201
|
Huang EN, Quach H, Lee JA, Dierolf J, Moraes TJ, Wong AP. A Developmental Role of the Cystic Fibrosis Transmembrane Conductance Regulator in Cystic Fibrosis Lung Disease Pathogenesis. Front Cell Dev Biol 2021; 9:742891. [PMID: 34708042 PMCID: PMC8542926 DOI: 10.3389/fcell.2021.742891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/21/2021] [Indexed: 12/23/2022] Open
Abstract
The cystic fibrosis (CF) transmembrane conductance regulator (CFTR) protein is a cAMP-activated anion channel that is critical for regulating fluid and ion transport across the epithelium. This process is disrupted in CF epithelia, and patients harbouring CF-causing mutations experience reduced lung function as a result, associated with the increased rate of mortality. Much progress has been made in CF research leading to treatments that improve CFTR function, including small molecule modulators. However, clinical outcomes are not necessarily mutation-specific as individuals harboring the same genetic mutation may present with varying disease manifestations and responses to therapy. This suggests that the CFTR protein may have alternative functions that remain under-appreciated and yet can impact disease. In this mini review, we highlight some notable research implicating an important role of CFTR protein during early lung development and how mutant CFTR proteins may impact CF airway disease pathogenesis. We also discuss recent novel cell and animal models that can now be used to identify a developmental cause of CF lung disease.
Collapse
Affiliation(s)
- Elena N Huang
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Henry Quach
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jin-A Lee
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Joshua Dierolf
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Theo J Moraes
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada.,Program in Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Amy P Wong
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
202
|
Mühlfeld C, Schulte H, Jansing JC, Casiraghi C, Ricci F, Catozzi C, Ochs M, Salomone F, Brandenberger C. Design-Based Stereology of the Lung in the Hyperoxic Preterm Rabbit Model of Bronchopulmonary Dysplasia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4293279. [PMID: 34659632 PMCID: PMC8514964 DOI: 10.1155/2021/4293279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/03/2021] [Indexed: 11/17/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is a complex condition frequently occurring in preterm newborns, and different animal models are currently used to mimic the pathophysiology of BPD. The comparability of animal models depends on the availability of quantitative data obtained by minimally biased methods. Therefore, the aim of this study was to provide the first design-based stereological analysis of the lungs in the hyperoxia-based model of BPD in the preterm rabbit. Rabbit pups were obtained on gestation day 28 (three days before term) by cesarean section and exposed to normoxic (21% O2, n = 8) or hyperoxic (95% O2, n = 8) conditions. After seven days of exposure, lung function testing was performed, and lungs were taken for stereological analysis. In addition, the ratio between pulmonary arterial acceleration and ejection time (PAAT/PAET) was measured. Inspiratory capacity and static compliance were reduced whereas tissue elastance and resistance were increased in hyperoxic animals compared with normoxic controls. Hyperoxic animals showed signs of pulmonary hypertension indicated by the decreased PAAT/PAET ratio. In hyperoxic animals, the number of alveoli and the alveolar surface area were reduced by one-third or by approximately 50% of control values, respectively. However, neither the mean linear intercept length nor the mean alveolar volume was significantly different between both groups. Hyperoxic pups had thickened alveolar septa and intra-alveolar accumulation of edema fluid and inflammatory cells. Nonparenchymal blood vessels had thickened walls, enlarged perivascular space, and smaller lumen in hyperoxic rabbits in comparison with normoxic ones. In conclusion, the findings are in line with the pathological features of human BPD. The stereological data may serve as a reference to compare this model with BPD models in other species or future therapeutic interventions.
Collapse
Affiliation(s)
- Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Research (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Henri Schulte
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany
| | | | - Costanza Casiraghi
- Corporate R&D Preclinical Department, Chiesi Farmaceutici S.p.A, Via Palermo 26/a, 43122 Parma, Italy
| | - Francesca Ricci
- Corporate R&D Preclinical Department, Chiesi Farmaceutici S.p.A, Via Palermo 26/a, 43122 Parma, Italy
| | - Chiara Catozzi
- Corporate R&D Preclinical Department, Chiesi Farmaceutici S.p.A, Via Palermo 26/a, 43122 Parma, Italy
| | - Matthias Ochs
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany
- Institute of Functional Anatomy, Charité-Universitätsmedizin Berlin, Philippstr. 11, 10115 Berlin, Germany
- German Center for Lung Research (DZL), Berlin, Germany
| | - Fabrizio Salomone
- Corporate R&D Preclinical Department, Chiesi Farmaceutici S.p.A, Via Palermo 26/a, 43122 Parma, Italy
| | - Christina Brandenberger
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Research (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| |
Collapse
|
203
|
Yuzhalin AE. Parallels between the extracellular matrix roles in developmental biology and cancer biology. Semin Cell Dev Biol 2021; 128:90-102. [PMID: 34556419 DOI: 10.1016/j.semcdb.2021.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/07/2021] [Accepted: 09/12/2021] [Indexed: 12/28/2022]
Abstract
Interaction of a tumor with its microenvironment is an emerging field of investigation, and the crosstalk between cancer cells and the extracellular matrix is of particular interest, since cancer patients with abundant and stiff extracellular matrices display a poorer prognosis. At the post-juvenile stage, the extracellular matrix plays predominantly a structural role by providing support to cells and tissues; however, during development, matrix proteins exert a plethora of diverse signals to guide the movement and determine the fate of pluripotent cells. Taking a closer look at the communication between the extracellular matrix and cells of a developing body may bring new insights into cancer biology and identify cancer weaknesses. This review discusses parallels between the extracellular matrix roles during development and tumor growth.
Collapse
Affiliation(s)
- Arseniy E Yuzhalin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
204
|
Yang L, Zhou F, Zheng D, Wang D, Li X, Zhao C, Huang X. FGF/FGFR signaling: From lung development to respiratory diseases. Cytokine Growth Factor Rev 2021; 62:94-104. [PMID: 34593304 DOI: 10.1016/j.cytogfr.2021.09.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/31/2021] [Accepted: 09/10/2021] [Indexed: 02/06/2023]
Abstract
The fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) signaling system regulates a variety of biological processes, including embryogenesis, angiogenesis, wound repair, tissue homeostasis, and cancer. It exerts these regulatory functions by controlling proliferation, differentiation, migration, survival, and metabolism of target cells. The morphological structure of the lung is a complex tree-like network for effective oxygen exchange, and the airway terminates in the middle and distal ends of many alveoli. FGF/FGFR signaling plays an important role in the pathophysiology of lung development and pathogenesis of various human respiratory diseases. Here, we mainly review recent advances in FGF/FGFR signaling during human lung development and respiratory diseases, including lung cancer, acute lung injury (ALI), pulmonary arterial hypertension (PAH), chronic obstructive pulmonary disease (COPD), asthma, and pulmonary fibrosis.
Collapse
Affiliation(s)
- Lehe Yang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China
| | - Feng Zhou
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China
| | - Dandan Zheng
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China
| | - Dandan Wang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China; School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang 325035, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang 325035, China.
| | - Chengguang Zhao
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China; School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang 325035, China.
| | - Xiaoying Huang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
205
|
Chorioamnionitis induces changes in ovine pulmonary endogenous epithelial stem/progenitor cells in utero. Pediatr Res 2021; 90:549-558. [PMID: 33070161 DOI: 10.1038/s41390-020-01204-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 09/15/2020] [Accepted: 09/25/2020] [Indexed: 11/08/2022]
Abstract
BACKGROUND Chorioamnionitis, an intrauterine infection of the placenta and fetal membranes, is a common risk factor for adverse pulmonary outcomes in premature infants including BPD, which is characterized by an arrest in alveolar development. As endogenous epithelial stem/progenitor cells are crucial for organogenesis and tissue repair, we examined whether intrauterine inflammation negatively affects these essential progenitor pools. METHODS In an ovine chorioamnionitis model, fetuses were intra-amniotically exposed to LPS, 2d or 7d (acute inflammation) before preterm delivery at 125d of gestation, or to intra-amniotic Ureaplasma parvum for 42d (chronic inflammation). Lung function, pulmonary endogenous epithelial stem/progenitor pools, and downstream functional markers were studied. RESULTS Lung function was improved in the 7d LPS and 42d Ureaplasma groups. However, intrauterine inflammation caused a loss of P63+ basal cells in proximal airways and reduced SOX-9 expression and TTF-1+ Club cells in distal airways. Attenuated type-2 cell numbers were associated with lower proliferation and reduced type-1 cell marker Aqp5 expression, indicative for impaired progenitor function. Chronic Ureaplasma infection only affected distal airways, whereas acute inflammation affected stem/progenitor populations throughout the lungs. CONCLUSIONS Acute and chronic prenatal inflammation improve lung function at the expense of stem/progenitor alterations that potentially disrupt normal lung development, thereby predisposing to adverse postnatal outcomes. IMPACT In this study, prenatal inflammation improved lung function at the expense of stem/progenitor alterations that potentially disrupt normal lung development, thereby predisposing to adverse postnatal outcomes. Importantly, we demonstrate that these essential alterations can already be initiated before birth. So far, stem/progenitor dysfunction has only been shown postnatally. This study indicates that clinical protocols to target the consequences of perinatal inflammatory stress for the immature lungs should be initiated as early as possible and ideally in utero. Within this context, our data suggest that interventions, which promote function or repair of endogenous stem cells in the lungs, hold great promise.
Collapse
|
206
|
Lung function between 8 and 15 years of age in very preterm infants with fetal growth restriction. Pediatr Res 2021; 90:657-663. [PMID: 33469172 DOI: 10.1038/s41390-020-01299-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/30/2020] [Accepted: 11/10/2020] [Indexed: 01/29/2023]
Abstract
BACKGROUND The impact of intrauterine growth restriction (IUGR) on lung function in very preterm children is largely unknown as current evidence is mainly based on studies in children born small for gestational age but not necessarily with IUGR. METHODS Spirometry, transfer factor of the lung for carbon monoxide (TLco), and lung clearance index (LCI) were cross-sectionally evaluated at 8.0-15.0 years of age in children born <32 weeks of gestation with IUGR (n = 28) and without IUGR (n = 67). Controls born at term (n = 67) were also included. RESULTS Very preterm children with IUGR had lower mean forced expired volume in the first second (FEV1) z-score than those with normal fetal growth (∆ -0.66, 95% confidence interval (CI) -1.12, -0.19), but not significant differences in LCI (∆ +0.24, 95% CI -0.09, 0.56) and TLco z-score (∆ -0.11, 95% CI -0.44, 0.23). The frequency of bronchopulmonary dysplasia (BPD) in the two groups was, respectively, 43% and 10% (P = 0.003). IUGR was negatively associated with FEV1 (B = -0.66; P = 0.004), but the association lost significance (P = 0.05) when adjusting for BPD. CONCLUSIONS IUGR has an impact on conducting airways function of very preterm children at school age, with part of this effect being mediated by BPD. Ventilation inhomogeneity and diffusing capacity, instead, were not affected. IMPACT IUGR does not necessarily imply a low birthweight for gestational age (and vice versa). While a low birthweight is associated with worse respiratory outcomes, the impact of IUGR on lung function in premature children is largely unknown. IUGR affects conducting airways function in school-age children born <32 weeks with IUGR, but not ventilation inhomogeneity and diffusing capacity. The impact of IUGR on FEV1 seems mainly related to the higher risk of BPD in this group.
Collapse
|
207
|
Complete lung agenesis caused by complex genomic rearrangements with neo-TAD formation at the SHH locus. Hum Genet 2021; 140:1459-1469. [PMID: 34436670 PMCID: PMC8460539 DOI: 10.1007/s00439-021-02344-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/10/2021] [Indexed: 11/05/2022]
Abstract
During human organogenesis, lung development is a timely and tightly regulated developmental process under the control of a large number of signaling molecules. Understanding how genetic variants can disturb normal lung development causing different lung malformations is a major goal for dissecting molecular mechanisms during embryogenesis. Here, through exome sequencing (ES), array CGH, genome sequencing (GS) and Hi-C, we aimed at elucidating the molecular basis of bilateral isolated lung agenesis in three fetuses born to a non-consanguineous family. We detected a complex genomic rearrangement containing duplicated, triplicated and deleted fragments involving the SHH locus in fetuses presenting complete agenesis of both lungs and near-complete agenesis of the trachea, diagnosed by ultrasound screening and confirmed at autopsy following termination. The rearrangement did not include SHH itself, but several regulatory elements for lung development, such as MACS1, a major SHH lung enhancer, and the neighboring genes MNX1 and NOM1. The rearrangement incorporated parts of two topologically associating domains (TADs) including their boundaries. Hi-C of cells from one of the affected fetuses showed the formation of two novel TADs each containing SHH enhancers and the MNX1 and NOM1 genes. Hi-C together with GS indicate that the new 3D conformation is likely causative for this condition by an inappropriate activation of MNX1 included in the neo-TADs by MACS1 enhancer, further highlighting the importance of the 3D chromatin conformation in human disease.
Collapse
|
208
|
Germline soma communication mediated by gap junction proteins regulates epithelial morphogenesis. PLoS Genet 2021; 17:e1009685. [PMID: 34343194 PMCID: PMC8330916 DOI: 10.1371/journal.pgen.1009685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/28/2021] [Indexed: 01/22/2023] Open
Abstract
Gap junction (GJ) proteins, the primary constituents of GJ channels, are conserved determinants of patterning. Canonically, a GJ channel, made up of two hemi-channels contributed by the neighboring cells, facilitates transport of metabolites/ions. Here we demonstrate the involvement of GJ proteins during cuboidal to squamous epithelial transition displayed by the anterior follicle cells (AFCs) from Drosophila ovaries. Somatically derived AFCs stretch and flatten when the adjacent germline cells start increasing in size. GJ proteins, Innexin2 (Inx2) and Innexin4 (Inx4), functioning in the AFCs and germline respectively, promote the shape transformation by modulating calcium levels in the AFCs. Our observations suggest that alterations in calcium flux potentiate STAT activity to influence actomyosin-based cytoskeleton, possibly resulting in disassembly of adherens junctions. Our data have uncovered sequential molecular events underlying the cuboidal to squamous shape transition and offer unique insight into how GJ proteins expressed in the neighboring cells contribute to morphogenetic processes. Shape transitions between different subtypes of epithelial cells i.e., cuboidal, squamous and columnar are ubiquitous and are essential during organogenesis across animal kingdom. We demonstrate that heteromeric combination of gap junction proteins, Drosophila Innexin2 and Drosophila Innexin 4 (also known as Zero population growth or Zpg), expressed in the soma and germline of fly egg respectively, mediates the shape transition of cuboidal follicle cells to squamous fate. Interestingly, the two gap junction proteins likely participate as constituents of a calcium channel. Further, we show that somatic follicle cells and germline nurse cells communicate through calcium fluxes that activates STAT in the follicle cells. Activated STAT modulates the levels/ activity of junctional complexes thus aiding shape transition of cuboidal cells to squamous fate. These findings provide novel insights into how communication between different cell types with distinct origins achieve shape transitions essential for proper organ assemblies.
Collapse
|
209
|
Tong Y, Zhang S, Riddle S, Zhang L, Song R, Yue D. Intrauterine Hypoxia and Epigenetic Programming in Lung Development and Disease. Biomedicines 2021; 9:944. [PMID: 34440150 PMCID: PMC8394854 DOI: 10.3390/biomedicines9080944] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 11/17/2022] Open
Abstract
Clinically, intrauterine hypoxia is the foremost cause of perinatal morbidity and developmental plasticity in the fetus and newborn infant. Under hypoxia, deviations occur in the lung cell epigenome. Epigenetic mechanisms (e.g., DNA methylation, histone modification, and miRNA expression) control phenotypic programming and are associated with physiological responses and the risk of developmental disorders, such as bronchopulmonary dysplasia. This developmental disorder is the most frequent chronic pulmonary complication in preterm labor. The pathogenesis of this disease involves many factors, including aberrant oxygen conditions and mechanical ventilation-mediated lung injury, infection/inflammation, and epigenetic/genetic risk factors. This review is focused on various aspects related to intrauterine hypoxia and epigenetic programming in lung development and disease, summarizes our current knowledge of hypoxia-induced epigenetic programming and discusses potential therapeutic interventions for lung disease.
Collapse
Affiliation(s)
- Yajie Tong
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China;
| | - Shuqing Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China;
| | - Suzette Riddle
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA;
| | - Rui Song
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA;
| | - Dongmei Yue
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China;
| |
Collapse
|
210
|
Najrana T, Ahsan N, Abu-Eid R, Uzun A, Noble L, Tollefson G, Sanchez-Esteban J. Proteomic analysis of a murine model of lung hypoplasia induced by oligohydramnios. Pediatr Pulmonol 2021; 56:2740-2750. [PMID: 34102042 PMCID: PMC8631439 DOI: 10.1002/ppul.25525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/09/2021] [Accepted: 05/23/2021] [Indexed: 02/02/2023]
Abstract
Severe oligohydramnios (OH) due to prolonged loss of amniotic fluid can cause pulmonary hypoplasia. Animal model of pulmonary hypoplasia induced by amniotic fluid drainage is partly attributed to changes in mechanical compression of the lung. Although numerous studies on OH-model have demonstrated changes in several individual proteins, however, the underlying mechanisms for interrupting normal lung development in response to a decrease of amniotic fluid volume are not fully understood. In this study, we used a proteomic approach to explore differences in the expression of a wide range of proteins after induction of OH in a mouse model of pulmonary hypoplasia to find out the signaling/molecular pathways involved in fetal lung development. Liquid chromatography-massspectromery/mass spectrometry analysis found 474 proteins that were differentially expressed in OH-induced hypoplastic lungs in comparison to untouched (UnT) control. Among these proteins, we confirmed the downregulation of AKT1, SP-D, and CD200, and provided proof-of-concept for the first time about the potential role that these proteins could play in fetal lung development.
Collapse
Affiliation(s)
- Tanbir Najrana
- Department of Pediatrics, Women and Infants Hospital/Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Nagib Ahsan
- COBRE Center for Cancer Research Development at Rhode Island Hospital, Proteomics Core Facility, Division of Surgical Research, Brown University, Providence, Rhode Island, USA.,Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA.,Mass Spectrometry, Proteomics and Metabolomic Core Facility, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Rasha Abu-Eid
- Institute of Dentistry, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, UK
| | - Alper Uzun
- Department of Pediatrics, Women and Infants Hospital/Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Center of Computational Molecular Biology, Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, USA
| | - Lelia Noble
- COBRE Center for Cancer Research Development at Rhode Island Hospital, Proteomics Core Facility, Division of Surgical Research, Brown University, Providence, Rhode Island, USA
| | - George Tollefson
- Department of Pediatrics, Women and Infants Hospital/Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Juan Sanchez-Esteban
- Department of Pediatrics, Women and Infants Hospital/Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| |
Collapse
|
211
|
Jelin EB, Hooper JE, Duregon E, Williamson AK, Olson S, Voegtline K, Jelin AC. Pulmonary hypoplasia correlates with the length of anhydramnios in patients with early pregnancy renal anhydramnios (EPRA). J Perinatol 2021; 41:1924-1929. [PMID: 34230606 PMCID: PMC8588796 DOI: 10.1038/s41372-021-01128-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 05/12/2021] [Accepted: 06/02/2021] [Indexed: 01/31/2023]
Abstract
BACKGROUND Early pregnancy renal anhydramanios (EPRA) occurs when the fetus is anuric before 22 weeks gestational age (GA) and is considered universally lethal. Serial amnioinfusions have successfully ameliorated the lethal pulmonary hypoplasia associated with EPRA and have resulted in cases of neonatal survival, peritoneal dialysis, and renal transplant. OBJECTIVE We sought to evaluate the lung pathology of untreated fetuses and neonates that had EPRA. STUDY DESIGN This is a retrospective case series of all fetuses and neonates diagnosed with isolated EPRA that underwent autopsy at a single tertiary care center between 1987 and 2018. Autopsy data were correlated with ultrasound findings and GA at delivery. Fetal weights, lung weights, and lung developmental stage were recorded. RESULTS Nineteen cases met criteria for analysis and ranged from 16 to 38 weeks GA at termination or birth. The observed-to-expected (O/E) lung-to-body-weight ratio was significantly associated with GA (r = -0.51, p = 0.03), such that as GA increased the O/E ratio decreased. When limited to patients >22 weeks, this relationship strengthened (r = -0.75, p = 0.01). Importantly, overall O/E body weight had no relationship with GA. CONCLUSION This study shows that the degree of pulmonary hypoplasia in EPRA increases with the length of anhydramnios. This suggests that amnioinfusions are likely to be of most benefit the soonest they can feasibly be initiated.
Collapse
Affiliation(s)
- Eric B. Jelin
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University, Baltimore, MD, USA,These authors contributed equally: Eric B. Jelin, Jody E. Hooper
| | - Jody E. Hooper
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA,These authors contributed equally: Eric B. Jelin, Jody E. Hooper
| | - Eleonora Duregon
- Translational Gerontology Branch, National Institute on Aging (NIA/NIH), Baltimore, MD, USA
| | - Alex K. Williamson
- Department of Pathology and Laboratory Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Sarah Olson
- Biostatistics, Epidemiology and Data Management (BEAD) Core, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kristin Voegtline
- Biostatistics, Epidemiology and Data Management (BEAD) Core, Johns Hopkins School of Medicine, Baltimore, MD, USA,Department of Pediatrics, Johns Hopkins University, Baltimore, MD, USA
| | - Angie C. Jelin
- Division of Maternal-Fetal Medicine, Department of Gynecology and Obstetrics, John Hopkins University, Baltimore, MD, USA,Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
212
|
Inde Z, Croker BA, Yapp C, Joshi GN, Spetz J, Fraser C, Qin X, Xu L, Deskin B, Ghelfi E, Webb G, Carlin AF, Zhu YP, Leibel SL, Garretson AF, Clark AE, Duran JM, Pretorius V, Crotty-Alexander LE, Li C, Lee JC, Sodhi C, Hackam DJ, Sun X, Hata AN, Kobzik L, Miller J, Park JA, Brownfield D, Jia H, Sarosiek KA. Age-dependent regulation of SARS-CoV-2 cell entry genes and cell death programs correlates with COVID-19 severity. SCIENCE ADVANCES 2021; 7:eabf8609. [PMID: 34407940 PMCID: PMC8373124 DOI: 10.1126/sciadv.abf8609] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 06/25/2021] [Indexed: 05/02/2023]
Abstract
Novel coronavirus disease 2019 (COVID-19) severity is highly variable, with pediatric patients typically experiencing less severe infection than adults and especially the elderly. The basis for this difference is unclear. We find that mRNA and protein expression of angiotensin-converting enzyme 2 (ACE2), the cell entry receptor for the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes COVID-19, increases with advancing age in distal lung epithelial cells. However, in humans, ACE2 expression exhibits high levels of intra- and interindividual heterogeneity. Further, cells infected with SARS-CoV-2 experience endoplasmic reticulum stress, triggering an unfolded protein response and caspase-mediated apoptosis, a natural host defense system that halts virion production. Apoptosis of infected cells can be selectively induced by treatment with apoptosis-modulating BH3 mimetic drugs. Notably, epithelial cells within young lungs and airways are more primed to undergo apoptosis than those in adults, which may naturally hinder virion production and support milder COVID-19 severity.
Collapse
Affiliation(s)
- Zintis Inde
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Ben A Croker
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Clarence Yapp
- Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
- Image and Data Analysis Core, Harvard Medical School, Boston, MA, USA
| | - Gaurav N Joshi
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
- Integrated Cellular Imaging Core, Emory University, Atlanta, GA, USA
| | - Johan Spetz
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Cameron Fraser
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Xingping Qin
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Le Xu
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Brian Deskin
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Elisa Ghelfi
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Gabrielle Webb
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Aaron F Carlin
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Yanfang Peipei Zhu
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Sandra L Leibel
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - Aaron F Garretson
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Alex E Clark
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jason M Duran
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Victor Pretorius
- Department of Surgery, University of California San Diego, La Jolla, CA, USA
| | | | - Chendi Li
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jamie Casey Lee
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Chhinder Sodhi
- Department of Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - David J Hackam
- Department of Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - Xin Sun
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Aaron N Hata
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Lester Kobzik
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jeffrey Miller
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jin-Ah Park
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Douglas Brownfield
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Hongpeng Jia
- Department of Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - Kristopher A Sarosiek
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
213
|
Kolesnichenko OA, Whitsett JA, Kalin TV, Kalinichenko VV. Therapeutic Potential of Endothelial Progenitor Cells in Pulmonary Diseases. Am J Respir Cell Mol Biol 2021; 65:473-488. [PMID: 34293272 DOI: 10.1165/rcmb.2021-0152tr] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Compromised alveolar development and pulmonary vascular remodeling are hallmarks of pediatric lung diseases such as bronchopulmonary dysplasia (BPD) and alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV). Although advances in surfactant therapy, corticosteroids, and anti-inflammatory drugs have improved clinical management of preterm infants, still those who suffer with severe vascular complications lack viable treatment options. Paucity of the alveolar capillary network in ACDMPV causes respiratory distress and leads to mortality in a vast majority of ACDMPV infants. The discovery of endothelial progenitor cells (EPCs) in 1997 brought forth the paradigm of postnatal vasculogenesis and hope for promoting vascularization in fragile patient populations, such as those with BPD and ACDMPV. The identification of diverse EPC populations, both hematopoietic and nonhematopoietic in origin, provided a need to identify progenitor cell selective markers which are linked to progenitor properties needed to develop cell-based therapies. Focusing to the future potential of EPCs for regenerative medicine, this review will discuss various aspects of EPC biology, beginning with the identification of hematopoietic, nonhematopoietic, and tissue-resident EPC populations. We will review knowledge related to cell surface markers, signature gene expression, key transcriptional regulators, and will explore the translational potential of EPCs for cell-based therapy for BPD and ACDMPV. The ability to produce pulmonary EPCs from patient-derived induced pluripotent stem cells (iPSCs) in vitro, holds promise for restoring vascular growth and function in the lungs of patients with pediatric pulmonary disorders.
Collapse
Affiliation(s)
- Olena A Kolesnichenko
- Cincinnati Children's Hospital Medical Center, 2518, Cincinnati, Ohio, United States
| | - Jeffrey A Whitsett
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Tanya V Kalin
- Cincinnati Children\'s Hospital Medical Center, 2518, Pediatrics, Cincinnati, Ohio, United States
| | - Vladimir V Kalinichenko
- Cincinnati Children's Hospital Medical Center, Pediatrics, Division of Pulmonary Biology, Cincinnati, Ohio, United States;
| |
Collapse
|
214
|
Fernandes-Silva H, Alves MG, Araújo-Silva H, Silva AM, Correia-Pinto J, Oliveira PF, Moura RS. Lung branching morphogenesis is accompanied by temporal metabolic changes towards a glycolytic preference. Cell Biosci 2021; 11:134. [PMID: 34274010 PMCID: PMC8285861 DOI: 10.1186/s13578-021-00654-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 07/07/2021] [Indexed: 12/29/2022] Open
Abstract
Background Lung branching morphogenesis is characterized by epithelial-mesenchymal interactions that ultimately define the airway conducting system. Throughout this process, energy and structural macromolecules are necessary to sustain the high proliferative rates. The extensive knowledge of the molecular mechanisms underlying pulmonary development contrasts with the lack of data regarding the embryonic lung metabolic requirements. Here, we studied the metabolic profile associated with the early stages of chicken pulmonary branching. Methods In this study, we used an ex vivo lung explant culture system and analyzed the consumption/production of extracellular metabolic intermediates associated with glucose catabolism (alanine, lactate, and acetate) by 1H-NMR spectroscopy in the culture medium. Then, we characterized the transcript levels of metabolite membrane transporters (glut1, glut3, glut8, mct1, mct3, mct4, and mct8) and glycolytic enzymes (hk1, hk2, pfk1, ldha, ldhb, pdha, and pdhb) by qPCR. ldha and ldhb mRNA spatial localization was determined by in situ hybridization. Proliferation was analyzed by directly assessing DNA synthesis using an EdU-based assay. Additionally, we performed western blot to analyze LDHA and LDHT protein levels. Finally, we used a Clark-Type Electrode to assess the lung explant's respiratory capacity. Results Glucose consumption decreases, whereas alanine, lactate, and acetate production progressively increase as branching morphogenesis proceeds. mRNA analysis revealed variations in the expression levels of key enzymes and transporters from the glycolytic pathway. ldha and ldhb displayed a compartment-specific expression pattern that resembles proximal–distal markers. In addition, high proliferation levels were detected at active branching sites. LDH protein expression levels suggest that LDHB may account for the progressive rise in lactate. Concurrently, there is a stable oxygen consumption rate throughout branching morphogenesis. Conclusions This report describes the temporal metabolic changes that accompany the early stages of chicken lung branching morphogenesis. Overall, the embryonic chicken lung seems to shift to a glycolytic lactate-based metabolism as pulmonary branching occurs. Moreover, this metabolic rewiring might play a crucial role during lung development. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00654-w.
Collapse
Affiliation(s)
- Hugo Fernandes-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal.,PhDOC PhD Program, ICVS/3B's, School of Medicine, University of Minho, 4710-057, Braga, Portugal
| | - Marco G Alves
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313, Porto, Portugal.,Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313, Porto, Portugal
| | - Henrique Araújo-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal
| | - Ana M Silva
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313, Porto, Portugal
| | - Jorge Correia-Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal.,Department of Pediatric Surgery, Hospital of Braga, 4710-243, Braga, Portugal
| | - Pedro F Oliveira
- QOPNA &, LAQV, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rute S Moura
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal. .,ICVS/3B's - PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal.
| |
Collapse
|
215
|
Mühlfeld C. Stereology and three-dimensional reconstructions to analyze the pulmonary vasculature. Histochem Cell Biol 2021; 156:83-93. [PMID: 34272602 PMCID: PMC8397636 DOI: 10.1007/s00418-021-02013-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2021] [Indexed: 02/05/2023]
Abstract
The pulmonary vasculature consists of a large arterial and venous tree with a vast alveolar capillary network (ACN) in between. Both conducting blood vessels and the gas-exchanging capillaries are part of important human lung diseases, including bronchopulmonary dysplasia, pulmonary hypertension and chronic obstructive pulmonary disease. Morphological tools to investigate the different parts of the pulmonary vasculature quantitatively and in three dimensions are crucial for a better understanding of the contribution of the blood vessels to the pathophysiology and effects of lung diseases. In recent years, new stereological methods and imaging techniques have expanded the analytical tool box and therefore the conclusive power of morphological analyses of the pulmonary vasculature. Three of these developments are presented and discussed in this review article, namely (1) stereological quantification of the number of capillary loops, (2) serial block-face scanning electron microscopy of the ACN and (3) labeling of branching generations in light microscopic sections based on arterial tree segmentations of micro-computed tomography data sets of whole lungs. The implementation of these approaches in research work requires expertise in lung preparation, multimodal imaging at different scales, an advanced IT infrastructure and expertise in image analysis. However, they are expected to provide important data that cannot be obtained by previously existing methodology.
Collapse
Affiliation(s)
- Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany. .,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany. .,Research Core Unit Electron Microscopy, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
216
|
Qi H, Liu H, Pullamsetti SS, Günther S, Kuenne C, Atzberger A, Sommer N, Hadzic S, Günther A, Weissmann N, Zhou Y, Yuan X, Braun T. Epigenetic Regulation by Suv4-20h1 in Cardiopulmonary Progenitor Cells is Required to Prevent Pulmonary Hypertension and COPD. Circulation 2021; 144:1042-1058. [PMID: 34247492 DOI: 10.1161/circulationaha.120.051680] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: The etiology of life-threatening cardiopulmonary diseases such as Pulmonary Hypertension (PH) and Chronic Obstructive Pulmonary Disease (COPD) originates from a complex interplay of environmental factors and genetic predispositions, which is not fully understood. Likewise, little is known about developmental abnormalities or epigenetic dysregulations that might predispose for PH or COPD in adult individuals. Methods: To identify pathology-associated epigenetic alteration in diseased lung tissues, we screened a cohort of human PH and COPD patients for changes of histone modifications by immunofluorescence staining. To analyze the function of H4K20me2/3 in lung pathogenesis, we developed a series of Suv4-20h1 knockout mouse lines targeting cardiopulmonary progenitor cells (CPPs) and different heart and lung cell types, followed by hemodynamic studies and morphometric assessment of tissue samples. Molecular, cellular and biochemical techniques were applied to analyze the function of Suv4-20h1-dependent epigenetic processes in cardiopulmonary progenitor cells and their derivatives. Results: We discovered a strong reduction of the histone modifications H4K20me2/3 in human COPD but not PH patients, which depend on the activity of the H4K20 di-methyltransferase SUV4-20H1. Loss of Suv4-20h1 in CPPs caused a COPD-like/PH phenotype in mice including formation of perivascular tertiary lymphoid tissue and goblet cell hyperplasia, hyper-proliferation of smooth muscle cells/myofibroblasts, impaired alveolarization and maturation defects of the microvasculature leading to massive right ventricular dilatation and premature death. Mechanistically, SUV4-20H1 binds directly to the 5'-upstream regulatory element of superoxide dismutase 3 (Sod3) gene to repress its expression. Increased levels of the extracellular SOD3 enzyme in Suv4-20h1 mutants increases hydrogen peroxide (H2O2) concentrations, causing vascular defects and impairing alveolarization. Conclusions: Our findings reveal a pivotal role of the histone modifier SUV4-20H1 in cardiopulmonary co-development and uncover developmental origins of cardiopulmonary diseases. We assume that the study will facilitate the understanding of pathogenic events causing PH and COPD, and aid the development of epigenetic drugs for treatment of cardiopulmonary diseases.
Collapse
Affiliation(s)
- Hui Qi
- Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, Bad Nauheim, Germany
| | - Hang Liu
- Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, Bad Nauheim, Germany
| | - Soni Savai Pullamsetti
- Max-Planck-Institute for Heart and Lung Research, Department of Lung Development and Remodeling, Bad Nauheim, Germany
| | - Stefan Günther
- Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, Bad Nauheim, Germany
| | - Carsten Kuenne
- Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, Bad Nauheim, Germany
| | - Ann Atzberger
- Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, Bad Nauheim, Germany
| | - Natascha Sommer
- Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University, Giessen, Germany; Member, German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Stefan Hadzic
- Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University, Giessen, Germany; Member, German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Andreas Günther
- Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University, Giessen, Germany; Member, German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Norbert Weissmann
- Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University, Giessen, Germany; Member, German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Yonggang Zhou
- Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, Bad Nauheim, Germany
| | - Xuejun Yuan
- Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, Bad Nauheim, Germany
| | - Thomas Braun
- Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, Bad Nauheim, Germany; Member, German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| |
Collapse
|
217
|
Joshua V, Hensvold AH, Reynisdottir G, Hansson M, Cornillet M, Nogueira L, Serre G, Nyren S, Karimi R, Eklund A, Sköld M, Grunewald J, Chatzidionysiou K, Catrina A. Association between number and type of different ACPA fine specificities with lung abnormalities in early, untreated rheumatoid arthritis. RMD Open 2021; 6:rmdopen-2020-001278. [PMID: 32917833 PMCID: PMC7520701 DOI: 10.1136/rmdopen-2020-001278] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/16/2020] [Accepted: 08/21/2020] [Indexed: 01/16/2023] Open
Abstract
Background Rheumatoid arthritis (RA)-associated anticitrullinated protein/peptide antibodies (ACPA) might originate at mucosal sites such as the lungs. We aimed to examine the relationship between the ACPA repertoire and lung abnormalities on high-resolution CT (HRCT) in patients with earlyuntreated RA. Methods 106 patients with newly diagnosed untreated RA were examined with HRCT of the lungs. Blood samples were analysed for presence of rheumatoid factor (RF) and ACPA using either a CCP2 detection kit or an immunochip containing 10 different citrullinated peptides. Association between HRCT findings and the antibody repertoire was assessed by logistic regression analysis. Results The number (%) of patients with HRCT abnormalities was 58 (54.7%) for parenchymal abnormalities and 68 (64.2%) for airway abnormalities. CCP2 IgG, RF IgA and antibodies against citrullinated fibrinogen were associated with the presence of parenchymal lung abnormalities. Interestingly, a high number of ACPA fine specificities gave a high risk of having parenchymal lung abnormalities at the time of RA diagnosis. No significant signals were identified between ACPA specificities and risk for airway abnormalities. Conclusions The presence of RF and ACPAs (especially against citrullinated fibrinogen peptides) as well as high number of ACPAs fine specificities are associated with parenchymal lung abnormalities in patients with early, untreated RA. This provides further support for an important pathogenic link between the lung and systemic autoimmunity, contributing to RA development.
Collapse
Affiliation(s)
- Vijay Joshua
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Aase Haj Hensvold
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Gudrun Reynisdottir
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Monica Hansson
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Martin Cornillet
- Unité Différenciation Épithéliale et Autoimmunité Rhumatoïde, Unité Mixte de Recherche 1056, INSERM - Université de Toulouse, Toulouse, France
| | - Leonor Nogueira
- Unité Différenciation Épithéliale et Autoimmunité Rhumatoïde, Unité Mixte de Recherche 1056, INSERM - Université de Toulouse, Toulouse, France
| | - Guy Serre
- Unité Différenciation Épithéliale et Autoimmunité Rhumatoïde, Unité Mixte de Recherche 1056, INSERM - Université de Toulouse, Toulouse, France
| | - Sven Nyren
- Department of Radiology, Karolinska University Hospital, Stockholm, Sweden
| | - Reza Karimi
- Division of Respiratory Medicine, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Anders Eklund
- Division of Respiratory Medicine, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Sköld
- Division of Respiratory Medicine, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Johan Grunewald
- Division of Respiratory Medicine, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Katerina Chatzidionysiou
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Anca Catrina
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
218
|
Kolobaric A, Vukojevic K, Brekalo S, Misković J, Ries M, Lasic Arapovic L, Soljic V. Expression and localization of FGFR1, FGFR2 and CTGF during normal human lung development. Acta Histochem 2021; 123:151719. [PMID: 33962151 DOI: 10.1016/j.acthis.2021.151719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022]
Abstract
Aim of our study was to provide insight into the temporal and spatial expression of FGFR1, FGFR2 and CTGF during normal human lung development which may have an important impact on understanding occurrence of developmental lung anomalies. Morphological parameters were analysed using double immunofluorescence on human embryonal (6th and 7th developmental week-dw) and foetal (8th, 9th and 16th developmental week) human lung samples. FGFR1 and FGFR2 was positive during all the dw in both the epithelium and mesenchyme. The highest number of FGFR1 positive cells was observed during the 6th dw (112/mm2) and 9th dw (87/mm2) in the epithelium compared to the 7th, 8th and 16th dw (Kruskal-Wallis test, p < 0.001, p < 0.0001). The highest number of FGFR1 positive cells in the mesenchyme was observed during the 8th dw (19/mm2) and 16th dw (13/mm2) compared to the 6th, 7th, and 9th dw (Kruskal-Wallis test, p < 0.001, p < 0.0001). The number of FGFR1 positive cells in the epithelium was higher for FGFR2 compared to number of positive cells (Mann-Whitney test, p < 0.0001). FGFR2 showed the highest number in the epithelium during the 7th dw (111/mm2) and 9th dw (87/mm2) compared to 6th, 8th and 16th dw (Kruskal-Wallis test, p < 0.001, p < 0.0001, p < 0.01 respectively). The highest number of FGFR2 positive cells in the mesenchyme was observed during the 9th dw (26/mm2), compared to the 6th, 7th,8th and 16th dw (Kruskal-Wallis test, p < 0.0001), while the number of FGFR2 positive cells in the epithelium was significantly higher than in the mesenchyme (Mann-Whitney test, p < 0.0001). CTGF was negative in both epithelium and mesenchyme during all except the 16th dw in the mesenchyme where it co-localized with FGFR2. FGFR1 and FGFR2 might be essential for epithelial-mesenchymal interactions that determine epithelial branching and mesenchymal growth during early lung development. Sudden increase in FGF1 in the epithelium and FGF2 in the mesenchyme in the foetus at 9th dw could be associated with the onset of foetal breathing movements. CTGF first appear during the foetal lung development.
Collapse
|
219
|
Appuhn SV, Siebert S, Myti D, Wrede C, Surate Solaligue DE, Pérez-Bravo D, Brandenberger C, Schipke J, Morty RE, Grothausmann R, Mühlfeld C. Capillary Changes Precede Disordered Alveolarization in a Mouse Model of Bronchopulmonary Dysplasia. Am J Respir Cell Mol Biol 2021; 65:81-91. [PMID: 33784484 DOI: 10.1165/rcmb.2021-0004oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD), the most common sequela of preterm birth, is a severe disorder of the lung that is often associated with long-lasting morbidity. A hallmark of BPD is the disruption of alveolarization, whose pathogenesis is incompletely understood. Here, we tested the vascular hypothesis that disordered vascular development precedes the decreased alveolarization associated with BPD. Neonatal mouse pups were exposed to 7, 14, or 21 days of normoxia (21% O2) or hyperoxia (85% O2) with n = 8-11 for each group. The right lungs were fixed by vascular perfusion and investigated by design-based stereology or three-dimensional reconstruction of data sets obtained by serial block-face scanning EM. The alveolar capillary network of hyperoxia-exposed mice was characterized by rarefaction, partially altered geometry, and widening of capillary segments as shown by three-dimensional reconstruction. Stereology revealed that the development of alveolar epithelium and capillary endothelium was decreased in hyperoxia-exposed mice; however, the time course of these effects was different. That the surface area of the alveolar epithelium was smaller in hyperoxia-exposed mice first became evident at Day 14. In contrast, the surface area of the endothelium was reduced in hyperoxia-exposed mouse pups at Day 7. The thickness of the air-blood barrier decreased during postnatal development in normoxic mice, whereas it increased in hyperoxic mice. The endothelium and the septal connective tissue made appreciable contributions to the thickened septa. In conclusion, the present study provides clear support for the idea that the stunted alveolarization follows the disordered microvascular development, thus supporting the vascular hypothesis of BPD.
Collapse
Affiliation(s)
- Svenja V Appuhn
- Institute of Functional and Applied Anatomy and.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Sara Siebert
- Institute of Functional and Applied Anatomy and.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Despoina Myti
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), Member of the German Center for Lung Research (DZL), University of Giessen and Marburg Lung Center, Giessen, Germany; and
| | - Christoph Wrede
- Institute of Functional and Applied Anatomy and.,Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - David E Surate Solaligue
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), Member of the German Center for Lung Research (DZL), University of Giessen and Marburg Lung Center, Giessen, Germany; and
| | - David Pérez-Bravo
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), Member of the German Center for Lung Research (DZL), University of Giessen and Marburg Lung Center, Giessen, Germany; and
| | - Christina Brandenberger
- Institute of Functional and Applied Anatomy and.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Julia Schipke
- Institute of Functional and Applied Anatomy and.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), Member of the German Center for Lung Research (DZL), University of Giessen and Marburg Lung Center, Giessen, Germany; and
| | - Roman Grothausmann
- Institute of Functional and Applied Anatomy and.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research (DZL), Hannover, Germany.,Faculty of Engineering and Health, HAWK University of Applied Sciences and Arts, Göttingen, Germany
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy and.,Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research (DZL), Hannover, Germany
| |
Collapse
|
220
|
Wang KCW, James AL, Noble PB. Fetal Growth Restriction and Asthma: Is the Damage Done? Physiology (Bethesda) 2021; 36:256-266. [PMID: 34159809 DOI: 10.1152/physiol.00042.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Trajectories of airway remodeling and functional impairment in asthma are consistent with the notion that airway pathology precedes or coincides with the onset of asthma symptoms and may be present at birth. An association between intrauterine growth restriction (IUGR) and asthma development has also been established, and there is value in understanding the underlying mechanism. This review considers airway pathophysiology as a consequence of IUGR that increases susceptibility to asthma.
Collapse
Affiliation(s)
- Kimberley C W Wang
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia.,Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Alan L James
- Department of Pulmonary Physiology and Sleep Medicine, West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.,Medical School, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Peter B Noble
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
221
|
Abstract
Bronchopulmonary dysplasia (BPD) is a form of chronic lung disease that occurs in preterm infants, usually those receiving substantial respiratory support with either mechanical ventilation or supplementation with oxygen. The pathogenesis of BPD is multifactorial, and the clinical phenotype is variable. BPD is associated with substantial mortality and short- and long-term morbidity. The incidence of BPD has remained stable or increased, as advances in neonatal care have led to improved survival of more extremely preterm infants. Extensive basic science, translational, and clinical research focusing on BPD has improved the current understanding of the factors that contribute to BPD pathogenesis. However, despite a better understanding of its pathophysiology, BPD continues to be challenging to prevent and manage adequately. The current review aims to provide a clinically useful synopsis of evidence on the prevention and management of BPD in preterm infants.
Collapse
|
222
|
Huang X, Chen W, Wang C, Lin L, Yang Q, Pan B, Jiang H. Evaluation of respiratory system anomalies associated with microtia in a Chinese specialty clinic population. Int J Pediatr Otorhinolaryngol 2021; 146:110762. [PMID: 33992970 DOI: 10.1016/j.ijporl.2021.110762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/26/2021] [Accepted: 05/06/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Microtia is a congenital malformation of the external ear often with one or more associated congenital anomalies. The purpose of this study was to identify the characteristics and prevalence of respiratory anomalies in patients with microtia, and clarify the importance of this association in the perioperative period of patients' external ear reconstruction surgery. METHODS Data were collected from 923 microtia patients between August 2017 and December 2020 in the Department of Auricular Reconstruction at the Plastic Surgery Hospital of Peking Union Medical College. Co-occurring respiratory anomalies were detected using chest computed tomography plus three-dimensional reconstruction and Chest X-ray. Physical examination was performed to assess the severity and type of microtia by trained clinicians. Fisher's exact test was used to analyze the relation between laterality of pulmonary underdevelopment and microtia type. RESULTS Among the 923 participants enrolled in the study, we identified 21 cases (2.3%) having respiratory system anomalies, consisting of 6 cases with pulmonary underdevelopment (28.6% of all anomalies of respiratory system detected), 2 cases with tracheal bronchus (9.5%), 1 case with tracheal diverticula (4.8%), 11 cases with lung bullae(52.4%), and 1 case with pulmonary azygos lobe (4.8%). The laterality of pulmonary underdevelopment was related to the type of microtia (difference between types, p < 0.05), as patients with concha-type remnant ear had pulmonary underdevelopment ipsilaterally. CONCLUSIONS This study represents the first detailed and thematic study of a association featured by microtia and respiratory anomalies. Characteristics and prevalence of respiratory anomalies was observed in a Chinese clinical microtia population. Early diagnosis of associated respiratory malformations had practical clinical significance for microtia patients, plastic surgeons and anesthesiologists. Future studies are required to improve understanding of this association and its cause.
Collapse
Affiliation(s)
- Xin Huang
- Department of Auricular Reconstruction, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100043, Beijing, People's Republic of China
| | - Weiwei Chen
- Department of Radiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100043, Beijing, People's Republic of China
| | - Changchen Wang
- Department of Auricular Reconstruction, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100043, Beijing, People's Republic of China
| | - Lin Lin
- Department of Auricular Reconstruction, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100043, Beijing, People's Republic of China
| | - Qinghua Yang
- Department of Auricular Reconstruction, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100043, Beijing, People's Republic of China
| | - Bo Pan
- Department of Auricular Reconstruction, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100043, Beijing, People's Republic of China.
| | - Haiyue Jiang
- Department of Auricular Reconstruction, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100043, Beijing, People's Republic of China.
| |
Collapse
|
223
|
Deterding R, Griese M, Deutsch G, Warburton D, DeBoer EM, Cunningham S, Clement A, Schwerk N, Flaherty KR, Brown KK, Voss F, Schmid U, Schlenker-Herceg R, Verri D, Dumistracel M, Schiwek M, Stowasser S, Tetzlaff K, Clerisme-Beaty E, Young LR. Study design of a randomised, placebo-controlled trial of nintedanib in children and adolescents with fibrosing interstitial lung disease. ERJ Open Res 2021; 7:00805-2020. [PMID: 34164554 PMCID: PMC8215331 DOI: 10.1183/23120541.00805-2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/01/2021] [Indexed: 12/21/2022] Open
Abstract
Childhood interstitial lung disease (chILD) comprises >200 rare respiratory disorders, with no currently approved therapies and variable prognosis. Nintedanib reduces the rate of forced vital capacity (FVC) decline in adults with progressive fibrosing interstitial lung diseases (ILDs). We present the design of a multicentre, prospective, double-blind, randomised, placebo-controlled clinical trial of nintedanib in patients with fibrosing chILD (1199-0337 or InPedILD; ClinicalTrials.gov: NCT04093024). Male or female children and adolescents aged 6–17 years (≥30; including ≥20 adolescents aged 12–17 years) with clinically significant fibrosing ILD will be randomised 2:1 to receive oral nintedanib or placebo on top of standard of care for 24 weeks (double-blind), followed by variable-duration nintedanib (open-label). Nintedanib dosing will be based on body weight-dependent allometric scaling, with single-step dose reductions permitted to manage adverse events. Eligible patients will have evidence of fibrosis on high-resolution computed tomography (within 12 months of their first screening visit), FVC ≥25% predicted, and clinically significant disease (Fan score of ≥3 or evidence of clinical progression over time). Patients with underlying chronic liver disease, significant pulmonary arterial hypertension, cardiovascular disease, or increased bleeding risk are ineligible. The primary endpoints are pharmacokinetics and the proportion of patients with treatment-emergent adverse events at week 24. Secondary endpoints include change in FVC% predicted from baseline, Pediatric Quality of Life Questionnaire, oxygen saturation, and 6-min walk distance at weeks 24 and 52. Additional efficacy and safety endpoints will be collected to explore long-term effects. We describe the design of #InPedILD, a study of 24 weeks’ nintedanib or placebo on top of standard of care, followed by variable-duration open-label nintedanib in children with interstitial lung disease (ClinicalTrials.gov NCT04093024) #PedILDhttps://bit.ly/3tC1a7P
Collapse
Affiliation(s)
- Robin Deterding
- Section of Pediatric Pulmonary and Sleep Medicine, Dept of Pediatrics, University of Colorado Denver, Denver, CO, USA.,The Children's Hospital Colorado, Aurora, CO, USA.,These authors contributed equally
| | - Matthias Griese
- Hauner Children's Hospital, Ludwig Maximilians University, German Center for Lung Research (DZL), Munich, Germany.,These authors contributed equally
| | - Gail Deutsch
- Dept of Pathology, University of Washington School of Medicine, Seattle, WA, USA.,Seattle Children's Hospital, Seattle, WA, USA
| | - David Warburton
- Children's Hospital Los Angeles, Los Angeles, CA, USA.,Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Emily M DeBoer
- Section of Pediatric Pulmonary and Sleep Medicine, Dept of Pediatrics, University of Colorado Denver, Denver, CO, USA.,The Children's Hospital Colorado, Aurora, CO, USA
| | - Steven Cunningham
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Annick Clement
- Pediatric Pulmonary Dept, Trousseau Hospital, AP-HP Sorbonne University, Paris, France
| | - Nicolaus Schwerk
- Clinic for Pediatric Pulmonology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Kevin R Flaherty
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Kevin K Brown
- Dept of Medicine, National Jewish Health, Denver, CO, USA
| | - Florian Voss
- Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim am Rhein, Germany
| | - Ulrike Schmid
- Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim am Rhein, Germany
| | | | | | | | - Marilisa Schiwek
- Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim am Rhein, Germany
| | - Susanne Stowasser
- Boehringer Ingelheim International GmbH, Ingelheim am Rhein, Germany
| | - Kay Tetzlaff
- Boehringer Ingelheim International GmbH, Ingelheim am Rhein, Germany.,Sports Medicine Dept, University Hospital of Tuebingen, Tuebingen, Germany
| | | | - Lisa R Young
- Division of Pulmonary and Sleep Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,These authors contributed equally
| |
Collapse
|
224
|
Kuiper-Makris C, Selle J, Nüsken E, Dötsch J, Alejandre Alcazar MA. Perinatal Nutritional and Metabolic Pathways: Early Origins of Chronic Lung Diseases. Front Med (Lausanne) 2021; 8:667315. [PMID: 34211985 PMCID: PMC8239134 DOI: 10.3389/fmed.2021.667315] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Lung development is not completed at birth, but expands beyond infancy, rendering the lung highly susceptible to injury. Exposure to various influences during a critical window of organ growth can interfere with the finely-tuned process of development and induce pathological processes with aberrant alveolarization and long-term structural and functional sequelae. This concept of developmental origins of chronic disease has been coined as perinatal programming. Some adverse perinatal factors, including prematurity along with respiratory support, are well-recognized to induce bronchopulmonary dysplasia (BPD), a neonatal chronic lung disease that is characterized by arrest of alveolar and microvascular formation as well as lung matrix remodeling. While the pathogenesis of various experimental models focus on oxygen toxicity, mechanical ventilation and inflammation, the role of nutrition before and after birth remain poorly investigated. There is accumulating clinical and experimental evidence that intrauterine growth restriction (IUGR) as a consequence of limited nutritive supply due to placental insufficiency or maternal malnutrition is a major risk factor for BPD and impaired lung function later in life. In contrast, a surplus of nutrition with perinatal maternal obesity, accelerated postnatal weight gain and early childhood obesity is associated with wheezing and adverse clinical course of chronic lung diseases, such as asthma. While the link between perinatal nutrition and lung health has been described, the underlying mechanisms remain poorly understood. There are initial data showing that inflammatory and nutrient sensing processes are involved in programming of alveolarization, pulmonary angiogenesis, and composition of extracellular matrix. Here, we provide a comprehensive overview of the current knowledge regarding the impact of perinatal metabolism and nutrition on the lung and beyond the cardiopulmonary system as well as possible mechanisms determining the individual susceptibility to CLD early in life. We aim to emphasize the importance of unraveling the mechanisms of perinatal metabolic programming to develop novel preventive and therapeutic avenues.
Collapse
Affiliation(s)
- Celien Kuiper-Makris
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics—Experimental Pulmonology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jaco Selle
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics—Experimental Pulmonology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Eva Nüsken
- Department of Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jörg Dötsch
- Department of Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Miguel A. Alejandre Alcazar
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics—Experimental Pulmonology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Excellence Cluster on Stress Responses in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Member of the German Centre for Lung Research (DZL), Institute for Lung Health, University of Giessen and Marburg Lung Centre (UGMLC), Gießen, Germany
| |
Collapse
|
225
|
Warburton D. Conserved Mechanisms in the Formation of the Airways and Alveoli of the Lung. Front Cell Dev Biol 2021; 9:662059. [PMID: 34211971 PMCID: PMC8239290 DOI: 10.3389/fcell.2021.662059] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/12/2021] [Indexed: 11/15/2022] Open
Abstract
Branching is an intrinsic property of respiratory epithelium that can be induced and modified by signals emerging from the mesenchyme. However, during stereotypic branching morphogenesis of the airway, the relatively thick upper respiratory epithelium extrudes through a mesenchymal orifice to form a new branch, whereas during alveologenesis the relatively thin lower respiratory epithelium extrudes to form sacs or bubbles. Thus, both branching morphogenesis of the upper airway and alveolarization in the lower airway seem to rely on the same fundamental physical process: epithelial extrusion through an orifice. Here I propose that it is the orientation and relative stiffness of the orifice boundary that determines the stereotypy of upper airway branching as well as the orientation of individual alveolar components of the gas exchange surface. The previously accepted dogma of the process of alveologenesis, largely based on 2D microscopy, is that alveoli arise by erection of finger-like interalveolar septae to form septal clefts that subdivide pre-existing saccules, a process for which the contractile properties of specialized alveolar myofibroblasts are necessary. Here I suggest that airway tip splitting and stereotypical side domain branching are actually conserved processes, but modified somewhat by evolution to achieve both airway tip splitting and side branching of the upper airway epithelium, as well as alveologenesis. Viewed in 3D it is clear that alveolar “septal tips” are in fact ring or purse string structures containing elastin and collagen that only appear as finger like projections in cross section. Therefore, I propose that airway branch orifices as well as alveolar mouth rings serve to delineate and stabilize the budding of both airway and alveolar epithelium, from the tips and sides of upper airways as well as from the sides and tips of alveolar ducts. Certainly, in the case of alveoli arising laterally and with radial symmetry from the sides of alveolar ducts, the mouth of each alveolus remains within the plane of the side of the ductal lumen. This suggests that the thin epithelium lining these lateral alveolar duct buds may extrude or “pop out” from the duct lumen through rings rather like soap or gum bubbles, whereas the thicker upper airway epithelium extrudes through a ring like toothpaste from a tube to form a new branch.
Collapse
Affiliation(s)
- David Warburton
- The Saban Research Institute, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
226
|
Jaumotte JD, Franks AL, Bargerstock EM, Kisanga EP, Menden HL, Ghersi A, Omar M, Wang L, Rudine A, Short KL, Silswal N, Cole TJ, Sampath V, Monaghan-Nichols AP, DeFranco DB. Ciclesonide activates glucocorticoid signaling in neonatal rat lung but does not trigger adverse effects in the cortex and cerebellum. Neurobiol Dis 2021; 156:105422. [PMID: 34126164 DOI: 10.1016/j.nbd.2021.105422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/28/2021] [Accepted: 06/08/2021] [Indexed: 11/15/2022] Open
Abstract
Synthetic glucocorticoids (sGCs) such as dexamethasone (DEX), while used to mitigate inflammation and disease progression in premature infants with severe bronchopulmonary dysplasia (BPD), are also associated with significant adverse neurologic effects such as reductions in myelination and abnormalities in neuroanatomical development. Ciclesonide (CIC) is a sGC prodrug approved for asthma treatment that exhibits limited systemic side effects. Carboxylesterases enriched in the lower airways convert CIC to the glucocorticoid receptor (GR) agonist des-CIC. We therefore examined whether CIC would likewise activate GR in neonatal lung but have limited adverse extra-pulmonary effects, particularly in the developing brain. Neonatal rats were administered subcutaneous injections of CIC, DEX or vehicle from postnatal days 1-5 (PND1-PND5). Systemic effects linked to DEX exposure, including reduced body and brain weight, were not observed in CIC treated neonates. Furthermore, CIC did not trigger the long-lasting reduction in myelin basic protein expression in the cerebral cortex nor cerebellar size caused by neonatal DEX exposure. Conversely, DEX and CIC were both effective at inducing the expression of select GR target genes in neonatal lung, including those implicated in lung-protective and anti-inflammatory effects. Thus, CIC is a promising, novel candidate drug to treat or prevent BPD in neonates given its activation of GR in neonatal lung and limited adverse neurodevelopmental effects. Furthermore, since sGCs such as DEX administered to pregnant women in pre-term labor can adversely affect fetal brain development, the neurological-sparing properties of CIC, make it an attractive alternative for DEX to treat pregnant women severely ill with respiratory illness, such as with asthma exacerbations or COVID-19 infections.
Collapse
Affiliation(s)
- Juliann D Jaumotte
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Institute of Neurodegenerative Disease (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alexis L Franks
- Department of Pediatrics, Division of Child Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Erin M Bargerstock
- Department of Pediatrics, Division of Newborn Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Edwina Philip Kisanga
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Institute of Neurodegenerative Disease (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Heather L Menden
- Department of Pediatrics, Division of Neonatology, Children's Mercy Kansas City, University of Missouri Kansas City School of Medicine, Kansas City, MO, USA
| | - Alexis Ghersi
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Institute of Neurodegenerative Disease (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mahmoud Omar
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Institute of Neurodegenerative Disease (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Liping Wang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Institute of Neurodegenerative Disease (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Anthony Rudine
- Department of Neonatology, St. David's Medical Center, Austin, TX, USA
| | - Kelly L Short
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Neerupama Silswal
- Department of Biomedical Sciences, University of Missouri Kansas City School of Medicine, Kansas City, MO, USA
| | - Timothy J Cole
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Venkatesh Sampath
- Department of Pediatrics, Division of Neonatology, Children's Mercy Kansas City, University of Missouri Kansas City School of Medicine, Kansas City, MO, USA
| | - A Paula Monaghan-Nichols
- Department of Biomedical Sciences, University of Missouri Kansas City School of Medicine, Kansas City, MO, USA
| | - Donald B DeFranco
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Institute of Neurodegenerative Disease (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
227
|
Sakuma J, Nakata M, Takano M, Nagasaki S, Hayata E, Maemura T, Ohtsu M, Morita M. Prenatal evaluation of functional pulmonary hypoplasia via fetal magnetic resonance imaging. J Obstet Gynaecol Res 2021; 47:3100-3106. [PMID: 34109704 DOI: 10.1111/jog.14833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/09/2021] [Accepted: 05/03/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The purpose of this study was to retrospectively examine the use of lung-to-liver signal intensity ratio (LLSIR) on T2-weighted images to predict functional pulmonary hypoplasia. METHODS The subjects of this study were pregnant women who underwent magnetic resonance imaging (MRI). Patients who required nitric oxide inhalation and those who died from respiratory disorders were classified as having functional pulmonary hypoplasia (FPH). All other cases were presented as the control group. We retrospectively analyzed MRI and perinatal data. LLSIR was defined as the ratio of lung signal intensity to liver signal intensity. We examined the relationship between LLSIR and gestational age, compared the LLSIRs in the two groups, and calculated the best cut-off value of the LLSIR to predict FPH. RESULTS One hundred and ninety-one patients were eligible for this study, and 12 cases were classified as having FPH. In the control group, LLSIR increased with age (r = 0.383, p < 0.001). We used the observed/expected LLSIR (o/e LLSIR), which was the ratio of obtained LLSIR to expected LLSIR calculated by the regression line to correct the effect of gestational age. In the FHP group, o/e LLSIR was significantly lower than in the control group (p < 0.001). A receiver operating characteristic curve analysis showed that cases with o/e LLSIR above 0.85 were less likely to cause FPH. CONCLUSIONS Low o/e LLSIR might reflect the histological characteristics of hypoplastic lung structures. O/e LLSIR seems to be a useful MRI parameter for screening FPH.
Collapse
Affiliation(s)
- Junya Sakuma
- Department of Obstetrics and Gynecology, Toho University Graduate School of Medicine, Tokyo, Japan.,Department of Obstetrics and Gynecology, Toho University Omori medical center, Tokyo, Japan
| | - Masahiko Nakata
- Department of Obstetrics and Gynecology, Toho University Graduate School of Medicine, Tokyo, Japan.,Department of Obstetrics and Gynecology, Toho University Omori medical center, Tokyo, Japan
| | - Mayumi Takano
- Department of Obstetrics and Gynecology, Toho University Omori medical center, Tokyo, Japan
| | - Sumito Nagasaki
- Department of Obstetrics and Gynecology, Toho University Omori medical center, Tokyo, Japan
| | - Eijiro Hayata
- Department of Obstetrics and Gynecology, Toho University Omori medical center, Tokyo, Japan
| | - Toshimitsu Maemura
- Department of Obstetrics and Gynecology, Toho University Omori medical center, Tokyo, Japan
| | - Motoharu Ohtsu
- Department of Radiology, Toho University Omori medical center, Tokyo, Japan
| | - Mineto Morita
- Department of Obstetrics and Gynecology, Toho University Graduate School of Medicine, Tokyo, Japan.,Department of Obstetrics and Gynecology, Toho University Omori medical center, Tokyo, Japan
| |
Collapse
|
228
|
Lang C, Conrad L, Iber D. Organ-Specific Branching Morphogenesis. Front Cell Dev Biol 2021; 9:671402. [PMID: 34150767 PMCID: PMC8212048 DOI: 10.3389/fcell.2021.671402] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/06/2021] [Indexed: 01/09/2023] Open
Abstract
A common developmental process, called branching morphogenesis, generates the epithelial trees in a variety of organs, including the lungs, kidneys, and glands. How branching morphogenesis can create epithelial architectures of very different shapes and functions remains elusive. In this review, we compare branching morphogenesis and its regulation in lungs and kidneys and discuss the role of signaling pathways, the mesenchyme, the extracellular matrix, and the cytoskeleton as potential organ-specific determinants of branch position, orientation, and shape. Identifying the determinants of branch and organ shape and their adaptation in different organs may reveal how a highly conserved developmental process can be adapted to different structural and functional frameworks and should provide important insights into epithelial morphogenesis and developmental disorders.
Collapse
Affiliation(s)
- Christine Lang
- Department of Biosystems, Science and Engineering, ETH Zürich, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Lisa Conrad
- Department of Biosystems, Science and Engineering, ETH Zürich, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Dagmar Iber
- Department of Biosystems, Science and Engineering, ETH Zürich, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| |
Collapse
|
229
|
Song S, Liu B, Habibie H, van den Bor J, Smit MJ, Gosens R, Wu X, Brandsma CA, Cool RH, Haisma HJ, Poelarends GJ, Melgert BN. D-dopachrome tautomerase contributes to lung epithelial repair via atypical chemokine receptor 3-dependent Akt signaling. EBioMedicine 2021; 68:103412. [PMID: 34098338 PMCID: PMC8185224 DOI: 10.1016/j.ebiom.2021.103412] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 12/16/2022] Open
Abstract
Background Emphysematous COPD is characterized by aberrant alveolar repair. Macrophage migration inhibitory factor (MIF) contributes to alveolar repair, but for its structural and functional homolog D-dopachrome tautomerase (DDT) this is unknown. MIF mediates its effects through CD74 and/or C-X-C chemokine receptors 2 (CXCR2), 4(CXCR4), and possibly 7 (ACKR3). DDT can also signal through CD74, but interactions with other receptors have not been described yet. We therefore aimed at investigating if and how DDT contributes to epithelial repair in COPD. Methods We studied effects of recombinant DDT on cell proliferation and survival by clonogenic assay and annexin V-PI staining respectively. DDT-induced signaling was investigated by Western blot. Effects on epithelial growth and differentiation was studied using lung organoid cultures with primary murine or human epithelial cells and incubating with DDT or an ACKR3-blocking nanobody. DDT-ACKR3 interactions were identified by ELISA and co-immunoprecipitation. Findings We found that DDT promoted proliferation of and prevented staurosporine-induced apoptosis in A549 lung epithelial cells. Importantly, DDT also stimulated growth of primary alveolar epithelial cells as DDT treatment resulted in significantly more and larger murine and human alveolar organoids compared to untreated controls. The anti-apoptotic effect of DDT and DDT-induced organoid growth were inhibited in the presence of an ACKR3-blocking nanobody. Furthermore, ELISA assay and co-immunoprecipitation suggested DDT complexes with ACKR3. DDT could activate the PI3K-Akt pathway and this activation was enhanced in ACKR3-overexpressing cells. Interpretation In conclusion, DDT contributes to alveolar epithelial repair via ACKR3 and may thus augment lung epithelial repair in COPD.
Collapse
Affiliation(s)
- Shanshan Song
- Groningen Research Institute of Pharmacy, Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands; Groningen Research Institute of Pharmacy, Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Bin Liu
- Groningen Research Institute of Pharmacy, Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Habibie Habibie
- Groningen Research Institute of Pharmacy, Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands; University Medical Center Groningen, Groningen Research Institute of Asthma and COPD, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Jelle van den Bor
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Martine J Smit
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Reinoud Gosens
- Groningen Research Institute of Pharmacy, Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands; University Medical Center Groningen, Groningen Research Institute of Asthma and COPD, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Xinhui Wu
- Groningen Research Institute of Pharmacy, Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands; University Medical Center Groningen, Groningen Research Institute of Asthma and COPD, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Corry-Anke Brandsma
- University Medical Center Groningen, Groningen Research Institute of Asthma and COPD, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; University Medical Center Groningen, Department of Pathology and Medical Biology, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Robbert H Cool
- Groningen Research Institute of Pharmacy, Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Hidde J Haisma
- Groningen Research Institute of Pharmacy, Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Gerrit J Poelarends
- Groningen Research Institute of Pharmacy, Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Barbro N Melgert
- Groningen Research Institute of Pharmacy, Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands; University Medical Center Groningen, Groningen Research Institute of Asthma and COPD, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands.
| |
Collapse
|
230
|
Mereness JA, Mariani TJ. The critical role of collagen VI in lung development and chronic lung disease. Matrix Biol Plus 2021; 10:100058. [PMID: 34195595 PMCID: PMC8233475 DOI: 10.1016/j.mbplus.2021.100058] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 01/20/2023] Open
Abstract
Type VI collagen (collagen VI) is an obligate extracellular matrix component found mainly in the basement membrane region of many mammalian tissues and organs, including skeletal muscle and throughout the respiratory system. Collagen VI is probably most recognized in medicine as the genetic cause of a spectrum of muscular dystrophies, including Ullrich Congenital Myopathy and Bethlem Myopathy. Collagen VI is thought to contribute to myopathy, at least in part, by mediating muscle fiber integrity by anchoring myoblasts to the muscle basement membrane. Interestingly, collagen VI myopathies present with restrictive respiratory insufficiency, thought to be due primarily to thoracic muscular weakening. Although it was recently recognized as one of the (if not the) most abundant collagens in the mammalian lung, there is a substantive knowledge gap concerning its role in respiratory system development and function. A few studies have suggested that collagen VI insufficiency is associated with airway epithelial cell survival and altered lung function. Our recent work suggested collagen VI may be a genomic risk factor for chronic lung disease in premature infants. Using this as motivation, we thoroughly assessed the role of collagen VI in lung development and in lung epithelial cell biology. Here, we describe the state-of-the-art for collagen VI cell and developmental biology within the respiratory system, and reveal its essential roles in normal developmental processes and airway epithelial cell phenotype and intracellular signaling.
Collapse
Affiliation(s)
- Jared A. Mereness
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, Department of Pediatrics, University of Rochester, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA
| | - Thomas J. Mariani
- Corresponding author. Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, University of Rochester Medical Center, 601 Elmwood Ave, Box 850, Rochester, NY 14642, USA.
| |
Collapse
|
231
|
Aros CJ, Pantoja CJ, Gomperts BN. Wnt signaling in lung development, regeneration, and disease progression. Commun Biol 2021; 4:601. [PMID: 34017045 PMCID: PMC8138018 DOI: 10.1038/s42003-021-02118-w] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
The respiratory tract is a vital, intricate system for several important biological processes including mucociliary clearance, airway conductance, and gas exchange. The Wnt signaling pathway plays several crucial and indispensable roles across lung biology in multiple contexts. This review highlights the progress made in characterizing the role of Wnt signaling across several disciplines in lung biology, including development, homeostasis, regeneration following injury, in vitro directed differentiation efforts, and disease progression. We further note uncharted directions in the field that may illuminate important biology. The discoveries made collectively advance our understanding of Wnt signaling in lung biology and have the potential to inform therapeutic advancements for lung diseases. Cody Aros, Carla Pantoja, and Brigitte Gomperts review the key role of Wnt signaling in all aspects of lung development, repair, and disease progression. They provide an overview of recent research findings and highlight where research is needed to further elucidate mechanisms of action, with the aim of improving disease treatments.
Collapse
Affiliation(s)
- Cody J Aros
- UCLA Department of Molecular Biology Interdepartmental Program, UCLA, Los Angeles, CA, USA.,UCLA Medical Scientist Training Program, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.,UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Carla J Pantoja
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Brigitte N Gomperts
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA. .,Division of Pulmonary and Critical Care MedicineDavid Geffen School of Medicine, UCLA, Los Angeles, CA, USA. .,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA. .,Eli and Edythe Broad Stem Cell Research Center, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
232
|
Ceylan KC, Batihan G, Üçvet A, Gürsoy S. Surgery in congenital lung malformations: the evolution from thoracotomy to VATS, 10-year experience in a single center. J Cardiothorac Surg 2021; 16:131. [PMID: 34001173 PMCID: PMC8130166 DOI: 10.1186/s13019-021-01511-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 05/05/2021] [Indexed: 11/25/2022] Open
Abstract
Background Congenital lung malformation is an umbrella term and consist of various kind of parenchymal and mediastinal pathologies. Surgical resection is often required for diagnosis and curative treatment. We aimed to review our experience in surgical treatment for congenital lung disease and present the role of minimally invasive surgery. Methods Surgical resections performed for benign lesions of the lung and mediastinum between January 2009 and May 2019 were retrospectively analyzed. Patients who were found to have congenital lung malformation as a result of pathological examination were included in our study. Distribution characteristics of the patients according to congenital lung malformation subtypes, differences in surgical approach and postoperative results were investigated. Results A total of 94 patients who underwent surgical resection and were diagnosed with the bronchogenic cyst, sequestration, bronchial atresia, congenital cystic adenomatoid malformation (CCAM), or enteric cyst as a result of pathological examination were included the study. There were no significant differences between pathological subtypes in the postoperative length of hospital stay and drainage duration however, perioperative complication rate was higher in the sequestration group. In addition, in the first three days postoperatively, the mean pain score was found to be lower in the VATS group compared to thoracotomy. Conclusions Congenital lung malformations consist of a heterogeneous group of diseases and the surgical treatment in these patients can range from a simple cyst excision to pneumonectomy. Video-assisted thoracoscopic surgery should be considered as the first choice in the surgical treatment of these patients in experienced centers.
Collapse
Affiliation(s)
- Kenan C Ceylan
- Department of Thoracic Surgery, University of Health Sciences Dr Suat Seren Chest Diseases and Chest Surgery Training and Research Hospital Izmir, 35110, Yenişehir, Gaziler Street, 331, Izmir, Turkey
| | - Güntuğ Batihan
- Department of Thoracic Surgery, University of Health Sciences Dr Suat Seren Chest Diseases and Chest Surgery Training and Research Hospital Izmir, 35110, Yenişehir, Gaziler Street, 331, Izmir, Turkey.
| | - Ahmet Üçvet
- Department of Thoracic Surgery, University of Health Sciences Dr Suat Seren Chest Diseases and Chest Surgery Training and Research Hospital Izmir, 35110, Yenişehir, Gaziler Street, 331, Izmir, Turkey
| | - Soner Gürsoy
- Department of Thoracic Surgery, University of Health Sciences Dr Suat Seren Chest Diseases and Chest Surgery Training and Research Hospital Izmir, 35110, Yenişehir, Gaziler Street, 331, Izmir, Turkey
| |
Collapse
|
233
|
Busch SM, Lorenzana Z, Ryan AL. Implications for Extracellular Matrix Interactions With Human Lung Basal Stem Cells in Lung Development, Disease, and Airway Modeling. Front Pharmacol 2021; 12:645858. [PMID: 34054525 PMCID: PMC8149957 DOI: 10.3389/fphar.2021.645858] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/29/2021] [Indexed: 12/18/2022] Open
Abstract
The extracellular matrix (ECM) is not simply a quiescent scaffold. This three-dimensional network of extracellular macromolecules provides structural, mechanical, and biochemical support for the cells of the lung. Throughout life, the ECM forms a critical component of the pulmonary stem cell niche. Basal cells (BCs), the primary stem cells of the airways capable of differentiating to all luminal cell types, reside in close proximity to the basolateral ECM. Studying BC-ECM interactions is important for the development of therapies for chronic lung diseases in which ECM alterations are accompanied by an apparent loss of the lung's regenerative capacity. The complexity and importance of the native ECM in the regulation of BCs is highlighted as we have yet to create an in vitro culture model that is capable of supporting the long-term expansion of multipotent BCs. The interactions between the pulmonary ECM and BCs are, therefore, a vital component for understanding the mechanisms regulating BC stemness during health and disease. If we are able to replicate these interactions in airway models, we could significantly improve our ability to maintain basal cell stemness ex vivo for use in in vitro models and with prospects for cellular therapies. Furthermore, successful, and sustained airway regeneration in an aged or diseased lung by small molecules, novel compounds or via cellular therapy will rely upon both manipulation of the airway stem cells and their immediate niche within the lung. This review will focus on the current understanding of how the pulmonary ECM regulates the basal stem cell function, how this relationship changes in chronic disease, and how replicating native conditions poses challenges for ex vivo cell culture.
Collapse
Affiliation(s)
- Shana M. Busch
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Zareeb Lorenzana
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Amy L. Ryan
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
234
|
Arroyo R, Grant SN, Gouwens KR, Miller DM, Kingma PS. Evaluation of recombinant human SP-D in the rat premature lung model. Ann Anat 2021; 235:151670. [DOI: 10.1016/j.aanat.2020.151670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/06/2020] [Accepted: 12/09/2020] [Indexed: 11/25/2022]
|
235
|
Preconceptional and prenatal exposure to diurnal temperature variation increases the risk of childhood pneumonia. BMC Pediatr 2021; 21:192. [PMID: 33882898 PMCID: PMC8061002 DOI: 10.1186/s12887-021-02643-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 04/02/2021] [Indexed: 11/10/2022] Open
Abstract
Background Pneumonia is the leading cause of death and hospitalization among young children worldwide, but its risk factors remain unclear. Objective To evaluate the effect of maternal exposure to diurnal temperature variation (DTV) during preconceptional and prenatal periods on childhood pneumonia. Methods A retrospective cohort study by case-control design was conducted for pneumonia (N = 699) and normal (N = 811) children under age of 14 who were enrolled in XiangYa Hospital, Changsha, China from May 2017 to April 2019. Demographic data including gender, age, birth season, gestational age, parity, mode of delivery, and parental atopy were collected from the electronic medical records in the hospital system. We obtained the data of daily DTV in Changsha during 2003–2019 from China Meteorological Administration. Maternal exposure to DTV during preconceptional and prenatal periods was respectively calculated by the average of daily DTV during one year and three months before conception and entire pregnancy as well as the three trimesters. The association between maternal exposure to outdoor DTV and childhood pneumonia was analyzed by multiple logic regression model. Results We found that childhood pneumonia was significantly associated with exposure to an increase in DTV during one year before conception and entire pregnancy, with ORs (95 % CI) = 2.53 (1.56–4.10) and 1.85 (1.24–2.76). We further identified a significant risk of pneumonia of DTV exposure during the first and second trimester of pregnancy. Sensitivity analysis showed that boys were more susceptible to the effect of prenatal exposure to outdoor DTV during pregnancy particularly in the first two trimesters compared to girls. Conclusions Preconceptional and prenatal exposure to DTV plays an important role in development of childhood pneumonia, especially during the first and second trimesters of pregnancy.
Collapse
|
236
|
Pastor-Arroyo EM, Rodriguez JMM, Pellegrini G, Bettoni C, Levi M, Hernando N, Wagner CA. Constitutive depletion of Slc34a2/NaPi-IIb in rats causes perinatal mortality. Sci Rep 2021; 11:7943. [PMID: 33846411 PMCID: PMC8042035 DOI: 10.1038/s41598-021-86874-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/15/2021] [Indexed: 11/23/2022] Open
Abstract
Absorption of dietary phosphate (Pi) across intestinal epithelia is a regulated process mediated by transcellular and paracellular pathways. Although hyperphosphatemia is a risk factor for the development of cardiovascular disease, the amount of ingested Pi in a typical Western diet is above physiological needs. While blocking intestinal absorption has been suggested as a therapeutic approach to prevent hyperphosphatemia, a complete picture regarding the identity and regulation of the mechanism(s) responsible for intestinal absorption of Pi is missing. The Na+/Pi cotransporter NaPi-IIb is a secondary active transporter encoded by the Slc34a2 gene. This transporter has a wide tissue distribution and within the intestinal tract is located at the apical membrane of epithelial cells. Based on mouse models deficient in NaPi-IIb, this cotransporter is assumed to mediate the bulk of active intestinal absorption of Pi. However, whether or not this is also applicable to humans is unknown, since human patients with inactivating mutations in SLC34A2 have not been reported to suffer from Pi depletion. Thus, mice may not be the most appropriate experimental model for the translation of intestinal Pi handling to humans. Here, we describe the generation of a rat model with Crispr/Cas-driven constitutive depletion of Slc34a2. Slc34a2 heterozygous rats were indistinguishable from wild type animals under standard dietary conditions as well as upon 3 days feeding on low Pi. However, unlike in humans, homozygosity resulted in perinatal lethality.
Collapse
Affiliation(s)
- Eva Maria Pastor-Arroyo
- Institute of Physiology, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Josep M Monné Rodriguez
- Laboratory for Animal Model Pathology (LAMP), Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, 8057, Zurich, Switzerland
| | - Giovanni Pellegrini
- Laboratory for Animal Model Pathology (LAMP), Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, 8057, Zurich, Switzerland
| | - Carla Bettoni
- Institute of Physiology, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Moshe Levi
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, USA
| | - Nati Hernando
- Institute of Physiology, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| | - Carsten A Wagner
- Institute of Physiology, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
237
|
Xia S, Menden HL, Townley N, Mabry SM, Johnston J, Nyp MF, Heruth DP, Korfhagen T, Sampath V. Delta-like 4 is required for pulmonary vascular arborization and alveolarization in the developing lung. JCI Insight 2021; 6:134170. [PMID: 33830085 PMCID: PMC8119184 DOI: 10.1172/jci.insight.134170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/25/2021] [Indexed: 11/23/2022] Open
Abstract
The molecular mechanisms by which endothelial cells (ECs) regulate pulmonary vascularization and contribute to alveolar epithelial cell development during lung morphogenesis remain unknown. We tested the hypothesis that delta-like 4 (DLL4), an EC Notch ligand, is critical for alveolarization by combining lung mapping and functional studies in human tissue and DLL4-haploinsufficient mice (Dll4+/lacz). DLL4 expressed in a PECAM-restricted manner in capillaries, arteries, and the alveolar septum from the canalicular to alveolar stage in mice and humans. Dll4 haploinsufficiency resulted in exuberant, nondirectional vascular patterning at E17.5 and P6, followed by smaller capillaries and fewer intermediate blood vessels at P14. Vascular defects coincided with polarization of lung EC expression toward JAG1-NICD-HES1 signature and decreased tip cell-like (Car4) markers. Dll4+/lacZ mice had impaired terminal bronchiole development at the canalicular stage and impaired alveolarization upon lung maturity. We discovered that alveolar type I cell (Aqp5) markers progressively decreased in Dll4+/lacZ mice after birth. Moreover, in human lung EC, DLL4 deficiency programmed a hypersprouting angiogenic phenotype cell autonomously. In conclusion, DLL4 is expressed from the canalicular to alveolar stage in mice and humans, and Dll4 haploinsufficiency programs dysmorphic microvascularization, impairing alveolarization. Our study reveals an obligate role for DLL4-regulated angiogenesis in distal lung morphogenesis.
Collapse
Affiliation(s)
- Sheng Xia
- Division of Neonatology, Department of Pediatrics, Children’s Mercy Hospital, Kansas City, Missouri, USA
| | - Heather L. Menden
- Division of Neonatology, Department of Pediatrics, Children’s Mercy Hospital, Kansas City, Missouri, USA
| | - Nick Townley
- Division of Neonatology, Department of Pediatrics, Children’s Mercy Hospital, Kansas City, Missouri, USA
| | - Sherry M. Mabry
- Division of Neonatology, Department of Pediatrics, Children’s Mercy Hospital, Kansas City, Missouri, USA
| | - Jeffrey Johnston
- Genomic Medicine Center, Children’s Mercy Hospital, Kansas City, Missouri, USA
| | - Michael F. Nyp
- Division of Neonatology, Department of Pediatrics, Children’s Mercy Hospital, Kansas City, Missouri, USA
| | - Daniel P. Heruth
- Division of Neonatology, Department of Pediatrics, Children’s Mercy Hospital, Kansas City, Missouri, USA
| | - Thomas Korfhagen
- Division of Neonatology, Department of Pediatrics, Cincinnati Children’s Hospital, Cincinnati, Ohio, USA
| | - Venkatesh Sampath
- Division of Neonatology, Department of Pediatrics, Children’s Mercy Hospital, Kansas City, Missouri, USA
| |
Collapse
|
238
|
Blitz MJ, Ghorayeb SR, Solmonovich R, Glykos S, Jauhari A, Rochelson B, Bracero LA. Fetal Lung Echo Texture in Pregnancies at Risk for Pulmonary Hypoplasia. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2021; 40:805-810. [PMID: 32865280 DOI: 10.1002/jum.15454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/14/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
Pulmonary hypoplasia is associated with severe respiratory distress immediately after birth and frequently leads to neonatal death. In this study, we compared the fetal lung echo texture in pregnancies at high and low risk for pulmonary hypoplasia. Ultrasonic tissue heterogeneity was determined by a dynamic range calculation. This quantification uses a dithering technique based on the Floyd-Steinberg algorithm, in which the pixels are transformed into a binary map. Pregnancies at high risk for pulmonary hypoplasia showed decreased fetal lung heterogeneity on ultrasound imaging. This image-processing technique may allow improved risk stratification, patient counseling, and treatment approaches for pulmonary hypoplasia.
Collapse
Affiliation(s)
- Matthew J Blitz
- Division of Maternal-Fetal Medicine, Southside Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Bay Shore, New York, USA
| | - Sleiman R Ghorayeb
- School of Engineering and Applied Sciences, Ultrasound Research Laboratory, Hofstra University, Hempstead, New York, USA
- Departments of Radiology and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - Rachel Solmonovich
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Stella Glykos
- School of Engineering and Applied Sciences, Ultrasound Research Laboratory, Hofstra University, Hempstead, New York, USA
| | - Arushi Jauhari
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - Burton Rochelson
- Division of Maternal-Fetal Medicine, North Shore University Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York, USA
| | - Luis A Bracero
- Division of Maternal-Fetal Medicine, Southside Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Bay Shore, New York, USA
| |
Collapse
|
239
|
Hazlehurst MF, Carroll KN, Loftus CT, Szpiro AA, Moore PE, Kaufman JD, Kirwa K, LeWinn KZ, Bush NR, Sathyanarayana S, Tylavsky FA, Barrett ES, Nguyen RHN, Karr CJ. Maternal exposure to PM 2.5 during pregnancy and asthma risk in early childhood: consideration of phases of fetal lung development. Environ Epidemiol 2021; 5:e130. [PMID: 33709049 PMCID: PMC7943175 DOI: 10.1097/ee9.0000000000000130] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/23/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Increasingly studies suggest prenatal exposure to air pollution may increase risk of childhood asthma. Few studies have investigated exposure during specific fetal pulmonary developmental windows. OBJECTIVE To assess associations between prenatal fine particulate matter exposure and asthma at age 4. METHODS This study included mother-child dyads from two pregnancy cohorts-CANDLE and TIDES-within the ECHO-PATHWAYS consortium (births in 2007-2013). Three child asthma outcomes were parent-reported: ever asthma, current asthma, and current wheeze. Fine particulate matter (PM2.5) exposures during the pseudoglandular (5-16 weeks gestation), canalicular (16-24 weeks gestation), saccular (24-36 weeks gestation), and alveolar (36+ weeks gestation) phases of fetal lung development were estimated using a national spatiotemporal model. We estimated associations with Poisson regression with robust standard errors, and adjusted for child, maternal, and neighborhood factors. RESULTS Children (n=1469) were on average 4.3 (standard deviation 0.5) years old, 49% were male, and 11.7% had ever asthma; 46% of women identified as black and 53% had at least a college/technical school degree. A 2 μg/m3 higher PM2.5 exposure during the saccular phase was associated with 1.29 times higher risk of ever asthma (95% CI: 1.06-1.58). A similar association was observed with current asthma (RR 1.27, 95% CI: 1.04-1.54), but not current wheeze (RR 1.11, 95% CI: 0.92-1.33). Effect estimates for associations during other developmental windows had confidence intervals that included the null. CONCLUSIONS Later phases of prenatal lung development may be particularly sensitive to the developmental toxicity of PM2.5.
Collapse
Affiliation(s)
| | - Kecia N. Carroll
- Division of General Pediatrics, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Christine T. Loftus
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Adam A. Szpiro
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Paul E. Moore
- Division of Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Joel D. Kaufman
- Department of Epidemiology, University of Washington, Seattle, Washington
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
- Department of Medicine, University of Washington, Seattle, Washington
| | - Kipruto Kirwa
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Kaja Z. LeWinn
- Department of Psychiatry, Weill Institute for the Neurosciences, University of California San Francisco, San Francisco, California
| | - Nicole R. Bush
- Department of Psychiatry, Weill Institute for the Neurosciences, University of California San Francisco, San Francisco, California
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Sheela Sathyanarayana
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
- Seattle Children’s Research Institute, Seattle, Washington
- Department of Pediatrics, University of Washington, Seattle, Washington
| | - Frances A. Tylavsky
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Emily S. Barrett
- Department of Biostatistics and Epidemiology, Environmental and Occupational Health Sciences Institute, Rutgers School of Public Health, Piscataway, New Jersey
| | - Ruby H. N. Nguyen
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, Minnesota
| | - Catherine J. Karr
- Department of Epidemiology, University of Washington, Seattle, Washington
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
- Department of Pediatrics, University of Washington, Seattle, Washington
| |
Collapse
|
240
|
Ferner K. Early postnatal lung development in the eastern quoll (Dasyurus viverrinus). Anat Rec (Hoboken) 2021; 304:2823-2840. [PMID: 33773053 DOI: 10.1002/ar.24623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 11/10/2022]
Abstract
Early postnatal lung development (1-25 days) in the eastern quoll (Dasyurus viverrinus) was investigated to assess the morphofunctional status of one of the most immature marsupial neonates. Lung volume, surface density, surface area, and parenchymal and nonparenchymal volume proportions were determined using light microscopic morphometry. The lungs of the neonate were at the canalicular stage and consisted of two "balloon-like" airways with few septal ridges. The absolute volume of the lung was only 0.0009 cm3 with an air space surface density of 108.83 cm-1 and a surface area of 0.082 cm2 . The increase in lung volume in the first three postnatal days was mainly due to airspace expansion. The rapid postnatal development of the lung was indicated by an increase in the septal proportion of the parenchyma around day 4, which was reflected by an increase in the airspace surface density and surface area. By day 5, the lung entered the saccular stage of development with a reduction in septal thickness, expansion of the tubules into saccules and development of a double capillary system. The subsequent saccular period was characterized by repetitive septation steps, which increased the number of airway generations. The lungs of the newborn Dasyurus viverrinus must be considered as structurally and quantitatively insufficient to meet the respiratory requirements at birth. Hence, cutaneous gas exchange might be crucial for the first three postnatal days. The lung has to mature rapidly in the early postnatal period to support the increased metabolic requirements of the developing young.
Collapse
Affiliation(s)
- Kirsten Ferner
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany
| |
Collapse
|
241
|
Abstract
Branching morphogenesis generates epithelial trees which facilitate gas exchange, filtering, as well as secretion processes with their large surface to volume ratio. In this review, we focus on the developmental mechanisms that control the early stages of lung branching morphogenesis. Lung branching morphogenesis involves the stereotypic, recurrent definition of new branch points, subsequent epithelial budding, and lung tube elongation. We discuss current models and experimental evidence for each of these steps. Finally, we discuss the role of the mesenchyme in determining the organ-specific shape.
Collapse
Affiliation(s)
- Dagmar Iber
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Basel, Switzerland; Swiss Institute of Bioinformatics (SIB), Basel, Switzerland.
| |
Collapse
|
242
|
The Pulmonary Venous Return from Normal to Pathological-Clinical Correlations and Review of Literature. ACTA ACUST UNITED AC 2021; 57:medicina57030293. [PMID: 33809829 PMCID: PMC8004191 DOI: 10.3390/medicina57030293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 11/17/2022]
Abstract
Pulmonary veins carry oxygenated blood from lungs to the left atrium of the heart. The anatomy of the pulmonary veins is variable with some anatomic variants. In clinical practice the difference between the normal anatomy of pulmonary veins with its variants and abnormal anatomy is very important for clinicians. Variants of pulmonary veins may occur in number, diameter and normal venous return. We present a case report and a review of the literature with the pulmonary venous return that deviates from the usual anatomical configuration and ranges from normal variant drainage to anomalous pulmonary—systemic communication. Initially, it was considered as an anatomical variant of the pulmonary venous return associated with the persistence of the left superior vena cava. Upon detailed exploration it was established that it was an anomaly of the pulmonary venous return which led in time to the installation of its complications. Diagnosis can be difficult, sometimes missed, or only made late in adulthood when complications were installed. Knowledge of variant anatomy and anomalous pulmonary venous return play a crucial role in the diagnostically challenging patient.
Collapse
|
243
|
Kouthouridis S, Goepp J, Martini C, Matthes E, Hanrahan JW, Moraes C. Oxygenation as a driving factor in epithelial differentiation at the air-liquid interface. Integr Biol (Camb) 2021; 13:61-72. [PMID: 33677549 PMCID: PMC7965686 DOI: 10.1093/intbio/zyab002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/13/2020] [Accepted: 01/12/2021] [Indexed: 01/05/2023]
Abstract
Culture at the air-liquid interface is broadly accepted as necessary for differentiation of cultured epithelial cells towards an in vivo-like phenotype. However, air-liquid interface cultures are expensive, laborious and challenging to scale for increased throughput applications. Deconstructing the microenvironmental parameters that drive these differentiation processes could circumvent these limitations, and here we hypothesize that reduced oxygenation due to diffusion limitations in liquid media limits differentiation in submerged cultures; and that this phenotype can be rescued by recreating normoxic conditions at the epithelial monolayer, even under submerged conditions. Guided by computational models, hyperoxygenation of atmospheric conditions was applied to manipulate oxygenation at the monolayer surface. The impact of this rescue condition was confirmed by assessing protein expression of hypoxia-sensitive markers. Differentiation of primary human bronchial epithelial cells isolated from healthy patients was then assessed in air-liquid interface, submerged and hyperoxygenated submerged culture conditions. Markers of differentiation, including epithelial layer thickness, tight junction formation, ciliated surface area and functional capacity for mucociliary clearance, were assessed and found to improve significantly in hyperoxygenated submerged cultures, beyond standard air-liquid interface or submerged culture conditions. These results demonstrate that an air-liquid interface is not necessary to produce highly differentiated epithelial structures, and that increased availability of oxygen and nutrient media can be leveraged as important strategies to improve epithelial differentiation for applications in respiratory toxicology and therapeutic development.
Collapse
Affiliation(s)
- Sonya Kouthouridis
- Department of Chemical Engineering, McGill University, Montreal, Canada
- Department of Chemical Engineering, McMaster University, Hamilton, Canada
| | - Julie Goepp
- Department of Physiology, Cystic Fibrosis Translational Research Centre, McGill University, Montreal, Canada
| | | | | | - John W Hanrahan
- Department of Physiology, Cystic Fibrosis Translational Research Centre, McGill University, Montreal, Canada
- Department of Physiology, McGill University, Montreal, Canada
| | - Christopher Moraes
- Department of Chemical Engineering, McGill University, Montreal, Canada
- Department of Physiology, Cystic Fibrosis Translational Research Centre, McGill University, Montreal, Canada
- Department of Biological and Biomedical Engineering, McGill University, Montreal, Canada
- Faculty of Medicine, Rosalind and Morris Goodman Cancer Research Center, Montreal, Canada
| |
Collapse
|
244
|
Koh JY, Jung E, Goo HW, Kim SC, Kim DY, Namgoong JM, Lee BS, Kim KS, Kim EAR. Functional and structural evaluation in the lungs of children with repaired congenital diaphragmatic hernia. BMC Pediatr 2021; 21:120. [PMID: 33706730 PMCID: PMC7947149 DOI: 10.1186/s12887-021-02586-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/28/2021] [Indexed: 11/10/2022] Open
Abstract
Background To evaluate the long-term functional and structural pulmonary development in children with repaired congenital diaphragmatic hernia (CDH) and to identify the associated perinatal-neonatal risk factors. Methods Children with repaired CDH through corrective surgery who were born at gestational age ≥ 35 weeks were included in this analysis. Those who were followed for at least 5 years were subjected to spirometry and chest computed tomography for evaluation of their functional and structural growth. Main bronchus diameters and lung volumes (total, left/right) were measured. According to total lung volume (TLV) relative to body surface area, children were grouped into TLV ≥ 50 group and TLV < 50 group and the associations with perinatal-neonatal factors were analyzed. Results Of the 28 children (mean age, 6.2 ± 0.2 years) with left-sided CDH, 7 (25%) had abnormal pulmonary function, of whom 6 (87%) showed restrictive patterns. All pulmonary functions except FEF25–75% were worse than those in matched healthy control group. Worse pulmonary function was significantly associated with small head and abdominal circumferences at birth. The mean TLV was 1339.1 ± 363.9 mL and LLV/TLV was 47.9 ± 2.5 mL. Children with abnormal pulmonary function were more likely to have smaller lung volumes. In multivariate analysis, abdominal circumference at birth was significantly associated with abnormal lung volume. Conclusions A quarter of children with repaired CDH showed abnormal pulmonary function. Small abdominal circumference at birth was associated with abnormal pulmonary function and lower TLV. Supplementary Information The online version contains supplementary material available at 10.1186/s12887-021-02586-3.
Collapse
Affiliation(s)
- June-Young Koh
- Departments of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Euiseok Jung
- Departments of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyun Woo Goo
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seong-Chul Kim
- Departments of Pediatric Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dae Yeon Kim
- Departments of Pediatric Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jung-Man Namgoong
- Departments of Pediatric Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Byong Sop Lee
- Departments of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ki-Soo Kim
- Departments of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ellen Ai-Rhan Kim
- Departments of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
245
|
Buttery SC, Zysman M, Vikjord SAA, Hopkinson NS, Jenkins C, Vanfleteren LEGW. Contemporary perspectives in COPD: Patient burden, the role of gender and trajectories of multimorbidity. Respirology 2021; 26:419-441. [PMID: 33751727 DOI: 10.1111/resp.14032] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 02/21/2021] [Indexed: 12/13/2022]
Abstract
An individual's experience of COPD is determined by many factors in addition to the pathological features of chronic bronchitis and emphysema and the symptoms that derive directly from them. Multimorbidity is the norm rather than the exception, so most people with COPD are living with a range of other medical problems which can decrease overall quality of life. COPD is caused by the inhalation of noxious particles or gases, in particular tobacco smoke, but also by early life disadvantage impairing lung development and by occupations where inhaled exposures are common (e.g. industrial, farming and cleaning work). Wealthy people are therefore relatively protected from developing COPD and people who do develop the condition may have reduced resources to cope. COPD is also no longer a condition that predominantly affects men. The prevalence of COPD among women has equalled that of men since 2008 in many high-income countries, due to increased exposure to tobacco, and in low-income countries due to biomass fuels. COPD is one of the leading causes of death in women in the USA, and death rates attributed to COPD in women in some countries are predicted to overtake those of men in the next decade. Many factors contribute to this phenomenon, but in addition to socioeconomic and occupational factors, there is increasing evidence of a higher susceptibility of females to smoking and pollutants. Quality of life is also more significantly impaired in women. Although most medications (bronchodilators and inhaled corticosteroids) used to treat COPD demonstrate similar trends for exacerbation prevention and lung function improvement in men and women, this is an understudied area and clinical trials frequently have a preponderance of males. A better understanding of gender-based predictors of efficacy of all therapeutic interventions is crucial for comprehensive patient care. There is an urgent need to recognize the increasing burden of COPD in women and to facilitate global improvements in disease prevention and management in this specific population. Many individuals with COPD follow a trajectory of both lung function decline and also multimorbidity. Unfavourable lung function trajectories throughout life have implications for later development of other chronic diseases. An enhanced understanding of the temporal associations underlying the development of coexisting diseases is a crucial first step in unravelling potential common disease pathways. Lessons can be learned from exploring disease trajectories of other NCD as well as multimorbidity development. Further research will be essential to explain how early life risk factors commonly influence trajectories of COPD and other diseases, how different diseases develop in relation to each other in a temporal way and how this ultimately leads to different multimorbidity patterns in COPD. This review integrates new knowledge and ideas pertaining to three broad themes (i) the overall burden of disease in COPD, (ii) an unappreciated high burden in women and (iii) the contrast of COPD trajectories and different multimorbidity patterns with trajectories of other NCD. The underlying pathology of COPD is largely irreversible, but many factors noted in the review are potentially amenable to intervention. Health and social care systems need to ensure that effective treatment is accessible to all people with the condition. Preventive strategies and treatments that alter the course of disease are crucial, particularly for patients with COPD as one of many problems.
Collapse
Affiliation(s)
- Sara C Buttery
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Maéva Zysman
- Centre de Recherche cardio-thoracique de Bordeaux, Univ-Bordeaux, Pessac, France.,Service des Maladies Respiratoires, CHU Bordeaux, Pessac, France
| | - Sigrid A A Vikjord
- Department of Medicine and Rehabilitation, Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway.,HUNT Research Centre, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Levanger, Norway
| | | | - Christine Jenkins
- Respiratory Group, The George Institute for Global Health, Sydney, NSW, Australia
| | - Lowie E G W Vanfleteren
- COPD Center, Department of Respiratory Medicine and Allergology, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
246
|
Ushakumary MG, Riccetti M, Perl AKT. Resident interstitial lung fibroblasts and their role in alveolar stem cell niche development, homeostasis, injury, and regeneration. Stem Cells Transl Med 2021; 10:1021-1032. [PMID: 33624948 PMCID: PMC8235143 DOI: 10.1002/sctm.20-0526] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/13/2021] [Accepted: 01/24/2021] [Indexed: 12/14/2022] Open
Abstract
Developing, regenerating, and repairing a lung all require interstitial resident fibroblasts (iReFs) to direct the behavior of the epithelial stem cell niche. During lung development, distal lung fibroblasts, in the form of matrix-, myo-, and lipofibroblasts, form the extra cellular matrix (ECM), create tensile strength, and support distal epithelial differentiation, respectively. During de novo septation in a murine pneumonectomy lung regeneration model, developmental processes are reactivated within the iReFs, indicating progenitor function well into adulthood. In contrast to the regenerative activation of fibroblasts upon acute injury, chronic injury results in fibrotic activation. In murine lung fibrosis models, fibroblasts can pathologically differentiate into lineages beyond their normal commitment during homeostasis. In lung injury, recently defined alveolar niche cells support the expansion of alveolar epithelial progenitors to regenerate the epithelium. In human fibrotic lung diseases like bronchopulmonary dysplasia (BPD), idiopathic pulmonary fibrosis (IPF), and chronic obstructive pulmonary disease (COPD), dynamic changes in matrix-, myo-, lipofibroblasts, and alveolar niche cells suggest differential requirements for injury pathogenesis and repair. In this review, we summarize the role of alveolar fibroblasts and their activation stage in alveolar septation and regeneration and incorporate them into the context of human lung disease, discussing fibroblast activation stages and how they contribute to BPD, IPF, and COPD.
Collapse
Affiliation(s)
- Mereena George Ushakumary
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Matthew Riccetti
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Molecular and Developmental Biology Graduate Program, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Anne-Karina T Perl
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Molecular and Developmental Biology Graduate Program, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
247
|
Giusto K, Wanczyk H, Jensen T, Finck C. Hyperoxia-induced bronchopulmonary dysplasia: better models for better therapies. Dis Model Mech 2021; 14:dmm047753. [PMID: 33729989 PMCID: PMC7927658 DOI: 10.1242/dmm.047753] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease caused by exposure to high levels of oxygen (hyperoxia) and is the most common complication that affects preterm newborns. At present, there is no cure for BPD. Infants can recover from BPD; however, they will suffer from significant morbidity into adulthood in the form of neurodevelopmental impairment, asthma and emphysematous changes of the lung. The development of hyperoxia-induced lung injury models in small and large animals to test potential treatments for BPD has shown some success, yet a lack of standardization in approaches and methods makes clinical translation difficult. In vitro models have also been developed to investigate the molecular pathways altered during BPD and to address the pitfalls associated with animal models. Preclinical studies have investigated the efficacy of stem cell-based therapies to improve lung morphology after damage. However, variability regarding the type of animal model and duration of hyperoxia to elicit damage exists in the literature. These models should be further developed and standardized, to cover the degree and duration of hyperoxia, type of animal model, and lung injury endpoint, to improve their translational relevance. The purpose of this Review is to highlight concerns associated with current animal models of hyperoxia-induced BPD and to show the potential of in vitro models to complement in vivo studies in the significant improvement to our understanding of BPD pathogenesis and treatment. The status of current stem cell therapies for treatment of BPD is also discussed. We offer suggestions to optimize models and therapeutic modalities for treatment of hyperoxia-induced lung damage in order to advance the standardization of procedures for clinical translation.
Collapse
Affiliation(s)
- Kiersten Giusto
- Department of Pediatrics, University of Connecticut Health Center, Farmington, 06106 CT, USA
| | - Heather Wanczyk
- Department of Pediatrics, University of Connecticut Health Center, Farmington, 06106 CT, USA
| | - Todd Jensen
- Department of Pediatrics, University of Connecticut Health Center, Farmington, 06106 CT, USA
| | - Christine Finck
- Department of Pediatrics, University of Connecticut Health Center, Farmington, 06106 CT, USA
- Department of Surgery, Connecticut Children's Medical Center, Hartford, CT, USA
| |
Collapse
|
248
|
Dutta A, Alaka M, Ibigbami T, Adepoju D, Adekunle S, Olamijulo J, Adedokun B, Deji-Abiodun O, Chartier R, Ojengbede O, Olopade CO. Impact of prenatal and postnatal household air pollution exposure on lung function of 2-year old Nigerian children by oscillometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:143419. [PMID: 33187696 DOI: 10.1016/j.scitotenv.2020.143419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/24/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE Lung function is adversely affected by exposure to household air pollution (HAP). Studies investigating the impact of prenatal and postnatal HAP exposure on early childhood lung development are limited, especially from Sub-Saharan Africa. OBJECTIVE We used oscillometry to investigate the impact on lung function of prenatal and postnatal HAP exposure of children born to Nigerian women who participated in a randomized controlled cookstove intervention trial. METHODS We performed oscillometric measurements (R: airway resistance; X: airway reactance; Fres: resonant frequency; AX: reactance area) in 223 children starting at age of 2 years (ethanol stove, n = 113; firewood/kerosene, n = 110). Personal exposure monitoring assessed mothers' prenatal exposure to particulate matter less than 2.5 μm in aerodynamic diameter (PM2.5). Postnatal HAP exposure was measured by determining household PM2.5 levels. We employed linear regression analysis to examine the association of prenatal and postnatal HAP exposures with children's lung function. Models were adjusted for age, gender, weight, height, group (intervention or control), birthweight and gestational age. RESULTS Mean age of the children was 2.9 years (standard deviation = 0.3); 120 were boys (53.8%) and 103 were girls (46.2%). Higher postnatal PM2.5 exposures were significantly associated with higher airway reactance at 5 Hz (X5 Hz; p = 0.04) in adjusted models. There were no significant associations between prenatal or postnatal PM2.5 exposure levels and other oscillometry parameters in adjusted regression analysis. CONCLUSIONS This is the first study to use oscillometry to explore the relationship between HAP exposure and lung function in children as young as 2 years. The findings provide some evidence that increased postnatal HAP exposure may result in poorer lung function in children, although larger studies are needed to confirm observed results. This study indicates that oscillometry is a low-cost and effective method to determine lung function in early childhood.
Collapse
Affiliation(s)
- Anindita Dutta
- Department of Medicine and Center for Global Health, University of Chicago, 5841 S. Maryland Avenue, MC 2021, Chicago, IL 60637, USA
| | - Mariam Alaka
- Pritzker School of Medicine, University of Chicago, 5841 S. Maryland Avenue, MC 6076, Chicago, IL 60637, USA
| | - Tope Ibigbami
- Healthy Life for All Foundation, House 38, University College Hospital, Ibadan, Nigeria
| | - Dayo Adepoju
- Healthy Life for All Foundation, House 38, University College Hospital, Ibadan, Nigeria
| | - Samuel Adekunle
- Healthy Life for All Foundation, House 38, University College Hospital, Ibadan, Nigeria
| | - John Olamijulo
- Healthy Life for All Foundation, House 38, University College Hospital, Ibadan, Nigeria
| | - Babatunde Adedokun
- Department of Medicine and Center for Global Health, University of Chicago, 5841 S. Maryland Avenue, MC 2021, Chicago, IL 60637, USA
| | - Oluwafunmilade Deji-Abiodun
- Department of Medicine and Center for Global Health, University of Chicago, 5841 S. Maryland Avenue, MC 2021, Chicago, IL 60637, USA
| | | | - Oladosu Ojengbede
- Department of Obstetrics and Gynecology, University of Ibadan, Ibadan, Nigeria
| | - Christopher O Olopade
- Department of Medicine and Center for Global Health, University of Chicago, 5841 S. Maryland Avenue, MC 2021, Chicago, IL 60637, USA; Pritzker School of Medicine, University of Chicago, 5841 S. Maryland Avenue, MC 6076, Chicago, IL 60637, USA.
| |
Collapse
|
249
|
Luo Q, Xu X, He X, Wang S, Sun Q, Zheng J. Pulmonary Hypoplasia Resulting from Pulmonary Artery Banding in Infancy: A Neonatal Rat Model Study. Pediatr Cardiol 2021; 42:397-407. [PMID: 33151352 DOI: 10.1007/s00246-020-02495-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/30/2020] [Indexed: 10/23/2022]
Abstract
The aim of this study was to establish a neonatal rat model of decreased pulmonary blood flow (PBF) for studying pulmonary pathophysiological changes in newborn lung development with reduced PBF. Horizontal thoracotomy surgery with banding of the main pulmonary artery (PA) was performed on 30 rats in the PA banding (PAB) group and without banding on another 30 rats in the sham group within 6 h after birth. The body growth and mortality were recorded. Constriction of PA was checked by echocardiography on postnatal day 7 (P7). Lung morphology was assessed with computed tomography scanning and three-dimensional reconstruction. Histological differences of two groups were evaluated using hematoxylin and eosin (H&E) staining, Masson's trichrome staining, TdT-mediated dUTP nick-end labeling assay, and CD31 labeling with microscopic examination. PA ultrasound confirmed the establishment of constriction on P7. Relative to the sham group, the neonates' physical growth, survival fraction, and lung geometry volume were decreased in the PAB group over time (p < 0.05). Histologic appearance with reduced PBF characterized a markedly simplified alveolarization with noted lower radial alveolar count and alveolar septal thickness in the PAB group (p < 0.0001), pulmonary arteries with thinner/uneven membranous layers and smaller lumina. The deficient alveolar capillary bed, enhanced pulmonary collagen deposition, and increased apoptotic alveolar epithelium were significant in the PAB group compared to the sham group (p < 0.0001). A neonatal rat PAB model demonstrated that PBF reduction during early infancy impairs alveolarization and pulmonary microvasculature.
Collapse
Affiliation(s)
- Qiancheng Luo
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Rd., Shanghai, 200127, China
| | - Xiuxia Xu
- Department of Radiology, Huangpu Branch, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 58 Puyu East Rd., Shanghai, 200011, China
| | - Xiaomin He
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Rd., Shanghai, 200127, China
| | - Shoubao Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Rd, Shanghai, 200011, China
| | - Qi Sun
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Rd., Shanghai, 200127, China.
| | - Jinghao Zheng
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Rd., Shanghai, 200127, China.
| |
Collapse
|
250
|
Abstract
Since its entry into biomedical research in the first half of the twentieth century, electron microscopy has been a valuable tool for lung researchers to explore the lung's delicate ultrastructure. Among others, it proved the existence of a continuous alveolar epithelium and demonstrated the surfactant lining layer. With the establishment of serial sectioning transmission electron microscopy, as the first "volume electron microscopic" technique, electron microscopy entered the third dimension and investigations of the lung's three-dimensional ultrastructure became possible. Over the years, further techniques, ranging from electron tomography over serial block-face and focused ion beam scanning electron microscopy to array tomography became available. All techniques cover different volumes and resolutions, and, thus, different scientific questions. This review gives an overview of these techniques and their application in lung research, focusing on their fields of application and practical implementation. Furthermore, an introduction is given how the output raw data are processed and the final three-dimensional models can be generated.
Collapse
Affiliation(s)
- Jan Philipp Schneider
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
- Research Core Unit Electron Microscopy, Hannover Medical School, 30625 Hannover, Germany
| | - Christoph Wrede
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
- Research Core Unit Electron Microscopy, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|