201
|
Schollenberger J, Osborne NH, Hernandez-Garcia L, Figueroa CA. A Combined Computational Fluid Dynamics and Arterial Spin Labeling MRI Modeling Strategy to Quantify Patient-Specific Cerebral Hemodynamics in Cerebrovascular Occlusive Disease. Front Bioeng Biotechnol 2021; 9:722445. [PMID: 34485260 PMCID: PMC8416094 DOI: 10.3389/fbioe.2021.722445] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Cerebral hemodynamics in the presence of cerebrovascular occlusive disease (CVOD) are influenced by the anatomy of the intracranial arteries, the degree of stenosis, the patency of collateral pathways, and the condition of the cerebral microvasculature. Accurate characterization of cerebral hemodynamics is a challenging problem. In this work, we present a strategy to quantify cerebral hemodynamics using computational fluid dynamics (CFD) in combination with arterial spin labeling MRI (ASL). First, we calibrated patient-specific CFD outflow boundary conditions using ASL-derived flow splits in the Circle of Willis. Following, we validated the calibrated CFD model by evaluating the fractional blood supply from the main neck arteries to the vascular territories using Lagrangian particle tracking and comparing the results against vessel-selective ASL (VS-ASL). Finally, the feasibility and capability of our proposed method were demonstrated in two patients with CVOD and a healthy control subject. We showed that the calibrated CFD model accurately reproduced the fractional blood supply to the vascular territories, as obtained from VS-ASL. The two patients revealed significant differences in pressure drop over the stenosis, collateral flow, and resistance of the distal vasculature, despite similar degrees of clinical stenosis severity. Our results demonstrated the advantages of a patient-specific CFD analysis for assessing the hemodynamic impact of stenosis.
Collapse
Affiliation(s)
- Jonas Schollenberger
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Nicholas H Osborne
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Luis Hernandez-Garcia
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States.,Functional MRI Laboratory, University of Michigan, Ann Arbor, MI, United States
| | - C Alberto Figueroa
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States.,Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
202
|
Raimondo L, Oliveira ĹAF, Heij J, Priovoulos N, Kundu P, Leoni RF, van der Zwaag W. Advances in resting state fMRI acquisitions for functional connectomics. Neuroimage 2021; 243:118503. [PMID: 34479041 DOI: 10.1016/j.neuroimage.2021.118503] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 08/16/2021] [Accepted: 08/22/2021] [Indexed: 01/21/2023] Open
Abstract
Resting state functional magnetic resonance imaging (rs-fMRI) is based on spontaneous fluctuations in the blood oxygen level dependent (BOLD) signal, which occur simultaneously in different brain regions, without the subject performing an explicit task. The low-frequency oscillations of the rs-fMRI signal demonstrate an intrinsic spatiotemporal organization in the brain (brain networks) that may relate to the underlying neural activity. In this review article, we briefly describe the current acquisition techniques for rs-fMRI data, from the most common approaches for resting state acquisition strategies, to more recent investigations with dedicated hardware and ultra-high fields. Specific sequences that allow very fast acquisitions, or multiple echoes, are discussed next. We then consider how acquisition methods weighted towards specific parts of the BOLD signal, like the Cerebral Blood Flow (CBF) or Volume (CBV), can provide more spatially specific network information. These approaches are being developed alongside the commonly used BOLD-weighted acquisitions. Finally, specific applications of rs-fMRI to challenging regions such as the laminae in the neocortex, and the networks within the large areas of subcortical white matter regions are discussed. We finish the review with recommendations for acquisition strategies for a range of typical applications of resting state fMRI.
Collapse
Affiliation(s)
- Luisa Raimondo
- Spinoza Centre for Neuroimaging, Amsterdam, the Netherlands; Experimental and Applied Psychology, VU University, Amsterdam, the Netherlands
| | - Ĺcaro A F Oliveira
- Spinoza Centre for Neuroimaging, Amsterdam, the Netherlands; Experimental and Applied Psychology, VU University, Amsterdam, the Netherlands
| | - Jurjen Heij
- Spinoza Centre for Neuroimaging, Amsterdam, the Netherlands; Experimental and Applied Psychology, VU University, Amsterdam, the Netherlands
| | | | - Prantik Kundu
- Hyperfine Research Inc, Guilford, CT, United States; Icahn School of Medicine at Mt. Sinai, New York, United States
| | - Renata Ferranti Leoni
- InBrain, Department of Physics, FFCLRP, University of São Paulo, Ribeirão Preto, Brazil
| | | |
Collapse
|
203
|
Meixner CR, Eisen CK, Schmitter S, Müller M, Herrler J, Hensel B, Dörfler A, Uder M, Nagel AM. Hybrid B 1 + -shimming and gradient adaptions for improved pseudo-continuous arterial spin labeling at 7 Tesla. Magn Reson Med 2021; 87:207-219. [PMID: 34411335 DOI: 10.1002/mrm.28982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 11/09/2022]
Abstract
PURPOSE To improve pseudo-continuous arterial spin labeling (pcASL) at 7T by exploiting a hybrid homogeneity- and efficiency-optimized B 1 + -shim with adapted gradient strength as well as background suppression. METHODS The following three experiments were performed at 7T, each employing five volunteers: (1) A hybrid (ie, homogeneity-efficiency optimized) B 1 + -shim was introduced and evaluated for variable-rate selective excitation pcASL labeling. Therefore, B 1 + -maps in the V3 segment and time-of-flight images were acquired to identify the feeding arteries. For validation, a gradient-echo sequence was applied in circular polarized (CP) mode and with the hybrid B 1 + -shim. Additionally, the gray matter (temporal) signal-to-noise ratio (tSNR) in pcASL perfusion images was evaluated. (2) Bloch simulations for the pcASL labeling were conducted and validated experimentally, with a focus on the slice-selective gradients. (3) Background suppression was added to the B 1 + -shimmed, gradient-adapted 7T sequence and this was then compared to a matched sequence at 3T. RESULTS The B 1 + -shim improved the signal within the labeling plane (23.6%) and the SNR/tSNR increased (+11%/+11%) compared to its value in CP mode; however, the increase was not significant. In accordance with the simulations, the adapted gradients increased the tSNR (35%) and SNR (45%) significantly. Background suppression further improved the perfusion images at 7T, and this protocol performed as well as a resolution-matched protocol at 3T. CONCLUSION The combination of the proposed hybrid B 1 + -phase-shim with the adapted slice-selective gradients and background suppression shows great potential for improved pcASL labeling under suboptimal B 1 + conditions at 7T.
Collapse
Affiliation(s)
- Christian R Meixner
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christian K Eisen
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany.,Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Max Müller
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jürgen Herrler
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Bernhard Hensel
- Center for Medical Physics and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Arnd Dörfler
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
204
|
Quattrini G, Marizzoni M, Pizzini FB, Galazzo IB, Aiello M, Didic M, Soricelli A, Albani D, Romano M, Blin O, Forloni G, Golay X, Jovicich J, Nathan PJ, Richardson JC, Salvatore M, Frisoni GB, Pievani M. Convergent and Discriminant Validity of Default Mode Network and Limbic Network Perfusion in Amnestic Mild Cognitive Impairment Patients. J Alzheimers Dis 2021; 82:1797-1808. [PMID: 34219733 DOI: 10.3233/jad-210531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Previous studies reported default mode network (DMN) and limbic network (LIN) brain perfusion deficits in patients with amnestic mild cognitive impairment (aMCI), frequently a prodromal stage of Alzheimer's disease (AD). However, the validity of these measures as AD markers has not yet been tested using MRI arterial spin labeling (ASL). OBJECTIVE To investigate the convergent and discriminant validity of DMN and LIN perfusion in aMCI. METHODS We collected core AD markers (amyloid-β 42 [Aβ42], phosphorylated tau 181 levels in cerebrospinal fluid [CSF]), neurodegenerative (hippocampal volumes and CSF total tau), vascular (white matter hyperintensities), genetic (apolipoprotein E [APOE] status), and cognitive features (memory functioning on Paired Associate Learning test [PAL]) in 14 aMCI patients. Cerebral blood flow (CBF) was extracted from DMN and LIN using ASL and correlated with AD features to assess convergent validity. Discriminant validity was assessed carrying out the same analysis with AD-unrelated features, i.e., somatomotor and visual networks' perfusion, cerebellar volume, and processing speed. RESULTS Perfusion was reduced in the DMN (F = 5.486, p = 0.039) and LIN (F = 12.678, p = 0.004) in APOE ɛ4 carriers compared to non-carriers. LIN perfusion correlated with CSF Aβ42 levels (r = 0.678, p = 0.022) and memory impairment (PAL, number of errors, r = -0.779, p = 0.002). No significant correlation was detected with tau, neurodegeneration, and vascular features, nor with AD-unrelated features. CONCLUSION Our results support the validity of DMN and LIN ASL perfusion as AD markers in aMCI, indicating a significant correlation between CBF and amyloidosis, APOE ɛ4, and memory impairment.
Collapse
Affiliation(s)
- Giulia Quattrini
- Laboratory of Alzheimer's Neuroimaging and Epidemiology (LANE), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Moira Marizzoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology (LANE), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Laboratory of Biological Psychiatry, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Francesca B Pizzini
- Radiology, Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | | | | | - Mira Didic
- Aix-Marseille Univ, INSERM, INS, Instit Neurosci des Syst, Marseille, France.,APHM, Timone, Service de Neurologie et Neuropsychologie, Hôpital Timone Adultes, Marseille, France
| | - Andrea Soricelli
- IRCCS SDN, Napoli, Italy.,Department of Sport Sciences, University of Naples Parthenope, Naples, Italy
| | - Diego Albani
- Neuroscience Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Melissa Romano
- Laboratory of Alzheimer's Neuroimaging and Epidemiology (LANE), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Olivier Blin
- Aix-Marseille Univ, INSERM, INS, Instit Neurosci des Syst, DHUNE, Ap-Hm, Marseille, France
| | - Gianluigi Forloni
- Neuroscience Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Xavier Golay
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Jorge Jovicich
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy
| | - Pradeep J Nathan
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Jill C Richardson
- Neurosciences Therapeutic Area, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, United Kingdom
| | | | - Giovanni B Frisoni
- Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Michela Pievani
- Laboratory of Alzheimer's Neuroimaging and Epidemiology (LANE), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | | |
Collapse
|
205
|
Alhummiany BA, Shelley D, Saysell M, Olaru MA, Kühn B, Buckley DL, Bailey J, Wroe K, Coupland C, Mansfield MW, Sourbron SP, Sharma K. Bias and Precision in Magnetic Resonance Imaging-Based Estimates of Renal Blood Flow: Assessment by Triangulation. J Magn Reson Imaging 2021; 55:1241-1250. [PMID: 34397124 DOI: 10.1002/jmri.27888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Renal blood flow (RBF) can be measured with dynamic contrast enhanced-MRI (DCE-MRI) and arterial spin labeling (ASL). Unfortunately, individual estimates from both methods vary and reference-standard methods are not available. A potential solution is to include a third, arbitrating MRI method in the comparison. PURPOSE To compare RBF estimates between ASL, DCE, and phase contrast (PC)-MRI. STUDY TYPE Prospective. POPULATION Twenty-five patients with type-2 diabetes (36% female) and five healthy volunteers (HV, 80% female). FIELD STRENGTH/SEQUENCES A 3 T; gradient-echo 2D-DCE, pseudo-continuous ASL (pCASL) and cine 2D-PC. ASSESSMENT ASL, DCE, and PC were acquired once in all patients. ASL and PC were acquired four times in each HV. RBF was estimated and split-RBF was derived as (right kidney RBF)/total RBF. Repeatability error (RE) was calculated for each HV, RE = 1.96 × SD, where SD is the standard deviation of repeat scans. STATISTICAL TESTS Paired t-tests and one-way analysis of variance (ANOVA) were used for statistical analysis. The 95% confidence interval (CI) for difference between ASL/PC and DCE/PC was assessed using two-sample F-test for variances. Statistical significance level was P < 0.05. Influential outliers were assessed with Cook's distance (Di > 1) and results with outliers removed were presented. RESULTS In patients, the mean RBF (mL/min/1.73m2 ) was 618 ± 62 (PC), 526 ± 91 (ASL), and 569 ± 110 (DCE). Differences between measurements were not significant (P = 0.28). Intrasubject agreement was poor for RBF with limits-of-agreement (mL/min/1.73m2 ) [-687, 772] DCE-ASL, [-482, 580] PC-DCE, and [-277, 460] PC-ASL. The difference PC-ASL was significantly smaller than PC-DCE, but this was driven by a single-DCE outlier (P = 0.31, after removing outlier). The difference in split-RBF was comparatively small. In HVs, mean RE (±95% CI; mL/min/1.73 m2 ) was significantly smaller for PC (79 ± 41) than for ASL (241 ± 85). CONCLUSIONS ASL, DCE, and PC RBF show poor agreement in individual subjects but agree well on average. Triangulation with PC suggests that the accuracy of ASL and DCE is comparable. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
| | - David Shelley
- Department of Biomedical Imaging Sciences, University of Leeds, Leeds, UK.,Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Margaret Saysell
- Department of Biomedical Imaging Sciences, University of Leeds, Leeds, UK.,Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | | | - Bernd Kühn
- Siemens Healthcare GmbH, Erlangen, Germany
| | - David L Buckley
- Department of Biomedical Imaging Sciences, University of Leeds, Leeds, UK
| | | | - Kelly Wroe
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | | | | | - Steven P Sourbron
- Department of Imaging, Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, UK
| | - Kanishka Sharma
- Department of Imaging, Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, UK
| |
Collapse
|
206
|
Krishnamurthy LC, Krishnamurthy V, Rodriguez AD, McGregor KM, Glassman CN, Champion GS, Rocha N, Harnish SM, Belagaje SR, Kundu S, Crosson BA. Not All Lesioned Tissue Is Equal: Identifying Pericavitational Areas in Chronic Stroke With Tissue Integrity Gradation via T2w T1w Ratio. Front Neurosci 2021; 15:665707. [PMID: 34421509 PMCID: PMC8378269 DOI: 10.3389/fnins.2021.665707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 07/05/2021] [Indexed: 11/14/2022] Open
Abstract
Stroke-related tissue damage within lesioned brain areas is topologically non-uniform and has underlying tissue composition changes that may have important implications for rehabilitation. However, we know of no uniformly accepted, objective non-invasive methodology to identify pericavitational areas within the chronic stroke lesion. To fill this gap, we propose a novel magnetic resonance imaging (MRI) methodology to objectively quantify the lesion core and surrounding pericavitational perimeter, which we call tissue integrity gradation via T2w T1w ratio (TIGR). TIGR uses standard T1-weighted (T1w) and T2-weighted (T2w) anatomical images routinely collected in the clinical setting. TIGR maps are analyzed with relation to subject-specific gray matter and cerebrospinal fluid thresholds and binned to create a false colormap of tissue damage within the stroke lesion, and these are further categorized into low-, medium-, and high-damage areas. We validate TIGR by showing that the cerebral blood flow within the lesion reduces with greater tissue damage (p = 0.005). We further show that a significant task activity can be detected in pericavitational areas and that medium-damage areas contain a significantly lower magnitude of hemodynamic response function than the adjacent damaged areas (p < 0.0001). We also demonstrate the feasibility of using TIGR maps to extract multivariate brain-behavior relationships (p < 0.05) and show general agreement in location compared to binary lesion, T1w-only, and T2w-only maps but that the extent of brain behavior maps may depend on signal sensitivity as denoted by the sparseness coefficient (p < 0.0001). Finally, we show the feasibility of quantifying TIGR in early and late subacute stroke phases, where higher-damage areas were smaller in size (p = 0.002) and that lesioned voxels transition from lower to higher damage with increasing time post-stroke (p = 0.004). We conclude that TIGR is able to (1) identify tissue damage gradient within the stroke lesion across different post-stroke timepoints and (2) more objectively delineate lesion core from pericavitational areas wherein such areas demonstrate reasonable and expected physiological and functional impairments. Importantly, because T1w and T2w scans are routinely collected in the clinic, TIGR maps can be readily incorporated in clinical settings without additional imaging costs or patient burden to facilitate decision processes related to rehabilitation planning.
Collapse
Affiliation(s)
- Lisa C. Krishnamurthy
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, Decatur, GA, United States
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA, United States
| | - Venkatagiri Krishnamurthy
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, Decatur, GA, United States
- Division of Geriatrics and Gerontology, Department of Medicine, Emory University, Atlanta, GA, United States
- Department of Neurology, Emory University, Atlanta, GA, United States
| | - Amy D. Rodriguez
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, Decatur, GA, United States
- Department of Neurology, Emory University, Atlanta, GA, United States
| | - Keith M. McGregor
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, Decatur, GA, United States
- Department of Neurology, Emory University, Atlanta, GA, United States
| | - Clara N. Glassman
- Department of Nuclear and Radiological Engineering and Medical Physics, Georgia Institute of Technology, Atlanta, GA, United States
| | - Gabriell S. Champion
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, Decatur, GA, United States
- Department of Psychology, Georgia State University, Atlanta, GA, United States
| | - Natalie Rocha
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, Decatur, GA, United States
| | - Stacy M. Harnish
- Department of Speech and Hearing Science, The Ohio State University, Columbus, OH, United States
| | - Samir R. Belagaje
- Department of Neurology, Emory University, Atlanta, GA, United States
- Department of Rehabilitation Medicine, Emory University, Atlanta, GA, United States
| | - Suprateek Kundu
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, United States
| | - Bruce A. Crosson
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, Decatur, GA, United States
- Department of Neurology, Emory University, Atlanta, GA, United States
- Department of Psychology, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
207
|
Harteveld AA, Littooij AS, van Noesel MM, van Stralen M, Bos C. Perfusion imaging of neuroblastoma and nephroblastoma in a paediatric population using pseudo-continuous arterial spin-labelling magnetic resonance imaging. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2021; 35:235-246. [PMID: 34342775 PMCID: PMC8995293 DOI: 10.1007/s10334-021-00943-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/18/2021] [Accepted: 07/07/2021] [Indexed: 11/29/2022]
Abstract
Objectives To examine the feasibility of performing ASL-MRI in paediatric patients with solid abdominal tumours. Methods Multi-delay ASL data sets were acquired in ten paediatric patients diagnosed with either a neuroblastoma (n = 4) or nephroblastoma (n = 6) during a diagnostic MRI examination at a single visit (n = 4 at initial staging, n = 2 neuroblastoma and n = 2 nephroblastoma patients; n = 6 during follow-up, n = 2 neuroblastoma and n = 4 nephroblastoma patients). Visual evaluation and region-of-interest (ROI) analyses were performed on the processed perfusion-weighted images to assess ASL perfusion signal dynamics in the whole tumour, contralateral kidney, and tumour sub-regions with/without contrast enhancement. Results The majority of the included abdominal tumours presented with relatively low perfusion-weighted signal (PWS), especially compared with the highly perfused kidneys. Within the tumours, regions with high PWS were observed which, at short PLD, are possibly related to labelled blood inside vessels and at long PLD, reflect labelled blood accumulating inside tumour tissue over time. Conversely, comparison of ASL perfusion-weighted image findings with T1w enhancement after contrast administration showed that regions lacking contrast enhancement also were void of PWS. Discussion This pilot study demonstrates the feasibility of utilizing ASL-MRI in paediatric patients with solid abdominal tumours and provides a basis for further research on non-invasive perfusion measurements in this study population.
Collapse
Affiliation(s)
- Anita Adriaantje Harteveld
- Department of Radiology, University Medical Centre Utrecht, Utrecht University, P.O. box 85500, 3508 GA, Utrecht, The Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Annemieke Simone Littooij
- Department of Radiology, University Medical Centre Utrecht, Utrecht University, P.O. box 85500, 3508 GA, Utrecht, The Netherlands.,Princess Máxima Centre for Paediatric Oncology, Utrecht, The Netherlands
| | | | - Marijn van Stralen
- Department of Radiology, University Medical Centre Utrecht, Utrecht University, P.O. box 85500, 3508 GA, Utrecht, The Netherlands
| | - Clemens Bos
- Department of Radiology, University Medical Centre Utrecht, Utrecht University, P.O. box 85500, 3508 GA, Utrecht, The Netherlands.
| |
Collapse
|
208
|
Taso M, Munsch F, Zhao L, Alsop DC. Regional and depth-dependence of cortical blood-flow assessed with high-resolution Arterial Spin Labeling (ASL). J Cereb Blood Flow Metab 2021; 41:1899-1911. [PMID: 33444098 PMCID: PMC8327107 DOI: 10.1177/0271678x20982382] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Methods for imaging of cerebral blood flow do not typically resolve the cortex and thus underestimate flow. However, recent work with high-resolution MRI has emphasized the regional and depth-dependent structural, functional and relaxation times variations within the cortex. Using high-resolution Arterial Spin Labeling (ASL) and T1 mapping acquisitions, we sought to probe the effects of spatial resolution and tissue heterogeneity on cortical cerebral blood flow (CBF) measurements with ASL. We acquired high-resolution (1.6mm)3 whole brain ASL data in a cohort of 10 volunteers at 3T, along with T1 and transit-time (ATT) mapping, followed by group cortical surface-based analysis using FreeSurfer of the different measured parameters. Fully resolved regional analysis showed higher than average mid-thickness CBF in primary motor areas (+15%,p<0.002), frontal regions (+17%,p<0.01) and auditory cortex, while occipital regions had lower average CBF (-20%,p<10-5). ASL signal was higher towards the pial surface but correction for the shorter T1 near the white matter surface reverses this gradient, at least when using the low-resolution ATT map. Similar to structural measures, fully-resolved ASL CBF measures show significant differences across cortical regions. Depth-dependent variation of T1 in the cortex complicates interpretation of depth-dependent ASL signal and may have implications for the accurate CBF quantification at lower resolutions.
Collapse
Affiliation(s)
- Manuel Taso
- Division of MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Fanny Munsch
- Division of MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Li Zhao
- Diagnostic Imaging and Radiology, Children's National Hospital, Washington, DC, USA
| | - David C Alsop
- Division of MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
209
|
Meyer BP, Hirschler L, Lee S, Kurpad SN, Warnking JM, Barbier EL, Budde MD. Optimized cervical spinal cord perfusion MRI after traumatic injury in the rat. J Cereb Blood Flow Metab 2021; 41:2010-2025. [PMID: 33509036 PMCID: PMC8327111 DOI: 10.1177/0271678x20982396] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 10/11/2020] [Accepted: 11/22/2020] [Indexed: 11/17/2022]
Abstract
Despite the potential to guide clinical management of spinal cord injury and disease, noninvasive methods of monitoring perfusion status of the spinal cord clinically remain an unmet need. In this study, we optimized pseudo-continuous arterial spin labeling (pCASL) for the rodent cervical spinal cord and demonstrate its utility in identifying perfusion deficits in an acute contusion injury model. High-resolution perfusion sagittal images with reduced imaging artifacts were obtained with optimized background suppression and imaging readout. Following moderate contusion injury, perfusion was clearly and reliably decreased at the site of injury. Implementation of time-encoded pCASL confirmed injury site perfusion deficits with blood flow measurements corrected for variability in arterial transit times. The noninvasive protocol of pCASL in the spinal cord can be utilized in future applications to examine perfusion changes after therapeutic interventions in the rat and translation to patients may offer critical implications for patient management.
Collapse
Affiliation(s)
- Briana P Meyer
- Department of Neurosurgery, Medical College of Wisconsin,
Milwaukee, WI, USA
- Biophysics Graduate Program, Medical College of Wisconsin,
Milwaukee, WI, USA
- Neuroscience Doctoral Program, Medical College of Wisconsin,
Milwaukee, WI, USA
| | - Lydiane Hirschler
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut des
Neurosciences, Grenoble, France
- Department of Radiology, C.J. Gorter Center for High Field MRI,
Leiden University Medical Center, Leiden, the Netherlands
| | - Seongtaek Lee
- Department of Neurosurgery, Medical College of Wisconsin,
Milwaukee, WI, USA
- Biomedical Engineering Graduate Program, Marquette University
& Medical College of Wisconsin, Milwaukee, WI, USA
| | - Shekar N Kurpad
- Department of Neurosurgery, Medical College of Wisconsin,
Milwaukee, WI, USA
| | - Jan M Warnking
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut des
Neurosciences, Grenoble, France
| | - Emmanuel L Barbier
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut des
Neurosciences, Grenoble, France
| | - Matthew D Budde
- Department of Neurosurgery, Medical College of Wisconsin,
Milwaukee, WI, USA
- Clement J Zablocki Veteran's Affairs Medical Center, Milwaukee,
WI, USA
| |
Collapse
|
210
|
Memel M, Staffaroni AM, Cobigo Y, Casaletto KB, Fonseca C, Bettcher BM, Yassa MA, Elahi FM, Wolf A, Rosen HJ, Kramer JH. APOE moderates the effect of hippocampal blood flow on memory pattern separation in clinically normal older adults. Hippocampus 2021; 31:845-857. [PMID: 33835624 PMCID: PMC8295213 DOI: 10.1002/hipo.23327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/25/2021] [Accepted: 03/07/2021] [Indexed: 11/10/2022]
Abstract
Pattern separation, the ability to differentiate new information from previously experienced similar information, is highly sensitive to hippocampal structure and function and declines with age. Functional MRI studies have demonstrated hippocampal hyperactivation in older adults compared to young, with greater task-related activation associated with worse pattern separation performance. The current study was designed to determine whether pattern separation was sensitive to differences in task-free hippocampal cerebral blood flow (CBF) in 130 functionally intact older adults. Given prior evidence that apolipoprotein E e4 (APOE e4) status moderates the relationship between CBF and episodic memory, we predicted a stronger negative relationship between hippocampal CBF and pattern separation in APOE e4 carriers. An interaction between APOE group and right hippocampal CBF was present, such that greater right hippocampal CBF was related to better lure discrimination in noncarriers, whereas the effect reversed directionality in e4 carriers. These findings suggest that neurovascular changes in the medial temporal lobe may underlie memory deficits in cognitively normal older adults who are APOE e4 carriers.
Collapse
Affiliation(s)
- Molly Memel
- San Francisco VA Medical Center, San Francisco, California
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| | - Adam M. Staffaroni
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| | - Yann Cobigo
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| | - Kaitlin B. Casaletto
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| | - Corrina Fonseca
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| | - Brianne M. Bettcher
- Department of Neurology, University of Colorado Anschutz Medical Campus, CU Alzheimer’s and Cognition Center, Aurora, Colorado
| | - Michael A. Yassa
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and Memory, University of California, Irvine, California
| | - Fanny M. Elahi
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| | - Amy Wolf
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| | - Howard J. Rosen
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| | - Joel H. Kramer
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| |
Collapse
|
211
|
Hoscheidt S, Sanderlin AH, Baker LD, Jung Y, Lockhart S, Kellar D, Whitlow C, Hanson AJ, Friedman S, Register T, Leverenz JB, Craft S. Mediterranean and Western diet effects on Alzheimer's disease biomarkers, cerebral perfusion, and cognition in mid-life: A randomized trial. Alzheimers Dement 2021; 18:457-468. [PMID: 34310044 PMCID: PMC9207984 DOI: 10.1002/alz.12421] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 06/03/2021] [Accepted: 06/11/2021] [Indexed: 11/28/2022]
Abstract
Introduction Mid‐life dietary patterns are associated with Alzheimer's disease (AD) risk, although few controlled trials have been conducted. Methods Eighty‐seven participants (age range: 45 to 65) with normal cognition (NC, n = 56) or mild cognitive impairment (MCI, n = 31) received isocaloric diets high or low in saturated fat, glycemic index, and sodium (Western‐like/West‐diet vs. Mediterranean‐like/Med‐diet) for 4 weeks. Diet effects on cerebrospinal fluid (CSF) biomarkers, cognition, and cerebral perfusion were assessed to determine whether responses differed by cognitive status. Results CSF amyloid beta (Aβ)42/40 ratios increased following the Med‐diet, and decreased after West‐diet for NC adults, whereas the MCI group showed the reverse pattern. For the MCI group, the West‐diet reduced and the Med‐diet increased total tau (t‐tau), whereas CSF Aβ42/t‐tau ratios increased following the West‐diet and decreased following the Med‐diet. For NC participants, the Med‐diet increased and the West‐diet decreased cerebral perfusion. Discussion Diet response during middle age may highlight early pathophysiological processes that increase AD risk.
Collapse
Affiliation(s)
| | | | - Laura D Baker
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Youngkyoo Jung
- University of California-Davis, Sacramento, California, USA
| | - Samuel Lockhart
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Derek Kellar
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | | | - Angela J Hanson
- University of Washington Medical Center, Seattle, Washington, USA
| | - Seth Friedman
- Seattle Children's Hospital, Seattle, Washington, USA
| | - Thomas Register
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - James B Leverenz
- Cleveland Clinic Lou Ruovo Center for Brain Health, Cleveland, Ohio, USA
| | - Suzanne Craft
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
212
|
Hoffmann AC, Ruel Y, Gnirs K, Papageorgiou S, Zilberstein L, Nahmani S, Boddaert N, Gaillot H. Brain perfusion magnetic resonance imaging using pseudocontinuous arterial spin labeling in 314 dogs and cats. J Vet Intern Med 2021; 35:2327-2341. [PMID: 34291497 PMCID: PMC8478041 DOI: 10.1111/jvim.16215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 11/30/2022] Open
Abstract
Background Arterial spin labeling (ASL) is a noninvasive brain perfusion magnetic resonance imaging (MRI) technique that has not been assessed in clinical veterinary medicine. Hypothesis/Objectives To test the feasibility of ASL using a 1.5 Tesla scanner and provide recommendations for optimal quantification of cerebral blood flow (CBF) in dogs and cats. Animals Three hundred fourteen prospectively selected client‐owned dogs and cats. Methods Each animal underwent brain MRI including morphological sequences and ≥1 ASL sequences using different sites of blood labeling and postlabeling delays (PLD). Calculated ASL success rates were compared. The CBF was quantified in animals that had morphologically normal brain MRI results and parameters of ASL optimization were investigated. Results Arterial spin labeling was easily implemented with an overall success rate of 95% in animals with normal brain MRI. Technical recommendations included (a) positioning of the imaging slab at the foramen magnum and (b) selected PLD of 1025 ms in cats and dogs <7 kg, 1525 ms in dogs 7 to 38 kg, and 2025 ms in dogs >38 kg. In 37 dogs, median optimal CBF in the cortex and thalamic nuclei were 114 and 95 mL/100 g/min, respectively. In 28 cats, median CBF in the cortex and thalamic nuclei were 113 and 114 mL/100 g/min, respectively. Conclusions and Clinical Importance Our survey of brain perfusion ASL‐MRI demonstrated the feasibility of ASL at 1.5 Tesla, suggested technical recommendations and provided CBF values that should be helpful in the characterization of various brain diseases in dogs and cats.
Collapse
Affiliation(s)
- Anne-Cécile Hoffmann
- Unit of Diagnostic Imaging, ADVETIA Veterinary Referral Hospital, Vélizy-Villacoublay, France
| | - Yannick Ruel
- Unit of Diagnostic Imaging, ADVETIA Veterinary Referral Hospital, Vélizy-Villacoublay, France
| | - Kirsten Gnirs
- Unit of Neurology, ADVETIA Veterinary Referral Hospital, Vélizy-Villacoublay, France
| | - Stella Papageorgiou
- Unit of Neurology, ADVETIA Veterinary Referral Hospital, Vélizy-Villacoublay, France
| | - Luca Zilberstein
- Unit of Anesthesiology-Analgesia, ADVETIA Veterinary Referral Hospital, Vélizy-Villacoublay, France
| | - Sarah Nahmani
- Paediatric Radiology Department, AP-HP, Hôpital Necker Enfants Malades, Université de Paris, Paris, France
| | - Nathalie Boddaert
- Paediatric Radiology Department, AP-HP, Hôpital Necker Enfants Malades, Université de Paris, Paris, France.,Universié de Paris, Institut Imagine INSERM U1163, Paris, France
| | - Hugues Gaillot
- Unit of Diagnostic Imaging, ADVETIA Veterinary Referral Hospital, Vélizy-Villacoublay, France
| |
Collapse
|
213
|
Laursen JC, Søndergaard-Heinrich N, de Melo JML, Haddock B, Rasmussen IKB, Safavimanesh F, Hansen CS, Størling J, Larsson HBW, Groop PH, Frimodt-Møller M, Andersen UB, Rossing P. Acute effects of dapagliflozin on renal oxygenation and perfusion in type 1 diabetes with albuminuria: A randomised, double-blind, placebo-controlled crossover trial. EClinicalMedicine 2021; 37:100895. [PMID: 34386735 PMCID: PMC8343250 DOI: 10.1016/j.eclinm.2021.100895] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Inhibitors of the sodium-glucose cotransporter 2 (SGLT2) slow the progression of diabetic kidney disease, possibly by reducing the proximal tubule transport workload with subsequent improvement of renal oxygenation. We aimed to test this hypothesis in individuals with type 1 diabetes and albuminuria. METHODS A randomised, double-blind, placebo-controlled, crossover trial with a single 50 mg dose of the SGLT2 inhibitor dapagliflozin and placebo in random order, separated by a two-week washout period. Magnetic resonance imaging (MRI) was used to assess renal R2* (a low value corresponds to a high tissue oxygenation), renal perfusion (arterial spin labelling) and renal artery flow (phase contrast imaging) at baseline, three- and six hours from tablet ingestion. Exploratory outcomes, including baroreflex sensitivity, peripheral blood oxygen saturation, peripheral blood mononuclear cell mitochondrial oxygen consumption rate, and biomarkers of inflammation were evaluated at baseline and 12 h from medication. The study is registered in the EU Clinical Trials Register (EudraCT 2019-004,557-92), on ClinicalTrials.gov (NCT04193566), and is completed. FINDINGS Between February 3, 2020 and October 23, 2020, 31 individuals were screened, and 19 eligible individuals were randomised. Three dropped out before receiving any of the interventions and one dropped out after receiving only placebo. We included 15 individuals (33% female) in the per-protocol analysis with a mean age of 58 (SD 14) years, median urinary albumin creatinine ratio of 46 [IQR 21-58] mg/g and an eGFR of 73 (32) ml/min/1·73m2. The mean changes in renal cortical R2* from baseline to six hours were for dapagliflozin -1·1 (SD 0·7) s-1 and for placebo +1·3 (0·7) s-1, resulting in a difference between interventions of -2·3 s-1 [95% CI -4·0 to -0·6]; p = 0·012. No between-intervention differences were found in any other MRI outcomes, physiological parameters or exploratory outcomes. There were no adverse events. INTERPRETATION A single dose of 50 mg dapagliflozin acutely improved renal cortical R2* without changing renal perfusion or blood flow. This suggests improved renal cortical oxygenation due to a reduced tubular transport workload in the proximal tubules. Such improved oxygenation may in part explain the long-term beneficial renal effects seen with SGLT2 inhibitors, but it remains to be determined whether the observed effects can be achieved with lower doses, with chronic treatment and if they occur in type 2 diabetes as well.
Collapse
Affiliation(s)
| | | | | | - Bryan Haddock
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Copenhagen University Hospital, Denmark
| | | | | | | | | | - Henrik Bo Wiberg Larsson
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Copenhagen University Hospital, Denmark
| | - Per-Henrik Groop
- Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland
- Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| | | | - Ulrik Bjørn Andersen
- Steno Diabetes Center Copenhagen, Denmark
- University of Copenhagen, Denmark
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Copenhagen University Hospital, Denmark
- Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland
- Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| | - Peter Rossing
- Steno Diabetes Center Copenhagen, Denmark
- University of Copenhagen, Denmark
| |
Collapse
|
214
|
Lee HS, Hwang SH, Park J, Park SH. Single-shot pseudo-centric EPI for magnetization-prepared imaging. Magn Reson Med 2021; 86:2656-2665. [PMID: 34184310 DOI: 10.1002/mrm.28897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/20/2021] [Accepted: 06/02/2021] [Indexed: 11/11/2022]
Abstract
PURPOSE To implement a single-shot centric-reordered EPI (1sh-CenEPI), which reduces TE significantly, thus enabling to improve SNR for magnetization-prepared imaging. METHODS We proposed a 1sh-CenEPI in which grouped oscillating readout gradients, phase-encoding blips within each group, and big phase-encoding jumps between two consecutive groups are incorporated to encode whole k-space from the center to the edges in a single shot. The concept was tested on phantoms and human brains at 3 T. In addition, the proposed reordering scheme was applied to pseudo-continuous arterial spin labeling for evaluating the efficiency of the centric reordering in magnetization-prepared imaging. RESULTS The proposed 1sh-CenEPI reduced TE from 50 ms to 1.4 ms for gradient-echo EPI, and from 100 ms to 7 ms for spin-echo EPI, while the elongation of readout duration was below 10% of the whole readout duration in most cases. The 1sh-CenEPI images exhibited no distinct geometric distortion both in phantom and human brain, comparable to the conventional two-shot center-out EPI. In pseudo-continuous arterial spin labeling results, 3-fold temporal SNR increase and 2-fold spatial SNR increase in the perfusion-weighted images were achieved with 1sh-CenEPI compared with the conventional linear ordering, whereas the cerebral blood flow values were consistent with previous studies. CONCLUSION The proposed 1sh-CenEPI significantly reduced TE while maintaining similar readout window and providing images comparable to the conventional linear and multishot center-out EPI images. It can be a qualified candidate as a new readout for various magnetization-prepared imaging techniques.
Collapse
Affiliation(s)
- Hyun-Soo Lee
- MRI Laboratory, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea.,Siemens Healthineers Ltd, Seoul, Korea
| | - Seon-Ha Hwang
- MRI Laboratory, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Jaeseok Park
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Korea.,Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Korea
| | - Sung-Hong Park
- MRI Laboratory, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| |
Collapse
|
215
|
Paschoal AM, da Silva PHR, Rondinoni C, Arrigo IV, Paiva FF, Leoni RF. Semantic verbal fluency brain network: delineating a physiological basis for the functional hubs using dual-echo ASL and graph theory approach. J Neural Eng 2021; 18. [PMID: 34087805 DOI: 10.1088/1741-2552/ac0864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 06/04/2021] [Indexed: 01/07/2023]
Abstract
Objective. Semantic verbal fluency (SFV) is a cognitive process that engages and modulates specific brain areas related to language comprehension and production, decision making, response inhibition, and memory retrieval. The impairment of the brain network responsible for these functions is related to various neurological conditions, and different strategies have been proposed to assess SVF-related deficits in such diseases. In the present study, the concomitant changes of brain perfusion and functional connectivity were investigated during the resting state and SVF task performance.Approach. Arterial spin labeling (ASL), a perfusion-based magnetic resonance imaging (MRI) method, was used with a pseudocontinuous labeling approach and dual-echo readout in 28 healthy right-handed Brazilian Portuguese speakers. The acquisition was performed in a resting state condition and during the performance of a SVF task.Main results. During task performance, a significant increase in cerebral blood flow (CBF) was observed in language-related regions of the frontal lobe, including Brodmann's areas 6, 9, 45, and 47, associated with semantic processing, word retrieval, and speech motor programming. Such regions, along with the posterior cingulate, showed a crucial role in the SVF functional network, assessed by seed-to-voxel and graph analysis. Our approach successfully overcame the generalization problem regarding functional MRI (fMRI) graph analysis with cognitive, task-based paradigms. Moreover, the CBF maps enabled the functional assessment of orbital frontal and temporal regions commonly affected by magnetic susceptibility artifacts in conventional T2*-weighted fMRI approaches.Significance. Our results demonstrated the capability of ASL to evaluate perfusion alterations and functional patterns simultaneously regarding the SVF network providing a quantitative physiological basis to functional hubs in this network, which may support future clinical studies.
Collapse
Affiliation(s)
- André Monteiro Paschoal
- LIM44, Instituto e Departamento de Radiologia, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil.,Inbrain Lab, Department of Physics, FFCLRP, University of Sao Paulo, Ribeirao Preto, Brazil
| | | | - Carlo Rondinoni
- Inbrain Lab, Department of Physics, FFCLRP, University of Sao Paulo, Ribeirao Preto, Brazil
| | | | | | - Renata Ferranti Leoni
- Inbrain Lab, Department of Physics, FFCLRP, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
216
|
Cho J, Spincemaille P, Nguyen TD, Gupta A, Wang Y. Temporal clustering, tissue composition, and total variation for mapping oxygen extraction fraction using QSM and quantitative BOLD. Magn Reson Med 2021; 86:2635-2646. [PMID: 34110656 DOI: 10.1002/mrm.28875] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/02/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE To improve the accuracy of quantitative susceptibility mapping plus quantitative blood oxygen level-dependent magnitude (QSM+qBOLD or QQ) based mapping of oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO2 ) using temporal clustering, tissue composition, and total variation (CCTV). METHODS Three-dimensional multi-echo gradient echo and arterial spin labeling images were acquired from 11 healthy subjects and 33 ischemic stroke patients. Diffusion-weighted imaging (DWI) was also obtained from patients. The CCTV mapping was developed for incorporating tissue-type information into clustering of the previous cluster analysis of time evolution (CAT) and applying total variation (TV). The QQ-based OEF and CMRO2 were reconstructed with CAT, CAT+TV (CATV), and the proposed CCTV, and results were compared using region-of-interest analysis, Kruskal-Wallis test, and post hoc Wilcoxson rank sum test. RESULTS In simulation, CCTV provided more accurate and precise OEF than CAT or CATV. In healthy subjects, QQ-based OEF was less noisy and more uniform with CCTV than CAT. In subacute stroke patients, OEF with CCTV had a greater contrast-to-noise ratio between DWI-defined lesions and the unaffected contralateral side than with CAT or CATV: 1.9 ± 1.3 versus 1.1 ± 0.7 (P = .01) versus 0.7 ± 0.5 (P < .001). CONCLUSION The CCTV mapping significantly improves the robustness of QQ-based OEF against noise.
Collapse
Affiliation(s)
- Junghun Cho
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Pascal Spincemaille
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Thanh D Nguyen
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Ajay Gupta
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Yi Wang
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA.,Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
217
|
Baligand C, Hirschler L, Veeger TTJ, Václavů L, Franklin SL, van Osch MJP, Kan HE. A split-label design for simultaneous measurements of perfusion in distant slices by pulsed arterial spin labeling. Magn Reson Med 2021; 86:2441-2453. [PMID: 34105189 PMCID: PMC8596809 DOI: 10.1002/mrm.28879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/16/2022]
Abstract
Purpose Multislice arterial spin labeling (ASL) MRI acquisitions are currently challenging in skeletal muscle because of long transit times, translating into low‐perfusion SNR in distal slices when large spatial coverage is required. However, fiber type and oxidative capacity vary along the length of healthy muscles, calling for multislice acquisitions in clinical studies. We propose a new variant of flow alternating inversion recovery (FAIR) that generates sufficient ASL signal to monitor exercise‐induced perfusion changes in muscle in two distant slices. Methods Label around and between two 7‐cm distant slices was created by applying the presaturation/postsaturation and selective inversion modules selectively to each slice (split‐label multislice FAIR). Images were acquired using simultaneous multislice EPI. We validated our approach in the brain to take advantage of the high resting‐state perfusion, and applied it in the lower leg muscle during and after exercise, interleaved with a single‐slice FAIR as a reference. Results We show that standard multislice FAIR leads to an underestimation of perfusion, while the proposed split‐label multislice approach shows good agreement with separate single‐slice FAIR acquisitions in brain, as well as in muscle following exercise. Conclusion Split‐label FAIR allows measuring muscle perfusion in two distant slices simultaneously without losing sensitivity in the distal slice.
Collapse
Affiliation(s)
- Celine Baligand
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Lydiane Hirschler
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Thom T J Veeger
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Lena Václavů
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Suzanne L Franklin
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.,Center for image sciences, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Matthias J P van Osch
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.,Leiden Institute for Brain and Cognition, Leiden University, Leiden, the Netherlands
| | - Hermien E Kan
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.,Duchenne Center, Leiden, the Netherlands
| |
Collapse
|
218
|
Duan W, Sehrawat P, Balachandrasekaran A, Bhumkar AB, Boraste PB, Becker JT, Kuller LH, Lopez OL, Gach HM, Dai W. Cerebral Blood Flow Is Associated with Diagnostic Class and Cognitive Decline in Alzheimer's Disease. J Alzheimers Dis 2021; 76:1103-1120. [PMID: 32597803 DOI: 10.3233/jad-200034] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Reliable cerebral blood flow (CBF) biomarkers using a noninvasive imaging technique are sought to facilitate early diagnosis and intervention in early Alzheimer's disease (AD). OBJECTIVE We aim to identify brain regions in which CBF values are affected and related to cognitive decline in early AD using a large cohort. METHODS Perfusion MRIs using continuous arterial spin labeling were acquired at 1.5 T in 58 normal controls (NC), 50 mild cognitive impairments (MCI), and 40 AD subjects from the Cardiovascular Health Study Cognition Study. Regional absolute CBF and normalized CBF (nCBF) values, without and with correction of partial volume effects, were compared across three groups. Association between regional CBF values and Modified Mini-Mental State Examination (3MSE) were investigated by multiple linear regression analyses adjusted for cardiovascular risk factors. RESULTS After correcting for partial volume effects and cardiovascular risk factors, ADs exhibited decreased nCBF with the strongest reduction in the bilateral posterior cingulate & precuneus region (p < 0.001) compared to NCs, and the strongest reduction in the bilateral superior medial frontal region (p < 0.001) compared to MCIs. MCIs exhibited the strongest nCBF decrease in the left hippocampus and nCBF increase in the right inferior frontal and insular region. The 3MSE scores within the symptomatic subjects were significantly associated with nCBF in the bilateral posterior and middle cingulate and parietal (p < 0.001), bilateral superior medial frontal (p < 0.001), bilateral temporoparietal (p < 0.02), and right hippocampus (p = 0.02) regions. CONCLUSION Noninvasive perfusion MRI can detect functional changes across diagnostic class and serve as a staging biomarker of cognitive status.
Collapse
Affiliation(s)
- Wenna Duan
- Department of Computer Science, State University of New York at Binghamton, Binghamton, NY, USA
| | - Parshant Sehrawat
- Department of Computer Science, State University of New York at Binghamton, Binghamton, NY, USA
| | | | - Ashish B Bhumkar
- Department of Computer Science, State University of New York at Binghamton, Binghamton, NY, USA
| | - Paresh B Boraste
- Department of Computer Science, State University of New York at Binghamton, Binghamton, NY, USA
| | - James T Becker
- Departments of Psychiatry, Psychology, and Neurology, University of Pittsburgh, PA, USA
| | - Lewis H Kuller
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Oscar L Lopez
- Departments of Neurology and Psychiatry, University of Pittsburgh, PA, USA
| | - H Michael Gach
- Departments of Radiation Oncology, Radiology, and Biomedical Engineering, Washington University, Saint Louis, MO, USA
| | - Weiying Dai
- Department of Computer Science, State University of New York at Binghamton, Binghamton, NY, USA
| |
Collapse
|
219
|
Bohara M, Nakajo M, Kamimura K, Yoneyama T, Ayukawa T, Yoshiura T. Visualization of incidentally imaged pituitary gland on three-dimensional arterial spin labeling of the brain. Br J Radiol 2021; 94:20201311. [PMID: 33914621 DOI: 10.1259/bjr.20201311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To evaluate the visualization of incidentally imaged normal pituitary gland on three-dimensional (3D) pseudo continuous arterial spin labeling (PCASL) perfusion imaging of the brain. METHODS Ninety-three patients with a normal pituitary gland who underwent 3D PCASL for suspected brain diseases were retrospectively included. Visualization of the pituitary gland on PCASL cerebral blood flow (CBF) maps was assessed independently by two observers using a three-point grading system: Grade 1, pituitary CBF ≤ CBF of the cerebral white matter (WM); Grade 2, CBF of WM < pituitary CBF ≤ CBF of the cortical gray matter (GM); and Grade 3, CBF of GM < pituitary CBF. The interobserver agreement of visual grading was determined using weighted κ statistic. The associations of visual grades with age, sex, and pituitary volume were assessed using multivariate logistic regression. Pituitary glands were divided equally into three groups (small, medium, and large) according to their volume for categorization. RESULTS The interobserver agreement for visual rating was excellent (weighted κ = 0.823). Of the 93 cases, Grades 1, 2, and 3 included 17 (18.3%), 41 (44.1%), and 35 cases (37.6%), respectively. Medium and large pituitary volume were significantly associated with Grade 3 visualization (p = 0.0153, OR = 4.8323; 95% CI: 1.3525, 17.2649 and p = 0.0009; OR = 9.0299; 95% CI: 2.4663, 33.0614, respectively), whereas there was no significant association for age or sex. CONCLUSION The normal pituitary gland is often visualized with higher CBF than cortical GM on 3D PCASL, especially in individuals with larger pituitary volume. ADVANCES IN KNOWLEDGE Appearance of the normal pituitary gland on 3D PCASL has been documented for the first time.
Collapse
Affiliation(s)
- Manisha Bohara
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Masanori Nakajo
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kiyohisa Kamimura
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tomohide Yoneyama
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Takuro Ayukawa
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Takashi Yoshiura
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
220
|
Almby KE, Lundqvist MH, Abrahamsson N, Kvernby S, Fahlström M, Pereira MJ, Gingnell M, Karlsson FA, Fanni G, Sundbom M, Wiklund U, Haller S, Lubberink M, Wikström J, Eriksson JW. Effects of Gastric Bypass Surgery on the Brain: Simultaneous Assessment of Glucose Uptake, Blood Flow, Neural Activity, and Cognitive Function During Normo- and Hypoglycemia. Diabetes 2021; 70:1265-1277. [PMID: 33674408 PMCID: PMC8275889 DOI: 10.2337/db20-1172] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/25/2021] [Indexed: 12/15/2022]
Abstract
While Roux-en-Y gastric bypass (RYGB) surgery in obese individuals typically improves glycemic control and prevents diabetes, it also frequently causes asymptomatic hypoglycemia. Previous work showed attenuated counterregulatory responses following RYGB. The underlying mechanisms as well as the clinical consequences are unclear. In this study, 11 subjects without diabetes with severe obesity were investigated pre- and post-RYGB during hyperinsulinemic normo-hypoglycemic clamps. Assessments were made of hormones, cognitive function, cerebral blood flow by arterial spin labeling, brain glucose metabolism by 18F-fluorodeoxyglucose (FDG) positron emission tomography, and activation of brain networks by functional MRI. Post- versus presurgery, we found a general increase of cerebral blood flow but a decrease of total brain FDG uptake during normoglycemia. During hypoglycemia, there was a marked increase in total brain FDG uptake, and this was similar for post- and presurgery, whereas hypothalamic FDG uptake was reduced during hypoglycemia. During hypoglycemia, attenuated responses of counterregulatory hormones and improvements in cognitive function were seen postsurgery. In early hypoglycemia, there was increased activation post- versus presurgery of neural networks in brain regions implicated in glucose regulation, such as the thalamus and hypothalamus. The results suggest adaptive responses of the brain that contribute to lowering of glycemia following RYGB, and the underlying mechanisms should be further elucidated.
Collapse
Affiliation(s)
- Kristina E Almby
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Martin H Lundqvist
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Niclas Abrahamsson
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Sofia Kvernby
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Markus Fahlström
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Maria J Pereira
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Malin Gingnell
- Department of Neurosciences and Department of Psychology, Uppsala University, Uppsala, Sweden
| | - F Anders Karlsson
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Giovanni Fanni
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Magnus Sundbom
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Urban Wiklund
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Sven Haller
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Mark Lubberink
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Johan Wikström
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Jan W Eriksson
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| |
Collapse
|
221
|
Kim D, Hughes TM, Lipford ME, Craft S, Baker LD, Lockhart SN, Whitlow CT, Okonmah-Obazee SE, Hugenschmidt CE, Bobinski M, Jung Y. Relationship Between Cerebrovascular Reactivity and Cognition Among People With Risk of Cognitive Decline. Front Physiol 2021; 12:645342. [PMID: 34135768 PMCID: PMC8201407 DOI: 10.3389/fphys.2021.645342] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/29/2021] [Indexed: 11/13/2022] Open
Abstract
Vascular risk factors (e.g., obesity and hypertension) are associated with cerebral small vessel disease, Alzheimer's disease (AD) pathology, and dementia. Reduced perfusion may reflect the impaired ability of blood vessels to regulate blood flow in reaction to varying circumstances such as hypercapnia (increased end-tidal partial pressures of CO2). It has been shown that cerebrovascular reactivity (CVR) measured with blood-oxygen-level-dependent (BOLD) MRI is correlated with cognitive performance and alterations of CVR may be an indicator of vascular disfunction leading to cognitive decline. However, the underlying mechanism of CVR alterations in BOLD signal may not be straight-forward because BOLD signal is affected by multiple physiological parameters, such as cerebral blood flow (CBF), cerebral blood volume, and oxygen metabolism. Arterial spin labeling (ASL) MRI quantitatively measures blood flow in the brain providing images of local CBF. Therefore, in this study, we measured CBF and its changes using a dynamic ASL technique during a hypercapnia challenge and tested if CBF or CVR was related to cognitive performance using the Mini-mental state examination (MMSE) score. Seventy-eight participants underwent cognitive testing and MRI including ASL during a hypercapnia challenge with a RespirAct computer-controlled gas blender, targeting 10 mmHg higher end-tidal CO2 level than the baseline while end-tidal O2 level was maintained. Pseudo-continuous ASL (PCASL) was collected during a 2-min baseline and a 2-min hypercapnic period. CVR was obtained by calculating a percent change of CBF per the end-tidal CO2 elevation in mmHg between the baseline and the hypercapnic challenge. Multivariate regression analyses demonstrated that baseline resting CBF has no significant relationship with MMSE, while lower CVR in the whole brain gray matter (β = 0.689, p = 0.005) and white matter (β = 0.578, p = 0.016) are related to lower MMSE score. In addition, region of interest (ROI) based analysis showed positive relationships between MMSE score and CVR in 26 out of 122 gray matter ROIs.
Collapse
Affiliation(s)
- Donghoon Kim
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
- Department of Radiology, University of California, Davis, Davis, CA, United States
| | - Timothy M. Hughes
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Megan E. Lipford
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Suzanne Craft
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Laura D. Baker
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Samuel N. Lockhart
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Christopher T. Whitlow
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | | | | | - Matthew Bobinski
- Department of Radiology, University of California, Davis, Davis, CA, United States
| | - Youngkyoo Jung
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
- Department of Radiology, University of California, Davis, Davis, CA, United States
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
222
|
Zhang LX, Woods JG, Okell TW, Chappell MA. Examination of optimized protocols for pCASL: Sensitivity to macrovascular contamination, flow dispersion, and prolonged arterial transit time. Magn Reson Med 2021; 86:2208-2219. [PMID: 34009682 PMCID: PMC8581991 DOI: 10.1002/mrm.28839] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/19/2021] [Accepted: 04/23/2021] [Indexed: 01/01/2023]
Abstract
Purpose Previously, multi‐ post‐labeling delays (PLD) pseudo‐continuous arterial spin labeling (pCASL) protocols have been optimized for the estimation accuracy of the cerebral blood flow (CBF) with/without the arterial transit time (ATT) under a standard kinetic model and a normal ATT range. This study aims to examine the estimation errors of these protocols under the effects of macrovascular contamination, flow dispersion, and prolonged arrival times, all of which might differ substantially in elderly or pathological groups. Methods Simulated data for four protocols with varying degrees of arterial blood volume (aBV), flow dispersion, and ATTs were fitted with different kinetic models, both with and without explicit correction for macrovascular signal contamination (MVC), to obtain CBF and ATT estimates. Sensitivity to MVC was defined and calculated when aBV > 0.5%. A previously acquired dataset was retrospectively analyzed to compare with simulation. Results All protocols showed underestimation of CBF and ATT in the prolonged ATT range. With MVC, the protocol optimized for CBF only (CBFopt) had the lowest sensitivity value to MVC, 33.47% and 60.21% error per 1% aBV in simulation and in vivo, respectively, among multi‐PLD protocols. All multi‐PLD protocols showed a significant decrease in estimation error when an extended kinetic model was used. Increasing flow dispersion at short ATTs caused increasing CBF and ATT overestimation in all protocols. Conclusion CBFopt was the least sensitive protocol to prolonged ATT and MVC for CBF estimation while maintaining reasonably good performance in estimating ATT. Explicitly including a macrovascular component in the kinetic model was shown to be a feasible approach in controlling for MVC.
Collapse
Affiliation(s)
- Logan X Zhang
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Joseph G Woods
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom.,Department of Radiology, University of California San Diego, San Diego, California, USA
| | - Thomas W Okell
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom
| | - Michael A Chappell
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom.,Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom.,Mental Health and Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,Nottingham Biomedical Research Centre, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
223
|
Duan W, Zhou GD, Balachandrasekaran A, Bhumkar AB, Boraste PB, Becker JT, Kuller LH, Lopez OL, Gach HM, Dai W. Cerebral Blood Flow Predicts Conversion of Mild Cognitive Impairment into Alzheimer's Disease and Cognitive Decline: An Arterial Spin Labeling Follow-up Study. J Alzheimers Dis 2021; 82:293-305. [PMID: 34024834 DOI: 10.3233/jad-210199] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND This is the first longitudinal study to assess regional cerebral blood flow (rCBF) changes during the progression from normal control (NC) through mild cognitive impairment (MCI) and Alzheimer's disease (AD). OBJECTIVE We aim to determine if perfusion MRI biomarkers, derived from our prior cross-sectional study, can predict the onset and cognitive decline of AD. METHODS Perfusion MRIs using arterial spin labeling (ASL) were acquired in 15 stable-NC, 14 NC-to-MCI, 16 stable-MCI, and 18 MCI/AD-to-AD participants from the Cardiovascular Health Study (CHS) cognition study. Group comparisons, predictions of AD conversion and time to conversion, and Modified Mini-Mental State Examination (3MSE) from rCBF were performed. RESULTS Compared to the stable-NC group: 1) the stable-MCI group exhibited rCBF decreases in the right temporoparietal (p = 0.00010) and right inferior frontal and insula (p = 0.0094) regions; and 2) the MCI/AD-to-AD group exhibited rCBF decreases in the bilateral temporoparietal regions (p = 0.00062 and 0.0035). Compared to the NC-to-MCI group, the stable-MCI group exhibited a rCBF decrease in the right hippocampus region (p = 0.0053). The baseline rCBF values in the posterior cingulate cortex (PCC) (p = 0.0043), bilateral superior medial frontal regions (BSMF) (p = 0.012), and left inferior frontal (p = 0.010) regions predicted the 3MSE scores for all the participants at follow-up. The baseline rCBF in the PCC and BSMF regions predicted the conversion and time to conversion from MCI to AD (p < 0.05; not significant after multiple corrections). CONCLUSION We demonstrated the feasibility of ASL in detecting rCBF changes in the typical AD-affected regions and the predictive value of baseline rCBF on AD conversion and cognitive decline.
Collapse
Affiliation(s)
- Wenna Duan
- Computer Science, State University of New York at Binghamton, Binghamton, NY, USA
| | - Grace D Zhou
- Computer Science, State University of New York at Binghamton, Binghamton, NY, USA
| | | | - Ashish B Bhumkar
- Computer Science, State University of New York at Binghamton, Binghamton, NY, USA
| | - Paresh B Boraste
- Computer Science, State University of New York at Binghamton, Binghamton, NY, USA
| | - James T Becker
- Psychiatry, Psychology, and Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lewis H Kuller
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Oscar L Lopez
- Neurology and Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - H Michael Gach
- Radiation Oncology, Radiology, and Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Weiying Dai
- Computer Science, State University of New York at Binghamton, Binghamton, NY, USA
| |
Collapse
|
224
|
Elahi FM, Ashimatey SB, Bennett DJ, Walters SM, La Joie R, Jiang X, Wolf A, Cobigo Y, Staffaroni AM, Rosen HJ, Miller BL, Rabinovici GD, Kramer JH, Green AJ, Kashani AH. Retinal imaging demonstrates reduced capillary density in clinically unimpaired APOE ε4 gene carriers. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12181. [PMID: 34013017 PMCID: PMC8111703 DOI: 10.1002/dad2.12181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Apolipoprotein E (APOE) ε4, the strongest non-Mendelian genetic risk factor for Alzheimer's disease (AD), has been shown to affect brain capillaries in mice, with potential implications for AD-related neurodegenerative disease. However, human brain capillaries cannot be directly visualized in vivo. We therefore used retinal imaging to test APOE ε4 effects on human central nervous system capillaries. METHODS We collected retinal optical coherence tomography angiography, cognitive testing, and brain imaging in research participants and built statistical models to test genotype-phenotype associations. RESULTS Our analyses demonstrate lower retinal capillary densities in early disease, in cognitively normal APOE ε4 gene carriers. Furthermore, through regression modeling with a measure of brain perfusion (arterial spin labeling), we provide support for the relevance of these findings to cerebral vasculature. DISCUSSION These results suggest that APOE ε4 affects capillary health in humans and that retinal capillary measures could serve as surrogates for brain capillaries, providing an opportunity to study microangiopathic contributions to neurodegenerative disorders directly in humans.
Collapse
Affiliation(s)
- Fanny M. Elahi
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesSan FranciscoUniversity of CaliforniaSan FranciscoCaliforniaUSA
- San Francisco Veterans Affairs Health Care SystemSan FranciscoCaliforniaUSA
| | - Senyo B. Ashimatey
- Department of OphthalmologyUSC Roski Eye InstituteKeck School of Medicine of the University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Daniel J. Bennett
- Department of NeurologyDivision of Neuroimmunology and Glial BiologyWeill Institute for NeurosciencesSan FranciscoUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Samantha M. Walters
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesSan FranciscoUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Renaud La Joie
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesSan FranciscoUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Xuejuan Jiang
- Department of OphthalmologyUSC Roski Eye InstituteKeck School of Medicine of the University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Amy Wolf
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesSan FranciscoUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Yann Cobigo
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesSan FranciscoUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Adam M. Staffaroni
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesSan FranciscoUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Howie J. Rosen
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesSan FranciscoUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Bruce L. Miller
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesSan FranciscoUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Gil D. Rabinovici
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesSan FranciscoUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of Radiology and Biomedical ImagingSan FranciscoUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Joel H. Kramer
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesSan FranciscoUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Ari J. Green
- Department of NeurologyDivision of Neuroimmunology and Glial BiologyWeill Institute for NeurosciencesSan FranciscoUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of OphthalmologySan FranciscoUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Amir H. Kashani
- Department of OphthalmologyUSC Roski Eye InstituteKeck School of Medicine of the University of Southern CaliforniaLos AngelesCaliforniaUSA
- USC Ginsberg Institute for Biomedical TherapeuticsLos AngelesCaliforniaUSA
| |
Collapse
|
225
|
Evaluation of Arterial Spin Labeling MRI-Comparison with 15O-Water PET on an Integrated PET/MR Scanner. Diagnostics (Basel) 2021; 11:diagnostics11050821. [PMID: 34062847 PMCID: PMC8147295 DOI: 10.3390/diagnostics11050821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022] Open
Abstract
Cerebral blood flow (CBF) measurements are of high clinical value and can be acquired non-invasively with no radiation exposure using pseudo-continuous arterial spin labeling (ASL). The aim of this study was to evaluate accordance in resting state CBF between ASL (CBFASL) and 15O-water positron emission tomography (PET) (CBFPET) acquired simultaneously on an integrated 3T PET/MR system. The data comprised ASL and dynamic 15O-water PET data with arterial blood sampling of eighteen subjects (eight patients with focal epilepsy and ten healthy controls, age 21 to 61 years). 15O-water PET parametric CBF images were generated using a basis function implementation of the single tissue compartment model. Cortical and subcortical regions were automatically segmented using Freesurfer. Average CBFASL and CBFPET in grey matter were 60 ± 20 and 75 ± 22 mL/100 g/min respectively, with a relatively high correlation (r = 0.78, p < 0.001). Bland-Altman analysis revealed poor agreement (bias = −15 mL/100 g/min, lower and upper limits of agreements = −16 and 45 mL/100 g/min, respectively) with a negative relationship. Accounting for the negative relationship, the width of the limits of agreement could be narrowed from 61 mL/100 g/min to 35 mL/100 g/min using regression-based limits of agreements. Although a high correlation between CBFASL and CBFPET was found, the agreement in absolute CBF values was not sufficient for ASL to be used interchangeably with 15O-water PET.
Collapse
|
226
|
Maier O, Spann SM, Pinter D, Gattringer T, Hinteregger N, Thallinger GG, Enzinger C, Pfeuffer J, Bredies K, Stollberger R. Non-linear fitting with joint spatial regularization in arterial spin labeling. Med Image Anal 2021; 71:102067. [PMID: 33930830 DOI: 10.1016/j.media.2021.102067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 03/26/2021] [Accepted: 04/01/2021] [Indexed: 10/21/2022]
Abstract
Multi-Delay single-shot arterial spin labeling (ASL) imaging provides accurate cerebral blood flow (CBF) and, in addition, arterial transit time (ATT) maps but the inherent low SNR can be challenging. Especially standard fitting using non-linear least squares often fails in regions with poor SNR, resulting in noisy estimates of the quantitative maps. State-of-the-art fitting techniques improve the SNR by incorporating prior knowledge in the estimation process which typically leads to spatial blurring. To this end, we propose a new estimation method with a joint spatial total generalized variation regularization on CBF and ATT. This joint regularization approach utilizes shared spatial features across maps to enhance sharpness and simultaneously improves noise suppression in the final estimates. The proposed method is evaluated at three levels, first on synthetic phantom data including pathologies, followed by in vivo acquisitions of healthy volunteers, and finally on patient data following an ischemic stroke. The quantitative estimates are compared to two reference methods, non-linear least squares fitting and a state-of-the-art ASL quantification algorithm based on Bayesian inference. The proposed joint regularization approach outperforms the reference implementations, substantially increasing the SNR in CBF and ATT while maintaining sharpness and quantitative accuracy in the estimates.
Collapse
Affiliation(s)
- Oliver Maier
- Institute of Medical Engineering, Graz University of Technology, Stremayrgasse 16/III, Graz 8010, Austria.
| | - Stefan M Spann
- Institute of Medical Engineering, Graz University of Technology, Stremayrgasse 16/III, Graz 8010, Austria.
| | - Daniela Pinter
- Department of Neurology, Division of General Neurology, Medical University of Graz, Auenbruggerplatz 22, Graz 8036, Austria.
| | - Thomas Gattringer
- Department of Neurology, Division of General Neurology, Medical University of Graz, Auenbruggerplatz 22, Graz 8036, Austria; Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 22, Graz 8036, Austria.
| | - Nicole Hinteregger
- Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 22, Graz 8036, Austria.
| | - Gerhard G Thallinger
- Institute of Biomedical Informatics, Graz University of Technology, Stremayrgasse 16/I, Graz 8010, Austria; BioTechMed-Graz, Mozartgasse 12/II, Graz 8010, Austria.
| | - Christian Enzinger
- Department of Neurology, Division of General Neurology, Medical University of Graz, Auenbruggerplatz 22, Graz 8036, Austria; Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 22, Graz 8036, Austria.
| | - Josef Pfeuffer
- Application Development, Siemens Healthcare, Henkestraße 127, Erlangen 91052, Germany.
| | - Kristian Bredies
- Institute of Mathematics and Scientific Computing, University of Graz, Heinrichstraße 36, Graz 8010, Austria; BioTechMed-Graz, Mozartgasse 12/II, Graz 8010, Austria.
| | - Rudolf Stollberger
- Institute of Medical Engineering, Graz University of Technology, Stremayrgasse 16/III, Graz 8010, Austria; BioTechMed-Graz, Mozartgasse 12/II, Graz 8010, Austria.
| |
Collapse
|
227
|
Dubois M, Legouhy A, Corouge I, Commowick O, Morel B, Pladys P, Ferré JC, Barillot C, Proisy M. Multiparametric Analysis of Cerebral Development in Preterm Infants Using Magnetic Resonance Imaging. Front Neurosci 2021; 15:658002. [PMID: 33927592 PMCID: PMC8076519 DOI: 10.3389/fnins.2021.658002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/17/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives The severity of neurocognitive impairment increases with prematurity. However, its mechanisms remain poorly understood. Our aim was firstly to identify multiparametric magnetic resonance imaging (MRI) markers that differ according to the degree of prematurity, and secondly to evaluate the impact of clinical complications on these markers. Materials and Methods We prospectively enrolled preterm infants who were divided into two groups according to their degree of prematurity: extremely preterm (<28 weeks' gestational age) and very preterm (28-32 weeks' gestational age). They underwent a multiparametric brain MRI scan at term-equivalent age including morphological, diffusion tensor and arterial spin labeling (ASL) perfusion sequences. We quantified overall and regional volumes, diffusion parameters, and cerebral blood flow (CBF). We then compared the parameters for the two groups. We also assessed the effects of clinical data and potential MRI morphological abnormalities on those parameters. Results Thirty-four preterm infants were included. Extremely preterm infants (n = 13) had significantly higher frontal relative volumes (p = 0.04), frontal GM relative volumes (p = 0.03), and regional CBF than very preterm infants, but they had lower brainstem and insular relative volumes (respectively p = 0.008 and 0.04). Preterm infants with WM lesions on MRI had significantly lower overall GM CBF (13.3 ± 2 ml/100 g/min versus 17.7 ± 2.5, < ml/100 g/min p = 0.03). Conclusion Magnetic resonance imaging brain scans performed at term-equivalent age in preterm infants provide quantitative imaging parameters that differ with respect to the degree of prematurity, related to brain maturation.
Collapse
Affiliation(s)
- Marine Dubois
- Radiology Department, CHU Rennes, Hôpital Sud, Rennes, France.,Inria, CNRS, INSERM, IRISA, Empenn ERL U-1228, Université de Rennes 1, Rennes, France
| | - Antoine Legouhy
- Inria, CNRS, INSERM, IRISA, Empenn ERL U-1228, Université de Rennes 1, Rennes, France
| | - Isabelle Corouge
- Inria, CNRS, INSERM, IRISA, Empenn ERL U-1228, Université de Rennes 1, Rennes, France
| | - Olivier Commowick
- Inria, CNRS, INSERM, IRISA, Empenn ERL U-1228, Université de Rennes 1, Rennes, France
| | - Baptiste Morel
- Radiology Department, CHU Tours, Hôpital Gatien de Clocheville, Tours, France
| | - Patrick Pladys
- Pediatric Department, CHU Rennes, Hôpital Sud, Rennes, France
| | - Jean-Christophe Ferré
- Radiology Department, CHU Rennes, Hôpital Sud, Rennes, France.,Inria, CNRS, INSERM, IRISA, Empenn ERL U-1228, Université de Rennes 1, Rennes, France
| | - Christian Barillot
- Inria, CNRS, INSERM, IRISA, Empenn ERL U-1228, Université de Rennes 1, Rennes, France
| | - Maïa Proisy
- Radiology Department, CHU Rennes, Hôpital Sud, Rennes, France.,Inria, CNRS, INSERM, IRISA, Empenn ERL U-1228, Université de Rennes 1, Rennes, France
| |
Collapse
|
228
|
Zhou L, Zhang Q, Spincemaille P, Nguyen TD, Morgan J, Dai W, Li Y, Gupta A, Prince MR, Wang Y. Quantitative transport mapping (QTM) of the kidney with an approximate microvascular network. Magn Reson Med 2021; 85:2247-2262. [PMID: 33210310 PMCID: PMC7839791 DOI: 10.1002/mrm.28584] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE Proof-of-concept study of mapping renal blood flow vector field according to the inverse solution to a mass transport model of time resolved tracer-labeled MRI data. THEORY AND METHODS To determine tissue perfusion according to the underlying physics of spatiotemporal tracer concentration variation, the mass transport equation is integrated over a voxel with an approximate microvascular network for fitting time-resolved tracer imaging data. The inverse solution to the voxelized transport equation provides the blood flow vector field, which is referred to as quantitative transport mapping (QTM). A numerical microvascular network modeling the kidney with computational fluid dynamics reference was used to verify the accuracy of QTM and the current Kety's method that uses a global arterial input function. Multiple post-label delay arterial spin labeling (ASL) of the kidney on seven subjects was used to assess QTM in vivo feasibility. RESULTS Against the ground truth in the numerical model, the error in flow estimated by QTM (18.6%) was smaller than that in Kety's method (45.7%, 2.5-fold reduction). The in vivo kidney perfusion quantification by QTM (cortex: 443 ± 58 mL/100 g/min and medulla: 190 ± 90 mL/100 g/min) was in the range of that by Kety's method (482 ± 51 mL/100 g/min in the cortex and 242 ± 73 mL/100 g/min in the medulla), and QTM provided better flow homogeneity in the cortex region. CONCLUSIONS QTM flow velocity mapping is feasible from multi-delay ASL MRI data based on inverting the transport equation. In a numerical simulation, QTM with deconvolution in space and time provided more accurate perfusion quantification than Kety's method with deconvolution in time only.
Collapse
Affiliation(s)
- Liangdong Zhou
- Department of RadiologyWeill Medical College of Cornell UniversityNew YorkNew YorkUSA
| | - Qihao Zhang
- Department of RadiologyWeill Medical College of Cornell UniversityNew YorkNew YorkUSA
- Meinig School of Biomedical EngineeringCornell UniversityIthacaNew YorkUSA
| | - Pascal Spincemaille
- Department of RadiologyWeill Medical College of Cornell UniversityNew YorkNew YorkUSA
| | - Thanh D. Nguyen
- Department of RadiologyWeill Medical College of Cornell UniversityNew YorkNew YorkUSA
| | - John Morgan
- Department of RadiologyWeill Medical College of Cornell UniversityNew YorkNew YorkUSA
| | - Weiying Dai
- Department of Computer ScienceBinghamton UniversityBinghamtonNew YorkUSA
| | - Yi Li
- Department of RadiologyWeill Medical College of Cornell UniversityNew YorkNew YorkUSA
| | - Ajay Gupta
- Department of RadiologyWeill Medical College of Cornell UniversityNew YorkNew YorkUSA
| | - Martin R. Prince
- Department of RadiologyWeill Medical College of Cornell UniversityNew YorkNew YorkUSA
| | - Yi Wang
- Department of RadiologyWeill Medical College of Cornell UniversityNew YorkNew YorkUSA
- Meinig School of Biomedical EngineeringCornell UniversityIthacaNew YorkUSA
| |
Collapse
|
229
|
Huang X, Wen Z, Tong Y, Qi CX, Shen Y. Altered resting cerebral blood flow specific to patients with diabetic retinopathy revealed by arterial spin labeling perfusion magnetic resonance imaging. Acta Radiol 2021; 62:524-532. [PMID: 32551803 DOI: 10.1177/0284185120932391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Previous neuroimaging studies have shown that patients with diabetic retinopathy (DR) were accompanied by abnormalities in cerebral functional and structural architecture, whereas the resting cerebral blood flow (CBF) alterations in patients with DR are not well understood. PURPOSE To explore CBF alterations in patients with DR using pseudo-continuous arterial spin labeling (pCASL) imaging. MATERIAL AND METHODS Thirty-one individuals with DR (15 men, 16 women; mean age = 53.38 ± 9.12 years) and 33 healthy controls (HC) (12 men, 21 women; mean age = 51.61 ± 9.84 years) closely matched for age, sex, and education, underwent pCASL imaging scans. Two-sample T test was conducted to compare different CBF values between two groups. RESULTS Patients with DR exhibited significantly increased CBF values in the left middle temporal gyrus (Brodmann's area, BA 22) and the bilateral supplementary motor area (BA3) and decreased CBF values in the bilateral calcarine (BA17,18) and bilateral caudate relative to HC group (two-tailed, voxel level at P < 0.01, Gaussian random field (GRF), cluster level at P < 0.05). Moreover, the HbA1c (%) level showed a positive correlation with CBF values in the bilateral caudate (r = 0.473, P = 0.007) in patients with DR. CONCLUSION Our results highlighted that patients with DR had abnormal CBF values in the visual cortices, caudate, middle temporal gyrus, and supplementary motor area, which might reflect vision and sensorimotor and cognition dysfunction in patients with DR. These findings might help us to understanding the neural mechanism of patients with DR.
Collapse
Affiliation(s)
- Xin Huang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Zhi Wen
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Yan Tong
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Chen-Xing Qi
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Yin Shen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
- Medical Research Institute, Wuhan University, Wuhan, Hubei, PR China
| |
Collapse
|
230
|
Zun Z, Kapse K, Jacobs M, Basu S, Said M, Andersen N, Murnick J, Chang T, du Plessis A, Limperopoulos C. Longitudinal Trajectories of Regional Cerebral Blood Flow in Very Preterm Infants during Third Trimester Ex Utero Development Assessed with MRI. Radiology 2021; 299:691-702. [PMID: 33787337 DOI: 10.1148/radiol.2021202423] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background The third trimester of gestation is a crucial phase of rapid brain development, but little has been reported on the trajectories of cerebral blood flow (CBF) in preterm infants in this period. Purpose To quantify regional CBF in very preterm infants longitudinally across the ex utero third trimester and to determine its relationship with clinical factors associated with brain injury and premature birth. Materials and Methods In this prospective study, very preterm infants were enrolled for three longitudinal MRI scans, and 22 healthy full-term infants were enrolled for one term MRI scan between November 2016 and February 2019. Global and regional CBF in the cortical gray matter, white matter, deep gray matter, and cerebellum were measured using arterial spin labeling with postlabeling delay of 2025 msec at 1.5 T and 3.0 T. Brain injury and clinical risk factors in preterm infants were investigated to determine associations with CBF. Generalized estimating equations were used to account for correlations between repeated measures in the same individual. Results A total of 75 preterm infants (mean postmenstrual age [PMA]: 29.5 weeks ± 2.3 [standard deviation], 34.9 weeks ± 0.8, and 39.3 weeks ± 2.0 for each scan; 43 male infants) and 22 full-term infants (mean PMA, 42.1 weeks ± 2.0; 13 male infants) were evaluated. In preterm infants, global CBF was 11.9 mL/100 g/min ± 0.2 (standard error). All regional CBF increased significantly with advancing PMA (P ≤ .02); the cerebellum demonstrated the most rapid CBF increase and the highest mean CBF. Lower CBF was associated with intraventricular hemorrhage in all regions (P ≤ .05) and with medically managed patent ductus arteriosus in the white matter and deep gray matter (P = .03). Mean CBF of preterm infants at term-equivalent age was significantly higher compared with full-term infants (P ≤ .02). Conclusion Regional cerebral blood flow increased significantly in preterm infants developing in an extrauterine environment across the third trimester and was associated with intraventricular hemorrhage and patent ductus arteriosus. © RSNA, 2021 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Zungho Zun
- From the Division of Diagnostic Imaging and Radiology, Children's National Hospital, 111 Michigan Ave NW, Washington, DC 20010 (Z.Z., K.K., N.A., J.M., C.L.); Division of Fetal and Transitional Medicine, Children's National Hospital, Washington, DC (Z.Z., A.d.P., C.L.); Departments of Pediatrics (Z.Z., M.J., S.B., M.S., J.M., T.C., A.d.P., C.L.) and Radiology (Z.Z., J.M., C.L.) and Divisions of Neonatology (S.B., M.S.) and Neurology (T.C.), Children's National Hospital, George Washington University School of Medicine and Health Sciences, Washington, DC; Division of Biostatistics and Study Methodology, Children's National Research Institute, Washington, DC (M.J.)
| | - Kushal Kapse
- From the Division of Diagnostic Imaging and Radiology, Children's National Hospital, 111 Michigan Ave NW, Washington, DC 20010 (Z.Z., K.K., N.A., J.M., C.L.); Division of Fetal and Transitional Medicine, Children's National Hospital, Washington, DC (Z.Z., A.d.P., C.L.); Departments of Pediatrics (Z.Z., M.J., S.B., M.S., J.M., T.C., A.d.P., C.L.) and Radiology (Z.Z., J.M., C.L.) and Divisions of Neonatology (S.B., M.S.) and Neurology (T.C.), Children's National Hospital, George Washington University School of Medicine and Health Sciences, Washington, DC; Division of Biostatistics and Study Methodology, Children's National Research Institute, Washington, DC (M.J.)
| | - Marni Jacobs
- From the Division of Diagnostic Imaging and Radiology, Children's National Hospital, 111 Michigan Ave NW, Washington, DC 20010 (Z.Z., K.K., N.A., J.M., C.L.); Division of Fetal and Transitional Medicine, Children's National Hospital, Washington, DC (Z.Z., A.d.P., C.L.); Departments of Pediatrics (Z.Z., M.J., S.B., M.S., J.M., T.C., A.d.P., C.L.) and Radiology (Z.Z., J.M., C.L.) and Divisions of Neonatology (S.B., M.S.) and Neurology (T.C.), Children's National Hospital, George Washington University School of Medicine and Health Sciences, Washington, DC; Division of Biostatistics and Study Methodology, Children's National Research Institute, Washington, DC (M.J.)
| | - Sudeepta Basu
- From the Division of Diagnostic Imaging and Radiology, Children's National Hospital, 111 Michigan Ave NW, Washington, DC 20010 (Z.Z., K.K., N.A., J.M., C.L.); Division of Fetal and Transitional Medicine, Children's National Hospital, Washington, DC (Z.Z., A.d.P., C.L.); Departments of Pediatrics (Z.Z., M.J., S.B., M.S., J.M., T.C., A.d.P., C.L.) and Radiology (Z.Z., J.M., C.L.) and Divisions of Neonatology (S.B., M.S.) and Neurology (T.C.), Children's National Hospital, George Washington University School of Medicine and Health Sciences, Washington, DC; Division of Biostatistics and Study Methodology, Children's National Research Institute, Washington, DC (M.J.)
| | - Mariam Said
- From the Division of Diagnostic Imaging and Radiology, Children's National Hospital, 111 Michigan Ave NW, Washington, DC 20010 (Z.Z., K.K., N.A., J.M., C.L.); Division of Fetal and Transitional Medicine, Children's National Hospital, Washington, DC (Z.Z., A.d.P., C.L.); Departments of Pediatrics (Z.Z., M.J., S.B., M.S., J.M., T.C., A.d.P., C.L.) and Radiology (Z.Z., J.M., C.L.) and Divisions of Neonatology (S.B., M.S.) and Neurology (T.C.), Children's National Hospital, George Washington University School of Medicine and Health Sciences, Washington, DC; Division of Biostatistics and Study Methodology, Children's National Research Institute, Washington, DC (M.J.)
| | - Nicole Andersen
- From the Division of Diagnostic Imaging and Radiology, Children's National Hospital, 111 Michigan Ave NW, Washington, DC 20010 (Z.Z., K.K., N.A., J.M., C.L.); Division of Fetal and Transitional Medicine, Children's National Hospital, Washington, DC (Z.Z., A.d.P., C.L.); Departments of Pediatrics (Z.Z., M.J., S.B., M.S., J.M., T.C., A.d.P., C.L.) and Radiology (Z.Z., J.M., C.L.) and Divisions of Neonatology (S.B., M.S.) and Neurology (T.C.), Children's National Hospital, George Washington University School of Medicine and Health Sciences, Washington, DC; Division of Biostatistics and Study Methodology, Children's National Research Institute, Washington, DC (M.J.)
| | - Jonathan Murnick
- From the Division of Diagnostic Imaging and Radiology, Children's National Hospital, 111 Michigan Ave NW, Washington, DC 20010 (Z.Z., K.K., N.A., J.M., C.L.); Division of Fetal and Transitional Medicine, Children's National Hospital, Washington, DC (Z.Z., A.d.P., C.L.); Departments of Pediatrics (Z.Z., M.J., S.B., M.S., J.M., T.C., A.d.P., C.L.) and Radiology (Z.Z., J.M., C.L.) and Divisions of Neonatology (S.B., M.S.) and Neurology (T.C.), Children's National Hospital, George Washington University School of Medicine and Health Sciences, Washington, DC; Division of Biostatistics and Study Methodology, Children's National Research Institute, Washington, DC (M.J.)
| | - Taeun Chang
- From the Division of Diagnostic Imaging and Radiology, Children's National Hospital, 111 Michigan Ave NW, Washington, DC 20010 (Z.Z., K.K., N.A., J.M., C.L.); Division of Fetal and Transitional Medicine, Children's National Hospital, Washington, DC (Z.Z., A.d.P., C.L.); Departments of Pediatrics (Z.Z., M.J., S.B., M.S., J.M., T.C., A.d.P., C.L.) and Radiology (Z.Z., J.M., C.L.) and Divisions of Neonatology (S.B., M.S.) and Neurology (T.C.), Children's National Hospital, George Washington University School of Medicine and Health Sciences, Washington, DC; Division of Biostatistics and Study Methodology, Children's National Research Institute, Washington, DC (M.J.)
| | - Adre du Plessis
- From the Division of Diagnostic Imaging and Radiology, Children's National Hospital, 111 Michigan Ave NW, Washington, DC 20010 (Z.Z., K.K., N.A., J.M., C.L.); Division of Fetal and Transitional Medicine, Children's National Hospital, Washington, DC (Z.Z., A.d.P., C.L.); Departments of Pediatrics (Z.Z., M.J., S.B., M.S., J.M., T.C., A.d.P., C.L.) and Radiology (Z.Z., J.M., C.L.) and Divisions of Neonatology (S.B., M.S.) and Neurology (T.C.), Children's National Hospital, George Washington University School of Medicine and Health Sciences, Washington, DC; Division of Biostatistics and Study Methodology, Children's National Research Institute, Washington, DC (M.J.)
| | - Catherine Limperopoulos
- From the Division of Diagnostic Imaging and Radiology, Children's National Hospital, 111 Michigan Ave NW, Washington, DC 20010 (Z.Z., K.K., N.A., J.M., C.L.); Division of Fetal and Transitional Medicine, Children's National Hospital, Washington, DC (Z.Z., A.d.P., C.L.); Departments of Pediatrics (Z.Z., M.J., S.B., M.S., J.M., T.C., A.d.P., C.L.) and Radiology (Z.Z., J.M., C.L.) and Divisions of Neonatology (S.B., M.S.) and Neurology (T.C.), Children's National Hospital, George Washington University School of Medicine and Health Sciences, Washington, DC; Division of Biostatistics and Study Methodology, Children's National Research Institute, Washington, DC (M.J.)
| |
Collapse
|
231
|
Gabrielyan M, Tisdall MD, Kammer C, Higgins C, Arratia PE, Detre JA. A perfusion phantom for ASL MRI based on impinging jets. Magn Reson Med 2021; 86:1145-1158. [PMID: 33772869 DOI: 10.1002/mrm.28697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/21/2020] [Accepted: 01/05/2021] [Indexed: 11/07/2022]
Abstract
PURPOSE We present a novel perfusion phantom for validation of arterial spin labeled (ASL) perfusion MRI methods and protocols. METHODS Impinging jets, driven by a peristaltic pump, were used to achieve perfusion-like mixing of magnetically labeled inflowing fluid within a perfusion compartment. The phantom was validated by varying pump rates and obtaining ASL-MRI data at multiple postlabeling delays using a pseudo-continuous ASL sequence with a 3D stack-of-spirals readout. An additional data set was acquired using a pseudo-continuous ASL sequence with a 2D EPI readout. Phantom sensitivity to pseudo-continuous ASL labeling efficiency was also tested. RESULTS Fluid dynamics simulations predicted that maximum mixing would occur near the central axis of the perfusion compartment. Experimentally observed signal changes within this region were reproducible and well fit by the standard Buxton general kinetic model. Simulations and experimental data showed no label outflow from the perfusion chamber and calculated perfusion rates, averaged over the entire phantom volume, agreed with the expected volumetric flow rates provided by the flow pump. Phantom sensitivity to pseudo-continuous ASL labeling parameters was also demonstrated. CONCLUSION Perfusion-like signal can be simulated using impinging jets to create a well-mixed compartment. Observed perfusion and transit time values were reproducible and within the physiological range for brain perfusion. This phantom design has a broad range of potential applications in both basic and clinical research involving ASL MRI.
Collapse
Affiliation(s)
- Marianna Gabrielyan
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - M Dylan Tisdall
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christoph Kammer
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christopher Higgins
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paulo E Arratia
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John A Detre
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
232
|
Zhao MY, Fan AP, Chen DYT, Sokolska MJ, Guo J, Ishii Y, Shin DD, Khalighi MM, Holley D, Halbert K, Otte A, Williams B, Rostami T, Park JH, Shen B, Zaharchuk G. Cerebrovascular reactivity measurements using simultaneous 15O-water PET and ASL MRI: Impacts of arterial transit time, labeling efficiency, and hematocrit. Neuroimage 2021; 233:117955. [PMID: 33716155 PMCID: PMC8272558 DOI: 10.1016/j.neuroimage.2021.117955] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/28/2021] [Accepted: 03/04/2021] [Indexed: 12/19/2022] Open
Abstract
Cerebrovascular reactivity (CVR) reflects the capacity of the brain to meet changing physiological demands and can predict the risk of cerebrovascular diseases. CVR can be obtained by measuring the change in cerebral blood flow (CBF) during a brain stress test where CBF is altered by a vasodilator such as acetazolamide. Although the gold standard to quantify CBF is PET imaging, the procedure is invasive and inaccessible to most patients. Arterial spin labeling (ASL) is a non-invasive and quantitative MRI method to measure CBF, and a consensus guideline has been published for the clinical application of ASL. Despite single post labeling delay (PLD) pseudo-continuous ASL (PCASL) being the recommended ASL technique for CBF quantification, it is sensitive to variations to the arterial transit time (ATT) and labeling efficiency induced by the vasodilator in CVR studies. Multi-PLD ASL controls for the changes in ATT, and velocity selective ASL is in theory insensitive to both ATT and labeling efficiency. Here we investigate CVR using simultaneous 15O-water PET and ASL MRI data from 19 healthy subjects. CVR and CBF measured by the ASL techniques were compared using PET as the reference technique. The impacts of blood T1 and labeling efficiency on ASL were assessed using individual measurements of hematocrit and flow velocity data of the carotid and vertebral arteries measured using phase-contrast MRI. We found that multi-PLD PCASL is the ASL technique most consistent with PET for CVR quantification (group mean CVR of the whole brain = 42 ± 19% and 40 ± 18% respectively). Single-PLD ASL underestimated the CVR of the whole brain significantly by 15 ± 10% compared with PET (p<0.01, paired t-test). Changes in ATT pre- and post-acetazolamide was the principal factor affecting ASL-based CVR quantification. Variations in labeling efficiency and blood T1 had negligible effects.
Collapse
Affiliation(s)
- Moss Y Zhao
- Department of Radiology, Stanford University, Stanford, CA, United States.
| | - Audrey P Fan
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA; Department of Neurology, University of California Davis, Davis, CA, USA
| | - David Yen-Ting Chen
- Department of Medical Imaging, Taipei Medical University - Shuan-Ho Hospital, New Taipei City, Taiwan; Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Magdalena J Sokolska
- Medical Physics and Biomedical Engineering, University College London Hospitals, London, United Kingdom
| | - Jia Guo
- Department of Bioengineering, University of California Riverside, Riverside, CA, United States
| | - Yosuke Ishii
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | - Dawn Holley
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Kim Halbert
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Andrea Otte
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Brittney Williams
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Taghi Rostami
- Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Jun-Hyung Park
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Bin Shen
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Greg Zaharchuk
- Department of Radiology, Stanford University, Stanford, CA, United States.
| |
Collapse
|
233
|
Zeng V, Lizano P, Bolo NR, Lutz O, Brady R, Ivleva EI, Dai W, Clementz B, Tamminga C, Pearlson G, Keshavan M. Altered cerebral perfusion in bipolar disorder: A pCASL MRI study. Bipolar Disord 2021; 23:130-140. [PMID: 32583570 DOI: 10.1111/bdi.12966] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Neurovascular abnormalities are relevant to the pathophysiology of bipolar disorder (BD), which can be assessed using cerebral blood flow (CBF) imaging. CBF alterations have been identified in BD, but studies to date have been small and inconclusive. We aimed to determine cortical gray matter CBF (GM-CBF) differences between BD and healthy controls (HC) and to identify relationships between CBF and clinical or cognitive measures. METHODS Cortical GM-CBF maps were generated using Pseudo-Continuous Arterial Spin Labeling (pCASL) for 109 participants (BD, n = 61; HC, n = 48). We used SnPM13 to perform non-parametric voxel-wise two-sample t-tests comparing CBF between groups. We performed multiple linear regression to relate GM-CBF with clinical and cognitive measures. Analysis was adjusted for multiple comparisons with 10,000 permutations. Significance was set at a voxel level threshold of P < .001 followed by AlphaSim cluster-wise correction of P < .05. RESULTS Compared to HCs, BD patients had greater GM-CBF in the left lateral occipital cortex, superior division and lower CBF in the right lateral occipital, angular and middle temporal gyrus. Greater GM-CBF in the left lateral occipital cortex correlated with worse working memory, verbal memory, attention and speed of processing. We found using voxel-wise regression that decreased gray matter CBF in the bilateral thalamus and cerebellum, and increased right fronto-limbic CBF were associated with worse working memory. No clusters were associated with clinical variables after FDR correction. CONCLUSIONS Cortical GM-CBF alterations are seen in BD and may be related to cognitive function, which suggest neurovascular unit dysfunction as a possible pathophysiologic mechanism.
Collapse
Affiliation(s)
- Victor Zeng
- Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Paulo Lizano
- Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Nicolas R Bolo
- Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Olivia Lutz
- Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Roscoe Brady
- Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | - Matcheri Keshavan
- Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
234
|
Cerritelli F, Chiacchiaretta P, Gambi F, Saggini R, Perrucci MG, Ferretti A. Osteopathy modulates brain-heart interaction in chronic pain patients: an ASL study. Sci Rep 2021; 11:4556. [PMID: 33633195 PMCID: PMC7907192 DOI: 10.1038/s41598-021-83893-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 02/09/2021] [Indexed: 01/31/2023] Open
Abstract
In this study we used a combination of measures including regional cerebral blood flow (rCBF) and heart rate variability (HRV) to investigate brain-heart correlates of longitudinal baseline changes of chronic low back pain (cLBP) after osteopathic manipulative treatment (OMT). Thirty-two right-handed patients were randomised and divided into 4 weekly session of OMT (N = 16) or Sham (N = 16). Participants aged 42.3 ± 7.3 (M/F: 20/12) with cLBP (duration: 14.6 ± 8.0 m). At the end of the study, patients receiving OMT showed decreased baseline rCBF within several regions belonging to the pain matrix (left posterior insula, left anterior cingulate cortex, left thalamus), sensory regions (left superior parietal lobe), middle frontal lobe and left cuneus. Conversely, rCBF was increased in right anterior insula, bilateral striatum, left posterior cingulate cortex, right prefrontal cortex, left cerebellum and right ventroposterior lateral thalamus in the OMT group as compared with Sham. OMT showed a statistically significant negative correlation between baseline High Frequency HRV changes and rCBF changes at T2 in the left posterior insula and bilateral lentiform nucleus. The same brain regions showed a positive correlation between rCBF changes and Low Frequency HRV baseline changes at T2. These findings suggest that OMT can play a significant role in regulating brain-heart interaction mechanisms.
Collapse
Affiliation(s)
- Francesco Cerritelli
- grid.412451.70000 0001 2181 4941Department of Neuroscience, Imaging and Clinical Sciences, “G. D’Annunzio” University of Chieti-Pescara, Via dei Vestini, 33, Chieti Scalo, Italy ,Clinical-Based Human Research Department, Foundation C.O.ME. Collaboration, Pescara, Italy
| | - Piero Chiacchiaretta
- grid.412451.70000 0001 2181 4941Department of Neuroscience, Imaging and Clinical Sciences, “G. D’Annunzio” University of Chieti-Pescara, Via dei Vestini, 33, Chieti Scalo, Italy ,grid.412451.70000 0001 2181 4941ITAB-Institute for Advanced Biomedical Technologies, “G. D’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Francesco Gambi
- grid.412451.70000 0001 2181 4941Department of Neuroscience, Imaging and Clinical Sciences, “G. D’Annunzio” University of Chieti-Pescara, Via dei Vestini, 33, Chieti Scalo, Italy ,grid.412451.70000 0001 2181 4941ITAB-Institute for Advanced Biomedical Technologies, “G. D’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Raoul Saggini
- grid.412451.70000 0001 2181 4941School of Specialty in Physical and Rehabilitation Medicine, “G. D’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Mauro Gianni Perrucci
- grid.412451.70000 0001 2181 4941Department of Neuroscience, Imaging and Clinical Sciences, “G. D’Annunzio” University of Chieti-Pescara, Via dei Vestini, 33, Chieti Scalo, Italy ,grid.412451.70000 0001 2181 4941ITAB-Institute for Advanced Biomedical Technologies, “G. D’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Antonio Ferretti
- grid.412451.70000 0001 2181 4941Department of Neuroscience, Imaging and Clinical Sciences, “G. D’Annunzio” University of Chieti-Pescara, Via dei Vestini, 33, Chieti Scalo, Italy ,grid.412451.70000 0001 2181 4941ITAB-Institute for Advanced Biomedical Technologies, “G. D’Annunzio” University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
235
|
Intravenous Infusion of Mesenchymal Stem Cells Enhances Therapeutic Efficacy of Reperfusion Therapy in Cerebral Ischemia. World Neurosurg 2021; 149:e160-e169. [PMID: 33618048 DOI: 10.1016/j.wneu.2021.02.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Reperfusion therapy is a standard therapeutic strategy for acute stroke. Non-favorable outcomes are thought to partially result from impaired microcirculatory flow in ischemic tissue. Intravenous infusion of mesenchymal stem cells (MSCs) reduces stroke volume and improves behavioral function in stroke. One suggested therapeutic mechanism is the restoration of the microvasculature. The goal of this study was to determine whether infused MSCs enhance the therapeutic efficacy of reperfusion therapy following stroke in rats. METHODS First, to establish a transient middle cerebral artery occlusion (MCAO) model displaying approximately identical neurologic function and lesion volume as seen in permanent MCAO (pMCAO) at day 7 after stroke induction, we transiently occluded the MCA for 90, 110, and 120 minutes. We found that the 110-minute occlusion met these criteria and was used as the transient MCAO (tMCAO) model. Next, 4 MCAO groups were used to compare the therapeutic efficacy of infused MSCs: (1) pMCAO+vehicle, (2) tMCAO+vehicle, (3) pMCAO+MSC, and (4) tMCAO+MSC. Our ischemic model was a unique ischemic model system in which both pMCAO and tMCAO provided similar outcomes during the study period in the groups without MSC infusion groups. Behavioral performance, ischemic volume, and regional cerebral blood flow (rCBF) using arterial spin labeling-magnetic resonance imaging and histologic evaluation of microvasculature was performed. RESULTS The behavioral function, rCBF, and restoration of microvasculature were greater in group 4 than in group 3. Thus, infused MSCs facilitated the therapeutic efficacy of MCA reperfusion in this rat model system. CONCLUSIONS Intravenous infusion of MSCs may enhance therapeutic efficacy of reperfusion therapy.
Collapse
|
236
|
Solis-Barquero SM, Echeverria-Chasco R, Calvo-Imirizaldu M, Cacho-Asenjo E, Martinez-Simon A, Vidorreta M, Dominguez PD, García de Eulate R, Fernandez-Martinez M, Fernández-Seara MA. Breath-Hold Induced Cerebrovascular Reactivity Measurements Using Optimized Pseudocontinuous Arterial Spin Labeling. Front Physiol 2021; 12:621720. [PMID: 33679436 PMCID: PMC7925895 DOI: 10.3389/fphys.2021.621720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/26/2021] [Indexed: 11/13/2022] Open
Abstract
A pseudocontinuous arterial spin labeling (PCASL) sequence combined with background suppression and single-shot accelerated 3D RARE stack-of-spirals was used to evaluate cerebrovascular reactivity (CVR) induced by breath-holding (BH) in ten healthy volunteers. Four different models designed using the measured change in PETCO2 induced by BH were compared, for CVR quantification. The objective of this comparison was to understand which regressor offered a better physiological model to characterize the cerebral blood flow response under BH. The BH task started with free breathing of 42 s, followed by interleaved end-expiration BHs of 21 s, for ten cycles. The total scan time was 12 min and 20 s. The accelerated readout allowed the acquisition of PCASL data with better temporal resolution than previously used, without compromising the post-labeling delay. Elevated CBF was observed in most cerebral regions under hypercapnia, which was delayed with respect to the BH challenge. Significant statistical differences in CVR were obtained between the different models in GM (p < 0.0001), with ramp models yielding higher values than boxcar models and between the two tissues, GM and WM, with higher values in GM, in all the models (p < 0.0001). The adjustment of the ramp amplitude during each BH cycle did not improve the results compared with a ramp model with a constant amplitude equal to the mean PETCO2 change during the experiment.
Collapse
Affiliation(s)
| | - Rebeca Echeverria-Chasco
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | | | - Elena Cacho-Asenjo
- Department of Anesthesia, Perioperative Medicine and Critical Care, Clínica Universidad de Navarra, Pamplona, Spain
| | - Antonio Martinez-Simon
- Department of Anesthesia, Perioperative Medicine and Critical Care, Clínica Universidad de Navarra, Pamplona, Spain
| | | | - Pablo D Dominguez
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | | | | | - María A Fernández-Seara
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| |
Collapse
|
237
|
Munting LP, Derieppe M, Suidgeest E, Hirschler L, van Osch MJ, Denis de Senneville B, van der Weerd L. Cerebral blood flow and cerebrovascular reactivity are preserved in a mouse model of cerebral microvascular amyloidosis. eLife 2021; 10:61279. [PMID: 33577447 PMCID: PMC7880694 DOI: 10.7554/elife.61279] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 01/15/2021] [Indexed: 12/14/2022] Open
Abstract
Impaired cerebrovascular function is an early biomarker for cerebral amyloid angiopathy (CAA), a neurovascular disease characterized by amyloid-β accumulation in the cerebral vasculature, leading to stroke and dementia. The transgenic Swedish Dutch Iowa (Tg-SwDI) mouse model develops cerebral microvascular amyloid-β deposits, but whether this leads to similar functional impairments is incompletely understood. We assessed cerebrovascular function longitudinally in Tg-SwDI mice with arterial spin labeling (ASL)-magnetic resonance imaging (MRI) and laser Doppler flowmetry (LDF) over the course of amyloid-β deposition. Unexpectedly, Tg-SwDI mice showed similar baseline perfusion and cerebrovascular reactivity estimates as age-matched wild-type control mice, irrespective of modality (ASL or LDF) or anesthesia (isoflurane or urethane and α-chloralose). Hemodynamic changes were, however, observed as an effect of age and anesthesia. Our findings contradict earlier results obtained in the same model and question to what extent microvascular amyloidosis as seen in Tg-SwDI mice is representative of cerebrovascular dysfunction observed in CAA patients.
Collapse
Affiliation(s)
- Leon P Munting
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Marc Derieppe
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Ernst Suidgeest
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Lydiane Hirschler
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Baudouin Denis de Senneville
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, Netherlands.,Institut de Mathématiques de Bordeaux, Université Bordeaux/CNRS UMR 5251/INRIA, Bordeaux-Sud-Ouest, France
| | - Louise van der Weerd
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
238
|
Bones IK, Franklin SL, Harteveld AA, van Osch MJP, Schmid S, Hendrikse J, Moonen C, van Stralen M, Bos C. Exploring label dynamics of velocity-selective arterial spin labeling in the kidney. Magn Reson Med 2021; 86:131-142. [PMID: 33538350 PMCID: PMC8048977 DOI: 10.1002/mrm.28683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/07/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022]
Abstract
Purpose Velocity‐selective arterial spin labeling (VSASL) has been proposed for renal perfusion imaging to mitigate planning challenges and effects of arterial transit time (ATT) uncertainties. In VSASL, label generation may shift in the vascular tree as a function of cutoff velocity. Here, we investigate label dynamics and especially the ATT of renal VSASL and compared it with a spatially selective pulsed arterial spin labeling technique, flow alternating inversion recovery (FAIR). Methods Arterial spin labeling data were acquired in 7 subjects, using free‐breathing dual VSASL and FAIR with five postlabeling delays: 400, 800, 1200, 2000, and 2600 ms. The VSASL measurements were acquired with cutoff velocities of 5, 10, and 15 cm/s, with anterior–posterior velocity‐encoding direction. Cortical perfusion‐weighted signal, temporal SNR, quantified renal blood flow, and arterial transit time were reported. Results In contrast to FAIR, renal VSASL already showed fairly high signal at the earliest postlabeling delays, for all cutoff velocities. The highest VSASL signal and temporal SNR was obtained with a cutoff velocity of 10 cm/s at postlabeling delay = 800 ms, which was earlier than for FAIR at 1200 ms. Fitted ATT on VSASL was ≤ 0 ms, indicating ATT insensitivity, which was shorter than for FAIR (189 ± 79 ms, P < .05). Finally, the average cortical renal blood flow measured with cutoff velocities of 5 cm/s (398 ± 84 mL/min/100 g) and 10 cm/s (472 ± 160 mL/min/100 g) were similar to renal blood flow measured with FAIR (441 ± 84 mL/min/100 g) (P > .05) with good correlations on subject level. Conclusion Velocity‐selective arterial spin labeling in the kidney reduces ATT sensitivity compared with the recommended pulsed arterial spin labeling method, as well as if cutoff velocity is increased to reduce spurious labeling due to motion. Thus, VSASL has potential as a method for time‐efficient, single‐time‐point, free‐breathing renal perfusion measurements, despite lower tSNR than FAIR.
Collapse
Affiliation(s)
- Isabell K Bones
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Suzanne L Franklin
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands.,C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Anita A Harteveld
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Matthias J P van Osch
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sophie Schmid
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jeroen Hendrikse
- Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Chrit Moonen
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marijn van Stralen
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Clemens Bos
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
239
|
Paschoal AM, Leoni RF, Foerster BU, Dos Santos AC, Pontes-Neto OM, Paiva FF. Contrast optimization in arterial spin labeling with multiple post-labeling delays for cerebrovascular assessment. MAGMA (NEW YORK, N.Y.) 2021; 34:119-131. [PMID: 32885356 DOI: 10.1007/s10334-020-00883-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/01/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE Improving the readout for arterial spin labeling with multiple post-labeling delays (multi-PLD ASL) through a flip angle (FA) sweep towards increasing contrast-to-noise ratio for long PLD images. METHODS Images were acquired from 20 healthy subjects and 14 patients with severe, asymptomatic carotid artery stenosis (ACAS) in a 3T MRI scanner. Multi-PLD ASL images with conventional and proposed (FA sweep) readouts were acquired. For patients, magnetic resonance angiography was used to validate the multi-PLD ASL results. Perfusion values were calculated for brain regions irrigated by the main cerebral arteries and compared by analysis of variance. RESULTS For healthy subjects, better contrast was obtained for long PLDs when using the proposed multi-PLD method compared to the conventional. For both methods, no hemispheric difference of perfusion was observed. For patients, the proposed method facilitated the observation of delayed tissue perfusion, which was not visible for long PLD using the conventional multi-PLD ASL. CONCLUSION We successfully assessed brain perfusion of patients with asymptomatic CAS using multi-PLD ASL with FA sweep. We were able to show subtle individual differences. Moreover, prolonged arterial transit time in patients was observed, although they were considered asymptomatic, suggesting that it may not be an adequate term to characterize them.
Collapse
Affiliation(s)
- André Monteiro Paschoal
- Inbrain, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Renata Ferranti Leoni
- Inbrain, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Bernd Uwe Foerster
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador São-Carlense, 400, São Carlos, SP, 13566-590, Brazil
| | | | | | - Fernando Fernandes Paiva
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador São-Carlense, 400, São Carlos, SP, 13566-590, Brazil.
| |
Collapse
|
240
|
Rao MR, Norquay G, Stewart NJ, Wild JM. Measuring 129 Xe transfer across the blood-brain barrier using MR spectroscopy. Magn Reson Med 2021; 85:2939-2949. [PMID: 33458859 PMCID: PMC7986241 DOI: 10.1002/mrm.28646] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/04/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE This study develops a tracer kinetic model of xenon uptake in the human brain to determine the transfer rate of inhaled hyperpolarized 129 Xe from cerebral blood to gray matter that accounts for the effects of cerebral physiology, perfusion and magnetization dynamics. The 129 Xe transfer rate is expressed using a tracer transfer coefficient, which estimates the quantity of hyperpolarized 129 Xe dissolved in cerebral blood under exchange with depolarized 129 Xe dissolved in gray matter under equilibrium of concentration. THEORY AND METHODS Time-resolved MR spectra of hyperpolarized 129 Xe dissolved in the human brain were acquired from three healthy volunteers. Acquired spectra were numerically fitted with five Lorentzian peaks in accordance with known 129 Xe brain spectral peaks. The signal dynamics of spectral peaks for gray matter and red blood cells were quantified, and correction for the 129 Xe T1 dependence upon blood oxygenation was applied. 129 Xe transfer dynamics determined from the ratio of the peaks for gray matter and red blood cells was numerically fitted with the developed tracer kinetic model. RESULTS For all the acquired NMR spectra, the developed tracer kinetic model fitted the data with tracer transfer coefficients between 0.1 and 0.14. CONCLUSION In this study, a tracer kinetic model was developed and validated that estimates the transfer rate of HP 129 Xe from cerebral blood to gray matter in the human brain.
Collapse
Affiliation(s)
- Madhwesha R Rao
- POLARIS, Department of Infection, Immunity and Cardiovascular Disease and Insigneo Institute of In-silico Medicine, University of Sheffield, Sheffield, UK
| | - Graham Norquay
- POLARIS, Department of Infection, Immunity and Cardiovascular Disease and Insigneo Institute of In-silico Medicine, University of Sheffield, Sheffield, UK
| | - Neil J Stewart
- POLARIS, Department of Infection, Immunity and Cardiovascular Disease and Insigneo Institute of In-silico Medicine, University of Sheffield, Sheffield, UK
| | - Jim M Wild
- POLARIS, Department of Infection, Immunity and Cardiovascular Disease and Insigneo Institute of In-silico Medicine, University of Sheffield, Sheffield, UK
| |
Collapse
|
241
|
Mak E, Dounavi ME, Low A, Carter SF, McKiernan E, Williams GB, Jones PS, Carriere I, Muniz GT, Ritchie K, Ritchie C, Su L, O'Brien JT. Proximity to dementia onset and multi-modal neuroimaging changes: The prevent-dementia study. Neuroimage 2021; 229:117749. [PMID: 33454416 DOI: 10.1016/j.neuroimage.2021.117749] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/22/2020] [Accepted: 01/08/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND First-degree relatives of people with dementia (FH+) are at increased risk of developing Alzheimer's disease (AD). Here, we investigate "estimated years to onset of dementia" (EYO) as a surrogate marker of preclinical disease progression and assess its associations with multi-modal neuroimaging biomarkers. METHODS 89 FH+ participants in the PREVENT-Dementia study underwent longitudinal MR imaging over 2 years. EYO was calculated as the difference between the parental age of dementia diagnosis and the current age of the participant (mean EYO = 23.9 years). MPRAGE, ASL and DWI data were processed using Freesurfer, FSL-BASIL and DTI-TK. White matter lesion maps were segmented from FLAIR scans. The SPM Sandwich Estimator Toolbox was used to test for the main effects of EYO and interactions between EYO, Time, and APOE-ε4+. Threshold free cluster enhancement and family wise error rate correction (TFCE FWER) was performed on voxelwise statistical maps. RESULTS There were no significant effects of EYO on regional grey matter atrophy or white matter hyperintensities. However, a shorter EYO was associated with lower white matter Fractional Anisotropy and elevated Mean/Radial Diffusivity, particularly in the corpus callosum (TFCEFWERp < 0.05). The influence of EYO on white matter deficits were significantly stronger compared to that of normal ageing. APOE-ε4 carriers exhibited hyperperfusion with nearer proximity to estimated onset in temporo-parietal regions. There were no interactions between EYO and time, suggesting that EYO was not associated with accelerated imaging changes in this sample. CONCLUSIONS Amongst cognitively normal midlife adults with a family history of dementia, a shorter hypothetical proximity to dementia onset may be associated with incipient brain abnormalities, characterised by white matter disruptions and perfusion abnormalities, particularly amongst APOE-ε4 carriers. Our findings also confer biological validity to the construct of EYO as a potential stage marker of preclinical progression in the context of sporadic dementia. Further clinical follow-up of our longitudinal sample would provide critical validation of these findings.
Collapse
Affiliation(s)
- Elijah Mak
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0SP, UK.
| | - Maria-Eleni Dounavi
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0SP, UK
| | - Audrey Low
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0SP, UK
| | - Stephen F Carter
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0SP, UK
| | - Elizabeth McKiernan
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0SP, UK
| | - Guy B Williams
- Department of Clinical Neurosciences and Wolfson Brain Imaging Centre, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - P Simon Jones
- Department of Clinical Neurosciences and Wolfson Brain Imaging Centre, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Isabelle Carriere
- Centre for Dementia Prevention, University of Edinburgh, Edinburgh, UK
| | | | - Karen Ritchie
- Centre for Dementia Prevention, University of Edinburgh, Edinburgh, UK; INSERM and University of Montpellier, Montpellier, France
| | - Craig Ritchie
- Centre for Dementia Prevention, University of Edinburgh, Edinburgh, UK
| | - Li Su
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0SP, UK
| | - John T O'Brien
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0SP, UK
| |
Collapse
|
242
|
Park S, Hong H, Kim RY, Ma J, Lee S, Ha E, Yoon S, Kim J. Firefighters Have Cerebral Blood Flow Reductions in the Orbitofrontal and Insular Cortices That are Associated with Poor Sleep Quality. Nat Sci Sleep 2021; 13:1507-1517. [PMID: 34531693 PMCID: PMC8439978 DOI: 10.2147/nss.s312671] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/20/2021] [Indexed: 01/01/2023] Open
Abstract
PURPOSE To investigate the cerebral blood flow (CBF) alterations associated with poor sleep quality and memory performance in firefighters. PARTICIPANTS AND METHODS Thirty-seven firefighters (the FF group) and 37 non-firefighter controls (the control group) with sleep complaints were enrolled in this study. We performed brain arterial spin labeling perfusion magnetic resonance imaging (MRI) and compared the CBF between the two groups using whole-brain voxel-wise analyses. Self-reported sleep problems and actigraphy-measured sleep parameters, including the sleep efficiency, wake after sleep onset (WASO), total sleep time, and sleep latency, were assessed. Spatial working memory and learning performances were evaluated on the day of the MRI scan. RESULTS The FF group, relative to the control group, had lower CBF in the right hemispheric regions: Middle temporal/lateral occipital, orbitofrontal, and insular cortices. Lower CBF in the right orbitofrontal cortex was linearly associated with poor sleep quality, as indicated by lower sleep efficiency and longer WASO. The CBF of the right insular cortex was also associated with longer WASO. Despite comparable degrees of self-reported sleep problems between the two groups, the FF group had lower sleep efficiency and longer WASO in the actigraphy, and lower spatial working memory and learning performance, relative to the control group. Poor sleep efficiency was linearly associated with lower spatial working memory performance. CONCLUSION These results demonstrated an association of poor sleep quality with decreased brain perfusion in the right orbitofrontal and insular cortices, as well as with reduced working memory performance.
Collapse
Affiliation(s)
- Shinwon Park
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
| | - Haejin Hong
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - Rye Young Kim
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea.,Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Jiyoung Ma
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
| | - Suji Lee
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
| | - Eunji Ha
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - Sujung Yoon
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - Jungyoon Kim
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
243
|
Kose K. Physical and technical aspects of human magnetic resonance imaging: present status and 50 years historical review. ADVANCES IN PHYSICS: X 2021. [DOI: 10.1080/23746149.2021.1885310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Katsumi Kose
- MRIsimulations Inc., University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
244
|
Camargo A, Wang Z, Alzheimer’s Disease Neuroimaging Initiative. Longitudinal Cerebral Blood Flow Changes in Normal Aging and the Alzheimer's Disease Continuum Identified by Arterial Spin Labeling MRI. J Alzheimers Dis 2021; 81:1727-1735. [PMID: 33967053 PMCID: PMC8217256 DOI: 10.3233/jad-210116] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Cross-sectional studies have shown lower cerebral blood flow (CBF) in Alzheimer's disease (AD), but longitudinal CBF changes in AD are still unknown. OBJECTIVE To reveal the longitudinal CBF changes in normal control (NC) and the AD continuum using arterial spin labeling perfusion magnetic resonance imaging (ASL MRI). METHODS CBF was calculated from two longitudinal ASL scans acquired 2.22±1.43 years apart from 140 subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI). At the baseline scan, the cohort contained 41 NC, 74 mild cognitive impairment patients (MCI), and 25 AD patients. 21 NC converted into MCI and 17 MCI converted into AD at the follow-up. Longitudinal CBF changes were assessed using paired-t test for non-converters and converters separately at each voxel and in the meta-ROI. Age and sex were used as covariates. RESULTS CBF reductions were observed in all subjects. Stable NC (n = 20) showed CBF reduction in the hippocampus and precuneus. Stable MCI patients (n = 57) showed spatially more extended CBF reduction patterns in hippocampus, middle temporal lobe, ventral striatum, prefrontal cortex, and cerebellum. NC-MCI converters showed CBF reduction in hippocampus and cerebellum and CBF increase in caudate. MCI-AD converters showed CBF reduction in hippocampus and prefrontal cortex. CBF changes were not related with longitudinal neurocognitive changes. CONCLUSION Normal aging and AD continuum showed common longitudinal CBF reductions in hippocampus independent of disease and its conversion. Disease conversion independent longitudinal CBF reductions escalated in MCI subjects.
Collapse
Affiliation(s)
- Aldo Camargo
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
- University of Liège, Belgium
| | - Ze Wang
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
245
|
Murray KD, Singh MV, Zhuang Y, Uddin MN, Qiu X, Weber MT, Tivarus ME, Wang HZ, Sahin B, Zhong J, Maggirwar SB, Schifitto G. Pathomechanisms of HIV-Associated Cerebral Small Vessel Disease: A Comprehensive Clinical and Neuroimaging Protocol and Analysis Pipeline. Front Neurol 2020; 11:595463. [PMID: 33384655 PMCID: PMC7769815 DOI: 10.3389/fneur.2020.595463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Rationale: We provide an in-depth description of a comprehensive clinical, immunological, and neuroimaging study that includes a full image processing pipeline. This approach, although implemented in HIV infected individuals, can be used in the general population to assess cerebrovascular health. Aims: In this longitudinal study, we seek to determine the effects of neuroinflammation due to HIV-1 infection on the pathomechanisms of cerebral small vessel disease (CSVD). The study focuses on the interaction of activated platelets, pro-inflammatory monocytes and endothelial cells and their impact on the neurovascular unit. The effects on the neurovascular unit are evaluated by a novel combination of imaging biomarkers. Sample Size: We will enroll 110 HIV-infected individuals on stable combination anti-retroviral therapy for at least three months and an equal number of age-matched controls. We anticipate a drop-out rate of 20%. Methods and Design: Subjects are followed for three years and evaluated by flow cytometric analysis of whole blood (to measure platelet activation, platelet monocyte complexes, and markers of monocyte activation), neuropsychological testing, and brain MRI at the baseline, 18- and 36-month time points. MRI imaging follows the recommended clinical small vessel imaging standards and adds several advanced sequences to obtain quantitative assessments of brain tissues including white matter microstructure, tissue susceptibility, and blood perfusion. Discussion: The study provides further understanding of the underlying mechanisms of CSVD in chronic inflammatory disorders such as HIV infection. The longitudinal study design and comprehensive approach allows the investigation of quantitative changes in imaging metrics and their impact on cognitive performance.
Collapse
Affiliation(s)
- Kyle D Murray
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, United States
| | - Meera V Singh
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States
| | - Yuchuan Zhuang
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, United States
| | - Md Nasir Uddin
- Department of Neurology, University of Rochester, Rochester, NY, United States
| | - Xing Qiu
- Department of Biostatistics, University of Rochester, Rochester, NY, United States
| | - Miriam T Weber
- Department of Neurology, University of Rochester, Rochester, NY, United States
| | - Madalina E Tivarus
- Department of Imaging Sciences, University of Rochester, Rochester, NY, United States.,Department of Neuroscience, University of Rochester, Rochester, NY, United States
| | - Henry Z Wang
- Department of Imaging Sciences, University of Rochester, Rochester, NY, United States
| | - Bogachan Sahin
- Department of Neurology, University of Rochester, Rochester, NY, United States
| | - Jianhui Zhong
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, United States.,Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, United States.,Department of Biostatistics, University of Rochester, Rochester, NY, United States
| | - Sanjay B Maggirwar
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, United States
| | - Giovanni Schifitto
- Department of Neurology, University of Rochester, Rochester, NY, United States.,Department of Imaging Sciences, University of Rochester, Rochester, NY, United States
| |
Collapse
|
246
|
Bambach S, Smith M, Morris PP, Campeau NG, Ho ML. Arterial Spin Labeling Applications in Pediatric and Adult Neurologic Disorders. J Magn Reson Imaging 2020; 55:698-719. [PMID: 33314349 DOI: 10.1002/jmri.27438] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022] Open
Abstract
Arterial spin labeling (ASL) is a powerful noncontrast magnetic resonance imaging (MRI) technique that enables quantitative evaluation of brain perfusion. To optimize the clinical and research utilization of ASL, radiologists and physicists must understand the technical considerations and age-related variations in normal and disease states. We discuss advanced applications of ASL across the lifespan, with example cases from children and adults covering a wide variety of pathologies. Through literature review and illustrated clinical cases, we highlight the subtleties as well as pitfalls of ASL interpretation. First, we review basic physical principles, techniques, and artifacts. This is followed by a discussion of normal perfusion variants based on age and physiology. The three major categories of perfusion abnormalities-hypoperfusion, hyperperfusion, and mixed patterns-are covered with an emphasis on clinical interpretation and relationship to the disease process. Major etiologies of hypoperfusion include large artery, small artery, and venous disease; other vascular conditions; global hypoxic-ischemic injury; and neurodegeneration. Hyperperfusion is characteristic of vascular malformations and tumors. Mixed perfusion patterns can be seen with epilepsy, migraine, trauma, infection/inflammation, and toxic-metabolic encephalopathy. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY STAGE: 3.
Collapse
Affiliation(s)
- Sven Bambach
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Mark Smith
- Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - P Pearse Morris
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Mai-Lan Ho
- Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio, USA
| |
Collapse
|
247
|
Bladt P, den Dekker AJ, Clement P, Achten E, Sijbers J. The costs and benefits of estimating T 1 of tissue alongside cerebral blood flow and arterial transit time in pseudo-continuous arterial spin labeling. NMR IN BIOMEDICINE 2020; 33:e4182. [PMID: 31736223 PMCID: PMC7685117 DOI: 10.1002/nbm.4182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 07/09/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
Multi-post-labeling-delay pseudo-continuous arterial spin labeling (multi-PLD PCASL) allows for absolute quantification of the cerebral blood flow (CBF) as well as the arterial transit time (ATT). Estimating these perfusion parameters from multi-PLD PCASL data is a non-linear inverse problem, which is commonly tackled by fitting the single-compartment model (SCM) for PCASL, with CBF and ATT as free parameters. The longitudinal relaxation time of tissue T1t is an important parameter in this model, as it governs the decay of the perfusion signal entirely upon entry in the imaging voxel. Conventionally, T1t is fixed to a population average. This approach can cause CBF quantification errors, as T1t can vary significantly inter- and intra-subject. This study compares the impact on CBF quantification, in terms of accuracy and precision, of either fixing T1t , the conventional approach, or estimating it alongside CBF and ATT. It is shown that the conventional approach can cause a significant bias in CBF. Indeed, simulation experiments reveal that if T1t is fixed to a value that is 10% off its true value, this may already result in a bias of 15% in CBF. On the other hand, as is shown by both simulation and real data experiments, estimating T1t along with CBF and ATT results in a loss of CBF precision of the same order, even if the experiment design is optimized for the latter estimation problem. Simulation experiments suggest that an optimal balance between accuracy and precision of CBF estimation from multi-PLD PCASL data can be expected when using the two-parameter estimator with a fixed T1t value between population averages of T1t and the longitudinal relaxation time of blood T1b .
Collapse
Affiliation(s)
- Piet Bladt
- imec‐Vision Lab, Department of PhysicsUniversity of Antwerp2610AntwerpBelgium
| | - Arnold J. den Dekker
- imec‐Vision Lab, Department of PhysicsUniversity of Antwerp2610AntwerpBelgium
- Delft Center for Systems and ControlDelft University of Technology2628 CDDelftThe Netherlands
| | - Patricia Clement
- Department of Radiology and Nuclear MedicineGhent University9000GhentBelgium
| | - Eric Achten
- Department of Radiology and Nuclear MedicineGhent University9000GhentBelgium
| | - Jan Sijbers
- imec‐Vision Lab, Department of PhysicsUniversity of Antwerp2610AntwerpBelgium
| |
Collapse
|
248
|
Petitclerc L, Schmid S, Hirschler L, van Osch MJP. Combining T 2 measurements and crusher gradients into a single ASL sequence for comparison of the measurement of water transport across the blood-brain barrier. Magn Reson Med 2020; 85:2649-2660. [PMID: 33252152 PMCID: PMC7898618 DOI: 10.1002/mrm.28613] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 02/01/2023]
Abstract
Purpose Arterial spin labeling can be used to assess the transition time of water molecules across the blood–brain barrier when combined with sequence modules, which allow a separation of intravascular from tissue signal. The bipolar gradient technique measures the intravascular fraction by removing flowing spins. The T2‐relaxation‐under‐spin‐tagging (TRUST) technique modulates the TE to differentiate between intravascular and extravascular spins based on T2. These modules were combined into a single time‐encoded pseudo‐continuous arterial spin labeling sequence to compare their mechanisms of action as well as their assessment of water transition across the blood–brain barrier. Methods This protocol was acquired on a scanner with 9 healthy volunteers who provided written, informed consent. The sequence consisted of a Hadamard‐encoded pseudo‐continuous arterial spin labeling module, followed by the TRUST module (effective TEs of 0, 40, and 80 ms) and bipolar flow‐crushing gradients (2, 4, and ∞ cm/s). An additional experiment was performed with TRUST and a 3D gradient and spin‐echo readout. Results Gradients imperfectly canceled the intravascular signal, as evidenced by the presence of residual signal in the arteries at early postlabeling delays as well as the underestimation of the intravascular fraction as compared with the TRUST method. The TRUST module allowed us to detect the transport of water deeper into the vascular tree through changes in T2 than the used crusher gradients could, with their limited b‐value. Conclusion Of the implemented techniques, TRUST allowed us to follow intravascular signal deeper into the vascular tree than the approach with (relatively weak) crusher gradients when quantifying the transport time of water across the blood–brain barrier.
Collapse
Affiliation(s)
- Léonie Petitclerc
- Gorter Center for High-Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands.,Leiden Institute for Brain and Cognition, Leiden, Netherlands
| | - Sophie Schmid
- Gorter Center for High-Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands.,Leiden Institute for Brain and Cognition, Leiden, Netherlands
| | - Lydiane Hirschler
- Gorter Center for High-Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Matthias J P van Osch
- Gorter Center for High-Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands.,Leiden Institute for Brain and Cognition, Leiden, Netherlands
| |
Collapse
|
249
|
Guo J, Gong E, Fan AP, Goubran M, Khalighi MM, Zaharchuk G. Predicting 15O-Water PET cerebral blood flow maps from multi-contrast MRI using a deep convolutional neural network with evaluation of training cohort bias. J Cereb Blood Flow Metab 2020; 40:2240-2253. [PMID: 31722599 PMCID: PMC7585922 DOI: 10.1177/0271678x19888123] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To improve the quality of MRI-based cerebral blood flow (CBF) measurements, a deep convolutional neural network (dCNN) was trained to combine single- and multi-delay arterial spin labeling (ASL) and structural images to predict gold-standard 15O-water PET CBF images obtained on a simultaneous PET/MRI scanner. The dCNN was trained and tested on 64 scans in 16 healthy controls (HC) and 16 cerebrovascular disease patients (PT) with 4-fold cross-validation. Fidelity to the PET CBF images and the effects of bias due to training on different cohorts were examined. The dCNN significantly improved CBF image quality compared with ASL alone (mean ± standard deviation): structural similarity index (0.854 ± 0.036 vs. 0.743 ± 0.045 [single-delay] and 0.732 ± 0.041 [multi-delay], P < 0.0001); normalized root mean squared error (0.209 ± 0.039 vs. 0.326 ± 0.050 [single-delay] and 0.344 ± 0.055 [multi-delay], P < 0.0001). The dCNN also yielded mean CBF with reduced estimation error in both HC and PT (P < 0.001), and demonstrated better correlation with PET. The dCNN trained with the mixed HC and PT cohort performed the best. The results also suggested that models should be trained on cases representative of the target population.
Collapse
Affiliation(s)
- Jia Guo
- Department of Radiology, Stanford University, Stanford, CA, USA.,Department of Bioengineering, University of California Riverside, Riverside, CA, USA
| | - Enhao Gong
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA.,Subtle Medical Inc., Menlo Park, CA, USA
| | - Audrey P Fan
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Maged Goubran
- Department of Radiology, Stanford University, Stanford, CA, USA
| | | | - Greg Zaharchuk
- Department of Radiology, Stanford University, Stanford, CA, USA
| |
Collapse
|
250
|
Guo J, Das S, Hernandez-Garcia L. Comparison of velocity-selective arterial spin labeling schemes. Magn Reson Med 2020; 85:2027-2039. [PMID: 33128484 DOI: 10.1002/mrm.28572] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/09/2020] [Accepted: 10/06/2020] [Indexed: 12/22/2022]
Abstract
PURPOSE In velocity-selective (VS) arterial spin labeling, strategies using multiple saturation modules or using VS inversion (VSI) pulse can provide improved SNR efficiency compared to the original labeling scheme using one VS saturation (VSS) module. Their performance improvement, however, has not been directly compared. METHODS Different VS labeling schemes were evaluated by Bloch simulation for their SNR efficiency, eddy current sensitivity, and robustness against B1 and B0 variation. These schemes included dual-module double-refocused hyperbolic secant and symmetric 8-segment B1 -insensitive rotation (sBIR8-) VSS pulses, the original and modified Fourier transform-based VSI pulses. A subset of the labeling schemes was examined further in phantom and in vivo experiments for their eddy current sensitivity and SNR performance. An additional sBIR8-VSS with a built-in inversion (sBIR8-VSS-inversion) was evaluated for the effects of partial background suppression to allow a fairer comparison to VSI. RESULTS According to the simulations, the sBIR8-VSS was the most robust against field imperfections and had similarly high SNR efficiency (dual-module, dual-sBIR8-VSS) compared with the best VSI pulse (sinc-modulated, sinc-VSI). These were confirmed by the phantom and in vivo data. Without additional background suppression, the sinc-VSI pulses had the highest temporal SNR, closely followed by the sBIR8-VSS-inversion pulse, both benefited from partial background suppression effects. CONCLUSION Dual-sBIR8-VSS and sinc-VSI measured the highest SNR efficiency among the VS labeling schemes. Dual-sBIR8-VSS was the most robust against field imperfections, whereas sinc-VSI may provide a higher SNR efficiency if its immunity to field imperfections can be improved.
Collapse
Affiliation(s)
- Jia Guo
- Department of Bioengineering, University of California Riverside, Riverside, California, USA
| | - Shaurov Das
- Department of Bioengineering, University of California Riverside, Riverside, California, USA
| | - Luis Hernandez-Garcia
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA.,FMRI Laboratory, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|