201
|
Thudi M, Bohra A, Nayak SN, Varghese N, Shah TM, Penmetsa RV, Thirunavukkarasu N, Gudipati S, Gaur PM, Kulwal PL, Upadhyaya HD, KaviKishor PB, Winter P, Kahl G, Town CD, Kilian A, Cook DR, Varshney RK. Novel SSR markers from BAC-end sequences, DArT arrays and a comprehensive genetic map with 1,291 marker loci for chickpea (Cicer arietinum L.). PLoS One 2011; 6:e27275. [PMID: 22102885 PMCID: PMC3216927 DOI: 10.1371/journal.pone.0027275] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 10/12/2011] [Indexed: 12/17/2022] Open
Abstract
Chickpea (Cicer arietinum L.) is the third most important cool season food legume, cultivated in arid and semi-arid regions of the world. The goal of this study was to develop novel molecular markers such as microsatellite or simple sequence repeat (SSR) markers from bacterial artificial chromosome (BAC)-end sequences (BESs) and diversity arrays technology (DArT) markers, and to construct a high-density genetic map based on recombinant inbred line (RIL) population ICC 4958 (C. arietinum)×PI 489777 (C. reticulatum). A BAC-library comprising 55,680 clones was constructed and 46,270 BESs were generated. Mining of these BESs provided 6,845 SSRs, and primer pairs were designed for 1,344 SSRs. In parallel, DArT arrays with ca. 15,000 clones were developed, and 5,397 clones were found polymorphic among 94 genotypes tested. Screening of newly developed BES-SSR markers and DArT arrays on the parental genotypes of the RIL mapping population showed polymorphism with 253 BES-SSR markers and 675 DArT markers. Segregation data obtained for these polymorphic markers and 494 markers data compiled from published reports or collaborators were used for constructing the genetic map. As a result, a comprehensive genetic map comprising 1,291 markers on eight linkage groups (LGs) spanning a total of 845.56 cM distance was developed (http://cmap.icrisat.ac.in/cmap/sm/cp/thudi/). The number of markers per linkage group ranged from 68 (LG 8) to 218 (LG 3) with an average inter-marker distance of 0.65 cM. While the developed resource of molecular markers will be useful for genetic diversity, genetic mapping and molecular breeding applications, the comprehensive genetic map with integrated BES-SSR markers will facilitate its anchoring to the physical map (under construction) to accelerate map-based cloning of genes in chickpea and comparative genome evolution studies in legumes.
Collapse
Affiliation(s)
- Mahendar Thudi
- Grain Legumes Research Program, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Abhishek Bohra
- Grain Legumes Research Program, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Department of Genetics, Osmania University, Hyderabad, India
| | - Spurthi N. Nayak
- Grain Legumes Research Program, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Department of Genetics, Osmania University, Hyderabad, India
| | - Nicy Varghese
- Grain Legumes Research Program, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Trushar M. Shah
- Grain Legumes Research Program, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - R. Varma Penmetsa
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | | | - Srivani Gudipati
- Grain Legumes Research Program, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Pooran M. Gaur
- Grain Legumes Research Program, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Pawan L. Kulwal
- State Level Biotechnology Centre, Mahatma Phule Agricultural University, Ahmednagar, India
| | - Hari D. Upadhyaya
- Grain Legumes Research Program, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | | | | | - Günter Kahl
- Molecular BioSciences, University of Frankfurt, Frankfurt am Main, Germany
| | - Christopher D. Town
- J. Craig Venter Institute (JCVI), Rockville, Maryland, United States of America
| | | | - Douglas R. Cook
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Rajeev K. Varshney
- Grain Legumes Research Program, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- CGIAR Generation Challenge Programme (GCP), CIMMYT, Mexico DF, Mexico
- * E-mail:
| |
Collapse
|
202
|
Bennett D, Izanloo A, Edwards J, Kuchel H, Chalmers K, Tester M, Reynolds M, Schnurbusch T, Langridge P. Identification of novel quantitative trait loci for days to ear emergence and flag leaf glaucousness in a bread wheat (Triticum aestivum L.) population adapted to southern Australian conditions. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011. [PMID: 22045047 DOI: 10.1007/s00122‐011‐1740‐3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In southern Australia, where the climate is predominantly Mediterranean, achieving the correct flowering time in bread wheat minimizes the impact of in-season cyclical and terminal drought. Flag leaf glaucousness has been hypothesized as an important component of drought tolerance but its value and genetic basis in locally adapted germplasm is unknown. From a cross between Kukri and RAC875, a doubled-haploid (DH) population was developed. A genetic linkage map consisting of 456 DArT and SSR markers was used to detect QTL affecting time to ear emergence and Zadoks growth score in seven field experiments. While ear emergence time was similar between the parents, there was significant transgressive segregation in the population. This was the result of segregation for the previously characterized Ppd-D1a and Ppd-B1 photoperiod responsive alleles. QTL of smaller effect were also detected on chromosomes 1A, 4A, 4B, 5A, 5B, 7A and 7B. A novel QTL for flag leaf glaucousness of large, repeatable effect was detected in six field experiments, on chromosome 3A (QW.aww-3A) and accounted for up to 52 percent of genetic variance for this trait. QW.aww-3A was validated under glasshouse conditions in a recombinant inbred line population from the same cross. The genetic basis of time to ear emergence in this population will aid breeders' understanding of phenological adaptation to the local environment. Novel loci identified for flag leaf glaucousness and the wide phenotypic variation within the DH population offers considerable scope to investigate the impact and value of this trait for bread wheat production in southern Australia.
Collapse
Affiliation(s)
- Dion Bennett
- Australian Centre for Plant Functional Genomics, Waite Campus, University of Adelaide, PMB1, Glen Osmond, SA, 5064, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Adhikari TB, Jackson EW, Gurung S, Hansen JM, Bonman JM. Association mapping of quantitative resistance to Phaeosphaeria nodorum in spring wheat landraces from the USDA National Small Grains Collection. PHYTOPATHOLOGY 2011; 101:1301-10. [PMID: 21692647 DOI: 10.1094/phyto-03-11-0076] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Stagonospora nodorum blotch (SNB), caused by Phaeosphaeria nodorum, is a destructive disease of wheat (Triticum aestivum) found throughout the United States. Host resistance is the only economically feasible option for managing the disease; however, few SNB-resistant wheat cultivars are known to exist. In this study, we report findings from an association mapping (AM) of resistance to P. nodorum in 567 spring wheat landraces of diverse geographic origin. The accessions were evaluated for seedling resistance to P. nodorum in a greenhouse. Phenotypic data and 625 polymorphic diversity array technology (DArT) markers have been used for linkage disequilibrium (LD) and association analyses. The results showed that seven DArT markers on five chromosomes (2D, 3B, 5B, 6A, and 7A) were significantly associated with resistance to P. nodorum. Genetic regions on 2D, 3B, and 5B correspond to previously mapped quantitative trait loci (QTL) conferring resistance to P. nodorum whereas the remaining QTL appeared to be novel. These results demonstrate that the use of AM is an effective method for identifying new genomic regions associated with resistance to P. nodorum in spring wheat landraces. Additionally, the novel resistance found in this study could be useful in wheat breeding aimed at controlling SNB.
Collapse
Affiliation(s)
- Tika B Adhikari
- Department of Plant Pathology, North Dakota State University, Frago, ND, USA.
| | | | | | | | | |
Collapse
|
204
|
Oliver RE, Jellen EN, Ladizinsky G, Korol AB, Kilian A, Beard JL, Dumlupinar Z, Wisniewski-Morehead NH, Svedin E, Coon M, Redman RR, Maughan PJ, Obert DE, Jackson EW. New Diversity Arrays Technology (DArT) markers for tetraploid oat (Avena magna Murphy et Terrell) provide the first complete oat linkage map and markers linked to domestication genes from hexaploid A. sativa L. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 123:1159-71. [PMID: 21805339 DOI: 10.1007/s00122-011-1656-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 07/09/2011] [Indexed: 05/22/2023]
Abstract
Nutritional benefits of cultivated oat (Avena sativa L., 2n = 6x = 42, AACCDD) are well recognized; however, seed protein levels are modest and resources for genetic improvement are scarce. The wild tetraploid, A. magna Murphy et Terrell (syn A. maroccana Gdgr., 2n = 4x = 28, CCDD), which contains approximately 31% seed protein, was hybridized with cultivated oat to produce a domesticated A. magna. Wild and cultivated accessions were crossed to generate a recombinant inbred line (RIL) population. Although these materials could be used to develop domesticated, high-protein oat, mapping and quantitative trait loci introgression is hindered by a near absence of genetic markers. Objectives of this study were to develop high-throughput, A. magna-specific markers; generate a genetic linkage map based on the A. magna RIL population; and map genes controlling oat domestication. A Diversity Arrays Technology (DArT) array derived from 10 A. magna genotypes was used to generate 2,688 genome-specific probes. These, with 12,672 additional oat clones, produced 2,349 polymorphic markers, including 498 (21.2%) from A. magna arrays and 1,851 (78.8%) from other Avena libraries. Linkage analysis included 974 DArT markers, 26 microsatellites, 13 SNPs, and 4 phenotypic markers, and resulted in a 14-linkage-group map. Marker-to-marker correlation coefficient analysis allowed classification of shared markers as unique or redundant, and putative linkage-group-to-genome anchoring. Results of this study provide for the first time a collection of high-throughput tetraploid oat markers and a comprehensive map of the genome, providing insights to the genome ancestry of oat and affording a resource for study of oat domestication, gene transfer, and comparative genomics.
Collapse
Affiliation(s)
- R E Oliver
- USDA-ARS Small Grains and Potato Germplasm Research Unit, Aberdeen, ID, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Sorrells ME, Gustafson JP, Somers D, Chao S, Benscher D, Guedira-Brown G, Huttner E, Kilian A, McGuire PE, Ross K, Tanaka J, Wenzl P, Williams K, Qualset CO. Reconstruction of the synthetic W7984 x Opata M85 wheat reference population. Genome 2011; 54:875-82. [PMID: 21999208 DOI: 10.1139/g11-054] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reference populations are valuable resources in genetics studies for determining marker order, marker selection, trait mapping, construction of large-insert libraries, cross-referencing marker platforms, and genome sequencing. Reference populations can be propagated indefinitely, they are polymorphic and have normal segregation. Described are two new reference populations who share the same parents of the original wheat reference population Synthetic W7984 (Altar84/ Aegilops tauschii (219) CIGM86.940) x Opata M85, an F(1)-derived doubled haploid population (SynOpDH) of 215 inbred lines and a recombinant inbred population (SynOpRIL) of 2039 F(6) lines derived by single-plant self-pollinations. A linkage map was constructed for the SynOpDH population using 1446 markers. In addition, a core set of 42 SSR markers was genotyped on SynOpRIL. A new approach to identifying a core set of markers used a step-wise selection protocol based on polymorphism, uniform chromosome distribution, and reliability to create nested sets starting with one marker per chromosome, followed by two, four, and six. It is suggested that researchers use these markers as anchors for all future mapping projects to facilitate cross-referencing markers and chromosome locations. To enhance this public resource, researchers are strongly urged to validate line identities and deposit their data in GrainGenes so that others can benefit from the accumulated information.
Collapse
Affiliation(s)
- Mark E Sorrells
- Cornell University, Department of Plant Breeding and Genetics, Emerson Hall, Ithaca, NY 14853, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Sliwka J, Jakuczun H, Chmielarz M, Hara-Skrzypiec A, Tomczyńska I, Kilian A, Zimnoch-Guzowska E. A resistance gene against potato late blight originating from Solanum × michoacanum maps to potato chromosome VII. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011. [PMID: 21987281 DOI: 10.1007/s00122‐011‐1715‐4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Solanum × michoacanum (Bitter.) Rydb. is a diploid, 1 EBN (Endosperm Balance Number) nothospecies, a relative of potato originating from the area of Morelia in Michoacán State of Mexico that is believed to be a natural hybrid of S. bulbocastanum × S. pinnatisectum. Both parental species and S. michoacanum have been described as sources of resistance to Phytophthora infestans (Mont.) de Bary. The gene for resistance to potato late blight, Rpi-mch1, originating from S. michoacanum was mapped to the chromosome VII of the potato genome. It confers high level of resistance since the plants possessing it showed only small necrotic lesions or no symptoms of the P. infestans infection and we could ascribe over 80% of variance observed in the late blight resistance test of the mapping population to the effect of the closest marker. Its localization on chromosome VII may correspond to the localization of the Rpi1 gene from S. pinnatisectum. When mapping Rpi-mch1, one of the first genetic maps made of 798 Diversity Array Technology (DArT) markers of a plant species from the Solanum genus and the first map of S. michoacanum, a 1EBN potato species was constructed. Particular chromosomes were identified using 48 sequence-specific PCR markers, originating mostly from the Tomato-EXPEN 2000 linkage map (SGN), but also from other sources. Recently, the first DArT linkage map of 2 EBN species Solanum phureja has been published and it shares 197 DArT markers with map obtained in this study, 88% of which are in the concordant positions.
Collapse
Affiliation(s)
- Jadwiga Sliwka
- Plant Breeding and Acclimatization Institute-National Research Institute, Młochów Research Centre, Platanowa 19, 05-831, Młochów, Poland.
| | | | | | | | | | | | | |
Collapse
|
207
|
Risser P, Ebmeyer E, Korzun V, Hartl L, Miedaner T. Quantitative trait loci for adult-plant resistance to Mycosphaerella graminicola in two winter wheat populations. PHYTOPATHOLOGY 2011; 101:1209-1216. [PMID: 21635143 DOI: 10.1094/phyto-08-10-0203] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Septoria tritici blotch (STB) is one of the most important leaf spot diseases in wheat worldwide. The goal of this study was to detect chromosomal regions for adult-plant resistance in large winter wheat populations to STB. Inoculation by two isolates with virulence to Stb6 and Stb15, both present in the parents, was performed and STB severity was visually scored plotwise as percent coverage of flag leaves with pycnidia-bearing lesions. 'Florett'/'Biscay' and 'Tuareg'/'Biscay', each comprising a cross of a resistant and a susceptible cultivar, with population sizes of 316 and 269 F(7:8) recombinant inbred lines, respectively, were phenotyped across four and five environments and mapped with amplified fragment length polymorphism, diversity array technology, and simple sequence repeat markers covering polymorphic regions of ≈1,340 centimorgans. Phenotypic data revealed significant (P < 0.01) genotypic differentiation for STB, heading date, and plant height. Entry-mean heritabilities (h(2)) for STB were 0.73 for 'Florett'/'Biscay' and 0.38 for 'Tuareg'/'Biscay'. All correlations between STB and heading date as well as between STB and plant height were low (r = -0.13 to -0.20). In quantitative trait loci (QTL) analysis, nine and six QTL were found for STB ratings explaining, together, 55 and 51% of phenotypic variation in 'Florett'/'Biscay' and 'Tuareg'/'Biscay', respectively. Genotype-environment and QTL-environment interactions had a large impact. Two major QTL were detected consistently across environments on chromosomes 3B and 6D from 'Florett' and chromosomes 4B and 6B from 'Tuareg', each explaining 12 to 17% of normalized adjusted phenotypic variance. These results indicate that adult-plant resistance to STB in both mapping populations was of a quantitative nature.
Collapse
Affiliation(s)
- P Risser
- Universitat Hohenheim, State Plant Breeding Institute, Stuttgart, Germany
| | | | | | | | | |
Collapse
|
208
|
Naruoka Y, Talbert LE, Lanning SP, Blake NK, Martin JM, Sherman JD. Identification of quantitative trait loci for productive tiller number and its relationship to agronomic traits in spring wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 123:1043-53. [PMID: 21751014 DOI: 10.1007/s00122-011-1646-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 06/22/2011] [Indexed: 05/20/2023]
Abstract
Productive tiller number (PTN), defined as the number of tillers that produce spikes and seeds, is a key component of grain yield in wheat. Spring wheat cultivars in the northern Great Plains of North America differ in PTN. The objectives of this study were (1) to determine the relationship of PTN to agronomic traits using recombinant inbred line (RIL) populations derived from crosses Reeder/Conan, McNeal/Thatcher and Reeder/McNeal grown under a range of environments, and (2) to identify and validate quantitative trait loci (QTL) associated with high PTN. Correlation between PTN and plot weight ranged from r = 0.4-0.6 among the populations based on combined means over years, and was positive in every environment for all crosses (P < 0.05). A genetic map generated for the Reeder/Conan RIL allowed identification of a QTL for PTN consistent over environments, located on chromosome 6B. The QTL on chromosome 6B (QTn.mst-6B) explained 9-17% of the variation of PTN and co-segregated with a QTL for yield in the Reeder/Conan RIL. QTn.mst-6B was validated by single marker analysis in the McNeal/Thatcher RIL, McNeal/Reeder RIL, and a set of near isogenic line (NIL) developed for QTn.mst-6B. The allele for high PTN significantly increased PTN by 8.7, 4, and 13% in the McNeal/Reeder RIL, McNeal/Thatcher RIL and Choteau/Reeder NIL, respectively. The allele for high PTN also had a significant positive effect on plot weight in the McNeal/Reeder RIL. Our results suggest that high PTN, controlled to a significant extent by QTn.mst-6B, contributed to increased yield potential over a range of environmental conditions. QTn.mst-6B may be useful for improving spring wheat in the northern Great Plains of North America and similar environments.
Collapse
Affiliation(s)
- Y Naruoka
- Plant Sciences and Plant Pathology Department, Montana State University, Bozeman, MT 59717, USA
| | | | | | | | | | | |
Collapse
|
209
|
Gurung S, Mamidi S, Bonman JM, Jackson EW, del Río LE, Acevedo M, Mergoum M, Adhikari TB. Identification of novel genomic regions associated with resistance to Pyrenophora tritici-repentis races 1 and 5 in spring wheat landraces using association analysis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 123:1029-41. [PMID: 21744229 DOI: 10.1007/s00122-011-1645-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 06/22/2011] [Indexed: 05/07/2023]
Abstract
Tan spot, caused by Pyrenophora tritici-repentis, is a major foliar disease of wheat worldwide. Host plant resistance is the best strategy to manage this disease. Traditionally, bi-parental mapping populations have been used to identify and map quantitative trait loci (QTL) affecting tan spot resistance in wheat. The association mapping (AM) could be an alternative approach to identify QTL based on linkage disequilibrium (LD) within a diverse germplasm set. In this study, we assessed resistance to P. tritici-repentis races 1 and 5 in 567 spring wheat landraces from the USDA-ARS National Small Grains Collection (NSGC). Using 832 diversity array technology (DArT) markers, QTL for resistance to P. tritici-repentis races 1 and 5 were identified. A linear model with principal components suggests that at least seven and three DArT markers were significantly associated with resistance to P. tritici-repentis races 1 and 5, respectively. The DArT markers associated with resistance to race 1 were detected on chromosomes 1D, 2A, 2B, 2D, 4A, 5B, and 7D and explained 1.3-3.1% of the phenotypic variance, while markers associated with resistance to race 5 were distributed on 2D, 6A and 7D, and explained 2.2-5.9% of the phenotypic variance. Some of the genomic regions identified in this study correspond to previously identified loci responsible for resistance to P. tritici-repentis, offering validation for our AM approach. Other regions identified were novel and could possess genes useful for resistance breeding. Some DArT markers associated with resistance to race 1 also were localized in the same regions of wheat chromosomes where QTL for resistance to yellow rust, leaf rust and powdery mildew, have been mapped previously. This study demonstrates that AM can be a useful approach to identify and map novel genomic regions involved in resistance to P. tritici-repentis.
Collapse
Affiliation(s)
- S Gurung
- Department of Plant Pathology, North Dakota State University, NDSU Dept. 7660, P.O. Box 6050, Fargo, ND 58108-6050, USA
| | | | | | | | | | | | | | | |
Collapse
|
210
|
Paux E, Sourdille P, Mackay I, Feuillet C. Sequence-based marker development in wheat: advances and applications to breeding. Biotechnol Adv 2011; 30:1071-88. [PMID: 21989506 DOI: 10.1016/j.biotechadv.2011.09.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 08/24/2011] [Accepted: 09/25/2011] [Indexed: 01/04/2023]
Abstract
In the past two decades, the wheat community has made remarkable progress in developing molecular resources for breeding. A wide variety of molecular tools has been established to accelerate genetic and physical mapping for facilitating the efficient identification of molecular markers linked to genes and QTL of agronomic interest. Already, wheat breeders are benefiting from a wide range of techniques to follow the introgression of the most favorable alleles in elite material and develop improved varieties. Breeders soon will be able to take advantage of new technological developments based on Next Generation Sequencing. In this paper, we review the molecular toolbox available to wheat scientists and breeders for performing fundamental genomic studies and breeding. Special emphasis is given on the production and detection of single nucleotide polymorphisms (SNPs) that should enable a step change in saturating the wheat genome for more efficient genetic studies and for the development of new selection methods. The perspectives offered by the access to an ordered full genome sequence for further marker development and enhanced precision breeding is also discussed. Finally, we discuss the advantages and limitations of marker-assisted selection for supporting wheat improvement.
Collapse
Affiliation(s)
- Etienne Paux
- INRA-UBP 1095, Genetics Diversity and Ecophysiology of Cereals, 234 Avenue du Brézet, Clermont-Ferrand, France
| | | | | | | |
Collapse
|
211
|
Le Couviour F, Faure S, Poupard B, Flodrops Y, Dubreuil P, Praud S. Analysis of genetic structure in a panel of elite wheat varieties and relevance for association mapping. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 123:715-27. [PMID: 21667038 DOI: 10.1007/s00122-011-1621-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 05/18/2011] [Indexed: 05/08/2023]
Abstract
During the last decades, with the intensification of selection and breeding using crosses between varieties, a very complex genetic structure was shaped in the elite wheat germplasm. However, precise description of this structure with panels and collections is becoming more and more crucial with the development of resource management and new statistical tools for mapping genetic determinants (e.g. association studies). In this study, we investigated the genetic structure of 195 Western European elite wheat varieties using the recent development of high throughput screening methods for molecular markers. After observing that both microsatellites and Diversity Array Technology markers are efficient to estimate the structure of the panel, we used different complementary approaches (Genetic distances, principal component analysis) that showed that the varieties are separated by geographical origin (France, Germany and UK) and also by breeding history, confirming the impact of plant breeding on the wheat germplasm structure. Moreover, by analysing three phenotypic traits presenting significant average differences across groups (plant height, heading date and awnedness), and by using markers linked to major genes for these traits (Ppd-D1, Rht-B1, Rht-D1 and B1), we showed that for each trait, there is a specific optimal Q matrix to use as a covariate in association tests.
Collapse
|
212
|
Tabib Ghaffary SM, Robert O, Laurent V, Lonnet P, Margalé E, van der Lee TAJ, Visser RGF, Kema GHJ. Genetic analysis of resistance to septoria tritici blotch in the French winter wheat cultivars Balance and Apache. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 123:741-54. [PMID: 21655994 PMCID: PMC3155673 DOI: 10.1007/s00122-011-1623-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 05/18/2011] [Indexed: 05/21/2023]
Abstract
The ascomycete Mycosphaerella graminicola is the causal agent of septoria tritici blotch (STB), one of the most destructive foliar diseases of bread and durum wheat globally, particularly in temperate humid areas. A screening of the French bread wheat cultivars Apache and Balance with 30 M. graminicola isolates revealed a pattern of resistant responses that suggested the presence of new genes for STB resistance. Quantitative trait loci (QTL) analysis of a doubled haploid (DH) population with five M. graminicola isolates in the seedling stage identified four QTLs on chromosomes 3AS, 1BS, 6DS and 7DS, and occasionally on 7DL. The QTL on chromosome 6DS flanked by SSR markers Xgpw5176 and Xgpw3087 is a novel QTL that now can be designated as Stb18. The QTLs on chromosomes 3AS and 1BS most likely represent Stb6 and Stb11, respectively, and the QTLs on chromosome 7DS are most probably identical with Stb4 and Stb5. However, the QTL identified on chromosome 7DL is expected to be a new Stb gene that still needs further characterization. Multiple isolates were used and show that not all isolates identify all QTLs, which clearly demonstrates the specificity in the M. graminicola-wheat pathosystem. QTL analyses were performed with various disease parameters. The development of asexual fructifications (pycnidia) in the characteristic necrotic blotches of STB, designated as parameter P, identified the maximum number of QTLs. All other parameters identified fewer but not different QTLs. The segregation of multiple QTLs in the Apache/Balance DH population enabled the identification of DH lines with single QTLs and multiple QTL combinations. Analyses of the marker data of these DH lines clearly demonstrated the positive effect of pyramiding QTLs to broaden resistance spectra as well as epistatic and additive interactions between these QTLs. Phenotyping of the Apache/Balance DH population in the field confirmed the presence of the QTLs that were identified in the seedling stage, but Stb18 was inconsistently expressed and might be particularly effective in young plants. In contrast, an additional QTL for STB resistance was identified on chromosome 2DS that is exclusively and consistently expressed in mature plants over locations and time, but it was also strongly related with earliness, tallness as well as resistance to Fusarium head blight. Although to date no Stb gene has been reported on chromosome 2D, the data provide evidence that this QTL is only indirectly related to STB resistance. This study shows that detailed genetic analysis of contemporary commercial bread wheat cultivars can unveil novel Stb genes that can be readily applied in marker-assisted breeding programs.
Collapse
Affiliation(s)
- Seyed Mahmod Tabib Ghaffary
- Plant Research International, Biointeractions and Plant Health, P.O. Box 16, 6700 AA Wageningen, The Netherlands
- Graduate School of Experimental Plant Sciences, Wageningen, The Netherlands
| | - Olivier Robert
- Bioplante, 3 Rue Florimond Desprez, BP41, 59242 Cappelle-en-Pévèle, France
| | - Valerie Laurent
- Bioplante, 3 Rue Florimond Desprez, BP41, 59242 Cappelle-en-Pévèle, France
| | - Philippe Lonnet
- Florimond Desprez, 3 Rue Florimond Desprez, BP41, 59242 Cappelle-en-Pévèle, France
| | - Eric Margalé
- Serasem, 60, Rue Léon Beauchamp, 59930 La Chapelle d’Armentières, France
| | - Theo A. J. van der Lee
- Plant Research International, Biointeractions and Plant Health, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Richard G. F. Visser
- Laboratory of Plant Breeding, Wageningen University, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Gert H. J. Kema
- Plant Research International, Biointeractions and Plant Health, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
213
|
Mixed model association mapping for fusarium head blight resistance in tunisian-derived durum wheat populations. G3-GENES GENOMES GENETICS 2011; 1:209-18. [PMID: 22384332 PMCID: PMC3276138 DOI: 10.1534/g3.111.000489] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 06/27/2011] [Indexed: 11/23/2022]
Abstract
Sources of resistance to Fusarium head blight (FHB) in wheat are mostly restricted to Chinese hexaploid genotypes. The effort to incorporate the resistance from hexaploid wheat or wild relatives to cultivated durum wheat (Triticum turgidum L. var. durum Desf.) have not been successful in providing resistance to the level of the donor parents. In this study, we used 171 BC1F6 and 169 BC1F7 lines derived from crossing of four Tunisian tetraploid sources of resistance (Tun7, Tun18, Tun34, Tun36) with durum cultivars ‘Ben,’ ‘Maier,’ ‘Lebsock,’ and ‘Mountrail’ for association studies. The Tun18 and Tun7 FHB resistances were found to be comparable to the best hexaploid wheat sources. A new significant QTL for FHB resistance was identified on the long arm of chromosome 5B (Qfhs.ndsu-5BL) with both association and classical QTL mapping analysis. Linkage disequilibrium (LD) blocks extending up to 40 cM were evident in these populations. The linear mixed model considering the structure (Q or P) and the kinship matrix (KT) estimated by restricted maximum likelihood (REML) was identified as the best for association studies in a mixture of wheat populations from a breeding program. The results of association mapping analysis also demonstrated a region on the short arm of chromosome 3B as potentially linked to FHB resistance. This region is in proximity of major FHB resistance gene fhb1 reported in hexaploid wheat. A possibility of having susceptibility or suppressor of resistance gene(s) on durum wheat chromosome 2A was further confirmed in this material, explaining the problem in developing resistant genotypes without counter selection against this region.
Collapse
|
214
|
Trebbi D, Maccaferri M, de Heer P, Sørensen A, Giuliani S, Salvi S, Sanguineti MC, Massi A, van der Vossen EAG, Tuberosa R. High-throughput SNP discovery and genotyping in durum wheat (Triticum durum Desf.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 123:555-69. [PMID: 21611761 DOI: 10.1007/s00122-011-1607-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Accepted: 04/26/2011] [Indexed: 05/07/2023]
Abstract
We describe the application of complexity reduction of polymorphic sequences (CRoPS(®)) technology for the discovery of SNP markers in tetraploid durum wheat (Triticum durum Desf.). A next-generation sequencing experiment was carried out on reduced representation libraries obtained from four durum cultivars. SNP validation and minor allele frequency (MAF) estimate were carried out on a panel of 12 cultivars, and the feasibility of genotyping these SNPs in segregating populations was tested using the Illumina Golden Gate (GG) technology. A total of 2,659 SNPs were identified on 1,206 consensus sequences. Among the 768 SNPs that were chosen irrespective of their genomic repetitiveness level and assayed on the Illumina BeadExpress genotyping system, 275 (35.8%) SNPs matched the expected genotypes observed in the SNP discovery phase. MAF data indicated that the overall SNP informativeness was high: a total of 196 (71.3%) SNPs had MAF >0.2, of which 76 (27.6%) showed MAF >0.4. Of these SNPs, 157 were mapped in one of two mapping populations (Meridiano × Claudio and Colosseo × Lloyd) and integrated into a common genetic map. Despite the relatively low genotyping efficiency of the GG assay, the validated CRoPS-derived SNPs showed valuable features for genomics and breeding applications such as a uniform distribution across the wheat genome, a prevailing single-locus codominant nature and a high polymorphism. Here, we report a new set of 275 highly robust genome-wide Triticum SNPs that are readily available for breeding purposes.
Collapse
Affiliation(s)
- Daniele Trebbi
- Keygene NV, Applied Research, Agro Business Park 90, 6708, PW, Wageningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
215
|
Alheit KV, Reif JC, Maurer HP, Hahn V, Weissmann EA, Miedaner T, Würschum T. Detection of segregation distortion loci in triticale (x Triticosecale Wittmack) based on a high-density DArT marker consensus genetic linkage map. BMC Genomics 2011; 12:380. [PMID: 21798064 PMCID: PMC3156787 DOI: 10.1186/1471-2164-12-380] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 07/28/2011] [Indexed: 11/10/2022] Open
Abstract
Background Triticale is adapted to a wide range of abiotic stress conditions, is an important high-quality feed stock and produces similar grain yield but more biomass compared to other crops. Modern genomic approaches aimed at enhancing breeding progress in cereals require high-quality genetic linkage maps. Consensus maps are genetic maps that are created by a joint analysis of the data from several segregating populations and different approaches are available for their construction. The phenomenon that alleles at a locus deviate from the Mendelian expectation has been defined as segregation distortion. The study of segregation distortion is of particular interest in doubled haploid (DH) populations due to the selection pressure exerted on the plants during the process of their establishment. Results The final consensus map, constructed out of six segregating populations derived from nine parental lines, incorporated 2555 DArT markers mapped to 2602 loci (1929 unique). The map spanned 2309.9 cM with an average number of 123.9 loci per chromosome and an average marker density of one unique locus every 1.2 cM. The R genome showed the highest marker coverage followed by the B genome and the A genome. In general, locus order was well maintained between the consensus linkage map and the component maps. However, we observed several groups of loci for which the colinearity was slightly uneven. Among the 2602 loci mapped on the consensus map, 886 showed distorted segregation in at least one of the individual mapping populations. In several DH populations derived by androgenesis, we found chromosomes (2B, 3B, 1R, 2R, 4R and 7R) containing regions where markers exhibited a distorted segregation pattern. In addition, we observed evidence for segregation distortion between pairs of loci caused either by a predominance of parental or recombinant genotypes. Conclusions We have constructed a reliable, high-density DArT marker consensus genetic linkage map as a basis for genomic approaches in triticale research and breeding, for example for multiple-line cross QTL mapping experiments. The results of our study exemplify the tremendous impact of different DH production techniques on allele frequencies and segregation distortion covering whole chromosomes.
Collapse
Affiliation(s)
- Katharina V Alheit
- State Plant Breeding Institute, University of Hohenheim, 70593 Stuttgart, Germany
| | | | | | | | | | | | | |
Collapse
|
216
|
Wang YY, Sun XY, Zhao Y, Kong FM, Guo Y, Zhang GZ, Pu YY, Wu K, Li SS. Enrichment of a common wheat genetic map and QTL mapping for fatty acid content in grain. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:65-75. [PMID: 21600399 DOI: 10.1016/j.plantsci.2011.03.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 03/22/2011] [Accepted: 03/23/2011] [Indexed: 05/07/2023]
Abstract
DArT and SSR markers were used to saturate and improve a previous genetic map of RILs derived from the cross Chuan35050 × Shannong483. The new map comprised 719 loci, 561 of which were located on specific chromosomes, giving a total map length of 4008.4 cM; the rest 158 loci were mapped to the most likely intervals. The average chromosome length was 190.9 cM and the marker density was 7.15 cM per marker interval. Among the 719 loci, the majority of marker loci were DArTs (361); the rest included 170 SSRs, 100 EST-SSRs, and 88 other molecular and biochemical loci. QTL mapping for fatty acid content in wheat grain was conducted in this study. Forty QTLs were detected in different environments, with single QTL explaining 3.6-58.1% of the phenotypic variations. These QTLs were distributed on 16 chromosomes. Twenty-two QTLs showed positive additive effects, with Chuan35050 increasing the QTL effects, whereas 18 QTLs were negative with increasing effects from Shannong483. Six sets of co-located QTLs for different traits occurred on chromosomes 1B, 1D, 2D, 5D, and 6B.
Collapse
Affiliation(s)
- Ying-ying Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Supriya A, Senthilvel S, Nepolean T, Eshwar K, Rajaram V, Shaw R, Hash CT, Kilian A, Yadav RC, Narasu ML. Development of a molecular linkage map of pearl millet integrating DArT and SSR markers. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 123:239-50. [PMID: 21476042 DOI: 10.1007/s00122-011-1580-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 03/21/2011] [Indexed: 05/09/2023]
Abstract
Pearl millet is an important component of food security in the semi-arid tropics and is assuming greater importance in the context of changing climate and increasing demand for highly nutritious food and feed. Molecular tools have been developed and applied for pearl millet on a limited scale. However, the existing tool kit needs to be strengthened further for its routine use in applied breeding programs. Here, we report enrichment of the pearl millet molecular linkage map by exploiting low-cost and high-throughput Diversity Arrays Technology (DArT) markers. Genomic representation from 95 diverse genotypes was used to develop a DArT array with circa 7,000 clones following PstI/BanII complexity reduction. This array was used to genotype a set of 24 diverse pearl millet inbreds and 574 polymorphic DArT markers were identified. The genetic relationships among the inbred lines as revealed by DArT genotyping were in complete agreement with the available pedigree data. Further, a mapping population of 140 F(7) Recombinant Inbred Lines (RILs) from cross H 77/833-2 × PRLT 2/89-33 was genotyped and an improved linkage map was constructed by integrating DArT and SSR marker data. This map contains 321 loci (258 DArTs and 63 SSRs) and spans 1148 cM with an average adjacent-marker interval length of 3.7 cM. The length of individual linkage groups (LGs) ranged from 78 cM (LG 3) to 370 cM (LG 2). This better-saturated map provides improved genome coverage and will be useful for genetic analyses of important quantitative traits. This DArT platform will also permit cost-effective background selection in marker-assisted backcrossing programs as well as facilitate comparative genomics and genome organization studies once DNA sequences of polymorphic DArT clones are available.
Collapse
Affiliation(s)
- A Supriya
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Hyderabad, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Bordes J, Ravel C, Le Gouis J, Lapierre A, Charmet G, Balfourier F. Use of a global wheat core collection for association analysis of flour and dough quality traits. J Cereal Sci 2011. [DOI: 10.1016/j.jcs.2011.03.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
219
|
YANG SHIYING, SAXENA RACHITK, KULWAL PAWANL, ASH GAVINJ, DUBEY ANUJA, HARPER JOHNDI, UPADHYAYA HARID, GOTHALWAL RAGINI, KILIAN ANDRZEJ, VARSHNEY RAJEEVK. The first genetic map of pigeon pea based on diversity arrays technology (DArT) markers. J Genet 2011; 90:103-9. [DOI: 10.1007/s12041-011-0050-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
220
|
Raman H, Stodart B, Ryan PR, Delhaize E, Emebiri L, Raman R, Coombes N, Milgate A. Genome-wide association analyses of common wheat (Triticum aestivum L.) germplasm identifies multiple loci for aluminium resistance. Genome 2011; 53:957-66. [PMID: 21076511 DOI: 10.1139/g10-058] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aluminium (Al3+) toxicity restricts productivity and profitability of wheat (Triticum aestivum L.) crops grown on acid soils worldwide. Continued gains will be obtained by identifying superior alleles and novel Al3+ resistance loci that can be incorporated into breeding programs. We used association mapping to identify genomic regions associated with Al3+ resistance using 1055 accessions of common wheat from different geographic regions of the world and 178 polymorphic diversity arrays technology (DArT) markers. Bayesian analyses based on genetic distance matrices classified these accessions into 12 subgroups. Genome-wide association analyses detected markers that were significantly associated with Al3+ resistance on chromosomes 1A, 1B, 2A, 2B, 2D, 3A, 3B, 4A, 4B, 4D, 5B, 6A, 6B, 7A, and 7B. Some of these genomic regions correspond to previously identified loci for Al3+ resistance, whereas others appear to be novel. Among the markers targeting TaALMT1 (the major Al3+-resistance gene located on chromosome 4D), those that detected alleles in the promoter explained most of the phenotypic variance for Al3+ resistance, which is consistent with this region controlling the level of TaALMT1 expression. These results demonstrate that genome-wide association mapping cannot only confirm known Al3+-resistance loci, such as those on chromosomes 4D and 4B, but they also highlight the utility of this technique in identifying novel resistance loci.
Collapse
Affiliation(s)
- Harsh Raman
- EH Graham Centre for Agricultural Innovation, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW 2650, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
221
|
Bogard M, Jourdan M, Allard V, Martre P, Perretant MR, Ravel C, Heumez E, Orford S, Snape J, Griffiths S, Gaju O, Foulkes J, Le Gouis J. Anthesis date mainly explained correlations between post-anthesis leaf senescence, grain yield, and grain protein concentration in a winter wheat population segregating for flowering time QTLs. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:3621-36. [PMID: 21414962 DOI: 10.1093/jxb/err061] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The genetic variability of the duration of leaf senescence during grain filling has been shown to affect both carbon and nitrogen acquisition. In particular, maintaining green leaves during grain filling possibly leads to increased grain yield, but its associated effect on grain protein concentration has not been studied. The aim of this study was to dissect the genetic factors contributing to correlations observed at the phenotypic level between leaf senescence during grain filling, grain protein concentration, and grain yield in winter wheat. With this aim in view, an analysis of quantitative trait locus (QTL) co-locations for these traits was carried out on a doubled haploid mapping population grown in a large multienvironment trial network. Pleiotropic QTLs affecting leaf senescence and grain yield and/or grain protein concentration were identified on chromosomes 2D, 2A, and 7D. These were associated with QTLs for anthesis date, showing that the phenotypic correlations with leaf senescence were mainly explained by flowering time in this wheat population. Study of the allelic effects of these pleiotropic QTLs showed that delaying leaf senescence was associated with increased grain yield or grain protein concentration depending on the environments considered. It is proposed that this differential effect of delaying leaf senescence on grain yield and grain protein concentration might be related to the nitrogen availability during the post-anthesis period. It is concluded that the benefit of using leaf senescence as a selection criterion to improve grain protein concentration in wheat cultivars may be limited and would largely depend on the targeted environments, particularly on their nitrogen availability during the post-anthesis period.
Collapse
Affiliation(s)
- Matthieu Bogard
- INRA, UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, 234 Avenue du Brézet, F-63100 Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Niu L, Mantri N, Li CG, Xue C, Pang E. Array-based techniques for fingerprinting medicinal herbs. Chin Med 2011; 6:18. [PMID: 21592323 PMCID: PMC3121662 DOI: 10.1186/1749-8546-6-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 05/18/2011] [Indexed: 11/10/2022] Open
Abstract
Poor quality control of medicinal herbs has led to instances of toxicity, poisoning and even deaths. The fundamental step in quality control of herbal medicine is accurate identification of herbs. Array-based techniques have recently been adapted to authenticate or identify herbal plants. This article reviews the current array-based techniques, eg oligonucleotides microarrays, gene-based probe microarrays, Suppression Subtractive Hybridization (SSH)-based arrays, Diversity Array Technology (DArT) and Subtracted Diversity Array (SDA). We further compare these techniques according to important parameters such as markers, polymorphism rates, restriction enzymes and sample type. The applicability of the array-based methods for fingerprinting depends on the availability of genomics and genetics of the species to be fingerprinted. For the species with few genome sequence information but high polymorphism rates, SDA techniques are particularly recommended because they require less labour and lower material cost.
Collapse
Affiliation(s)
- Linhai Niu
- School of Applied Sciences, Health Innovations Research Institute, RMIT University, Melbourne, Victoria 3000, Australia
| | - Nitin Mantri
- School of Applied Sciences, Health Innovations Research Institute, RMIT University, Melbourne, Victoria 3000, Australia
| | - Chun Guang Li
- Division of Chinese Medicine, School of Health Sciences, Health Innovations Research Institute, RMIT University, Melbourne, Victoria 3000, Australia
| | - Charlie Xue
- Division of Chinese Medicine, School of Health Sciences, Health Innovations Research Institute, RMIT University, Melbourne, Victoria 3000, Australia
| | - Edwin Pang
- School of Applied Sciences, Health Innovations Research Institute, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
223
|
Zhang L, Liu D, Guo X, Yang W, Sun J, Wang D, Sourdille P, Zhang A. Investigation of genetic diversity and population structure of common wheat cultivars in northern China using DArT markers. BMC Genet 2011; 12:42. [PMID: 21569312 PMCID: PMC3114777 DOI: 10.1186/1471-2156-12-42] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 05/11/2011] [Indexed: 11/30/2022] Open
Abstract
Background In order to help establish heterotic groups of Chinese northern wheat cultivars (lines), Diversity arrays technology (DArT) markers were used to investigate the genetic diversity and population structure of Chinese common wheat (Triticum aestivum L.). Results In total, 1637 of 7000 DArT markers were polymorphic and scored with high confidence among a collection of 111 lines composed mostly of cultivars and breeding lines from northern China. The polymorphism information content (PIC) of DArT markers ranged from 0.03 to 0.50, with an average of 0.40, with P > 80 (reliable markers). With principal-coordinates analysis (PCoA) of DArT data either from the whole genome or from the B-genome alone, all lines fell into one of two major groups reflecting 1RS/1BL type (1RS/1BL and non-1RS/1BL). Evidence of geographic clustering of genotypes was also observed using DArT markers from the A genome. Cluster analysis based on the unweighted pair-group method with algorithmic mean suggested the existence of two subgroups within the non-1RS/1BL group and four subgroups within the 1RS/1BL group. Furthermore, analysis of molecular variance (AMOVA) revealed highly significant (P < 0.001) genetic variance within and among subgroups and among groups. Conclusion These results provide valuable information for selecting crossing parents and establishing heterotic groups in the Chinese wheat-breeding program.
Collapse
Affiliation(s)
- LiYi Zhang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
224
|
Sayar-Turet M, Dreisigacker S, Braun HJ, Hede A, MacCormack R, Boyd LA. Genetic variation within and between winter wheat genotypes from Turkey, Kazakhstan, and Europe as determined by nucleotide-binding-site profiling. Genome 2011; 54:419-30. [PMID: 21534722 DOI: 10.1139/g11-008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The genetic diversity within wheat breeding programs across Turkey and Kazakhstan was compared with a selection of European cultivars that represented the genetic diversity across eight European countries and six decades of wheat breeding. To focus the measure of genetic diversity on that relevant to disease-resistant phenotypes, nucleotide-binding-site (NBS) profiling was used to detect polymorphisms associated with the NBS motifs found within the NBS--leucine-rich repeat (LRR) class of resistance (R) genes. Cereal-specific NBS primers, designed specifically to the conserved NBS motifs found within cereal R-genes, provided distinct NBS profiles. Although the genetic diversity associated with NBS motifs was only slightly higher within the Eastern wheat genotypes, the NBS profiles produced by Eastern and European wheat lines differed considerably. Structure analysis divided the wheat genotypes into four groups, which compared well with the origin of the wheat genotypes. The highest levels of genetic diversity were seen for the wheat genotypes from the Genetic Resource Collection held in Ankara, Turkey, as wheat genotypes within breeding programs were genetically more similar. The wheat genotypes from Kazakhstan were the most similar to the European cultivars, reflecting the significant number of eastern European cultivars used in the breeding program in Kazakhstan. In general, the NBS profiles suggested that NBS-LRR R-gene usage in winter wheat breeding in Turkey and Kazakhstan differed from that deployed in European cultivars.
Collapse
Affiliation(s)
- Muge Sayar-Turet
- Bogazici University, Department of Molecular Biology and Genetics, 34342, Bebek-Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
225
|
Howard EL, Whittock SP, Jakše J, Carling J, Matthews PD, Probasco G, Henning JA, Darby P, Cerenak A, Javornik B, Kilian A, Koutoulis A. High-throughput genotyping of hop (Humulus lupulus L.) utilising diversity arrays technology (DArT). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 122:1265-1280. [PMID: 21243330 DOI: 10.1007/s00122-011-1529-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 12/23/2010] [Indexed: 05/30/2023]
Abstract
Implementation of molecular methods in hop (Humulus lupulus L.) breeding is dependent on the availability of sizeable numbers of polymorphic markers and a comprehensive understanding of genetic variation. However, use of molecular marker technology is limited due to expense, time inefficiency, laborious methodology and dependence on DNA sequence information. Diversity arrays technology (DArT) is a high-throughput cost-effective method for the discovery of large numbers of quality polymorphic markers without reliance on DNA sequence information. This study is the first to utilise DArT for hop genotyping, identifying 730 polymorphic markers from 92 hop accessions. The marker quality was high and similar to the quality of DArT markers previously generated for other species; although percentage polymorphism and polymorphism information content (PIC) were lower than in previous studies deploying other marker systems in hop. Genetic relationships in hop illustrated by DArT in this study coincide with knowledge generated using alternate methods. Several statistical analyses separated the hop accessions into genetically differentiated North American and European groupings, with hybrids between the two groups clearly distinguishable. Levels of genetic diversity were similar in the North American and European groups, but higher in the hybrid group. The markers produced from this time and cost-efficient genotyping tool will be a valuable resource for numerous applications in hop breeding and genetics studies, such as mapping, marker-assisted selection, genetic identity testing, guidance in the maintenance of genetic diversity and the directed breeding of superior cultivars.
Collapse
Affiliation(s)
- E L Howard
- School of Plant Science, University of Tasmania, Hobart, TAS, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Badea A, Eudes F, Salmon D, Tuvesson S, Vrolijk A, Larsson CT, Caig V, Huttner E, Kilian A, Laroche A. Development and assessment of DArT markers in triticale. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 122:1547-60. [PMID: 21394532 DOI: 10.1007/s00122-011-1554-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Accepted: 02/12/2011] [Indexed: 05/16/2023]
Abstract
Triticale (X Triticosecale Wittm.) is a hybrid derived by crossing wheat (Triticum sp.) and rye (Secale sp.). Till date, only a limited number of simple sequence repeat (SSRs) markers have been used in triticale molecular analyses and there is a need to identify dedicated high-throughput molecular markers to better exploit this crop. The objective of this study was to develop and evaluate diversity arrays technology (DArT) markers in triticale. DArT marker technology offers a high level of multiplexing. Development of new markers from triticale accessions was combined with mining the large collection of previously developed markers in rye and wheat. Three genotyping arrays were used to analyze a collection of 144 triticale accessions. The polymorphism level ranged from 8.6 to 23.8% for wheat and rye DArT markers, respectively. Among the polymorphic markers, rye markers were the most abundant (3,109) followed by wheat (2,214) and triticale (719). The mean polymorphism information content values were 0.34 for rye DArT markers and 0.37 for those from triticale and wheat. High correlation was observed between similarity matrices derived from rye, triticale, wheat and combined marker sets, as well as for the cophenetic values matrices. Cluster analysis revealed genetic relationships among the accessions consistent with the agronomic and pedigree information available. The newly developed triticale DArT markers as well as those originated from rye and wheat provide high quality markers that can be used for diversity analyses and might be exploited in a range of molecular breeding and genomics applications in triticale.
Collapse
Affiliation(s)
- A Badea
- Agriculture and Agri-Food Canada, 5403-1st Avenue South, Lethbridge, Alberta, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Reddy UK, Rong JK, Nimmakayala P, Vajja G, Rahman MA, Yu J, Soliman KM, Heller-Uszynska K, Kilian A, Paterson AH. Use of diversity arrays technology markers for integration into a cotton reference map and anchoring to a recombinant inbred line map. Genome 2011; 54:349-59. [PMID: 21524184 DOI: 10.1139/g11-001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A diversity array technology (DArT) marker platform was developed for the cotton genome, to evaluate the use of DArT markers compared with AFLP markers in mapping and transferability across the mapping populations. We used a reference genetic map of tetraploid Gossypium L. that already contained ~5000 loci, which coalesced into 26 chromosomes, to anchor newly developed DArT and AFLP markers with the aim of further improving utility and map resolution. Our results indicated that the percentage of polymorphic DArT markers that could be genetically mapped (78.15%) was much higher than that of AFLP markers (22.28%). Sequence analysis of DArT markers indicated that a majority matched known expressed sequence tag (EST) sequences from tetraploid and diploid Gossypium species. A total of 794 Arabidopsis genes were homologous with various DArT marker sequences. Chromosomes 5(A), 7(A), 19(D), 23(D), and 24(D) had more Arabidopsis syntenic DArT markers than the other chromosomes. Anchoring DArT markers from the reference map to a recombinant inbred line (RIL) map indicated that DArT markers will speed the building of maps in de novo RIL populations.
Collapse
Affiliation(s)
- Umesh K Reddy
- Department of Biology and Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
228
|
Bartoš J, Sandve SR, Kölliker R, Kopecký D, Christelová P, Stočes S, Ostrem L, Larsen A, Kilian A, Rognli OA, Doležel J. Genetic mapping of DArT markers in the Festuca-Lolium complex and their use in freezing tolerance association analysis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 122:1133-47. [PMID: 21212931 DOI: 10.1007/s00122-010-1518-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 12/18/2010] [Indexed: 05/12/2023]
Abstract
Species belonging to the Festuca-Lolium complex are important forage and turf species and as such, have been studied intensively. However, their out-crossing nature and limited availability of molecular markers make genetic studies difficult. Here, we report on saturation of F. pratensis and L. multiflorum genetic maps using Diversity Array Technology (DArT) markers and the DArTFest array.The 530 and 149 DArT markers were placed on genetic maps of L. multiflorum and F. pratensis, respectively, with overlap of 20 markers, which mapped in both species. The markers were sequenced and comparative sequence analysis was performed between L. multiflorum, rice and Brachypodium. The utility of the DArTFest array was then tested on a Festulolium population FuRs0357 in an integrated analysis using the DArT marker map positions to study associations between markers and freezing tolerance. Ninety six markers were significantly associated with freezing tolerance and five of these markers were genetically mapped to chromosomes 2, 4 and 7. Three genomic loci associated with freezing tolerance in the FuRs0357 population co-localized with chromosome segments and QTLs previously identified to be associated with freezing tolerance. The present work clearly confirms the potential of the DArTFest array in genetic studies of the Festuca-Lolium complex. The annotated DArTFest array resources could accelerate further studies and improvement of desired traits in Festuca-Lolium species.
Collapse
Affiliation(s)
- Jan Bartoš
- Institute of Experimental Botany, Sokolovská 6, 77200, Olomouc, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Abstract
The transfer of genes between Triticum aestivum (hexaploid bread wheat) and T. turgidum (tetraploid durum wheat) holds considerable potential for genetic improvement of both these closely related species. Five different T. aestivum/T. turgidum ssp. durum crosses were investigated using Diversity Arrays Technology (DArT) markers to determine the inheritance of parental A, B and D genome material in subsequent generations derived from these crosses. The proportions of A, B and D chromosomal segments inherited from the hexaploid parent were found to vary significantly among individual crosses. F(2) populations retained widely varying quantities of D genome material, ranging from 99% to none. The relative inheritance of bread wheat and durum alleles in the A and B genomes of derived lines also varied among the crosses. Within any one cross, progeny without D chromosomes in general had significantly more A and B genome durum alleles than lines retaining D chromosomes. The ability to select for and manipulate this non-random segregation in bread wheat/durum crosses will assist in efficient backcrossing of selected characters into the recurrent durum or hexaploid genotype of choice. This study illustrates the utility of DArT markers in the study of inter-specific crosses to commercial crop species.
Collapse
|
230
|
Genetic mapping of DArT markers in the Festuca-Lolium complex and their use in freezing tolerance association analysis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011. [PMID: 21212931 DOI: 10.1007/s00122‐010‐1518‐z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
Species belonging to the Festuca-Lolium complex are important forage and turf species and as such, have been studied intensively. However, their out-crossing nature and limited availability of molecular markers make genetic studies difficult. Here, we report on saturation of F. pratensis and L. multiflorum genetic maps using Diversity Array Technology (DArT) markers and the DArTFest array.The 530 and 149 DArT markers were placed on genetic maps of L. multiflorum and F. pratensis, respectively, with overlap of 20 markers, which mapped in both species. The markers were sequenced and comparative sequence analysis was performed between L. multiflorum, rice and Brachypodium. The utility of the DArTFest array was then tested on a Festulolium population FuRs0357 in an integrated analysis using the DArT marker map positions to study associations between markers and freezing tolerance. Ninety six markers were significantly associated with freezing tolerance and five of these markers were genetically mapped to chromosomes 2, 4 and 7. Three genomic loci associated with freezing tolerance in the FuRs0357 population co-localized with chromosome segments and QTLs previously identified to be associated with freezing tolerance. The present work clearly confirms the potential of the DArTFest array in genetic studies of the Festuca-Lolium complex. The annotated DArTFest array resources could accelerate further studies and improvement of desired traits in Festuca-Lolium species.
Collapse
|
231
|
Mackay I, Horwell A, Garner J, White J, McKee J, Philpott H. Reanalyses of the historical series of UK variety trials to quantify the contributions of genetic and environmental factors to trends and variability in yield over time. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 122:225-38. [PMID: 20835813 DOI: 10.1007/s00122-010-1438-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Accepted: 08/25/2010] [Indexed: 05/20/2023]
Abstract
Historical datasets have much to offer. We analyse data from winter wheat, spring and winter barley, oil seed rape, sugar beet and forage maize from the UK National List and Recommended List trials over the period 1948-2007. We find that since 1982, for the cereal crops and oil seed rape, at least 88% of the improvement in yield is attributable to genetic improvement, with little evidence that changes in agronomy have improved yields. In contrast, in the same time period, plant breeding and changes in agronomy have contributed almost equally to increased yields of forage maize and sugar beet. For the cereals prior to 1982, contributions from plant breeding were 42, 60 and 86% for winter barley, winter wheat and spring barley, respectively. These results demonstrate the overwhelming importance of plant breeding in increasing crop productivity in the UK. Winter wheat data are analysed in more detail to exemplify the use of historical data series to study and detect disease resistance breakdown, sensitivity of varieties to climatic factors, and also to test methods of genomic selection. We show that breakdown of disease resistance can cause biased estimates of variety and year effects, but that comparison of results between fungicide treated and untreated trials over years may be a means to screen for durable resistance. We find the greatest sensitivities of the winter wheat germplasm to seasonal differences in rainfall and temperature are to summer rainfall and winter temperature. Finally, for genomic selection, correlations between observed and predicted yield ranged from 0.17 to 0.83. The high correlation resulted from markers predicting kinship amongst lines rather than tagging multiple QTL. We believe the full value of these data will come from exploiting links with other experiments and experimental populations. However, not to exploit such valuable historical datasets is wasteful.
Collapse
Affiliation(s)
- I Mackay
- National Institute of Agricultural Botany, Huntingdon Road, Cambridge, CB3 OLE, UK.
| | | | | | | | | | | |
Collapse
|
232
|
Reynolds M, Bonnett D, Chapman SC, Furbank RT, Manès Y, Mather DE, Parry MAJ. Raising yield potential of wheat. I. Overview of a consortium approach and breeding strategies. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:439-52. [PMID: 20952629 DOI: 10.1093/jxb/erq311] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Theoretical considerations suggest that wheat yield potential could be increased by up to 50% through the genetic improvement of radiation use efficiency (RUE). However, to achieve agronomic impacts, structural and reproductive aspects of the crop must be improved in parallel. A Wheat Yield Consortium (WYC) has been convened that fosters linkage between ongoing research platforms in order to develop a cohesive portfolio of activities that will maximize the probability of impact in farmers' fields. Attempts to increase RUE will focus on improving the performance and regulation of Rubisco, introduction of C(4)-like traits such as CO(2)-concentrating mechanisms, improvement of light interception, and improvement of photosynthesis at the spike and whole canopy levels. For extra photo-assimilates to translate into increased grain yield, reproductive aspects of growth must be tailored to a range of agro-ecosystems to ensure that stable expression of a high harvest index (HI) is achieved. Adequate partitioning among plant organs will be critical to achieve favourable expression of HI, and to ensure that plants with heavier grain have strong enough stems and roots to avoid lodging. Trait-based hybridization strategies will aim to achieve their simultaneous expression in elite agronomic backgrounds, and wide crossing will be employed to augment genetic diversity where needed; for example, to introduce traits for improving RUE from wild species or C(4) crops. Genomic selection approaches will be employed, especially for difficult-to-phenotype traits. Genome-wide selection will be evaluated and is likely to complement crossing of complex but complementary traits by identifying favourable allele combinations among progeny. Products will be delivered to national wheat programmes worldwide via well-established international nursery systems and are expected to make a significant contribution to global food security.
Collapse
Affiliation(s)
- Matthew Reynolds
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600 Mexico, DF, Mexico.
| | | | | | | | | | | | | |
Collapse
|
233
|
Chao S, Dubcovsky J, Dvorak J, Luo MC, Baenziger SP, Matnyazov R, Clark DR, Talbert LE, Anderson JA, Dreisigacker S, Glover K, Chen J, Campbell K, Bruckner PL, Rudd JC, Haley S, Carver BF, Perry S, Sorrells ME, Akhunov ED. Population- and genome-specific patterns of linkage disequilibrium and SNP variation in spring and winter wheat (Triticum aestivum L.). BMC Genomics 2010; 11:727. [PMID: 21190581 PMCID: PMC3020227 DOI: 10.1186/1471-2164-11-727] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 12/29/2010] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Single nucleotide polymorphisms (SNPs) are ideally suited for the construction of high-resolution genetic maps, studying population evolutionary history and performing genome-wide association mapping experiments. Here, we used a genome-wide set of 1536 SNPs to study linkage disequilibrium (LD) and population structure in a panel of 478 spring and winter wheat cultivars (Triticum aestivum) from 17 populations across the United States and Mexico. RESULTS Most of the wheat oligo pool assay (OPA) SNPs that were polymorphic within the complete set of 478 cultivars were also polymorphic in all subpopulations. Higher levels of genetic differentiation were observed among wheat lines within populations than among populations. A total of nine genetically distinct clusters were identified, suggesting that some of the pre-defined populations shared significant proportion of genetic ancestry. Estimates of population structure (F(ST)) at individual loci showed a high level of heterogeneity across the genome. In addition, seven genomic regions with elevated F(ST) were detected between the spring and winter wheat populations. Some of these regions overlapped with previously mapped flowering time QTL. Across all populations, the highest extent of significant LD was observed in the wheat D-genome, followed by lower LD in the A- and B-genomes. The differences in the extent of LD among populations and genomes were mostly driven by differences in long-range LD ( > 10 cM). CONCLUSIONS Genome- and population-specific patterns of genetic differentiation and LD were discovered in the populations of wheat cultivars from different geographic regions. Our study demonstrated that the estimates of population structure between spring and winter wheat lines can identify genomic regions harboring candidate genes involved in the regulation of growth habit. Variation in LD suggests that breeding and selection had a different impact on each wheat genome both within and among populations. The higher extent of LD in the wheat D-genome versus the A- and B-genomes likely reflects the episodes of recent introgression and population bottleneck accompanying the origin of hexaploid wheat. The assessment of LD and population structure in this assembled panel of diverse lines provides critical information for the development of genetic resources for genome-wide association mapping of agronomically important traits in wheat.
Collapse
Affiliation(s)
- Shiaoman Chao
- USDA ARS Genotyping Laboratory, Biosciences Research Laboratory, Fargo, ND, USA
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Jan Dvorak
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, CA, USA
| | | | - Rustam Matnyazov
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
- Institute of Biochemistry and Genetics, RAS, Ufa Russia
| | | | - Luther E Talbert
- Department of Plant Sciences, Montana State University, Bozeman, MT, USA
| | - James A Anderson
- Dept. of Agronomy & Plant Genetics, University of Minnesota, St. Paul, MN, USA
| | | | - Karl Glover
- Plant Science Department, South Dakota State University, Brookings, SD, USA
| | - Jianli Chen
- University of Idaho Aberdeen Research & Extension Center, Aberdeen ID, USA
| | - Kim Campbell
- USDA-ARS Wheat Genetics, Quality, Physiology & Disease Research Unit, Washington State University, Pullman WA, USA
| | | | - Jackie C Rudd
- Texas AgriLife Research and Extension Center, Amarillo, TX, USA
| | - Scott Haley
- Soil and Crop Sciences Department, Colorado State University, Fort Collins, CO, USA
| | - Brett F Carver
- Oklahoma State University, Department of Plant and Soil Sciences, Stillwater, OK, USA
| | | | - Mark E Sorrells
- Plant Breeding and Genetics, Cornell University, Ithaca, NY, USA
| | - Eduard D Akhunov
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
234
|
Chao S, Dubcovsky J, Dvorak J, Luo MC, Baenziger SP, Matnyazov R, Clark DR, Talbert LE, Anderson JA, Dreisigacker S, Glover K, Chen J, Campbell K, Bruckner PL, Rudd JC, Haley S, Carver BF, Perry S, Sorrells ME, Akhunov ED. Population- and genome-specific patterns of linkage disequilibrium and SNP variation in spring and winter wheat (Triticum aestivum L.). BMC Genomics 2010. [PMID: 21190581 DOI: 10.1186/1471‐2164‐11‐727] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Single nucleotide polymorphisms (SNPs) are ideally suited for the construction of high-resolution genetic maps, studying population evolutionary history and performing genome-wide association mapping experiments. Here, we used a genome-wide set of 1536 SNPs to study linkage disequilibrium (LD) and population structure in a panel of 478 spring and winter wheat cultivars (Triticum aestivum) from 17 populations across the United States and Mexico. RESULTS Most of the wheat oligo pool assay (OPA) SNPs that were polymorphic within the complete set of 478 cultivars were also polymorphic in all subpopulations. Higher levels of genetic differentiation were observed among wheat lines within populations than among populations. A total of nine genetically distinct clusters were identified, suggesting that some of the pre-defined populations shared significant proportion of genetic ancestry. Estimates of population structure (F(ST)) at individual loci showed a high level of heterogeneity across the genome. In addition, seven genomic regions with elevated F(ST) were detected between the spring and winter wheat populations. Some of these regions overlapped with previously mapped flowering time QTL. Across all populations, the highest extent of significant LD was observed in the wheat D-genome, followed by lower LD in the A- and B-genomes. The differences in the extent of LD among populations and genomes were mostly driven by differences in long-range LD ( > 10 cM). CONCLUSIONS Genome- and population-specific patterns of genetic differentiation and LD were discovered in the populations of wheat cultivars from different geographic regions. Our study demonstrated that the estimates of population structure between spring and winter wheat lines can identify genomic regions harboring candidate genes involved in the regulation of growth habit. Variation in LD suggests that breeding and selection had a different impact on each wheat genome both within and among populations. The higher extent of LD in the wheat D-genome versus the A- and B-genomes likely reflects the episodes of recent introgression and population bottleneck accompanying the origin of hexaploid wheat. The assessment of LD and population structure in this assembled panel of diverse lines provides critical information for the development of genetic resources for genome-wide association mapping of agronomically important traits in wheat.
Collapse
Affiliation(s)
- Shiaoman Chao
- USDA ARS Genotyping Laboratory, Biosciences Research Laboratory, Fargo, ND, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Chao S, Dubcovsky J, Dvorak J, Luo MC, Baenziger SP, Matnyazov R, Clark DR, Talbert LE, Anderson JA, Dreisigacker S, Glover K, Chen J, Campbell K, Bruckner PL, Rudd JC, Haley S, Carver BF, Perry S, Sorrells ME, Akhunov ED. Population- and genome-specific patterns of linkage disequilibrium and SNP variation in spring and winter wheat (Triticum aestivum L.). BMC Genomics 2010. [PMID: 21190581 DOI: 10.1186/s12870-015-0628-727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND Single nucleotide polymorphisms (SNPs) are ideally suited for the construction of high-resolution genetic maps, studying population evolutionary history and performing genome-wide association mapping experiments. Here, we used a genome-wide set of 1536 SNPs to study linkage disequilibrium (LD) and population structure in a panel of 478 spring and winter wheat cultivars (Triticum aestivum) from 17 populations across the United States and Mexico. RESULTS Most of the wheat oligo pool assay (OPA) SNPs that were polymorphic within the complete set of 478 cultivars were also polymorphic in all subpopulations. Higher levels of genetic differentiation were observed among wheat lines within populations than among populations. A total of nine genetically distinct clusters were identified, suggesting that some of the pre-defined populations shared significant proportion of genetic ancestry. Estimates of population structure (F(ST)) at individual loci showed a high level of heterogeneity across the genome. In addition, seven genomic regions with elevated F(ST) were detected between the spring and winter wheat populations. Some of these regions overlapped with previously mapped flowering time QTL. Across all populations, the highest extent of significant LD was observed in the wheat D-genome, followed by lower LD in the A- and B-genomes. The differences in the extent of LD among populations and genomes were mostly driven by differences in long-range LD ( > 10 cM). CONCLUSIONS Genome- and population-specific patterns of genetic differentiation and LD were discovered in the populations of wheat cultivars from different geographic regions. Our study demonstrated that the estimates of population structure between spring and winter wheat lines can identify genomic regions harboring candidate genes involved in the regulation of growth habit. Variation in LD suggests that breeding and selection had a different impact on each wheat genome both within and among populations. The higher extent of LD in the wheat D-genome versus the A- and B-genomes likely reflects the episodes of recent introgression and population bottleneck accompanying the origin of hexaploid wheat. The assessment of LD and population structure in this assembled panel of diverse lines provides critical information for the development of genetic resources for genome-wide association mapping of agronomically important traits in wheat.
Collapse
Affiliation(s)
- Shiaoman Chao
- USDA ARS Genotyping Laboratory, Biosciences Research Laboratory, Fargo, ND, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Identifying QTLs and Epistasis in Structured Plant Populations Using Adaptive Mixed LASSO. JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS 2010. [DOI: 10.1007/s13253-010-0046-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
237
|
Heffner EL, Lorenz AJ, Jannink J, Sorrells ME. Plant Breeding with Genomic Selection: Gain per Unit Time and Cost. CROP SCIENCE 2010. [PMID: 0 DOI: 10.2135/cropsci2009.11.0662] [Citation(s) in RCA: 269] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Affiliation(s)
- Elliot L. Heffner
- Cornell Univ.Dep. of Plant Breeding and GeneticsEmerson HallIthacaNY14853
| | - Aaron J. Lorenz
- USDA‐ARSR.W. Holley Center for Agriculture and Health, Cornell Univ.IthacaNY14853
| | - Jean‐Luc Jannink
- USDA‐ARSR.W. Holley Center for Agriculture and Health, Cornell Univ.IthacaNY14853
| | - Mark E. Sorrells
- Cornell Univ.Dep. of Plant Breeding and GeneticsEmerson HallIthacaNY14853
| |
Collapse
|
238
|
Genc Y, Oldach K, Verbyla AP, Lott G, Hassan M, Tester M, Wallwork H, McDonald GK. Sodium exclusion QTL associated with improved seedling growth in bread wheat under salinity stress. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:877-94. [PMID: 20490443 DOI: 10.1007/s00122-010-1357-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 04/28/2010] [Indexed: 05/23/2023]
Abstract
Worldwide, dryland salinity is a major limitation to crop production. Breeding for salinity tolerance could be an effective way of improving yield and yield stability on saline-sodic soils of dryland agriculture. However, this requires a good understanding of inheritance of this quantitative trait. In the present study, a doubled-haploid bread wheat population (Berkut/Krichauff) was grown in supported hydroponics to identify quantitative trait loci (QTL) associated with salinity tolerance traits commonly reported in the literature (leaf symptoms, tiller number, seedling biomass, chlorophyll content, and shoot Na(+) and K(+) concentrations), understand the relationships amongst these traits, and determine their genetic value for marker-assisted selection. There was considerable segregation within the population for all traits measured. With a genetic map of 527 SSR-, DArT- and gene-based markers, a total of 40 QTL were detected for all seven traits. For the first time in a cereal species, a QTL interval for Na(+) exclusion (wPt-3114-wmc170) was associated with an increase (10%) in seedling biomass. Of the five QTL identified for Na(+) exclusion, two were co-located with seedling biomass (2A and 6A). The 2A QTL appears to coincide with the previously reported Na(+) exclusion locus in durum wheat that hosts one active HKT1;4 (Nax1) and one inactive HKT1;4 gene. Using these sequences as template for primer design enabled mapping of at least three HKT1;4 genes onto chromosome 2AL in bread wheat, suggesting that bread wheat carries more HKT1;4 gene family members than durum wheat. However, the combined effects of all Na(+) exclusion loci only accounted for 18% of the variation in seedling biomass under salinity stress indicating that there were other mechanisms of salinity tolerance operative at the seedling stage in this population. Na(+) and K(+) accumulation appear under separate genetic control. The molecular markers wmc170 (2A) and cfd080 (6A) are expected to facilitate breeding for salinity tolerance in bread wheat, the latter being associated with seedling vigour.
Collapse
Affiliation(s)
- Y Genc
- Molecular Plant Breeding Cooperative Research Centre, University of Adelaide, Glen Osmond, SA, 5064, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
239
|
Quraishi UM, Murat F, Abrouk M, Pont C, Confolent C, Oury FX, Ward J, Boros D, Gebruers K, Delcour JA, Courtin CM, Bedo Z, Saulnier L, Guillon F, Balzergue S, Shewry PR, Feuillet C, Charmet G, Salse J. Combined meta-genomics analyses unravel candidate genes for the grain dietary fiber content in bread wheat (Triticum aestivum L.). Funct Integr Genomics 2010; 11:71-83. [PMID: 20697765 DOI: 10.1007/s10142-010-0183-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 07/07/2010] [Accepted: 07/12/2010] [Indexed: 11/30/2022]
Abstract
Grain dietary fiber content in wheat not only affects its end use and technological properties including milling, baking and animal feed but is also of great importance for health benefits. In this study, integration of association genetics (seven detected loci on chromosomes 1B, 3A, 3D, 5B, 6B, 7A, 7B) and meta-QTL (three consensus QTL on chromosomes 1B, 3D and 6B) analyses allowed the identification of seven chromosomal regions underlying grain dietary fiber content in bread wheat. Based either on a diversity panel or on bi-parental populations, we clearly demonstrate that this trait is mainly driven by a major locus located on chromosome 1B associated with a log of p value >13 and a LOD score >8, respectively. In parallel, we identified 73 genes differentially expressed during the grain development and between genotypes with contrasting grain fiber contents. Integration of quantitative genetics and transcriptomic data allowed us to propose a short list of candidate genes that are conserved in the rice, sorghum and Brachypodium chromosome regions orthologous to the seven wheat grain fiber content QTL and that can be considered as major candidate genes for future improvement of the grain dietary fiber content in bread wheat breeding programs.
Collapse
Affiliation(s)
- Umar Masood Quraishi
- INRA-University Blaise Pascal, UMR1095 Génétique, Diversité et Ecophysiologie des Céréales, 234 Avenue du Brézet, 63100, Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Ben-David R, Xie W, Peleg Z, Saranga Y, Dinoor A, Fahima T. Identification and mapping of PmG16, a powdery mildew resistance gene derived from wild emmer wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:499-510. [PMID: 20407741 DOI: 10.1007/s00122-010-1326-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Accepted: 03/12/2010] [Indexed: 05/04/2023]
Abstract
The gene-pool of wild emmer wheat, Triticum turgidum ssp. dicoccoides, harbors a rich allelic repertoire for disease resistance. In the current study, we made use of tetraploid wheat mapping populations derived from a cross between durum wheat (cv. Langdon) and wild emmer (accession G18-16) to identify and map a new powdery mildew resistance gene derived from wild emmer wheat. Initially, the two parental lines were screened with a collection of 42 isolates of Blumeria graminis f. sp. tritici (Bgt) from Israel and 5 isolates from Switzerland. While G18-16 was resistant to 34 isolates, Langdon was resistant only to 5 isolates and susceptible to 42 isolates. Isolate Bgt#15 was selected to differentiate between the disease reactions of the two genotypes. Segregation ratio of F(2-3) and recombinant inbreed line (F(7)) populations to inoculation with isolate Bgt#15 indicated the role of a single dominant gene in conferring resistance to Bgt#15. This gene, temporarily designated PmG16, was located on the distal region of chromosome arm 7AL. Genetic map of PmG16 region was assembled with 32 simple sequence repeat (SSR), sequence tag site (STS), Diversity array technology (DArT) and cleaved amplified polymorphic sequence (CAPS) markers and assigned to the 7AL physical bin map (7AL-16). Using four DNA markers we established colinearity between the genomic region spanning the PmG16 locus within the distal region of chromosome arm 7AL and the genomic regions on rice chromosome 6 and Brachypodium Bd1. A comparative analysis was carried out between PmG16 and other known Pm genes located on chromosome arm 7AL. The identified PmG16 may facilitate the use of wild alleles for improvement of powdery mildew resistance in elite wheat cultivars via marker-assisted selection.
Collapse
Affiliation(s)
- Roi Ben-David
- Department of Evolutionary and Environmental Biology, The Institute of Evolution, Faculty of Science and Science Education, University of Haifa, Mt. Carmel, 31905, Haifa, Israel
| | | | | | | | | | | |
Collapse
|
241
|
Wenzl P, Suchánková P, Carling J, Simková H, Huttner E, Kubaláková M, Sourdille P, Paul E, Feuillet C, Kilian A, Dolezel J. Isolated chromosomes as a new and efficient source of DArT markers for the saturation of genetic maps. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:465-474. [PMID: 20364376 DOI: 10.1007/s00122-010-1323-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 03/05/2010] [Indexed: 05/29/2023]
Abstract
We describe how the diversity arrays technology (DArT) can be coupled with chromosome sorting to increase the density of genetic maps in specific genome regions. Chromosome 3B and the short arm of chromosome 1B (1BS) of wheat were isolated by flow cytometric sorting and used to develop chromosome- and chromosome arm-enriched genotyping arrays containing 2,688 3B clones and 384 1BS clones. Linkage analysis showed that 553 of the 711 polymorphic 3B-derived markers (78%) mapped to chromosome 3B, and 59 of the 68 polymorphic 1BS-derived markers (87%) mapped to chromosome 1BS, confirming the efficiency of the chromosome-sorting approach. To demonstrate the potential for saturation of genetic maps, we constructed a consensus map of chromosome 3B using 19 mapping populations, including some that were genotyped with the 3B-enriched array. The 3B-derived DArT markers doubled the number of genetic loci covered. The resulting consensus map, probably the densest genetic map of 3B available to this date, contains 939 markers (779 DArTs and 160 other markers) that segregate on 304 genetically distinct loci. Importantly, only 2,688 3B-derived clones (probes) had to be screened to obtain almost twice as many polymorphic 3B markers (510) as identified by screening approximately 70,000 whole genome-derived clones (269). Since an enriched DArT array can be developed from less than 5 ng of chromosomal DNA, a quantity which can be obtained within 1 h of sorting, this approach can be readily applied to any crop for which chromosome sorting is available.
Collapse
Affiliation(s)
- Peter Wenzl
- Diversity Arrays Technology Pty Ltd, 1 Wilf Crane Crescent, Yarralumla, ACT, 2600, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Tsilo TJ, Hareland GA, Simsek S, Chao S, Anderson JA. Genome mapping of kernel characteristics in hard red spring wheat breeding lines. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:717-30. [PMID: 20425103 DOI: 10.1007/s00122-010-1343-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2009] [Accepted: 04/03/2010] [Indexed: 05/02/2023]
Abstract
Kernel characteristics, particularly kernel weight, kernel size, and grain protein content, are important components of grain yield and quality in wheat. Development of high performing wheat cultivars, with high grain yield and quality, is a major focus in wheat breeding programs worldwide. Here, we report chromosome regions harboring genes that influence kernel weight, kernel diameter, kernel size distribution, grain protein content, and grain yield in hard red spring wheat breeding lines adapted to the Upper Midwest region of the United States. A genetic linkage map composed of 531 SSR and DArT marker loci spanned a distance of 2,505 cM, covering all 21 chromosomes of wheat. Stable QTL clusters influencing kernel weight, kernel diameter, and kernel size distribution were identified on chromosomes 2A, 5B, and 7A. Phenotypic variation explained by individual QTL at these clusters varied from 5 to 20% depending on the trait. A QTL region on chromosome 2B confers an undesirable pleiotropic effect or a repulsion linkage between grain yield (LOD = 6.7; R (2) = 18%) and grain protein content (LOD = 6.2; R (2) = 13.3%). However, several grain protein and grain yield QTL independent of each other were also identified. Because some of the QTL identified in this study were consistent across environments, DNA markers will provide an opportunity for increasing the frequency of desirable alleles through marker-assisted selection.
Collapse
Affiliation(s)
- Toi J Tsilo
- Department of Agronomy and Plant Genetics, University of Minnesota, 411 Borlaug Hall, St. Paul, MN 55108, USA.
| | | | | | | | | |
Collapse
|
243
|
Sansaloni CP, Petroli CD, Carling J, Hudson CJ, Steane DA, Myburg AA, Grattapaglia D, Vaillancourt RE, Kilian A. A high-density Diversity Arrays Technology (DArT) microarray for genome-wide genotyping in Eucalyptus. PLANT METHODS 2010; 6:16. [PMID: 20587069 PMCID: PMC2903579 DOI: 10.1186/1746-4811-6-16] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 06/30/2010] [Indexed: 05/20/2023]
Abstract
BACKGROUND A number of molecular marker technologies have allowed important advances in the understanding of the genetics and evolution of Eucalyptus, a genus that includes over 700 species, some of which are used worldwide in plantation forestry. Nevertheless, the average marker density achieved with current technologies remains at the level of a few hundred markers per population. Furthermore, the transferability of markers produced with most existing technology across species and pedigrees is usually very limited. High throughput, combined with wide genome coverage and high transferability are necessary to increase the resolution, speed and utility of molecular marker technology in eucalypts. We report the development of a high-density DArT genome profiling resource and demonstrate its potential for genome-wide diversity analysis and linkage mapping in several species of Eucalyptus. FINDINGS After testing several genome complexity reduction methods we identified the PstI/TaqI method as the most effective for Eucalyptus and developed 18 genomic libraries from PstI/TaqI representations of 64 different Eucalyptus species. A total of 23,808 cloned DNA fragments were screened and 13,300 (56%) were found to be polymorphic among 284 individuals. After a redundancy analysis, 6,528 markers were selected for the operational array and these were supplemented with 1,152 additional clones taken from a library made from the E. grandis tree whose genome has been sequenced. Performance validation for diversity studies revealed 4,752 polymorphic markers among 174 individuals. Additionally, 5,013 markers showed segregation when screened using six inter-specific mapping pedigrees, with an average of 2,211 polymorphic markers per pedigree and a minimum of 859 polymorphic markers that were shared between any two pedigrees. CONCLUSIONS This operational DArT array will deliver 1,000-2,000 polymorphic markers for linkage mapping in most eucalypt pedigrees and thus provide high genome coverage. This array will also provide a high-throughput platform for population genetics and phylogenetics in Eucalyptus. The transferability of DArT across species and pedigrees is particularly valuable for a large genus such as Eucalyptus and will facilitate the transfer of information between different studies. Furthermore, the DArT marker array will provide a high-resolution link between phenotypes in populations and the Eucalyptus reference genome, which will soon be completed.
Collapse
Affiliation(s)
- Carolina P Sansaloni
- Plant Genetics Laboratory, EMBRAPA Genetic Resources and Biotechnology - EPqB, 70770-910 Brasilia, Brazil
- Dep. Cell Biology, Universidade de Brasilia - 70910-900 Brasília - DF, Brazil
| | - César D Petroli
- Plant Genetics Laboratory, EMBRAPA Genetic Resources and Biotechnology - EPqB, 70770-910 Brasilia, Brazil
- Dep. Cell Biology, Universidade de Brasilia - 70910-900 Brasília - DF, Brazil
| | - Jason Carling
- Diversity Arrays Technology Pty Ltd, 1 Wilf Crane Crescent, Yarralumla, ACT 2600, Australia
| | - Corey J Hudson
- School of Plant Science and Cooperative Research Centre for Forestry, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| | - Dorothy A Steane
- School of Plant Science and Cooperative Research Centre for Forestry, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| | - Alexander A Myburg
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - Dario Grattapaglia
- Plant Genetics Laboratory, EMBRAPA Genetic Resources and Biotechnology - EPqB, 70770-910 Brasilia, Brazil
- Dep. Cell Biology, Universidade de Brasilia - 70910-900 Brasília - DF, Brazil
- Genomic Sciences Program - Universidade Católica de Brasília - SGAN, 916 modulo B, 70790-160 Brasília - DF, Brazil
| | - René E Vaillancourt
- School of Plant Science and Cooperative Research Centre for Forestry, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| | - Andrzej Kilian
- Diversity Arrays Technology Pty Ltd, 1 Wilf Crane Crescent, Yarralumla, ACT 2600, Australia
| |
Collapse
|
244
|
Galbraith DW, Edwards J. Applications of Microarrays for Crop Improvement: Here, There, and Everywhere. Bioscience 2010. [DOI: 10.1525/bio.2010.60.5.4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
245
|
Ma J, Li HB, Zhang CY, Yang XM, Liu YX, Yan GJ, Liu CJ. Identification and validation of a major QTL conferring crown rot resistance in hexaploid wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 120:1119-1128. [PMID: 20035314 DOI: 10.1007/s00122-009-1239-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 12/08/2009] [Indexed: 05/28/2023]
Abstract
Crown rot (CR), caused by various Fusarium species, is a chronic wheat disease in Australia. As part of our objective of improving the efficiency of breeding CR resistant wheat varieties, we have been searching for novel sources of resistance. This paper reports on the genetic control of one of these newly identified resistant genotypes, 'CSCR6'. A population derived from a cross between CSCR6 and an Australian variety 'Lang' was analyzed using two Fusarium isolates belonging to two different species, one Fusarium pseudograminearum and the other Fusarium graminearum. The two isolates detected QTL with the same chromosomal locations and comparable magnitudes, indicating that CR resistance is not species-specific. The resistant allele of one of the QTL was derived from 'CSCR6'. This QTL, designated as Qcrs.cpi-3B, was located on the long arm of chromosome 3B and explains up to 48.8% of the phenotypic variance based on interval mapping analysis. Another QTL, with resistant allele from the variety 'Lang', was located on chromosome 4B. This QTL explained up to 22.8% of the phenotypic variance. A strong interaction between Qcsr.cpi-3B and Qcsr.cpi-4B was detected, reducing the maximum effect of Qcrs.cpi-3B to 43.1%. The effects of Qcrs.cpi-3B were further validated in four additional populations and the presence of this single QTL reduced CR severity by up to 42.1%. The fact that significant effects of Qcrs.cpi-3B were detected across all trials with different genetic backgrounds and with the use of isolates belonging to two different Fusarium species make it an ideal target for breeding programs as well as for further characterization of the gene(s) involved in its resistance.
Collapse
Affiliation(s)
- J Ma
- CSIRO Plant Industry, 306 Carmody Road, St Lucia, QLD, 4067, Australia
| | | | | | | | | | | | | |
Collapse
|
246
|
Paux E, Faure S, Choulet F, Roger D, Gauthier V, Martinant JP, Sourdille P, Balfourier F, Le Paslier MC, Chauveau A, Cakir M, Gandon B, Feuillet C. Insertion site-based polymorphism markers open new perspectives for genome saturation and marker-assisted selection in wheat. PLANT BIOTECHNOLOGY JOURNAL 2010; 8:196-210. [PMID: 20078842 DOI: 10.1111/j.1467-7652.2009.00477.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In wheat, the deployment of marker-assisted selection has long been hampered by the lack of markers compatible with high-throughput cost-effective genotyping techniques. Recently, insertion site-based polymorphism (ISBP) markers have appeared as very powerful new tools for genomics and genetic studies in hexaploid wheat. To demonstrate their possible use in wheat breeding programmes, we assessed their potential to meet the five main requirements for utilization in MAS: flexible and high-throughput detection methods, low quantity and quality of DNA required, low cost per assay, tight link to target loci and high level of polymorphism in breeding material. Toward this aim, we developed a programme, IsbpFinder, for the automated design of ISBP markers and adapted three detection methods (melting curve analysis, SNaPshot Multiplex System and Illumina BeadArray technology) for high throughput and flexible detection of ISBP or ISBP-derived SNP markers. We demonstrate that the high level of polymorphism of the ISBPs combined with cost-effective genotyping methods can be used to efficiently saturate genetic maps, discriminate between elite cultivars, and design tightly linked diagnostic markers for virtually all target loci in the wheat genome. All together, our results suggest that ISBP markers have the potential to lead to a breakthrough in wheat marker-assisted selection.
Collapse
Affiliation(s)
- Etienne Paux
- INRA UBP UMR 1095, Genetics, Diversity & Ecophysiology of Cereals, Clermont Ferrand, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Bolibok-Bragoszewska H, Heller-Uszyńska K, Wenzl P, Uszyński G, Kilian A, Rakoczy-Trojanowska M. DArT markers for the rye genome - genetic diversity and mapping. BMC Genomics 2009; 10:578. [PMID: 19958552 PMCID: PMC2795769 DOI: 10.1186/1471-2164-10-578] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Accepted: 12/03/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Implementation of molecular breeding in rye (Secale cereale L.) improvement programs depends on the availability of high-density molecular linkage maps. However, the number of sequence-specific PCR-based markers available for the species is limited. Diversity Arrays Technology (DArT) is a microarray-based method allowing for detection of DNA polymorphism at several thousand loci in a single assay without relying on DNA sequence information. The objective of this study was the development and application of Diversity Arrays technology for rye. RESULTS Using the PstI/TaqI method of complexity reduction we created a rye diversity panel from DNA of 16 rye varieties and 15 rye inbred lines, including parents of a mapping population consisting of 82 recombinant inbred lines. The usefulness of a wheat diversity panel for identification of DArT markers for rye was also demonstrated. We identified 1022 clones that were polymorphic in the genotyped ILs and varieties and 1965 clones that differentiated the parental lines L318 and L9 and segregated in the mapping population. Hierarchical clustering and ordination analysis were performed based on the 1022 DArT markers to reveal genetic relationships between the rye varieties and inbred lines included in the study. Chromosomal location of 1872 DArT markers was determined using wheat-rye addition lines and 1818 DArT markers (among them 1181 unique, non-cosegregating) were placed on a genetic linkage map of the cross L318 x L9, providing an average density of one unique marker every 2.68 cM. This is the most saturated rye linkage map based solely on transferable markers available at the moment, providing rye breeders and researches with a better choice of markers and a higher probability of finding polymorphic markers in the region of interest. CONCLUSION The Diversity Arrays Technology can be efficiently and effectively used for rye genome analyses - assessment of genetic similarity and linkage mapping. The 11520-clone rye genotyping panel with several thousand markers with determined chromosomal location and accessible through an inexpensive genotyping service is a valuable resource for studies on rye genome organization and in molecular breeding of the species.
Collapse
Affiliation(s)
- Hanna Bolibok-Bragoszewska
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences (SGGW), 02-776 Warsaw, Poland.
| | | | | | | | | | | |
Collapse
|
248
|
Kopecký D, Bartos J, Lukaszewski AJ, Baird JH, Cernoch V, Kölliker R, Rognli OA, Blois H, Caig V, Lübberstedt T, Studer B, Shaw P, Dolezel J, Kilian A. Development and mapping of DArT markers within the Festuca - Lolium complex. BMC Genomics 2009. [PMID: 19832973 DOI: 10.1186/1471‐2164‐10‐473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Grasses are among the most important and widely cultivated plants on Earth. They provide high quality fodder for livestock, are used for turf and amenity purposes, and play a fundamental role in environment protection. Among cultivated grasses, species within the Festuca-Lolium complex predominate, especially in temperate regions. To facilitate high-throughput genome profiling and genetic mapping within the complex, we have developed a Diversity Arrays Technology (DArT) array for five grass species: F. pratensis, F. arundinacea, F. glaucescens, L. perenne and L. multiflorum. RESULTS The DArTFest array contains 7680 probes derived from methyl-filtered genomic representations. In a first marker discovery experiment performed on 40 genotypes from each species (with the exception of F. glaucescens for which only 7 genotypes were used), we identified 3884 polymorphic markers. The number of DArT markers identified in every single genotype varied from 821 to 1852. To test the usefulness of DArTFest array for physical mapping, DArT markers were assigned to each of the seven chromosomes of F. pratensis using single chromosome substitution lines while recombinants of F. pratensis chromosome 3 were used to allocate the markers to seven chromosome bins. CONCLUSION The resources developed in this project will facilitate the development of genetic maps in Festuca and Lolium, the analysis on genetic diversity, and the monitoring of the genomic constitution of the Festuca x Lolium hybrids. They will also enable marker-assisted selection for multiple traits or for specific genome regions.
Collapse
Affiliation(s)
- David Kopecký
- Laboratory of Molecular Cytogenetics and Cytometry, Institute of Experimental Botany, Sokolovská 6, CZ-77200, Olomouc, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Kopecký D, Bartos J, Lukaszewski AJ, Baird JH, Cernoch V, Kölliker R, Rognli OA, Blois H, Caig V, Lübberstedt T, Studer B, Shaw P, Dolezel J, Kilian A. Development and mapping of DArT markers within the Festuca - Lolium complex. BMC Genomics 2009; 10:473. [PMID: 19832973 PMCID: PMC2770082 DOI: 10.1186/1471-2164-10-473] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 10/15/2009] [Indexed: 12/17/2022] Open
Abstract
Background Grasses are among the most important and widely cultivated plants on Earth. They provide high quality fodder for livestock, are used for turf and amenity purposes, and play a fundamental role in environment protection. Among cultivated grasses, species within the Festuca-Lolium complex predominate, especially in temperate regions. To facilitate high-throughput genome profiling and genetic mapping within the complex, we have developed a Diversity Arrays Technology (DArT) array for five grass species: F. pratensis, F. arundinacea, F. glaucescens, L. perenne and L. multiflorum. Results The DArTFest array contains 7680 probes derived from methyl-filtered genomic representations. In a first marker discovery experiment performed on 40 genotypes from each species (with the exception of F. glaucescens for which only 7 genotypes were used), we identified 3884 polymorphic markers. The number of DArT markers identified in every single genotype varied from 821 to 1852. To test the usefulness of DArTFest array for physical mapping, DArT markers were assigned to each of the seven chromosomes of F. pratensis using single chromosome substitution lines while recombinants of F. pratensis chromosome 3 were used to allocate the markers to seven chromosome bins. Conclusion The resources developed in this project will facilitate the development of genetic maps in Festuca and Lolium, the analysis on genetic diversity, and the monitoring of the genomic constitution of the Festuca × Lolium hybrids. They will also enable marker-assisted selection for multiple traits or for specific genome regions.
Collapse
Affiliation(s)
- David Kopecký
- Laboratory of Molecular Cytogenetics and Cytometry, Institute of Experimental Botany, Sokolovská 6, CZ-77200, Olomouc, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Risterucci AM, Hippolyte I, Perrier X, Xia L, Caig V, Evers M, Huttner E, Kilian A, Glaszmann JC. Development and assessment of Diversity Arrays Technology for high-throughput DNA analyses in Musa. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 119:1093-103. [PMID: 19693484 DOI: 10.1007/s00122-009-1111-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 07/13/2009] [Indexed: 05/20/2023]
Abstract
Diversity Arrays Technology (DArT) is a DNA hybridisation-based molecular marker technique that can detect simultaneously variation at numerous genomic loci without sequence information. This efficiency makes it a potential tool for a quick and powerful assessment of the structure of germplasm collections. This article demonstrates the usefulness of DArT markers for genetic diversity analyses of Musa spp. genotypes. We developed four complexity reduction methods to generate DArT genomic representations and we tested their performance using 48 reference Musa genotypes. For these four complexity reduction methods, DArT markers displayed high polymorphism information content. We selected the two methods which generated the most polymorphic genomic representations (PstI/BstNI 16.8%, PstI/TaqI 16.1%) to analyze a panel of 168 Musa genotypes from two of the most important field collections of Musa in the world: Cirad (Neufchateau, Guadeloupe), and IITA (Ibadan, Nigeria). Since most edible cultivars are derived from two wild species, Musa acuminata (A genome) and Musa balbisiana (B genome), the study is restricted mostly to accessions of these two species and those derived from them. The genomic origin of the markers can help resolving the pedigree of valuable genotypes of unknown origin. A total of 836 markers were identified and used for genotyping. Ten percent of them were specific to the A genome and enabled targeting this genome portion in relatedness analysis among diverse ploidy constitutions. DArT markers revealed genetic relationships among Musa genotype consistent with those provided by the other markers technologies, but at a significantly higher resolution and speed and reduced cost.
Collapse
|