201
|
Sakamoto K. [A Cellular Pharmacological Approach to the Development of Drugs to Treat Muscle Wasting]. YAKUGAKU ZASSHI 2018; 138:1271-1275. [PMID: 30270271 DOI: 10.1248/yakushi.18-00091-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Skeletal muscle atrophy reduces quality of life and increases mortality. However, there are few available drugs for the treatment of muscle atrophy. Recently, cell signaling pathways involved in skeletal muscle atrophy or hypertrophy have been determined. To develop drugs for skeletal muscle atrophy, we have studied compounds which modulate pathways of myogenic differentiation, a pivotal step for the maintenance of skeletal muscle mass. First, we examined a K+ channel opener on myogenic differentiation, since hyperpolarization is a trigger for skeletal muscle differentiation. 5,6-Dichloro-1-ethyl-1,3-dihydro-2H-benzimidazol-2-one (DCEBIO), an opener of the small/intermediate conductance Ca2+ activated K+ (SKCa/IKCa) channels, increases myogenic differentiation in C2C12 mouse skeletal myoblasts. This effect was inhibited by TRAM-34, an IKCa channel blocker. This suggests that K+ channels in skeletal muscle stem cells are potential targets for an anti-muscle atrophy drug. Next, we searched for drugs which prevent sepsis-induced muscle atrophy. Lipopolysaccharide (LPS), an inducer of sepsis, attenuates myogenic differentiation in C2C12 myoblasts. LPS also increases the protein expression of myostatin and activates NFκB during differentiation. The TLR4 signal inhibitor TAK-242, and an anti-TNFα neutralizing antibody, reduce these inflammatory responses. Our data suggest that LPS inhibits myogenic differentiation via the NFκB/TNFα pathway. This pathway may be involved in the development of muscle wasting caused by sepsis.
Collapse
Affiliation(s)
- Kazuho Sakamoto
- Department of Pharmacology, School of Medicine, Fukushima Medical University
| |
Collapse
|
202
|
Leal LG, Lopes MA, Batista ML. Physical Exercise-Induced Myokines and Muscle-Adipose Tissue Crosstalk: A Review of Current Knowledge and the Implications for Health and Metabolic Diseases. Front Physiol 2018; 9:1307. [PMID: 30319436 PMCID: PMC6166321 DOI: 10.3389/fphys.2018.01307] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/29/2018] [Indexed: 01/19/2023] Open
Abstract
Physical exercise has beneficial effects on metabolic diseases, and a combined therapeutic regimen of regular exercise and pharmaceutical treatment is often recommended for their clinical management. However, the mechanisms by which exercise produces these beneficial effects are not fully understood. Myokines, a group of skeletal muscle (SkM) derived peptides may play an important part in this process. Myokines are produced, expressed and released by muscle fibers under contraction and exert both local and pleiotropic effects. Myokines such as IL-6, IL-10, and IL-1ra released during physical exercise mediate its health benefits. Just as exercise seems to promote the myokine response, physical inactivity seems to impair it, and could be a mechanism to explain the association between sedentary behavior and many chronic diseases. Myokines help configure the immune-metabolic factor interface and the health promoting effects of physical exercise through the release of humoral factors capable of interacting with other tissues, mainly adipose tissue (AT). AT itself secretes proinflammatory cytokines (adipokines) as a result of physical inactivity and it is well recognized that AT inflammation can lead to the development of metabolic diseases, such as type 2 diabetes mellitus (T2DM) and atherosclerosis. On the other hand, the browning phenotype of AT has been suggested to be one of the mechanisms through which physical exercise improves body composition in overweight/obese individuals. Although, many cytokines are involved in the crosstalk between SkM and AT, in respect of these effects, it is IL-6, IL-15, irisin, and myostatin which seem to have the decisive role in this “conversation” between AT and SkM. This review article proposes to bring together the latest “state of the art” knowledge regarding Myokines and muscle-adipose tissue crosstalk. Furthermore, it is intended to particularly focus on the immune-metabolic changes from AT directly mediated by myokines.
Collapse
Affiliation(s)
- Luana G Leal
- Integrated Group of Biotechnology, Laboratory of Adipose Tissue Biology, University of Mogi das Cruzes, São Paulo, Brazil.,Technological Research Group, University of Mogi das Cruzes, São Paulo, Brazil
| | - Magno A Lopes
- Integrated Group of Biotechnology, Laboratory of Adipose Tissue Biology, University of Mogi das Cruzes, São Paulo, Brazil
| | - Miguel L Batista
- Integrated Group of Biotechnology, Laboratory of Adipose Tissue Biology, University of Mogi das Cruzes, São Paulo, Brazil.,Technological Research Group, University of Mogi das Cruzes, São Paulo, Brazil
| |
Collapse
|
203
|
Sakai H, Kimura M, Tsukimura Y, Yabe S, Isa Y, Kai Y, Sato F, Kon R, Ikarashi N, Narita M, Chiba Y, Kamei J. Dexamethasone exacerbates cisplatin‐induced muscle atrophy. Clin Exp Pharmacol Physiol 2018; 46:19-28. [DOI: 10.1111/1440-1681.13024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 07/27/2018] [Accepted: 08/20/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Hiroyasu Sakai
- Department of Biomolecular PharmacologySchool of PharmacyHoshi University Shinagawa‐ku, Tokyo Japan
| | - Minami Kimura
- Department of Analytical PathophysiologySchool of PharmacyHoshi University Shinagawa‐ku, Tokyo Japan
| | - Yuka Tsukimura
- Department of Biomolecular PharmacologySchool of PharmacyHoshi University Shinagawa‐ku, Tokyo Japan
| | - Saori Yabe
- Department of Biomolecular PharmacologySchool of PharmacyHoshi University Shinagawa‐ku, Tokyo Japan
| | - Yosuke Isa
- Department of Biomolecular PharmacologySchool of PharmacyHoshi University Shinagawa‐ku, Tokyo Japan
| | - Yuki Kai
- Department of Biomolecular PharmacologySchool of PharmacyHoshi University Shinagawa‐ku, Tokyo Japan
| | - Fumiaki Sato
- Department of Analytical PathophysiologySchool of PharmacyHoshi University Shinagawa‐ku, Tokyo Japan
| | - Risako Kon
- Department of Biomolecular PharmacologySchool of PharmacyHoshi University Shinagawa‐ku, Tokyo Japan
| | - Nobutomo Ikarashi
- Department of Biomolecular PharmacologySchool of PharmacyHoshi University Shinagawa‐ku, Tokyo Japan
| | - Minoru Narita
- Department of PharmacologySchool of PharmacyHoshi University Shinagawa‐ku, Tokyo Japan
| | - Yoshihiko Chiba
- Department of Physiology and Molecular SciencesSchool of PharmacyHoshi University Shinagawa‐ku, Tokyo Japan
| | - Junzo Kamei
- Department of Biomolecular PharmacologySchool of PharmacyHoshi University Shinagawa‐ku, Tokyo Japan
| |
Collapse
|
204
|
Jiang H, Yang F, Lin T, Shao W, Meng Y, Ma J, Wang C, Gao R, Zhou X. Asymmetric expression of H19 and ADIPOQ in concave/convex paravertebral muscles is associated with severe adolescent idiopathic scoliosis. Mol Med 2018; 24:48. [PMID: 30241458 PMCID: PMC6145194 DOI: 10.1186/s10020-018-0049-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 09/10/2018] [Indexed: 12/19/2022] Open
Abstract
Background Adolescent idiopathic scoliosis (AIS) is the most common paediatric spinal deformity. The etiology and pathology of AIS remain unexplained, and have been reported to involve a combination of genetic and epigenetic factors. Since paravertebral muscle imbalance plays an important role in the onset and progression of scoliosis, we aimed to investigate transcriptomic differences by RNA-seq and identify significantly differentially expressed transcripts in two sides of paravertebral muscle in AIS. Methods RNA-seq was performed on 5 pairs of paravertebral muscle from 5 AIS patients. Significantly differentially expressed transcripts were validated by quantitative reverse polymerase chain reaction. Gene expression difference was correlated to clinical characteristics. Results We demonstrated that ADIPOQ mRNA and H19 is significantly differentially expressed between two sides of paravertebral muscle, relatively specific in the context of AIS. Relatively low H19 and high ADIPOQ mRNA expression levels in concave-sided muscle are associated with larger spinal curve and earlier age at initiation. We identified miR-675-5p encoded by H19 as a mechanistic regulator of ADIPOQ expression in AIS. We demonstrated that significantly reduced CCCTC-binding factor (CCTF) occupancy in the imprinting control region (ICR) of the H19 gene in the concave-sided muscle contributes to down-regulated H19 expression. Conclusions RNA-seq revealed transcriptomic differences between two sides of paravertebral muscle in AIS patients. Our findings imply that transcriptomic differences caused by epigenetic factors in affected individuals may account for the structural and functional imbalance of paravertebral muscle, which can expand our etiologic understanding of this disease. Electronic supplementary material The online version of this article (10.1186/s10020-018-0049-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Heng Jiang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, No.415 Fengyang Road, Shanghai, People's Republic of China
| | - Fu Yang
- Department of Medical Genetics, Second Military Medical University, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Cell Engineering (14DZ2272300), Shanghai, People's Republic of China
| | - Tao Lin
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, No.415 Fengyang Road, Shanghai, People's Republic of China
| | - Wei Shao
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, No.415 Fengyang Road, Shanghai, People's Republic of China
| | - Yichen Meng
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, No.415 Fengyang Road, Shanghai, People's Republic of China
| | - Jun Ma
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, No.415 Fengyang Road, Shanghai, People's Republic of China
| | - Ce Wang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, No.415 Fengyang Road, Shanghai, People's Republic of China
| | - Rui Gao
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, No.415 Fengyang Road, Shanghai, People's Republic of China.
| | - Xuhui Zhou
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, No.415 Fengyang Road, Shanghai, People's Republic of China.
| |
Collapse
|
205
|
Larsen MS, Couppé C, Møller AB, Schjerling P, Andersen JL, Nygaard RH, Langberg H, Kjaer M, Hansen M. Response to resistance training following immobilization-Influence of delaying post-exercise meal. TRANSLATIONAL SPORTS MEDICINE 2018. [DOI: 10.1002/tsm2.41] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Mads Sørensen Larsen
- Department of Public Health; Section for Sport Science; Aarhus University; Aarhus Denmark
| | - Christian Couppé
- Department of Orthopaedic Surgery M; Faculty of Health and Medical Sciences; Institute of Sports Medicine; Bispebjerg Hospital & Center for Healthy Aging; University of Copenhagen; Copenhagen Denmark
- Department of Physical Therapy; Musculoskeletal Rehabilitation Research Unit; Bispebjerg Hospital; Copenhagen Denmark
| | - Andreas Buch Møller
- Research Laboratory for Biochemical Pathology; Department of Clinical Medicine; Aarhus University; Aarhus Denmark
| | - Peter Schjerling
- Department of Orthopaedic Surgery M; Faculty of Health and Medical Sciences; Institute of Sports Medicine; Bispebjerg Hospital & Center for Healthy Aging; University of Copenhagen; Copenhagen Denmark
- Department of Physical Therapy; Musculoskeletal Rehabilitation Research Unit; Bispebjerg Hospital; Copenhagen Denmark
| | - Jesper Løvind Andersen
- Department of Orthopaedic Surgery M; Faculty of Health and Medical Sciences; Institute of Sports Medicine; Bispebjerg Hospital & Center for Healthy Aging; University of Copenhagen; Copenhagen Denmark
- Department of Physical Therapy; Musculoskeletal Rehabilitation Research Unit; Bispebjerg Hospital; Copenhagen Denmark
| | - Rie Harboe Nygaard
- Department of Orthopaedic Surgery M; Faculty of Health and Medical Sciences; Institute of Sports Medicine; Bispebjerg Hospital & Center for Healthy Aging; University of Copenhagen; Copenhagen Denmark
- Department of Physical Therapy; Musculoskeletal Rehabilitation Research Unit; Bispebjerg Hospital; Copenhagen Denmark
| | - Henning Langberg
- Department of Orthopaedic Surgery M; Faculty of Health and Medical Sciences; Institute of Sports Medicine; Bispebjerg Hospital & Center for Healthy Aging; University of Copenhagen; Copenhagen Denmark
- Department of Physical Therapy; Musculoskeletal Rehabilitation Research Unit; Bispebjerg Hospital; Copenhagen Denmark
| | - Michael Kjaer
- Department of Orthopaedic Surgery M; Faculty of Health and Medical Sciences; Institute of Sports Medicine; Bispebjerg Hospital & Center for Healthy Aging; University of Copenhagen; Copenhagen Denmark
- Department of Physical Therapy; Musculoskeletal Rehabilitation Research Unit; Bispebjerg Hospital; Copenhagen Denmark
| | - Mette Hansen
- Department of Orthopaedic Surgery M; Faculty of Health and Medical Sciences; Institute of Sports Medicine; Bispebjerg Hospital & Center for Healthy Aging; University of Copenhagen; Copenhagen Denmark
- Department of Physical Therapy; Musculoskeletal Rehabilitation Research Unit; Bispebjerg Hospital; Copenhagen Denmark
| |
Collapse
|
206
|
Bigford GE, Darr AJ, Bracchi-Ricard VC, Gao H, Nash MS, Bethea JR. Effects of ursolic acid on sub-lesional muscle pathology in a contusion model of spinal cord injury. PLoS One 2018; 13:e0203042. [PMID: 30157245 PMCID: PMC6114926 DOI: 10.1371/journal.pone.0203042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/14/2018] [Indexed: 12/25/2022] Open
Abstract
Spinal Cord Injury (SCI) results in severe sub-lesional muscle atrophy and fiber type transformation from slow oxidative to fast glycolytic, both contributing to functional deficits and maladaptive metabolic profiles. Therapeutic countermeasures have had limited success and muscle-related pathology remains a clinical priority. mTOR signaling is known to play a critical role in skeletal muscle growth and metabolism, and signal integration of anabolic and catabolic pathways. Recent studies show that the natural compound ursolic acid (UA) enhances mTOR signaling intermediates, independently inhibiting atrophy and inducing hypertrophy. Here, we examine the effects of UA treatment on sub-lesional muscle mTOR signaling, catabolic genes, and functional deficits following severe SCI in mice. We observe that UA treatment significantly attenuates SCI induced decreases in activated forms of mTOR, and signaling intermediates PI3K, AKT, and S6K, and the upregulation of catabolic genes including FOXO1, MAFbx, MURF-1, and PSMD11. In addition, UA treatment improves SCI induced deficits in body and sub-lesional muscle mass, as well as functional outcomes related to muscle function, motor coordination, and strength. These findings provide evidence that UA treatment may be a potential therapeutic strategy to improve muscle-specific pathological consequences of SCI.
Collapse
Affiliation(s)
- Gregory E. Bigford
- The Miami Project to Cure Paralysis, Miami, Florida, United States of America
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Andrew J. Darr
- Department of Health Sciences Education, University of Illinois College of Medicine at Peoria, Peoria, Illinois, United States of America
| | | | - Han Gao
- The Miami Project to Cure Paralysis, Miami, Florida, United States of America
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Mark S. Nash
- The Miami Project to Cure Paralysis, Miami, Florida, United States of America
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Department of Rehabilitation Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - John R. Bethea
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
207
|
Mah JK, Chen YW. A Pediatric Review of Facioscapulohumeral Muscular Dystrophy. JOURNAL OF PEDIATRIC NEUROLOGY 2018; 16:222-231. [PMID: 30923442 PMCID: PMC6435288 DOI: 10.1055/s-0037-1604197] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Facioscapulohumeral dystrophy is one of the most common forms of muscular dystrophies worldwide. It is a complex and heterogeneous disease secondary to insufficient epigenetic repression of D4Z4 repeats and aberrant expression of DUX4 in skeletal muscles. Type 1 facioscapulohumeral muscular dystrophy (FSHD) is caused by contraction of D4Z4 repeats on 4q35, whereas type 2 FSHD is associated with mutations of the SMCHD1 or DNMT3B gene in the presence of a disease-permissive 4qA haplotype. Classical FSHD is a slowly progressive disorder with gradual-onset of muscle atrophy and a descending pattern of muscle weakness. In contrast, early-onset FSHD is associated with a large deletion of D4Z4 repeats and a more severe disease phenotype, including early loss of independent ambulation as well as extramuscular manifestations, such as retinal vasculopathy, hearing loss, and central nervous system (CNS) involvement. However, the correlation between D4Z4 repeats and disease severity remains imprecise. The current standard of care guidelines offers comprehensive assessment and symptomatic management of secondary complications. Several clinical trials are currently underway for FSHD. New and emerging treatments focus on correcting the transcriptional misregulation of D4Z4 and reversing the cytotoxic effects of DUX4. Other potential therapeutic targets include reduction of inflammation, improving muscle mass, and activating compensatory molecular pathways. The utility of disease-modifying treatments will depend on selection of sensitive clinical endpoints as well as validation of muscle magnetic resonance imaging (MRI) and other biomarkers to detect meaningful changes in disease progression. Correction of the epigenetic defects using new gene editing as well as other DUX4 silencing technologies offers potential treatment options for many individuals with FSHD.
Collapse
Affiliation(s)
- Jean K. Mah
- Department of Pediatrics and Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Yi-Wen Chen
- Center for Genetic Medicine Research, Children’s National Health System, Washington, District of Columbia, United States
- Department of Integrative Systems Biology, George Washington University, Washington, District of Columbia, United States
| |
Collapse
|
208
|
Yang J, Sun L, Fan X, Yin B, Kang Y, An S, Tang L. Pulsed electromagnetic fields alleviate streptozotocin‑induced diabetic muscle atrophy. Mol Med Rep 2018; 18:1127-1133. [PMID: 29845230 DOI: 10.3892/mmr.2018.9067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 05/15/2018] [Indexed: 11/06/2022] Open
Abstract
Diabetic muscle atrophy causes a reduction of skeletal muscle size and strength, which affects normal daily activities. However, pulsed electromagnetic fields (PEMFs) can retard the atrophy of type II fibers (ActRIIB) in denervated muscles. Therefore, the purpose of the present study was to determine whether PEMFs can alleviate streptozotocin (STZ)‑induced diabetic muscle atrophy. To do this, 40 Sprague‑Dawley (SD) rats were randomly divided into four groups (n=10 per group): The normal control group (NC; nondiabetic rats without treatment); the diabetic mellitus group (DM; STZ‑induced rats without treatment); the diabetic insulin‑treated group (DT; diabetic rats on insulin treatment, 6‑8 U/d twice a day for 6 weeks) as a positive control; and the diabetic PEMFs therapy group (DP; diabetic rats with PEMFs exposure treatment, 15 Hz, 1.46 mT, 30 min/day for 6 weeks). Body weight, muscle strength, muscle mass and serum insulin level were significantly increased in the DP group compared with the DM group. PEMFs also decreased the blood glucose level and altered the activity of metabolic enzymes. PEMFs significantly increased the cross‑sectional area of muscle fiber. In addition, PEMFs significantly activated protein kinase B (Akt) and mammalian target of rapamycin (mTOR), and inhibited the activity of myostatin (MSTN), ActRIIB and forkhead box protein O1 (FoxO1) compared with the DM group. Thus indicating that the Akt/mTOR and Akt/FoxO1 signaling pathways may be involved in the promotion of STZ‑induced diabetic muscle atrophy by PEMFs. The results of the present study suggested that PEMFs stimulation may alleviate diabetic muscle atrophy in the STZ model, and that this is associated with alterations in multiple signaling pathways in which MSTN may be an integral factor. MSTN‑associated signaling pathways may provide therapeutic targets to attenuate severe diabetic muscle wasting.
Collapse
Affiliation(s)
- Jin Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, P.R. China
| | - Lijun Sun
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, Shaanxi 710119, P.R. China
| | - Xiushan Fan
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, Shaanxi 710119, P.R. China
| | - Bo Yin
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, Shaanxi 710119, P.R. China
| | - Yiting Kang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, Shaanxi 710119, P.R. China
| | - Shucheng An
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, P.R. China
| | - Liang Tang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, Shaanxi 710119, P.R. China
| |
Collapse
|
209
|
Yang S, Li X, Liu X, Ding X, Xin X, Jin C, Zhang S, Li G, Guo H. Parallel comparative proteomics and phosphoproteomics reveal that cattle myostatin regulates phosphorylation of key enzymes in glycogen metabolism and glycolysis pathway. Oncotarget 2018; 9:11352-11370. [PMID: 29541418 PMCID: PMC5834288 DOI: 10.18632/oncotarget.24250] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/23/2017] [Indexed: 01/09/2023] Open
Abstract
MSTN-encoded myostatin is a negative regulator of skeletal muscle development. Here, we utilized the gluteus tissues from MSTN gene editing and wild type Luxi beef cattle which are native breed of cattle in China, performed tandem mass tag (TMT) -based comparative proteomics and phosphoproteomics analyses to investigate the regulatory mechanism of MSTN related to cellular metabolism and signaling pathway in muscle development. Out of 1,315 proteins, 69 differentially expressed proteins (DEPs) were found in global proteomics analysis. Meanwhile, 149 differentially changed phosphopeptides corresponding to 76 unique phosphorylated proteins (DEPPs) were detected from 2,600 identified phosphopeptides in 702 phosphorylated proteins. Bioinformatics analyses suggested that majority of DEPs and DEPPs were closely related to glycolysis, glycogenolysis, and muscle contractile fibre processes. The global discovery results were validated by Multiple Reaction Monitoring (MRM)-based targeted peptide quantitation analysis, western blotting, and muscle glycogen content measurement. Our data revealed that increase in abundance of key enzymes and phosphorylation on their regulatory sites appears responsible for the enhanced glycogenolysis and glycolysis in MSTN-/- . The elevated glycogenolysis was assocaited with an enhanced phosphorylation of Ser1018 in PHKA1, and Ser641/Ser645 in GYS1, which were regulated by upstream phosphorylated AKT-GSK3β pathway and highly consistent with the lower glycogen content in gluteus of MSTN-/- . Collectively, this study provides new insights into the regulatory mechanisms of MSTN involved in energy metabolism and muscle growth.
Collapse
Affiliation(s)
- Shuping Yang
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Xin Li
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Xinfeng Liu
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Xiangbin Ding
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Xiangbo Xin
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Congfei Jin
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Sheng Zhang
- Institute of Biotechnology, Cornell University, Ithaca, NY 14853, U.S.A
| | - Guangpeng Li
- The Key Laboratory of Mammalian Reproductive Biology and Biotechnology of the Ministry of Education, Inner Mongolia University, Hohhot 010070, China
| | - Hong Guo
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| |
Collapse
|
210
|
Abstract
PURPOSE OF REVIEW Severe exercise intolerance and early fatigue are hallmarks of heart failure patients either with a reduced (HFrEF) or a still preserved (HFpEF) ejection fraction. This review, therefore, will provide a contemporary summary of the alterations currently known to occur in the skeletal muscles of both HFrEF and HFpEF, and provide some further directions that will be required if we want to improve our current understanding of this area. RECENT FINDINGS Skeletal muscle alterations are well documented for over 20 years in HFrEF, and during the recent years also data are presented that in HFpEF muscular alterations are present. Alterations are ranging from a shift in fiber type and capillarization to an induction of atrophy and modulation of mitochondrial energy supply. In general, the molecular alterations are more severe in the skeletal muscle of HFrEF when compared to HFpEF. The alterations occurring in the skeletal muscle at the molecular level may contribute to exercise intolerance in HFrEF and HFpEF. Nevertheless, the knowledge of changes in the skeletal muscle of HFpEF is still sparsely available and more studies in this HF cohort are clearly warranted.
Collapse
Affiliation(s)
- Volker Adams
- Clinic of Cardiology, Heart Center Leipzig, Strümpellstrasse 39, 04289, Leipzig, Germany.
| | - Axel Linke
- Clinic of Cardiology, Heart Center Leipzig, Strümpellstrasse 39, 04289, Leipzig, Germany
| | - Ephraim Winzer
- Clinic of Cardiology, Heart Center Leipzig, Strümpellstrasse 39, 04289, Leipzig, Germany
| |
Collapse
|
211
|
|
212
|
Shirai I, Sakai T, Shiba K, Uzuhashi Y, Karasawa K. Agaro-Oligosaccharides Prevent Myostatin Hyperexpression and Myosin Heavy Chain Protein Degradation in C2C12 Myotubes Induced by Tumor Necrosis Factor-<i>α</i>. Cell 2018. [DOI: 10.4236/cellbio.2018.72003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
213
|
|
214
|
Jang YJ, Son HJ, Kim JS, Jung CH, Ahn J, Hur J, Ha TY. Coffee consumption promotes skeletal muscle hypertrophy and myoblast differentiation. Food Funct 2018; 9:1102-1111. [DOI: 10.1039/c7fo01683b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Coffee increases skeletal muscle function and hypertrophy by regulating the TGF-β/myostatin – Akt – mTORC1.
Collapse
Affiliation(s)
- Young Jin Jang
- Division of Nutrition and Metabolism Research
- Korea Food Research Institute
- Wanjugun
- Republic of Korea
| | - Hyo Jeong Son
- Division of Nutrition and Metabolism Research
- Korea Food Research Institute
- Wanjugun
- Republic of Korea
| | - Ji-Sun Kim
- Division of Nutrition and Metabolism Research
- Korea Food Research Institute
- Wanjugun
- Republic of Korea
- Department of Biotechnology
| | - Chang Hwa Jung
- Division of Nutrition and Metabolism Research
- Korea Food Research Institute
- Wanjugun
- Republic of Korea
- Division of Food Biotechnology
| | - Jiyun Ahn
- Division of Nutrition and Metabolism Research
- Korea Food Research Institute
- Wanjugun
- Republic of Korea
- Division of Food Biotechnology
| | - Jinyoung Hur
- Division of Nutrition and Metabolism Research
- Korea Food Research Institute
- Wanjugun
- Republic of Korea
- Division of Food Biotechnology
| | - Tae Youl Ha
- Division of Nutrition and Metabolism Research
- Korea Food Research Institute
- Wanjugun
- Republic of Korea
- Division of Food Biotechnology
| |
Collapse
|
215
|
Wang L, Cai B, Zhou S, Zhu H, Qu L, Wang X, Chen Y. RNA-seq reveals transcriptome changes in goats following myostatin gene knockout. PLoS One 2017; 12:e0187966. [PMID: 29228005 PMCID: PMC5724853 DOI: 10.1371/journal.pone.0187966] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 10/30/2017] [Indexed: 12/17/2022] Open
Abstract
Myostatin (MSTN) is a powerful negative regulator of skeletal muscle mass in mammalian species that is primarily expressed in skeletal muscles, and mutations of its encoding gene can result in the double-muscling trait. In this study, the CRISPR/Cas9 technique was used to edit MSTN in Shaanbei Cashmere goats and generate knockout animals. RNA sequencing was used to determine and compare the transcriptome profiles of the muscles from three wild-type (WT) goats, three fibroblast growth factor 5 (FGF5) knockout goats (FGF5+/- group) and three goats with disrupted expression of both the FGF5 and MSTN genes (FM+/- group). The sequence reads were obtained using the Illumina HiSeq 2000 system and mapped to the Capra hircus reference genome using TopHat (v2.0.9). In total, 68.93, 62.04 and 66.26 million clean sequencing reads were obtained from the WT, FM+/- and FGF5+/- groups, respectively. There were 201 differentially expressed genes (DEGs) between the WT and FGF5+/- groups, with 86 down- and 115 up-regulated genes in the FGF5+/- group. Between the WT and FM+/- groups, 121 DEGs were identified, including 81 down- and 40 up-regulated genes in the FM+/- group. A total of 198 DEGs were detected between the FGF5+/- group and FM+/- group, with 128 down- and 70 up-regulated genes in the FM+/- group. At the transcriptome level, we found substantial changes in genes involved in fatty acid metabolism and the biosynthesis of unsaturated fatty acids, such as stearoyl-CoA dehydrogenase, 3-hydroxyacyl-CoA dehydratase 2, ELOVL fatty acid elongase 6 and fatty acid synthase, suggesting that the expression levels of these genes may be directly regulated by MSTN and that these genes are likely downstream targets of MSTN with potential roles in lipid metabolism in goats. Moreover, five randomly selected DEGs were further validated with qRT-PCR, and the results were consistent with the transcriptome analysis. The present study provides insight into the unique transcriptome profile of the MSTN knockout goat, which is a valuable resource for studying goat genomics.
Collapse
Affiliation(s)
- Lamei Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bei Cai
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Shiwei Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Haijing Zhu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin, China
- Life Science Research Center, Yulin University, Yulin, China
| | - Lei Qu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin, China
- Life Science Research Center, Yulin University, Yulin, China
| | - Xiaolong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yulin Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
216
|
Giusto M, Barberi L, Di Sario F, Rizzuto E, Nicoletti C, Ascenzi F, Renzi A, Caporaso N, D'Argenio G, Gaudio E, Musarò A, Merli M. Skeletal muscle myopenia in mice model of bile duct ligation and carbon tetrachloride-induced liver cirrhosis. Physiol Rep 2017; 5:5/7/e13153. [PMID: 28364027 PMCID: PMC5392502 DOI: 10.14814/phy2.13153] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 01/07/2017] [Accepted: 01/17/2017] [Indexed: 12/27/2022] Open
Abstract
Skeletal muscle myopathy is universal in cirrhotic patients, however, little is known about the main mechanisms involved. The study aims to investigate skeletal muscle morphological, histological, and functional modifications in experimental models of cirrhosis and the principal molecular pathways responsible for skeletal muscle myopathy. Cirrhosis was induced by bile duct ligation (BDL) and carbon tetrachloride (CCl4) administration in mice. Control animals (CTR) underwent bile duct exposure or vehicle administration only. At sacrifice, peripheral muscles were dissected and weighed. Contractile properties of extensor digitorum longus (EDL) were studied in vitro. Muscle samples were used for histological and molecular analysis. Quadriceps muscle histology revealed a significant reduction in cross-sectional area of muscle and muscle fibers in cirrhotic mice with respect to CTR. Kinetic properties of EDL in both BDL and CCl4 were reduced with respect to CTR; BDL mice also showed a reduction in muscle force and a decrease in the resistance to fatigue. Increase in myostatin expression associated with a decrease in AKT-mTOR expressions was observed in BDL mice, together with an increase in LC3 protein levels. Upregulation of the proinflammatory citochines TNF-a and IL6 and an increased expression of NF-kB and MuRF-1 were observed in CCl4 mice. In conclusion, skeletal muscle myopenia was present in experimental models of BDL and CCl4-induced cirrhosis. Moreover, reduction in protein synthesis and activation of protein degradation were the main mechanisms responsible for myopenia in BDL mice, while activation of ubiquitin-pathway through inflammatory cytokines seems to be the main potential mechanism involved in CCl4 mice.
Collapse
Affiliation(s)
- Michela Giusto
- Gastroenterology Department of Clinical Medicine, Sapienza University of Rome, Rome, Italy
| | - Laura Barberi
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics -Unit of Histology and Medical Embryology, Sapienza University of Rome Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti Rome, Italy
| | - Francesca Di Sario
- Gastroenterology Department of Clinical Medicine, Sapienza University of Rome, Rome, Italy
| | - Emanuele Rizzuto
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Rome, Italy
| | - Carmine Nicoletti
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics -Unit of Histology and Medical Embryology, Sapienza University of Rome Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti Rome, Italy
| | - Francesca Ascenzi
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics -Unit of Histology and Medical Embryology, Sapienza University of Rome Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti Rome, Italy
| | - Anastasia Renzi
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Nicola Caporaso
- Department of Clinical and Experimental Medicine, Federico II University of Naples, Naples, Italy
| | - Giuseppe D'Argenio
- Department of Clinical and Experimental Medicine, Federico II University of Naples, Naples, Italy
| | - Eugenio Gaudio
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Antonio Musarò
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics -Unit of Histology and Medical Embryology, Sapienza University of Rome Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti Rome, Italy
| | - Manuela Merli
- Gastroenterology Department of Clinical Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
217
|
Deng Z, Luo P, Lai W, Song T, Peng J, Wei HK. Myostatin inhibits eEF2K-eEF2 by regulating AMPK to suppress protein synthesis. Biochem Biophys Res Commun 2017; 494:278-284. [DOI: 10.1016/j.bbrc.2017.10.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 10/07/2017] [Indexed: 02/07/2023]
|
218
|
Zhu M, Zheng R, Guo Y, Zhang Y, Zuo B. NDRG4 promotes myogenesis via Akt/CREB activation. Oncotarget 2017; 8:101720-101734. [PMID: 29254199 PMCID: PMC5731909 DOI: 10.18632/oncotarget.21591] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/03/2017] [Indexed: 11/25/2022] Open
Abstract
N-Myc downstream-regulated gene 4 (NDRG4) plays an important role in biological processes and pathogenesis, but its function in muscle development is unclear. In this study, we investigated the function of the NDRG4 gene in the regulation of myogenic differentiation. NDRG4 expression is upregulated during muscle regeneration and C2C12 myoblast differentiation. Gain and loss of function studies revealed that NDRG4 dramatically promotes expression of myogenic differentiation factor (MyoD), myogenin (MyoG), and myosin heavy chain (MyHC) genes and myotube formation. Mechanistically, the binding of NDRG4 to carboxyl-terminal modulator protein (CTMP) abates the interaction of CTMP and protein kinase B (Akt) and increases the phosphorylation of Akt and cAMP response element binding protein (CREB), which leads to increased expression of myogenic genes. Our results reveal that NDRG4 promotes myogenic differentiation via Akt/CREB activation.
Collapse
Affiliation(s)
- Mingfei Zhu
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Rong Zheng
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Yiwen Guo
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Yunxia Zhang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China
| | - Bo Zuo
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
219
|
Fortes MAS, Scervino MVM, Marzuca-Nassr GN, Vitzel KF, da Justa Pinheiro CH, Curi R. Hypertrophy Stimulation at the Onset of Type I Diabetes Maintains the Soleus but Not the EDL Muscle Mass in Wistar Rats. Front Physiol 2017; 8:830. [PMID: 29123487 PMCID: PMC5662641 DOI: 10.3389/fphys.2017.00830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/06/2017] [Indexed: 12/17/2022] Open
Abstract
Diabetes mellitus induces a reduction in skeletal muscle mass and strength. Strength training is prescribed as part of treatment since it improves glycemic control and promotes increase of skeletal muscle mass. The mechanisms involved in overload-induced muscle hypertrophy elicited at the establishment of the type I diabetic state was investigated in Wistar rats. The purpose was to examine whether the overload-induced hypertrophy can counteract the hypotrophy associated to the diabetic state. The experiments were performed in oxidative (soleus) or glycolytic (EDL) muscles. PI3K/Akt/mTOR protein synthesis pathway was evaluated 7 days after overload-induced hypertrophy of soleus and of EDL muscles. The mRNA expression of genes associated with different signaling pathways that control muscle hypertrophy was also evaluated: mechanotransduction (FAK), Wnt/β-catenin, myostatin, and follistatin. The soleus and EDL muscles when submitted to overload had similar hypertrophic responses in control and diabetic animals. The increase of absolute and specific twitch and tetanic forces had the same magnitude as muscle hypertrophic response. Hypertrophy of the EDL muscle from diabetic animals mostly involved mechanical loading-stimulated PI3K/Akt/mTOR pathway besides the reduced activation of AMP-activated protein kinase (AMPK) and decrease of myostatin expression. Hypertrophy was more pronounced in the soleus muscle of diabetic animals due to a more potent activation of rpS6 and increased mRNA expression of insulin-like growth factor-1 (IGF-1), mechano-growth factor (MGF) and follistatin, and decrease of myostatin, MuRF-1 and atrogin-1 contents. The signaling changes enabled the soleus muscle mass and force of the diabetic rats to reach the values of the control group.
Collapse
Affiliation(s)
- Marco A S Fortes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria V M Scervino
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gabriel N Marzuca-Nassr
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Kaio F Vitzel
- School of Health Sciences, College of Health, Massey University, Albany, New Zealand
| | - Carlos H da Justa Pinheiro
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| |
Collapse
|
220
|
Rocca CJ, Goodman SM, Dulin JN, Haquang JH, Gertsman I, Blondelle J, Smith JLM, Heyser CJ, Cherqui S. Transplantation of wild-type mouse hematopoietic stem and progenitor cells ameliorates deficits in a mouse model of Friedreich's ataxia. Sci Transl Med 2017; 9:eaaj2347. [PMID: 29070698 PMCID: PMC5735830 DOI: 10.1126/scitranslmed.aaj2347] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/31/2017] [Accepted: 06/13/2017] [Indexed: 12/14/2022]
Abstract
Friedreich's ataxia (FRDA) is an incurable autosomal recessive neurodegenerative disease caused by reduced expression of the mitochondrial protein frataxin due to an intronic GAA-repeat expansion in the FXN gene. We report the therapeutic efficacy of transplanting wild-type mouse hematopoietic stem and progenitor cells (HSPCs) into the YG8R mouse model of FRDA. In the HSPC-transplanted YG8R mice, development of muscle weakness and locomotor deficits was abrogated as was degeneration of large sensory neurons in the dorsal root ganglia (DRGs) and mitochondrial capacity was improved in brain, skeletal muscle, and heart. Transplanted HSPCs engrafted and then differentiated into microglia in the brain and spinal cord and into macrophages in the DRGs, heart, and muscle of YG8R FRDA mice. We observed the transfer of wild-type frataxin and Cox8 mitochondrial proteins from HSPC-derived microglia/macrophages to FRDA mouse neurons and muscle myocytes in vivo. Our results show the HSPC-mediated phenotypic rescue of FRDA in YG8R mice and suggest that this approach should be investigated further as a strategy for treating FRDA.
Collapse
Affiliation(s)
- Celine J Rocca
- Division of Genetics, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Spencer M Goodman
- Division of Genetics, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jennifer N Dulin
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joseph H Haquang
- Division of Genetics, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ilya Gertsman
- Division of Genetics, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jordan Blondelle
- Division of Cardiovascular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Janell L M Smith
- Division of Genetics, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Charles J Heyser
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stephanie Cherqui
- Division of Genetics, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
221
|
Zhang L, Liu K, Han B, Xu Z, Gao X. The emerging role of follistatin under stresses and its implications in diseases. Gene 2017; 639:111-116. [PMID: 29020616 DOI: 10.1016/j.gene.2017.10.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/18/2017] [Accepted: 10/07/2017] [Indexed: 12/18/2022]
Abstract
Follistatin (FST), a single-chain glycosylated protein, is expressed in various tissues. The essential biological function of FST is binding and neutralizing transforming growth factor β (TGF-β) superfamily, including activin, myostatin, and bone morphogenetic protein (BMP). Emerging evidence indicates that FST also serves as a stress responsive protein, which plays a protective role under a variety of stresses. In most cases, FST performs the protective function through its neutralization of TGF-β superfamily. However, under certain circumstances, FST translocates into the nucleus to maintain cellular homeostasis independent of its extracellular antagonism activity. This review provides integrated insight into the most recent advances in understanding the role of FST under various stresses, and the clinical implications corresponding to these findings and discusses the mechanisms to be further studied.
Collapse
Affiliation(s)
- Lingda Zhang
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Kangli Liu
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Bing Han
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengping Xu
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Xiangwei Gao
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
222
|
Abstract
Skeletal muscle is the largest tissue in the body and loss of its function or its regenerative properties results in debilitating musculoskeletal disorders. Understanding the mechanisms that drive skeletal muscle formation will not only help to unravel the molecular basis of skeletal muscle diseases, but also provide a roadmap for recapitulating skeletal myogenesis in vitro from pluripotent stem cells (PSCs). PSCs have become an important tool for probing developmental questions, while differentiated cell types allow the development of novel therapeutic strategies. In this Review, we provide a comprehensive overview of skeletal myogenesis from the earliest premyogenic progenitor stage to terminally differentiated myofibers, and discuss how this knowledge has been applied to differentiate PSCs into muscle fibers and their progenitors in vitro.
Collapse
Affiliation(s)
- Jérome Chal
- Department of Pathology, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Harvard Stem Cell Institute, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Olivier Pourquié
- Department of Pathology, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, Boston, MA 02115, USA .,Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Harvard Stem Cell Institute, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, 67400 Illkirch-Graffenstaden, France
| |
Collapse
|
223
|
Barbé C, Bray F, Gueugneau M, Devassine S, Lause P, Tokarski C, Rolando C, Thissen JP. Comparative Proteomic and Transcriptomic Analysis of Follistatin-Induced Skeletal Muscle Hypertrophy. J Proteome Res 2017; 16:3477-3490. [PMID: 28810121 DOI: 10.1021/acs.jproteome.7b00069] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Skeletal muscle, the most abundant body tissue, plays vital roles in locomotion and metabolism. Myostatin is a negative regulator of skeletal muscle mass. In addition to increasing muscle mass, Myostatin inhibition impacts muscle contractility and energy metabolism. To decipher the mechanisms of action of the Myostatin inhibitors, we used proteomic and transcriptomic approaches to investigate the changes induced in skeletal muscles of transgenic mice overexpressing Follistatin, a physiological Myostatin inhibitor. Our proteomic workflow included a fractionation step to identify weakly expressed proteins and a comparison of fast versus slow muscles. Functional annotation of altered proteins supports the phenotypic changes induced by Myostatin inhibition, including modifications in energy metabolism, fiber type, insulin and calcium signaling, as well as membrane repair and regeneration. Less than 10% of the differentially expressed proteins were found to be also regulated at the mRNA level but the Biological Process annotation, and the KEGG pathways analysis of transcriptomic results shows a great concordance with the proteomic data. Thus this study describes the most extensive omics analysis of muscle overexpressing Follistatin, providing molecular-level insights to explain the observed muscle phenotypic changes.
Collapse
Affiliation(s)
- Caroline Barbé
- Pole of Endocrinology, Diabetes and Nutrition, Institute of Experimental and Clinical Research, Université Catholique de Louvain , 1200 Brussels, Belgium
| | - Fabrice Bray
- Miniaturisation pour la Synthèse, l'Analyse & la Protéomique (MSAP), CNRS, USR 3290, Université de Lille; Biochimie Structurale & Fonctionnelle des Assemblages Biomoléculaires, CNRS, FR 3688, FRABIO, Université de Lille and Institut Eugène-Michel Chevreul, CNRS, FR 2638, Université de Lille, 59000 Lille, France
| | - Marine Gueugneau
- Pole of Endocrinology, Diabetes and Nutrition, Institute of Experimental and Clinical Research, Université Catholique de Louvain , 1200 Brussels, Belgium
| | - Stéphanie Devassine
- Miniaturisation pour la Synthèse, l'Analyse & la Protéomique (MSAP), CNRS, USR 3290, Université de Lille; Biochimie Structurale & Fonctionnelle des Assemblages Biomoléculaires, CNRS, FR 3688, FRABIO, Université de Lille and Institut Eugène-Michel Chevreul, CNRS, FR 2638, Université de Lille, 59000 Lille, France
| | - Pascale Lause
- Pole of Endocrinology, Diabetes and Nutrition, Institute of Experimental and Clinical Research, Université Catholique de Louvain , 1200 Brussels, Belgium
| | - Caroline Tokarski
- Miniaturisation pour la Synthèse, l'Analyse & la Protéomique (MSAP), CNRS, USR 3290, Université de Lille; Biochimie Structurale & Fonctionnelle des Assemblages Biomoléculaires, CNRS, FR 3688, FRABIO, Université de Lille and Institut Eugène-Michel Chevreul, CNRS, FR 2638, Université de Lille, 59000 Lille, France
| | - Christian Rolando
- Miniaturisation pour la Synthèse, l'Analyse & la Protéomique (MSAP), CNRS, USR 3290, Université de Lille; Biochimie Structurale & Fonctionnelle des Assemblages Biomoléculaires, CNRS, FR 3688, FRABIO, Université de Lille and Institut Eugène-Michel Chevreul, CNRS, FR 2638, Université de Lille, 59000 Lille, France
| | - Jean-Paul Thissen
- Pole of Endocrinology, Diabetes and Nutrition, Institute of Experimental and Clinical Research, Université Catholique de Louvain , 1200 Brussels, Belgium
| |
Collapse
|
224
|
Rodriguez J, Pierre N, Naslain D, Bontemps F, Ferreira D, Priem F, Deldicque L, Francaux M. Urolithin B, a newly identified regulator of skeletal muscle mass. J Cachexia Sarcopenia Muscle 2017; 8:583-597. [PMID: 28251839 PMCID: PMC5566634 DOI: 10.1002/jcsm.12190] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 01/01/2017] [Accepted: 01/10/2017] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The control of muscle size is an essential feature of health. Indeed, skeletal muscle atrophy leads to reduced strength, poor quality of life, and metabolic disturbances. Consequently, strategies aiming to attenuate muscle wasting and to promote muscle growth during various (pathological) physiological states like sarcopenia, immobilization, malnutrition, or cachexia are needed to address this extensive health issue. In this study, we tested the effects of urolithin B, an ellagitannin-derived metabolite, on skeletal muscle growth. METHODS C2C12 myotubes were treated with 15 μM of urolithin B for 24 h. For in vivo experiments, mice were implanted with mini-osmotic pumps delivering continuously 10 μg/day of urolithin B during 28 days. Muscle atrophy was studied in mice with a sciatic nerve denervation receiving urolithin B by the same way. RESULTS Our experiments reveal that urolithin B enhances the growth and differentiation of C2C12 myotubes by increasing protein synthesis and repressing the ubiquitin-proteasome pathway. Genetic and pharmacological arguments support an implication of the androgen receptor. Signalling analyses suggest a crosstalk between the androgen receptor and the mTORC1 pathway, possibly via AMPK. In vivo experiments confirm that urolithin B induces muscle hypertrophy in mice and reduces muscle atrophy after the sciatic nerve section. CONCLUSIONS This study highlights the potential usefulness of urolithin B for the treatment of muscle mass loss associated with various (pathological) physiological states.
Collapse
Affiliation(s)
- Julie Rodriguez
- Institute of Neuroscience, Université catholique de Louvain, 1 place Pierre de Coubertin, 1348, Louvain-la-Neuve, Belgium.,PROCELL nutrition sprl, 2 Rue Jean Burgers, 7850, Enghien, Belgium
| | - Nicolas Pierre
- Institute of Neuroscience, Université catholique de Louvain, 1 place Pierre de Coubertin, 1348, Louvain-la-Neuve, Belgium
| | - Damien Naslain
- Institute of Neuroscience, Université catholique de Louvain, 1 place Pierre de Coubertin, 1348, Louvain-la-Neuve, Belgium
| | - Françoise Bontemps
- De Duve Institute, Université catholique de Louvain, 75 Avenue Hippocrate, 1200, Brussels, Belgium
| | - Daneel Ferreira
- Department of Biomolecular Sciences, Division of Pharmacognosy, Research Institute of Pharmaceutical Sciences, University of Mississippi, Medicinal Plant Garden, RM 104, University, MS, 38677, USA
| | - Fabian Priem
- PROCELL nutrition sprl, 2 Rue Jean Burgers, 7850, Enghien, Belgium
| | - Louise Deldicque
- Institute of Neuroscience, Université catholique de Louvain, 1 place Pierre de Coubertin, 1348, Louvain-la-Neuve, Belgium
| | - Marc Francaux
- Institute of Neuroscience, Université catholique de Louvain, 1 place Pierre de Coubertin, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
225
|
Sakai H, Kimura M, Isa Y, Yabe S, Maruyama A, Tsuruno Y, Kai Y, Sato F, Yumoto T, Chiba Y, Narita M. Effect of acute treadmill exercise on cisplatin-induced muscle atrophy in the mouse. Pflugers Arch 2017; 469:1495-1505. [DOI: 10.1007/s00424-017-2045-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 12/22/2022]
|
226
|
Serum irisin and myostatin levels after 2 weeks of high-altitude climbing. PLoS One 2017; 12:e0181259. [PMID: 28732027 PMCID: PMC5521782 DOI: 10.1371/journal.pone.0181259] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 06/28/2017] [Indexed: 01/08/2023] Open
Abstract
Exposure to high-altitude hypoxia causes physiological and metabolic adaptive changes by disturbing homeostasis. Hypoxia-related changes in skeletal muscle affect the closely interconnected energy and regeneration processes. The balance between protein synthesis and degradation in the skeletal muscle is regulated by several molecules such as myostatin, cytokines, vitamin D, and irisin. This study investigates changes in irisin and myostatin levels in male climbers after a 2-week high-altitude expedition, and their association with 25(OH)D and indices of inflammatory processes. The study was performed in 8 men aged between 23 and 31 years, who participated in a 2-week climbing expedition in the Alps. The measurements of body composition and serum concentrations of irisin, myostatin, 25(OH)D, interleukin-6, myoglobin, high-sensitivity C-reactive protein, osteoprotegerin, and high-sensitivity soluble receptor activator of NF-κB ligand (sRANKL) were performed before and after expedition. A 2-week exposure to hypobaric hypoxia caused significant decrease in body mass, body mass index (BMI), free fat mass and irisin, 25-Hydroxyvitamin D levels. On the other hand, significant increase in the levels of myoglobin, high-sensitivity C-reactive protein, interleukin-6, and osteoprotegerin were noted. The observed correlations of irisin with 25(OH)D levels, as well as myostatin levels with inflammatory markers and the OPG/RANKL ratio indicate that these myokines may be involved in the energy-related processes and skeletal muscle regeneration in response to 2-week exposure to hypobaric hypoxia.
Collapse
|
227
|
Disrupted Skeletal Muscle Mitochondrial Dynamics, Mitophagy, and Biogenesis during Cancer Cachexia: A Role for Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3292087. [PMID: 28785374 PMCID: PMC5530417 DOI: 10.1155/2017/3292087] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/06/2017] [Accepted: 06/19/2017] [Indexed: 12/22/2022]
Abstract
Chronic inflammation is a hallmark of cancer cachexia in both patients and preclinical models. Cachexia is prevalent in roughly 80% of cancer patients and accounts for up to 20% of all cancer-related deaths. Proinflammatory cytokines IL-6, TNF-α, and TGF-β have been widely examined for their regulation of cancer cachexia. An established characteristic of cachectic skeletal muscle is a disrupted capacity for oxidative metabolism, which is thought to contribute to cancer patient fatigue, diminished metabolic function, and muscle mass loss. This review's primary objective is to highlight emerging evidence linking cancer-induced inflammation to the dysfunctional regulation of mitochondrial dynamics, mitophagy, and biogenesis in cachectic muscle. The potential for either muscle inactivity or exercise to alter mitochondrial dysfunction during cancer cachexia will also be discussed.
Collapse
|
228
|
Tang L, Zhang J, Zhao X, Li N, Jian W, Sun S, Guo J, Sun L, Ta D. Low-Intensity Pulsed Ultrasound Promotes Exercise-Induced Muscle Hypertrophy. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:1411-1420. [PMID: 28461063 DOI: 10.1016/j.ultrasmedbio.2017.02.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/08/2017] [Accepted: 02/22/2017] [Indexed: 06/07/2023]
Abstract
The purpose of this study was to investigate whether low-intensity pulsed ultrasound (LIPUS) promotes exercise-induced muscle hypertrophy. Twenty-four adult Sprague-Dawley (SD) rats were randomly assigned to three groups (n = 8 per group): normal control group (NC), treadmill exercise group (TE) and treadmill exercise + LIPUS group (TE + LIPUS). The TE + LIPUS group received a LIPUS treatment (1 MHz, 30 mW/cm2) at the gastrocnemius for 20 min/d after treadmill exercise. The TE group was sham-treated. Eight weeks of treadmill training successfully established the exercise-induced muscle hypertrophy model. Muscle strength, muscle mass and muscle fiber cross-sectional area were significantly increased in the TE + LIPUS group compared with the TE group. Moreover, LIPUS treatment significantly upregulated the expression of Akt, mTOR, p-Akt and p-mTOR and significantly downregulated the expression of MSTN, ActRIIB, FoxO1 and its phosphorylation. The results indicated that LIPUS promotes exercise-induced muscle hypertrophy by facilitating protein synthesis and inhibiting the protein catabolism pathway.
Collapse
Affiliation(s)
- Liang Tang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, China
| | - Jing Zhang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, China
| | - Xinjuan Zhao
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, China
| | - Nan Li
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, China
| | - Wenqi Jian
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, China
| | - Shuxin Sun
- Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Jianzhong Guo
- Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi'an, China
| | - Lijun Sun
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, China.
| | - Dean Ta
- Department of Electronic Engineering, Fudan University, Shanghai, China; State Key Laboratory of ASIC and System, Fudan University, Shanghai, China; Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, Shanghai, China
| |
Collapse
|
229
|
Fajardo VA, Rietze BA, Chambers PJ, Bellissimo C, Bombardier E, Quadrilatero J, Tupling AR. Effects of sarcolipin deletion on skeletal muscle adaptive responses to functional overload and unload. Am J Physiol Cell Physiol 2017; 313:C154-C161. [PMID: 28592414 DOI: 10.1152/ajpcell.00291.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 05/30/2017] [Accepted: 05/30/2017] [Indexed: 12/22/2022]
Abstract
Overexpression of sarcolipin (SLN), a regulator of sarco(endo)plasmic reticulum Ca2+-ATPases (SERCAs), stimulates calcineurin signaling to enhance skeletal muscle oxidative capacity. Some studies have shown that calcineurin may also control skeletal muscle mass and remodeling in response to functional overload and unload stimuli by increasing myofiber size and the proportion of slow fibers. To examine whether SLN might mediate these adaptive responses, we performed soleus and gastrocnemius tenotomy in wild-type (WT) and Sln-null (Sln-/-) mice and examined the overloaded plantaris and unloaded/tenotomized soleus muscles. In the WT overloaded plantaris, we observed ectopic expression of SLN, myofiber hypertrophy, increased fiber number, and a fast-to-slow fiber type shift, which were associated with increased calcineurin signaling (NFAT dephosphorylation and increased stabilin-2 protein content) and reduced SERCA activity. In the WT tenotomized soleus, we observed a 14-fold increase in SLN protein, myofiber atrophy, decreased fiber number, and a slow-to-fast fiber type shift, which were also associated with increased calcineurin signaling and reduced SERCA activity. Genetic deletion of Sln altered these physiological outcomes, with the overloaded plantaris myofibers failing to grow in size and number, and transition towards the slow fiber type, while the unloaded soleus muscles exhibited greater reductions in fiber size and number, and an accelerated slow-to-fast fiber type shift. In both the Sln-/- overloaded and unloaded muscles, these findings were associated with elevated SERCA activity and blunted calcineurin signaling. Thus, SLN plays an important role in adaptive muscle remodeling potentially through calcineurin stimulation, which could have important implications for other muscle diseases and conditions.
Collapse
Affiliation(s)
- Val A Fajardo
- Department of Kinesiology, University of Waterloo, Waterloo Ontario, Canada
| | - Bradley A Rietze
- Department of Kinesiology, University of Waterloo, Waterloo Ontario, Canada
| | - Paige J Chambers
- Department of Kinesiology, University of Waterloo, Waterloo Ontario, Canada
| | | | - Eric Bombardier
- Department of Kinesiology, University of Waterloo, Waterloo Ontario, Canada
| | - Joe Quadrilatero
- Department of Kinesiology, University of Waterloo, Waterloo Ontario, Canada
| | - A Russell Tupling
- Department of Kinesiology, University of Waterloo, Waterloo Ontario, Canada
| |
Collapse
|
230
|
Al Jaam B, Heu K, Pennarubia F, Segelle A, Magnol L, Germot A, Legardinier S, Blanquet V, Maftah A. Reduced Notch signalling leads to postnatal skeletal muscle hypertrophy in Pofut1cax/cax mice. Open Biol 2017; 6:rsob.160211. [PMID: 27628322 PMCID: PMC5043585 DOI: 10.1098/rsob.160211] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 08/24/2016] [Indexed: 12/19/2022] Open
Abstract
Postnatal skeletal muscle growth results from the activation of satellite cells and/or an increase in protein synthesis. The Notch signalling pathway maintains satellite cells in a quiescent state, and once activated, sustains their proliferation and commitment towards differentiation. In mammals, POFUT1-mediated O-fucosylation regulates the interactions between NOTCH receptors and ligands of the DELTA/JAGGED family, thus initiating the activation of canonical Notch signalling. Here, we analysed the consequences of downregulated expression of the Pofut1 gene on postnatal muscle growth in mutant Pofut1(cax/cax) (cax, compact axial skeleton) mice and differentiation of their satellite cell-derived myoblasts (SCDMs). Pofut1(cax/cax) mice exhibited muscle hypertrophy, no hyperplasia and a decrease in satellite cell numbers compared with wild-type C3H mice. In agreement with these observations, Pofut1(cax/cax) SCDMs differentiated earlier concomitant with reduced Pax7 expression and decrease in PAX7(+)/MYOD(-) progenitor cells. In vitro binding assays showed a reduced interaction of DELTA-LIKE 1 ligand (DLL1) with NOTCH receptors expressed at the cell surface of SCDMs, leading to a decreased Notch signalling as seen by the quantification of cleaved NICD and Notch target genes. These results demonstrated that POFUT1-mediated O-fucosylation of NOTCH receptors regulates myogenic cell differentiation and affects postnatal muscle growth in mice.
Collapse
Affiliation(s)
- Bilal Al Jaam
- Univ. Limoges, INRA, UMR 1061, UGMA, 87060 Limoges, France
| | - Katy Heu
- Univ. Limoges, INRA, UMR 1061, UGMA, 87060 Limoges, France
| | | | | | | | - Agnès Germot
- Univ. Limoges, INRA, UMR 1061, UGMA, 87060 Limoges, France
| | | | | | | |
Collapse
|
231
|
Rossetti ML, Steiner JL, Gordon BS. Androgen-mediated regulation of skeletal muscle protein balance. Mol Cell Endocrinol 2017; 447:35-44. [PMID: 28237723 PMCID: PMC5407187 DOI: 10.1016/j.mce.2017.02.031] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/20/2017] [Accepted: 02/20/2017] [Indexed: 02/06/2023]
Abstract
Androgens significantly alter muscle mass in part by shifting protein balance in favor of net protein accretion. During various atrophic conditions, the clinical impact of decreased production or bioavailability of androgens (termed hypogonadism) is important as a loss of muscle mass is intimately linked with survival outcome. While androgen replacement therapy increases muscle mass in part by restoring protein balance, this is not a comprehensive treatment option due to potential side effects. Therefore, an understanding of the mechanisms by which androgens alter protein balance is needed for the development of androgen-independent therapies. While the data in humans suggest androgens alter protein balance (both synthesis and breakdown) in the fasted metabolic state, a predominant molecular mechanism(s) behind this observation is still lacking. This failure is likely due in part to inconsistent experimental design between studies including failure to control nutrient/feeding status, the method of altering androgens, and the model systems utilized.
Collapse
Affiliation(s)
- Michael L Rossetti
- The Institute of Exercise Physiology and Wellness, The University of Central Florida, PO Box 161250, Orlando, FL 32816, United States
| | - Jennifer L Steiner
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, United States
| | - Bradley S Gordon
- The Institute of Exercise Physiology and Wellness, The University of Central Florida, PO Box 161250, Orlando, FL 32816, United States.
| |
Collapse
|
232
|
Adams V, Reich B, Uhlemann M, Niebauer J. Molecular effects of exercise training in patients with cardiovascular disease: focus on skeletal muscle, endothelium, and myocardium. Am J Physiol Heart Circ Physiol 2017; 313:H72-H88. [PMID: 28476924 DOI: 10.1152/ajpheart.00470.2016] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 04/27/2017] [Accepted: 04/27/2017] [Indexed: 12/21/2022]
Abstract
For decades, we have known that exercise training exerts beneficial effects on the human body, and clear evidence is available that a higher fitness level is associated with a lower incidence of suffering premature cardiovascular death. Despite this knowledge, it took some time to also incorporate physical exercise training into the treatment plan for patients with cardiovascular disease (CVD). In recent years, in addition to continuous exercise training, further training modalities such as high-intensity interval training and pyramid training have been introduced for coronary artery disease patients. The beneficial effect for patients with CVD is clearly documented, and during the last years, we have also started to understand the molecular mechanisms occurring in the skeletal muscle (limb muscle and diaphragm) and endothelium, two systems contributing to exercise intolerance in these patients. In the present review, we describe the effects of the different training modalities in CVD and summarize the molecular effects mainly in the skeletal muscle and cardiovascular system.
Collapse
Affiliation(s)
- Volker Adams
- Clinic of Internal Medicine/Cardiology, Heart Center Leipzig, Leipzig University, Leipzig, Germany; and
| | - Bernhard Reich
- University Institute of Sports Medicine, Prevention and Rehabilitation and Research Institute of Molecular Sports Medicine and Rehabilitation, Paracelsus Medical University, Salzburg, Austria
| | - Madlen Uhlemann
- Clinic of Internal Medicine/Cardiology, Heart Center Leipzig, Leipzig University, Leipzig, Germany; and
| | - Josef Niebauer
- University Institute of Sports Medicine, Prevention and Rehabilitation and Research Institute of Molecular Sports Medicine and Rehabilitation, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
233
|
Carrarelli P, Funghi L, Ciarmela P, Centini G, Reis FM, Dela Cruz C, Mattei A, Vannuccini S, Petraglia F. Deep Infiltrating Endometriosis and Endometrial Adenocarcinoma Express High Levels of Myostatin and Its Receptors Messenger RNAs. Reprod Sci 2017; 24:1577-1582. [DOI: 10.1177/1933719117698579] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Patrizia Carrarelli
- Department of Molecular and Developmental Medicine, Obstetrics and Gynecology, University of Siena, Siena, Italy
| | - Lucia Funghi
- Department of Molecular and Developmental Medicine, Obstetrics and Gynecology, University of Siena, Siena, Italy
| | - Pasquapina Ciarmela
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
- Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy
| | - Gabriele Centini
- Department of Molecular and Developmental Medicine, Obstetrics and Gynecology, University of Siena, Siena, Italy
| | - Fernando M. Reis
- Division of Human Reproduction, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cynthia Dela Cruz
- Division of Human Reproduction, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Alberto Mattei
- Division of Obstetrics and Gynecology, Careggi University Hospital, Florence, Italy
| | - Silvia Vannuccini
- Department of Molecular and Developmental Medicine, Obstetrics and Gynecology, University of Siena, Siena, Italy
| | - Felice Petraglia
- Department of Molecular and Developmental Medicine, Obstetrics and Gynecology, University of Siena, Siena, Italy
| |
Collapse
|
234
|
Ding Y, Li J, Liu Z, Liu H, Li H, Li Z. IGF-1 potentiates sensory innervation signalling by modulating the mitochondrial fission/fusion balance. Sci Rep 2017; 7:43949. [PMID: 28276453 PMCID: PMC5343424 DOI: 10.1038/srep43949] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/31/2017] [Indexed: 01/07/2023] Open
Abstract
Restoring the contractile function of long-term denervated skeletal muscle (SKM) cells is difficult due to the long period of denervation, which causes a loss of contractility. Although sensory innervation is considered a promising protective approach, its effect is still restricted. In this study, we introduced insulin-like growth factor-1 (IGF-1) as an efficient protective agent and observed that IGF-1 potentiated the effects of sensory protection by preventing denervated muscle atrophy and improving the condition of denervated muscle cells in vivo and in vitro. IGF-1-induced Akt phosphorylation suppressed the mitochondrial outer-membrane protein Mul1 expression, which is a key step on preserving contractile property of sensory innervated SKM cells. Mul1 overexpression interfered with the balance between mitochondrial fusion and fission and was a key node for blocking the effects of IGF-1 that preserved the contractility of sensory-innervated SKM cells. Activation of AMP-activated protein kinase α (AMPKα), a mitochondrial downstream target, could block the effects of IGF-1. These data provide novel evidence that might be applied when searching for new approaches to improve the functional condition of long-term denervated SKM cells by increasing sensory protection using the IGF-1 signalling system to modulate the balance between mitochondrial fusion and fission.
Collapse
Affiliation(s)
- Yuan Ding
- Department of Anatomy, Shandong University School of Medicine, Jinan 250012, China
| | - Jianmin Li
- Department of Orthopaedics, Shandong University Qilu Hospital, Jinan 250012, China
| | - Zhen Liu
- Department of Anatomy, Shandong University School of Medicine, Jinan 250012, China
| | - Huaxiang Liu
- Department of Rheumatology, Shandong University Qilu Hospital, Jinan 250012, China
| | - Hao Li
- Department of Orthopaedics, Shandong University Qilu Hospital, Jinan 250012, China
| | - Zhenzhong Li
- Department of Anatomy, Shandong University School of Medicine, Jinan 250012, China
| |
Collapse
|
235
|
Davegårdh C, Broholm C, Perfilyev A, Henriksen T, García-Calzón S, Peijs L, Hansen NS, Volkov P, Kjøbsted R, Wojtaszewski JFP, Pedersen M, Pedersen BK, Ballak DB, Dinarello CA, Heinhuis B, Joosten LAB, Nilsson E, Vaag A, Scheele C, Ling C. Abnormal epigenetic changes during differentiation of human skeletal muscle stem cells from obese subjects. BMC Med 2017; 15:39. [PMID: 28222718 PMCID: PMC5320752 DOI: 10.1186/s12916-017-0792-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/11/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Human skeletal muscle stem cells are important for muscle regeneration. However, the combined genome-wide DNA methylation and expression changes taking place during adult myogenesis have not been described in detail and novel myogenic factors may be discovered. Additionally, obesity is associated with low relative muscle mass and diminished metabolism. Epigenetic alterations taking place during myogenesis might contribute to these defects. METHODS We used Infinium HumanMethylation450 BeadChip Kit (Illumina) and HumanHT-12 Expression BeadChip (Illumina) to analyze genome-wide DNA methylation and transcription before versus after differentiation of primary human myoblasts from 14 non-obese and 14 obese individuals. Functional follow-up experiments were performed using siRNA mediated gene silencing in primary human myoblasts and a transgenic mouse model. RESULTS We observed genome-wide changes in DNA methylation and expression patterns during differentiation of primary human muscle stem cells (myoblasts). We identified epigenetic and transcriptional changes of myogenic transcription factors (MYOD1, MYOG, MYF5, MYF6, PAX7, MEF2A, MEF2C, and MEF2D), cell cycle regulators, metabolic enzymes and genes previously not linked to myogenesis, including IL32, metallothioneins, and pregnancy-specific beta-1-glycoproteins. Functional studies demonstrated IL-32 as a novel target that regulates human myogenesis, insulin sensitivity and ATP levels in muscle cells. Furthermore, IL32 transgenic mice had reduced insulin response and muscle weight. Remarkably, approximately 3.7 times more methylation changes (147,161 versus 39,572) were observed during differentiation of myoblasts from obese versus non-obese subjects. In accordance, DNMT1 expression increased during myogenesis only in obese subjects. Interestingly, numerous genes implicated in metabolic diseases and epigenetic regulation showed differential methylation and expression during differentiation only in obese subjects. CONCLUSIONS Our study identifies IL-32 as a novel myogenic regulator, provides a comprehensive map of the dynamic epigenome during differentiation of human muscle stem cells and reveals abnormal epigenetic changes in obesity.
Collapse
Affiliation(s)
- Cajsa Davegårdh
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Malmö, 205 02, Sweden
| | - Christa Broholm
- Department of Endocrinology, Rigshospitalet, Copenhagen, 2100, Denmark
| | - Alexander Perfilyev
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Malmö, 205 02, Sweden
| | - Tora Henriksen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Sonia García-Calzón
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Malmö, 205 02, Sweden
| | - Lone Peijs
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | - Petr Volkov
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Malmö, 205 02, Sweden
| | - Rasmus Kjøbsted
- Department of Exercise and Sports Sciences, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen F P Wojtaszewski
- Department of Exercise and Sports Sciences, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Maria Pedersen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Bente Klarlund Pedersen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Dov B Ballak
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, 80309, USA.,Department of Medicine, University of Colorado, Aurora, CO, 80045, USA
| | - Charles A Dinarello
- Department of Medicine, University of Colorado, Aurora, CO, 80045, USA.,Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Bas Heinhuis
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Emma Nilsson
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Malmö, 205 02, Sweden
| | - Allan Vaag
- Department of Endocrinology, Rigshospitalet, Copenhagen, 2100, Denmark.,Early Clinical Development, Translational Medical Unit, AstraZeneca, Mölndal, 431 83, Sweden
| | - Camilla Scheele
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Ling
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Malmö, 205 02, Sweden.
| |
Collapse
|
236
|
Vélez EJ, Azizi S, Lutfi E, Capilla E, Moya A, Navarro I, Fernández-Borràs J, Blasco J, Gutiérrez J. Moderate and sustained exercise modulates muscle proteolytic and myogenic markers in gilthead sea bream ( Sparus aurata). Am J Physiol Regul Integr Comp Physiol 2017; 312:R643-R653. [PMID: 28228414 DOI: 10.1152/ajpregu.00308.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 02/15/2017] [Accepted: 02/15/2017] [Indexed: 12/14/2022]
Abstract
Swimming activity primarily accelerates growth in fish by increasing protein synthesis and energy efficiency. The role of muscle in this process is remarkable and especially important in teleosts, where muscle represents a high percentage of body weight and because many fish species present continuous growth. The aim of this work was to characterize the effects of 5 wk of moderate and sustained swimming in gene and protein expression of myogenic regulatory factors, proliferation markers, and proteolytic molecules in two muscle regions (anterior and caudal) of gilthead sea bream fingerlings. Western blot results showed an increase in the proliferation marker proliferating cell nuclear antigen (PCNA), proteolytic system members calpain 1 and cathepsin D, as well as vascular endothelial growth factor protein expression. Moreover, quantitative real-time PCR data showed that exercise increased the gene expression of proteases (calpains, cathepsins, and members of the ubiquitin-proteasome system in the anterior muscle region) and the gene expression of the proliferation marker PCNA and the myogenic factor MyoD in the caudal area compared with control fish. Overall, these data suggest a differential response of the two muscle regions during swimming adaptation, with tissue remodeling and new vessel formation occurring in the anterior muscle and enhanced cell proliferation and differentiation occurring in the caudal area. In summary, the present study contributes to improving the knowledge of the role of proteolytic molecules and other myogenic factors in the adaptation of muscle to moderate sustained swimming in gilthead sea bream.
Collapse
Affiliation(s)
- Emilio J Vélez
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Sheida Azizi
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Esmail Lutfi
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Encarnación Capilla
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Alberto Moya
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Isabel Navarro
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Jaume Fernández-Borràs
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Josefina Blasco
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Joaquim Gutiérrez
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
237
|
Uemura K, Hayashi M, Itsubo T, Oishi A, Iwakawa H, Komatsu M, Uchiyama S, Kato H. Myostatin promotes tenogenic differentiation of C2C12 myoblast cells through Smad3. FEBS Open Bio 2017; 7:522-532. [PMID: 28396837 PMCID: PMC5377394 DOI: 10.1002/2211-5463.12200] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 12/31/2016] [Accepted: 01/23/2017] [Indexed: 12/22/2022] Open
Abstract
Myostatin, a member of the transforming growth factor-β (TGF-β) superfamily, is expressed in developing and adult skeletal muscle and negatively regulates skeletal muscle growth. Recently, myostatin has been found to be expressed in tendons and increases tendon fibroblast proliferation and the expression of tenocyte markers. C2C12 is a mouse myoblast cell line, which has the ability to transdifferentiate into osteoblast and adipocyte lineages. We hypothesized that myostatin is capable of inducing tenogenic differentiation of C2C12 cells. We found that the expression of scleraxis, a tendon progenitor cell marker, is much higher in C2C12 than in the multipotent mouse mesenchymal fibroblast cell line C3H10T1/2. In comparison with other growth factors, myostatin significantly up-regulated the expression of the tenogenic marker in C2C12 cells under serum-free culture conditions. Immunohistochemistry showed that myostatin inhibited myotube formation and promoted the formation of spindle-shaped cells expressing tenomodulin. We examined signaling pathways essential for tenogenic differentiation to clarify the mechanism of myostatin-induced differentiation of C2C12 into tenocytes. The expression of tenomodulin was significantly suppressed by treatment with the ALK inhibitor SB341542, in contrast to p38MAPK (SB203580) and MEK1 (PD98059) inhibitors. RNAi silencing of Smad3 significantly suppressed myostatin-induced tenomodulin expression. These results indicate that myostatin has a potential role in the induction of tenogenic differentiation of C2C12 cells, which have tendon progenitor cell characteristics, through activation of Smad3-mediated signaling.
Collapse
Affiliation(s)
- Kazutaka Uemura
- Department of Orthopaedic Surgery Shinshu University School of Medicine Matsumoto Japan
| | - Masanori Hayashi
- Department of Orthopaedic Surgery Shinshu University School of Medicine Matsumoto Japan
| | | | - Ayumu Oishi
- Department of Orthopaedic Surgery Shinshu University School of Medicine Matsumoto Japan
| | - Hiroko Iwakawa
- Department of Orthopaedic Surgery Shinshu University School of Medicine Matsumoto Japan
| | - Masatoshi Komatsu
- Department of Orthopaedic Surgery Shinshu University School of Medicine Matsumoto Japan
| | - Shigeharu Uchiyama
- Department of Orthopaedic Surgery Shinshu University School of Medicine Matsumoto Japan
| | - Hiroyuki Kato
- Department of Orthopaedic Surgery Shinshu University School of Medicine Matsumoto Japan
| |
Collapse
|
238
|
Sakuma K, Aoi W, Yamaguchi A. Molecular mechanism of sarcopenia and cachexia: recent research advances. Pflugers Arch 2017; 469:573-591. [PMID: 28101649 DOI: 10.1007/s00424-016-1933-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 12/28/2016] [Accepted: 12/29/2016] [Indexed: 12/17/2022]
Abstract
Skeletal muscle provides a fundamental basis for human function, enabling locomotion and respiration. Muscle loss occurs as a consequence of several chronic diseases (cachexia) and normal aging (sarcopenia). Although many negative regulators (atrogin-1, muscle ring finger-1, nuclear factor-kappaB (NF-κB), myostatin, etc.) have been proposed to enhance protein degradation during both sarcopenia and cachexia, the adaptation of these mediators markedly differs within both conditions. Sarcopenia and cachectic muscles have been demonstrated to be abundant in myostatin-linked molecules. The ubiquitin-proteasome system (UPS) is activated during rapid atrophy model (cancer cachexia), but few mediators of the UPS change during sarcopenia. NF-κB signaling is activated in cachectic, but not in sarcopenic, muscle. Recent studies have indicated the age-related defect of autophagy signaling in skeletal muscle, whereas autophagic activation occurs in cachectic muscle. This review provides recent research advances dealing with molecular mediators modulating muscle mass in both sarcopenia and cachexia.
Collapse
Affiliation(s)
- Kunihiro Sakuma
- Institute for Liberal Arts, Environment and Society, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.
| | - Wataru Aoi
- Laboratory of Health Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho Shimogamo, Sakyo-ku, Kyoto, 606-8522, Japan
| | - Akihiko Yamaguchi
- Department of Physical Therapy, Health Sciences University of Hokkaido, Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| |
Collapse
|
239
|
Ohta M, Hosokawa Y, Hatano N, Sugano A, Ito A, Takaoka Y. Efficacy of femtosecond lasers for application of acupuncture therapy. Lasers Med Sci 2016; 32:2167-2171. [PMID: 27942989 PMCID: PMC5682856 DOI: 10.1007/s10103-016-2124-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 11/30/2016] [Indexed: 01/14/2023]
Abstract
Acupuncture treatment utilizes the stimulation of metal acupuncture needles that are manually inserted into a living body. In the last decades, laser light has been used as an alternative to needles to stimulate acupuncture points. We previously reported suppression of myostatin (Mstn) gene expression in skeletal muscle by means of femtosecond laser (FL) irradiation, after electroacupuncture, in which acupuncture needles are stimulated with a low-frequency microcurrent. The purpose of the study here was to investigate the efficacy of FL irradiation in mouse skeletal muscle with regard to protein synthesis. After irradiation of the hindlimbs, we first analyzed Mstn gene expression and Mstn protein level in the skeletal muscle. We then evaluated phosphorylation of the mammalian target of rapamycin (mTOR) and its downstream target 70-kDa ribosomal protein S6 kinase (p70S6K). The results showed that FL irradiation significantly reduced the amount of Mstn protein and enhanced the phosphorylation of p70S6K in of the mTOR/S6K signaling pathway. We suggest that FL irradiation activated the protein synthetic pathway in the skeletal muscle. In conclusion, we determined that FL irradiation can serve as an alternative for acupuncture needles and has the potential of being a new non-invasive acupuncture treatment of skeletal muscle.
Collapse
Affiliation(s)
- Mika Ohta
- Division of Medical Informatics and Bioinformatics, Kobe University Hospital, Kobe, 650-0017, Japan
- Genome Science Research Unit, Life Science Research Center, Kobe Tokiwa University, Kobe, 653-0838, Japan
| | - Yoichiroh Hosokawa
- Graduate School of Materials Science, Nara Institute of Science and Technology, Nara, 630-0912, Japan
| | - Naoya Hatano
- The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Aki Sugano
- Division of Medical Informatics and Bioinformatics, Kobe University Hospital, Kobe, 650-0017, Japan
- Genome Science Research Unit, Life Science Research Center, Kobe Tokiwa University, Kobe, 653-0838, Japan
| | - Akihiko Ito
- Department of Pathology, Kindai University Faculty of Medicine, Osaka, 589-8511, Japan
| | - Yutaka Takaoka
- Division of Medical Informatics and Bioinformatics, Kobe University Hospital, Kobe, 650-0017, Japan.
- Genome Science Research Unit, Life Science Research Center, Kobe Tokiwa University, Kobe, 653-0838, Japan.
| |
Collapse
|
240
|
Sternopygus macrurus electric organ transcriptome and cell size exhibit insensitivity to short-term electrical inactivity. ACTA ACUST UNITED AC 2016; 110:233-244. [PMID: 27864094 DOI: 10.1016/j.jphysparis.2016.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/03/2016] [Accepted: 11/13/2016] [Indexed: 11/22/2022]
Abstract
Electrical activity is an important regulator of cellular function and gene expression in electrically excitable cell types. In the weakly electric teleost fish Sternopygus macrurus, electrocytes, i.e., the current-producing cells of the electric organ, derive from a striated muscle lineage. Mature electrocytes are larger than muscle fibers, do not contain sarcomeres, and are driven continuously at frequencies higher than those exerted on muscle cells. Previous work showed that the removal of electrical activity by spinal cord transection (ST) for two and five weeks led to an upregulation of some sarcomeric proteins and a decrease in electrocyte size. To test whether changes in gene transcription preceded these phenotypic changes, we determined the sensitivity of electrocyte gene expression to electrical inactivity periods of two and five days after ST. Whole tissue gene expression profiles using deep RNA sequencing showed minimal alterations in the levels of myogenic transcription factor and sarcomeric transcripts after either ST period. Moreover, while analysis of differentially expressed genes showed a transient upregulation of genes associated with proteolytic mechanisms at two days and an increase in mRNA levels of cytoskeletal genes at five days after electrical silencing, electrocyte size was not affected. Electrical inactivity also resulted in the downregulation of genes that were classified into enriched clusters associated with functions of axon migration and synapse structure. Overall, these data demonstrate that unlike tissues in the myogenic lineage in other vertebrate species, regulation of gene transcription and cell size in the muscle-like electrocytes of S. macrurus is highly insensitive to short-term electrical inactivity. Moreover, together with data obtained from control and long-term ST studies, the present data suggest that neural input might influence post-transcriptional processes to affect the mature electrocyte phenotype.
Collapse
|
241
|
Abstract
Hibernation is characterized by prolonged periods of inactivity with concomitantly low nutrient intake, conditions that would typically result in muscle atrophy combined with a loss of oxidative fibers. Yet, hibernators consistently emerge from winter with very little atrophy, frequently accompanied by a slight shift in fiber ratios to more oxidative fiber types. Preservation of muscle morphology is combined with down-regulation of glycolytic pathways and increased reliance on lipid metabolism instead. Furthermore, while rates of protein synthesis are reduced during hibernation, balance is maintained by correspondingly low rates of protein degradation. Proposed mechanisms include a number of signaling pathways and transcription factors that lead to increased oxidative fiber expression, enhanced protein synthesis and reduced protein degradation, ultimately resulting in minimal loss of skeletal muscle protein and oxidative capacity. The functional significance of these outcomes is maintenance of skeletal muscle strength and fatigue resistance, which enables hibernating animals to resume active behaviors such as predator avoidance, foraging and mating immediately following terminal arousal in the spring.
Collapse
Affiliation(s)
- Clark J Cotton
- Department of Biology, College of St Benedict/St John's University, Collegeville, MN 56321, USA
| |
Collapse
|
242
|
Abstract
The skeletal muscle phenotype is subject to considerable malleability depending on use as well as internal and external cues. In humans, low-load endurance-type exercise leads to qualitative changes of muscle tissue characterized by an increase in structures supporting oxygen delivery and consumption, such as capillaries and mitochondria. High-load strength-type exercise leads to growth of muscle fibers dominated by an increase in contractile proteins. In endurance exercise, stress-induced signaling leads to transcriptional upregulation of genes, with Ca(2+) signaling and the energy status of the muscle cells sensed through AMPK being major input determinants. Several interrelated signaling pathways converge on the transcriptional co-activator PGC-1α, perceived to be the coordinator of much of the transcriptional and post-transcriptional processes. Strength training is dominated by a translational upregulation controlled by mTORC1. mTORC1 is mainly regulated by an insulin- and/or growth-factor-dependent signaling cascade as well as mechanical and nutritional cues. Muscle growth is further supported by DNA recruitment through activation and incorporation of satellite cells. In addition, there are several negative regulators of muscle mass. We currently have a good descriptive understanding of the molecular mechanisms controlling the muscle phenotype. The topology of signaling networks seems highly conserved among species, with the signaling outcome being dependent on the particular way individual species make use of the options offered by the multi-nodal networks. As a consequence, muscle structural and functional modifications can be achieved by an almost unlimited combination of inputs and downstream signaling events.
Collapse
Affiliation(s)
- Hans Hoppeler
- Emeritus Department of Anatomy, University of Bern, Baltzerstrasse 2, Bern 9 CH-3000, Switzerland
| |
Collapse
|
243
|
Roy B, Curtis ME, Fears LS, Nahashon SN, Fentress HM. Molecular Mechanisms of Obesity-Induced Osteoporosis and Muscle Atrophy. Front Physiol 2016; 7:439. [PMID: 27746742 PMCID: PMC5040721 DOI: 10.3389/fphys.2016.00439] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 09/15/2016] [Indexed: 12/19/2022] Open
Abstract
Obesity and osteoporosis are two alarming health disorders prominent among middle and old age populations, and the numbers of those affected by these two disorders are increasing. It is estimated that more than 600 million adults are obese and over 200 million people have osteoporosis worldwide. Interestingly, both of these abnormalities share some common features including a genetic predisposition, and a common origin: bone marrow mesenchymal stromal cells. Obesity is characterized by the expression of leptin, adiponectin, interleukin 6 (IL-6), interleukin 10 (IL-10), monocyte chemotactic protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-α), macrophage colony stimulating factor (M-CSF), growth hormone (GH), parathyroid hormone (PTH), angiotensin II (Ang II), 5-hydroxy-tryptamine (5-HT), Advance glycation end products (AGE), and myostatin, which exert their effects by modulating the signaling pathways within bone and muscle. Chemical messengers (e.g., TNF-α, IL-6, AGE, leptins) that are upregulated or downregulated as a result of obesity have been shown to act as negative regulators of osteoblasts, osteocytes and muscles, as well as positive regulators of osteoclasts. These additive effects of obesity ultimately increase the risk for osteoporosis and muscle atrophy. The aim of this review is to identify the potential cellular mechanisms through which obesity may facilitate osteoporosis, muscle atrophy and bone fractures.
Collapse
Affiliation(s)
- Bipradas Roy
- Department of Biological Sciences, Tennessee State University Nashville, TN, USA
| | - Mary E Curtis
- Department of Biological Sciences, Tennessee State University Nashville, TN, USA
| | - Letimicia S Fears
- Department of Biological Sciences, Tennessee State University Nashville, TN, USA
| | - Samuel N Nahashon
- Department of Agricultural and Environmental Sciences, Tennessee State University Nashville, TN, USA
| | - Hugh M Fentress
- Department of Biological Sciences, Tennessee State University Nashville, TN, USA
| |
Collapse
|
244
|
Enoki Y, Watanabe H, Arake R, Sugimoto R, Imafuku T, Tominaga Y, Ishima Y, Kotani S, Nakajima M, Tanaka M, Matsushita K, Fukagawa M, Otagiri M, Maruyama T. Indoxyl sulfate potentiates skeletal muscle atrophy by inducing the oxidative stress-mediated expression of myostatin and atrogin-1. Sci Rep 2016; 6:32084. [PMID: 27549031 PMCID: PMC4994088 DOI: 10.1038/srep32084] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 08/02/2016] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle atrophy, referred to as sarcopenia, is often observed in chronic kidney disease (CKD) patients, especially in patients who are undergoing hemodialysis. The purpose of this study was to determine whether uremic toxins are involved in CKD-related skeletal muscle atrophy. Among six protein-bound uremic toxins, indole containing compounds, indoxyl sulfate (IS) significantly inhibited proliferation and myotube formation in C2C12 myoblast cells. IS increased the factors related to skeletal muscle breakdown, such as reactive oxygen species (ROS) and inflammatory cytokines (TNF-α, IL-6 and TGF-β1) in C2C12 cells. IS also enhanced the production of muscle atrophy-related genes, myostatin and atrogin-1. These effects induced by IS were suppressed in the presence of an antioxidant or inhibitors of the organic anion transporter and aryl hydrocarbon receptor. The administered IS was distributed to skeletal muscle and induced superoxide production in half-nephrectomized (1/2 Nx) mice. The chronic administration of IS significantly reduced the body weights accompanied by skeletal muscle weight loss. Similar to the in vitro data, IS induced the expression of myostatin and atrogin-1 in addition to increasing the production of inflammatory cytokines by enhancing oxidative stress in skeletal muscle. These data suggest that IS has the potential to accelerate skeletal muscle atrophy by inducing oxidative stress-mediated myostatin and atrogin-1 expression.
Collapse
Affiliation(s)
- Yuki Enoki
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Japan
| | - Hiroshi Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Japan.,Center for Clinical Pharmaceutical Sciences, School of Pharmacy, Kumamoto University, Kumamoto, Japan
| | - Riho Arake
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Japan
| | - Ryusei Sugimoto
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Japan
| | - Tadashi Imafuku
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Japan
| | - Yuna Tominaga
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Japan
| | - Yu Ishima
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Japan.,Center for Clinical Pharmaceutical Sciences, School of Pharmacy, Kumamoto University, Kumamoto, Japan
| | - Shunsuke Kotani
- Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Makoto Nakajima
- Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Motoko Tanaka
- Department of Nephrology, Akebono Clinic, Kumamoto, Japan
| | | | - Masafumi Fukagawa
- Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Kanagawa, Japan
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Kumamoto, Japan.,DDS Research Institute, Sojo University, Kumamoto, Japan
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Japan.,Center for Clinical Pharmaceutical Sciences, School of Pharmacy, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
245
|
Güth R, Chaidez A, Samanta MP, Unguez GA. Properties of skeletal muscle in the teleost Sternopygus macrurus are unaffected by short-term electrical inactivity. Physiol Genomics 2016; 48:699-710. [PMID: 27449658 DOI: 10.1152/physiolgenomics.00068.2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 07/18/2016] [Indexed: 11/22/2022] Open
Abstract
Skeletal muscle is distinguished from other tissues on the basis of its shape, biochemistry, and physiological function. Based on mammalian studies, fiber size, fiber types, and gene expression profiles are regulated, in part, by the electrical activity exerted by the nervous system. To address whether similar adaptations to changes in electrical activity in skeletal muscle occur in teleosts, we studied these phenotypic properties of ventral muscle in the electric fish Sternopygus macrurus following 2 and 5 days of electrical inactivation by spinal transection. Our data show that morphological and biochemical properties of skeletal muscle remained largely unchanged after these treatments. Specifically, the distribution of type I and type II muscle fibers and the cross-sectional areas of these fiber types observed in control fish remained unaltered after each spinal transection survival period. This response to electrical inactivation was generally reflected at the transcript level in real-time PCR and RNA-seq data by showing little effect on the transcript levels of genes associated with muscle fiber type differentiation and plasticity, the sarcomere complex, and pathways implicated in the regulation of muscle fiber size. Data from this first study characterizing the acute influence of neural activity on muscle mass and sarcomere gene expression in a teleost are discussed in the context of comparative studies in mammalian model systems and vertebrate species from different lineages.
Collapse
Affiliation(s)
- Robert Güth
- Department of Biology, New Mexico State University, Las Cruces, New Mexico; and
| | - Alexander Chaidez
- Department of Biology, New Mexico State University, Las Cruces, New Mexico; and
| | | | - Graciela A Unguez
- Department of Biology, New Mexico State University, Las Cruces, New Mexico; and
| |
Collapse
|
246
|
Anthony TG. Mechanisms of protein balance in skeletal muscle. Domest Anim Endocrinol 2016; 56 Suppl:S23-32. [PMID: 27345321 PMCID: PMC4926040 DOI: 10.1016/j.domaniend.2016.02.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/23/2016] [Accepted: 02/29/2016] [Indexed: 01/07/2023]
Abstract
Increased global demand for adequate protein nutrition against a backdrop of climate change and concern for animal agriculture sustainability necessitates new and more efficient approaches to livestock growth and production. Anabolic growth is achieved when rates of new synthesis exceed turnover, producing a positive net protein balance. Conversely, deterioration or atrophy of lean mass is a consequence of a net negative protein balance. During early life and periods of growth, muscle mass is driven by increases in protein synthesis at the level of mRNA translation. Throughout life, muscle mass is further influenced by degradative processes such as autophagy and the ubiquitin proteasome pathway. Multiple signal transduction networks guide and coordinate these processes alongside quality control mechanisms to maintain protein homeostasis (proteostasis). Genetics, hormones, and environmental stimuli each influence proteostasis control, altering capacity and/or efficiency of muscle growth. An overview of recent findings and current methods to assess muscle protein balance and proteostasis is presented. Current efforts to identify novel control points have the potential through selective breeding design or development of hormetic strategies to better promote growth and health span during environmental stress.
Collapse
Affiliation(s)
- T G Anthony
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA.
| |
Collapse
|
247
|
Gallagher IJ, Jacobi C, Tardif N, Rooyackers O, Fearon K. Omics/systems biology and cancer cachexia. Semin Cell Dev Biol 2016; 54:92-103. [DOI: 10.1016/j.semcdb.2015.12.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 12/30/2015] [Indexed: 10/22/2022]
|
248
|
Wang R, Jiao H, Zhao J, Wang X, Lin H. Glucocorticoids Enhance Muscle Proteolysis through a Myostatin-Dependent Pathway at the Early Stage. PLoS One 2016; 11:e0156225. [PMID: 27227776 PMCID: PMC4882021 DOI: 10.1371/journal.pone.0156225] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/11/2016] [Indexed: 01/12/2023] Open
Abstract
Myostatin, a member of the TGF-β superfamily of secreted proteins, is expressed primarily in skeletal muscle. It negatively regulates muscle mass and is associated with glucocorticoid-induced muscle atrophy. However, it remains unclear whether myostatin is involved in glucocorticoid-induced muscle protein turnover. The aim of the present study was to investigate the role of myostatin in protein metabolism during dexamethasone (DEX) treatment. Protein synthesis rates and the expression of the genes for myostatin, ubiquitin-proteasome atrogin-1, MuRF1, FoxO1/3a and mTOR/p70S6K were determined. The results show that DEX decreased (P<0.05) protein synthesis rates while increasing the abundance of myostatin. DEX increased (P<0.05) the level of phospho-FoxO1/3a (Thr 24/32) and the expression of MuRF1. In contrast, DEX treatment had no detectable effect on atrogin-1 protein levels (P>0.05). The phosphorylation levels of mTOR and p70S6K were decreased by DEX treatment (P<0.05). Follistatin treatment inhibited the DEX-induced increase in myostatin (P<0.05) and the activation of phosphor-FoxO1/3a (Thr 24/32) (P< 0.05) and MuRF1 (P<0.05). Follistatin treatment had no influence on the protein synthesis rate or on the phosphorylation levels of mTOR (Ser 2448) and p70S6K (Thr 389) (P> 0.05). In conclusion, the present study suggests that the myostatin signalling pathway is associated with glucocorticoid-induced muscle protein catabolism at the beginning of exposure. Myostatin is not a main pathway associated with the suppression of muscle protein synthesis by glucocorticoids.
Collapse
Affiliation(s)
- Ruxia Wang
- Department of Animal Science, Shandong Agricultural University, Shandong Key Lab for Animal Biotechnology and Disease Control, Taian, Shandong, 271018, P. R. China
| | - Hongchao Jiao
- Department of Animal Science, Shandong Agricultural University, Shandong Key Lab for Animal Biotechnology and Disease Control, Taian, Shandong, 271018, P. R. China
| | - Jingpeng Zhao
- Department of Animal Science, Shandong Agricultural University, Shandong Key Lab for Animal Biotechnology and Disease Control, Taian, Shandong, 271018, P. R. China
| | - Xiaojuan Wang
- Department of Animal Science, Shandong Agricultural University, Shandong Key Lab for Animal Biotechnology and Disease Control, Taian, Shandong, 271018, P. R. China
| | - Hai Lin
- Department of Animal Science, Shandong Agricultural University, Shandong Key Lab for Animal Biotechnology and Disease Control, Taian, Shandong, 271018, P. R. China
- * E-mail:
| |
Collapse
|
249
|
Jan AT, Lee EJ, Ahmad S, Choi I. Meeting the meat: delineating the molecular machinery of muscle development. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2016; 58:18. [PMID: 27168943 PMCID: PMC4862161 DOI: 10.1186/s40781-016-0100-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/07/2016] [Indexed: 02/07/2023]
Abstract
Muscle, studied mostly with respect to meat production, represents one of the largest protein reservoirs of the body. As gene expression profiling holds credibility to deal with the increasing demand of food from animal sources, excessive loss due to myopathies and other muscular dystrophies was found detrimental as it aggravates diseases that result in increased morbidity and mortality. Holding key point towards improving the developmental program of muscle in meat producing animals, elucidating the underlying mechanisms of the associated pathways in livestock animals is believed to open up new avenues towards enhancing the lean tissue deposition. To this end, identification of vital candidate genes having no known function in myogenesis, is believed to increase the current understanding of the physiological processes going on in the skeletal muscle tissue. Taking consequences of gene expression changes into account, knowledge of the pathways associated with their activation and as such up-regulation seems critical for the overall muscle homeostasis. Having important implications on livestock production, a thorough understanding of postnatal muscle development seems a timely step to fulfil the growing need of ever increasing populations of the world.
Collapse
Affiliation(s)
- Arif Tasleem Jan
- School of Biotechnology, Yeungnam University, Gyeongsan, 712-749 Republic of Korea
| | - Eun Ju Lee
- School of Biotechnology, Yeungnam University, Gyeongsan, 712-749 Republic of Korea
| | - Sarafraz Ahmad
- School of Biotechnology, Yeungnam University, Gyeongsan, 712-749 Republic of Korea
| | - Inho Choi
- School of Biotechnology, Yeungnam University, Gyeongsan, 712-749 Republic of Korea
| |
Collapse
|
250
|
Emodin attenuates TNF-α-induced apoptosis and autophagy in mouse C2C12 myoblasts though the phosphorylation of Akt. Int Immunopharmacol 2016; 34:107-113. [DOI: 10.1016/j.intimp.2016.02.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/18/2016] [Accepted: 02/20/2016] [Indexed: 11/18/2022]
|