201
|
Abstract
Human beings exhibit wide variation in their timing of daily behavior. We and others have suggested previously that such differences might arise because of alterations in the period length of the endogenous human circadian oscillator. Using dermal fibroblast cells from skin biopsies of 28 subjects of early and late chronotype (11 "larks" and 17 "owls"), we have studied the circadian period lengths of these two groups, as well as their ability to phase-shift and entrain to environmental and chemical signals. We find not only period length differences between the two classes, but also significant changes in the amplitude and phase-shifting properties of the circadian oscillator among individuals with identical "normal" period lengths. Mathematical modeling shows that these alterations could also account for the extreme behavioral phenotypes of these subjects. We conclude that human chronotype may be influenced not only by the period length of the circadian oscillator, but also by cellular components that affect its amplitude and phase. In many instances, these changes can be studied at the molecular level in primary dermal cells.
Collapse
|
202
|
Cai W, Rambaud J, Teboul M, Masse I, Benoit G, Gustafsson JA, Delaunay F, Laudet V, Pongratz I. Expression levels of estrogen receptor beta are modulated by components of the molecular clock. Mol Cell Biol 2008; 28:784-93. [PMID: 18039858 PMCID: PMC2223432 DOI: 10.1128/mcb.00233-07] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Revised: 03/09/2007] [Accepted: 10/22/2007] [Indexed: 12/27/2022] Open
Abstract
Circadian regulation of gene expression plays a major role in health and disease. The precise role of the circadian system remains to be clarified, but it is known that circadian proteins generate physiological rhythms in organisms by regulating clock-controlled target genes. The estrogen receptor beta (ERbeta) is, together with ERalpha, a member of the nuclear receptor superfamily and a key mediator of estrogen action. Interestingly, recent studies show that disturbed circadian rhythmicity in humans can increase the risk of reproductive malfunctions, suggesting a link between the circadian system and ER-mediated transcription pathways. Here, we identify a novel level of regulation of estrogen signaling where ERbeta, but not ERalpha, is controlled by circadian clock proteins. We show that ERbeta mRNA levels fluctuate in different peripheral tissues following a robust circadian pattern, with a peak at the light-dark transition, which is maintained under free-running conditions. Interestingly, this oscillation is abolished in clock-deficient BMAL1 knockout mice. Circadian control of ERbeta expression is exerted through a conserved E-box element in the ERbeta promoter region that recruits circadian regulatory factors. Furthermore, using small interfering RNA-mediated knockdown assays, we show that the expression levels of the circadian regulatory factors directly influence estrogen signaling by regulating the intracellular levels of endogenous ERbeta.
Collapse
Affiliation(s)
- Wen Cai
- Department of Biosciences and Nutrition, Karolinska Institute, S-141 57 Huddinge, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Diernfellner A, Colot HV, Dintsis O, Loros JJ, Dunlap JC, Brunner M. Long and short isoforms of Neurospora clock protein FRQ support temperature-compensated circadian rhythms. FEBS Lett 2007; 581:5759-64. [PMID: 18037381 DOI: 10.1016/j.febslet.2007.11.043] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 11/14/2007] [Accepted: 11/15/2007] [Indexed: 10/22/2022]
Abstract
The large (l) and small (s) isoforms of FREQUENCY (FRQ) are elements of interconnected feedback loops of the Neurospora circadian clock. The expression ratio of l-FRQ vs. s-FRQ is regulated by thermosensitive splicing of an intron containing the initiation codon for l-FRQ. We show that this splicing is dependent on light and temperature and displays a circadian rhythm. Strains expressing only l-FRQ or s-FRQ support short and long temperature-compensated circadian rhythms, respectively. The thermosensitive expression ratio of FRQ isoforms influences period length in wt. Our data indicate that differential expression of FRQ isoforms is not required for temperature compensation but rather provides a means to fine-tune period length in response to ambient temperature.
Collapse
Affiliation(s)
- Axel Diernfellner
- University of Heidelberg Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
204
|
Yin L, Wu N, Curtin JC, Qatanani M, Szwergold NR, Reid RA, Waitt GM, Parks DJ, Pearce KH, Wisely GB, Lazar MA. Rev-erbalpha, a heme sensor that coordinates metabolic and circadian pathways. Science 2007; 318:1786-9. [PMID: 18006707 DOI: 10.1126/science.1150179] [Citation(s) in RCA: 546] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The circadian clock temporally coordinates metabolic homeostasis in mammals. Central to this is heme, an iron-containing porphyrin that serves as prosthetic group for enzymes involved in oxidative metabolism as well as transcription factors that regulate circadian rhythmicity. The circadian factor that integrates this dual function of heme is not known. We show that heme binds reversibly to the orphan nuclear receptor Rev-erbalpha, a critical negative component of the circadian core clock, and regulates its interaction with a nuclear receptor corepressor complex. Furthermore, heme suppresses hepatic gluconeogenic gene expression and glucose output through Rev-erbalpha-mediated gene repression. Thus, Rev-erbalpha serves as a heme sensor that coordinates the cellular clock, glucose homeostasis, and energy metabolism.
Collapse
Affiliation(s)
- Lei Yin
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Gilardi F, Mitro N, Godio C, Scotti E, Caruso D, Crestani M, De Fabiani E. The pharmacological exploitation of cholesterol 7alpha-hydroxylase, the key enzyme in bile acid synthesis: from binding resins to chromatin remodelling to reduce plasma cholesterol. Pharmacol Ther 2007; 116:449-72. [PMID: 17959250 DOI: 10.1016/j.pharmthera.2007.08.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Accepted: 08/16/2007] [Indexed: 01/25/2023]
Abstract
Mammals dispose of cholesterol mainly through 7alpha-hydroxylated bile acids, and the enzyme catalyzing the 7alpha-hydroxylation, cholesterol 7alpha-hydroxylase (CYP7A1), has a deep impact on cholesterol homeostasis. In this review, we present the study of regulation of CYP7A1 as a good exemplification of the extraordinary contribution of molecular biology to the advancement of our understanding of metabolic pathways that has taken place in the last 2 decades. Since the cloning of the gene from different species, experimental evidence has accumulated, indicating that the enzyme is mainly regulated at the transcriptional level and that bile acids are the most important physiological inhibitors of CYP7A1 transcription. Multiple mechanisms are involved in the control of CYP7A1 transcription and a variety of transcription factors and nuclear receptors participate in sophisticated regulatory networks. A higher order of transcriptional regulation, stemming from the so-called histone code, also applies to CYP7A1, and recent findings clearly indicate that chromatin remodelling events have profound effects on its expression. CYP7A1 also acts as a sensor of signals coming from the gut, thus representing another line of defence against the toxic effects of bile acids and a downstream target of agents acting at the intestinal level. From the pharmacological point of view, bile acid binding resins were the first primitive approach targeting the negative feed-back regulation of CYP7A1 to reduce plasma cholesterol. In recent years, new drugs have been designed based on recent discoveries of the regulatory network, thus confirming the position of CYP7A1 as a focus for innovative pharmacological intervention.
Collapse
Affiliation(s)
- Federica Gilardi
- Dipartimento di Scienze Farmacologiche, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
206
|
Duez H, Staels B. Rev-erbα gives a time cue to metabolism. FEBS Lett 2007; 582:19-25. [PMID: 17765229 DOI: 10.1016/j.febslet.2007.08.032] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 08/13/2007] [Accepted: 08/14/2007] [Indexed: 11/17/2022]
Abstract
Normal physiological processes are under control of circadian rhythms. Moreover, certain pathological events, such as cardiovascular accidents (myocardial infarction, stroke) occur more frequently at specific times of the day. Recent observations demonstrate a causal relationship between alterations in circadian rhythmicity and metabolic disorders. Disruption of clock genes results in dyslipidemia, insulin resistance and obesity, all predisposing to atherosclerosis. The nuclear receptor Rev-erb alpha is part of the clock circuitry and plays an important role in keeping proper timing of the clock. Rev-erb alpha also regulates lipid metabolism, adipogenesis and vascular inflammation. Interestingly, Rev-erb alpha also cross-talks with several other nuclear receptors involved in energy homeostasis. Therefore Rev-erb alpha may serve to couple metabolic and circadian signals.
Collapse
Affiliation(s)
- Hélène Duez
- Institut Pasteur de Lille, Lille F-59019, France
| | | |
Collapse
|
207
|
Abstract
In mammals, the master circadian clock that drives many biochemical, physiological and behavioral rhythms is located in the suprachiasmatic nuclei (SCN) of the hypothalamus. Generation and maintenance of circadian rhythms rely on complex interlaced feedback loops based on transcriptional and posttranscriptional events involving clock genes and kinases. This clock serves the purpose to organize an organism's biochemistry on a 24 h time scale thereby avoiding interference between biochemical pathways and optimizing performance. Synchronization to environmental 24 h oscillations tunes physiological processes optimally with nature. In this review, I briefly describe the principle of the clock mechanism, its synchronization to the environment and consequences on health when the circadian clock is disrupted.
Collapse
Affiliation(s)
- Urs Albrecht
- Department of Medicine, Division of Biochemistry, University of Fribourg, 1700 Fribourg, Switzerland.
| |
Collapse
|
208
|
Meijer JH, Michel S, Vansteensel MJ. Processing of daily and seasonal light information in the mammalian circadian clock. Gen Comp Endocrinol 2007; 152:159-64. [PMID: 17324426 DOI: 10.1016/j.ygcen.2007.01.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 01/12/2007] [Accepted: 01/19/2007] [Indexed: 11/17/2022]
Abstract
It is necessary for an organism's survival that many physiological functions and behaviours demonstrate daily and seasonal variations. A crucial component for the temporal control in mammals is the circadian clock located in the suprachiasmatic nucleus (SCN) of the hypothalamus. Neurons in the SCN generate a rhythm in electrical activity with a period of about 24h. The SCN receives photic information from photoreceptive ganglion cells in the retina and processes the information, detecting dawn and dusk as well as encoding day-length. Information processing by the SCN is optimized to extract relevant irradiance information and reduce interferences. Neuronal coupling pathways, including GABAergic signalling, are employed to distribute information and synchronize SCN subregions to form a uniform timing signal. Encoding of day-length is manifested in SCN neuronal activity patterns and may be the product of network interactions rather than being based on the single cell.
Collapse
Affiliation(s)
- Johanna H Meijer
- Laboratory for Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Postal Zone S5-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| | | | | |
Collapse
|
209
|
Affiliation(s)
- David Gatfield
- Department of Molecular Biology and NCCR Frontiers in Genetics, Sciences III, University of Geneva, CH-1211 Geneva-4, Switzerland.
| | | |
Collapse
|
210
|
Claudel T, Cretenet G, Saumet A, Gachon F. Crosstalk between xenobiotics metabolism and circadian clock. FEBS Lett 2007; 581:3626-33. [PMID: 17451689 DOI: 10.1016/j.febslet.2007.04.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 03/30/2007] [Accepted: 04/03/2007] [Indexed: 01/25/2023]
Abstract
Many aspects of physiology and behavior in organisms from bacteria to man are subjected to circadian regulation. Indeed, the major function of the circadian clock consists in the adaptation of physiology to daily environmental change and the accompanying stresses such as exposition to UV-light and food-contained toxic compounds. In this way, most aspects of xenobiotic detoxification are subjected to circadian regulation. These phenomena are now considered as the molecular basis for the time-dependence of drug toxicities and efficacy. However, there is now evidences that these toxic compounds can, in turn, regulate circadian gene expression and thus influence circadian rhythms. As food seems to be the major regulator of peripheral clock, the possibility that food-contained toxic compounds participate in the entrainment of the clock will be discussed.
Collapse
Affiliation(s)
- Thierry Claudel
- Department of Pediatrics, Research Laboratory, University Medical Center Groningen, Groningen, ND-9700 RB, The Netherlands
| | | | | | | |
Collapse
|
211
|
Abstract
The mammalian circadian system is organized in a hierarchical manner in that a central pacemaker in the suprachiasmatic nucleus (SCN) of the brain's hypothalamus synchronizes cellular circadian oscillators in most peripheral body cells. Fasting-feeding cycles accompanying rest-activity rhythms are the major timing cues in the synchronization of many, if not most, peripheral clocks, suggesting that the temporal coordination of metabolism and proliferation is a major task of the mammalian timing system. The inactivation of noxious food components by hepatic, intestinal, and renal detoxification systems is among the metabolic processes regulated in a circadian manner, with the understanding of the involved clock output pathways emerging. The rhythmic control of xenobiotic detoxification provides the molecular basis for the dosing time-dependence of drug toxicities and efficacy. This knowledge can in turn be used in improving or designing chronotherapeutics for the patients who suffer from many of the major human diseases.
Collapse
Affiliation(s)
- Francis Levi
- INSERM U776, Unité de Chronothérapie, Service de Cancérologie, Hôpital Paul Brousse et Université Paris XI, 94800 Villejuif, France.
| | | |
Collapse
|
212
|
Malatesta M, Fattoretti P, Baldelli B, Battistelli S, Balietti M, Bertoni-Freddari C. Effects of ageing on the fine distribution of the circadian CLOCK protein in reticular formation neurons. Histochem Cell Biol 2007; 127:641-7. [PMID: 17415583 DOI: 10.1007/s00418-007-0284-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2007] [Indexed: 11/27/2022]
Abstract
Many biochemical, physiological and behavioural processes, from bacteria to human, exhibit roughly 24 h cyclic oscillations defined as circadian rhythms. However, during ageing, numerous aspects of the circadian biology undergo alterations; in particular, the sleep pattern changes, with more frequent awakenings and shorter sleep time. The basic mechanism of the circadian clock relies on intracellular molecular pathways involving interlocking transcriptional/translational feedback loops, and CLOCK protein, a transcription factor, is essential for normal circadian rhythms. In this study, the fine distribution of CLOCK protein has been analysed, in adult and old rats, at different phases of the daily cycle in the neurons of the medullary reticular formation, involved in the control of the sleep-wake cycle. The results demonstrate quali-quantitative modifications of CLOCK protein in the neurons of old animals, suggesting that such a deregulation of the intracellular clock mechanism may play some role in the degeneration of the sleep-wake circadian cycle.
Collapse
Affiliation(s)
- Manuela Malatesta
- Dipartimento di Scienze Morfologico-Biomediche, Sezione di Anatomia e Istologia, Strada Le Grazie, 8, 37134, Verona, Italy.
| | | | | | | | | | | |
Collapse
|
213
|
Kim JN, Lee BM. Risk factors, health risks, and risk management for aircraft personnel and frequent flyers. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2007; 10:223-34. [PMID: 17454553 DOI: 10.1080/10937400600882103] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Health risks associated with long periods of time in flight are of concern to astronauts, crew members, and passengers. Many epidemiological studies showed that occupational and frequent flyers may be susceptible to ocular, cardiovascular, neurological, pulmonary, gastrointestinal, sensory, immunological, physiological, and even developmental disorders. In addition, the incidences of cancer and food poisoning are expected to be higher in such individuals. This article reviews health risks and risk factors associated with air travel, and discusses risk management strategies. To reduce adverse health risks, risk factors such as radiation, infection, stress, temperature, pressure, and circadian rhythm need to be avoided or reduced to levels that are as low as technologically achievable to protect flight personnel and passengers.
Collapse
|
214
|
Fontaine C, Staels B. The orphan nuclear receptor Rev-erbalpha: a transcriptional link between circadian rhythmicity and cardiometabolic disease. Curr Opin Lipidol 2007; 18:141-6. [PMID: 17353661 DOI: 10.1097/mol.0b013e3280464ef6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW This review focuses on recent advances on the role of the orphan nuclear receptor Rev-erbalpha, a transcription factor participating in the control of circadian rhythm and cardiometabolic disease. RECENT FINDINGS Circadian patterns of cardiovascular vulnerability are well documented, with a peak incidence of cardiovascular events in the morning. Recent studies have outlined the importance of the Clock genes in the development of metabolic disorders predisposing to atherosclerosis. Rev-erbalpha is a nuclear receptor that regulates hepatic and adipose lipid metabolism as well as vascular inflammation. Moreover, Rev-erbalpha is also part of the clock transcription machinery and the target of some clock transcription factors. SUMMARY These findings identify Rev-erbalpha as a modulator of cardiovascular risk factors and as a determinant of the circadian regulation of metabolic pathways. Moreover, Rev-erbalpha crosstalks with other nuclear receptors which influence atherosclerosis susceptibility. Rev-erbalpha may thus serve to integrate metabolic and circadian signals.
Collapse
Affiliation(s)
- Coralie Fontaine
- Institut Pasteur de Lille, Inserm U.545, Université de Lille 2, Lille, France
| | | |
Collapse
|
215
|
Young ME, Bray MS. Potential role for peripheral circadian clock dyssynchrony in the pathogenesis of cardiovascular dysfunction. Sleep Med 2007; 8:656-67. [PMID: 17387040 PMCID: PMC2020822 DOI: 10.1016/j.sleep.2006.12.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Revised: 12/05/2006] [Accepted: 12/30/2006] [Indexed: 10/23/2022]
Abstract
Circadian clocks are intracellular molecular mechanisms designed to allow the cell, organ, and organism to prepare for an anticipated stimulus prior to its onset. In order for circadian clocks to maintain their selective advantage, they must be entrained to the environment. Light, sound, temperature, physical activity (including sleep/wake transitions), and food intake are among the strongest environmental factors influencing mammalian circadian clocks. Normal circadian rhythmicities in these environmental factors have become severely disrupted in our modern day society, concomitant with increased incidence of type 2 diabetes mellitus, obesity, and cardiovascular disease. Here, we review our current knowledge regarding the roles of peripheral circadian clocks, concentrating on those found within tissues directly involved in metabolic homeostasis and cardiovascular function. We propose that both inter- and intra-organ dyssynchronization, through alteration/impairment of peripheral circadian clocks, accelerates the development of cardiovascular disease risk factors associated with cardiometabolic syndrome.
Collapse
Affiliation(s)
- Martin E Young
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street, Houston, TX 77030, USA.
| | | |
Collapse
|
216
|
Zhao WN, Malinin N, Yang FC, Staknis D, Gekakis N, Maier B, Reischl S, Kramer A, Weitz CJ. CIPC is a mammalian circadian clock protein without invertebrate homologues. Nat Cell Biol 2007; 9:268-75. [PMID: 17310242 DOI: 10.1038/ncb1539] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Accepted: 01/17/2007] [Indexed: 11/08/2022]
Abstract
At the core of the mammalian circadian clock is a feedback loop in which the heterodimeric transcription factor CLOCK-Brain, Muscle Arnt-like-1 (BMAL1) drives expression of its negative regulators, periods (PERs) and cryptochromes (CRYs). Here, we provide evidence that CLOCK-Interacting Protein, Circadian (CIPC) is an additional negative-feedback regulator of the circadian clock. CIPC exhibits circadian regulation in multiple tissues, and it is a potent and specific inhibitor of CLOCK-BMAL1 activity that functions independently of CRYs. CIPC-CLOCK protein complexes are present in vivo, and depletion of endogenous CIPC shortens the circadian period length. CIPC is unrelated to known proteins and has no recognizable homologues outside vertebrates. Our results suggest that negative feedback in the mammalian circadian clock is divided into distinct pathways, and that the addition of new genes has contributed to the complexity of vertebrate clocks.
Collapse
Affiliation(s)
- Wen-Ning Zhao
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Chansard M, Molyneux P, Nomura K, Harrington ME, Fukuhara C. c-Jun N-terminal kinase inhibitor SP600125 modulates the period of mammalian circadian rhythms. Neuroscience 2007; 145:812-23. [PMID: 17270352 PMCID: PMC2238338 DOI: 10.1016/j.neuroscience.2006.12.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 12/15/2006] [Accepted: 12/20/2006] [Indexed: 12/01/2022]
Abstract
Circadian rhythms are endogenous cycles with periods close to, but not exactly equal to, 24 h. In mammals, circadian rhythms are generated in the suprachiasmatic nucleus (SCN) of the hypothalamus as well as several peripheral cell types, such as fibroblasts. Protein kinases are key regulators of the circadian molecular machinery. We investigated the role of the c-Jun N-terminal kinases (JNK), which belong to the mitogen-activated protein kinases family, in the regulation of circadian rhythms. In rat-1 fibroblasts, the p46 kDa, but not the p54 kDa, isoforms of JNK expressed circadian rhythms in phosphorylation. The JNK-inhibitor SP600125 dose-dependently extended the period of Period1-luciferase rhythms in rat-1 fibroblasts from 24.23+/-0.17-31.48+/-0.07 h. This treatment also dose-dependently delayed the onset of the bioluminescence rhythms. The effects of SP600125 on explant cultures from Period1-luciferase transgenic mice and Period2(Luciferase) knockin mice appeared tissue-specific. SP600125 lengthened the period in SCN, pineal gland, and lung explants in Period1-luciferase and Period2(Luciferase) mice. However, in the kidneys circadian rhythms were abolished in Period1-luciferase, while circadian rhythms were not affected by SP600125 treatment in Period2(Luciferase) mice. Valproic acid, already known to affect period length, enhanced JNK phosphorylation and, as predicted, shortened the period of the Period1-bioluminescence rhythms in rat-1 fibroblasts. In conclusion, our results showed that SP600125 treatment, as well as valproic acid, alters JNK phosphorylation levels, and modulates the period length in various tissues. We conclude that JNK phosphorylation levels may help to set the period length of mammalian circadian rhythms.
Collapse
Affiliation(s)
- M. Chansard
- Neuroscience Institute, Morehouse School of Medicine, 720 Westview Drive Southwest, Atlanta, GA 30310, USA
- INCI LC2 Département de Neurobiologie des Rythmes, CNRS/ULP UMR 7168, 67084, Strasbourg, France
| | - P. Molyneux
- Neuroscience Program, Smith College, Northampton, MA 01063, USA
| | - K. Nomura
- Neuroscience Institute, Morehouse School of Medicine, 720 Westview Drive Southwest, Atlanta, GA 30310, USA
| | | | - C. Fukuhara
- Neuroscience Institute, Morehouse School of Medicine, 720 Westview Drive Southwest, Atlanta, GA 30310, USA
- *Corresponding author. Tel: +1-404-756-6697; fax: +1-404-752-1041. E-mail address: (C. Fukuhara)
| |
Collapse
|
218
|
Lim FL, Currie RA, Orphanides G, Moggs JG. Emerging evidence for the interrelationship of xenobiotic exposure and circadian rhythms: a review. Xenobiotica 2007; 36:1140-51. [PMID: 17118921 DOI: 10.1080/00498250600861819] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The circadian clock controls many aspects of mammalian physiology and behaviour with a periodicity of approximately 24 h. These include the anticipation of, and adaptation to, daily environmental changes such as the light-dark cycle, temperature fluctuations and the availability of food. The toxicity of many drugs is dependent on the circadian phase at which they are administered, and recent work has begun to unravel the molecular basis for circadian variations in sensitivity to xenobiotic exposure. Between 2 and 10% of the transcriptome is expressed in a circadian manner, including many key genes associated with the metabolism and transport of xenobiotics. Furthermore, a number of xenobiotics may directly alter the expression of genes that control circadian rhythms. This review discusses the emerging evidence for the regulation of circadian rhythm genes having an important impact on molecular response to xenobiotics.
Collapse
Affiliation(s)
- F L Lim
- Syngenta CTL, Alderley Park, UK.
| | | | | | | |
Collapse
|
219
|
Zghoul T, Abarca C, Sanchis-Segura C, Albrecht U, Schumann G, Spanagel R. Ethanol self-administration and reinstatement of ethanol-seeking behavior in Per1(Brdm1) mutant mice. Psychopharmacology (Berl) 2007; 190:13-9. [PMID: 17051414 DOI: 10.1007/s00213-006-0592-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 09/13/2006] [Indexed: 12/21/2022]
Abstract
RATIONALE Alcohol consumption shows circadian rhythmicity, i.e., alcohol preference and intake change with circadian time. Circadian rhythmicity is controlled by a biological clock, which has been shown to govern behavioral, physiological, and hormonal processes in synchronization with internal as well as external cues. Molecular components of the clock include circadian clock genes such as period (Per) 1, 2, and 3. Previously, our lab demonstrated the involvement of mouse Per1 (mPer1) and Per2 (mPer2) in modulating cocaine sensitization and reward. What is more, we investigated voluntary alcohol consumption in Per2 ( Brdm1 ) mice with the results suggesting a relationship between this circadian clock gene and ethanol consumption. Objective To further complement the mPer2 study, our lab proceeded to assess mPer1's possible role on alcohol intake using operant and free choice two bottle paradigms. METHODS Using operant conditions, Per1 ( Brdm1 ) and wild type mice were trained to self-administer ethanol (10%) under a fixed ratio 1 (FR1) paradigm. This was ensued by a progressive ratio (PR) schedule. Furthermore, extinction sessions were introduced, followed by reinstatement measures of ethanol-seeking behavior. In another set of animals, the mice were exposed to voluntary long-term alcohol consumption, ensued by a 2-month deprivation phase, after which the alcohol deprivation effect (ADE) was measured. RESULTS Mutant mice did not display a significantly divergent number of reinforced lever presses (FR1 and PR) than wild type animals. Furthermore, no significant differences between groups were obtained regarding reinstatement of ethanol-seeking behavior. Similar results were obtained in the two bottle free choice paradigm. Specifically, no genotype differences concerning consumption and preference were observed over a broad range of different ethanol concentrations. Moreover, after the deprivation phase, both groups exhibited significant ADEs, yet no genotype differences. CONCLUSIONS Contrary to the mPer2 data, the present findings do not suggest a relationship between the circadian clock gene mPer1 and ethanol reinforcement, seeking, and relapse behavior.
Collapse
Affiliation(s)
- Tarek Zghoul
- Department of Psychopharmacology, Central Institute of Mental Health, University of Heidelberg, J5, 68159, Mannheim, Germany.
| | | | | | | | | | | |
Collapse
|
220
|
Kornmann B, Schaad O, Reinke H, Saini C, Schibler U. Regulation of circadian gene expression in liver by systemic signals and hepatocyte oscillators. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 72:319-330. [PMID: 18419289 DOI: 10.1101/sqb.2007.72.041] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The mammalian circadian timing system has a hierarchical structure, in that a master pacemaker located in the suprachiasmatic nuclei (SCN) coordinates slave oscillators present in virtually all body cells. In both the SCN and peripheral organs, the rhythm-generating oscillators are self-sustained and cell-autonomous, and it is likely that the molecular makeup of master and slave oscillators is nearly identical. However, due to variations in period length, the phase coherence between peripheral oscillators in intact animals must be established by daily signals emanating directly or indirectly from the SCN master clock. The synchronization of individual cellular clocks in peripheral organs is probably accomplished by immediate-early genes that interpret the cyclic systemic signals and convey this phase information to core clock components. This model predicts that circadian gene expression in peripheral organs can be influenced either by systemic signals emanating from the SCN master clock, local oscillators, or both. We developed a transgenic mouse strain in which hepatocyte clocks are only operative when the tetracycline analog doxycycline is added to the food or drinking water. The genome-wide mapping of genes whose cyclic expression in liver does not depend on functional hepatocyte oscillators unveiled putative signaling pathways that may participate in the phase entrainment of peripheral clocks.
Collapse
Affiliation(s)
- B Kornmann
- Department of Molecular Biology, University of Geneva 30, CH-1211 Geneva-4, Switzerland
| | | | | | | | | |
Collapse
|
221
|
Abstract
PARbZip proteins (proline and acidic amino acid-rich basic leucine zipper) represent a subfamily of circadian transcription factors belonging to the bZip family. They are transcriptionally controlled by the circadian molecular oscillator and are suspected to accomplish output functions of the clock. In turn, PARbZip proteins control expression of genes coding for enzymes involved in metabolism, but also expression of transcription factors which control the expression of these enzymes. For example, these transcription factors control vitamin B6 metabolism, which influences neurotransmitter homeostasis in the brain, and loss of PARbZip function leads to spontaneous and sound-induced epilepsy that are frequently lethal. In liver, kidney, and small intestine, PAR bZip transcription factors regulate phase I, II, and III detoxifying enzymes in addition to the constitutive androstane receptor (CAR), one of the principal sensors of xenobiotics. Indeed, knockout mice for the three PARbZip transcription factors are deficient in xenobiotic detoxification and display high morbidity, high mortality, and accelerated aging. Finally, less than 20% of these animals reach an age of 1 year. Accumulated evidences suggest that PARbZip transcription factors play a role of relay, coupling circadian metabolism of xenobiotic and probably endobiotic substances to the core clock circuitry of local circadian oscillators.
Collapse
|
222
|
Liu S, Cai Y, Sothern RB, Guan Y, Chan P. Chronobiological analysis of circadian patterns in transcription of seven key clock genes in six peripheral tissues in mice. Chronobiol Int 2007; 24:793-820. [PMID: 17994338 DOI: 10.1080/07420520701672556] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The molecular clock machinery in mammals consists of a number of clock genes (CGs) and their resultant proteins that form interlocking transcription-translation feedback loops. These loops generate and maintain the 24 h mRNA and protein oscillations and consequential biological and physiological rhythms. To understand whether peripheral oscillators share similarly-timed clock machinery, the temporal expression patterns of the seven recognized key CGs (mPer1, mPer2, mCry1, mCry2, mRev-erb alpha, mClock, and mBmal1) were examined simultaneously in six peripheral tissues in mice every 4 h for 24 h in synchronized light-dark conditions using real time PCR assays. Time series were analyzed for time-effect by ANOVA and for rhythm characteristics by the single cosinor fitting procedure. The expression levels of most CGs were comparable in liver, kidney, and spleen, but mBmal1 and mCry1 were more abundant in the thymus, and mPer1, mCry1, and mCry2 were more abundant in the testis. In addition, mCry2 was dramatically lower in the kidney, spleen, and thymus; mPer2 was significantly lower in the spleen, testis, and thymus; and all of the genes tested were strikingly less abundant in peripheral blood. A significant 24 h rhythmic component was found for each CG in the liver and kidney and for some CGs in other tissues. Of note, a 12 h ultradian rhythmic component was also found in mRNA expression for some CGs in several of the tissues and was the only significant oscillation observed for CGs in the testis. Ultradian oscillations were also observed for mPer1 in the testis (8 h) and thymus (12 h and 8 h) in a second study where mice were sampled every 2 h. The present results suggest that the functioning of the molecular circadian clock may be modified to some extent between peripheral tissues, as denoted by differences in amplitude and phasing, and operates differently or is less developed in tissues containing differentiating cells (i.e., testis and thymus), as denoted by the presence of ultradian patterns resulting in two or more peaks within 24 h.
Collapse
Affiliation(s)
- Shu Liu
- Department of Neurology and Neurobiology, Xuanwu Hospital of Capital Medical University, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, P. R. China
| | | | | | | | | |
Collapse
|
223
|
Izumo M, Sato TR, Straume M, Johnson CH. Quantitative analyses of circadian gene expression in mammalian cell cultures. PLoS Comput Biol 2006; 2:e136. [PMID: 17040123 PMCID: PMC1599765 DOI: 10.1371/journal.pcbi.0020136] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Accepted: 08/28/2006] [Indexed: 01/17/2023] Open
Abstract
The central circadian pacemaker is located in the hypothalamus of mammals, but essentially the same oscillating system operates in peripheral tissues and even in immortalized cell lines. Using luciferase reporters that allow automated monitoring of circadian gene expression in mammalian fibroblasts, we report the collection and analysis of precise rhythmic data from these cells. We use these methods to analyze signaling pathways of peripheral tissues by studying the responses of Rat-1 fibroblasts to ten different compounds. To quantify these rhythms, which show significant variation and large non-stationarities (damping and baseline drifting), we developed a new fast Fourier transform–nonlinear least squares analysis procedure that specifically optimizes the quantification of amplitude for circadian rhythm data. This enhanced analysis method successfully distinguishes among the ten signaling compounds for their rhythm-inducing properties. We pursued detailed analyses of the responses to two of these compounds that induced the highest amplitude rhythms in fibroblasts, forskolin (an activator of adenylyl cyclase), and dexamethasone (an agonist of glucocorticoid receptors). Our quantitative analyses clearly indicate that the synchronization mechanisms by the cAMP and glucocorticoid pathways are different, implying that actions of different genes stimulated by these pathways lead to distinctive programs of circadian synchronization. The circadian biological clock controls the adaptation of animals and plants to the daily environmental cycle of light and darkness. As such, this clock is responsible for jet lag and has consequences for mental health (e.g., depression), physical health (e.g., athletic performance and the timing of heart attacks), and social issues (e.g., shift work). The central circadian pacemaker is located in the hypothalamus of the mammalian brain, but essentially the same oscillating system operates in nonneural tissues. Using luciferase, an enzyme that emits light, the authors could monitor circadian gene expression in mammalian fibroblasts via luminescence emission that is controlled by the biological clock. Using this method, they report the collection and analysis of precise rhythmic data from these cells. These methods were used to analyze signaling pathways by studying the responses of fibroblasts to a variety of different treatments, including drugs, growth factors, and serum. The authors developed a new analysis procedure that specifically optimizes the quantification of amplitude for cyclic data to analyze these rhythms. This enhanced analysis method successfully distinguishes among the various signaling treatments for their rhythm inducing properties. The quantitative analyses clearly indicate that the synchronization mechanisms by the cyclic AMP and glucocorticoid pathways are different. Therefore, these pathways lead to distinctive programs of circadian synchronization.
Collapse
Affiliation(s)
- Mariko Izumo
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Takashi R Sato
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Martin Straume
- Customized Online Biomathematical Research Applications, Charlottesville, Virginia, United States of America
| | - Carl Hirschie Johnson
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
224
|
Feillet CA, Ripperger JA, Magnone MC, Dulloo A, Albrecht U, Challet E. Lack of food anticipation in Per2 mutant mice. Curr Biol 2006; 16:2016-22. [PMID: 17055980 DOI: 10.1016/j.cub.2006.08.053] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 08/14/2006] [Accepted: 08/14/2006] [Indexed: 12/17/2022]
Abstract
Predicting time of food availability is key for survival in most animals. Under restricted feeding conditions, this prediction is manifested in anticipatory bouts of locomotor activity and body temperature. This process seems to be driven by a food-entrainable oscillator independent of the main, light-entrainable clock located in the suprachiasmatic nucleus (SCN) of the hypothalamus . Although the SCN clockwork involves self-sustaining transcriptional and translational feedback loops based on rhythmic expression of mRNA and proteins of clock genes , the molecular mechanisms responsible for food anticipation are not well understood. Period genes Per1 and Per2 are crucial for the SCN's resetting to light . Here, we investigated the role of these genes in circadian anticipatory behavior by studying rest-activity and body-temperature rhythms of Per1 and Per2 mutant mice under restricted feeding conditions. We also monitored expression of clock genes in the SCN and peripheral tissues. Whereas wild-type and Per1 mutant mice expressed regular food-anticipatory activity, Per2 mutant mice did not show food anticipation. In peripheral tissues, however, phase shifts of clock-gene expression in response to timed food restriction were comparable in all genotypes. In conclusion, a mutation in Per2 abolishes anticipation of mealtime, without interfering with peripheral synchronization by feeding cycles.
Collapse
Affiliation(s)
- Céline A Feillet
- Department of Neurobiology of Rhythms, Institute of Cellular and Integrative Neurosciences, University Louis Pasteur, Centre National de la Recherche Scientifique, 67084 Strasbourg, France
| | | | | | | | | | | |
Collapse
|
225
|
Stratmann M, Schibler U. Properties, entrainment, and physiological functions of mammalian peripheral oscillators. J Biol Rhythms 2006; 21:494-506. [PMID: 17107939 DOI: 10.1177/0748730406293889] [Citation(s) in RCA: 189] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In mammals, the circadian timing system is composed of multiple oscillators that are organized in a hierarchical manner. The central pacemaker, located in the suprachiasmatic nucleus of the hypothalamus, is believed to orchestrate countless subsidiary clocks in the periphery. These peripheral oscillators are cell-autonomous, self-sustained, resilient to cell division, and virtually insensitive to large fluctuations in general transcription rates. However, they are probably not coupled within an organ, and daily zeitgeber signals emanating from the SCN appear to be required to ensure phase coherence within and between tissues. Peripheral clocks are implicated in a variety of biochemical pathways, and recent results tightly link circadian rhythms to several aspects of metabolism. Thus, the expression of many key enzymes conducting rate-limiting steps in various metabolic pathways is regulated in a circadian fashion by core clock components or clock-controlled transcription factors. Genetic loss-of-function studies have now established a role for mammalian circadian clock components in energy homeostasis and xenobiotic detoxification, and the latter manifests itself in the daytime-dependent modulation of drug efficacy and toxicity.
Collapse
Affiliation(s)
- Markus Stratmann
- Department of Molecular Biology, National Center of Competence in Research Frontiers in Genetics, Sciences III, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
226
|
Gallego M, Kang H, Virshup D. Protein phosphatase 1 regulates the stability of the circadian protein PER2. Biochem J 2006; 399:169-75. [PMID: 16813562 PMCID: PMC1570171 DOI: 10.1042/bj20060678] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The circadian clock is regulated by a transcription/translation negative feedback loop. A key negative regulator of circadian rhythm in mammals is the PER2 (mammalian PERIOD 2) protein. Its daily degradation at the end of the night accompanies de-repression of transcription. CKI (casein kinase I ) has been identified as the kinase that phosphorylates PER2, targeting it for ubiquitin-mediated proteasomal degradation. We now report that PER2 degradation is also negatively regulated by PP1 (protein phosphatase 1)-mediated dephosphorylation. In Xenopus egg extract, PP1 inhibition by Inhibitor-2 accelerated mPER2 degradation. Co-immunoprecipitation experiments showed that PER2 bound to PP1c in transfected HEK-293 cells. PP1 immunoprecipitated from HEK-293 cells, mouse liver and mouse brain, dephosphorylated CKI-phosphorylated PER2, showing that PER2 is a substrate for mammalian endogenous PP1. Moreover, over-expression of the dominant negative form of PP1c, the D95N mutant, accelerated ubiquitin and proteasome-mediated degradation of PER2, and shortened the PER2 half-life in HEK-293 cells. Over-expression of the PP1 inhibitors, protein phosphatase 1 holoenzyme inhibitor-1 and Inhibitor-2, confirmed these results. Thus PP1 regulates PER2 stability and is therefore a candidate to regulate mammalian circadian rhythms.
Collapse
Affiliation(s)
- Monica Gallego
- *Center for Children, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, U.S.A
| | - Heeseog Kang
- *Center for Children, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, U.S.A
| | - David M. Virshup
- *Center for Children, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, U.S.A
- †Department of Pediatrics, University of Utah, Salt Lake City, UT 84112, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
227
|
Abstract
The sleep-wake cycle is under the control of the circadian clock. Recent advances in rhythm biology have identified molecular clocks and their key regulating genes. Circadian clock genes (Clock, Per) were first isolated in Drosophila, and their homologous counterparts have been found in mammals. Some of the circadian master genes have been shown to influence sleeping behavior. For instance, a point mutation in a human clock gene (Per2) was shown to produce the rare advanced sleep phase syndrome, whereas a functional polymorphism in Per3 is associated with the more frequent delayed sleep phase syndrome. Furthermore, a study examining the association between Clock gene polymorphisms and insomnia revealed a higher recurrence of initial, middle, and terminal insomnia in patients homozygous for the Clock genotype. Other genes have been shown to contribute to sleep pathologies. A point mutation in the prion protein gene appears to be the cause of fatal familial insomnia. A missense mutation has been found in the gene encoding the GABA-A beta 3 subunit in a patient with chronic insomnia. In both animal models and humans, a deficiency in the hypocretin/orexin system was proposed to be responsible for narcolepsy. Selective destruction of hypocretin neurons is the most probable culprit in humans. These findings suggest that the genetic contribution to sleep disorders and wake determinants is more important than originally thought. Beyond sleep, light/dark cycles and sleep deprivation appear also to be associated with eating habits, and epidemics of obesity have to be evaluated in the context of shortened sleep duration.
Collapse
Affiliation(s)
- Pavel Hamet
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada H2W 1T7.
| | | |
Collapse
|
228
|
Affiliation(s)
- P Pévet
- Institut des Neurosciences Cellulaires et Intégratives, Département de Neurobiologie des Rythmes (UMR 7168/LC2 CNRS et Université Louis Pasteur), IFR des Neurosciences de Strasbourg, 5, rue Blaise-Pascal, 67080 Strasbourg, France
| |
Collapse
|
229
|
Hardin PE. Essential and expendable features of the circadian timekeeping mechanism. Curr Opin Neurobiol 2006; 16:686-92. [PMID: 17011182 DOI: 10.1016/j.conb.2006.09.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 09/07/2006] [Accepted: 09/15/2006] [Indexed: 11/16/2022]
Abstract
Circadian clocks control behavioral, physiological and metabolic rhythms via one or more transcriptional feedback loops. In animals, two conserved feedback loops are thought to keep circadian time by mediating rhythmic transcription in opposite phases of the circadian cycle. Recent work in cyanobacteria nevertheless demonstrates that rhythmic transcription is dispensable for circadian timekeeping, raising the possibility that some features of the transcriptional feedback loops in animals are also expendable. Indeed, one of the two feedback loops is not necessary for circadian timekeeping in animals, but rhythmic transcription and post-translational modifications are both essential for keeping circadian time. These results not only confirm additional requirements within the animal circadian timekeeping mechanism, but also raise important questions about the function of conserved, yet expendable, features of the circadian timekeeping mechanism in animals.
Collapse
Affiliation(s)
- Paul E Hardin
- Department of Biology, Center for Research on Biological Clocks, Texas A&M University, College Station, TX 77843-3258, USA.
| |
Collapse
|
230
|
Asher G, Schibler U. A CLOCK-less clock. Trends Cell Biol 2006; 16:547-9. [PMID: 16996737 DOI: 10.1016/j.tcb.2006.09.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Revised: 08/14/2006] [Accepted: 09/11/2006] [Indexed: 10/24/2022]
Abstract
Mammalian physiology is governed by a complex circadian timing system that involves interacting positive and negative transcriptional feedback loops. A key role in this feedback loop was attributed to the PAS domain helix-loop-helix protein CLOCK, on the basis of a dominant-negative mutation in this transcription factor. However, recent experiments by Reppert and coworkers with Clock knockout mice suggest that CLOCK is dispensable for rhythmic gene expression and behavior, presumably because other proteins can substitute for CLOCK in these animals.
Collapse
Affiliation(s)
- Gad Asher
- Department of Molecular Biology, Sciences III, University of Geneva, 30 Quai Ernest Ansermet, CH-1211 Geneva-4, Switzerland
| | | |
Collapse
|
231
|
Vanselow K, Vanselow JT, Westermark PO, Reischl S, Maier B, Korte T, Herrmann A, Herzel H, Schlosser A, Kramer A. Differential effects of PER2 phosphorylation: molecular basis for the human familial advanced sleep phase syndrome (FASPS). Genes Dev 2006; 20:2660-72. [PMID: 16983144 PMCID: PMC1578693 DOI: 10.1101/gad.397006] [Citation(s) in RCA: 281] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
PERIOD (PER) proteins are central components within the mammalian circadian oscillator, and are believed to form a negative feedback complex that inhibits their own transcription at a particular circadian phase. Phosphorylation of PER proteins regulates their stability as well as their subcellular localization. In a systematic screen, we have identified 21 phosphorylated residues of mPER2 including Ser 659, which is mutated in patients suffering from familial advanced sleep phase syndrome (FASPS). When expressing FASPS-mutated mPER2 in oscillating fibroblasts, we can phenocopy the short period and advanced phase of FASPS patients' behavior. We show that phosphorylation at Ser 659 results in nuclear retention and stabilization of mPER2, whereas phosphorylation at other sites leads to mPER2 degradation. To conceptualize our findings, we use mathematical modeling and predict that differential PER phosphorylation events can result in opposite period phenotypes. Indeed, interference with specific aspects of mPER2 phosphorylation leads to either short or long periods in oscillating fibroblasts. This concept explains not only the FASPS phenotype, but also the effect of the tau mutation in hamster as well as the doubletime mutants (dbtS and dbtL ) in Drosophila.
Collapse
Affiliation(s)
- Katja Vanselow
- Laboratory of Chronobiology, Charité Universitätsmedizin Berlin, 10115 Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Pavan B, Frigato E, Pozzati S, Prasad PD, Bertolucci C, Biondi C. Circadian clocks regulate adenylyl cyclase activity rhythms in human RPE cells. Biochem Biophys Res Commun 2006; 350:169-73. [PMID: 16996031 DOI: 10.1016/j.bbrc.2006.09.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Accepted: 09/06/2006] [Indexed: 11/18/2022]
Abstract
Genes and components of the circadian clock may represent relevant drug targets for diseases involving circadian dysfunctions. By exploiting an established cell line derived from human retinal pigment epithelium (HRPE), the cell constituting the blood-retinal barrier that is essential to maintain the visual functions of the sensorineural retina, we showed serum-shock induction of rhythmic changes in forskolin-evoked adenylyl cyclase (AC) activity. In the presence of Ca2+ and protein kinase A, the forskolin-induced AC activity is significantly, but not completely inhibited, suggesting the involvement of both Ca2+-sensitive and Ca2+-insensitive AC isoforms in the regulation of circadian rhythmicity in these cells. Semi-quantitative RT-PCR showed circadian profile in the expression of three AC isoforms, the Ca2+-inhibitable AC5 and AC6 and the Ca2+-insensitive AC7, and the clock genes hPer1 and hPer2. Our results demonstrate for the first time circadian rhythmicity in a human cell line, identifying the isoforms involved in the circadian profile of AC activity and showing a rhythmicity of the clock gene mRNA expression in these cells. Therefore, the results reported here provide evidence for an intertwine between AC/[Ca2+]i signalling pathways and Per genes in the HRPE circadian clockwork.
Collapse
Affiliation(s)
- Barbara Pavan
- Department of Biology, Section of General Physiology, University of Ferrara, via L. Borsari, 46, 44100-I Ferrara, Italy
| | | | | | | | | | | |
Collapse
|
233
|
Tsinkalovsky O, Filipski E, Rosenlund B, Sothern RB, Eiken HG, Wu MW, Claustrat B, Bayer J, Lévi F, Laerum OD. Circadian expression of clock genes in purified hematopoietic stem cells is developmentally regulated in mouse bone marrow. Exp Hematol 2006; 34:1249-61. [PMID: 16939818 DOI: 10.1016/j.exphem.2006.05.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 04/11/2006] [Accepted: 05/01/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Clock genes are known to mediate circadian rhythms in the central nervous system and peripheral organs. Although they are expressed in mouse hematopoietic progenitor and stem cells, it is unknown if they are related to circadian rhythms in these cells. We therefore investigated the 24-hour patterns in the activity of several clock genes in the bone marrow (BM) side population (SP) primitive stem cells, and compared these 24-hour patterns to clock gene variations in the whole BM and liver. METHODS Cells were obtained from 84 B6D2F(1) mice in three replicate experiments on the second day after release into constant darkness from a standardizing light-dark schedule. mRNA expression of clock genes was measured with quantitative reverse transcriptase polymerase chain reaction. RESULTS mPer2 displayed circadian rhythms in SP cells, whole BM, and liver cells. mPer1 and mRev-erb alpha showed a circadian rhythm in whole BM and liver, but not SP cells. mBmal1 was not expressed rhythmically in SP cells, nor in the whole BM, contrary to rhythms observed in the liver. CONCLUSIONS With the exception of mPer2, most clock genes studied in primitive hematopoietic SP stem cells were not oscillating in a fully organized circadian manner, which is similar to immature cells in rapidly proliferating organs, such as the testis and thymus. These findings indicate that circadian clock gene expression variations in BM are developmentally regulated.
Collapse
Affiliation(s)
- Oleg Tsinkalovsky
- Stem Cell Research Group, The Gade Institute, Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
234
|
Abstract
In most species, an endogenous timing system synchronizes physiology and behavior to the rhythmic succession of day and night. The mammalian circadian pacemaker residing in the suprachiasmatic nuclei (SCN) of the hypothalamus controls peripheral clocks throughout the brain and the body via humoral and neuronal transmission. On the cellular level, these clockworks consist of a set of interwoven transcriptional/translational feedback loops. Recent work emphasizes the tissue specificity of some components of these molecular clockworks and the differential regulation of their rhythmicity by the SCN.
Collapse
Affiliation(s)
- H Oster
- Laboratory for Chronobiology and Signal Transduction, Max Planck Institute for Experimental Endocrinology, 30625 Hannover, Germany.
| |
Collapse
|
235
|
Canaple L, Rambaud J, Dkhissi-Benyahya O, Rayet B, Tan NS, Michalik L, Delaunay F, Wahli W, Laudet V. Reciprocal regulation of brain and muscle Arnt-like protein 1 and peroxisome proliferator-activated receptor alpha defines a novel positive feedback loop in the rodent liver circadian clock. Mol Endocrinol 2006; 20:1715-27. [PMID: 16556735 DOI: 10.1210/me.2006-0052] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Recent evidence has emerged that peroxisome proliferator-activated receptor alpha (PPARalpha), which is largely involved in lipid metabolism, can play an important role in connecting circadian biology and metabolism. In the present study, we investigated the mechanisms by which PPARalpha influences the pacemakers acting in the central clock located in the suprachiasmatic nucleus and in the peripheral oscillator of the liver. We demonstrate that PPARalpha plays a specific role in the peripheral circadian control because it is required to maintain the circadian rhythm of the master clock gene brain and muscle Arnt-like protein 1 (bmal1) in vivo. This regulation occurs via a direct binding of PPARalpha on a potential PPARalpha response element located in the bmal1 promoter. Reversely, BMAL1 is an upstream regulator of PPARalpha gene expression. We further demonstrate that fenofibrate induces circadian rhythm of clock gene expression in cell culture and up-regulates hepatic bmal1 in vivo. Together, these results provide evidence for an additional regulatory feedback loop involving BMAL1 and PPARalpha in peripheral clocks.
Collapse
Affiliation(s)
- Laurence Canaple
- Structure and Evolution of Nuclear Receptors, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 5161, Institut Fédératif de Recherche (IFR) 128 BioSciences Lyon-Gerland, Lyon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Gachon F, Olela FF, Schaad O, Descombes P, Schibler U. The circadian PAR-domain basic leucine zipper transcription factors DBP, TEF, and HLF modulate basal and inducible xenobiotic detoxification. Cell Metab 2006; 4:25-36. [PMID: 16814730 DOI: 10.1016/j.cmet.2006.04.015] [Citation(s) in RCA: 378] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 03/21/2006] [Accepted: 04/27/2006] [Indexed: 10/24/2022]
Abstract
The PAR-domain basic leucine zipper (PAR bZip) transcription factors DBP, TEF, and HLF accumulate in a highly circadian manner in several peripheral tissues, including liver and kidney. Mice devoid of all three of these proteins are born at expected Mendelian ratios, but are epilepsy prone, age at an accelerated rate, and die prematurely. In the hope of identifying PAR bZip target genes whose altered expression might contribute to the high morbidity and mortality of PAR bZip triple knockout mice, we compared the liver and kidney transcriptomes of these animals to those of wild-type or heterozygous mutant mice. These experiments revealed that PAR bZip proteins control the expression of many enzymes and regulators involved in detoxification and drug metabolism, such as cytochrome P450 enzymes, carboxylesterases, and constitutive androstane receptor (CAR). Indeed, PAR bZip triple knockout mice are hypersensitive to xenobiotic compounds, and the deficiency in detoxification may contribute to their early aging.
Collapse
Affiliation(s)
- Frédéric Gachon
- Department of Molecular Biology, National Center of Competence in Research Frontiers in Genetics, Sciences III, University of Geneva, 1211 Geneva 4, Switzerland
| | | | | | | | | |
Collapse
|
237
|
Muñoz E, Brewer M, Baler R. Modulation of BMAL/CLOCK/E-Box complex activity by a CT-rich cis-acting element. Mol Cell Endocrinol 2006; 252:74-81. [PMID: 16650525 DOI: 10.1016/j.mce.2006.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The interaction between the BMAL1/CLOCK transcription factor and the cis-acting element known as the E-Box is a key event in the regulation of clock and clock-controlled gene expression. However, the fact that the ubiquitous E-Box element sits at the center of a presumably highly discriminating control system generates a certain level of puzzlement. Widely spread E-Boxes with a generic sequence CANNTG have been associated with expression of genes involved in a host of disparate biological processes, including the orchestration of circadian physiology. The intriguing specificity of this short DNA consensus element begs the hypothesis that its actual circadian properties might be encoded elsewhere, e.g., other factors or adjacent sequences. In a previous study, we found evidence that a short sequence in the mouse arginine vasopressin (AVP) proximal promoter has the ability to confer robust BMAL1/CLOCK responsiveness onto an adjacent E-Box. Here, we report the systematic analysis of this element. Our findings further define the determining features and sequence boundaries of this element, establish the effect of the photoperiod upon its interacting protein(s), and suggest that its cognate binding activity might be modulated by Zn2+ in a peripheral oscillator.
Collapse
Affiliation(s)
- Estela Muñoz
- Unit on Temporal Gene Expression, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, United States
| | | | | |
Collapse
|
238
|
Brunner M, Schafmeier T. Transcriptional and post-transcriptional regulation of the circadian clock of cyanobacteria and Neurospora. Genes Dev 2006; 20:1061-74. [PMID: 16651653 DOI: 10.1101/gad.1410406] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Circadian clocks are self-sustained oscillators modulating rhythmic transcription of large numbers of genes. Clock-controlled gene expression manifests in circadian rhythmicity of many physiological and behavioral functions. In eukaryotes, expression of core clock components is organized in a network of interconnected positive and negative feedback loops. This network is thought to constitute the pacemaker that generates circadian rhythmicity. The network of interconnected loops is embedded in a supra-net via a large number of interacting factors that affect expression and function of core clock components on transcriptional and post-transcriptional levels. In particular, phosphorylation and dephosphorylation of clock components are critical processes ensuring robust self-sustained circadian rhythmicity and entrainment of clocks to external cues. In cyanobacteria, three clock proteins have the capacity to generate a self-sustained circadian rhythm of autophosphorylation and dephosphorylation independent of transcription and translation. This phosphorylation rhythm regulates the function of these clock components, which then facilitate rhythmic gene transcription, including negative feedback on their own genes. In this article, we briefly present the mechanism of clock function in cyanobacteria. We then discuss in detail the contribution of transcriptional feedback and protein phosphorylation to various functional aspects of the circadian clock of Neurospora crassa.
Collapse
Affiliation(s)
- Michael Brunner
- Biochemie-Zentrum der Universität Heidelberg, 69120 Heidelberg, Germany.
| | | |
Collapse
|
239
|
Cardinali DP, Furio AM, Reyes MP, Brusco LI. The Use of Chronobiotics in the Resynchronization of the Sleep–wake Cycle. Cancer Causes Control 2006; 17:601-9. [PMID: 16596316 DOI: 10.1007/s10552-005-9009-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Treatment of circadian rhythm disorders, whether precipitated by intrinsic factors (e.g., sleep disorders, blindness, mental disorders, aging) or by extrinsic factors (e.g., shift work, jet-lag) has led to the development of a new type of agents called 'chronobiotics', among which melatonin is the prototype. The term 'chronobiotic' defines as a substance capable of shifting the phase of the circadian time system thus re-entraining circadian rhythms. Melatonin administration synchronizes the sleep-wake cycle in blind people and in individuals suffering from delayed sleep phase syndrome or jet lag, as well in shift-workers. The effect of melatonin on sleep is probably the consequence of increasing sleep propensity (by inducing a fall in body temperature) and of a synchronizing effect on the circadian clock (chronobiotic effect). We successfully employed the timely use of three factors (melatonin treatment, exposure to light, physical exercise) to hasten the resynchronization after transmeridian flights comprising 12-13 time zones, from an average of 8-10 days to about 2 days. Daily melatonin production decreases with age, and in several pathologies, attaining its lowest values in Alzheimer's dementia patients. About 45% of dementia patients have severe disruptions in their sleep-wakefulness cycle. Both in aged subjects having very minimal sleep disorders as well as in demented patients with a very severe disorganization of the sleep-wake cycle, melatonin treatment reduced the variability of sleep onset and restored sleep.
Collapse
Affiliation(s)
- Daniel P Cardinali
- Department of Physiology, Faculty of Medicine, University of Buenos Aires, Paraguay 2155, 1121, Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
240
|
Kriegsfeld LJ, Silver R. The regulation of neuroendocrine function: Timing is everything. Horm Behav 2006; 49:557-74. [PMID: 16497305 PMCID: PMC3275441 DOI: 10.1016/j.yhbeh.2005.12.011] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2005] [Revised: 12/06/2005] [Accepted: 12/08/2005] [Indexed: 11/21/2022]
Abstract
Hormone secretion is highly organized temporally, achieving optimal biological functioning and health. The master clock located in the suprachiasmatic nucleus (SCN) of the hypothalamus coordinates the timing of circadian rhythms, including daily control of hormone secretion. In the brain, the SCN drives hormone secretion. In some instances, SCN neurons make direct synaptic connections with neurosecretory neurons. In other instances, SCN signals set the phase of "clock genes" that regulate circadian function at the cellular level within neurosecretory cells. The protein products of these clock genes can also exert direct transcriptional control over neuroendocrine releasing factors. Clock genes and proteins are also expressed in peripheral endocrine organs providing additional modes of temporal control. Finally, the SCN signals endocrine glands via the autonomic nervous system, allowing for rapid regulation via multisynaptic pathways. Thus, the circadian system achieves temporal regulation of endocrine function by a combination of genetic, cellular, and neural regulatory mechanisms to ensure that each response occurs in its correct temporal niche. The availability of tools to assess the phase of molecular/cellular clocks and of powerful tract tracing methods to assess connections between "clock cells" and their targets provides an opportunity to examine circadian-controlled aspects of neurosecretion, in the search for general principles by which the endocrine system is organized.
Collapse
Affiliation(s)
- Lance J Kriegsfeld
- Department of Psychology and Helen Wills Neuroscience Institute, 3210 Tolman Hall, #1650, University of California, Berkeley, CA 94720-1650, USA.
| | | |
Collapse
|
241
|
Sellix MT, Egli M, Poletini MO, McKee DT, Bosworth MD, Fitch CA, Freeman ME. Anatomical and functional characterization of clock gene expression in neuroendocrine dopaminergic neurons. Am J Physiol Regul Integr Comp Physiol 2006; 290:R1309-23. [PMID: 16373438 PMCID: PMC1457054 DOI: 10.1152/ajpregu.00555.2005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oscillations of gene expression and physiological activity in suprachiasmatic nucleus (SCN) neurons result from autoregulatory feedback loops of circadian clock gene transcription factors. In the present experiment, we have determined the pattern of PERIOD1 (PER1), PERIOD2 (PER2), and CLOCK expression within neuroendocrine dopaminergic (DAergic) neurons (NDNs) of ovariectomized (OVX) rats. We have also determined the effects of per1, per2, and clock mRNA knockdown in the SCN with antisense deoxyoligonucleotides (AS-ODN) on DA release from NDNs. Diurnal rhythms of PER1 and PER2 expression in tuberoinfundibular DAergic (TIDA) and periventricular hypophyseal DAergic (PHDA) neurons, peaked at circadian time (CT)18 and CT12, respectively. Rhythms of PER1 expression in tuberhypophyseal neuroendocrine DAergic (THDA) neurons were undetectable. Rhythms of PER2 expression were found in all three populations of NDNs, with greater levels of PER2 expression between CT6 and CT12. AS-ODN injections differentially affected DA turnover in the axon terminals of the median eminence (ME), neural lobe (NL) and intermediate lobe (IL) of the pituitary gland, resulting in a significant decrease in DA release in the early subjective night in the ME (TIDA), a significant increase in DA release at the beginning of the day in the IL (PHDA), and no effect in the NL (THDA). AS-ODN-treatment induced a rhythm of DA concentration in the anterior lobe, with greater DA levels in the middle of the day. These data suggest that clock gene expression, particularly PER1 and PER2, within NDNs may act to modulate diurnal rhythms of DA release from NDNs in the OVX rat.
Collapse
Affiliation(s)
- Michael T Sellix
- Department of Biological Science, Florida State Univ., Tallahassee, Florida, USA
| | | | | | | | | | | | | |
Collapse
|
242
|
Alvarez MP, Jiménez V, Cano P, Rebollar P, Cardinali DP, Esquifino AI. Circadian rhythms of prolactin secretion in neonatal female rabbits after acute separation from their mothers. Gen Comp Endocrinol 2006; 146:257-64. [PMID: 16426607 DOI: 10.1016/j.ygcen.2005.11.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Revised: 11/18/2005] [Accepted: 11/30/2005] [Indexed: 11/29/2022]
Abstract
Newborn rabbits (Oryctolagus cuniculus) are only nursed for 3-5 min every 24 h and show a circadian increase in activity in anticipation of nursing. The objective of this study was to determine, in neonatal female rabbits after acute separation from the doe for 48 h, the changes in 24-h rhythms of plasma prolactin and median eminence and anterior pituitary concentration of dopamine (DA) and serotonin (5HT). In addition, median eminence concentration of the excitatory amino acid transmitters glutamate (GLU) and aspartate (ASP) and of the inhibitory amino acid transmitters gamma-aminobutyric acid (GABA) and taurine (TAU) was measured. A significant 21% increase of circulating prolactin occurred in isolated pups. In controls pups, plasma prolactin levels showed two peaks, during the first half of the light phase and at the beginning of the scotophase, respectively. In the isolated pups, a phase advance of about 4 h occurred for the two prolactin peaks. Hemicircadian changes of median eminence DA were found in controls, whereas a single daily peak (at 17:00 h) was found in the separated pups. Plasma prolactin and median eminence DA correlated significantly and inversely in the control group only. Pituitary DA content exhibited a single peak in controls and a hemicircadian pattern in isolated pups. Plasma prolactin and pituitary DA correlated significantly in isolated pups only 00000. Pup isolation decreased median eminence 5HT levels, augmented pituitary 5HT levels and disrupted their 24 h rhythmicity. Circulating prolactin correlated inversely with median eminence 5HT and directly with adenohypophysial 5HT only in controls. Isolation of pups generally modified the 24 h pattern of median eminence excitatory and inhibitory amino acid content by causing a prominent decrease at the beginning of the light phase. The results indicate that circadian rhythmicity of prolactin secretory mechanisms in female rabbit pups is significantly affected by pup's isolation from the doe.
Collapse
Affiliation(s)
- M P Alvarez
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, Spain
| | | | | | | | | | | |
Collapse
|
243
|
Káldi K, González BH, Brunner M. Transcriptional regulation of the Neurospora circadian clock gene wc-1 affects the phase of circadian output. EMBO Rep 2006; 7:199-204. [PMID: 16374510 PMCID: PMC1369249 DOI: 10.1038/sj.embor.7400595] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 09/29/2005] [Accepted: 11/10/2005] [Indexed: 11/08/2022] Open
Abstract
WHITE COLLAR-1 (WC-1) is the limiting component of the White Collar Complex (WCC) controlling expression of the Neurospora circadian clock protein Frequency (FRQ). Accumulation of WC-1 is supported by FRQ on a post-transcriptional level. Here, we show that transcription of wc-1 is organized in a complex way. Three promoters drive transcription of wc-1. Pdist is dependent on WCC. Pprox is independent of WCC in darkness, but inducible by light in a WCC-dependent manner. A third promoter, Pint, is located in the wc-1 open reading frame and promotes expression of an amino-terminally truncated WC-1 isoform of unknown function. Expression of wc-1 by Pdist or Pprox alone, or by a heterologous promoter, affects the entrained phase of circadian conidiation and the response of Neurospora to light. Our results indicate that transcriptional regulation of wc-1 is required to modulate the circadian phase of clock output.
Collapse
Affiliation(s)
- Krisztina Káldi
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | | | - Michael Brunner
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
- Tel: +49 6221 544783; Fax: +49 6221 545586; E-mail:
| |
Collapse
|
244
|
Nievergelt CM, Kripke DF, Barrett TB, Burg E, Remick RA, Sadovnick AD, McElroy SL, Keck PE, Schork NJ, Kelsoe JR. Suggestive evidence for association of the circadian genes PERIOD3 and ARNTL with bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 2006; 141B:234-41. [PMID: 16528748 PMCID: PMC2651679 DOI: 10.1002/ajmg.b.30252] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bipolar affective disorder (BPAD) is suspected to arise in part from malfunctions of the circadian system, a system that enables adaptation to a daily and seasonally cycling environment. Genetic variations altering functions of genes involved with the input to the circadian clock, in the molecular feedback loops constituting the circadian oscillatory mechanism itself, or in the regulatory output systems could influence BPAD as a result. Several human circadian system genes have been identified and localized recently, and a comparison with linkage hotspots for BPAD has revealed some correspondences. We have assessed evidence for linkage and association involving polymorphisms in 10 circadian clock genes (ARNTL, CLOCK, CRY2, CSNK1epsilon, DBP, GSK3beta, NPAS2, PER1, PER2, and PER3) to BPAD. Linkage analysis in 52 affected families showed suggestive evidence for linkage to CSNK1epsilon. This finding was not substantiated in the association study. Fifty-two SNPs in 10 clock genes were genotyped in 185 parent proband triads. Single SNP TDT analyses showed no evidence for association to BPAD. However, more powerful haplotype analyses suggest two candidates deserving further studies. Haplotypes in ARNTL and PER3 were found to be significantly associated with BPAD via single-gene permutation tests (PG = 0.025 and 0.008, respectively). The most suggestive haplotypes in PER3 showed a Bonferroni-corrected P-value of PGC = 0.07. These two genes have previously been implicated in circadian rhythm sleep disorders and affective disorders. With correction for the number of genes considered and tests conducted, these data do not provide statistically significant evidence for association. However, the trends for ARNTL and PER3 are suggestive of their involvement in bipolar disorder and warrant further study in a larger sample.
Collapse
Affiliation(s)
| | - Daniel F. Kripke
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Thomas B. Barrett
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Elyssa Burg
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Ronald A. Remick
- Department of Psychiatry, St. Paul’s Hospital, Vancouver, Canada
| | - A. Dessa Sadovnick
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Susan L. McElroy
- Biological Psychiatry Program, Department of Psychiatry, University of Cincinnati, College of Medicine, Cincinnati OH
| | - Paul E. Keck
- Biological Psychiatry Program, Department of Psychiatry, University of Cincinnati, College of Medicine, Cincinnati OH
| | - Nicholas J. Schork
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - John R. Kelsoe
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Department of Psychiatry, San Diego VA Healthcare System, La Jolla, CA, USA
| |
Collapse
|
245
|
Abstract
To adapt to a 24-hour environment, nearly all organisms, from mammals to single-celled organisms, have developed endogenous mechanisms that generate nearly 24-hour (circadian) rhythms in physiology and behavior, the most notable being that of the daily cycles of sleep and wake. Disruption of these circadian rhythms is often accompanied by disorders of sleep and wakefulness. With the recent advances in the molecular biology that underlies the development and maintenance of these rhythms, the pathophysiology behind circadian rhythm sleep disorders is becoming better understood.
Collapse
Affiliation(s)
- Prasanth Manthena
- Department of Neurology, Northwestern University School of Medicine, 710 North Lake Shore Drive, 11th Floor, Chicago, IL 60611, USA
| | | |
Collapse
|
246
|
Nishii K, Yamanaka I, Yasuda M, Kiyohara YB, Kitayama Y, Kondo T, Yagita K. Rhythmic post-transcriptional regulation of the circadian clock protein mPER2 in mammalian cells: a real-time analysis. Neurosci Lett 2006; 401:44-8. [PMID: 16580135 DOI: 10.1016/j.neulet.2006.03.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 03/03/2006] [Accepted: 03/05/2006] [Indexed: 11/20/2022]
Abstract
Post-transcriptional/translational mechanisms regulate the circadian clock system of many organisms, including mammals. The level of the essential clock protein mPER2 daily oscillates in peripheral cells as well as in neurons of the master oscillator in the suprachiasmatic nucleus (SCN). Post-translational modifications of mPER2, such as phosphorylation and ubiquitination, are likely involved in the regulation of its stability and intracellular accumulation rhythms, which in turn create an approximately 2-4 h delay from the rhythm of mPer2 mRNA. However, there are no direct evidences linking the above biochemical processes to the generation of the mPER2 protein cycle itself. Here, we show that multiple circadian waves of bioluminescence are detectable in cells constitutively expressing an mPer2-luciferase fusion mRNA. This suggests that a post-transcriptional/translational mechanism itself is capable of generating the circadian mPER2 accumulation cycle, and thus this type of regulation may function in the circadian clock system in mammals.
Collapse
Affiliation(s)
- Keigo Nishii
- COE Unit of Circadian System, Nagoya University Graduate School of Science, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | | | | | | | | | |
Collapse
|
247
|
Yin L, Wang J, Klein PS, Lazar MA. Nuclear receptor Rev-erbalpha is a critical lithium-sensitive component of the circadian clock. Science 2006; 311:1002-5. [PMID: 16484495 DOI: 10.1126/science.1121613] [Citation(s) in RCA: 397] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Lithium is commonly used to treat bipolar disorder, which is associated with altered circadian rhythm. Lithium is a potent inhibitor of glycogen synthase kinase 3 (GSK3), which regulates circadian rhythm in several organisms. In experiments with cultured cells, we show here that GSK3beta phosphorylates and stabilizes the orphan nuclear receptor Rev-erbalpha, a negative component of the circadian clock. Lithium treatment of cells leads to rapid proteasomal degradation of Rev-erbalpha and activation of clock gene Bmal1. A form of Rev-erbalpha that is insensitive to lithium interferes with the expression of circadian genes. Control of Rev-erbalpha protein stability is thus a critical component of the peripheral clock and a biological target of lithium therapy.
Collapse
Affiliation(s)
- Lei Yin
- Division of Endocrinology, Diabetes, and Metabolism, and University of Pennsylvania School of Medicine, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
248
|
Schafmeier T, Káldi K, Diernfellner A, Mohr C, Brunner M. Phosphorylation-dependent maturation of Neurospora circadian clock protein from a nuclear repressor toward a cytoplasmic activator. Genes Dev 2006; 20:297-306. [PMID: 16421276 PMCID: PMC1361701 DOI: 10.1101/gad.360906] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Frequency (FRQ) is a central component of interconnected negative and positive limbs of feedback loops of the circadian clock of Neurospora. In the negative limb, FRQ inhibits its transcriptional activator White Collar Complex (WCC) and in the positive limb, FRQ supports accumulation of WCC. We show that these conflicting functions are confined to distinct subcellular compartments and coordinated in temporal fashion. Inactivation of the transcriptional activator WCC requires nuclear FRQ and occurs early after the onset of FRQ expression. Support of WCC accumulation requires cytosolic FRQ and occurs on a post-translational level, when high amounts of FRQ have accumulated. The transcriptional function of FRQ in the negative loop and its post-translational function in the positive loop are independent and associated with distinct regions of FRQ. Phosphorylation of FRQ at the PEST-2 region triggers its maturation from a nuclear repressor toward a cytoplasmic activator.
Collapse
Affiliation(s)
- Tobias Schafmeier
- Biochemie-Zentrum der Universität Heidelberg, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
249
|
D'Negri CE, Nicola-Siri L, Vigo DE, Girotti LA, Cardinali DP. Circadian analysis of myocardial infarction incidence in an Argentine and Uruguayan population. BMC Cardiovasc Disord 2006; 6:1. [PMID: 16401349 PMCID: PMC1360093 DOI: 10.1186/1471-2261-6-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Accepted: 01/09/2006] [Indexed: 11/25/2022] Open
Abstract
Background The occurrence of variations in the spectrum of cardiovascular disease between different regions of the world and ethnic groups have been the subject of great interest. This study report the 24-h variation of myocardial infarction (MI) occurrence in patients recruited from CCU located in Argentina and Uruguay. Methods A cohort of 1063 patients admitted to the CCU within 24 h of the onset of symptoms of an acute MI was examined. MI incidence along the day was computed in 1 h-intervals. Results A minimal MI incidence between 03:00 and 07:00 h and the occurrence of a first maximum between 08:00 and 12:00 h and a second maximum between 15:00 and 22:00 h were verified. The best fit curve was a 24 h cosinor (acrophase ~ 19:00 h, accounting for 63 % of variance) together with a symmetrical gaussian bell (maximum at ~ 10:00 h, accounting for 37 % of variance). A similar picture was observed for MI frequencies among different excluding subgroups (older or younger than 70 years; with or without previous symptoms; diabetics or non diabetics; Q wave- or non-Q wave-type MI; anterior or inferior MI location). Proportion between cosinor and gaussian probabilities was maintained among most subgroups except for older patients who had more MI at the afternoon and patients with previous symptoms who were equally distributed among the morning and afternoon maxima. Conclusion The results support the existence of two maxima (at morning and afternoon hours) in MI incidence in the Argentine and Uruguayan population.
Collapse
Affiliation(s)
- Carlos E D'Negri
- Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | - Leonardo Nicola-Siri
- Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
- División de Cardiología, Hospital Ramos Mejía, Buenos Aires, Argentina
- Laboratorio de Bioelectricidad, Escuela de Ingeniería – Bioingeniería, Universidad Nacional de Entre Ríos, Argentina
| | - Daniel E Vigo
- Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Luis A Girotti
- División de Cardiología, Hospital Ramos Mejía, Buenos Aires, Argentina
| | - Daniel P Cardinali
- Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| |
Collapse
|
250
|
Jetten AM, Joo JH. Retinoid-related Orphan Receptors (RORs): Roles in Cellular Differentiation and Development. ADVANCES IN DEVELOPMENTAL BIOLOGY (AMSTERDAM, NETHERLANDS) 2006; 16:313-355. [PMID: 18418469 DOI: 10.1016/s1574-3349(06)16010-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Retinoid-related orphan receptors RORalpha, -beta, and -gamma are transcription factors belonging to the steroid hormone receptor superfamily. During embryonic development RORs are expressed in a spatial and temporal manner and are critical in the regulation of cellular differentiation and the development of several tissues. RORalpha plays a key role in the development of the cerebellum particularly in the regulation of the maturation and survival of Purkinje cells. In RORalpha-deficient mice, the reduced production of sonic hedgehog by these cells appears to be the major cause of the decreased proliferation of granule cell precursors and the observed cerebellar atrophy. RORalpha has been implicated in the regulation of a number of other physiological processes, including bone formation. RORbeta expression is largely restricted to several regions of the brain, the retina, and pineal gland. Mice deficient in RORbeta develop retinal degeneration that results in blindness. RORgamma is essential for lymph node organogenesis. In the intestine RORgamma is required for the formation of several other lymphoid tissues: Peyer's patches, cryptopatches, and isolated lymphoid follicles. RORgamma plays a key role in the generation of lymphoid tissue inducer (LTi) cells that are essential for the development of these lymphoid tissues. In addition, RORgamma is a critical regulator of thymopoiesis. It controls the differentiation of immature single-positive thymocytes into double-positive thymocytes and promotes the survival of double-positive thymocytes by inducing the expression of the anti-apoptotic gene Bcl-X(L). Interestingly, all three ROR receptors appear to play a role in the control of circadian rhythms. RORalpha positively regulates the expression of Bmal1, a transcription factor that is critical in the control of the circadian clock. This review intends to provide an overview of the current status of the functions RORs have in these biological processes.
Collapse
Affiliation(s)
- Anton M Jetten
- Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | | |
Collapse
|