduces an automated platform called PX-MDsim for modeling and simulation of PA membranes. PX-MDsim is based on the PXLink framework and extends its applicability to any monomer with amino (-NH2) and carboxyl (-COOH) groups. The platform, combined with the PXLink program, realizes the full-process automated cross-linking simulation from input preparation, initial system construction, force field generation, functional group identification, and charge distribution update. Moreover, the software was used to cross-link m-phenylenediamine and 1,4-bis(3-aminopropyl)piperazine with trimesic acid, respectively, and multiple membrane structures with different cross-linking degrees were obtained. Furthermore, the generated membrane microstructure was analyzed using methods such as pore size distribution and order parameter, and the obtained results verified the applicability and accuracy of PX-MDsim in constructing PA membrane structures. The platform is user-friendly and accessible to researchers without prior expertise in molecular dynamics simulation, and it offers new possibilities for polymer research and applications.
Collapse
Affiliation(s)
- Yiran Peng
- College of Automation, Hangzhou Dianzi University Hangzhou 310018 P.R. China
| | - Chi Zhang
- Engineering Research Center of Membrane and Water Treatment of MOE, College of Chemical and Biological Engineering, Zhejiang University Hangzhou 310027 P.R. China
| | - Ming Wu
- College of Automation, Hangzhou Dianzi University Hangzhou 310018 P.R. China
| | - Guangle Bu
- Engineering Research Center of Membrane and Water Treatment of MOE, College of Chemical and Biological Engineering, Zhejiang University Hangzhou 310027 P.R. China
| | - Kai Fan
- College of Automation, Hangzhou Dianzi University Hangzhou 310018 P.R. China
| | - Xingren Chen
- College of Automation, Hangzhou Dianzi University Hangzhou 310018 P.R. China
| | - Lijun Liang
- College of Automation, Hangzhou Dianzi University Hangzhou 310018 P.R. China
| | - Lin Zhang
- Engineering Research Center of Membrane and Water Treatment of MOE, College of Chemical and Biological Engineering, Zhejiang University Hangzhou 310027 P.R. China
- Future Environment Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University Jiaxing 314100 P.R. China
| |
Collapse
|
221
|
Camargo PG, da Silva RB, Zuma AA, Garden SJ, Albuquerque MG, Rodrigues CR, da Silva Lima CH. In silico evaluation of N-aryl-1,10-phenanthroline-2-amines as potential inhibitors of T. cruzi GP63 zinc-metalloprotease by docking and molecular dynamics simulations. Sci Rep 2025; 15:6036. [PMID: 39971997 PMCID: PMC11839977 DOI: 10.1038/s41598-025-90088-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 02/10/2025] [Indexed: 02/21/2025] Open
Abstract
Based on the in vitro trypanocidal efficacy of previously synthesized N-aryl-1,10-phenanthroline-2-amines (Phen1-20) (aryl = R-phenyl, 1- or 2-naphthyl), we explored the potential interactions of these derivatives as ligands of our comparative model of T. cruzi GP63 (TcGP63). This surface metalloprotease plays a crucial role in parasite adhesion to host cells and aids in cell invasion during T. cruzi infection in Chagas disease. Ligand-protein consensus docking simulations using four GOLD scoring functions revealed that N-(R-phenyl) derivatives (R = CH3, OCH3, CF3, CN, NO2, F, Cl, and Br) presented poses with higher fitness scores than the N-naphthyl ones, with the six para-substituted derivatives (Phen4, p-CH3; Phen7, p-OCH3; Phen10, p-CN; Phen14, p-F; Phen17, p-Cl; and Phen18, p-Br) being more favorable than the ortho or meta ones. Subsequent aqueous molecular dynamics simulation (GROMACS package, CHARMM36 force field, and TIP3P water model) of the ligand-protein complexes for these six top-ranking compounds showed persistent interactions within the TcGP63 active site, primarily through coordination with Zn(II)-cofactor, and H-bonding with catalytic Glu221 and zinc-binding His224. RMSD and RMSF analyses confirmed the stability of these interactions, particularly for compounds with electron-withdrawing groups by inductive effect as R-substituents, such as p-OCH3 (Phen7) and p-CN (Phen10). Binding free energy calculations by the linear interaction energy (LIE) approach corroborated the favorable interactions observed in simulations, highlighting Phen7 and Phen10 as the most promising candidates. This study underscores the potential of N-phenyl-1,10-phenanthroline-2-amines as putative inhibitors targeting the T. cruzi GP63 enzyme.
Collapse
Affiliation(s)
- Priscila Goes Camargo
- Laboratório de Modelagem Molecular e QSAR (ModMolQSAR), Departamento de Fármacos e Medicamentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ramon Borges da Silva
- Laboratório Nacional de Biociências Brasileiras, Centro Brasileiro de Pesquisa em Energia e Materiais, Campinas, SP, Brazil
| | - Aline Araujo Zuma
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisas em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Simon J Garden
- Departamento de Química Orgânica, Programa de Pós-Graduação em Química (PGQu), Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Magaly Girão Albuquerque
- Departamento de Química Orgânica, Programa de Pós-Graduação em Química (PGQu), Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Carlos Rangel Rodrigues
- Laboratório de Modelagem Molecular e QSAR (ModMolQSAR), Departamento de Fármacos e Medicamentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Camilo Henrique da Silva Lima
- Departamento de Química Orgânica, Programa de Pós-Graduação em Química (PGQu), Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
222
|
Chellam NS, Calcaterra HA, Xiong Q, Schatz GC, Mirkin CA. Organic Modulators Enable Morphological Diversity in Colloidal Crystals Engineered with DNA. ACS NANO 2025; 19:6520-6528. [PMID: 39902589 DOI: 10.1021/acsnano.4c17881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Colloidal crystal engineering with DNA is a powerful way of generating a wide variety of crystals spanning over 90 different symmetries. However, in many cases, crystals with well-defined habits are difficult, if not impossible, to make, in part due to rapid crystal defect formation and propagation. This is especially true in the case of face-centered cubic (FCC) structures. Herein, we report a strategy that uses formamide as a chemical modulator to slow down colloidal crystal growth, which decreases defect formation and yields higher-quality crystals. Formamide forms hydrogen bonds with DNA bases and destabilizes the DNA duplex; in the context of colloidal crystallization, formamide leads to the disassembly of undercoordinated particles (defect architectures) and facilitates their reassembly into structures with the maximum number of nearest-neighbor contacts and DNA bonds. When targeting an FCC lattice comprised of DNA-modified spherical 20 nm particles, formamide promotes the formation of its Wulff polyhedron (a truncated octahedron), never observed before in colloidal crystal engineering with DNA. Importantly, kinetic habits, including tetrahedra, octahedra, icosahedra, and decahedra, are also observed depending on formamide concentration.
Collapse
Affiliation(s)
- Nikhil S Chellam
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Heather A Calcaterra
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Qinsi Xiong
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - George C Schatz
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
223
|
Avstrikova M, Milán Rodríguez P, Burke SM, Hibbs RE, Changeux JP, Cecchini M. Hidden complexity of α7 nicotinic acetylcholine receptor desensitization revealed by MD simulations and Markov state modeling. Proc Natl Acad Sci U S A 2025; 122:e2420993122. [PMID: 39946538 PMCID: PMC11848294 DOI: 10.1073/pnas.2420993122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/13/2025] [Indexed: 02/26/2025] Open
Abstract
The α7 nicotinic acetylcholine receptor is a pentameric ligand-gated ion channel that plays an important role in neuronal signaling throughout the nervous system. Its implication in neurological disorders and inflammation has spurred the development of numerous compounds that enhance channel activation. However, the therapeutic potential of these compounds has been limited by the characteristically fast desensitization of the α7 receptor. Using recent high-resolution structures from cryo-EM, and all-atom molecular dynamic simulations augmented by Markov state modeling, here we explore the mechanism of α7 receptor desensitization and its implication on allosteric modulation. The results provide a precise characterization of the desensitization gate and illuminate the mechanism of ion-pore opening/closing with an agonist bound. In addition, the simulations reveal the existence of a short-lived, open-channel intermediate between the activated and desensitized states that rationalizes the paradoxical pharmacology of the L247T mutant and may be relevant to type-II allosteric modulation. This analysis provides an interpretation of the signal transduction mechanism and its regulation in α7 receptors.
Collapse
Affiliation(s)
- Mariia Avstrikova
- Institut de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, Strasbourg CedexF-67083, France
| | - Paula Milán Rodríguez
- Institut de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, Strasbourg CedexF-67083, France
| | - Sean M. Burke
- Molecular Biophysics Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX75390
- Department of Neurobiology, University of California, San Diego, La Jolla, CA92093
| | - Ryan E. Hibbs
- Department of Neurobiology, University of California, San Diego, La Jolla, CA92093
| | - Jean-Pierre Changeux
- Neuroscience Department, Institut Pasteur, Collège de France, ParisF-75005, France
| | - Marco Cecchini
- Institut de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, Strasbourg CedexF-67083, France
| |
Collapse
|
224
|
Șandor A, Crișan O, Marc G, Fizeșan I, Ionuț I, Moldovan C, Stana A, Oniga I, Pîrnău A, Vlase L, Petru AE, Creștin IV, Jîjie AR, Tiperciuc B, Oniga O. Rational Design and Synthesis of a Novel Series of Thiosemicarbazone-Containing Quinazoline Derivatives as Potential VEGFR2 Inhibitors. Pharmaceutics 2025; 17:260. [PMID: 40006627 PMCID: PMC11860020 DOI: 10.3390/pharmaceutics17020260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/07/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Angiogenesis plays a crucial role in tumor development and is a driving force for the aggressiveness of several types of cancer. Our team developed a novel series of thiosemicarbazone-containing quinazoline derivatives, TSC1-TSC10, as potential VEGFR2 inhibitors with proven anti-angiogenic and antiproliferative potential. Methods: The TSC1-TSC10 series was synthesized and characterized by spectral data. Extensive methodology was applied both in vitro (Alamar Blue assay, Scratch assay, CAM assay, and VEGFR2 kinase assay) and in silico (docking studies, MDs, and MM-PBSA) for the confirmation of the biological potential. Results: TSC10 emerged as the most promising compound, with a favorable cytotoxic potential across the cell panel (Ea.Hy296, HaCaT, and A375) in agreement with the in vitro VEGFR2 kinase assay (IC50 = 119 nM). A comparable motility reduction in the vascular endothelial cells to that of the reference drug sorafenib was provided by TSC10, with a similar anti-angiogenic potential in the more complex in ovo model of the CAM assay. The in silico experiments confirmed the successful accommodation of the active site of the kinase domain similar to sorafenib for the entire TSC1-TSC10 series, providing valuable key insight into the complex stability driving force for the evaluated compounds. Conclusions: The in vitro evaluations of the biological potential correlated with the in silico predictions by computer-aided complex simulations provided a solid confirmation of the initial hypothesis for the TSC1-TSC10 series.
Collapse
Affiliation(s)
- Alexandru Șandor
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babes, Street, 400010 Cluj-Napoca, Romania; (A.Ș.); (I.I.); (C.M.); (A.S.); (B.T.); (O.O.)
| | - Ovidiu Crișan
- Department of Organic Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeş, 400012 Cluj-Napoca, Romania;
| | - Gabriel Marc
- Department of Organic Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeş, 400012 Cluj-Napoca, Romania;
| | - Ionel Fizeșan
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (I.F.); (A.-E.P.); (I.-V.C.)
| | - Ioana Ionuț
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babes, Street, 400010 Cluj-Napoca, Romania; (A.Ș.); (I.I.); (C.M.); (A.S.); (B.T.); (O.O.)
| | - Cristina Moldovan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babes, Street, 400010 Cluj-Napoca, Romania; (A.Ș.); (I.I.); (C.M.); (A.S.); (B.T.); (O.O.)
| | - Anca Stana
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babes, Street, 400010 Cluj-Napoca, Romania; (A.Ș.); (I.I.); (C.M.); (A.S.); (B.T.); (O.O.)
| | - Ilioara Oniga
- Department of Pharmacognosy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 Ion Creangă Street, 400010 Cluj-Napoca, Romania;
| | - Adrian Pîrnău
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Street, 400293 Cluj-Napoca, Romania;
| | - Laurian Vlase
- Department of Pharmaceutical Technology and Biopharmaceutics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babes, Street, 400012 Cluj-Napoca, Romania;
| | - Andreea-Elena Petru
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (I.F.); (A.-E.P.); (I.-V.C.)
| | - Ionuț-Valentin Creștin
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (I.F.); (A.-E.P.); (I.-V.C.)
| | - Alex-Robert Jîjie
- Department of Toxicology, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania;
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, 300041 Timișoara, Romania
| | - Brîndușa Tiperciuc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babes, Street, 400010 Cluj-Napoca, Romania; (A.Ș.); (I.I.); (C.M.); (A.S.); (B.T.); (O.O.)
| | - Ovidiu Oniga
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babes, Street, 400010 Cluj-Napoca, Romania; (A.Ș.); (I.I.); (C.M.); (A.S.); (B.T.); (O.O.)
| |
Collapse
|
225
|
Weirath NA, Zajac JWP, Donow HM, Lavoi TM, Pinilla C, Santos RG, Prajapati R, Speth R, Ericson MD, Sarupria S, Giulianotti MA, Haskell-Luevano C. N-Branched Tricyclic Guanidines as Novel Melanocortin-3 Receptor Agonists and Melanocortin-4 Receptor Antagonists. J Med Chem 2025; 68:2504-2527. [PMID: 39832483 DOI: 10.1021/acs.jmedchem.4c01556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The melanocortin receptors are a class of centrally and peripherally expressed G protein-coupled receptors, of which the MC3R and MC4R subtypes are implicated in the regulation of appetite and energy homeostasis and can serve as potential therapeutic targets for disorders such as obesity and cachexia. An unbiased high-throughput mixture-based library screen was implemented to identify novel ligands with an emphasis on the identification of nanomolar-potent agonists of the mouse melanocortin-3 receptor. This screen yielded the discovery of an N-branched tricyclic guanidine scaffold (TPI2408) that contained three nanomolar potent mMC3R agonists and additional compounds that possessed antagonism for the mMC4R. The antagonist character of this scaffold library at the mMC4R was confirmed by a follow-up positional scanning antagonist screen. Additionally, molecular dynamics simulations herein provide mechanistic insight into the polypharmacological characteristics of melanocortin receptors. The disclosed materials have the potential to serve as important tools and SAR scaffolds in the study of melanocortin receptor function.
Collapse
MESH Headings
- Receptor, Melanocortin, Type 3/agonists
- Receptor, Melanocortin, Type 3/antagonists & inhibitors
- Receptor, Melanocortin, Type 3/metabolism
- Receptor, Melanocortin, Type 4/agonists
- Receptor, Melanocortin, Type 4/antagonists & inhibitors
- Receptor, Melanocortin, Type 4/metabolism
- Animals
- Mice
- Humans
- Structure-Activity Relationship
- Guanidines/pharmacology
- Guanidines/chemistry
- Guanidines/chemical synthesis
- Molecular Dynamics Simulation
- HEK293 Cells
Collapse
Affiliation(s)
- Nicholas A Weirath
- Department of Medicinal Chemistry and the Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jonathan W P Zajac
- Department of Chemistry and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Haley M Donow
- Florida International University, Port St. Lucie, Florida 34978, United States
| | - Travis M Lavoi
- Florida International University, Port St. Lucie, Florida 34978, United States
| | - Clemencia Pinilla
- Department of Medicinal Chemistry and the Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Radleigh G Santos
- Nova Southeastern University, 3301 College Avenue, Fort Lauderdale, Florida 33314, United States
| | - Ritu Prajapati
- Department of Medicinal Chemistry and the Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Robert Speth
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, 3300 S. University Dr., Fort Lauderdale, Florida 33328, United States
- Department of Pharmacology and Physiology, Georgetown University School of Medicine, 3900 Reservoir Rd. NW, Washington, District of Columbia 20007, United States
| | - Mark D Ericson
- Department of Medicinal Chemistry and the Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Sapna Sarupria
- Department of Chemistry and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Marcello A Giulianotti
- Department of Medicinal Chemistry and the Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Carrie Haskell-Luevano
- Department of Medicinal Chemistry and the Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
226
|
Wei P, Kansari M, Fyta M. Graphene or MoS 2 nanopores: pore adhesion and protein linearization. NANOSCALE 2025; 17:3873-3883. [PMID: 39718375 DOI: 10.1039/d4nr03966a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Nanopores drilled in materials can electrophoretically drive charged biomolecules to enable their detection. Here, we explore and compare two-dimensional nanopores, graphene and MoS2, in order to unravel their advantages and disadvantages with regard to protein detection. We tuned the protein translocation and its dynamics by the choice and concentration of the surrounding solvent. For this, we used a typical monovalent salt solution, as well as a molecular solution. We assessed, with the aid of atomistic simulations, the efficiency of both nanopores in threading the protein on the basis of measurable ionic current signals. In the case of graphene, the protein adheres on the graphene surface, hindering the translocation under physiological conditions. This stickiness is resolved with the addition of a denaturant by the formation of a hydrophilic cationic layer on the pore surface and the protein can thread the pore in a linearized configuration. On the other hand, the MoS2 nanopores can thread the protein also in a physiological solution, leading to longer passage times, while the degree of protein linearization is lower than in the case of graphene in a molecular solution. We analyze the differences between the two nanopore materials on the basis of the complex molecular interactions between all components, the material, the target protein, and the solvent. We discuss the relevance of the results with respect to controlling the protein dynamics and enhancing the read-out ionic signals in view of an efficient detection of proteins through 2D nanopores.
Collapse
Affiliation(s)
- Peijia Wei
- Computational Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Mayukh Kansari
- Computational Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Maria Fyta
- Computational Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| |
Collapse
|
227
|
Thomas R, Prabhakar PR, Tobias DJ, von Domaros M. Insights into Dermal Permeation of Skin Oil Oxidation Products from Enhanced Sampling Molecular Dynamics Simulation. J Phys Chem B 2025; 129:1784-1794. [PMID: 39901666 PMCID: PMC11831647 DOI: 10.1021/acs.jpcb.4c08090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/05/2025]
Abstract
The oxidation of human sebum, a lipid mixture covering our skin, generates a range of volatile and semivolatile carbonyl compounds that contribute largely to indoor air pollution in crowded environments. Kinetic models have been developed to gain a deeper understanding of this complex multiphase chemistry, but they rely partially on rough estimates of kinetic and thermodynamic parameters, especially those describing skin permeation. Here, we employ atomistic molecular dynamics simulations to study the translocation of selected skin oil oxidation products through a model stratum corneum membrane. We find these simulations to be nontrivial, requiring extensive sampling with up to microsecond simulation times, in spite of employing enhanced sampling techniques. We identify the high degree of order and stochastic, long-lived temporal asymmetries in the membrane structure as the leading causes for the slow convergence of the free energy computations. We demonstrate that statistical errors due to insufficient sampling are substantial and propagate to membrane permeabilities. These errors are independent of the enhanced sampling technique employed and very likely independent of the precise membrane model.
Collapse
Affiliation(s)
- Rinto Thomas
- Fachbereich
Chemie, Philipps-Universität Marburg, Marburg 35032, Germany
| | | | - Douglas J. Tobias
- Department
of Chemistry, University of California,
Irvine, Irvine, California 92697, United States
| | | |
Collapse
|
228
|
Zech A, Most V, Mutti A, Heilbronn R, Schwarzer C, Hildebrand PW, Staritzbichler R. A combined in silico approach to design peptide ligands with increased receptor-subtype selectivity. J Mol Biol 2025:169006. [PMID: 39954776 DOI: 10.1016/j.jmb.2025.169006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
G-protein coupled receptors are major drug targets that change their conformation upon binding of ligands to their extracellular binding pocket to transduce the signal to intracellular G-proteins or arrestins. In drug screening campaigns, computational methods are frequently used to predict binding affinities for chemical compounds in silico before experimental testing. Some of these methods take into consideration the inherent flexibility of the ligand and to some extent also of the receptor. Due to high structural flexibility, peptide ligands are exceptionally difficult to handle and approaches to effectively sample in silico receptor-peptide ligand interactions are limited. Here we describe a pipeline starting from microseconds molecular dynamics simulations of receptor and receptor ligand complexes to find reasonable starting conformations and derive constraints for subsequent flexible docking of peptide ligands, using Rosetta's FlexPepDock approach. We applied this approach to predict binding affinities for dynorphin and its variants to members of the opioid receptor family. Using an ensemble of docking poses, Rosetta's fixbb protein design method explored the sequence space at defined positions, to enhance binding affinities, aiming to increase subtype selectivity towards κ-opioid receptor while decreasing it towards μ-opioid receptor. The results of our computations were validated experimentally in a related study (Zangrandi et al., 2024[1]). Four out of six proposed variants lead to a significant increase in subtype selectivity in favor of κ-opioid receptor, highlighting the potential of our approach to design subtype selective peptide variants. The established workflow may also apply for other receptor types activated by peptide ligands.
Collapse
Affiliation(s)
- Adam Zech
- Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Victoria Most
- Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany; Institute for Drug Development, University of Leipzig, Leipzig, Germany
| | - Anna Mutti
- Institute of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Regine Heilbronn
- Clinic for Neurology and Experimental Neurology, AG Gene Therapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Chistoph Schwarzer
- Institute of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Peter W Hildebrand
- Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany; Institute of Medical Physics and Biophysics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| | - René Staritzbichler
- Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany; University Institute for Laboratory Medicine, Microbiology and Clinical Pathobiochemistry, University Hospital of Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
229
|
Chen J, Madhiyan M, Moor KJ, Chen H, Shuai D. Kinetics and Mechanisms of Solar UVB Disinfection of Vesicle-Cloaked Murine Norovirus Clusters and Free Noroviruses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2461-2472. [PMID: 39893675 DOI: 10.1021/acs.est.4c12583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Human norovirus, a major global cause of gastroenteritis, forms vesicle-cloaked virus clusters (known as viral vesicles), showing increased infectivity and persistence in aquatic environments. We investigated UVB disinfection, a key mechanism of solar disinfection commonly employed in developing countries, targeting murine norovirus vesicles and free murine noroviruses as surrogates for human noroviruses. At low viral concentrations of 109 gene copies per liter, viral infectivity loss as quantified by the integrated cell culture-reverse transcription-quantitative polymerase chain reaction (ICC-RT-qPCR) indicated that vesicles were 1.51 to 1.73 times more resistant to disinfection compared to free viruses. Virus inactivation was primarily due to protein damage as quantified by bicinchoninic acid and Western blot assays, and the damage of virus binding to host cells as quantified by RT-qPCR. Molecular simulations predicted that the oxidation of a tyrosine residue in the viral protein 1 prohibited binding. UVB irradiation of viral/vesicle proteins resulted in 1O2 formation as quantified by time-resolved phosphorescence, and for the first time, endogenous 1O2 was confirmed to contribute to virus inactivation by UVB. Our study recognizes the limitation of UVB disinfection of viral vesicles particularly in solar wastewater treatment and advocates for enhanced disinfection strategies to protect public health.
Collapse
Affiliation(s)
- Jiahao Chen
- Department of Civil and Environmental Engineering, The George Washington University, Washington, District of Columbia 20052, United States
| | - Monika Madhiyan
- Utah Water Research Laboratory, Department of Civil and Environmental Engineering, Utah State University, Logan, Utah 84322, United States
| | - Kyle J Moor
- Utah Water Research Laboratory, Department of Civil and Environmental Engineering, Utah State University, Logan, Utah 84322, United States
| | - Hanning Chen
- Texas Advanced Computing Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Danmeng Shuai
- Department of Civil and Environmental Engineering, The George Washington University, Washington, District of Columbia 20052, United States
| |
Collapse
|
230
|
Shigematsu T, Shinoda Y, Takagi R, Ujihara Y, Sugita S, Nakamura M. Interleaflet Translocation of Second-Harmonic-Generation-Active Dye Molecules in Phospholipid Bilayers with Transmembrane Pores. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:3209-3219. [PMID: 39875332 PMCID: PMC11823627 DOI: 10.1021/acs.langmuir.4c03943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/28/2024] [Accepted: 01/22/2025] [Indexed: 01/30/2025]
Abstract
Second harmonic generation (SHG) measurements using SHG-active dye molecules have recently attracted attention as a method to detect the formation of pores in phospholipid bilayers. The bilayers, in which the dye molecules are embedded in the outer leaflet, exhibit a noncentrosymmetric structure, generating SHG signals. However, when pores form, these dye molecules translocate through the pores into the inner leaflet, leading to a more centrosymmetric structure and the subsequent loss of the SHG signals. A decrease in the SHG signals has been experimentally observed in membranes subjected to electrical stimuli. However, the characteristics of the interleaflet translocation of SHG-active dye molecules through pores remain unclear, hindering quantitative estimation of the membrane conditions, such as the pore size and density, based on the SHG signal reduction. In this study, we investigated the interleaflet translocation characteristics of Ap3, an SHG-active dye molecule, using molecular dynamics (MD) simulations and two-dimensional random-walk (RW) simulations. The MD simulations revealed that Ap3 molecules only translocate between the leaflets along the pore sidewalls. We determined the lateral diffusion coefficient of Ap3 within the membrane plane and its propensity for interleaflet movement at the pore wall. Based on these movement characteristics, the RW model successfully reproduced the characteristic time scale of the interleaflet translocation observed in the MD simulations. By varying the pore size and density in the RW simulations, we estimated that the characteristic time scale of interleaflet translocation depends on the -0.31 power of the pore radius and the -1.13 power of the pore density. Using these findings, we estimated the number of pores that probably formed in membranes during previous electroporation experiments. These results indicate the potential of optical measurement of the dye molecule movement for the indirect quantitative estimation of the pore size and number, which are challenging to measure optically.
Collapse
Affiliation(s)
- Taiki Shigematsu
- Graduate
School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 755-8611, Japan
| | - Yuya Shinoda
- Department
of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| | - Reiya Takagi
- Department
of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| | - Yoshihiro Ujihara
- Department
of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| | - Shukei Sugita
- Department
of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
- Center
of
Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| | - Masanori Nakamura
- Department
of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
- Center
of
Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
- Department
of Nanopharmaceutical Sciences, Nagoya Institute
of Technology, Nagoya, Aichi 466-8555, Japan
| |
Collapse
|
231
|
Xia Y, Lin X, Hu J, Yang L, Gao YQ. SPONGE-FEP: An Automated Relative Binding Free Energy Calculation Accelerated by Selective Integrated Tempering Sampling. J Chem Theory Comput 2025; 21:1432-1445. [PMID: 39868875 DOI: 10.1021/acs.jctc.4c01486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Computer-aided drug discovery (CADD) utilizes computational methods to accelerate the identification and optimization of potential drug candidates. Free energy perturbation (FEP) and thermodynamic integration (TI) play a critical role in predicting differences in protein binding affinities between drug molecules. Here, we implement SPONGE-FEP, which incorporates selective integrated tempering sampling (SITS) to enhance sampling efficiency and contains an automated workflow for relative binding free energy (RBFE) calculations. We first provide an overview of the workflow, which encompasses the generation of a perturbation map, alchemical free energy calculations, and cycle closure analysis. Two case studies were then performed to demonstrate the enhanced sampling of conformational states of ligands and proteins during the alchemical transformation process. The results show that the refined SITS method in SPONGE-FEP can significantly improve the sampling efficiency of rare events and the performance of RBFE predictions. Three series of comparative RBFE tests were conducted to demonstrate the accuracy of SPONGE-FEP, which is comparable to FEP+, using an average computation time of 4 h for a pair of ligands on an A100 GPU device.
Collapse
Affiliation(s)
- Yijie Xia
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
- Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China
| | - Xiaohan Lin
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
- Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China
| | - Jinyuan Hu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
- Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China
| | - Lijiang Yang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
- Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China
| | - Yi Qin Gao
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
- Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China
| |
Collapse
|
232
|
Ji X, Wang H, Liu W. Experiment-Guided Refinement of Milestoning Network. J Chem Theory Comput 2025; 21:1078-1088. [PMID: 39846961 DOI: 10.1021/acs.jctc.4c01436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Milestoning is an efficient method for calculating rare event kinetics by constructing a continuous-time kinetic network that connects the reactant and product states. Its accuracy depends on both the quality of the underlying force fields and the trajectory sampling. The sampling error can be effectively controlled through various methods. However, the force fields are often not accurate enough, leading to quantitative discrepancies between simulations and experimental data. To address this challenge, we present a refinement approach for Milestoning network based on the maximum caliber (MaxCal), a general variational principle for dynamical systems, to combine simulations and experimental data. The Kullback-Leibler divergence rate between two Milestoning networks is analytically evaluated and minimized as the loss function. Meanwhile, experimental thermodynamic (equilibrium constants) and kinetic (rate constants) data are incorporated as constraints. The use of MaxCal implies that the refined kinetic network is minimally perturbed from the original one while satisfying the experimental constraints. The refined network is expected to align better with available experimental data. The refinement approach is demonstrated using the binding and unbinding dynamics of a series of six small molecule ligands for the model host system, β-cyclodextrin.
Collapse
Affiliation(s)
- Xiaojun Ji
- Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao, Shandong 266237, P.R. China
- Frontiers Science Center for Nonlinear Expectations (Ministry of Education), Shandong University, Qingdao, Shandong 266237, P.R. China
| | - Hao Wang
- Qingdao Institute for Theoretical and Computational Sciences, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, P.R. China
| | - Wenjian Liu
- Qingdao Institute for Theoretical and Computational Sciences, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, P.R. China
| |
Collapse
|
233
|
Sharma D, Arumugam S. Pharmacophore-based identification and in Silico characterization of microbial metabolites as potential modulators of Wnt signaling pathway in colorectal cancer therapy. Mol Divers 2025:10.1007/s11030-024-11103-4. [PMID: 39921842 DOI: 10.1007/s11030-024-11103-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 12/31/2024] [Indexed: 02/10/2025]
Abstract
Aberrant activation of the Wnt/β-catenin signaling pathway, primarily driven by APC mutation and AXIN degradation via Tankyrase, contributes significantly to colorectal cancer (CRC) progression and metastasis. The accumulation of β-catenin, resulting from the dysregulated ubiquitination, underscores the need for alternative therapeutic strategies targeting Tankyrase and β-catenin. This present study explores microbial metabolites as a source of novel anti-cancer agents, leveraging their unique bioactivity and structural diversity, often exhibiting superior target specificity and lower toxicity than synthetic drugs. Through a computational drug discovery pipeline, a large library of 27641 microbial metabolites was initially screened based on multiple drug-likeliness criteria, resulting in the selection of 2527 compounds. Among the screened compounds, an integrated computational workflow comprising molecular docking, molecular dynamic simulations (MDS), MM/PBSA analysis, and Principal component analysis (PCA) identified Terreustoxin I (T1) as a potential Tankyrase inhibitor. In contrast, compound 10- phenyl-[12]-cytochalasin Z16 (B1) demonstrated a strong binding affinity within the β-catenin active site. Under physiological conditions, these lead compounds were evaluated for conformational stability, binding efficacy, and dynamic behavior. Additionally, ADMET profiling, physiochemical properties, and bioactivity score predictions confirmed the identified compounds' pharmacokinetic suitability and reduced toxicity profile. In silico, cytotoxicity predictions showed significant activity against SW480 and HCT90 colorectal cell lines, with additional anti-neoplastic and anti-leukemic properties, strengthening their candidacy as effective anti-cancer agents. These findings provide a foundation for further experimental validation and development of novel CRC therapies with improved safety and efficacy potential.
Collapse
Affiliation(s)
- Divya Sharma
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Sivakumar Arumugam
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
234
|
Pavlova A, Fan Z, Lynch DL, Gumbart JC. Machine learning of molecular dynamics simulations provides insights into modulation of viral capsid assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.637202. [PMID: 39974933 PMCID: PMC11839048 DOI: 10.1101/2025.02.07.637202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
An effective approach in the development of novel antivirals is to target the assembly of viral capsids using capsid assembly modulators (CAMs). CAMs targeting hepatitis B virus (HBV) have two major modes of function: they can either accelerate nucleocapsid assembly, retaining its structure, or misdirect it into non-capsid-like particles. Previous molecular dynamics (MD) simulations of early capsid-assembly intermediates showed differences in protein conformations for apo and bound states. Here, we have developed and tested several classification machine learning (ML) models to better distinguish between apo-tetramer intermediates and those bound to accelerating or misdirecting CAMs. Models based on tertiary structural properties of the Cp149 tetramers and their inter-dimer orientation, as well as models based on direct and inverse contact distances between protein residues, were tested. All models distinguished the apo states and the two CAM-bound states with high accuracy. Furthermore, tertiary structure models and residue-distance models highlighted different tetramer regions as important for classification. Both models can be used to better understand structural transitions that govern the assembly of nucleocapsids and to assist the development of more potent CAMs. Finally, we demonstrate the utility of classification ML methods in comparing MD trajectories and describe our ML approaches, which can be extended to other systems of interest.
Collapse
Affiliation(s)
- Anna Pavlova
- School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332 USA
| | - Zixing Fan
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, 30332 USA
| | - Diane L Lynch
- School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332 USA
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332 USA
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332 USA
| |
Collapse
|
235
|
Verma S, Choudhary S, Amith Kumar K, Mahto JK, Vamsi K AK, Mishra I, Prakash VB, Sircar D, Tomar S, Kumar Sharma A, Singla J, Kumar P. Mechanistic and structural insights into EstS1 esterase: A potent broad-spectrum phthalate diester degrading enzyme. Structure 2025; 33:247-261.e3. [PMID: 39642872 DOI: 10.1016/j.str.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/20/2024] [Accepted: 11/11/2024] [Indexed: 12/09/2024]
Abstract
Phthalate diesters are important pollutants and act as endocrine disruptors. While certain bacterial esterases have been identified for phthalate diesters degradation to monoesters, their structural and mechanistic characteristics remain largely unexplored. Here, we highlight the potential of the thermostable and pH-tolerant EstS1 esterase from Sulfobacillus acidophilus DSM10332 to degrade high molecular weight bis(2-ethylhexyl) phthalate (DEHP) by combining biophysical and biochemical approaches along with high-resolution EstS1 crystal structures of the apo form and with bound substrates, products, and their analogs to elucidate its mechanism. The catalytic tunnel mediates entry and exit of the substrate and product, respectively. The centralized Ser-His-Asp triad performs catalysis by a bi-bi ping-pong mechanism, forming a tetrahedral intermediate. Mutagenesis analysis showed that the Met207Ala mutation abolished DEHP binding at the active site, confirming its essential role in supporting catalysis. These findings underscore EstS1 as a promising tool for advancing technologies aimed at phthalate diesters biodegradation.
Collapse
Affiliation(s)
- Shalja Verma
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India
| | - Shweta Choudhary
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India
| | - Kamble Amith Kumar
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India
| | - Jai Krishna Mahto
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India
| | - Anil Kumar Vamsi K
- Department of Civil Engineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India
| | - Ishani Mishra
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India
| | | | - Debabrata Sircar
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India
| | - Ashwani Kumar Sharma
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India
| | - Jitin Singla
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
236
|
Qiu Y, Gao Y, Bai Q, Zhao Y. Ion coupling and inhibitory mechanisms of the human presynaptic high-affinity choline transporter CHT1. Structure 2025; 33:321-329.e5. [PMID: 39657660 DOI: 10.1016/j.str.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/23/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024]
Abstract
In cholinergic neurons, choline is the precursor of the excitatory neurotransmitter acetylcholine (ACh), which plays a fundamental role in the brain. The high-affinity choline transporter, CHT1, mediates the efficient recycling of choline to facilitate ACh synthesis in the presynapse. Here, we report high-resolution cryoelectron microscopic (cryo-EM) structures of CHT1 in complex with the inhibitors HC-3 and ML352, the substrate choline, and a substrate-free state. Our structures show distinct binding modes of the inhibitors with different chemical structures, revealing their inhibition mechanisms. Additionally, we observed a chloride ion that directly interacts with the substrate choline, thereby stabilizing its binding with CHT1. Two sodium ions, Na2 and Na3, were clearly identified, which we speculate might be involved in substrate binding and conformational transitions, respectively. Our structures provide molecular insights into the coupling mechanism of ion binding with substrate binding and conformational transitions, promoting our understanding of the ion-coupled substrate transport mechanism.
Collapse
Affiliation(s)
- Yunlong Qiu
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiwei Gao
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinru Bai
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Zhao
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
237
|
Zhang C, Bu G, Meng L, Lu D, Tong S, Yao Z, Zheng D, Zhang L. Molecular Dynamics Insights into Water Transport Mechanisms in Polyamide Membranes: Influence of Cross-Linking Degree. J Phys Chem B 2025; 129:1697-1706. [PMID: 39871475 DOI: 10.1021/acs.jpcb.4c06566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Polyamide (PA) membranes are widely utilized in desalination and water treatment applications, yet the mechanisms underlying water transport within these amorphous polymer materials remain insufficiently understood. To gain more insight into these problems on a microscopic scale, we employ molecular dynamics (MD) simulations to analyze the relationship between the structural properties and the water permeation behavior of PA membranes. Two distinct atomistic models of PA membranes are developed by controlling their degrees of cross-linking (DC). We then conducted a comparative analysis on their microscopic structural properties and configurations of water inside the membranes and investigated how these differences lead to different water diffusion coefficients. Our results reveal that the membrane with a lower DC exhibits higher polymer mobility and a more orderly microscopic structure, allowing the formation of pores that can hold larger water clusters as well as more transient passages between pores, both contributing to an increased water diffusion coefficient. From these observations, we can conclude that water permeability within PA membranes is governed by both the morphology of semirigid pores and the oscillatory movements of the polymer chains. Overall, these findings contribute to a deeper understanding of the intricate mechanisms governing water permeation in PA membranes and may inform the design of more efficient membranes for reverse osmosis and other water treatment technologies.
Collapse
Affiliation(s)
- Chi Zhang
- Engineering Research Center of Membrane and Water Treatment of MOE, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Guangle Bu
- Engineering Research Center of Membrane and Water Treatment of MOE, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Future Environment Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, P. R. China
| | - Lida Meng
- Engineering Research Center of Membrane and Water Treatment of MOE, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Dan Lu
- Engineering Research Center of Membrane and Water Treatment of MOE, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Future Environment Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, P. R. China
| | - Sirui Tong
- College of Energy, Environment and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Zhikan Yao
- Engineering Research Center of Membrane and Water Treatment of MOE, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Future Environment Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, P. R. China
| | - Danjun Zheng
- Engineering Research Center of Membrane and Water Treatment of MOE, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Lin Zhang
- Engineering Research Center of Membrane and Water Treatment of MOE, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Zhejiang Ecological Civilization Academy, Zhejiang University, Huzhou 313300, P. R. China
| |
Collapse
|
238
|
Yang DB, Zhang T, Blum JE, Kloxin CJ, Pochan DJ, Saven JG. Complementary Peptide Interactions Support the Ultra-Rigidity of Polymers of De Novo Designed Click-Functionalized Bundlemers. J Phys Chem B 2025; 129:1462-1474. [PMID: 39869537 DOI: 10.1021/acs.jpcb.4c06403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Computationally designed 29-residue peptides yield tetra-α-helical bundles with D2 symmetry. The "bundlemers" can be bifunctionally linked via thiol-maleimide cross-links at their N-termini, yielding supramolecular polymers with unusually large, micrometer-scale persistence lengths. To provide a molecularly resolved understanding of these systems, all-atom molecular modeling and simulations of linked bundlemers in explicit solvent are presented. A search over relative orientations of the bundlemers identifies a structure, wherein at the bundlemer-bundlemer interface, interior hydrophobic residues are in contact, and α-helices are aligned with a pseudocontiguous α-helix that spans the interface. Calculation of a potential of mean force confirms that the structure in which the bundlemers are in contact and colinearly aligned is a stable minimum. Analyses of hydrogen bonds and hydrophobic complementarity highlight the complementary interactions at the interface. The molecular insight provided reveals the molecular origins of bundlemer alignment within the supramolecular polymers.
Collapse
Affiliation(s)
- Dai-Bei Yang
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Tianren Zhang
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Jacquelyn E Blum
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Christopher J Kloxin
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Darrin J Pochan
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Jeffery G Saven
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
239
|
Qi Y, Fung LY, Chipot C, Wang Y. Probing the orientation and membrane permeation of rhodamine voltage reporters through molecular simulations and free energy calculations. J Mater Chem B 2025; 13:2015-2028. [PMID: 39791319 DOI: 10.1039/d4tb02670e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The transmembrane potential of plasma membranes and membrane-bound organelles plays a fundamental role in cellular functions such as signal transduction, ATP synthesis, and homeostasis. Rhodamine voltage reporters (RhoVRs), which operate based on the photoinduced electron transfer (PeT) mechanism, are non-invasive, small-molecule voltage sensors that can detect rapid voltage changes, with some of them specifically targeting the inner mitochondrial membrane. In this work, we conducted extensive molecular dynamics simulations and free-energy calculations to investigate the physicochemical properties governing the orientation as well as membrane permeation barriers of three RhoVRs. Our results indicate that the positioning of the most polarized functional group relative to the hydrophobic molecular wire dictates the alignment of RhoVRs with the membrane normal, thereby, significantly affecting their voltage sensitivity. Free-energy calculations in different membrane systems identify significantly higher barriers against the permeation of RhoVR 1 compared to SPIRIT RhoVR 1, explaining their distinct subcellular localization profiles. Subsequent free-energy calculations of the distinguishing components from the two different RhoVRs provide additional insight into the physicochemical properties governing their membrane permeation. The connection between chemical composition and membrane orientation, as well as permeation behaviors of RhoVRs revealed by our calculations provides general guiding principles for the rational design of PeT-based fluorescent dyes with enhanced voltage sensitivity and desired subcellular distribution.
Collapse
Affiliation(s)
- Yajing Qi
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Lap Yan Fung
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Christophe Chipot
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana Champaign, Unité Mixte de Recherche no. 7019, Université de Lorraine, 54506 Vandoeuvre-lès-Nancy, France.
- Theoretical and Computational Biophysics Group, Beckman Institute, and Department of Physics, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Yi Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
240
|
Lunt G, Hashemi N, Mahajan S, Tang T. Martini compatible coarse-grained model of polyethylenimine for pulmonary gene delivery. Sci Rep 2025; 15:4377. [PMID: 39910324 PMCID: PMC11799348 DOI: 10.1038/s41598-025-88848-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/31/2025] [Indexed: 02/07/2025] Open
Abstract
Pulmonary gene delivery has demonstrated high specificity for respiratory diseases, offering great control on dosage of therapeutics and side effects. On the other hand, intrinsic barriers in pulmonary systems impose new challenges such as crossing the pulmonary surfactant and evading mucus entrapment. Differences in hydrophobicity of plasma membrane and pulmonary surfactant require different chemistries of gene carriers to improve efficacy. Large-scale coarse-grained (CG) molecular dynamics simulations would facilitate the screening of gene carriers and understanding of the molecular mechanisms involved in pulmonary delivery. Among non-viral carriers, polyethyleneimine (PEI) has been a promising candidate that can be synthesized with various molecular weight, degree of branching, and functionalization. In this work, CG models are developed for PEI and its lipid-functionalized form, within the Martini framework, to provide a platform for exploring structure-function relationships of PEI-based pulmonary delivery systems. Special attention is focused on parameterizing the non-bonded interactions associated with CG PEI, to ensure compatibility with Martini proteins, short interfering RNA, and phospholipids that are essential components in pulmonary gene delivery. The non-bonded parameters are validated by comparing all-atom (AA) and CG potential of mean force (PMF) curves, where the root-mean-square deviations between the AA and CG PMF curves are shown to be comparable to or smaller than those reported in Martini literature.
Collapse
Affiliation(s)
- Graham Lunt
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Niloofar Hashemi
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Subhamoy Mahajan
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Tian Tang
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada.
| |
Collapse
|
241
|
Samuel Russell PP, Rickard MM, Pogorelov TV, Gruebele M. Enzymes in a human cytoplasm model organize into submetabolon complexes. Proc Natl Acad Sci U S A 2025; 122:e2414206122. [PMID: 39874290 PMCID: PMC11804712 DOI: 10.1073/pnas.2414206122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/18/2024] [Indexed: 01/30/2025] Open
Abstract
Enzyme-enzyme interactions are fundamental to the function of cells. Their atomistic mechanisms remain elusive mainly due to limitations of in-cell measurements. We address this challenge by atomistically modeling, for a total of ≈80 μs, a slice of the human cell cytoplasm that includes three successive enzymes along the glycolytic pathway: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglycerate kinase (PGK), and phosphoglycerate mutase (PGM). We tested the model for nonspecific protein stickiness, an artifact of current atomistic force fields in crowded environments. The simulations reveal that the human enzymes co-organize in-cell into transient submetabolon complexes, consistent with previous experimental results. Our data both reiterate known specificity between GAPDH and PGK and reveal extensive direct interactions between GAPDH and PGM. Our simulations further reveal, through force field benchmarking, the critical role of protein solvation in facilitating these enzyme-enzyme interactions. Transient interenzyme interactions with μs lifetime occur repeatedly in our simulations via specific sticky protein surface patches, with interactions often mediated by charged patch residues. Some of the residues that interact frequently with one another lie in or near the active site of the enzymes. We show that some of these patches correspond to a general mode to interact with several partners for promiscuous enzymes like GAPDH. We further show that the non-native yeast PGK is stickier than human PGK in our human cytoplasm model, supporting the idea of evolutionary pressure to reduce sticking. Our cytoplasm modeling paves the way toward capturing the atomistic dynamics of an entire enzymatic pathway in-cell.
Collapse
Affiliation(s)
- Premila P. Samuel Russell
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL61801
- Department of Chemistry, Saint Louis University, Saint Louis, MO63103
| | - Meredith M. Rickard
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Taras V. Pogorelov
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL61801
- School of Chemical Sciences, University of Illinois Urbana-Champaign, Urbana, IL61801
- Center for Biophysics and Computational Biology, University of Illinois Urbana-Champaign, Urbana, IL61801
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL61801
- National Center for Supercomputing Applications, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Martin Gruebele
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL61801
- Center for Biophysics and Computational Biology, University of Illinois Urbana-Champaign, Urbana, IL61801
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL61801
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL61801
- Carle-Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL61801
| |
Collapse
|
242
|
Qiu X, Li W, Li X, Wu B, Dai M, Xia Y, Zhang G, Bian Y, Chen J, Wu K, Lu Y, Tang M, Lin H, Shang J. Discovery of Fluorescent Probe ABDS-2 for Farnesoid X Receptor Modulator Characterization and Cell-Based Imaging. Anal Chem 2025; 97:2019-2027. [PMID: 39841563 DOI: 10.1021/acs.analchem.4c03743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The farnesoid X receptor (FXR) regulates key physiological processes, such as bile acid homeostasis and lipid metabolism, making it an important target for drug discovery. However, the overactivation of FXR often leads to adverse effects. This study presents the development of a novel fluorescent probe utilizing the computer-aided drug design (CADD) approach to optimize linkers between more potent warhead and FITC fluorescent groups. The probes were designed and assessed via molecular dynamics simulations, and four were selected for synthesis to be evaluated in in vitro biochemical assays. Among these, ABDS-2 exhibited high sensitivity and stability, which demonstrated satisfactory validation in high-throughput screening assays. Furthermore, ABDS-2 facilitated real-time bioimaging to monitor FXR homeostasis at the cellular level, providing spatially resolved insights into molecular interactions critical for cellular function studies. This research underscores the efficiency of CADD in probe design and positions ABDS-2 as a valuable chemical tool for in vitro assays and cellular-level bioimaging.
Collapse
Affiliation(s)
- Xianjie Qiu
- School of Basic Medical Sciences, Guangzhou Νational Laboratory, Guangzhou Medical University, Guangzhou 511436, China
| | - Wenqi Li
- School of Basic Medical Sciences, Guangzhou Νational Laboratory, Guangzhou Medical University, Guangzhou 511436, China
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaoqin Li
- School of Basic Medical Sciences, Guangzhou Νational Laboratory, Guangzhou Medical University, Guangzhou 511436, China
| | - Bin Wu
- School of Basic Medical Sciences, Guangzhou Νational Laboratory, Guangzhou Medical University, Guangzhou 511436, China
- Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Minxian Dai
- School of Basic Medical Sciences, Guangzhou Νational Laboratory, Guangzhou Medical University, Guangzhou 511436, China
| | - Yi Xia
- School of Basic Medical Sciences, Guangzhou Νational Laboratory, Guangzhou Medical University, Guangzhou 511436, China
| | - Gong Zhang
- Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Yizhou Bian
- Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Jiayi Chen
- School of Basic Medical Sciences, Guangzhou Νational Laboratory, Guangzhou Medical University, Guangzhou 511436, China
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Kunzhong Wu
- School of Basic Medical Sciences, Guangzhou Νational Laboratory, Guangzhou Medical University, Guangzhou 511436, China
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yongzhi Lu
- School of Basic Medical Sciences, Guangzhou Νational Laboratory, Guangzhou Medical University, Guangzhou 511436, China
| | - Miru Tang
- School of Basic Medical Sciences, Guangzhou Νational Laboratory, Guangzhou Medical University, Guangzhou 511436, China
| | - Hua Lin
- Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Jinsai Shang
- School of Basic Medical Sciences, Guangzhou Νational Laboratory, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
243
|
Nethi S, Hazra R, Kumar Jagannathareddy D, Roy D. Energetics of Oligosaccharide Adsorption on Ionic Liquid-Clay Composites. Chem Asian J 2025; 20:e202400891. [PMID: 39584358 DOI: 10.1002/asia.202400891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/24/2024] [Accepted: 11/23/2024] [Indexed: 11/26/2024]
Abstract
Well-Tempered Metadynamics (WT-MetaD) simulations indicate that composite materials made up of Na-Montmorillonite (Na-MMT) coated with ionic liquids (ILs) having hydrophilic cations serve as good adsorbents for a hexameric (1,4) linked β-D-glucopyranoside (BGLC). Hydrophilic IL cations are effectively coated on the negative charges lining the Na-MMT surface while attracting simultaneously the polar oligosaccharides. In this work we have used two less conventional polyethylene glycol (PEG) based IL cations, [mim2 peg1]2+ and [mim2 peg2]2+, paired with [tf2N]- and Cl- anions. Another strongly hydrophilic ion combination, [C2OHmim][Cl], also showed great promise in effective oligosaccharide adsorption on the Na-MMT surface. The study reveals that the topological polar surface area (TPSA), the octanol-water partition coefficient (log PO/W), the length of the cationic side chain and the Debye screening lengthλ D ${\left({\lambda }_{D}\right)}$ of the IL are some of the most important factors affecting the adsorption of hydrophilic oligosaccharides on the clay-IL composites. Among all the systems studied, [mim2 peg2][tf2N]2 having the highest TPSA and a long screening length emerged as the best adsorbent for the oligosaccharide on the IL-coated clay.
Collapse
Affiliation(s)
- Shravani Nethi
- Department of Chemistry, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad, Telangana, 500078, India
| | - Rituparna Hazra
- Department of Chemistry, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad, Telangana, 500078, India
- Present Address: School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Dinesh Kumar Jagannathareddy
- Department of Chemistry, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad, Telangana, 500078, India
| | - Durba Roy
- Department of Chemistry, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad, Telangana, 500078, India
| |
Collapse
|
244
|
Panda S, Maity T, Sarkar S, Manna AK, Mondal J, Haldar R. Diffusion-programmed catalysis in nanoporous material. Nat Commun 2025; 16:1231. [PMID: 39900924 PMCID: PMC11790907 DOI: 10.1038/s41467-025-56575-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/21/2025] [Indexed: 02/05/2025] Open
Abstract
In the realm of heterogeneous catalysis, the diffusion of reactants into catalytically active sites stands as a pivotal determinant influencing both turnover frequency and geometric selectivity in product formation. While accelerated diffusion of reactants can elevate reaction rates, it often entails a compromise in geometric selectivity. Porous catalysts, including metal-organic and covalent organic frameworks, confront formidable obstacles in regulating reactant diffusion rates. Consequently, the chemical functionality of the catalysts typically governs turnover frequency and geometric selectivity. This study presents an approach harnessing diffusion length to achieve improved selectivity and manipulation of reactant-active site residence time at active sites to augment reaction kinetics. Through the deployment of a thin film composed of a porous metal-organic framework catalyst, we illustrate how programming reactant diffusion within a cross-flow microfluidic catalytic reactor can concurrently amplify turnover frequency (exceeding 1000-fold) and enhance geometric selectivity ( ~ 2-fold) relative to conventional nano/microcrystals of catalyst in one-pot reactor. This diffusion-programed strategy represents a robust solution to surmount the constraints imposed by bulk nano/microcrystals of catalysts, marking advancement in the design of porous catalyst-driven organic reactions.
Collapse
Affiliation(s)
- Suvendu Panda
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500046, Telangana, India
| | - Tanmoy Maity
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500046, Telangana, India
- Haldia Institute of Technology, Department of Applied Science and Humanities, Hatiberia, ICARE Complex, Haldia, Purba Medinipur, West Bengal, 721657, India
| | - Susmita Sarkar
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500046, Telangana, India
| | - Arun Kumar Manna
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500046, Telangana, India
| | - Jagannath Mondal
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500046, Telangana, India
| | - Ritesh Haldar
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500046, Telangana, India.
| |
Collapse
|
245
|
Banjan B, Raju R, Keshava Prasad TS, Abhinand CS. Computational identification of potential bioactive compounds from Triphala against alcoholic liver injury by targeting alcohol dehydrogenase. Mol Divers 2025; 29:623-638. [PMID: 38743308 DOI: 10.1007/s11030-024-10879-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024]
Abstract
Alcoholic liver injury resulting from excessive alcohol consumption is a significant social concern. Alcohol dehydrogenase (ADH) plays a critical role in the conversion of alcohol to acetaldehyde, leading to tissue damage. The management of alcoholic liver injury encompasses nutritional support and, in severe cases liver transplantation, but potential adverse effects exist, and effective medications are currently unavailable. Natural products with their potential benefits and historical use in traditional medicine emerge as promising alternatives. Triphala, a traditional polyherbal formula demonstrates beneficial effects in addressing diverse health concerns, with a notable impact on treating alcoholic liver damage through enhanced liver metabolism. The present study aims to identify potential active phytocompounds in Triphala targeting ADH to prevent alcoholic liver injury. Screening 119 phytocompounds from the Triphala formulation revealed 62 of them showing binding affinity to the active site of the ADH1B protein. Promising lipid-like molecule from Terminalia bellirica, (4aS, 6aR, 6aR, 6bR, 7R, 8aR, 9R, 10R, 11R, 12aR, 14bS)-7, 10, 11-trihydroxy-9-(hydroxymethyl)-2, 2, 6a, 6b, 9, 12a-hexamethyl-1, 3, 4, 5, 6, 6a, 7, 8, 8a, 10, 11, 12, 13, 14b-tetradecahydropicene-4a-carboxylic acid showed high binding efficiency to a competitive ADH inhibitor, 4-Methylpyrazole. Pharmacokinetic analysis further confirmed the drug-likeness and non-hepatotoxicity of the top-ranked compound. Molecular dynamics simulation and MM-PBSA studies revealed the stability of the docked complexes with minimal fluctuation and consistency of the hydrogen bonds throughout the simulation. Together, computational investigations suggest that (4aS, 6aR, 6aR, 6bR, 7R, 8aR, 9R, 10R, 11R, 12aR, 14bS)-7, 10, 11-trihydroxy-9-(hydroxymethyl)-2, 2, 6a, 6b, 9, 12a-hexamethyl-1, 3, 4, 5, 6, 6a, 7, 8, 8a, 10, 11, 12, 13, 14b-tetradecahydropicene-4a-carboxylic acid from the Triphala formulation holds promise as an ADH inhibitor, suggesting an alternative therapy for alcoholic liver injury.
Collapse
Affiliation(s)
- Bhavya Banjan
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Rajesh Raju
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Thottethodi Subrahmanya Keshava Prasad
- Center for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka, 575018, India
| | - Chandran S Abhinand
- Center for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka, 575018, India.
| |
Collapse
|
246
|
Haider M, Sharma S, Agrahari AK, Dikshit M, Pathak DP, Asthana S. Crystallographic mining driven computer-guided approach to identify the ASK1 inhibitor likely to perturb the catalytic region. J Biomol Struct Dyn 2025; 43:1290-1304. [PMID: 38069610 DOI: 10.1080/07391102.2023.2291545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/18/2023] [Indexed: 01/16/2025]
Abstract
The pathological levels of reactive oxygen species (ROS) and oxidative stress has been recognized as a critical driver for inflammatory disorders. Apoptosis signal-regulating kinase 1 (ASK1) has been reported to be activated by intracellular ROS and its inhibition leads to a down regulation of p38-and JNK-dependent signaling. ASK1 inhibitors are reported to have the potential to treat clinically important inflammatory pathologies including liver, pulmonary and renal disorders. In view of its biological and pathological significance, inhibition of ASK1 with small molecules has been pursued as an attractive strategy to combat human diseases such as non-alcoholic steatohepatitis (NASH). Despite several ASK1 inhibitors being developed, the failure in Phase 3 clinical trials of most advanced candidate selonsertib's, underscores to discover therapeutic agents with diverse chemical moiety. Here, by using structural pharmacophore and enumeration strategy on mining co-crystals of ASK1, different scaffolds were generated to enhance the chemical diversity keeping the critical molecular interaction in the catalytic site intact. A total of 15,772 compounds were generated from diverse chemical scaffolds and were evaluated using a virtual screening pipeline. Based on docking and MM-GBSA scores, a lead candidate, S3C-1-D424 was identified from top hits. A comparative molecular dynamics simulations (MD) of APO, Selonsertib and shortlisted potential candidates combined with pharmacokinetics profiling and thermodynamic analysis, demonstrating their suitability as potential ASK1 inhibitors to explore further for establishment towards hit-to-lead campaign.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohamad Haider
- Computational Biophysics and CADD Group, Computational and Mathematical Biology Center (CMBC), Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSR University, New Delhi, India
| | - Shilpa Sharma
- Computational Biophysics and CADD Group, Computational and Mathematical Biology Center (CMBC), Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
| | - Ashish Kumar Agrahari
- Computational Biophysics and CADD Group, Computational and Mathematical Biology Center (CMBC), Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
| | - Madhu Dikshit
- Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
- Pharmacology Division, Central Drug Research Institute, Lucknow, India
| | - Dharam Pal Pathak
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSR University, New Delhi, India
| | - Shailendra Asthana
- Computational Biophysics and CADD Group, Computational and Mathematical Biology Center (CMBC), Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
| |
Collapse
|
247
|
Jamal GA, Jahangirian E, Hamblin MR, Shirali M, Mirzaei H, Tarrahimofrad H. In-silico characterization of a thermophilic serine protease via homology modeling, docking and molecular dynamics simulations. J Biomol Struct Dyn 2025; 43:1206-1227. [PMID: 38084768 DOI: 10.1080/07391102.2023.2291179] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/18/2023] [Indexed: 01/16/2025]
Abstract
One of the major categories of industrial enzymes, proteases is crucial to the survival of living things. The purpose of this research was to newly thermostable protease from the thermophilum Geobacillus stearothermophilus. With the conserved catalytic tetrad, protease (Protease JJ) is closely related to the serine proteases from the subtilisin S8 peptidase, according to phylogenetic tree analysis. The tertiary structure of Protease JJ was predicted structurally using RoseTTAFold, and it is a sandwich structure overall. Homology modeling validation showed Protease JJ was modeled in X-ray's protein areas, and it has gained a favored Ramachandran graph regarding Phi/Psi angels. Protease JJ showed structure stability through Molecular dynamics simulation in the presence of Tween20 and Methanol in 1% concentration. Also, Protease JJ exhibited thermal stability at 60 to 90 °C so that amino acid exposure of Protease JJ was low and constant throughout the MD simulation. Docking results of Protease JJ with BSA and βcasein were simulated via MD and it was found that Protease JJ could interact with both BSA and βcasein strongly. MM/PBSA analysis showed Protease JJ may be involved via more amino acids with BSA as well as established more interaction hydrogen bonds. Overall, evidence suggests Protease JJ probably has merit for future experimental investigation as a thermostable protease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ghadir A Jamal
- Faculty of Allied Health Sciences, Kuwait University, Kuwait City, Kuwait
| | - Ehsan Jahangirian
- Department of Molecular, Zist Tashkhis Farda Company (tBioDx), Tehran, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Laser Research Center, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Masoud Shirali
- Senior Quantitative Geneticist and Project leader, Agri-Food and Biosciences Institute, Hillsborough, UK and Assistant professor, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | | |
Collapse
|
248
|
Dewaker V, Srivastava PN, Debnath U, Srivastava AK, Prabhakar YS. MD simulations for rational design of high-affinity HDAC4 inhibitors - Analysis of non-bonding interaction energies for building new compounds. Arch Biochem Biophys 2025; 764:110262. [PMID: 39662718 DOI: 10.1016/j.abb.2024.110262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
This study investigates the contributions of non-bonding energy (NBE) to the efficacy of four HDAC4 co-crystallized inhibitors (HA3, 9F4, EBE, and TFG) through 100ns Molecular Dynamics (MD) simulations. These inhibitors contain hydroxamic acid (HA3, 9F4, EBE) or diol (TFG) as zinc-binding groups. In PDBs 2VQJ and 2VQM, the HDAC4 catalytic domain is in the 'open' conformation, while in PDBs 4CBT and 6FYZ, the same is in the 'closed' conformation. We identified HA3 as a weaker inhibitor because of the unfavorable NBE contributions from its carbonyl fragment (FR3) and hydroxamic fragment (FR1). To enhance NBE efficacy, we designed novel HA3 analogs (H01-H16) by introducing diverse fragments (-CF3, 2-hydroxyacetic acid, -NH-CH2-, 5-fluoro-2-phenyl pyrimidine, and chloroquinoline moieties). MD simulations revealed promising analogs (H02, H07, H08, H15) with strong NBEs and stable ligand-zinc retention (2.07-2.33 Å). These analogs exhibited strong relative binding free energies within their catalytic sites, highlighting their potential as novel HDAC4 inhibitors. The current study provides medicinal chemists with insights into non-covalent interactions, identifies key fragments for optimization, and offers a rational design strategy for developing more effective HDAC4 inhibitors.
Collapse
Affiliation(s)
- Varun Dewaker
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226017, India
| | - Pratik Narain Srivastava
- Molecular Parasitology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow, 226017, India
| | - Utsab Debnath
- School of Health Sciences and Technology, UPES, Dehradun, 246007, India
| | - Ajay Kumar Srivastava
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226017, India
| | - Yenamandra S Prabhakar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226017, India.
| |
Collapse
|
249
|
Ganguly M, Gupta R, Roychowdhury A, Hazra D. De novo drug designing coupled with brute force screening and structure guided lead optimization gives highly specific inhibitor of METTL3: a potential cure for Acute Myeloid Leukaemia. J Biomol Struct Dyn 2025; 43:1038-1051. [PMID: 38069613 DOI: 10.1080/07391102.2023.2291162] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 11/15/2023] [Indexed: 01/01/2025]
Abstract
Expression of METTL3, a SAM dependent methyltransferase, which deposits m6A on mRNA is linked to poor prognosis in Acute Myeloid Leukaemia and other type of cancers. Down regulation of this epitranscriptomic regulator has been found to inhibit cancer progression. Silencing the methyltransferase activity of METTL3 is a lucrative strategy to design anticancer drugs. In this study 3600 commercially available molecules were screened against METTL3 using brute force screening approach. However, none of these compounds take advantage of the unique Y-shaped binding cavity of the protein, raising the need for de novo drug designing strategies. As such, 125 branched, Y-shaped molecules were designed by "stitching" together the chemical fragments of the best inhibitors that interact strongly with the METTL3 binding pocket. This results in molecules that have the three-dimensional structure and functional groups which enable it to fit in the METTL3 cavity like fingers in a glove, having unprecedented selectivity and binding affinities. The designed compounds were further refined based on Lipinski's rule, docking score and synthetic accessibility. The molecules faring well in these criteria were simulated for 100 ns to check the stability of the protein inhibitor complex followed by binding free energy calculation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Radhika Gupta
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, India
| | - Amlan Roychowdhury
- Center for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, India
| | - Ditipriya Hazra
- Department of Biotechnology, St. Xavier's College (Autonomous), Kolkata, India
| |
Collapse
|
250
|
Ballabh D, Shaikh S, More RA, Meshram RJ. Dynamics, mechanistic and energetic evaluation of thiazole-thiadiazole compounds in flavin dependent thymidylate synthase of Mycobacterium tuberculosis. Int J Biol Macromol 2025; 289:138839. [PMID: 39706436 DOI: 10.1016/j.ijbiomac.2024.138839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/12/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a significant global health challenge due to the emergence of drug-resistant strains. This study targets Flavin-dependent thymidylate synthase (ThyX), an essential enzyme in the thymidylate biosynthesis pathway crucial for bacterial DNA replication. We utilized advanced computational techniques, including molecular dynamics (MD) simulations and interaction energy analysis, to examine the binding interactions and stability of various thiazole-thiadiazole compounds with Mtb ThyX. Our results, corroborated by experimental validation, demonstrate that ligand binding enhances ThyX protein stability, with compound 5l exhibiting the strongest stabilizing effect. Root mean square fluctuation (RMSF) data indicate a consistent binding mechanism, while radius of gyration (RG) and solvent accessible surface area (SASA) analyses confirm structural stability. Key interactions with conserved residues such as Glu74, Ser105, Tyr44, and Ser100 were highlighted through hydrogen bonding and cluster analysis, underscoring protein-ligand complex stability. Principal component analysis (PCA) suggests an allosteric regulation mechanism within ThyX, driven by ligand binding, which induces conformational changes. Free energy landscape (FEL) analysis shows rapid stabilization in ligand-bound states. Compound 5l stands out due to its favourable pharmacokinetic properties and safety, making it a promising candidate for anti-tuberculosis drug development.
Collapse
Affiliation(s)
- Debopriya Ballabh
- Bioinformatics Centre, Savitribai Phule Pune University, Pune 411007, MS (Maharashtra), India
| | - Samin Shaikh
- Kr. V. N. Naik Shikshan Prasarak Sanstha's Arts, Commerce and Science College, Canada Corner, Nashik 422002, India
| | - Rahul A More
- Department of Microbiology, Dayanand Science College, Latur 413 512, MS, India
| | - Rohan J Meshram
- Bioinformatics Centre, Savitribai Phule Pune University, Pune 411007, MS (Maharashtra), India.
| |
Collapse
|