201
|
Paolicchi E, Gemignani F, Krstic-Demonacos M, Dedhar S, Mutti L, Landi S. Targeting hypoxic response for cancer therapy. Oncotarget 2017; 7:13464-78. [PMID: 26859576 PMCID: PMC4924654 DOI: 10.18632/oncotarget.7229] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/17/2016] [Indexed: 12/21/2022] Open
Abstract
Hypoxic tumor microenvironment (HTM) is considered to promote metabolic changes, oncogene activation and epithelial mesenchymal transition, and resistance to chemo- and radio-therapy, all of which are hallmarks of aggressive tumor behavior. Cancer cells within the HTM acquire phenotypic properties that allow them to overcome the lack of energy and nutrients supply within this niche. These phenotypic properties include activation of genes regulating glycolysis, glucose transport, acidosis regulators, angiogenesis, all of which are orchestrated through the activation of the transcription factor, HIF1A, which is an independent marker of poor prognosis. Moreover, during the adaptation to a HTM cancer cells undergo deep changes in mitochondrial functions such as “Warburg effect” and the “reverse Warburg effect”. This review aims to provide an overview of the characteristics of the HTM, with particular focus on novel therapeutic strategies currently in clinical trials, targeting the adaptive response to hypoxia of cancer cells.
Collapse
Affiliation(s)
- Elisa Paolicchi
- Genetics-Department of Biology, University of Pisa, Pisa, Italy
| | | | - Marija Krstic-Demonacos
- School of Environment and Life Sciences, College of Science and Technology, University of Salford, Salford, UK
| | - Shoukat Dedhar
- Department of Integrative Oncology, BC Cancer Research Centre, BC Cancer Agency and Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Luciano Mutti
- School of Environment and Life Sciences, College of Science and Technology, University of Salford, Salford, UK
| | - Stefano Landi
- Genetics-Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
202
|
Hochnadel I, Kossatz-Boehlert U, Jedicke N, Lenzen H, Manns MP, Yevsa T. Cancer vaccines and immunotherapeutic approaches in hepatobiliary and pancreatic cancers. Hum Vaccin Immunother 2017; 13:2931-2952. [PMID: 29112462 PMCID: PMC5718787 DOI: 10.1080/21645515.2017.1359362] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatobiliary and pancreatic cancers along with other gastrointestinal malignancies remain the leading cause of cancer-related deaths worldwide. Strategies developed in the recent years on immunotherapy and cancer vaccines in the setting of primary liver cancer as well as in pancreatic cancer are the scope of this review. Significance of orthotopic and autochthonous animal models which mimic and/or closely reflect human malignancies allowing for a prompt and trustworthy analysis of new therapeutics is underlined. Combinational approaches that on one hand, specifically target a defined cancer-driving pathway, and on the other hand, restore the functions of immune cells, which effector functions are often suppressed by a tumor milieu, are shown to have the strongest perspectives and future directions. Among combinational immunotherapeutic approaches a personalized- and individual cancer case-based therapy is of special importance.
Collapse
Affiliation(s)
- Inga Hochnadel
- a Department of Gastroenterology , Hepatology and Endocrinology, Hannover Medical School , Hannover , Germany
| | - Uta Kossatz-Boehlert
- b Institute for Neuroanatomy, Eberhard-Karls University Tuebingen , Tuebingen , Germany
| | - Nils Jedicke
- a Department of Gastroenterology , Hepatology and Endocrinology, Hannover Medical School , Hannover , Germany
| | - Henrike Lenzen
- a Department of Gastroenterology , Hepatology and Endocrinology, Hannover Medical School , Hannover , Germany
| | - Michael P Manns
- a Department of Gastroenterology , Hepatology and Endocrinology, Hannover Medical School , Hannover , Germany
| | - Tetyana Yevsa
- a Department of Gastroenterology , Hepatology and Endocrinology, Hannover Medical School , Hannover , Germany
| |
Collapse
|
203
|
Collateral Damage Intended-Cancer-Associated Fibroblasts and Vasculature Are Potential Targets in Cancer Therapy. Int J Mol Sci 2017; 18:ijms18112355. [PMID: 29112161 PMCID: PMC5713324 DOI: 10.3390/ijms18112355] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/25/2017] [Accepted: 11/02/2017] [Indexed: 02/07/2023] Open
Abstract
After oncogenic transformation, tumor cells rewire their metabolism to obtain sufficient energy and biochemical building blocks for cell proliferation, even under hypoxic conditions. Glucose and glutamine become their major limiting nutritional demands. Instead of being autonomous, tumor cells change their immediate environment not only by their metabolites but also by mediators, such as juxtacrine cell contacts, chemokines and other cytokines. Thus, the tumor cells shape their microenvironment as well as induce resident cells, such as fibroblasts and endothelial cells (ECs), to support them. Fibroblasts differentiate into cancer-associated fibroblasts (CAFs), which produce a qualitatively and quantitatively different extracellular matrix (ECM). By their contractile power, they exert tensile forces onto this ECM, leading to increased intratumoral pressure. Moreover, along with enhanced cross-linkage of the ECM components, CAFs thus stiffen the ECM. Attracted by tumor cell- and CAF-secreted vascular endothelial growth factor (VEGF), ECs sprout from pre-existing blood vessels during tumor-induced angiogenesis. Tumor vessels are distinct from EC-lined vessels, because tumor cells integrate into the endothelium or even mimic and replace it in vasculogenic mimicry (VM) vessels. Not only the VM vessels but also the characteristically malformed EC-lined tumor vessels are typical for tumor tissue and may represent promising targets in cancer therapy.
Collapse
|
204
|
Wang X, Ackermann M, Neufurth M, Wang S, Li Q, Feng Q, Schröder HC, Müller WEG. Restoration of Impaired Metabolic Energy Balance (ATP Pool) and Tube Formation Potential of Endothelial Cells under "high glucose", Diabetic Conditions by the Bioinorganic Polymer Polyphosphate. Polymers (Basel) 2017; 9:E575. [PMID: 30965879 PMCID: PMC6418735 DOI: 10.3390/polym9110575] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 12/15/2022] Open
Abstract
Micro-vascularization is a fast, energy-dependent process that is compromised by elevated glucose concentrations such as in diabetes mellitus disease. Here, we studied the effect of the physiological bioinorganic polymer, polyphosphate (polyP), on the reduced ATP content and impaired function of endothelial cells cultivated under "high glucose" (35 mM diabetes mellitus conditions) concentrations. This high-energy biopolymer has been shown to provide a source of metabolic energy, stored in its phosphoanhydride bonds. We show that exposure of human umbilical vein endothelial cells (HUVEC cells) to "high glucose" levels results in reduced cell viability, increased apoptotic cell death, and a decline in intracellular ATP level. As a consequence, the ability of HUVEC cells to form tube-like structures in the in vitro cell tube formation assay was almost completely abolished under "high glucose" conditions. Those cells were grown onto a physiological collagen scaffold (collagen/basement membrane extract). We demonstrate that these adverse effects of increased glucose levels can be reversed by administration of polyP to almost normal values. Using Na-polyP, complexed in a stoichiometric (molar) ratio to Ca2+ ions and in the physiological concentration range between 30 and 300 µM, an almost complete restoration of the reduced ATP pool of cells exposed to "high glucose" was found, as well as a normalization of the number of apoptotic cells and energy-dependent tube formation. It is concluded that the adverse effects on endothelial cells caused by the metabolic energy imbalance at elevated glucose concentrations can be counterbalanced by polyP, potentially opening new strategies for treatment of the micro-vascular complications in diabetic patients.
Collapse
Affiliation(s)
- Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| | - Maximilian Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University, Johann Joachim Becher Weg 13, D-55099 Mainz, Germany.
| | - Meik Neufurth
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| | - Shunfeng Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| | - Qiang Li
- Institute of Karst Geology, Chinese Academy of Geological Sciences, No. 50, Qixing Road, Guilin 541004, China.
| | - Qingling Feng
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| | - Heinz C Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| | - Werner E G Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| |
Collapse
|
205
|
Woods AN, Wilson AL, Srivinisan N, Zeng J, Dutta AB, Peske JD, Tewalt EF, Gregg RK, Ferguson AR, Engelhard VH. Differential Expression of Homing Receptor Ligands on Tumor-Associated Vasculature that Control CD8 Effector T-cell Entry. Cancer Immunol Res 2017; 5:1062-1073. [PMID: 29097419 DOI: 10.1158/2326-6066.cir-17-0190] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 09/13/2017] [Accepted: 10/24/2017] [Indexed: 12/30/2022]
Abstract
Although CD8+ T cells are critical for controlling tumors, how they are recruited and home to primary and metastatic lesions is incompletely understood. We characterized the homing receptor (HR) ligands on tumor vasculature to determine what drives their expression and their role in T-cell entry. The anatomic location of B16-OVA tumors affected the expression of E-selectin, MadCAM-1, and VCAM-1, whereas the HR ligands CXCL9 and ICAM-1 were expressed on the vasculature regardless of location. VCAM-1 and CXCL9 expression was induced by IFNγ-secreting adaptive immune cells. VCAM-1 and CXCL9/10 enabled CD8+ T-cell effectors expressing α4β1 integrin and CXCR3 to enter both subcutaneous and peritoneal tumors, whereas E-selectin enabled E-selectin ligand+ effectors to enter subcutaneous tumors. However, MadCAM-1 did not mediate α4β7+ effector entry into peritoneal tumors due to an unexpected lack of luminal expression. These data establish the relative importance of certain HRs expressed on activated effectors and certain HR ligands expressed on tumor vasculature in the effective immune control of tumors. Cancer Immunol Res; 5(12); 1062-73. ©2017 AACR.
Collapse
Affiliation(s)
- Amber N Woods
- Carter Immunology Center and Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Ashley L Wilson
- Carter Immunology Center and Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Nithya Srivinisan
- Carter Immunology Center and Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Jianhao Zeng
- Carter Immunology Center and Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Arun B Dutta
- Carter Immunology Center and Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - J David Peske
- Carter Immunology Center and Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Eric F Tewalt
- Carter Immunology Center and Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Randal K Gregg
- Carter Immunology Center and Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Andrew R Ferguson
- Carter Immunology Center and Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Victor H Engelhard
- Carter Immunology Center and Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia.
| |
Collapse
|
206
|
Zarrin B, Zarifi F, Vaseghi G, Javanmard SH. Acquired tumor resistance to antiangiogenic therapy: Mechanisms at a glance. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2017; 22:117. [PMID: 29184575 PMCID: PMC5680657 DOI: 10.4103/jrms.jrms_182_17] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 07/03/2017] [Accepted: 08/07/2017] [Indexed: 12/18/2022]
Abstract
Angiogenesis is critical for oxygen and nutrient delivery to proliferating tumor cells. Therefore, as angiogenesis is required and vital for the tumor growth and metastasis. Antiangiogenic therapy is considered to be beneficial for tumor growth prevention due to starvation of tumor of oxygen and nutrients, but in some cases, the benefits are not permanent. Tyrosine kinase inhibitors and many other agents often target angiogenesis through inhibition of the vascular endothelial growth factor (VEGF) pathway. Although preclinical studies showed satisfactory outcomes in tumor growth inhibition, antiangiogenic therapy in the clinical setting may not be effective. The resistance observed in several tumor types through alternative angiogenic “escape” pathways contributes to restoration of tumor growth and may induce progression, enhancement of invasion, and metastasis. Therefore, activation of major compensatory angiogenic pathways, sustaining tumor angiogenesis during VEGF blockade contributing to the recurrence of tumor growth overcome antiangiogenic strategies. In this review, we summarize the novel mechanisms involved in evasive resistance to antiangiogenic therapies and represent different cancer types which have the ability to adapt to VEGF inhibition achieving resistance to antiangiogenic therapy through these adaptive mechanisms.
Collapse
Affiliation(s)
- Bahare Zarrin
- Department of Physiology, Applied Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzane Zarifi
- Department of Pharmacology, Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Golnaz Vaseghi
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
207
|
Miranda A, Blanco-Prieto MJ, Sousa J, Pais A, Vitorino C. Breaching barriers in glioblastoma. Part II: Targeted drug delivery and lipid nanoparticles. Int J Pharm 2017; 531:389-410. [DOI: 10.1016/j.ijpharm.2017.07.049] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/13/2017] [Accepted: 07/15/2017] [Indexed: 02/07/2023]
|
208
|
Drak Alsibai K, Meseure D. Tumor microenvironment and noncoding RNAs as co-drivers of epithelial-mesenchymal transition and cancer metastasis. Dev Dyn 2017; 247:405-431. [PMID: 28691356 DOI: 10.1002/dvdy.24548] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/31/2017] [Accepted: 06/29/2017] [Indexed: 12/13/2022] Open
Abstract
Reciprocal interactions between cancer cells and tumor microenvironment (TME) are crucial events in tumor progression and metastasis. Pervasive stromal reprogramming of TME modifies numerous cellular functions, including extracellular matrix (ECM) stiffness, inflammation, and immunity. These environmental factors allow selection of more aggressive cells that develop adaptive strategies associating plasticity and epithelial-mesenchymal transition (EMT), stem-like phenotype, invasion, immunosuppression, and resistance to therapies. EMT is a morphomolecular process that endows epithelial tumor cells with mesenchymal properties, including reduced adhesion and increased motility. Numerous studies have demonstrated involvement of noncoding RNAs (ncRNAs), such as miRNAs and lncRNAs, in tumor initiation, progression, and metastasis. NcRNAs regulate every hallmark of cancer and have now emerged as new players in induction and regulation of EMT. The reciprocal regulatory interactions between ncRNAs, TME components, and cancer cells increase the complexity of gene expression and protein translation in cancer. Thus, deeper understanding of molecular mechanisms controlling EMT will not only shed light on metastatic processes of cancer cells, but enhance development of new therapies targeting metastasis. In this review, we will provide recent findings on the role of known ncRNAs relevant to EMT and cancer metastasis and discuss the role of the interaction between ncRNAs and TME as co-drivers of EMT. Developmental Dynamics 247:405-431, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Didier Meseure
- Platform of Investigative Pathology, Curie Institute, Paris, France.,Department of Pathology, Curie Institute, Paris, France
| |
Collapse
|
209
|
Aharon A, Sabbah A, Ben-Shaul S, Berkovich H, Loven D, Brenner B, Bar-Sela G. Chemotherapy administration to breast cancer patients affects extracellular vesicles thrombogenicity and function. Oncotarget 2017; 8:63265-63280. [PMID: 28968987 PMCID: PMC5609919 DOI: 10.18632/oncotarget.18792] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 05/23/2017] [Indexed: 12/15/2022] Open
Abstract
Breast cancer (BC) is the most prevalent type of malignancy in women. Extracellular vesicles (EVs) are subcellular membrane blebs that include exosomes and microparticles.
Collapse
Affiliation(s)
- Anat Aharon
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel.,Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Anni Sabbah
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel
| | - Shahar Ben-Shaul
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel
| | - Hila Berkovich
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel
| | - David Loven
- Department of Oncology, Ha'emek Medical Center, Afula, Israel
| | - Benjamin Brenner
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel.,Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Gil Bar-Sela
- Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Department of Oncology, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
210
|
Tumor angiogenesis and vascular normalization: alternative therapeutic targets. Angiogenesis 2017; 20:409-426. [PMID: 28660302 DOI: 10.1007/s10456-017-9562-9] [Citation(s) in RCA: 934] [Impact Index Per Article: 133.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/21/2017] [Indexed: 12/27/2022]
Abstract
Tumor blood vessels are a key target for cancer therapeutic management. Tumor cells secrete high levels of pro-angiogenic factors which contribute to the creation of an abnormal vascular network characterized by disorganized, immature and permeable blood vessels, resulting in poorly perfused tumors. The hypoxic microenvironment created by impaired tumor perfusion can promote the selection of more invasive and aggressive tumor cells and can also impede the tumor-killing action of immune cells. Furthermore, abnormal tumor perfusion also reduces the diffusion of chemotherapeutic drugs and radiotherapy efficiency. To fight against this defective phenotype, the normalization of the tumor vasculature has emerged as a new therapeutic strategy. Vascular normalization, by restoring proper tumor perfusion and oxygenation, could limit tumor cell invasiveness and improve the effectiveness of anticancer treatments. In this review, we investigate the mechanisms involved in tumor angiogenesis and describe strategies used to achieve vascular normalization.
Collapse
|
211
|
Hosono J, Morikawa S, Ezaki T, Kawamata T, Okada Y. Pericytes promote abnormal tumor angiogenesis in a rat RG2 glioma model. Brain Tumor Pathol 2017. [PMID: 28646266 DOI: 10.1007/s10014-017-0291-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In glioma angiogenesis, tumor vessels cause morphological and functional abnormalities associated with malignancy and tumor progression. We hypothesized that certain structural changes or scantiness of functional pericytes may be involved in the formation of dysfunctional blood vessels in gliomas. In this study, we performed morphological examinations to elucidate the possible involvement of pericytes in brain tumor vessel abnormalities using a rat RG2 glioma model. After implantation of RG2 glioma cells in the syngeneic rat brain, gliomas were formed as early as day 7. In immunohistochemical examinations, desmin-positive pericytes, characterized by morphological abnormalities, were abundantly found on leaky vessels, as assessed by extravasation of lectin and high-molecular-weight dextrans. Interestingly, desmin-positive pericytes seemed to be characteristic of gliomas in rats. These pericytes were also found to express heat-shock protein 47, which plays an important role in the formation of the basement membrane, suggesting that RG2 pericytes promoted angiogenesis by producing basement membrane as a scaffold for newly forming blood vessels and caused functional abnormalities. We concluded that RG2 pericytes may be responsible for abnormal tumor angiogenesis lacking the functional ability to maintain the blood-brain barrier.
Collapse
Affiliation(s)
- Junji Hosono
- Department of Neurosurgery, Tokyo Women's Medical University, 8-1, Kawada-cho Shinjuku-ku, Tokyo, 162-8666, Japan.,Department of Anatomy and Developmental Biology, Tokyo Women's Medical University, 8-1, Kawada-cho Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Shunichi Morikawa
- Department of Anatomy and Developmental Biology, Tokyo Women's Medical University, 8-1, Kawada-cho Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Taichi Ezaki
- Department of Anatomy and Developmental Biology, Tokyo Women's Medical University, 8-1, Kawada-cho Shinjuku-ku, Tokyo, 162-8666, Japan.
| | - Takakazu Kawamata
- Department of Neurosurgery, Tokyo Women's Medical University, 8-1, Kawada-cho Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Yoshikazu Okada
- Department of Neurosurgery, Tokyo Women's Medical University, 8-1, Kawada-cho Shinjuku-ku, Tokyo, 162-8666, Japan
| |
Collapse
|
212
|
Ronca R, Benkheil M, Mitola S, Struyf S, Liekens S. Tumor angiogenesis revisited: Regulators and clinical implications. Med Res Rev 2017. [PMID: 28643862 DOI: 10.1002/med.21452] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since Judah Folkman hypothesized in 1971 that angiogenesis is required for solid tumor growth, numerous studies have been conducted to unravel the angiogenesis process, analyze its role in primary tumor growth, metastasis and angiogenic diseases, and to develop inhibitors of proangiogenic factors. These studies have led in 2004 to the approval of the first antiangiogenic agent (bevacizumab, a humanized antibody targeting vascular endothelial growth factor) for the treatment of patients with metastatic colorectal cancer. This approval launched great expectations for the use of antiangiogenic therapy for malignant diseases. However, these expectations have not been met and, as knowledge of blood vessel formation accumulates, many of the original paradigms no longer hold. Therefore, the regulators and clinical implications of angiogenesis need to be revisited. In this review, we discuss recently identified angiogenesis mediators and pathways, new concepts that have emerged over the past 10 years, tumor resistance and toxicity associated with the use of currently available antiangiogenic treatment and potentially new targets and/or approaches for malignant and nonmalignant neovascular diseases.
Collapse
Affiliation(s)
- Roberto Ronca
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Mohammed Benkheil
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Leuven, Belgium
| | - Stefania Mitola
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, Leuven, Belgium
| | - Sandra Liekens
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Leuven, Belgium
| |
Collapse
|
213
|
Abstract
Astrocytomas (gliomas) are the most common primary brain tumors among adults and second most frequent neoplasm among children. New ideas and novel approaches are being explored world over with aim to devise better management strategeies for this deadly pathological state. We searched the electronic database PubMed for pre-clinical as well as clinical controlled trials reporting importance of various therapeutic drugs against gliomas. It was observed clearly that this approach of using therapeutic drugs is clearly evolving and has been observed to be promising future therapeutic avenue against gliomas. The searched literature on whole revealed that although gliomas are treated aggressively with surgery, chemotherapy and radiation, treatment resistance, drug toxicity and poor response rates among pediatric glioma patients, continue to drive the need to discover new and more effective chemotherapeutic agents. The present review is focused on the latest updates in therapeutic drugs against gliomas in pediatric patients. The important chemo-therapeutics discussed in this review included alkylating agents like temoxolomide, derivatives of platinum, nitrosoureas, topoisomerases, angiogenesis inhibitors and cytomegalovirus as therapeutic agents.
Collapse
|
214
|
Ha XQ, Song YJ, Zhao HB, Ta WW, Gao HW, Feng QS, Dong JZ, Deng ZY, Fan HY, Peng JH, Yang ZH, Zhao Y. Endothelial progenitor cells in peripheral blood may serve as a biological marker to predict severe acute pancreatitis. World J Gastroenterol 2017; 23:2592-2600. [PMID: 28465644 PMCID: PMC5394523 DOI: 10.3748/wjg.v23.i14.2592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/03/2017] [Accepted: 01/18/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the significance of endothelial progenitor cells (EPCs) in predicting severe acute pancreatitis (SAP).
METHODS We recruited 71 patients with acute pancreatitis (AP) and excluded 11 of them; finally, cases of mild acute pancreatitis (MAP) (n = 30) and SAP (n = 30), and healthy volunteers (n = 20) were internalized to investigate levels of EPCs, C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-α), fibrinogen (FIB) and white blood cells (WBC) in peripheral blood.
RESULTS The levels of TNF-α, WBC, FIB and CRP were higher both in SAP and MAP cases than in healthy volunteers (P < 0.05, all). Interestingly, the level of EPCs was higher in SAP than MAP (1.63% ± 1.47% vs 6.61% ± 4.28%, P < 0.01), but there was no significant difference between the MAP cases and healthy volunteers (1.63% ± 1.47% vs 0.55% ± 0.54%, P > 0.05). Receiver operating characteristics curve (ROC) showed that EPCs, TNF-α, CRP and FIB were significantly associated with SAP, especially EPCs and CRP were optimal predictive markers of SAP. When the cut-off point for EPCs and CRP were 2.26% and 5.94 mg/dL, the sensitivities were 90.0% and 73.3%, and the specificities were 83.3% and 96.7%. Although, CRP had the highest specificity, and EPCs had the highest sensitivity and highest area under the curve value (0.93).
CONCLUSION Data suggest that EPCs may be a new biological marker in predicting SAP.
Collapse
|
215
|
Karsy M, Burnett B, Di Ieva A, Cusimano MD, Jensen RL. Microvascularization of Grade I meningiomas: effect on tumor volume, blood loss, and patient outcome. J Neurosurg 2017; 128:657-666. [PMID: 28362240 DOI: 10.3171/2016.10.jns161825] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Quantitative assessment of tumor microvascularity has the potential to improve prognostication, advance understanding of tumor biology, and help narrow potential molecular therapies. While the role of tumor microvascularity has been widely studied in meningiomas, this study examines both the role of automated measurements and the impact on surgical outcome. METHODS Two hundred seven patients with Grade I meningiomas underwent surgery between 1996 and 2011. Tissue samples from each patient were retrospectively evaluated for histopathological measures of microvascularity, including staining for von Willebrand factor (vWF), CD31, CD105, hypoxia-inducible factor 1 (HIF-1), vascular endothelial growth factor, glucose transporter 1, and carbonic anhydrase IX. Manual methods of assessing microvascularity were supplemented by a computational analysis of the microvascular patterns by means of fractal analysis. MIB-1 proliferation staining was also performed on the same tumors. These measures were compared with various patient characteristics, tumor volume, estimated blood loss (EBL) during surgery, progression-free survival (PFS), and overall survival (OS). RESULTS The mean patient age was 55.4 ± 14.8 years, and 63 (30.4%) patients were male. Patients harboring tumors ≥ 3 cm were significantly older (56.9 ± 15.2 years vs 53.1 ± 13.6 years; p = 0.07), more frequently male (40.8% vs 14.6%; p = 0.0001), and had greater EBL (446.5 ± 532.2 ml vs 185.4 ± 197.2 ml; p = 0.0001), greater tumor volume (33.9 ± 38.1 ml vs 29.4 ± 23.5 ml; p = 0.0001), higher MIB-1 index values (3.0% ± 5.4% vs 1.7% ± 1.7%; p = 0.03), higher vWF levels (85.6% ± 76.9% vs 54.1% ± 52.4%; p = 0.001), lower HIF-1 expression (1.4 ± 1.3 vs 2.2 ± 1.4; p = 0.004), and worse OS (199.9 ± 7.6 months vs 180.8 ± 8.1 months; p = 0.05) than patients with tumors < 3 cm. In the multivariate logistic regression, MIB-1 (OR 1.14; p = 0.05), vWF (OR 1.01; p = 0.01), and HIF-1 (OR 1.54; p = 0.0001) significantly predicted tumor size. Although multiple factors were predictive of EBL in the univariate linear regression, only vWF remained significant in the multivariate analysis (β = 0.39; p = 0.004). Lastly, MIB-1 was useful via Kaplan-Meier survival analysis for predicting patients with disease progression, whereby an MIB-1 cutoff value of ≥ 3% conferred a 36% sensitivity and 82.5% specificity in predicting disease progression; an MIB-1 value ≥ 3% showed significantly shorter mean PFS (140.1 ± 11.7 months vs 179.5 ± 7.0 months; log-rank test, p = 0.05). The Cox proportional hazards model showed a trend for MIB-1 in predicting disease progression in a hazards model (OR 1.08; 95% CI 0.99-1.19; p = 0.08). CONCLUSIONS These results support the importance of various microvascularity measures in predicting preoperative (e.g., tumor size), intraoperative (e.g., EBL), and postoperative (e.g., PFS and OS) outcomes in patients with Grade I meningiomas. An MIB-1 cutoff value of 3% showed good specificity for predicting tumor progression. The predictive ability of various measures to detect aberrant tumor microvasculature differed, possibly reflecting the heterogeneous underlying biology of meningiomas. It may be necessary to combine assays to understand angiogenesis in meningiomas.
Collapse
Affiliation(s)
| | - Brian Burnett
- 1Department of Neurosurgery and.,2Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Antonio Di Ieva
- 3Neurosurgery Unit, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales,Australia; and
| | - Michael D Cusimano
- 4Division of Neurosurgery, St. Michael's Hospital, University of Toronto, Ontario,Canada
| | - Randy L Jensen
- 1Department of Neurosurgery and.,2Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| |
Collapse
|
216
|
Li M, Kino-Oka M. Degradation of endothelial network in disordered tumor-containing cell sheet. J Biosci Bioeng 2017; 123:748-753. [PMID: 28291660 DOI: 10.1016/j.jbiosc.2017.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/26/2017] [Indexed: 11/24/2022]
Abstract
Tumor angiogenesis is an important event in tumor malignancy; and the vasculature formed in tumor region is typically dysfunctional. Multiple factors are associated with tumor vessel abnormalities, but the precise mechanism has not been fully understood. In the present study, a tumor-containing cell sheet was prepared by mixing a small population of human embryonal rhabdomyosarcoma (RMS) cells (RDs) with human skeletal muscle myoblasts (HSMMs) to mimic muscle tissue invaded by RMS cells. Sheet fluidity and the extracellular matrix (ECM) meshwork of the tumor-containing cell sheet were found to be elevated and disordered, demonstrating the disruptive effect of tumor cells on sheet structure. When green fluorescent protein expressing human umbilical vein endothelial cells (GFP-HUVECs) were co-cultured with the tumor-containing cell sheet, an endothelial network was formed, but degraded faster as a result of activated migration of endothelial cells in the tumor-containing cell sheet. This study suggested that disorganized tissue structure facilitate tumor angiogenesis by activation of endothelial cell migration.
Collapse
Affiliation(s)
- Menglu Li
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masahiro Kino-Oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
217
|
Horvathova L, Mravec B. Effect of the autonomic nervous system on cancer progression depends on the type of tumor: solid are more affected then ascitic tumors. Endocr Regul 2017; 50:215-224. [PMID: 27941177 DOI: 10.1515/enr-2016-0023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES A number of recently published studies have shown that the sympathetic nervous system may influence cancer progression. There are, however, some ambiguities about the role of the parasympathetic nerves in the modulation of growth of different tumor types. Moreover, tumor models used for investigation of the autonomic neurotransmission role in the processes related to the cancer growth and progression are mainly of the solid nature. The knowledge about the nervous system involvement in the modulation of the development and progression of malignant ascites is only fragmental. Therefore, the aim of the present article was to summarize the results of our experimental studies focused on the elucidation of the role of the autonomic nervous system in the modulation of tumor growth in animals. We are summarizing data from studies, in which not only different experimental approaches in order to influence the autonomic neurotransmission, but also different tumor models have been used. METHODS Three different types of tumor models, namely solid rat intra-abdominal fibrosarcoma, solid murine subcutaneous melanoma, and rat ascites hepatoma, and three types of interventions have been used in order to modulate the autonomic neurotransmission, specifically chemical sympathectomy, subdiaphragmatic vagotomy, or the electric stimulation of the vagus nerve. RESULTS We have proved a strong stimulatory effect of the sympathetic nerves on the development and growth in both solid tumors, rat fibrosarcoma as well as murine melanoma, and significant inhibitory impact on the survival time of tumor-bearing animals. The progression of ascites hepatoma in rats was not influenced by chemical sympathectomy. Modulation of parasympathetic signalization by vagotomy or vagal nerve stimulation does not affect fibrosarcoma and ascites hepatoma growth and survival of the tumor-bearing rats. CONCLUSIONS Based on the obtained data, it seems that the solid types of tumors are suitable substrate for the direct action of neurotransmitters released especially from the sympathetic nerves. In contrast, it appears that the malignant ascites are not under the direct autonomic nerves control; however, an indirect action via the immune functions modulation cannot be excluded.
Collapse
|
218
|
Xiong Y, Russell DL, McDonald LT, Cowart LA, LaRue AC. Hematopoietic Stem Cell-derived Adipocytes Promote Tumor Growth and Cancer Cell Migration. ACTA ACUST UNITED AC 2017; 3. [PMID: 28989976 PMCID: PMC5627654 DOI: 10.16966/2381-3318.130] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Adipocytes, apart from their critical role as the energy storage depots, contribute to the composition of the tumor microenvironment. Our previous studies based on a single hematopoietic stem cell (HSC) transplantation model, have revealed a novel source of adipocytes from HSCs via monocyte/macrophage progenitors. Herein, we extend these studies to examine the role of HSC-derived adipocytes (HSC-Ad) in tumor progression. When cultured under adipogenic conditions, bone marrow-derived monocytic progenitors differentiated into adipocytes that accumulated oil droplets containing triglyceride. The adipokine array and ELISAs confirmed secretion of multiple adipokines by HSC-Ad. These adipocytes underwent further development in vivo when injected subcutaneously into C57Bl/6 mice. When co-injected with melanoma B16F1 cells or breast cancer E0771 cells into syngeneic C57Bl/6 mice, HSC-Ad not only accelerated both melanoma and breast tumor growth, but also enhanced vascularization in both tumors. Conditioned media from HSC-Ad supported B16F1 and E0771 cell proliferation and enhanced cell migration in vitro. Among the HSC-Ad secreted adipokines, insulin-like growth factor 1 (IGF-1) played an important role in E0771 cell proliferation. Hepatocyte growth factor (HGF) was indispensable for B16F1 cell migration, whereas HGF and platelet-derived growth factor BB (PDGF-BB) collectively contributed to E0771 cell migration. Expression levels of receptors for IGF-1, HGF, and PDGF-BB correlated with their differential roles in B16F1 and E0771 cell proliferation and migration. Our data suggest that HSC-Ad differentially regulate tumor behavior through distinct mechanisms.
Collapse
Affiliation(s)
- Y Xiong
- Research Services, Ralph H Johnson Veterans Affairs Medical Center, Charleston, South Carolina, USA.,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA.,The Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - D L Russell
- Research Services, Ralph H Johnson Veterans Affairs Medical Center, Charleston, South Carolina, USA.,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - L T McDonald
- Research Services, Ralph H Johnson Veterans Affairs Medical Center, Charleston, South Carolina, USA.,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - L A Cowart
- Research Services, Ralph H Johnson Veterans Affairs Medical Center, Charleston, South Carolina, USA.,Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - A C LaRue
- Research Services, Ralph H Johnson Veterans Affairs Medical Center, Charleston, South Carolina, USA.,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA.,The Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
219
|
Aikins AR, Kim M, Raymundo B, Kim CW. Downregulation of transgelin blocks interleukin-8 utilization and suppresses vasculogenic mimicry in breast cancer cells. Exp Biol Med (Maywood) 2017; 242:573-583. [PMID: 28058861 DOI: 10.1177/1535370216685435] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vasculogenic mimicry (VM) is a non-classical mechanism recently described in many tumors, whereby cancer cells, rather than endothelial cells, form blood vessels. Transgelin is an actin-binding protein that has been implicated in multiple stages of cancer development. In this study, we investigated the role of transgelin in VM and assessed its effect on the expression of endothelial and angiogenesis-related genes during VM in MDA-MB-231 breast cancer cells. We confirmed the ability of MDA-MB-231 cells to undergo VM through a tube formation assay. Flow cytometry analysis revealed an increase in the expression of the endothelial-related markers VE-cadherin and CD34 in cells that underwent VM, compared with those growing in a monolayer, which was confirmed by immunocytochemistry. We employed siRNA to silence transgelin, and knockdown efficiency was determined by western blot analyses. Downregulation of transgelin suppressed cell proliferation and tube formation, but increased IL-8 levels in Matrigel cultures. RT-PCR analyses revealed that the expression of IL-8, VE-cadherin, and CD34 was unaffected by transgelin knockdown, indicating that increased IL-8 expression was not due to enhanced transcriptional activity. More importantly, the inhibition of IL-8/CXCR2 signaling also resulted in suppression of VM with increased IL-8 levels, confirming that increased IL-8 levels after transgelin knockdown was due to inhibition of IL-8 uptake. Our findings indicate that transgelin regulates VM by enhancing IL uptake. These observations are relevant to the future development of efficient antivascular agents. Impact statement Vasculogenic mimicry (VM) is an angiogenic-independent mechanism of blood vessel formation whereby aggressive tumor cells undergo formation of capillary-like structures. Thus, interventions aimed at angiogenesis might not target the entire tumor vasculature. A more holistic approach is therefore needed in the development of improved antivascular agents. Transgelin, an actin-binding protein, has been associated with multiple stages of cancer development such as proliferation, migration and invasion, but little is known about its role in vasculogenic mimicry. We present here, an additional mechanism by which transgelin promotes malignancy by way of its association with the occurrence of VM. Although transgelin knockdown did not affect the transcript levels of most of the angiogenesis-related genes in this study, it was associated with the inhibition of the uptake of IL-8, accompanied by suppressed VM, indicating that transgelin is required for VM. These observations are relevant to the future development of efficient antivascular agents.
Collapse
Affiliation(s)
- Anastasia R Aikins
- 1 Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea.,2 Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - MiJung Kim
- 1 Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea.,3 Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University 136-701, Seoul, Korea
| | - Bernardo Raymundo
- 1 Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | - Chan-Wha Kim
- 1 Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| |
Collapse
|
220
|
Angara K, Rashid MH, Shankar A, Ara R, Iskander A, Borin TF, Jain M, Achyut BR, Arbab AS. Vascular mimicry in glioblastoma following anti-angiogenic and anti-20-HETE therapies. Histol Histopathol 2016; 32:917-928. [PMID: 27990624 DOI: 10.14670/hh-11-856] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glioblastoma (GBM) is one hypervascular and hypoxic tumor known among solid tumors. Antiangiogenic therapeutics (AATs) have been tested as an adjuvant to normalize blood vessels and control abnormal vasculature. Evidence of relapse exemplified in the progressive tumor growth following AAT reflects development of resistance to AATs. Here, we identified that GBM following AAT (Vatalanib) acquired an alternate mechanism to support tumor growth, called vascular mimicry (VM). We observed that Vatalanib induced VM vessels are positive for periodic acid-Schiff (PAS) matrix but devoid of any endothelium on the inner side and lined by tumor cells on the outer-side. The PAS+ matrix is positive for basal laminae (laminin) indicating vascular structures. Vatalanib treated GBM displayed various stages of VM such as initiation (mosaic), sustenance, and full-blown VM. Mature VM structures contain red blood cells (RBC) and bear semblance to the functional blood vessel-like structures, which provide all growth factors to favor tumor growth. Vatalanib treatment significantly increased VM especially in the core of the tumor, where HIF-1α was highly expressed in tumor cells. VM vessels correlate with hypoxia and are characterized by co-localized MHC-1+ tumor and HIF-1α expression. Interestingly, 20-HETE synthesis inhibitor HET0016 significantly decreased GBM tumors through decreasing VM structures both at the core and at periphery of the tumors. In summary, AAT induced resistance characterized by VM is an alternative mechanism adopted by tumors to make functional vessels by transdifferentiation of tumor cells into endothelial-like cells to supply nutrients in the event of hypoxia. AAT induced VM is a potential therapeutic target of the novel formulation of HET0016. Our present study suggests that HET0016 has a potential to target therapeutic resistance and can be combined with other antitumor agents in preclinical and clinical trials.
Collapse
Affiliation(s)
- Kartik Angara
- Laboratory of Tumor Angiogenesis, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| | - Mohammad H Rashid
- Laboratory of Tumor Angiogenesis, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| | - Adarsh Shankar
- Laboratory of Tumor Angiogenesis, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| | - Roxan Ara
- Laboratory of Tumor Angiogenesis, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| | - Asm Iskander
- Laboratory of Tumor Angiogenesis, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| | - Thaiz F Borin
- Laboratory of Tumor Angiogenesis, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| | - Meenu Jain
- Laboratory of Tumor Angiogenesis, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| | - Bhagelu R Achyut
- Laboratory of Tumor Angiogenesis, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| | - Ali S Arbab
- Laboratory of Tumor Angiogenesis, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA.
| |
Collapse
|
221
|
Greene LM, Butini S, Campiani G, Williams DC, Zisterer DM. Pre-clinical evaluation of a novel class of anti-cancer agents, the Pyrrolo-1, 5-benzoxazepines. J Cancer 2016; 7:2367-2377. [PMID: 27994676 PMCID: PMC5166549 DOI: 10.7150/jca.16616] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/28/2016] [Indexed: 02/05/2023] Open
Abstract
Microtubules are currently ranked one of the most validated targets for chemotherapy; with clinical use of microtubule targeting agents (MTAs) extending beyond half a century. Recent research has focused on the development of novel MTAs to combat drug resistance and drug associated toxicities. Of particular interest are compounds structurally different to those currently used within the clinic. The pyrrolo-1, 5-benzoxazepines (PBOXs) are a structurally distinct novel group of anti-cancer agents, some of which target tubulin. Herein, we review the chemistry, mechanism of action, preclinical development of the PBOXs and comparisons with clinically relevant chemotherapeutics. The PBOXs induce a range of cellular responses including; cell cycle arrest, apoptosis, autophagy, anti-vascular and anti-angiogenic effects. The apoptotic potential of the PBOXs extends across a wide spectrum of cancer-derived cell lines, by targeting tubulin and multiple molecular pathways frequently deregulated in human cancers. Extensive experimental data suggest that combining the PBOXs with established chemotherapeutics or radiation is therapeutically advantageous. Pre-clinical highlights of the PBOXs include; cancer specificity and improved therapeutic efficacy as compared to some current first line therapeutics.
Collapse
Affiliation(s)
- L M Greene
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - S Butini
- European Research Centre for Drug Discovery and Development, Department of Biotechnology, Chemistry and Pharmacy, and Istituto Toscano Tumori, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - G Campiani
- European Research Centre for Drug Discovery and Development, Department of Biotechnology, Chemistry and Pharmacy, and Istituto Toscano Tumori, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - D C Williams
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - D M Zisterer
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
222
|
Ling G, Ji Q, Ye W, Ma D, Wang Y. Epithelial-mesenchymal transition regulated by p38/MAPK signaling pathways participates in vasculogenic mimicry formation in SHG44 cells transfected with TGF-β cDNA loaded lentivirus in vitro and in vivo. Int J Oncol 2016; 49:2387-2398. [PMID: 27748800 DOI: 10.3892/ijo.2016.3724] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/04/2016] [Indexed: 12/13/2022] Open
Abstract
TGF-β-induced epithelial-mesenchymal transition (EMT) plays an important role in tumor progression. We assessed whether the TGF-β-induced EMT contributed to vasculogenic mimicry (VM) formation in glioma, we established an SHG44 cell line stably transfected with TGF-β cDNA loaded lentivirus. SB203580 was employed to inhibit the TGF-β-induced EMT. The results showed that the VM forming ability of cells could be improved by TGF-β over-expression. The migration and invasion capabilities of cells were also enhanced due to EMT. SB203580 was able to weaken cell migration, invasion and VM forming abilities via blocking p38/MAPK signaling pathways, but it had tiny influence on MMP/LAMC2 chain. Consequently, we concluded that EMT inhibition via p38/MAPK signaling pathways would partly impair TGF-β-induced VM formation in glioma.
Collapse
Affiliation(s)
- Gengqiang Ling
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Qiao Ji
- Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Heilongjiang, P.R. China
| | - Wei Ye
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Dongying Ma
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Yuena Wang
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| |
Collapse
|
223
|
Balakrishnan S, Bhat FA, Raja Singh P, Mukherjee S, Elumalai P, Das S, Patra CR, Arunakaran J. Gold nanoparticle-conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2-mediated pathway in breast cancer. Cell Prolif 2016; 49:678-697. [PMID: 27641938 DOI: 10.1111/cpr.12296] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/23/2016] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Epidermal growth factor plays a critical role in breast malignancies by enhancing cell proliferation, invasion, angiogenesis and metastasis. Epithelial-mesenchymal transition (EMT) is a crucial process by which epithelial cells lose polarity and acquire migratory mesenchymal properties. Gold nanoparticles are an efficient drug delivery vehicle for carrying chemotherapeutic agents to target cancer cells and quercetin is an anti-oxidative flavonoid known with potent anti-malignant cell activity. MATERIALS AND METHODS Cell viability was assessed by MTT assay, and protein expression was examined by Western blotting and immunocytochemistry. Cell invasion was monitored using invasion chambers, and cell migration was analysed by scratch wound-healing assay. In vitro and ex vivo angiogenesis studies were performed by capillary-like tube formation assay and chick embryo angiogenesis assay (CEA). 7,12-dimethylbenz(a)anthracene (DMBA) induced mammary carcinoma in Sprague-Dawley rats. RESULTS We observed a significant reduction in protein expression of vimentin, N-cadherin, Snail, Slug, Twist, MMP-2, MMP-9, p-EGFR, VEGFR-2, p-PI3K, Akt and p-GSK3β, and enhanced E-cadherin protein expression in response to AuNPs-Qu-5 treatment. AuNPs-Qu-5 inhibited migration and invasion of MCF-7 and MDA-MB-231 cells compared to free quercetin. AuNPs-Qu-5-treated HUVECs had reduced cell viability and capillary-like tube formation. In vitro and in vivo angiogenesis assays showed that AuNPs-Qu-5 suppressed tube and new blood vessel formation. Treatment with AuNPs-Qu-5 impeded tumour growth in DMBA-induced mammary carcinoma in SD rats compared to treatment with free quercetin. CONCLUSION Our results suggest that AuNPs-Qu-5 inhibited EMT, angiogenesis and metastasis of the breast cancer cells tested by targeting the EGFR/VEGFR-2 signalling pathway.
Collapse
Affiliation(s)
- S Balakrishnan
- Department of Endocrinology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600113, India
| | - F A Bhat
- Department of Endocrinology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600113, India
| | - P Raja Singh
- Department of Endocrinology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600113, India
| | - S Mukherjee
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500007, Telangana State, India.,Academy of Scientific and Innovative Research (AcSIR), Training and Development Complex, CSIR Campus, Taramani, Chennai, 600 113, India
| | - P Elumalai
- Department of Endocrinology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600113, India
| | - S Das
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500007, Telangana State, India.,Academy of Scientific and Innovative Research (AcSIR), Training and Development Complex, CSIR Campus, Taramani, Chennai, 600 113, India
| | - C R Patra
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500007, Telangana State, India.,Academy of Scientific and Innovative Research (AcSIR), Training and Development Complex, CSIR Campus, Taramani, Chennai, 600 113, India
| | - J Arunakaran
- Department of Endocrinology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600113, India.
| |
Collapse
|
224
|
Trivedi A, Zhang H, Ekeledo A, Lee S, Werb Z, Plant GW, Noble-Haeusslein LJ. Deficiency in matrix metalloproteinase-2 results in long-term vascular instability and regression in the injured mouse spinal cord. Exp Neurol 2016; 284:50-62. [PMID: 27468657 DOI: 10.1016/j.expneurol.2016.07.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/13/2016] [Accepted: 07/24/2016] [Indexed: 10/21/2022]
Abstract
Angiogenesis plays a critical role in wound healing after spinal cord injury. Therefore, understanding the events that regulate angiogenesis has considerable relevance from a therapeutic standpoint. We evaluated the contribution of matrix metalloproteinase (MMP)-2 to angiogenesis and vascular stability in spinal cord injured MMP-2 knockout and wildtype (WT) littermates. While MMP-2 deficiency resulted in reduced endothelial cell division within the lesioned epicenter, there were no genotypic differences in vascularity (vascular density, vascular area, and endothelial cell number) over the first two weeks post-injury. However, by 21days post-injury MMP-2 deficiency resulted in a sharp decline in vascularity, indicative of vascular regression. Complementary in vitro studies of brain capillary endothelial cells confirmed MMP-2 dependent proliferation and tube formation. As deficiency in MMP-2 led to prolonged MMP-9 expression in the injured spinal cord, we examined both short-term and long-term exposure to MMP-9 in vitro. While MMP-9 supported endothelial tube formation and proliferation, prolonged exposure resulted in loss of tubes, findings consistent with vascular regression. Vascular instability is frequently associated with pericyte dissociation and precedes vascular regression. Quantification of PDGFrβ+ pericyte coverage of mature vessels within the glial scar (the reactive gliosis zone), a known source of MMP-9, revealed reduced coverage in MMP-2 deficient animals. These findings suggest that acting in the absence of MMP-2, MMP-9 transiently supports angiogenesis during the early phase of wound healing while its prolonged expression leads to vascular instability and regression. These findings should be considered while developing therapeutic interventions that block MMPs.
Collapse
Affiliation(s)
- Alpa Trivedi
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA.
| | - Haoqian Zhang
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Adanma Ekeledo
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Sangmi Lee
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Zena Werb
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
| | - Giles W Plant
- Department of Neurosurgery, Stanford University, Stanford, CA 94305-5454, USA
| | - Linda J Noble-Haeusslein
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA; Physical Therapy and Rehabilitation Sciences, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
225
|
Mukherjee S, Patra CR. Therapeutic application of anti-angiogenic nanomaterials in cancers. NANOSCALE 2016; 8:12444-12470. [PMID: 27067119 DOI: 10.1039/c5nr07887c] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Angiogenesis, the formation of new blood vessels from pre-existing vasculature, plays a vital role in physiological and pathological processes (embryonic development, wound healing, tumor growth and metastasis). The overall balance of angiogenesis inside the human body is maintained by pro- and anti-angiogenic signals. The processes by which drugs inhibit angiogenesis as well as tumor growth are called the anti-angiogenesis technique, a most promising cancer treatment strategy. Over the last couple of decades, scientists have been developing angiogenesis inhibitors for the treatment of cancers. However, conventional anti-angiogenic therapy has several limitations including drug resistance that can create problems for a successful therapeutic strategy. Therefore, a new comprehensive treatment strategy using antiangiogenic agents for the treatment of cancer is urgently needed. Recently researchers have been developing and designing several nanoparticles that show anti-angiogenic properties. These nanomedicines could be useful as an alternative strategy for the treatment of various cancers using anti-angiogenic therapy. In this review article, we critically focus on the potential application of anti-angiogenic nanomaterial and nanoparticle based drug/siRNA/peptide delivery systems in cancer therapeutics. We also discuss the basic and clinical perspectives of anti-angiogenesis therapy, highlighting its importance in tumor angiogenesis, current status and future prospects and challenges.
Collapse
Affiliation(s)
- Sudip Mukherjee
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad - 500007, Telangana, India.
| | | |
Collapse
|
226
|
Dréan A, Goldwirt L, Verreault M, Canney M, Schmitt C, Guehennec J, Delattre JY, Carpentier A, Idbaih A. Blood-brain barrier, cytotoxic chemotherapies and glioblastoma. Expert Rev Neurother 2016; 16:1285-1300. [PMID: 27310463 DOI: 10.1080/14737175.2016.1202761] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Glioblastomas (GBM) are the most common and aggressive primary malignant brain tumors in adults. The blood brain barrier (BBB) is a major limitation reducing efficacy of anti-cancer drugs in the treatment of GBM patients. Areas covered: Virtually all GBM recur after the first-line treatment, at least partly, due to invasive tumor cells protected from chemotherapeutic agents by the intact BBB in the brain adjacent to tumor. The passage through the BBB, taken by antitumor drugs, is poorly and heterogeneously documented in the literature. In this review, we have focused our attention on: (i) the BBB, (ii) the passage of chemotherapeutic agents across the BBB and (iii) the strategies investigated to overcome this barrier. Expert commentary: A better preclinical knowledge of the crossing of the BBB by antitumor drugs will allow optimizing their clinical development, alone or combined with BBB bypassing strategies, towards an increased success rate of clinical trials.
Collapse
Affiliation(s)
- Antonin Dréan
- a Inserm U 1127, CNRS UMR 7225 , Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM , Paris , France.,b Carthera SAS , Institut du Cerveau et de la Moelle épinière, ICM , Paris , France
| | - Lauriane Goldwirt
- c AP-HP , Hôpital Universitaire Saint Louis, Service de Pharmacologie , Paris , France
| | - Maïté Verreault
- a Inserm U 1127, CNRS UMR 7225 , Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM , Paris , France
| | - Michael Canney
- b Carthera SAS , Institut du Cerveau et de la Moelle épinière, ICM , Paris , France
| | - Charlotte Schmitt
- a Inserm U 1127, CNRS UMR 7225 , Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM , Paris , France
| | - Jeremy Guehennec
- a Inserm U 1127, CNRS UMR 7225 , Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM , Paris , France
| | - Jean-Yves Delattre
- a Inserm U 1127, CNRS UMR 7225 , Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM , Paris , France.,d AP-HP , Hôpital Universitaire La Pitié Salpêtrière, Service de Neurologie 2-Mazarin , Paris , France
| | - Alexandre Carpentier
- b Carthera SAS , Institut du Cerveau et de la Moelle épinière, ICM , Paris , France.,e AP-HP , Hôpital Universitaire La Pitié Salpêtrière, Service de Neurochirurgie , Paris , France
| | - Ahmed Idbaih
- a Inserm U 1127, CNRS UMR 7225 , Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM , Paris , France.,d AP-HP , Hôpital Universitaire La Pitié Salpêtrière, Service de Neurologie 2-Mazarin , Paris , France
| |
Collapse
|
227
|
Jin G, Yang Y, Liu H, Liu K, Zhao J, Chen X, Zhang X, Zhang Y, Lu J, Dong Z. Genome-wide analysis of the effect of esophageal squamous cell carcinoma on human umbilical vein endothelial cells. Oncol Rep 2016; 36:155-64. [PMID: 27222202 DOI: 10.3892/or.2016.4816] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/05/2016] [Indexed: 11/06/2022] Open
Abstract
A large volume of data indicates that controlling tumor-associated angiogenesis is a promising therapy against cancer. However, angiogenesis is a complex process, little is known about the differential gene expression in the process of normal endothelial cell differentiation toward tumor vascular endothelial cells induced by tumor microenvironment. The aim of this study is to investigate the effect of tumor microenvironment simulated by the supernatant of esophageal squamous cancer cells (KYSE70) on normal endothelial cells (HUVECs) at the whole genome level. The gene expression profile was studied through gene ontology and signal pathway analysis. Compared with the normal HUVECs, a total of 3769 differentially expressed genes in induced HUVECs were detected, including 1609 upregulated genes and 2160 downregulated genes. Moreover, the microarray data analysis showed that 11 significant biological processes and 10 significant signaling pathways changed most, which are associated with angiogenesis and cell differentiation. According to the different expression levels in the microarrays and their functions, four differentially expressed genes involved in tumor angiogenesis and cell differentiation (IL6, VEGFA, S1PR1, TYMP) were selected and analyzed by qRT-PCR. The qRT-PCR results were consistent with the microarray data. Furthermore, we simulated the tumor microenvironment by human esophageal carcinoma tissue homogenate to investigate its effect on HUVECs, the qRT-PCR results indicated that the above genes were highly expressed in HUVECs after induction by esophageal carcinoma tissue homogenate. In conclusion, tumor microenvironment impact on normal endothelial cells differentiated toward tumor vascular endothelial cells, and the selected genes, which are associated with tumor angiogenesis, would be anti-angiogenesis targets against esophageal carcinoma.
Collapse
Affiliation(s)
- Guoguo Jin
- Department of Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yi Yang
- Department of Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Hangfan Liu
- Department of Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Kangdong Liu
- Department of Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Jimin Zhao
- Department of Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Xinhuan Chen
- Department of Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Xiaoyan Zhang
- Department of Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yanyan Zhang
- Department of Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Jing Lu
- Department of Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Ziming Dong
- Department of Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
228
|
Krishna Priya S, Nagare RP, Sneha VS, Sidhanth C, Bindhya S, Manasa P, Ganesan TS. Tumour angiogenesis-Origin of blood vessels. Int J Cancer 2016; 139:729-35. [PMID: 26934471 DOI: 10.1002/ijc.30067] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 02/23/2016] [Indexed: 12/15/2022]
Abstract
The conventional view of tumour vascularization is that tumours acquire their blood supply from neighbouring normal stroma. Additional methods of tumour vascularization such as intussusceptive angiogenesis, vasculogenic mimicry, vessel co-option and vasculogenesis have been demonstrated to occur. However, the origin of the endothelial cells and pericytes in the tumour vasculature is not fully understood. Their origin from malignant cells has been shown indirectly in lymphoma and neuroblastoma by immuno-FISH experiments. It is now evident that tumours arise from a small population of cells called cancer stem cells (CSCs) or tumour initiating cells. Recent data suggest that a proportion of tumour endothelial cells arise from cancer stem cells in glioblastoma. This was demonstrated both in vitro and in vivo. The analysis of chromosomal abnormalities in endothelial cells showed identical genetic changes to those identified in tumour cells. However, another report contradicted these results from the earlier studies in glioblastoma and had shown that CSCs give rise to pericytes and not endothelial cells. The main thrust of this review is the critical analysis of the conflicting data from different studies and the remaining questions in this field of research. The mechanism by which this phenomenon occurs is also discussed in detail. The transdifferentiation of CSCs to endothelial cells/pericytes has many implications in the progression and metastasis of the tumours and hence it would be a novel target for antiangiogenic therapy.
Collapse
Affiliation(s)
- S Krishna Priya
- Department of Medical Oncology, Cancer Institute (WIA), Chennai, Tamil Nadu, India
| | - R P Nagare
- Department of Medical Oncology, Cancer Institute (WIA), Chennai, Tamil Nadu, India
| | - V S Sneha
- Department of Medical Oncology, Cancer Institute (WIA), Chennai, Tamil Nadu, India
| | - C Sidhanth
- Department of Medical Oncology, Cancer Institute (WIA), Chennai, Tamil Nadu, India
| | - S Bindhya
- Department of Medical Oncology, Cancer Institute (WIA), Chennai, Tamil Nadu, India
| | - P Manasa
- Department of Medical Oncology, Cancer Institute (WIA), Chennai, Tamil Nadu, India
| | - T S Ganesan
- Department of Medical Oncology, Cancer Institute (WIA), Chennai, Tamil Nadu, India
| |
Collapse
|
229
|
Zhang H, Lu C, Fang M, Yan W, Chen M, Ji Y, He S, Liu T, Chen T, Xiao J. HIF-1α activates hypoxia-induced PFKFB4 expression in human bladder cancer cells. Biochem Biophys Res Commun 2016; 476:146-52. [PMID: 27181362 DOI: 10.1016/j.bbrc.2016.05.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 05/03/2016] [Indexed: 10/21/2022]
Abstract
PFKFB4 is reported to regulate glycolysis by synthesizing fructose-2, 6-bisphosphate (F2,6BP) and has proved to be associated with most malignancies. However, the underlying mechanism for increased PFKFB4 expression in bladder cancer remains unclear. The present study demonstrated that PFKFB4 was overexpressed in bladder cancer tissues. In addition, the expression of PFKFB4 elevated in bladder cancer cells in the hypoxic condition, while in nomoxic condition, the expression of PFKFB4 still very low. Furthermore, we identified the hypoxia-responsive elements (HRE)-D from five putative HREs in the promoter region of PFKFB4 and demonstrated that the HRE-D was transactivated by the HIF-1α in bladder cancer cells. By using the Double-immunofluorescence co-localization assay, we revealed that the HIF-1α expression was associated with PFKFB4 expression in human bladder cancer specimens. Altogether, our study for the first time identified the pivotal role of HIF-1α in the connection between PFKFB4 and hypoxia in bladder cancer, which may prove to be a potential target for the treatment of bladder cancer.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Chengyin Lu
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Meng Fang
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wangjun Yan
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Mo Chen
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yingzheng Ji
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Shaohui He
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Tielong Liu
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China.
| | - Tianrui Chen
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China.
| | - Jianru Xiao
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
230
|
Cigrovski Berković M, Čačev T, Catela Ivković T, Marout J, Ulamec M, Zjačić-Rotkvić V, Kapitanović S. High VEGF serum values are associated with locoregional spread of gastroenteropancreatic neuroendocrine tumors (GEP-NETs). Mol Cell Endocrinol 2016; 425:61-8. [PMID: 26805636 DOI: 10.1016/j.mce.2016.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 01/13/2016] [Accepted: 01/16/2016] [Indexed: 11/18/2022]
Abstract
Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are highly vascularized neoplasms, capable of synthethisizing VEGF-A, a key mediator of angiogenesis. In pancreatic neuroendocrine tumors (pNETs) VEGF expression is higher in benign and low-grade tumors and associated with good prognosis (neuroendocrine paradox) while the VEGF role in gastrointestinal NETs (GI-NETs) is still unclear. In this study, we examined the VEGF-1154A/G polymorphism in 145 GEP-NET patients and 150 controls. Next, we measured VEGF serum levels and VEGF tumor protein expression, comparing it with Ki67 and tumor grade. Patients' VEGF serum levels were compared with VEGF -1145A/G genotypes and metastatic status as well as with chromogranin A (CgA) and 5-hydroxyindolacetic acid (5-HIAA) in case of GI-NET patients. In this study GEP-NET patients had elevated VEGF serum values when compared to healthy controls (p = 0.0013). VEGF-1145G allele correlated with higher VEGF serum levels (p = 0.002). Patients with metastatic tumors had higher VEGF serum values when compared to patients without metastases (p = 0.033), and highest levels were observed in case of lymph node metastases (p = 0.008). VEGF-1145G allele was more frequent in non-functional GI-NET patients than in healthy controls (p = 0.041). CgA was superior to VEGF in tumor detection, while VEGF was superior to 5-HIAA. A correlation was observed between VEGF immunohistochemical staining and Ki-67 (p = 0.028). Tumours with weaker VEGF protein expression were more aggressive than tumours with stronger VEGF expression, confirming a "neuroendocrine paradox" in GI-NETs. Our results suggest the role of VEGF in GI-NETs locoregional spread.
Collapse
Affiliation(s)
- Maja Cigrovski Berković
- Department for Endocrinology, Diabetes and Metabolism, University Clinical Hospital Centre "Sestre milosrdnice", Zagreb, Croatia.
| | - Tamara Čačev
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Tina Catela Ivković
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Jasminka Marout
- Department for Endocrinology, Diabetes and Metabolism, University Clinical Hospital Centre "Sestre milosrdnice", Zagreb, Croatia
| | - Monika Ulamec
- Department for Clinical Pathology, University Clinical Hospital Centre "Sestre milosrdnice", Zagreb, Croatia
| | - Vanja Zjačić-Rotkvić
- Department for Endocrinology, Diabetes and Metabolism, University Clinical Hospital Centre "Sestre milosrdnice", Zagreb, Croatia
| | - Sanja Kapitanović
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| |
Collapse
|
231
|
Liu Q, Qiao L, Liang N, Xie J, Zhang J, Deng G, Luo H, Zhang J. The relationship between vasculogenic mimicry and epithelial-mesenchymal transitions. J Cell Mol Med 2016; 20:1761-9. [PMID: 27027258 PMCID: PMC4988285 DOI: 10.1111/jcmm.12851] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/24/2016] [Indexed: 12/15/2022] Open
Abstract
Vasculogenic mimicry (VM) is a vascular‐like structure which can mimic the embryonic vascular network pattern to nourish the tumour tissue. As a unique perfusion way, VM is correlated with tumour progression, invasion, metastasis and lower 5‐year survival rate. Notably, epithelial‐mesenchymal transition (EMT) regulators and EMT‐related transcription factors are highly up‐regulated in VM‐forming tumour cells, which demonstrated that EMT may play a crucial role in VM formation. Therefore, the up‐regulation of EMT‐associated adhesion molecules and other factors can also make a contribution in VM‐forming process. Depending on these discoveries, VM and EMT can be utilized as therapeutic target strategies for anticancer therapy. The purpose of this article is to explore the advance research in the relationship of EMT and VM and their corresponding mechanisms in tumorigenesis effect.
Collapse
Affiliation(s)
- Qiqi Liu
- Department of Oncology, Shandong University School of Medicine, Jinan, Shandong Pro, China
| | - Lili Qiao
- Department of Radiation Oncology, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong Pro, China
| | - Ning Liang
- Department of Radiation Oncology, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong Pro, China
| | - Jian Xie
- Department of Radiation Oncology, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong Pro, China
| | - Jingxin Zhang
- Department of Radiation Oncology, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong Pro, China
| | - Guodong Deng
- Department of Radiation Oncology, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong Pro, China
| | - Hui Luo
- Department of Oncology, Weifang Medical College, Weifang, Shandong Pro, China
| | - Jiandong Zhang
- Department of Radiation Oncology, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong Pro, China
| |
Collapse
|
232
|
Giverso C, Ciarletta P. Tumour angiogenesis as a chemo-mechanical surface instability. Sci Rep 2016; 6:22610. [PMID: 26948692 PMCID: PMC4780075 DOI: 10.1038/srep22610] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/17/2016] [Indexed: 11/17/2022] Open
Abstract
The hypoxic conditions within avascular solid tumours may trigger the secretion of chemical factors, which diffuse to the nearby vasculature and promote the formation of new vessels eventually joining the tumour. Mathematical models of this process, known as tumour angiogenesis, have mainly investigated the formation of the new capillary networks using reaction-diffusion equations. Since angiogenesis involves the growth dynamics of the endothelial cells sprouting, we propose in this work an alternative mechanistic approach, developing a surface growth model for studying capillary formation and network dynamics. The model takes into account the proliferation of endothelial cells on the pre-existing capillary surface, coupled with the bulk diffusion of the vascular endothelial growth factor (VEGF). The thermo-dynamical consistency is imposed by means of interfacial and bulk balance laws. Finite element simulations show that both the morphology and the dynamics of the sprouting vessels are controlled by the bulk diffusion of VEGF and the chemo-mechanical and geometric properties at the capillary interface. Similarly to dendritic growth processes, we suggest that the emergence of tree-like vessel structures during tumour angiogenesis may result from the free boundary instability driven by competition between chemical and mechanical phenomena occurring at different length-scales.
Collapse
Affiliation(s)
- Chiara Giverso
- Dipartimento di Matematica - MOX, Politecnico di Milano and
Fondazione CEN, Piazza Leonardo da Vinci, 32-20133
Milano, Italy
| | - Pasquale Ciarletta
- Dipartimento di Matematica - MOX, Politecnico di Milano and
Fondazione CEN, Piazza Leonardo da Vinci, 32-20133
Milano, Italy
- CNRS and Sorbonne Universités, UPMC
Univ Paris 06, UMR 7190, Institut Jean le Rond d’Alembert, 4 place
Jussieu case 162, 75005
Paris, France
| |
Collapse
|
233
|
Hu Q, Wang XY, Kang LK, Wei HM, Xu CM, Wang T, Wen ZH. RGD-Targeted Ultrasound Contrast Agent for Longitudinal Assessment of Hep-2 Tumor Angiogenesis In Vivo. PLoS One 2016; 11:e0149075. [PMID: 26862757 PMCID: PMC4749330 DOI: 10.1371/journal.pone.0149075] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/26/2016] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE To prepare arginine-glycine-aspartate (RGD)-targeted ultrasound contrast microbubbles (MBs) and explore the feasibility of their use in assessing dynamic changes in αvβ3 integrin expression in a murine model of tumor angiogenesis. METHODS RGD peptides were conjugated to the surfaces of microbubbles via biotin-avidin linkage. Microbubbles bearing RADfK peptides were prepared as controls. The RGD-MBs were characterized using an Accusizer 780 and optical microscopy. The binding specificity of the RGD-MBs for ανβ3-expressing endothelial cells (bEnd.3) was demonstrated in vitro by a competitive inhibition experiment. In an in vivo study, mice bearing tumors of three different stages were intravenously injected with RGD-MBs and subjected to targeted, contrast-enhanced, high-frequency ultrasound. Subsequently, tumors were harvested and sectioned for immunofluorescence analysis of ανβ3 expression. RESULTS The mean size of the RGD-MBs was 2.36 ± 1.7 μm. The RGD-MBs showed significantly higher adhesion levels to bEnd.3 cells compared to control MBs (P < 0.01). There was rarely binding of RGD-MBs to αvβ3-negative MCF-7 cells. Adhesion of the RGD-MBs to the bEnd.3 cells was significantly inhibited following treatment with anti-alpha(v) antibodies. The quantitative acoustic video intensity for high-frequency, contrast-enhanced ultrasound imaging of subcutaneous human laryngeal carcinoma (Hep-2) tumor xenografts was significantly higher in small tumors (19.89 ± 2.49) than in medium tumors (11.25 ± 2.23) and large tumors (3.38 ± 0.67) (P < 0.01). CONCLUSIONS RGD-MBs enable noninvasive in vivo visualization of changes in tumor angiogenesis during tumor growth in subcutaneous cancer xenografts.
Collapse
Affiliation(s)
- Qiao Hu
- Department of Diagnostic Ultrasound, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- * E-mail:
| | - Xiao-Yan Wang
- Department of Diagnostic Ultrasound, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Li-Ke Kang
- Department of Diagnostic Ultrasound, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Hai-Ming Wei
- Department of Pathology, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Chun-Mei Xu
- Department of Diagnostic Ultrasound, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Tao Wang
- Department of Otolaryngology-Head & Neck Surgery, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Zong-Hua Wen
- Department of Pathology, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
234
|
Eccles SA, Court W, Patterson L. In Vitro Assays for Endothelial Cell Functions Required for Angiogenesis: Proliferation, Motility, Tubular Differentiation, and Matrix Proteolysis. Methods Mol Biol 2016; 1430:121-147. [PMID: 27172950 DOI: 10.1007/978-1-4939-3628-1_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This chapter deconstructs the process of angiogenesis into its component parts in order to provide simple assays to measure discrete endothelial cell functions. The techniques described will be suitable for studying stimulators and/or inhibitors of angiogenesis and determining which aspect of the process is modulated. The assays are designed to be robust and straightforward, using human umbilical vein endothelial cells, but with an option to use other sources such as microvascular endothelial cells from various tissues or lymphatic endothelial cells. It must be appreciated that such reductionist approaches cannot cover the complexity of the angiogenic process as a whole, incorporating as it does a myriad of positive and negative signals, three-dimensional interactions with host tissues and many accessory cells including fibroblasts, macrophages, pericytes and platelets. The extent to which in vitro assays predict physiological or pathological processes in vivo (e.g., wound healing, tumor angiogenesis) or surrogate techniques such as the use of Matrigel™ plugs, sponge implants, corneal assays etc remains to be determined.
Collapse
Affiliation(s)
- Suzanne A Eccles
- Cancer Research UK Cancer Therapeutics Unit, Centre for Cancer Imaging, The Institute of Cancer Research, Cotswold Rd., Sutton, Surrey, SM2 5NG, UK.
| | - William Court
- Cancer Research UK Cancer Therapeutics Unit, Centre for Cancer Imaging, The Institute of Cancer Research, Cotswold Rd., Sutton, Surrey, SM2 5NG, UK
| | - Lisa Patterson
- Cancer Research UK Cancer Therapeutics Unit, Centre for Cancer Imaging, The Institute of Cancer Research, Cotswold Rd., Sutton, Surrey, SM2 5NG, UK
| |
Collapse
|
235
|
Mitamura T, Gourley C, Sood AK. Prediction of anti-angiogenesis escape. Gynecol Oncol 2015; 141:80-5. [PMID: 26748214 DOI: 10.1016/j.ygyno.2015.12.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/17/2015] [Accepted: 12/30/2015] [Indexed: 01/29/2023]
Abstract
Many clinical trials have demonstrated the benefit of anti-angiogenesis therapy in the treatment of gynecologic cancer. However, these benefits have often been in terms of progression-free rather than overall survival and in some cases, the magnitude of benefit demonstrated in the pivotal phase 3 trials has been disappointing when compared with the percentage of patients who responded in earlier phase 2 trials. Two potential explanations for this are the current inability to stratify patients according to chance of benefit and the development of resistance mechanisms within the tumor. In this article, we review the prediction of response and the proposed resistance and escape mechanisms involved in anti-angiogenesis therapy, including the up-regulation of alternative proangiogenic pathways, vascular co-option, and resistance to hypoxia. These insights may offer a personalized strategy for anti-angiogenesis therapy and help us to consider the best selection of other therapies that should be combined with anti-angiogenesis therapy to improve the outcome of patients with gynecologic cancer.
Collapse
Affiliation(s)
- Takashi Mitamura
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler, Unit 1362, Houston, TX 77030, USA.
| | - Charlie Gourley
- University of Edinburgh Cancer Research UK Centre, MRC IGMM, Crewe Road South, Edinburgh, EH4 2XR, UK.
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler, Unit 1362, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
236
|
Zhang ZQ, Han YZ, Nian Q, Chen G, Cui SQ, Wang XY. Tumor Invasiveness, Not Lymphangiogenesis, Is Correlated with Lymph Node Metastasis and Unfavorable Prognosis in Young Breast Cancer Patients (≤35 Years). PLoS One 2015; 10:e0144376. [PMID: 26656588 PMCID: PMC4676633 DOI: 10.1371/journal.pone.0144376] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/17/2015] [Indexed: 11/19/2022] Open
Abstract
The morbidity rate of breast cancer is on the rise, and the age of onset appears to be trending toward a young age. Breast cancer in young women (BCYW) has a number of distinctive features that differ from breast cancer in middle-aged or elderly women (BCMEW). Lymphatic metastasis plays an important role in the spread of BCYW; however, the mechanisms of lymph node metastasis (LNM) in BCYW are not clear. This study aimed to investigate the mechanism of lymphatic metastasis in BCYW and to evaluate the relationships between lymphangiogenesis, the expression of matrix metalloproteinase 9 (MMP-9) and vascular endothelial growth factor C (VEGF-C) expression, clinicopathological characteristics, and prognosis. Using immunohistochemistry, MMP-9, VEGF-C and the level of lymphatic microvessel density (LMVD) were analyzed in 106 cases of breast invasive ductal carcinoma and 20 cases of breast proliferative lesions. Compared with BCMEW, BCYW had higher MMP-9 expression, higher LNM, and more adverse prognoses. In BCYW, high MMP-9 expression was positively correlated with LNM and impaired survival time. However, in BCMEW, MMP-9 expression was not correlated with LNM or survival time. In addition, high VEGF-C expression was positively correlated with a high level of LMVD in both BCYW and BCMEW. Nevertheless, a high level of LMVD was not correlated with LNM or survival time in the two groups. More importantly, univariate and multivariate survival analysis showed that MMP-9 expression and LNM were independent prognostic factors in BCYW. Our present study indicates that lymphangiogenesis induced by VEGF-C is augmented in breast cancer; however, a higher level of lymphangiogenesis has no significant impact on LNM or survival time. We suggest that tumor invasiveness, rather than lymphangiogenesis, plays an important role in LNM among BCYW. Moreover, MMP-9 and LNM were independent prognostic factors for BCYW.
Collapse
Affiliation(s)
- Zhi-Qiang Zhang
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
- Department of Critical Care Medicine, Children’s Hospital of Chongqing Medical University, Chongqing, China
- * E-mail: (ZZ); (XW)
| | - Yu-Zhen Han
- Department of Pathology, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Qing Nian
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
- Department of Critical Care Medicine, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Gang Chen
- Department of Vascular and Endovascular Surgery, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Shu-Qing Cui
- Department of Nursing care and intervention, Community Health Service Center of North Binzhou, Binzhou, China
| | - Xing-Yong Wang
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
- Department of Critical Care Medicine, Children’s Hospital of Chongqing Medical University, Chongqing, China
- * E-mail: (ZZ); (XW)
| |
Collapse
|
237
|
|
238
|
Ye L, Jiang WG. Bone morphogenetic proteins in tumour associated angiogenesis and implication in cancer therapies. Cancer Lett 2015; 380:586-597. [PMID: 26639195 DOI: 10.1016/j.canlet.2015.10.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/17/2015] [Accepted: 10/12/2015] [Indexed: 02/09/2023]
Abstract
Bone morphogenetic protein (BMP) belongs to transforming growth factor-β superfamily. To date, more than 20 BMPs have been identified in humans. BMPs play a critical role in embryonic and postnatal development, and also in maintaining homeostasis in different organs and tissues by regulating cell differentiation, proliferation, survival and motility. They play important roles in the development and progression of certain malignancies, including prostate cancer, breast cancer, lung cancer, etc. Recently, more evidence shows that BMPs are also involved in tumour associated angiogenesis. For example BMP can either directly regulate the functions of vascular endothelial cells or indirectly influence the angiogenesis via regulation of angiogenic factors, such as vascular endothelial growth factor (VEGF). Such crosstalk can also be reflected in the interaction with other angiogenic factors, like hepatocyte growth factor (HGF) and basic fibroblast growth factor (bFGF). All these factors are involved in the orchestration of the angiogenic process during tumour development and progression. Review of the relevant studies will provide a comprehensive prospective on current understanding and shed light on the corresponding therapeutic opportunity.
Collapse
Affiliation(s)
- Lin Ye
- Metastasis & Angiogenesis Research Group, Cardiff University-Peking University Cancer Institute, Institute of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK.
| | - Wen G Jiang
- Metastasis & Angiogenesis Research Group, Cardiff University-Peking University Cancer Institute, Institute of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| |
Collapse
|
239
|
Bartkowiak K, Kwiatkowski M, Buck F, Gorges TM, Nilse L, Assmann V, Andreas A, Müller V, Wikman H, Riethdorf S, Schlüter H, Pantel K. Disseminated Tumor Cells Persist in the Bone Marrow of Breast Cancer Patients through Sustained Activation of the Unfolded Protein Response. Cancer Res 2015; 75:5367-77. [PMID: 26573792 DOI: 10.1158/0008-5472.can-14-3728] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 09/02/2015] [Indexed: 11/16/2022]
Abstract
Disseminated tumor cells (DTC), which share mesenchymal and epithelial properties, are considered to be metastasis-initiating cells in breast cancer. However, the mechanisms supporting DTC survival are poorly understood. DTC extravasation into the bone marrow may be encouraged by low oxygen concentrations that trigger metabolic and molecular alterations contributing to DTC survival. Here, we investigated how the unfolded protein response (UPR), an important cytoprotective program induced by hypoxia, affects the behavior of stressed cancer cells. DTC cell lines established from the bone marrow of patients with breast cancer (BC-M1), lung cancer, (LC-M1), and prostate cancer (PC-E1) were subjected to hypoxic and hypoglycemic conditions. BC-M1 and LC-M1 exhibiting mesenchymal and epithelial properties adapted readily to hypoxia and glucose starvation. Upregulation of UPR proteins, such as the glucose-regulated protein Grp78, induced the formation of filamentous networks, resulting in proliferative advantages and sustained survival under total glucose deprivation. High Grp78 expression correlated with mesenchymal attributes of breast and lung cancer cells and with poor differentiation in clinical samples of primary breast and lung carcinomas. In DTCs isolated from bone marrow specimens from breast cancer patients, Grp78-positive stress granules were observed, consistent with the likelihood these cells were exposed to acute cell stress. Overall, our findings provide the first evidence that the UPR is activated in DTC in the bone marrow from cancer patients, warranting further study of this cell stress pathway as a predictive biomarker for recurrent metastatic disease.
Collapse
Affiliation(s)
- Kai Bartkowiak
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Marcel Kwiatkowski
- Institute of Clinical Chemistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Buck
- Institute of Clinical Chemistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias M Gorges
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lars Nilse
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Volker Assmann
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Antje Andreas
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Volkmar Müller
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Harriet Wikman
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabine Riethdorf
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hartmut Schlüter
- Institute of Clinical Chemistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
240
|
van Beijnum JR, Nowak-Sliwinska P, Huijbers EJM, Thijssen VL, Griffioen AW. The great escape; the hallmarks of resistance to antiangiogenic therapy. Pharmacol Rev 2015; 67:441-61. [PMID: 25769965 DOI: 10.1124/pr.114.010215] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The concept of antiangiogenic therapy in cancer treatment has led to the approval of different agents, most of them targeting the well known vascular endothelial growth factor pathway. Despite promising results in preclinical studies, the efficacy of antiangiogenic therapy in the clinical setting remains limited. Recently, awareness has emerged on resistance to antiangiogenic therapies. It has become apparent that the intricate complex interplay between tumors and stromal cells, including endothelial cells and associated mural cells, allows for escape mechanisms to arise that counteract the effects of these targeted therapeutics. Here, we review and discuss known and novel mechanisms that contribute to resistance against antiangiogenic therapy and provide an outlook to possible improvements in therapeutic approaches.
Collapse
Affiliation(s)
- Judy R van Beijnum
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands (J.R.v.B., E.J.M.H., V.L.T., A.W.G.); and Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology, Lausanne, Switzerland (P.N.-S.)
| | - Patrycja Nowak-Sliwinska
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands (J.R.v.B., E.J.M.H., V.L.T., A.W.G.); and Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology, Lausanne, Switzerland (P.N.-S.)
| | - Elisabeth J M Huijbers
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands (J.R.v.B., E.J.M.H., V.L.T., A.W.G.); and Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology, Lausanne, Switzerland (P.N.-S.)
| | - Victor L Thijssen
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands (J.R.v.B., E.J.M.H., V.L.T., A.W.G.); and Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology, Lausanne, Switzerland (P.N.-S.)
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands (J.R.v.B., E.J.M.H., V.L.T., A.W.G.); and Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology, Lausanne, Switzerland (P.N.-S.)
| |
Collapse
|
241
|
Zhang J, Zhou H, Jiang S, Jin J, Li W, Wang W, Su SB. AA092, an annonaceous acetogenin mimetic, attenuates angiogenesis in a mouse model of inflammation-induced corneal neovascularization. Int Immunopharmacol 2015; 28:997-1002. [DOI: 10.1016/j.intimp.2015.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 07/22/2015] [Accepted: 08/06/2015] [Indexed: 01/10/2023]
|
242
|
Mellinas-Gomez M, Spanswick VJ, Paredes-Moscosso SR, Robson M, Pedley RB, Thurston DE, Baines SJ, Stell A, Hartley JA. Activity of the DNA minor groove cross-linking agent SG2000 (SJG-136) against canine tumours. BMC Vet Res 2015; 11:215. [PMID: 26282406 PMCID: PMC4539724 DOI: 10.1186/s12917-015-0534-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 08/06/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cancer is the leading cause of death in older dogs and its prevalence is increasing. There is clearly a need to develop more effective anti-cancer drugs in dogs. SG2000 (SJG-136) is a sequence selective DNA minor groove cross-linking agent. Based on its in vitro potency, the spectrum of in vivo and clinical activity against human tumours, and its tolerability in human patients, SG2000 has potential as a novel therapeutic against spontaneously occurring canine malignancies. RESULTS In vitro cytotoxicity was assessed using SRB and MTT assays, and in vivo activity was assessed using canine tumour xenografts. DNA interstrand cross-linking (ICL) was determined using a modification of the single cell gel electrophoresis (comet) assay. Effects on cell cycle distribution were assessed by flow cytometry and measurement of γ-H2AX by immunofluorescence and immunohistochemistry. SG2000 had a multi-log differential cytotoxic profile against a panel of 12 canine tumour cell lines representing a range of common tumour types in dogs. In the CMeC-1 melanoma cell line, DNA ICLs increased linearly with dose following a 1 h treatment. Peak ICL was achieved within 1 h and no removal was observed over 48 h. A relationship between DNA ICL formation and cytotoxicity was observed across cell lines. The formation of γ-H2AX foci was slow, becoming evident after 4 h and reaching a peak at 24 h. SG2000 exhibited significant anti-tumour activity against two canine melanoma tumour models in vivo. Anti-tumour activity was observed at 0.15 and 0.3 mg/kg given i.v. either once, or weekly x 3. Dose-dependent DNA ICL was observed in tumours (and to a lower level in peripheral blood mononuclear cells) at 2 h and persisted at 24 h. ICL increased following the second and third doses in a repeated dose schedule. At 24 h, dose dependent γ-H2AX foci were more numerous than at 2 h, and greater in tumours than in peripheral blood mononuclear cells. SG2000-induced H2AX phosphorylation measured by immunohistochemistry showed good correspondence, but less sensitivity, than measurement of foci. CONCLUSIONS SG2000 displayed potent activity in vitro against canine cancer cell lines as a result of the formation and persistence of DNA ICLs. SG2000 also had significant in vivo antitumour activity against canine melanoma xenografts, and the comet and γ-H2AX foci methods were relevant pharmacodynamic assays. The clinical testing of SG2000 against spontaneous canine cancer is warranted.
Collapse
Affiliation(s)
- Maria Mellinas-Gomez
- CR-UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London, WC1E 6BT, UK.
- Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts, AL9 7TA, UK.
| | - Victoria J Spanswick
- CR-UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London, WC1E 6BT, UK.
| | - Solange R Paredes-Moscosso
- CR-UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London, WC1E 6BT, UK.
| | - Matthew Robson
- UCL Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK.
| | - R Barbara Pedley
- UCL Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK.
| | - David E Thurston
- The School of Pharmacy, University College London, Brunswick Square, London, WC1E 6BT, UK.
- Present address: Institute of Pharmaceutical Science, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK.
| | - Stephen J Baines
- Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts, AL9 7TA, UK.
- Present address: Willows Referral Service, Highlands Road, Shirley, Solihull, West Midlands, B90 4NH, UK.
| | - Anneliese Stell
- Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts, AL9 7TA, UK.
| | - John A Hartley
- CR-UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London, WC1E 6BT, UK.
| |
Collapse
|
243
|
Aprile G, Ongaro E, Del Re M, Lutrino SE, Bonotto M, Ferrari L, Rihawi K, Cardellino GG, Pella N, Danesi R, Fasola G. Angiogenic inhibitors in gastric cancers and gastroesophageal junction carcinomas: A critical insight. Crit Rev Oncol Hematol 2015; 95:165-78. [PMID: 25800976 DOI: 10.1016/j.critrevonc.2015.02.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 12/28/2014] [Accepted: 02/24/2015] [Indexed: 12/11/2022] Open
Abstract
Advanced gastric cancer ranks second as the global leading cause of cancer-related death and improvements in systemic chemotherapy have reached a plateau. Advanced molecular sequencing techniques help identifying patients more likely to respond to targeted agents; nevertheless we are still far from major breakthroughs. Although antiangiogenic drugs have produced notable advances, redundant pathways or mechanisms of resistance may limit their efficacy. Novel compounds have been recently developed to specifically target VEGF receptors, PlGF, FGF, MET, and angiopoietin. Ramucirumab, a monoclonal antibody specifically directed against the VEGFR-2, has emerged as a novel therapeutic opportunity. REGARD and RAINBOW were the first phase III studies to report the value of this strategy in gastric cancer patients, and other ongoing trials are testing novel antiangiogenic compounds. The aim of our review is to present the state-of-the-art of novel antiangiogenic compounds in advanced gastric cancer, underlying the biology, their mechanism of action, and their clinical results.
Collapse
Affiliation(s)
- Giuseppe Aprile
- Department of Medical Oncology, University and General Hospital, Udine, Italy.
| | - Elena Ongaro
- Department of Medical Oncology, University and General Hospital, Udine, Italy
| | - Marzia Del Re
- Clinical Pharmacology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | | | - Marta Bonotto
- Department of Medical Oncology, University and General Hospital, Udine, Italy
| | - Laura Ferrari
- Department of Medical Oncology, University and General Hospital, Udine, Italy
| | - Karim Rihawi
- Department of Medical Oncology, University and General Hospital, Udine, Italy
| | | | - Nicoletta Pella
- Department of Medical Oncology, University and General Hospital, Udine, Italy
| | - Romano Danesi
- Clinical Pharmacology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Gianpiero Fasola
- Department of Medical Oncology, University and General Hospital, Udine, Italy
| |
Collapse
|
244
|
Basic fibroblast growth factor induces VEGF expression in chondrosarcoma cells and subsequently promotes endothelial progenitor cell-primed angiogenesis. Clin Sci (Lond) 2015; 129:147-58. [PMID: 25735814 DOI: 10.1042/cs20140390] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chondrosarcoma, a common malignant tumour, develops in bone. Effective adjuvant therapy remains inadequate for treatment, meaning poor prognosis. It is imperative to explore novel remedies. Angiogenesis is a rate-limiting step in progression that explains neovessel formation for blood supply in the tumour microenvironment. Numerous studies indicate that EPCs (endothelial progenitor cells) promote angiogenesis and contribute to tumour growth. bFGF (basic fibroblast growth factor), a secreted cytokine, regulates biological activity, including angiogenesis, and correlates with tumorigenesis. However, the role of bFGF in angiogenesis-related tumour progression by recruiting EPCs in human chondrosarcoma is rarely discussed. In the present study, we found that bFGF induced VEGF (vascular endothelial growth factor) expression via the FGFR1 (fibroblast growth factor receptor 1)/c-Src/p38/NF-κB (nuclear factor κB) signalling pathway in chondrosarcoma cells, thereby triggering angiogenesis of endothelial progenitor cells. Our in vivo data revealed that tumour-secreted bFGF promotes angiogenesis in both mouse plug and chick CAM (chorioallantoic membrane) assays. Xenograft mouse model data, due to bFGF-regulated angiogenesis, showed the bFGF regulates angiogenesis-linked tumour growth. Finally, bFGF was highly expressed in chondrosarcoma patients compared with normal cartilage, positively correlating with VEGF expression and tumour stage. The present study reveals a novel therapeutic target for chondrosarcoma progression.
Collapse
|
245
|
Vascular pattern in enchondroma and chondrosarcoma: clinical and immunohistologic study. Appl Immunohistochem Mol Morphol 2015; 22:600-5. [PMID: 24897071 DOI: 10.1097/pai.0b013e3182a8da2e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Although cartilaginous tumors have low microvascular density, vessels are important for the provision of nutrition so that the tumor can grow and generate metastasis. The aim of this study was to assess the value of the vascular pattern classification as a prognostic tool in chondrosarcomas (CSs) and its relation with vascular endothelial growth factor (VEGF) expression. MATERIALS AND METHODS This was a retrospective study of 21 enchondromas and 57 conventional CSs. Clinical data and outcome were retrieved from medical files. CSs histologic grades (on a scale of 1 to 3) were determined according to the World Health Organization classification. The vascular pattern (on a scale of A to C) was assessed through CD34, according to Kalinski. CD105 and VEGF were also evaluated. RESULTS Poor outcome was significantly associated with vascular pattern groups B and C. Higher vascular pattern were 6.5 times more frequent in moderate-grade and high-grade CSs than in grade 1 CS. On multivariate analysis, a clear correlation was found between VEGF overexpression and B/C vascular patterns. Only 18 (benign and malignant) tumors stained for CD105. DISCUSSION The results point to the use of the vascular pattern classification as a prognostic tool in CSs and to differentiate low-grade from moderate-grade/high-grade CSs. Vascular pattern might be also used to complement histologic grade, VEGF immunostaining, and microvascular density, for indicating a patient's prognosis. Low-grade CSs develop under low neoangiogenesis, which conforms to the slow growth rate of these tumors.
Collapse
|
246
|
Grifoni D, Sollazzo M, Fontana E, Froldi F, Pession A. Multiple strategies of oxygen supply in Drosophila malignancies identify tracheogenesis as a novel cancer hallmark. Sci Rep 2015; 5:9061. [PMID: 25762498 PMCID: PMC4357021 DOI: 10.1038/srep09061] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 02/16/2015] [Indexed: 12/20/2022] Open
Abstract
Angiogenesis is the term used to describe all the alterations in blood vessel growth induced by a tumour mass following hypoxic stress. The occurrence of multiple strategies of vessel recruitment favours drug resistance, greatly complicating the treatment of certain tumours. In Drosophila, oxygen is conveyed to the internal organs by the tracheal system, a closed tubular network whose role in cancer growth is so far unexplored. We found that, as observed in human cancers, Drosophila malignant cells suffer from oxygen shortage, release pro-tracheogenic factors, co-opt nearby vessels and get incorporated into the tracheal walls. We also found that the parallelisms observed in cellular behaviours are supported by genetic and molecular conservation. Finally, we identified a molecular circuitry associated with the differentiation of cancer cells into tracheal cells. In summary, our findings identify tracheogenesis as a novel cancer hallmark in Drosophila, further expanding the power of the fly model in cancer research.
Collapse
Affiliation(s)
- Daniela Grifoni
- Department of "Farmacia e Biotecnologie", University of Bologna, Bologna, Italy
| | - Manuela Sollazzo
- Department of "Farmacia e Biotecnologie", University of Bologna, Bologna, Italy
| | - Elisabetta Fontana
- Department of "Farmacia e Biotecnologie", University of Bologna, Bologna, Italy
| | - Francesca Froldi
- Department of "Farmacia e Biotecnologie", University of Bologna, Bologna, Italy
| | - Annalisa Pession
- Department of "Farmacia e Biotecnologie", University of Bologna, Bologna, Italy
| |
Collapse
|
247
|
Bunimovich-Mendrazitsky S, Pisarev V, Kashdan E. Modeling and simulation of a low-grade urinary bladder carcinoma. Comput Biol Med 2015; 58:118-29. [DOI: 10.1016/j.compbiomed.2014.12.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 12/26/2014] [Indexed: 10/24/2022]
|
248
|
A new mosaic pattern in glioma vascularization: exogenous endothelial progenitor cells integrating into the vessels containing tumor-derived endothelial cells. Oncotarget 2015; 5:1955-68. [PMID: 24722469 PMCID: PMC4039108 DOI: 10.18632/oncotarget.1885] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Emerging evidence suggests that glioma stem-like cells (GSCs) transdifferentiating into vascular endothelial cells (ECs) possibly contributes to tumor resistance to antiangiogenic therapy. Endothelial progenitor cells (EPCs), showing active migration and incorporation into neovasculature of glioma, may be a good vehicle for delivering genes to target GSCs transdifferentiation. Here, we found a new mosaic pattern that exogenous EPCs integrated into the vessels containing the tumor-derived ECs in C6 glioma rat model. Further, we evaluated the effect of these homing EPCs on C6 glioma cells transdifferentiation. The transdifferentiation frequency of C6 glioma cells and the expressions of key factors on GSCs transdifferentiation, i.e. HIF-1α, Notch1, and Flk1 in gliomas with or without EPCs transplantation showed no significant difference. Additionally, magnetic resonance imaging could track the migration and incorporation of EPCs into glioma in vivo, which was confirmed by Prussian blue staining. The number of magnetically labeled EPCs estimated from T2 maps correlated well with direct measurements of labeled cell counts by flow cytometry. Taken together, our findings may provide a rational base for the future application of EPCs as a therapeutic and imaging probe to overcome antiangiogenic resistance for glioma and monitor the efficacy of this treatment.
Collapse
|
249
|
Huang Y, Carbone DP. Mechanisms of and strategies for overcoming resistance to anti-vascular endothelial growth factor therapy in non-small cell lung cancer. Biochim Biophys Acta Rev Cancer 2015; 1855:193-201. [PMID: 25598052 DOI: 10.1016/j.bbcan.2015.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 01/05/2015] [Accepted: 01/08/2015] [Indexed: 11/15/2022]
Abstract
Sustained angiogenesis is a hallmark of cancer. Because of the primary role of vascular endothelial growth factors (VEGFs) and their receptors in angiogenesis, VEGF-targeted agents have been developed to inhibit these signaling processes in non-small cell lung cancer (NSCLC). However, the clinical benefits are transient and resistance often rapidly develops. Insights into the molecular mechanisms of resistance would help to develop novel strategies to improve the efficacy of antiangiogenic therapies. This review discusses the mechanisms of resistance to anti-VEGF therapy and the postulated strategies to optimize antiangiogenic therapy. A number of multitargeted tyrosine kinase inhibitors currently in phase III clinical development for NSCLC are summarized. The emerging combination of antiangiogenic therapy with tumor immunotherapy is also discussed.
Collapse
Affiliation(s)
- Yuhui Huang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China; Department of Cancer Biology, Mayo Clinic Florida, Griffin Building Room 321B, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| | - David P Carbone
- The Ohio State University Medical Center, Columbus, OH, USA.
| |
Collapse
|
250
|
Huang B. Tumor microenvironment: a mechanical force link. SCIENCE CHINA-LIFE SCIENCES 2015; 58:202-4. [DOI: 10.1007/s11427-014-4796-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 12/10/2014] [Indexed: 10/24/2022]
|