201
|
Striz I, Golebski K, Strizova Z, Loukides S, Bakakos P, Hanania N, Jesenak M, Diamant Z. New insights into the pathophysiology and therapeutic targets of asthma and comorbid chronic rhinosinusitis with or without nasal polyposis. Clin Sci (Lond) 2023; 137:727-753. [PMID: 37199256 PMCID: PMC10195992 DOI: 10.1042/cs20190281] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/22/2023] [Accepted: 04/28/2023] [Indexed: 05/19/2023]
Abstract
Asthma and chronic rhinosinusitis with nasal polyps (CRSwNP) or without (CRSsNP) are chronic respiratory diseases. These two disorders often co-exist based on common anatomical, immunological, histopathological, and pathophysiological basis. Usually, asthma with comorbid CRSwNP is driven by type 2 (T2) inflammation which predisposes to more severe, often intractable, disease. In the past two decades, innovative technologies and detection techniques in combination with newly introduced targeted therapies helped shape our understanding of the immunological pathways underlying inflammatory airway diseases and to further identify several distinct clinical and inflammatory subsets to enhance the development of more effective personalized treatments. Presently, a number of targeted biologics has shown clinical efficacy in patients with refractory T2 airway inflammation, including anti-IgE (omalizumab), anti-IL-5 (mepolizumab, reslizumab)/anti-IL5R (benralizumab), anti-IL-4R-α (anti-IL-4/IL-13, dupilumab), and anti-TSLP (tezepelumab). In non-type-2 endotypes, no targeted biologics have consistently shown clinical efficacy so far. Presently, multiple therapeutical targets are being explored including cytokines, membrane molecules and intracellular signalling pathways to further expand current treatment options for severe asthma with and without comorbid CRSwNP. In this review, we discuss existing biologics, those under development and share some views on new horizons.
Collapse
Affiliation(s)
- Ilja Striz
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Subdivision of Allergology and Clinical Immunology, Institute for Postgraduate Education in Medicine, Prague, Czech Republic
| | - Kornel Golebski
- Department of Pulmonary Medicine, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands
| | - Zuzana Strizova
- Institute of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Stelios Loukides
- Department of Respiratory Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Petros Bakakos
- First Respiratory Medicine Department, National and Kapodistrian University of Athens, Athens, Greece
| | - Nicola A. Hanania
- Section of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Milos Jesenak
- Department of Pulmonology and Phthisiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital in Martin, Slovakia
- Department of Pediatrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital in Martin, Slovakia
- Department of Clinical Immunology and Allergology, University Hospital in Martin, Slovakia
| | - Zuzana Diamant
- Department of Microbiology Immunology and Transplantation, KU Leuven, Catholic University of Leuven, Belgium
- Department of Respiratory Medicine and Allergology, Institute for Clinical Science, Skane University Hospital, Lund University, Lund, Sweden
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
202
|
Gomułka K, Tota M, Brzdąk K. Effect of VEGF Stimulation on CD11b Receptor on Peripheral Eosinophils in Asthmatics. Int J Mol Sci 2023; 24:ijms24108880. [PMID: 37240226 DOI: 10.3390/ijms24108880] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/06/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Asthma is a chronic, complex disease associated with heterogeneity in molecular pathways. Airway inflammation with different cell activation (e.g., eosinophils) and with hypersecretion of many cytokines (e.g., vascular endothelial growth factor-VEGF) might be relevant for asthma pathogenesis and responsible for airway hyperresponsiveness and remodeling. The aim of our study was to reveal the expression of activation marker CD11b on peripheral eosinophils unstimulated and after VEGF in vitro stimulation in asthmatics with different degrees of airway narrowing. The study population included a total of 118 adult subjects: 78 patients with asthma (among them 39 patients with irreversible bronchoconstriction and 39 patients with reversible bronchoconstriction according to the bronchodilation test) and 40 healthy participants as a control group. CD11b expression on peripheral blood eosinophils was detected in vitro using the flow cytometric method without exogenous stimulation (negative control), after N-formyl-methionine-leucyl-phenylalanine stimulation (fMLP; positive control) and after stimulation with VEGF in two concentrations (250 ng/mL and 500 ng/mL). CD11b marker was slightly presented on unstimulated eosinophils in asthmatics and the subgroup with irreversible airway narrowing (p = 0.06 and p = 0.07, respectively). Stimulation with VEGF enhanced the activity of peripheral eosinophils and induced CD11b expression in asthmatics in comparison with a healthy control (p < 0.05), but it was dependent neither on the concentration of VEGF nor on the degree of airways narrowing in patients with asthma. We present our findings to draw attention to the potential role of VEGF in the eosinophil priming and CD11b-mediated signaling in patients with asthma which is currently undervalued.
Collapse
Affiliation(s)
- Krzysztof Gomułka
- Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, ul. M. Curie-Skłodowskiej 66, 50-369 Wrocław, Poland
| | - Maciej Tota
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, ul. M. Curie-Skłodowskiej 66, 50-369 Wrocław, Poland
| | - Kacper Brzdąk
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, ul. M. Curie-Skłodowskiej 66, 50-369 Wrocław, Poland
| |
Collapse
|
203
|
Mehta A, Lee I, Li G, Jones M, Hanson L, Lonabaugh K, List R, Borish L, Albon D. The Impact of CFTR Modulator Triple Therapy on Type 2 Inflammatory Response in Patients with Cystic Fibrosis. RESEARCH SQUARE 2023:rs.3.rs-2846739. [PMID: 37215020 PMCID: PMC10197784 DOI: 10.21203/rs.3.rs-2846739/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Background Treatment of cystic fibrosis (CF) has been revolutionized by the use of cystic fibrosis transmembrane conductance regulator (CFTR) protein modulators such as elexacaftor/tezacaftor/ivacaftor (ETI) triple therapy. Prior studies support a role for type 2 (T2) inflammation in many people with CF (PwCF) and CF-asthma overlap syndrome (CFAOS) is considered a separate clinical entity. It is unknown whether initiation of ETI therapy impacts T2 inflammation in PwCF. We hypothesized that ETI initiation decreases T2 inflammation in PwCF. Methods A single center retrospective chart review was conducted for adult PwCF. As markers of T2 inflammation, absolute eosinophil count (AEC) and total immunoglobulin E (IgE) data were collected longitudinally 12 months prior to ETI therapy initiation and 12 months following therapy initiation. Multivariable analyses adjusted for the age, gender, CFTR mutation, disease severity, inhaled steroid use, and microbiological colonization. Results There was a statistically significant reduction (20.10%, p < 0.001) in 12-month mean IgE following ETI initiation; this change remained statistically significant in the multivariate model. The longitudinal analysis demonstrated no change in AEC following therapy initiation. Conclusion This study shows reduction in IgE but no change in AEC after ETI therapy initiation. We think that the lack of influence on AEC argues against an impact on previously established T2 inflammation and that the reduction in IgE is likely related to antigen load reduction post ETI. Further studies are warranted to determine the underlying mechanism of ETI impact on T2 inflammation and possible role for asthma immunomodulator therapy post ETI initiation in CFAOS.
Collapse
Affiliation(s)
- Ajay Mehta
- University of Virginia School of Medicine
| | | | - Galvin Li
- University of Virginia School of Medicine
| | - Marieke Jones
- University of Virginia Department of Public Health Sciences
| | | | | | | | | | | |
Collapse
|
204
|
Konjevod M, Sreter KB, Popovic-Grle S, Lampalo M, Tudor L, Jukic I, Nedic Erjavec G, Bingulac-Popovic J, Safic Stanic H, Nikolac Perkovic M, Markeljevic J, Samarzija M, Pivac N, Svob Strac D. Platelet Serotonin (5-HT) Concentration, Platelet Monoamine Oxidase B (MAO-B) Activity and HTR2A, HTR2C, and MAOB Gene Polymorphisms in Asthma. Biomolecules 2023; 13:biom13050800. [PMID: 37238670 DOI: 10.3390/biom13050800] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
The complex role of the serotonin system in respiratory function and inflammatory diseases such as asthma is unclear. Our study investigated platelet serotonin (5-HT) levels and platelet monoamine oxidase B (MAO-B) activity, as well as associations with HTR2A (rs6314; rs6313), HTR2C (rs3813929; rs518147), and MAOB (rs1799836; rs6651806) gene polymorphisms in 120 healthy individuals and 120 asthma patients of different severity and phenotypes. Platelet 5-HT concentration was significantly lower, while platelet MAO-B activity was considerably higher in asthma patients; however, they did not differ between patients with different asthma severity or phenotypes. Only the healthy subjects, but not the asthma patients, carrying the MAOB rs1799836 TT genotype had significantly lower platelet MAO-B activity than the C allele carriers. No significant differences in the frequency of the genotypes, alleles, or haplotypes for any of the investigated HTR2A, HTR2C and MAOB gene polymorphisms have been observed between asthma patients and healthy subjects or between patients with various asthma phenotypes. However, the carriers of the HTR2C rs518147 CC genotype or C allele were significantly less frequent in severe asthma patients than in the G allele carriers. Further studies are necessary to elucidate the involvement of the serotonergic system in asthma pathophysiology.
Collapse
Affiliation(s)
- Marcela Konjevod
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka Cesta 54, 10000 Zagreb, Croatia
| | - Katherina B Sreter
- Department of Clinical Immunology, Pulmonology and Rheumatology, University Hospital Centre "Sestre Milosrdnice", 10000 Zagreb, Croatia
| | - Sanja Popovic-Grle
- Clinic for Lung Diseases Jordanovac, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Marina Lampalo
- Clinic for Lung Diseases Jordanovac, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Lucija Tudor
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka Cesta 54, 10000 Zagreb, Croatia
| | - Irena Jukic
- Croatian Institute of Transfusion Medicine, 10000 Zagreb, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Gordana Nedic Erjavec
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka Cesta 54, 10000 Zagreb, Croatia
| | | | | | - Matea Nikolac Perkovic
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka Cesta 54, 10000 Zagreb, Croatia
| | - Jasenka Markeljevic
- Department of Clinical Immunology, Pulmonology and Rheumatology, University Hospital Centre "Sestre Milosrdnice", 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Miroslav Samarzija
- Clinic for Lung Diseases Jordanovac, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Nela Pivac
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka Cesta 54, 10000 Zagreb, Croatia
- University of Applied Sciences "Hrvatsko Zagorje Krapina", 49000 Krapina, Croatia
| | - Dubravka Svob Strac
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka Cesta 54, 10000 Zagreb, Croatia
| |
Collapse
|
205
|
Wójcik-Pszczoła K, Pociecha K, Chłoń-Rzepa G, Zadrożna M, Nowak B, Plutecka H, Koczurkiewicz-Adamczyk P, Przejczowska-Pomierny K, Pękala E, Gosens R, Wyska E. Inhaled pan-phosphodiesterase inhibitors ameliorate ovalbumin-induced airway inflammation and remodeling in murine model of allergic asthma. Int Immunopharmacol 2023; 119:110264. [PMID: 37159965 DOI: 10.1016/j.intimp.2023.110264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/17/2023] [Accepted: 04/28/2023] [Indexed: 05/11/2023]
Abstract
Asthma is a heterogeneous, chronic respiratory disease characterized by airway inflammation and remodeling. Phosphodiesterase (PDE) inhibitors represent one of the intensively studied groups of potential anti-asthmatic agents due to their affecting both airway inflammation and remodeling. However, the effect of inhaled pan-PDE inhibitors on allergen induced asthma has not been reported to date. In this study we investigated the impact of two, representative strong pan-PDE inhibitors from the group of 7,8-disubstituted derivatives of 1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione: compound 38 and 145, on airway inflammation and remodeling in murine model of ovalbumin (OVA)-challenged allergic asthma. Female Balb/c mice were sensitized and challenged with OVA, 38 and 145 were administrated by inhalation, before each OVA challenge. The inhaled pan-PDE inhibitors markedly reduced the OVA-induced airway inflammatory cell infiltration, eosinophil recruitment, Th2 cytokine level in bronchoalveolar lavage fluid, as well as both, total and OVA-specific IgE levels in plasma. In addition, inhaled 38 and 145 decreased many typical features of airway remodeling, including goblet cell metaplasia, mucus hypersecretion, collagen overproduction and deposition, as well as Tgfb1, VEGF, and α-SMA expression in airways of allergen challenged mice. We also demonstrated that both 38 and 145 alleviate airway inflammation and remodelling by inhibition of the TGF-β/Smad signaling pathway activated in OVA-challenged mice. Taken together, these results suggest that the investigated pan-PDE inhibitors administered by inhalation are dual acting agents targeting both airway inflammation and remodeling in OVA-challenged allergic asthma and may represent promising, anti-asthmatic drug candidates.
Collapse
Affiliation(s)
- Katarzyna Wójcik-Pszczoła
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry, Medyczna 9, 30-688 Kraków, Poland.
| | - Krzysztof Pociecha
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmacokinetics and Physical Pharmacy, Medyczna 9, 30-688 Kraków, Poland
| | - Grażyna Chłoń-Rzepa
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medicinal Chemistry, Medyczna 9, 30-688 Kraków, Poland
| | - Monika Zadrożna
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Cytobiology, Medyczna 9, 30-688 Kraków, Poland
| | - Barbara Nowak
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Cytobiology, Medyczna 9, 30-688 Kraków, Poland
| | - Hanna Plutecka
- Jagiellonian University Medical College, Faculty of Medicine, Department of Internal Medicine, Skawińska 8, 31-066 Kraków, Poland
| | - Paulina Koczurkiewicz-Adamczyk
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry, Medyczna 9, 30-688 Kraków, Poland
| | - Katarzyna Przejczowska-Pomierny
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmacokinetics and Physical Pharmacy, Medyczna 9, 30-688 Kraków, Poland
| | - Elżbieta Pękala
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry, Medyczna 9, 30-688 Kraków, Poland
| | - Reinoud Gosens
- University of Groningen, Department of Molecular Pharmacology, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Elżbieta Wyska
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmacokinetics and Physical Pharmacy, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
206
|
McClean N, Hasday JD, Shapiro P. Progress in the development of kinase inhibitors for treating asthma and COPD. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 98:145-178. [PMID: 37524486 DOI: 10.1016/bs.apha.2023.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Current therapies to mitigate inflammatory responses involved in airway remodeling and associated pathological features of asthma and chronic obstructive pulmonary disease (COPD) are limited and largely ineffective. Inflammation and the release of cytokines and growth factors activate kinase signaling pathways that mediate changes in airway mesenchymal cells such as airway smooth muscle cells and lung fibroblasts. Proliferative and secretory changes in mesenchymal cells exacerbate the inflammatory response and promote airway remodeling, which is often characterized by increased airway smooth muscle mass, airway hyperreactivity, increased mucus secretion, and lung fibrosis. Thus, inhibition of relevant kinases has been viewed as a potential therapeutic approach to mitigate the debilitating and, thus far, irreversible airway remodeling that occurs in asthma and COPD. Despite FDA approval of several kinase inhibitors for the treatment of proliferative disorders, such as cancer and inflammation associated with rheumatoid arthritis and ulcerative colitis, none of these drugs have been approved to treat asthma or COPD. This review will provide a brief overview of the role kinases play in the pathology of asthma and COPD and an update on the status of kinase inhibitors currently in clinical trials for the treatment of obstructive pulmonary disease. In addition, potential issues associated with the current kinase inhibitors, which have limited their success as therapeutic agents in treating asthma or COPD, and alternative approaches to target kinase functions will be discussed.
Collapse
Affiliation(s)
- Nathaniel McClean
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States
| | - Jeffery D Hasday
- Department of Medicine, Division of Pulmonary Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Paul Shapiro
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States.
| |
Collapse
|
207
|
Xu J, Bian J, Fishe JN. Pediatric and adult asthma clinical phenotypes: a real world, big data study based on acute exacerbations. J Asthma 2023; 60:1000-1008. [PMID: 36039465 PMCID: PMC10011007 DOI: 10.1080/02770903.2022.2119865] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
Abstract
INTRODUCTION Asthma is a heterogeneous disease with a range of observable phenotypes. To date, the characterization of asthma phenotypes is mostly limited to allergic versus non-allergic disease. Therefore, the aim of this big data study was to computationally derive asthma subtypes from the OneFlorida Clinical Research Consortium. METHODS We obtained data from 2012-2020 from the OneFlorida Clinical Research Consortium. Longitudinal data for patients greater than two years of age who met inclusion criteria for an asthma exacerbation based on International Classification of Diseases codes. We used matrix factorization to extract information and K-means clustering to derive subtypes. The distributions of demographics, comorbidities, and medications were compared using Chi-square statistics. RESULTS A total of 39,807 pediatric patients and 23,883 adult patients met inclusion criteria. We identified five distinct pediatric subtypes and four distinct adult subtypes. Pediatric subtype P1 had the highest proportion of black patients, but the lowest use of inhaled corticosteroids and allergy medications. Subtype P2 had a predominance of patients with gastroesophageal reflux disease, whereas P3 had a predominance of patients with allergic disorders. Adult subtype A2 was the most severe and all patients were on biologic agents. Most of subtype A3 patients were not taking controller medications, whereas most patients (>90%) in subtypes A2 and A4 were taking corticosteroids and allergy medications. CONCLUSION We found five distinct pediatric asthma subtypes and four distinct adult asthma subtypes. Future work should externally validate these subtypes and characterize response to treatment by subtype to better guide clinical treatment of asthma.
Collapse
Affiliation(s)
- Jie Xu
- Department of Health Outcomes and Bioinformatics, University of Florida, Gainesville, Florida, USA
| | - Jiang Bian
- Department of Health Outcomes and Bioinformatics, University of Florida, Gainesville, Florida, USA
| | - Jennifer N Fishe
- Center for Data Solutions, University of Florida College of Medicine - Jacksonville, Jacksonville, Florida, USA
- Department of Emergency Medicine, University of Florida College of Medicine - Jacksonville, Jacksonville, Florida, USA
| |
Collapse
|
208
|
Gyawali S, López-Cervantes JP, Jõgi NO, Mustafa T, Johannessen A, Janson C, Holm M, Modig L, Cramer C, Gislason T, Svanes C, Shigdel R. Previous tuberculosis infection associated with increased frequency of asthma and respiratory symptoms in a Nordic-Baltic multicentre population study. ERJ Open Res 2023; 9:00011-2023. [PMID: 37228275 PMCID: PMC10204863 DOI: 10.1183/23120541.00011-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/21/2023] [Indexed: 05/27/2023] Open
Abstract
Background Tuberculosis (TB) infection induces profound local and systemic, immunological and inflammatory changes that could influence the development of other respiratory diseases; however, the association between TB and asthma is only partly understood. Our objective was to study the association of TB with asthma and respiratory symptoms in a Nordic-Baltic population-based study. Methods We included data from the Respiratory Health in Northern Europe (RHINE) study, in which information on general characteristics, TB infection, asthma and asthma-like symptoms were collected using standardised postal questionnaires. Asthma was defined based on asthma medication usage and/or asthma attacks 12 months prior to the study, and/or by a report of ≥three out of five respiratory symptoms in the last 12 months. Allergic/nonallergic asthma were defined as asthma with/without nasal allergy. The associations of TB with asthma outcomes were analysed using logistic regressions with adjustments for age, sex, smoking, body mass index and parental education. Results We included 8379 study participants aged 50-75 years, 61 of whom reported having had TB. In adjusted analyses, participants with a history of TB had higher odds of asthma (OR 1.99, 95% CI 1.13-3.47). The associations were consistent for nonallergic asthma (OR 2.17, 95% CI 1.16-4.07), but not for allergic asthma (OR 1.20, 95% CI 0.53-2.71). Conclusion We found that in a large Northern European population-based cohort, persons with a history of TB infection more frequently had asthma and asthma symptoms. We speculate that this may reflect long-term effects of TB, including direct damage to the airways and lungs, as well as inflammatory responses.
Collapse
Affiliation(s)
- Sanjay Gyawali
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| | - Juan Pablo López-Cervantes
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| | - Nils Oskar Jõgi
- Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| | - Tehmina Mustafa
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | - Ane Johannessen
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Christer Janson
- Department of Medical Sciences: Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Mathias Holm
- Department of Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lars Modig
- Department of Public Health and Clinical Medicine, Sustainable health, Umeå University, Umeå, Sweden
| | - Christine Cramer
- Department of Public Health, Research Unit for Environment, Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
- Department of Occupational Medicine, Danish Ramazzini Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Thorarinn Gislason
- Department of Sleep, Landspitali University Hospital, Reykjavik, Iceland
- University of Iceland, Medical faculty, Reykjavik Iceland
| | - Cecilie Svanes
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
- These authors contributed equally to this work as senior authors
| | - Rajesh Shigdel
- Department of Clinical Science, University of Bergen, Bergen, Norway
- These authors contributed equally to this work as senior authors
| |
Collapse
|
209
|
Peri F, Amaddeo A, Badina L, Maschio M, Barbi E, Ghirardo S. T2-Low Asthma: A Discussed but Still Orphan Disease. Biomedicines 2023; 11:biomedicines11041226. [PMID: 37189844 DOI: 10.3390/biomedicines11041226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Asthma affects 10% of the worldwide population; about 5% of cases are severe with the need for target therapies such as biologics. All the biologics approved for asthma hit the T2 pathway of inflammation. T2-high asthma is classified as allergic and non-allergic, whereas T2-low asthma can be further defined as paucigranulocytic asthma, Type 1 and Type-17 inflammation and the neutrophilic form that accounts for 20-30% of all patients with asthma. Neutrophilic asthma's prevalence is even higher in patients with severe or refractory asthma. We searched Medline and PubMed archives from the past ten years for articles with the subsequent titles: "neutrophilic asthma", "non-type 2 asthma" and "paucigranulocytic asthma". We identified 177 articles; 49 were considered relevant by the title and 33 by the reading of the abstract. Most of these articles are reviews (n = 19); only 6 are clinical trials. No study identified an effective treatment. We used the literature reported by these articles to search for further biologic treatments that target pathways different from T2. We identified 177 articles, 93 of which were considered relevant for the review and included in the present article. In conclusion, T2-low asthma remains poorly investigated in terms of biomarkers, especially as a therapeutic orphan disease.
Collapse
Affiliation(s)
- Francesca Peri
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Alessandro Amaddeo
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| | - Laura Badina
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| | - Massimo Maschio
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| | - Egidio Barbi
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| | - Sergio Ghirardo
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| |
Collapse
|
210
|
Lee JH, Wang LC, Lin YT, Yang YH, Yu HH, Hu YC, Chiang BL. Differentially expressed microRNAs in peripheral blood cell are associated with downregulated expression of IgE in nonallergic childhood asthma. Sci Rep 2023; 13:6381. [PMID: 37076662 PMCID: PMC10115804 DOI: 10.1038/s41598-023-33663-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 04/17/2023] [Indexed: 04/21/2023] Open
Abstract
Childhood asthma is a heterogeneous disease characterized by chronic airway inflammation, leading to a broad range of clinical presentations. Nonallergic asthma is asthma without allergic sensitization. Both clinical manifestations and immunopathological mechanisms of nonallergic childhood asthma were rarely investigated. We aimed to compare the clinical features between nonallergic and allergic childhood asthma and apply microRNA to explore the underlying mechanism of nonallergic childhood asthma. We enrolled 405 asthmatic children (76 nonallergic, 52 allergic with total IgE < 150 IU/mL and 277 allergic with total IgE > 150 IU/mL). Clinical characteristics were compared between groups. Comprehensive miRNA sequencing (RNA-seq) was performed using peripheral blood from 11 nonallergic and 11 allergic patients with elevated IgE, respectively. Differentially expressed miRNA (DEmiRNA) were determined with DESeq2. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analysis was performed to determine functional pathways involved. Publicly available mRNA expression data was applied to investigate the predicted target mRNA networks via Ingenuity Pathway Analysis (IPA). The average age of nonallergic asthma was significantly younger (5.614 ± 2.743 vs 6.676 ± 3.118 years-old). Higher severity and worse control were more common in nonallergic asthma (two-way ANOVA, P < 0.0001). Long-term severity was higher, and intermittent attacks persisted in nonallergic patients. We identified 140 top DEmiRNAs based on false discovery rate (FDR) q-value < 0.001. Forty predicted target mRNA gene were associated with nonallergic asthma. The enriched pathway based on GO included Wnt signaling pathway. IgE expression was predicted to be downregulated by a network involving simultaneous interaction with IL-4, activation of IL-10 and inhibition of FCER2. Nonallergic childhood asthma were distinct in their younger age, higher long-term severity and more persistent course. Differentially expressed miRNA signatures associate with downregulation of total IgE expression and predicted target mRNA genes related molecular networks contribute to canonical pathways of nonallergic childhood asthma. We demonstrated the negative role of miRNAs involved in regulating IgE expression indicating differences between asthma phenotypes. Identification of biomarkers of miRNAs could contribute to understand the molecular mechanism of endotypes in nonallergic childhood asthma, which can potentially allow delivery of precision medicine to pediatric asthma.
Collapse
Affiliation(s)
- Jyh-Hong Lee
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, 8 Chung-Shan South Road, Taipei, 10002, Taiwan, Republic of China.
| | - Li-Chieh Wang
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, 8 Chung-Shan South Road, Taipei, 10002, Taiwan, Republic of China
| | - Yu-Tsan Lin
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, 8 Chung-Shan South Road, Taipei, 10002, Taiwan, Republic of China
| | - Yao-Hsu Yang
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, 8 Chung-Shan South Road, Taipei, 10002, Taiwan, Republic of China
| | - Hsin-Hui Yu
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, 8 Chung-Shan South Road, Taipei, 10002, Taiwan, Republic of China
| | - Ya-Chiao Hu
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, 8 Chung-Shan South Road, Taipei, 10002, Taiwan, Republic of China
| | - Bor-Luen Chiang
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, 8 Chung-Shan South Road, Taipei, 10002, Taiwan, Republic of China
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan, Republic of China
| |
Collapse
|
211
|
Murugesan N, Saxena D, Dileep A, Adrish M, Hanania NA. Update on the Role of FeNO in Asthma Management. Diagnostics (Basel) 2023; 13:diagnostics13081428. [PMID: 37189529 DOI: 10.3390/diagnostics13081428] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Asthma is a heterogenous disorder characterized by presence of different phenotypes and endotypes. Up to 10% of the individuals suffer from severe asthma and are at increased risk of morbidity and mortality. Fractional exhaled nitric oxide (FeNO) is a cost-effective, point of care biomarker that is used to detect type 2 airway inflammation. Guidelines have proposed to measure FeNO as an adjunct to diagnostic evaluation in individuals with suspected asthma and to monitor airway inflammation. FeNO has lower sensitivity, suggesting that it may not be a good biomarker to rule out asthma. FeNO may also be used to predict response to inhaled corticosteroids, predict adherence and deciding on biologic therapy. Higher levels of FeNO have been associated with lower lung function and increased risk for future asthma exacerbations and its predictive value increases when combined with other standard measurements of asthma assessment.
Collapse
Affiliation(s)
- Neveda Murugesan
- Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Damini Saxena
- Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Arundhati Dileep
- Division of Pulmonary & Critical Care Medicine, Bronx Care Health System, Bronx, NY 10457, USA
| | - Muhammad Adrish
- Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nicola A Hanania
- Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
212
|
Mormile M, Mormile I, Fuschillo S, Rossi FW, Lamagna L, Ambrosino P, de Paulis A, Maniscalco M. Eosinophilic Airway Diseases: From Pathophysiological Mechanisms to Clinical Practice. Int J Mol Sci 2023; 24:ijms24087254. [PMID: 37108417 PMCID: PMC10138384 DOI: 10.3390/ijms24087254] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Eosinophils play a key role in airway inflammation in many diseases, such as allergic and non-allergic asthma, chronic rhinosinusitis with nasal polyps, and chronic obstructive pulmonary disease. In these chronic disabling conditions, eosinophils contribute to tissue damage, repair, remodeling, and disease persistence through the production a variety of mediators. With the introduction of biological drugs for the treatment of these respiratory diseases, the classification of patients based on clinical characteristics (phenotype) and pathobiological mechanisms (endotype) has become mandatory. This need is particularly evident in severe asthma, where, despite the great scientific efforts to understand the immunological pathways underlying clinical phenotypes, the identification of specific biomarkers defining endotypes or predicting pharmacological response remains unsatisfied. In addition, a significant heterogeneity also exists among patients with other airway diseases. In this review, we describe some of the immunological differences in eosinophilic airway inflammation associated with severe asthma and other airway diseases and how these factors might influence the clinical presentation, with the aim of clarifying when eosinophils play a key pathogenic role and, therefore, represent the preferred therapeutic target.
Collapse
Affiliation(s)
- Mauro Mormile
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Ilaria Mormile
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Salvatore Fuschillo
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy
| | - Francesca Wanda Rossi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Laura Lamagna
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Pasquale Ambrosino
- Istituti Clinici Scientifici Maugeri IRCCS, Directorate of Telese Terme Institute, 82037 Telese Terme, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Mauro Maniscalco
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy
| |
Collapse
|
213
|
Pederson WP, Ellerman LM, Jin Y, Gu H, Ledford JG. Metabolomic Profiling in Mouse Model of Menopause-Associated Asthma. Metabolites 2023; 13:546. [PMID: 37110204 PMCID: PMC10145474 DOI: 10.3390/metabo13040546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Menopause-associated asthma impacts a subset of women, tends to be more severe, and is less responsive to current treatments. We recently developed a model of menopause-associated asthma using 4-Vinylcyclohexene Diepoxide (VCD) and house dust mites (HDM). The goal of this study was to uncover potential biomarkers and drivers of menopause-onset asthma by assessing serum and bronchoalveolar lavage fluid (BALF) samples from mice with and without menopause and HDM challenge by large-scale targeted metabolomics. Female mice were treated with VCD/HDM to model menopause-associated asthma, and serum and BALF samples were processed for large-scale targeted metabolomic assessment. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to examine metabolites of potential biological significance. We identified over 50 individual metabolites, impacting 46 metabolic pathways, in the serum and BALF that were significantly different across the four study groups. In particular, glutamate, GABA, phosphocreatine, and pyroglutamic acid, which are involved in glutamate/glutamine, glutathione, and arginine and proline metabolisms, were significantly impacted in the menopausal HDM-challenged mice. Additionally, several metabolites had significant correlations with total airway resistance including glutamic acid, histamine, uridine, cytosine, cytidine, and acetamide. Using metabolic profiling, we identified metabolites and metabolic pathways that may aid in discriminating potential biomarkers for and drivers of menopause-associated asthma.
Collapse
Affiliation(s)
- William P. Pederson
- Physiological Sciences GIDP, University of Arizona, Tucson, AZ 85724, USA;
- Department of Physiology, University of Arizona, Tucson, AZ 85724, USA
| | | | - Yan Jin
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Haiwei Gu
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Julie G. Ledford
- Asthma and Airway Disease Research Center, Tucson, AZ 85724, USA
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
214
|
Declercq J, Hammad H, Lambrecht BN, Smole U. Chitinases and chitinase-like proteins in asthma. Semin Immunol 2023; 67:101759. [PMID: 37031560 DOI: 10.1016/j.smim.2023.101759] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/27/2023] [Indexed: 04/11/2023]
Abstract
Despite the lack of endogenous chitin synthesis, mammalian genomes encode two enzymatically active true chitinases (chitotriosidase and acidic mammalian chitinase) and a variable number of chitinase-like proteins (CLPs) that have no enzyme activity but bind chitin. Chitinases and CLPs are prominent components of type-2 immune response-mediated respiratory diseases. However, despite extensive research into their role in allergic airway disease, there is still no agreement on whether they are mere biomarkers of disease or actual disease drivers. Functions ascribed to chitinases and CLPs include, but are not limited to host defense against chitin-containing pathogens, directly promoting inflammation, and modulating tissue remodeling and fibrosis. Here, we discuss in detail the chitin-dependent and -independent roles of chitinases and CLPs in the context of allergic airway disease, and recent advances and emerging concepts in the field that might identify opportunities for new therapies.
Collapse
Affiliation(s)
- Jozefien Declercq
- Immunoregulation Unit, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Hamida Hammad
- Immunoregulation Unit, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Immunoregulation Unit, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Department of Pulmonary Medicine, ErasmusMC, Rotterdam, the Netherlands.
| | - Ursula Smole
- Immunoregulation Unit, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.
| |
Collapse
|
215
|
Woodrow JS, Sheats MK, Cooper B, Bayless R. Asthma: The Use of Animal Models and Their Translational Utility. Cells 2023; 12:cells12071091. [PMID: 37048164 PMCID: PMC10093022 DOI: 10.3390/cells12071091] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
Asthma is characterized by chronic lower airway inflammation that results in airway remodeling, which can lead to a permanent decrease in lung function. The pathophysiology driving the development of asthma is complex and heterogenous. Animal models have been and continue to be essential for the discovery of molecular pathways driving the pathophysiology of asthma and novel therapeutic approaches. Animal models of asthma may be induced or naturally occurring. Species used to study asthma include mouse, rat, guinea pig, cat, dog, sheep, horse, and nonhuman primate. Some of the aspects to consider when evaluating any of these asthma models are cost, labor, reagent availability, regulatory burden, relevance to natural disease in humans, type of lower airway inflammation, biological samples available for testing, and ultimately whether the model can answer the research question(s). This review aims to discuss the animal models most available for asthma investigation, with an emphasis on describing the inciting antigen/allergen, inflammatory response induced, and its translation to human asthma.
Collapse
Affiliation(s)
- Jane Seymour Woodrow
- Department of Clinical Studies, New Bolton Center, College of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA 19348, USA
| | - M Katie Sheats
- Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | - Bethanie Cooper
- Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | - Rosemary Bayless
- Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| |
Collapse
|
216
|
Bakakos P, Tryfon S, Palamidas A, Mathioudakis N, Galanakis P. Patient characteristics and eligibility for biologics in severe asthma: Results from the Greek cohort of the RECOGNISE "real world" study. Respir Med 2023; 210:107170. [PMID: 36841360 DOI: 10.1016/j.rmed.2023.107170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
BACKGROUND Some patients with severe asthma do not achieve sufficient symptom control despite guideline-based treatment, and therefore receive oral (OCS) and systemic corticosteroids (SCS) on regular basis. The side effects of corticosteroid use negatively impact patients' health-related quality of life (HRQoL) and increase the disease burden. Biologics have shown promise in asthma therapy; however, identifying patients who might benefit from biologic therapy is complex due to the heterogeneous pathophysiology of the disease. METHODS The European, non-interventional, multicentre RECOGNISE study (NCT03629782) assessed patient characteristics, asthma medication and control, HRQoL as assessed by St. George's Respiratory Questionnaire (SGRQ), and health care resource use in patients with severe asthma, as well as their eligibility for biologic treatment. Here, data from the Greek cohort (N = 97) are reported. RESULTS In Greece, patients with severe asthma were more often female (71%) and never smokers (68%). 87% of patients were assessed as eligible for biologic treatment by investigator's judgement (per label criteria: 76%). Most patients had been previously treated with SCS (82% eligible vs 85% non-eligible), with OCS use being more common in non-eligible patients (23.1% vs 11.9%). More eligible patients had poorly controlled asthma (76% vs 54%), and more impaired HRQoL (mean total SGRQ score: 46% vs 39%); symptom burden was significantly higher (mean symptom score: 60% vs. 44%, p: 0.0389). CONCLUSIONS A high proportion of Greek patients with severe asthma are eligible for biologic therapy; however, individual risk factors and differences between asthma types must be considered before the introduction of targeted therapy.
Collapse
Affiliation(s)
- Petros Bakakos
- 1st Academic Department of Respiratory Medicine, SOTIRIA General Hospital for Thoracic Diseases, National and Kapodistrian University of Athens, Athens, Greece
| | - Stavros Tryfon
- Pulmonary Department (NHS), 'G Papanikolaou' General Hospital, Thessaloniki, Greece
| | | | | | - Petros Galanakis
- Medical Department Respiratory & Immunology AstraZeneca, Athens, Greece.
| |
Collapse
|
217
|
Sørensen KG, Øymar K, Dalen I, Halvorsen T, Bruun Mikalsen I. Blood eosinophils during bronchiolitis: Associations with atopy, asthma and lung function in young adults. Acta Paediatr 2023; 112:820-829. [PMID: 36627486 DOI: 10.1111/apa.16666] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/02/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
AIM To study if blood eosinophils during bronchiolitis were associated with atopy, asthma and lung function in young adults and if these associations differed between respiratory syncytial virus (RSV) bronchiolitis and non-RSV bronchiolitis. METHODS This historical cohort enrolled 225 subjects. Blood eosinophils were measured during bronchiolitis in infancy, and the subjects were invited to a follow-up at 17-20 years of age including questionnaires for asthma and examinations of lung function and atopy. RESULTS The level of eosinophils was positively associated with subsequent atopy in the unadjusted analysis, but not in the adjusted analysis, and not with asthma. There was a negative association between the level of eosinophils and forced vital capacity (FVC) (-0.11; -0.19, -0.02) and forced expiratory volume in first second (FEV1 ) (-0.12; -0.21, -0.03) (regression coefficient; 95% confidence interval). The non-RSV group had higher levels of eosinophils during bronchiolitis, but there was no interaction between the level of eosinophils and RSV status for any outcome. CONCLUSIONS The level of eosinophils during bronchiolitis was negatively associated with lung function in young adult age, but we found no associations with atopy or asthma. These associations were not different after RSV bronchiolitis compared to non-RSV bronchiolitis.
Collapse
Affiliation(s)
- Karen Galta Sørensen
- Department of Paediatrics, Stavanger University Hospital, Stavanger, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Knut Øymar
- Department of Paediatrics, Stavanger University Hospital, Stavanger, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ingvild Dalen
- Department of Research, Section of Biostatistics, Stavanger University Hospital, Stavanger, Norway
| | - Thomas Halvorsen
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Paediatrics and Adolescent Medicine, Haukeland University Hospital, Bergen, Norway
| | - Ingvild Bruun Mikalsen
- Department of Paediatrics, Stavanger University Hospital, Stavanger, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
218
|
Leija-Martínez JJ, Guzmán-Martín CA, González-Ramírez J, Giacoman-Martínez A, Del-Río-Navarro BE, Romero-Nava R, Villafaña S, Flores-Saenz JL, Sánchez-Muñoz F, Huang F. Whole Blood Expression Levels of Long Noncoding RNAs: HOTAIRM1, GAS5, MZF1-AS1, and OIP5-AS1 as Biomarkers in Adolescents with Obesity-Related Asthma. Int J Mol Sci 2023; 24:ijms24076481. [PMID: 37047453 PMCID: PMC10095005 DOI: 10.3390/ijms24076481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
Asthma is a heterogeneous entity encompassing distinct endotypes and varying phenotypes, characterized by common clinical manifestations, such as shortness of breath, wheezing, and variable airflow obstruction. Two major asthma endotypes based on molecular patterns are described: type 2 endotype (allergic-asthma) and T2 low endotype (obesity-related asthma). Long noncoding RNAs (lncRNAs) are transcripts of more than 200 nucleotides in length, currently involved in many diverse biological functions, such as chromatin remodeling, gene transcription, protein transport, and microRNA processing. Despite the efforts to accurately classify and discriminate all the asthma endotypes and phenotypes, if long noncoding RNAs could play a role as biomarkers in allergic asthmatic and adolescent obesity-related asthma, adolescents remain unknown. To compare expression levels of lncRNAs: HOTAIRM1, OIP5-AS1, MZF1-AS1, and GAS5 from whole blood of Healthy Adolescents (HA), Obese adolescents (O), allergic asthmatic adolescents (AA) and Obesity-related asthma adolescents (OA). We measured and compared expression levels from the whole blood of the groups mentioned above through RT-q-PCR. We found differentially expressed levels of these lncRNAs between the groups of interest. In addition, we found a discriminative value of previously mentioned lncRNAs between studied groups. Finally, we generated an interaction network through bioinformatics. Expression levels of OIP5-AS1, MZF1-AS1, HOTAIRM1, and GAS5 in whole blood from the healthy adolescent population, obese adolescents, allergic asthma adolescents, and obesity-related asthma adolescents are differently expressed. Moreover, these lncRNAs could act as molecular biomarkers that help to discriminate between all studied groups, probably through molecular mechanisms with several genes and miRNAs implicated.
Collapse
Affiliation(s)
- José J. Leija-Martínez
- Laboratorio de Investigación en Obesidad y Asma, Hospital Infantil de México Federico Gómez, Ciudad de México 06720, Mexico; (J.J.L.-M.)
| | - Carlos A. Guzmán-Martín
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico;
| | - Javier González-Ramírez
- Laboratorio de Biología Celular, Facultad de Enfermería, Universidad Autónoma de Baja California Campus Mexicali, Mexicali 21280, Mexico
| | - Abraham Giacoman-Martínez
- Laboratorio de Investigación en Obesidad y Asma, Hospital Infantil de México Federico Gómez, Ciudad de México 06720, Mexico; (J.J.L.-M.)
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana-Iztapalapa (UAM-I), Ciudad de México 09340, Mexico;
| | - Blanca E. Del-Río-Navarro
- Departamento de Inmunología Clínica de Alergia Pediátrica, Hospital Infantil de México Federico Gómez, Ciudad de México 06720, Mexico
| | - Rodrigo Romero-Nava
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico
| | - Santiago Villafaña
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico
| | - José Luis Flores-Saenz
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana-Iztapalapa (UAM-I), Ciudad de México 09340, Mexico;
| | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico;
- Correspondence: (F.S.-M.); (F.H.); Tel.: +52-5523328417 (F.S.-M.); +52-5552289917 (ext. 4405 or 3308) (F.H.)
| | - Fengyang Huang
- Laboratorio de Investigación en Obesidad y Asma, Hospital Infantil de México Federico Gómez, Ciudad de México 06720, Mexico; (J.J.L.-M.)
- Correspondence: (F.S.-M.); (F.H.); Tel.: +52-5523328417 (F.S.-M.); +52-5552289917 (ext. 4405 or 3308) (F.H.)
| |
Collapse
|
219
|
Solomon Y, Malkamu B, Berhan A, Eyayu T, Almaw A, Legese B, Woldu B. Peripheral blood eosinophilia in adult asthmatic patients and its association with the severity of asthma. BMC Pulm Med 2023; 23:96. [PMID: 36949398 PMCID: PMC10031890 DOI: 10.1186/s12890-023-02383-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/11/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Asthma is a diverse disease with various etiologic bases. Severe asthma can be associated with increased mortality, hospitalization, and decreased quality of life for asthma patients. High blood eosinophil counts were associated with severe asthma, but recent studies have failed to confirm this as a marker of severe asthma among adult asthma patients. As a result, the purpose of this study was to determine the association between the severity of asthma and high blood eosinophil count. METHODOLOGY A simple random sampling technique was used to select 291 asthmatic patients for an institution-based cross-sectional study. Socio-demographic, behavioral, and clinical characteristics were collected by using a pre-tested structured questionnaire. Four milliliters of venous blood were collected from asthmatic patients for complete blood count and peripheral morphology assessment. The eosinophil count was analyzed by the Unicel DxH 800 (Beckman Coulter, Ireland) analyzer. A statistical package for social science version 20 (SPSS) software was used to analyze the data. The non-parametric (Mann-Whitney U) test was used to compare the eosinophil count with different background variables. A binary logistic regression analysis was used to assess the factors associated with eosinophilia. A p-value less than 0.05 in multivariable logistic regression analysis was considered statistically significant. RESULT In this study, the overall magnitude of eosinophilia was 19.6% (95% CI = 14.8-24.1). Being admitted to the emergency department (AOR = 0.25; 95% CI: 0.09-0.69, p = 0.007) and being female (AOR = 0.49; 95% CI: 0.26-0.9, p = 0.025) were shown to have a statistically significant association with eosinophilia. Moreover, the absolute eosinophil count was significantly higher among asthmatic patients infected with intestinal parasitic infection (p < 0.045). CONCLUSION Being female and admission to the emergency department were negatively associated with eosinophilia. Lack of eosinophilia can be related to the low-T2 asthma phenotype. The absolute eosinophil counts were higher among intestinal parasite-infected patients. Therefore, different biomarkers will be considered for the proper diagnosis and management of adult asthma patients.
Collapse
Affiliation(s)
- Yenealem Solomon
- Department of Medical Laboratory Science, College of Health Sciences, Debre Tabor University, P.O. Box: 272, Debre Tabor, Ethiopia.
| | - Birhanemaskal Malkamu
- Department of Medical Laboratory Science, College of Health Sciences, Debre Tabor University, P.O. Box: 272, Debre Tabor, Ethiopia
| | - Ayenew Berhan
- Department of Medical Laboratory Science, College of Health Sciences, Debre Tabor University, P.O. Box: 272, Debre Tabor, Ethiopia
| | - Tahir Eyayu
- Department of Medical Laboratory Science, College of Health Sciences, Debre Tabor University, P.O. Box: 272, Debre Tabor, Ethiopia
| | - Andargachew Almaw
- Department of Medical Laboratory Science, College of Health Sciences, Debre Tabor University, P.O. Box: 272, Debre Tabor, Ethiopia
| | - Biruk Legese
- Department of Medical Laboratory Science, College of Health Sciences, Debre Tabor University, P.O. Box: 272, Debre Tabor, Ethiopia
| | - Berhanu Woldu
- Department of Hematology and Immunohematology, School of Biomedical and Laboratory Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
220
|
Yan B, Ren Y, Liu C, Shu L, Wang C, Zhang L. Cystatin SN in type 2 inflammatory airway diseases. J Allergy Clin Immunol 2023; 151:1191-1203.e3. [PMID: 36958985 DOI: 10.1016/j.jaci.2023.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 03/25/2023]
Abstract
Cystatin SN, encoded by CST1, belongs to the type 2 (T2) cystatin protein superfamily. In the past decade, several publications have highlighted the association between cystatin SN and inflammatory airway diseases including chronic rhinosinusitis, rhinitis, asthma, chronic obstructive pulmonary disease, and chronic hypersensitivity pneumonitis. It is, therefore, crucial to understand the role of cystatin SN in the wider context of T2 inflammatory diseases. Here, we review the expression of cystatin SN in airway-related diseases with different endotypes. We also emphasize the physiological and pathological roles of cystatin SN. Physiologically, cystatin SN protects host tissues from destructive proteolysis by cysteine proteases present in the external environment or produced via internal dysregulated expression. Pathologically, the secretion of cystatin SN from airway epithelial cells initiates and amplifies T2 immunity and subsequently leads to disease. We further discuss the development of cystatin SN as a T2 immunity marker that can be monitored noninvasively and assist in airway disease management. The discovery, biology, and inhibition capability are also introduced to better understand the role of cystatin SN in airway diseases.
Collapse
Affiliation(s)
- Bing Yan
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Nasal Diseases, Beijing Laboratory of Allergic Diseases, Beijing Institute of Otolaryngology, Beijing, China; Key Laboratory of Otolaryngology Head and Neck Surgery (Ministry of Education of China), Beijing Institute of Otolaryngology, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Yimin Ren
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Nasal Diseases, Beijing Laboratory of Allergic Diseases, Beijing Institute of Otolaryngology, Beijing, China; Key Laboratory of Otolaryngology Head and Neck Surgery (Ministry of Education of China), Beijing Institute of Otolaryngology, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Chang Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Nasal Diseases, Beijing Laboratory of Allergic Diseases, Beijing Institute of Otolaryngology, Beijing, China; Key Laboratory of Otolaryngology Head and Neck Surgery (Ministry of Education of China), Beijing Institute of Otolaryngology, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Linping Shu
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Nasal Diseases, Beijing Laboratory of Allergic Diseases, Beijing Institute of Otolaryngology, Beijing, China; Key Laboratory of Otolaryngology Head and Neck Surgery (Ministry of Education of China), Beijing Institute of Otolaryngology, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Chengshuo Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Nasal Diseases, Beijing Laboratory of Allergic Diseases, Beijing Institute of Otolaryngology, Beijing, China; Key Laboratory of Otolaryngology Head and Neck Surgery (Ministry of Education of China), Beijing Institute of Otolaryngology, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China.
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Nasal Diseases, Beijing Laboratory of Allergic Diseases, Beijing Institute of Otolaryngology, Beijing, China; Key Laboratory of Otolaryngology Head and Neck Surgery (Ministry of Education of China), Beijing Institute of Otolaryngology, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China; Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
221
|
Carroll OR, Pillar AL, Brown AC, Feng M, Chen H, Donovan C. Advances in respiratory physiology in mouse models of experimental asthma. Front Physiol 2023; 14:1099719. [PMID: 37008013 PMCID: PMC10060990 DOI: 10.3389/fphys.2023.1099719] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/07/2023] [Indexed: 03/18/2023] Open
Abstract
Recent advances in mouse models of experimental asthma coupled with vast improvements in systems that assess respiratory physiology have considerably increased the accuracy and human relevance of the outputs from these studies. In fact, these models have become important pre-clinical testing platforms with proven value and their capacity to be rapidly adapted to interrogate emerging clinical concepts, including the recent discovery of different asthma phenotypes and endotypes, has accelerated the discovery of disease-causing mechanisms and increased our understanding of asthma pathogenesis and the associated effects on lung physiology. In this review, we discuss key distinctions in respiratory physiology between asthma and severe asthma, including the magnitude of airway hyperresponsiveness and recently discovered disease drivers that underpin this phenomenon such as structural changes, airway remodeling, airway smooth muscle hypertrophy, altered airway smooth muscle calcium signaling, and inflammation. We also explore state-of-the-art mouse lung function measurement techniques that accurately recapitulate the human scenario as well as recent advances in precision cut lung slices and cell culture systems. Furthermore, we consider how these techniques have been applied to recently developed mouse models of asthma, severe asthma, and asthma-chronic obstructive pulmonary disease overlap, to examine the effects of clinically relevant exposures (including ovalbumin, house dust mite antigen in the absence or presence of cigarette smoke, cockroach allergen, pollen, and respiratory microbes) and to increase our understanding of lung physiology in these diseases and identify new therapeutic targets. Lastly, we focus on recent studies that examine the effects of diet on asthma outcomes, including high fat diet and asthma, low iron diet during pregnancy and predisposition to asthma development in offspring, and environmental exposures on asthma outcomes. We conclude our review with a discussion of new clinical concepts in asthma and severe asthma that warrant investigation and how we could utilize mouse models and advanced lung physiology measurement systems to identify factors and mechanisms with potential for therapeutic targeting.
Collapse
Affiliation(s)
- Olivia R. Carroll
- Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Amber L. Pillar
- Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Alexandra C. Brown
- Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Min Feng
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Hui Chen
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Chantal Donovan
- Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
- *Correspondence: Chantal Donovan,
| |
Collapse
|
222
|
Zhao Y, Li R. HMGB1 is a promising therapeutic target for asthma. Cytokine 2023; 165:156171. [PMID: 36924610 DOI: 10.1016/j.cyto.2023.156171] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
High-mobility group box protein 1 (HMGB1) is a non-histone deoxyribonucleic acid-binding nuclear protein. In physiological state it is involved in gene transctioripn regulation and cell replication, differentiation and maturation. HMGB1 is actively secreted into the extracellular space in the form of intracellular vesicles, upon stimulation of inflammation and infection, by monocytes, macrophages, dendritic cells (DCs), and other immune cells, and can also be passively released by necrotic or injured cells. After binding with the corresponding receptors, HMGB1 can activate the downstream substrate and trigger a series of biological effects. HMGB1 was mainly dependent on toll-like re ceptors (TLR) 2 and 4, and receptors for advanced glycation end products (RAGE) to trigger intracellular signal transduction, and mediate innate and adoptive immune responses. Besides these, studies have reported the participation of TLR3, TLR9, T-cell immunoglobulin mucin (TIM) 3, CD24, anti-N-methyl-D-aspartate receptor (NMDAR) in Th2 inflammatory response, eosinophilic airway inflammation, and airway hyperresponsiveness, mediated by HMGB1 in asthma. Both clinical and experimental studies suggested that HMGB1 was involved in the pathogenesis of asthma probably by regulating the downstream signaling pathways via corresponding receptors. This article reviews the role of HMGB1 in pathogenesis of asthma, and provides a new theoretical basis for the diagnosis and treatment of asthma.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Critical Care Medicine, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology; Hubei Clinical Research Center for Infectious Diseases; Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences; Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, 430023, PR China; The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, PR China
| | - Ruiting Li
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China.
| |
Collapse
|
223
|
Neutrophil Extracellular Traps in Airway Diseases: Pathological Roles and Therapeutic Implications. Int J Mol Sci 2023; 24:ijms24055034. [PMID: 36902466 PMCID: PMC10003347 DOI: 10.3390/ijms24055034] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Neutrophils are important effector cells of the innate immune response that fight pathogens by phagocytosis and degranulation. Neutrophil extracellular traps (NETs) are released into the extracellular space to defend against invading pathogens. Although NETs play a defensive role against pathogens, excessive NETs can contribute to the pathogenesis of airway diseases. NETs are known to be directly cytotoxic to the lung epithelium and endothelium, highly involved in acute lung injury, and implicated in disease severity and exacerbation. This review describes the role of NET formation in airway diseases, including chronic rhinosinusitis, and suggests that targeting NETs could be a therapeutic strategy for airway diseases.
Collapse
|
224
|
DISEASE ENDOTYPES PREDICT SEVERITY OF MUCOUS MEMBRAND PEMPHIGOID. J Invest Dermatol 2023:S0022-202X(23)00108-2. [PMID: 36870557 DOI: 10.1016/j.jid.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/17/2023] [Accepted: 02/01/2023] [Indexed: 03/06/2023]
Abstract
Mucous membrane pemphigoid (MMP) is an autoimmune disease with variable clinical presentation and multiple autoantigens. To determine if disease endotypes could be identified based on the pattern of serum reactivity, the clinical and diagnostic information of 70 MMP patients was collected, and reactivity to dermal or epidermal antigens, using indirect immunofluorescence (IIF), and specific reactivity to BP180, BP230, collagen VII and laminin 332 was evaluated. Most patients had lesions at multiple mucosae with the most prevalent being the oropharyngeal (mouth, gingiva, pharynx, 98.6%), followed by ocular (38.6%), nasal (32.9%), genital or anal (31.4%), laryngeal (20%), and esophageal (2.9%) sites, and skin (45.7%). Autoantigen profiling identified BP180 (71%) as the most common autoantigen, followed by laminin 332 (21.7%), collagen VII (13%), and BP230 IgG (11.6%). Reactivity to dermal antigens predicted a more severe disease characterized by a higher number of total sites involved, especially high-risk sites, and a decreased response to rituximab (RTX). In most cases, identification of dermal IIF reactivity is an accurate predictor of disease course; however, confirmation of laminin 332 reactivity is important with dermal IIF positivity due to an increased risk of solid tumors. Additionally, the ocular mucosae should be monitored in patients with IgA on DIF.
Collapse
|
225
|
Zhou Y, Duan Q, Yang D. In vitro human cell-based models to study airway remodeling in asthma. Biomed Pharmacother 2023; 159:114218. [PMID: 36638596 DOI: 10.1016/j.biopha.2023.114218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
Airway remodeling, as a predominant characteristic of asthma, refers to the structural changes that occurred both in the large and small airways. These pathological changes not only contribute to airway hyperresponsiveness and airway obstruction, but also predict poor outcomes of patients. In vitro models are the alternatives to animal models that facilitate airway remodeling research. Current approaches to mimic airway remodeling in vitro include mono cultures of cell lines and primary cells that are derived from the respiratory tract, and co-culture systems that consist of different cell subpopulations. Moreover, recent advances in microfluid chips and organoids show promise in simulating the complex architecture and functionality of native organs. According, they enable highly physiological-relevant investigations of human diseases in vitro. Here we aim to detail the current human cell-based models regarding their key pros and cons, and to discuss how they may be used to facilitate our understanding of airway remodeling in asthma.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shijingshan District, Beijing 100144, China
| | - Qirui Duan
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shijingshan District, Beijing 100144, China
| | - Dong Yang
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shijingshan District, Beijing 100144, China.
| |
Collapse
|
226
|
Association Between Blood Eosinophils and Neutrophils With Clinical Features in Adult-Onset Asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:811-821.e5. [PMID: 36473624 DOI: 10.1016/j.jaip.2022.11.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 10/20/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Asthma is a disease that can be separated into different phenotypes and endotypes based on the clinical characteristics and the molecular mechanisms of the condition, respectively. OBJECTIVE To assess the association between blood eosinophil and neutrophil counts with clinical and molecular features in patients with adult-onset asthma. METHODS Blood eosinophil and neutrophil counts were measured from 203 patients who took part in the Seinäjoki Adult Asthma Study and attended the 12-year follow-up visit. The patients were then divided into four groups (paucigranulocytic [n = 108], neutrophilic [n = 60], eosinophilic [n = 21], and mixed granulocytic [n = 14]), according to eosinophil and neutrophil levels. The cutoff values used to define the groups were 0.30 × 109 · L-1 for blood eosinophils and 4.4 × 109 · L-1 for blood neutrophils. RESULTS The neutrophilic group had highest body mass index. It was dispensed the highest doses of inhaled corticosteroids during the 12-year follow-up and made the most unplanned respiratory visits. The neutrophilic, eosinophilic, and mixed granulocytic groups had more severe asthma compared with the paucigranulocytic group. The neutrophilic and eosinophilic groups were associated with higher dispensed antibiotics. The eosinophilic group had more nasal polyps, more suspected sinusitis, a greater decline in lung function, and increased levels of periostin, FeNO, and IgE. The neutrophilic group had increased high-sensitivity C-reactive protein, matrix metalloproteinase-9, IL-6, leptin, and soluble urokinase plasminogen activator receptor levels. The mixed granulocytic group showed increased resistin levels together with the neutrophilic group. CONCLUSIONS In addition to blood eosinophils, the blood neutrophil count reflects underlying inflammatory patterns and indicates important differences in asthma clinical features and outcomes.
Collapse
|
227
|
Tackling the cytokine storm using advanced drug delivery in allergic airway disease. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
228
|
Zhao L, Luo JL, Ali MK, Spiekerkoetter E, Nicolls MR. The Human Respiratory Microbiome: Current Understandings and Future Directions. Am J Respir Cell Mol Biol 2023; 68:245-255. [PMID: 36476129 PMCID: PMC9989478 DOI: 10.1165/rcmb.2022-0208tr] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Microorganisms colonize the human body. The lungs and respiratory tract, previously believed to be sterile, harbor diverse microbial communities and the genomes of bacteria (bacteriome), viruses (virome), and fungi (mycobiome). Recent advances in amplicon and shotgun metagenomic sequencing technologies and data-analyzing methods have greatly aided the identification and characterization of microbial populations from airways. The respiratory microbiome has been shown to play roles in human health and disease and is an area of rapidly emerging interest in pulmonary medicine. In this review, we provide updated information in the field by focusing on four lung conditions, including asthma, chronic obstructive pulmonary disease, cystic fibrosis, and idiopathic pulmonary fibrosis. We evaluate gut, oral, and upper airway microbiomes and how they contribute to lower airway flora. The discussion is followed by a systematic review of the lower airway microbiome in health and disease. We conclude with promising research avenues and implications for evolving therapeutics.
Collapse
Affiliation(s)
- Lan Zhao
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, and.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, California.,VA Palo Alto Health Care System, Palo Alto, California; and
| | - Jun-Li Luo
- The Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Mohammed Khadem Ali
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, and.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, California
| | - Edda Spiekerkoetter
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, and.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, California
| | - Mark R Nicolls
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, and.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, California.,VA Palo Alto Health Care System, Palo Alto, California; and
| |
Collapse
|
229
|
Womble JT, Ihrie MD, McQuade VL, Hegde A, McCravy MS, Phatak S, Tighe RM, Que LG, D’Alessio D, Walker JKL, Ingram JL. Vertical sleeve gastrectomy associates with airway hyperresponsiveness in a murine model of allergic airway disease and obesity. Front Endocrinol (Lausanne) 2023; 14:1092277. [PMID: 36926031 PMCID: PMC10011633 DOI: 10.3389/fendo.2023.1092277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
Introduction Asthma is a chronic airway inflammatory disease marked by airway inflammation, remodeling and hyperresponsiveness to allergens. Allergic asthma is normally well controlled through the use of beta-2-adrenergic agonists and inhaled corticosteroids; however, a subset of patients with comorbid obesity experience resistance to currently available therapeutics. Patients with asthma and comorbid obesity are also at a greater risk for severe disease, contributing to increased risk of hospitalization. Bariatric surgery improves asthma control and airway hyperresponsiveness in patients with asthma and comorbid obesity, however, the underlying mechanisms for these improvements remain to be elucidated. We hypothesized that vertical sleeve gastrectomy (VSG), a model of metabolic surgery in mice, would improve glucose tolerance and airway inflammation, resistance, and fibrosis induced by chronic allergen challenge and obesity. Methods Male C57BL/6J mice were fed a high fat diet (HFD) for 13 weeks with intermittent house dust mite (HDM) allergen administration to induce allergic asthma, or saline as control. At week 11, a subset of mice underwent VSG or Sham surgery with one week recovery. A separate group of mice did not undergo surgery. Mice were then challenged with HDM or saline along with concurrent HFD feeding for 1-1.5 weeks before measurement of lung mechanics and harvesting of tissues, both of which occurred 24 hours after the final HDM challenge. Systemic and pulmonary cytokine profiles, lung histology and gene expression were analyzed. Results High fat diet contributed to increased body weight, serum leptin levels and development of glucose intolerance for both HDM and saline treatment groups. When compared to saline-treated mice, HDM-challenged mice exhibited greater weight gain. VSG improved glucose tolerance in both saline and HDM-challenged mice. HDM-challenged VSG mice exhibited an increase in airway hyperresponsiveness to methacholine when compared to the non-surgery group. Discussion The data presented here indicate increased airway hyperresponsiveness in allergic mice undergoing bariatric surgery.
Collapse
Affiliation(s)
- Jack T. Womble
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Mark D. Ihrie
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Victoria L. McQuade
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Akhil Hegde
- School of Nursing, Duke University, Durham, NC, United States
| | - Matthew S. McCravy
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Sanat Phatak
- Diabetes/Rheumatology Units, King Edward Memorial Hospital, Pune, India
| | - Robert M. Tighe
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Loretta G. Que
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - David D’Alessio
- Division of Endocrinology, Metabolism and Nutrition, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | | | - Jennifer L. Ingram
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
230
|
Schriml LM, Lichenstein R, Bisordi K, Bearer C, Baron JA, Greene C. Modeling the enigma of complex disease etiology. J Transl Med 2023; 21:148. [PMID: 36829165 PMCID: PMC9957692 DOI: 10.1186/s12967-023-03987-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/14/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Complex diseases often present as a diagnosis riddle, further complicated by the combination of multiple phenotypes and diseases as features of other diseases. With the aim of enhancing the determination of key etiological factors, we developed and tested a complex disease model that encompasses diverse factors that in combination result in complex diseases. This model was developed to address the challenges of classifying complex diseases given the evolving nature of understanding of disease and interaction and contributions of genetic, environmental, and social factors. METHODS Here we present a new approach for modeling complex diseases that integrates the multiple contributing genetic, epigenetic, environmental, host and social pathogenic effects causing disease. The model was developed to provide a guide for capturing diverse mechanisms of complex diseases. Assessment of disease drivers for asthma, diabetes and fetal alcohol syndrome tested the model. RESULTS We provide a detailed rationale for a model representing the classification of complex disease using three test conditions of asthma, diabetes and fetal alcohol syndrome. Model assessment resulted in the reassessment of the three complex disease classifications and identified driving factors, thus improving the model. The model is robust and flexible to capture new information as the understanding of complex disease improves. CONCLUSIONS The Human Disease Ontology's Complex Disease model offers a mechanism for defining more accurate disease classification as a tool for more precise clinical diagnosis. This broader representation of complex disease, therefore, has implications for clinicians and researchers who are tasked with creating evidence-based and consensus-based recommendations and for public health tracking of complex disease. The new model facilitates the comparison of etiological factors between complex, common and rare diseases and is available at the Human Disease Ontology website.
Collapse
Affiliation(s)
- Lynn M. Schriml
- grid.411024.20000 0001 2175 4264University of Maryland School of Medicine, Institute for Genome Sciences, Baltimore, MD USA
| | - Richard Lichenstein
- grid.411024.20000 0001 2175 4264University of Maryland School of Medicine, Baltimore, MD USA
| | - Katharine Bisordi
- grid.411024.20000 0001 2175 4264University of Maryland School of Medicine, Baltimore, MD USA
| | - Cynthia Bearer
- grid.67105.350000 0001 2164 3847Case Western Reserve University, Cleveland, OH USA
| | - J. Allen Baron
- grid.411024.20000 0001 2175 4264University of Maryland School of Medicine, Institute for Genome Sciences, Baltimore, MD USA
| | - Carol Greene
- grid.411024.20000 0001 2175 4264University of Maryland School of Medicine, Baltimore, MD USA
| |
Collapse
|
231
|
Alsayed AR, Abed A, Khader HA, Al-Shdifat LMH, Hasoun L, Al-Rshaidat MMD, Alkhatib M, Zihlif M. Molecular Accounting and Profiling of Human Respiratory Microbial Communities: Toward Precision Medicine by Targeting the Respiratory Microbiome for Disease Diagnosis and Treatment. Int J Mol Sci 2023; 24:4086. [PMID: 36835503 PMCID: PMC9966333 DOI: 10.3390/ijms24044086] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/05/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
The wide diversity of microbiota at the genera and species levels across sites and individuals is related to various causes and the observed differences between individuals. Efforts are underway to further understand and characterize the human-associated microbiota and its microbiome. Using 16S rDNA as a genetic marker for bacterial identification improved the detection and profiling of qualitative and quantitative changes within a bacterial population. In this light, this review provides a comprehensive overview of the basic concepts and clinical applications of the respiratory microbiome, alongside an in-depth explanation of the molecular targets and the potential relationship between the respiratory microbiome and respiratory disease pathogenesis. The paucity of robust evidence supporting the correlation between the respiratory microbiome and disease pathogenesis is currently the main challenge for not considering the microbiome as a novel druggable target for therapeutic intervention. Therefore, further studies are needed, especially prospective studies, to identify other drivers of microbiome diversity and to better understand the changes in the lung microbiome along with the potential association with disease and medications. Thus, finding a therapeutic target and unfolding its clinical significance would be crucial.
Collapse
Affiliation(s)
- Ahmad R. Alsayed
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan
| | - Anas Abed
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 11931, Jordan
| | - Heba A. Khader
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Laith M. H. Al-Shdifat
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan
| | - Luai Hasoun
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan
| | - Mamoon M. D. Al-Rshaidat
- Laboratory for Molecular and Microbial Ecology (LaMME), Department of Biological Sciences, School of Sciences, The University of Jordan, Amman 11942, Jordan
| | - Mohammad Alkhatib
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Roma, Italy
| | - Malek Zihlif
- Department of Pharmacology, School of Medicine, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
232
|
Akkenepally S, Yombo DJK, Yerubandi S, Geereddy BR, McCormack FX, Madala SK. Interleukin 31 receptor alpha augments muscarinic acetylcholine receptor 3-driven calcium signaling and airway hyperresponsiveness in asthma. RESEARCH SQUARE 2023:rs.3.rs-2564484. [PMID: 36824812 PMCID: PMC9949265 DOI: 10.21203/rs.3.rs-2564484/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Asthma is a chronic inflammatory airway disease characterized by airway hyperresponsiveness (AHR), inflammation, and goblet cell hyperplasia. Both Th1 and Th2 cytokines, including IFN-γ, IL-4, and IL-13 have been shown to induce asthma; however, the underlying mechanisms remain unclear. We observed a significant increase in the expression of IL-31RA, but not its cognate ligand IL-31 during allergic asthma. In support of this, IFN-γ and Th2 cytokines, IL-4 and IL-13, upregulated IL-31RA but not IL-31 in airway smooth muscle cells (ASMC). Importantly, the loss of IL-31RA attenuated AHR but had no effects on inflammation and goblet cell hyperplasia in allergic asthma or mice treated with IL-13 or IFN-γ. Mechanistically, we demonstrate that IL-31RA functions as a positive regulator of muscarinic acetylcholine receptor 3 expression and calcium signaling in ASMC. Together, these results identified a novel role for IL-31RA in AHR distinct from airway inflammation and goblet cell hyperplasia in asthma.
Collapse
Affiliation(s)
- Santoshi Akkenepally
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio USA
- Division of Biochemistry, National Institute of Nutrition, Hyderabad, Telangana, India
| | - Dan JK Yombo
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio USA
| | - Sanjana Yerubandi
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio USA
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio USA
| | | | - Francis X. McCormack
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio USA
| | - Satish K Madala
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio USA
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio USA
| |
Collapse
|
233
|
Kozlik-Siwiec P, Buregwa-Czuma S, Zawlik I, Dziedzina S, Myszka A, Zuk-Kuwik J, Siwiec-Kozlik A, Zarychta J, Okon K, Zareba L, Soja J, Jakiela B, Kepski M, Bazan JG, Bazan-Socha S. Co-Expression Analysis of Airway Epithelial Transcriptome in Asthma Patients with Eosinophilic vs. Non-Eosinophilic Airway Infiltration. Int J Mol Sci 2023; 24:3789. [PMID: 36835202 PMCID: PMC9959255 DOI: 10.3390/ijms24043789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Asthma heterogeneity complicates the search for targeted treatment against airway inflammation and remodeling. We sought to investigate relations between eosinophilic inflammation, a phenotypic feature frequent in severe asthma, bronchial epithelial transcriptome, and functional and structural measures of airway remodeling. We compared epithelial gene expression, spirometry, airway cross-sectional geometry (computed tomography), reticular basement membrane thickness (histology), and blood and bronchoalveolar lavage (BAL) cytokines of n = 40 moderate to severe eosinophilic (EA) and non-eosinophilic asthma (NEA) patients distinguished by BAL eosinophilia. EA patients showed a similar extent of airway remodeling as NEA but had an increased expression of genes involved in the immune response and inflammation (e.g., KIR3DS1), reactive oxygen species generation (GYS2, ATPIF1), cell activation and proliferation (ANK3), cargo transporting (RAB4B, CPLX2), and tissue remodeling (FBLN1, SOX14, GSN), and a lower expression of genes involved in epithelial integrity (e.g., GJB1) and histone acetylation (SIN3A). Genes co-expressed in EA were involved in antiviral responses (e.g., ATP1B1), cell migration (EPS8L1, STOML3), cell adhesion (RAPH1), epithelial-mesenchymal transition (ASB3), and airway hyperreactivity and remodeling (FBN3, RECK), and several were linked to asthma in genome- (e.g., MRPL14, ASB3) or epigenome-wide association studies (CLC, GPI, SSCRB4, STRN4). Signaling pathways inferred from the co-expression pattern were associated with airway remodeling (e.g., TGF-β/Smad2/3, E2F/Rb, and Wnt/β-catenin).
Collapse
Affiliation(s)
- Pawel Kozlik-Siwiec
- Department of Internal Medicine, Jagiellonian University Medical College, 31-066 Krakow, Poland
- Haematology Clinical Department, University Hospital, 31-501 Krakow, Poland
| | - Sylwia Buregwa-Czuma
- College of Natural Sciences, Institute of Computer Science, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Izabela Zawlik
- Centre for Innovative Research in Medical and Natural Sciences, Institute of Medical Sciences, Medical College, University of Rzeszow, Kopisto 2a, 35-959 Rzeszow, Poland
| | - Sylwia Dziedzina
- Department of Internal Medicine, Jagiellonian University Medical College, 31-066 Krakow, Poland
| | - Aleksander Myszka
- Institute of Medical Sciences, Medical College, University of Rzeszow, Kopisto 2a, 35-959 Rzeszow, Poland
| | - Joanna Zuk-Kuwik
- Haematology Clinical Department, University Hospital, 31-501 Krakow, Poland
- Haematology Department, Jagiellonian University Medical College, 31-501 Krakow, Poland
| | | | - Jacek Zarychta
- Department of Internal Medicine, Jagiellonian University Medical College, 31-066 Krakow, Poland
- Pulmonary Hospital, 34-736 Zakopane, Poland
| | - Krzysztof Okon
- Department of Pathology, Jagiellonian University Medical College, 33-332 Krakow, Poland
| | - Lech Zareba
- College of Natural Sciences, Institute of Computer Science, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Jerzy Soja
- Department of Internal Medicine, Jagiellonian University Medical College, 31-066 Krakow, Poland
| | - Bogdan Jakiela
- Department of Internal Medicine, Jagiellonian University Medical College, 31-066 Krakow, Poland
| | - Michał Kepski
- College of Natural Sciences, Institute of Computer Science, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Jan G. Bazan
- College of Natural Sciences, Institute of Computer Science, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Stanislawa Bazan-Socha
- Department of Internal Medicine, Jagiellonian University Medical College, 31-066 Krakow, Poland
| |
Collapse
|
234
|
Visser E, de Jong K, Pepels JJS, Kerstjens HAM, Ten Brinke A, van Zutphen T. Diet quality, food intake and incident adult-onset asthma: a Lifelines Cohort Study. Eur J Nutr 2023; 62:1635-1645. [PMID: 36739315 DOI: 10.1007/s00394-023-03091-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 01/12/2023] [Indexed: 02/05/2023]
Abstract
PURPOSE Dietary factors have been suggested as drivers of the rising prevalence of adult-onset asthma, but evidence is inconclusive, possibly due to the complex interrelation with obesity. We aim to explore the relation of diet quality and food intake with incident adult-onset asthma in normal weight and overweight adults of the prospective population-based Lifelines Cohort Study. METHODS Incident adult-onset asthma was defined as self-reported asthma at ± 4-year follow-up, in adults free of airway disease at baseline. Diet quality scores and food group intake were assessed at baseline. Log-binomial regression analyses were used to estimate adjusted relative risks (RR) between dietary intake (per portion) and incident adult-onset asthma, in categories of BMI (cutoff: 25 kg/m2). RESULTS 477 incident asthma cases (75% female, 62% overweight) and 34,698 controls (60% female, 53% overweight) were identified. Diet quality-assessed by the Lifelines Diet Score and Mediterranean Diet Score-was not associated with incident adult-onset asthma in the two BMI groups. Although the dietary intake of several food groups differed between cases and controls, after adjustment for confounders only few remained associated with adult-onset asthma, including red and processed meat (RR: 0.93 per 15 g intake; 95% CI 0.86-0.99) in the normal weight group and intake of cheese (RR 1.09 per 20 g intake; 95% CI 1.00-1.17) and vegetables (RR 1.10 per 50 g intake; 95% CI 1.00-1.21) in the overweight group. CONCLUSION The results of this study question the role of food as a 'simple' predictor of adult-onset asthma and call for an integrative approach, including a range of modifiable lifestyle factors and further asthma phenotyping.
Collapse
Affiliation(s)
- Edith Visser
- Department of Epidemiology, Medical Centre Leeuwarden, Leeuwarden, The Netherlands.
- Department of Sustainable Health, Faculty Campus Fryslân, University of Groningen, Leeuwarden, The Netherlands.
| | - Kim de Jong
- Department of Epidemiology, Medical Centre Leeuwarden, Leeuwarden, The Netherlands
| | - Janneke J S Pepels
- Department of Epidemiology, Medical Centre Leeuwarden, Leeuwarden, The Netherlands
| | - Huib A M Kerstjens
- Department of Pulmonary Medicine, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Anneke Ten Brinke
- Department of Pulmonary Medicine, Medical Centre Leeuwarden, Leeuwarden, The Netherlands
| | - Tim van Zutphen
- Department of Sustainable Health, Faculty Campus Fryslân, University of Groningen, Leeuwarden, The Netherlands
| |
Collapse
|
235
|
Simvastatin Reduces NETosis to Attenuate Severe Asthma by Inhibiting PAD4 Expression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:1493684. [PMID: 36778209 PMCID: PMC9911252 DOI: 10.1155/2023/1493684] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/29/2022] [Accepted: 01/03/2023] [Indexed: 02/05/2023]
Abstract
Objective Patients with severe asthma respond poorly to corticosteroids, and their care accounts for more than 60% of the total costs attributed to asthma. Neutrophils form neutrophil extracellular traps (NETs), which play a crucial role in severe asthma. Statins have shown anti-inflammatory effects by reducing NETosis. In this study, we investigate if simvastatin can attenuate severe asthma by reducing NETosis and the underlying mechanism. Methods Mice were concomitantly sensitized with ovalbumin (OVA), house dust mite (HDM), and lipopolysaccharide (LPS) during sensitization to establish a mouse model of severe asthma with neutrophil predominant inflammation (OVA+LPS mice) and treated with or without simvastatin. In inflammatory response, proportions of Th2, Th17, and Treg cells in lung tissue were detected by flow cytometry, and the levels of cytokines, dsDNA, and MPO-DNA in bronchoalveolar lavage fluid (BALF) were analyzed by ELISA. Citrullinated histone H3 (CitH3) and peptidyl arginine deiminase 4 (PAD4) in lung tissue were determined by Western blot and immunofluorescence imaging. PAD4 mRNA was determined by quantitative PCR (qPCR). HL-60 cells were differentiated into neutrophil-like cells by 1.25% DMSO. The neutrophil-like cells were treated with or without LPS, and simvastatin was then stimulated with PMA. CitH3 and PAD4 expressions were determined. Results Sensitization with OVA, HDM, and LPS resulted in neutrophilic inflammation and the formation of NETs in the lungs. Simvastatin treatment reduced the inflammation score, cytokine levels, total cells, and neutrophil counts in the BALF and reduced proportions of Th2 and Th17 but increased Treg cells in lungs of OVA+LPS mice. Simvastatin-treated OVA+LPS mice show reduced NET formation in BALF and lung tissue compared to control mice. Adoptive transfer of neutrophils was sufficient to restore NETosis and neutrophilic inflammation in simvastatin-treated OVA+LPS mice. Simvastatin reduced PAD4 mRNA and protein expression in lung tissues and neutrophils isolated from lungs of OVA+LPS mice and consequent NET formation. In vitro, simvastatin reduced LPS-induced PAD4 upregulation and NETosis in HL-60-differentiated neutrophil-like cells. Furthermore, PAD4-overexpressed lentiviral transduction was sufficient to restore PAD4 protein expression and NETosis in simvastatin-treated HL-60-differentiated neutrophil-like cells. Conclusions Simvastatin reduces Th17-mediated neutrophilic inflammation and airway hyperreactivity by reducing PAD4 expression and inhibiting NETosis in a mouse model of severe asthma. Severe asthmatic patients with high levels of circulating NETs or sputum NETs may show improved responses to statin treatment.
Collapse
|
236
|
Understanding the Functional Role of the Microbiome and Metabolome in Asthma. Curr Allergy Asthma Rep 2023; 23:67-76. [PMID: 36525159 DOI: 10.1007/s11882-022-01056-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW Asthma is a heterogenous respiratory disease characterized by airway inflammation and obstruction. However, the causes of asthma are unknown. Several studies have reported microbial and metabolomic dysbiosis in asthmatic patients; but, little is known about the functional role of the microbiota or the host-microbe metabolome in asthma pathophysiology. Current multi-omic studies are linking both the metabolome and microbiome in different organ systems to help identify the interactions involved in asthma, with the goal of better identifying endotypes/phenotypes, causal links, and potential targets of treatment. This review thus endeavors to explore the benefits of and current advances in studying microbiome-metabolome interactions in asthma. RECENT FINDINGS This is a narrative review of the current state of research surrounding the interaction between the microbiome and metabolome and their role in asthma. Associations with asthma onset, severity, and phenotype have been identified in both the microbiome and the metabolome, most frequently in the gut. More recently, studies have begun to investigate the role of the respiratory microbiome in airway disease and its association with the systemic metabolome, which has provided further insights into its role in asthma phenotypes. This review also identifies gaps in the field in understanding the direct link between respiratory microbiome and metabolome, hypothesizes the benefits for conducting such studies in the future for asthma treatment and prevention, and identifies current analytical limitations that need to be addressed to advance the field. This is a comprehensive review of the current state of research on the interaction between the microbiome and metabolome and their role in asthma.
Collapse
|
237
|
O'Byrne PM, Panettieri RA, Taube C, Brindicci C, Fleming M, Altman P. Development of an inhaled anti-TSLP therapy for asthma. Pulm Pharmacol Ther 2023; 78:102184. [PMID: 36535465 DOI: 10.1016/j.pupt.2022.102184] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/24/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Thymic stromal lymphopoietin (TSLP), an epithelial cell-derived cytokine, acts as a key mediator in airway inflammation and modulates the function of multiple cell types, including dendritic cells and group 2 innate lymphoid cells. TSLP plays a role in asthma pathogenesis as an upstream cytokine, and data suggest that TSLP blockade with the anti-TSLP monoclonal antibody, tezepelumab, could be efficacious in a broad asthma population. Currently approved asthma biologic therapies target allergic or eosinophilic disease and require phenotyping; therefore, an unmet need exists for a therapy that can address Type 2 (T2)-high and T2-low inflammation in asthma. All currently approved biologic treatments are delivered intravenously or subcutaneously; an inhaled therapy route that allows direct targeting of the lung with reduced systemic impact may offer advantages. Currently in development, ecleralimab (CSJ117) represents the first inhaled anti-TSLP antibody fragment that binds soluble TSLP and prevents TSLP receptor activation, thereby inhibiting further inflammatory signalling cascades. This anti-TSLP antibody fragment is being developed for patients with severe uncontrolled asthma despite standard of care inhaled therapy. A Phase IIa proof of concept study, using allergen bronchoprovocation as a model for asthma exacerbations, found that ecleralimab was well-tolerated and reduced allergen-induced bronchoconstriction in adult patients with mild asthma. These results suggest ecleralimab may be a promising, new therapeutic class for asthma treatment.
Collapse
Affiliation(s)
- Paul M O'Byrne
- Firestone Institute for Respiratory Health, St. Joseph's Healthcare and McMaster University, Hamilton, Ontario, Canada.
| | | | - Christian Taube
- Department of Pulmonary Medicine, University Hospital Essen, Germany
| | | | | | - Pablo Altman
- Novartis Pharmaceuticals Corporation, New Jersey, USA.
| |
Collapse
|
238
|
Targeting the Semaphorin3E-plexinD1 complex in allergic asthma. Pharmacol Ther 2023; 242:108351. [PMID: 36706796 DOI: 10.1016/j.pharmthera.2023.108351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 01/09/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
Asthma is a heterogenous airway disease characterized by airway inflammation and remodeling. It affects more than 300 million people worldwide and poses a significant burden on society. Semaphorins, discovered initially as neural guidance molecules, are ubiquitously expressed in various organs and regulate multiple signaling pathways. Interestingly, Semaphorin3E is a critical molecule in lung pathophysiology through its role in both lung development and homeostasis. Semaphorin3E binds to plexinD1, mediating regulatory effects on cell migration, proliferation, and angiogenesis. Recent in vitro and in vivo studies have demonstrated that the Semaphorin3E-plexinD1 axis is implicated in asthma, impacting inflammatory and structural cells associated with airway inflammation, tissue remodeling, and airway hyperresponsiveness. This review details the Semaphorin3E-plexinD1 axis in various aspects of asthma and highlights future directions in research including its potential role as a therapeutic target in airway allergic diseases.
Collapse
|
239
|
Ahmad JG, Marino MJ, Luong AU. Unified Airway Disease. Otolaryngol Clin North Am 2023; 56:181-195. [DOI: 10.1016/j.otc.2022.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
240
|
Tang W, Qin J, Zhou Y, Wang W, Teng F, Liu J, Yi L, Cui J, Zhu X, Wang S, Dong J, Wei Y. Regulation of ferroptosis and ACSL4-15LO1 pathway contributed to the anti-asthma effect of acupuncture. Int Immunopharmacol 2023; 115:109670. [PMID: 36603356 DOI: 10.1016/j.intimp.2022.109670] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023]
Abstract
Acupuncture has been frequently used in China for the treatment asthma for thousands of years. Ferroptosis was recently revealed to be involved in several pathological conditions including asthma. However, the detailed links between ferroptosis and airway inflammation in asthma, as well as the detailed regulation of acupuncture on these disorders remains unclear. Our results demonstrated that the non-haem Fe2+ level increased markedly in the lung tissue of mouse asthma model, and positively correlated with RL and IL-4 level in BALF. Furthermore, lipid peroxidation markers MDA and GSSG increased remarkably in OVA-induced experimental asthma mice. Up-regulation of lipid peroxidation associated proteins ACSL4 and15-LO1 was also observed in OVA-induced experimental asthma mice. To demonstrate the role of ferroptosis in asthma and the effect of acupuncture on these disorders, ferroptosis-induction agent erastin and ferroptosis-inhibition agent fer-1 were used, and our data demonstrated that erastin could augment lung inflammation and lipid peroxidation in OVA induced asthma model. Fer-1 was able to relieve AHR, lung inflammation, non-haem Fe2+ level, lipid peroxidation and ferroptosis related pathway ACSL4-15LO1 in OVA-induced experimental asthma mice. Acupuncture treatment alleviated RL, lung inflammation as well as type 2 cytokines IL-4 and IL-13 levels induced by OVA inhalation. What's more, acupuncture significantly reduced the MDA and GSSG levels, the non-haem Fe2+ level and ACSL4-15-LO1 proteins expression. Acupuncture also relieved erastin-induced exacerbation in lung inflammation and lipid peroxidation in ferroptosis. Acupuncture treatment could relieve ferroptosis related exacerbation in airway inflammation. Our study provided insights into the underlying mechanisms for the protective effects of acupuncture and highlighted a therapeutic potential of acupuncture treatment in the attenuation of lipid peroxidation and ferroptosis in asthma.
Collapse
Affiliation(s)
- Weifeng Tang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai 200040, China
| | - Jingjing Qin
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai 200040, China
| | - Yaolong Zhou
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai 200040, China
| | - Wenqian Wang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai 200040, China
| | - Fangzhou Teng
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai 200040, China
| | - Jiaqi Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai 200040, China
| | - La Yi
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai 200040, China
| | - Jie Cui
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai 200040, China
| | - Xueyi Zhu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai 200040, China
| | - Shiyuan Wang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai 200040, China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai 200040, China.
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai 200040, China.
| |
Collapse
|
241
|
Pediatric obesity and severe asthma: Targeting pathways driving inflammation. Pharmacol Res 2023; 188:106658. [PMID: 36642111 DOI: 10.1016/j.phrs.2023.106658] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Asthma affects more than 300 million people of all ages worldwide, including about 10-15% of school-aged children, and its prevalence is increasing. Severe asthma (SA) is a particular and rare phenotype requiring treatment with high-dose inhaled corticosteroids plus a second controller and/or systemic glucocorticoid courses to achieve symptom control or remaining "uncontrolled" despite this therapy. In SA, other diagnoses have been excluded, and potential exacerbating factors have been addressed. Notably, obese asthmatics are at higher risk of developing SA. Obesity is both a major risk factor and a disease modifier of asthma in children and adults: two main "obese asthma" phenotypes have been described in childhood with high or low levels of Type 2 inflammation biomarkers, respectively, the former characterized by early onset and eosinophilic inflammation and the latter by neutrophilic inflammation and late-onset. Nevertheless, the interplay between obesity and asthma is far more complex and includes obese tissue-driven inflammatory pathways, mechanical factors, comorbidities, and poor response to corticosteroids. This review outlines the most recent findings on SA in obese children, particularly focusing on inflammatory pathways, which are becoming of pivotal importance in order to identify selective targets for specific treatments, such as biological agents.
Collapse
|
242
|
Roshan Lal T, Cechinel LR, Freishtat R, Rastogi D. Metabolic Contributions to Pathobiology of Asthma. Metabolites 2023; 13:212. [PMID: 36837831 PMCID: PMC9962059 DOI: 10.3390/metabo13020212] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/11/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Asthma is a heterogenous disorder driven by inflammatory mechanisms that result in multiple phenotypes. Given the complex nature of this condition, metabolomics is being used to delineate the pathobiology of asthma. Metabolomics is the study of metabolites in biology, which includes biofluids, cells, and tissues. These metabolites have a vital role in a disease as they contribute to the pathogenesis of said condition. This review describes how macrometabolic and micrometabolic studies pertaining to these metabolites have contributed to our current understanding of asthma, as well as its many phenotypes. One of the main phenotypes this review will discuss in further detail is obesity as well as diabetes. Distinct roles of metabolites in endotyping asthma and their translation to potential therapy development for asthma is also discussed in this review.
Collapse
Affiliation(s)
- Tamanna Roshan Lal
- Rare Disease Institute, Children’s National Hospital, Washington, DC 20012, USA
| | - Laura Reck Cechinel
- Departments of Pediatrics and Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
| | - Robert Freishtat
- Departments of Pediatrics and Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
| | - Deepa Rastogi
- Departments of Pediatrics and Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
| |
Collapse
|
243
|
Nanda A, Siles R, Park H, Louisias M, Ariue B, Castillo M, Anand MP, Nguyen AP, Jean T, Lopez M, Altisheh R, Pappalardo AA. Ensuring equitable access to guideline-based asthma care across the lifespan: Tips and future directions to the successful implementation of the new NAEPP 2020 guidelines, a Work Group Report of the AAAAI Asthma, Cough, Diagnosis, and Treatment Committee. J Allergy Clin Immunol 2023; 151:869-880. [PMID: 36720288 DOI: 10.1016/j.jaci.2023.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/08/2023] [Accepted: 01/19/2023] [Indexed: 01/29/2023]
Abstract
The most recent recommendations from the 2020 National Asthma Education and Prevention Program Update and Global Initiative for Asthma 2021 guide evidence-based clinical decision making. However, given the present state of health disparities by age, income, and race, the equitable implementation and dissemination of these guidelines will be unlikely without further guidance. This work group report reviews the current state of the new asthma guideline implementation; presents updated evidence-based therapeutic options with attention to specific patient populations; and addresses barriers to the implementation of these guidelines in minoritized, historically marginalized, and underresourced communities. Allergists and immunologists can use practical ways to accomplish the goals of improved asthma care access and advanced asthma care across the life span, with specific considerations to historically marginalized populations. Modifiable barriers to guideline implementation include financial barriers, environmental factors, and allergy subspecialty access and care coordination. Various programs to improve access to guideline-based asthma care include community programs, school-based asthma programs, and digital health solutions, with an emphasis on reducing disparities by race.
Collapse
Affiliation(s)
- Anil Nanda
- Asthma and Allergy Center, Lewisville-Flower Mound; Division of Allergy and Immunology, University of Texas Southwestern Medical Center, Dallas
| | - Roxana Siles
- Department of Allergy and Clinical Immunology, Respiratory Institute, Cleveland Clinic Foundation, Cleveland
| | - Henna Park
- Department of Pediatrics, University of Illinois Hospital, Chicago
| | - Margee Louisias
- Department of Medicine, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Cleveland; Department of Immunology, Boston Children's Hospital, Boston; Harvard Medical School, Boston
| | - Barbara Ariue
- Department of Pediatrics, Division of Allergy/Immunology, Loma Linda Children's Hospital, Loma Linda
| | - Maria Castillo
- Department of Medical Education at Driscoll Children's Hospital, Corpus Christi
| | - Mahesh Padukudru Anand
- Department of Respiratory Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysore
| | - Anh P Nguyen
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, School of Medicine, University of California Davis, Sacramento
| | - Tiffany Jean
- Division of Basic and Clinical Immunology, Department of Medicine, University of California Irvine, Orange
| | - Michael Lopez
- Division of Basic and Clinical Immunology, Department of Medicine, University of California Irvine, Orange
| | - Roula Altisheh
- Department of Allergy and Clinical Immunology, Respiratory Institute, Cleveland Clinic Foundation, Cleveland
| | - Andrea A Pappalardo
- Department of Pediatrics, Department of Medicine, University of Illinois at Chicago, Chicago
| |
Collapse
|
244
|
Effectiveness of Benralizumab in OCS-Dependent Severe Asthma: The Impact of 2 Years of Therapy in a Real-Life Setting. J Clin Med 2023; 12:jcm12030985. [PMID: 36769635 PMCID: PMC9918073 DOI: 10.3390/jcm12030985] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Patients with severe OCS-dependent asthma can be considered a subgroup of asthma patients with severe disease and great risk of complications, related to chronic OCS use. The introduction of biological drugs has represented a turning point in the therapeutic strategy for severe asthma, offering a valid alternative to OCS. Benralizumab, like other anti-IL-5 agents, has been shown to reduce exacerbations and OCS intake/dosage and improve symptom control and lung function. While these findings have also been confirmed in real-life studies, data on long-term efficacy are still limited. METHODS In this retrospective study, we evaluated the effects of 2 years of treatment with benralizumab on 44 patients with OCS-dependent severe asthma by analyzing clinical, biological and functional data. RESULTS After 2 years of benralizumab, 59.4% discontinued OCS and patients who continued to use OCS had their mean dose reduced by approximately 85% from baseline. Meanwhile, 85% of patients had their asthma well-controlled (ACT score > 20) and had no exacerbations, and 41.6% had normal lung function. CONCLUSIONS Our findings support the long-term effectiveness of benralizumab in severe OCS-dependent asthma in a real-life setting, suggesting potential reductive effects on costs and complications such as adverse pharmacological events.
Collapse
|
245
|
Hsieh A, Assadinia N, Hackett TL. Airway remodeling heterogeneity in asthma and its relationship to disease outcomes. Front Physiol 2023; 14:1113100. [PMID: 36744026 PMCID: PMC9892557 DOI: 10.3389/fphys.2023.1113100] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
Asthma affects an estimated 262 million people worldwide and caused over 461,000 deaths in 2019. The disease is characterized by chronic airway inflammation, reversible bronchoconstriction, and airway remodeling. Longitudinal studies have shown that current treatments for asthma (inhaled bronchodilators and corticosteroids) can reduce the frequency of exacerbations, but do not modify disease outcomes over time. Further, longitudinal studies in children to adulthood have shown that these treatments do not improve asthma severity or fixed airflow obstruction over time. In asthma, fixed airflow obstruction is caused by remodeling of the airway wall, but such airway remodeling also significantly contributes to airway closure during bronchoconstriction in acute asthmatic episodes. The goal of the current review is to understand what is known about the heterogeneity of airway remodeling in asthma and how this contributes to the disease process. We provide an overview of the existing knowledge on airway remodeling features observed in asthma, including loss of epithelial integrity, mucous cell metaplasia, extracellular matrix remodeling in both the airways and vessels, angiogenesis, and increased smooth muscle mass. While such studies have provided extensive knowledge on different aspects of airway remodeling, they have relied on biopsy sampling or pathological assessment of lungs from fatal asthma patients, which have limitations for understanding airway heterogeneity and the entire asthma syndrome. To further understand the heterogeneity of airway remodeling in asthma, we highlight the potential of in vivo imaging tools such as computed tomography and magnetic resonance imaging. Such volumetric imaging tools provide the opportunity to assess the heterogeneity of airway remodeling within the whole lung and have led to the novel identification of heterogenous gas trapping and mucus plugging as important predictors of patient outcomes. Lastly, we summarize the current knowledge of modification of airway remodeling with available asthma therapeutics to highlight the need for future studies that use in vivo imaging tools to assess airway remodeling outcomes.
Collapse
Affiliation(s)
- Aileen Hsieh
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Najmeh Assadinia
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Tillie-Louise Hackett
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada,*Correspondence: Tillie-Louise Hackett,
| |
Collapse
|
246
|
Molecular imaging of chemokine-like receptor 1 (CMKLR1) in experimental acute lung injury. Proc Natl Acad Sci U S A 2023; 120:e2216458120. [PMID: 36626557 PMCID: PMC9934297 DOI: 10.1073/pnas.2216458120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The lack of techniques for noninvasive imaging of inflammation has challenged precision medicine management of acute respiratory distress syndrome (ARDS). Here, we determined the potential of positron emission tomography (PET) of chemokine-like receptor-1 (CMKLR1) to monitor lung inflammation in a murine model of lipopolysaccharide-induced injury. Lung uptake of a CMKLR1-targeting radiotracer, [64Cu]NODAGA-CG34, was significantly increased in lipopolysaccharide-induced injury, correlated with the expression of multiple inflammatory markers, and reduced by dexamethasone treatment. Monocyte-derived macrophages, followed by interstitial macrophages and monocytes were the major CMKLR1-expressing leukocytes contributing to the increased tracer uptake throughout the first week of lipopolysaccharide-induced injury. The clinical relevance of CMKLR1 as a biomarker of lung inflammation in ARDS was confirmed using single-nuclei RNA-sequencing datasets which showed significant increases in CMKLR1 expression among transcriptionally distinct subsets of lung monocytes and macrophages in COVID-19 patients vs. controls. CMKLR1-targeted PET is a promising strategy to monitor the dynamics of lung inflammation and response to anti-inflammatory treatment in ARDS.
Collapse
|
247
|
Menegati LM, de Oliveira EE, Oliveira BDC, Macedo GC, de Castro E Silva FM. Asthma, obesity, and microbiota: A complex immunological interaction. Immunol Lett 2023; 255:10-20. [PMID: 36646290 DOI: 10.1016/j.imlet.2023.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Obesity and allergic asthma are inflammatory chronic diseases mediated by distinct immunological features, obesity presents a Th1/Th17 profile, asthma is commonly associated with Th2 response. However, when combined, they result in more severe asthma symptoms, greater frequency of exacerbation episodes, and lower therapy responsiveness. These features lead to decreased life quality, associated with higher morbidity/mortality rates. In addition, obesity prompts specific asthma phenotypes, which can be dependent on atopic status, age, and gender. In adults, obesity is associated with neutrophilic/Th17 profile, while in children, the outcome is diverse, in some cases children with obesity present aggravation of atopy, and Th2 inflammation, and in others an association with a Th1 profile, with reduced IgE levels and eosinophilia. These alterations occur due to a complex group of factors among which the microbiome has been recently explored. Particularly, evidence shows its important role in susceptibility or resistance to asthma development, via gut-lung-axis, and demonstrates its relevance to the immune pathogenesis of the syndrome. Few studies address the relevance of the lung microbiome in shaping the immune response, locally. However, specific bacteria, like Moraxella catarrhalis, Haemophilus influenza, and Streptococcus pneumoniae, correlate with important features of the obese-asthmatic phenotype. Although maternal obesity is known to increase asthma risk in offspring, the impact on lung colonization is unknown. This review details the main key immune mechanisms involved in obesity-aggravated asthma, featuring the effect of maternal obesity in the establishment of gut and lung microbiota of the offspring, acting as potential childhood asthma inducer.
Collapse
Affiliation(s)
- Laura Machado Menegati
- Faculdade de Medicina, Programa de Pós-Graduação em Saúde, Universidade Federal de Juiz de Fora, MG, Brazil
| | - Erick Esteves de Oliveira
- Instituto de Ciências Biológicas, Programa de Pós-Graduação em Biologia Departamento de Parasitologia, Microbiologia e Imunologia, Universidade Federal de Juiz de Fora MG, Brazil
| | | | - Gilson Costa Macedo
- Instituto de Ciências Biológicas, Programa de Pós-Graduação em Biologia Departamento de Parasitologia, Microbiologia e Imunologia, Universidade Federal de Juiz de Fora MG, Brazil
| | - Flávia Márcia de Castro E Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas - RJ, Universidade do Estado do Rio de Janeiro, Brazil.
| |
Collapse
|
248
|
Gil-Martínez M, Lorente-Sorolla C, Rodrigo-Muñoz JM, Lendínez MÁ, Núñez-Moreno G, de la Fuente L, Mínguez P, Mahíllo-Fernández I, Sastre J, Valverde-Monge M, Quirce S, Caballero ML, González-Barcala FJ, Arismendi E, Bobolea I, Valero A, Muñoz X, Cruz MJ, Martínez-Rivera C, Plaza V, Olaguibel JM, del Pozo V. Analysis of Differentially Expressed MicroRNAs in Serum and Lung Tissues from Individuals with Severe Asthma Treated with Oral Glucocorticoids. Int J Mol Sci 2023; 24:1611. [PMID: 36675122 PMCID: PMC9864670 DOI: 10.3390/ijms24021611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Nowadays, microRNAs (miRNAs) are increasingly used as biomarkers due to their potential contribution to the diagnosis and targeted treatment of a range of diseases. The aim of the study was to analyze the miRNA expression profiles in serum and lung tissue from patients with severe asthma treated with oral corticosteroids (OCS) and those without OCS treatment. For this purpose, serum and lung tissue miRNAs of OCS and non-OCS asthmatic individuals were evaluated by miRNAs-Seq, and subsequently miRNA validation was performed using RT-qPCR. Additionally, pathway enrichment analysis of deregulated miRNAs was conducted. We observed altered expression by the next-generation sequencing (NGS) of 11 miRNAs in serum, of which five (hsa-miR-148b-3p, hsa-miR-221-5p, hsa-miR-618, hsa-miR-941, and hsa-miR-769-5p) were validated by RT-qPCR, and three miRNAs in lung tissue (hsa-miR-144-3p, hsa-miR-144-5p, and hsa-miR-451a). The best multivariate logistic regression model to differentiate individuals with severe asthma, treated and untreated with OCS, was to combine the serum miRNAs hsa-miR-221-5p and hsa-miR-769-5p. Expression of hsa-miR-148b-3p and hsa-miR-221-5p correlated with FEV1/FVC (%) and these altered miRNAs act in key signaling pathways for asthma disease and the regulated expression of some genes (FOXO3, PTEN, and MAPK3) involved in these pathways. In conclusion, there are miRNA profiles differentially expressed in OCS-treated individuals with asthma and could be used as biomarkers of OCS treatment.
Collapse
Affiliation(s)
- Marta Gil-Martínez
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Clara Lorente-Sorolla
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain
| | - José M. Rodrigo-Muñoz
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Miguel Ángel Lendínez
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain
| | - Gonzalo Núñez-Moreno
- Department of Genetics, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040 Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Bioinformatics Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Lorena de la Fuente
- Department of Genetics, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Pablo Mínguez
- Department of Genetics, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040 Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Bioinformatics Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Ignacio Mahíllo-Fernández
- Biostatistics and Epidemiology Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), 28040 Madrid, Spain
| | - Joaquín Sastre
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Allergy Department, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - Marcela Valverde-Monge
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Allergy Department, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - Santiago Quirce
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Department of Allergy, Hospital Universitario La Paz, IdiPAZ, 28046 Madrid, Spain
| | - María L. Caballero
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Department of Allergy, Hospital Universitario La Paz, IdiPAZ, 28046 Madrid, Spain
| | - Francisco J. González-Barcala
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Pulmonology Department, Complejo Hospitalario Universitario de Santiago, 15706 Santiago de Compostela, Spain
| | - Ebymar Arismendi
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Allergy Unit & Severe Asthma Unit, Pulmonology and Allergy Department, Hospital Clínic, 08036 Barcelona, Spain
| | - Irina Bobolea
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Allergy Unit & Severe Asthma Unit, Pulmonology and Allergy Department, Hospital Clínic, 08036 Barcelona, Spain
| | - Antonio Valero
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Allergy Unit & Severe Asthma Unit, Pulmonology and Allergy Department, Hospital Clínic, 08036 Barcelona, Spain
| | - Xavier Muñoz
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Pulmonology Department, Hospital Vall d’Hebron, 08035 Barcelona, Spain
| | - María Jesús Cruz
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Pulmonology Department, Hospital Vall d’Hebron, 08035 Barcelona, Spain
| | - Carlos Martínez-Rivera
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Pulmonology Department, Hospital Germans Trias i Pujol, 08916 Badalona, Spain
| | - Vicente Plaza
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Respiratory Medicine Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - José M. Olaguibel
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Severe Asthma Unit, Department of Allergy, Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Victoria del Pozo
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Department of Medicine, Faculty of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| |
Collapse
|
249
|
Chen D, Chen Q, Zhao K, Guo Y, Huang Y, Yuan Z, Cai Y, Li S, Xu J, Lin X. Exploring the mechanism of Xiaoqinglong decoction in the treatment of infantile asthma based on network pharmacology and molecular docking. Medicine (Baltimore) 2023; 102:e32623. [PMID: 36637916 PMCID: PMC9839235 DOI: 10.1097/md.0000000000032623] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/20/2022] [Indexed: 01/14/2023] Open
Abstract
To explore the mechanism of Xiaoqinglong decoction (XQLD) in the treatment of infantile asthma (IA) based on network pharmacology and molecular docking. The active ingredients of fdrugs in XQLD were retrieved from Traditional Chinese Medicine Systems Pharmacology database and then the targets of drug ingredients were screened. The disease targets of IA were obtained from OMIM and Gencards databases, and the intersection targets of XQLD in the treatment of IA were obtained by Venny 2.1 mapping of ingredient targets and disease targets. Cytoscape software was used to construct active ingredient-intersection target network. The potential targets of XQLD in the treatment of IA were analyzed by protein-protein interaction network using STRING platform, and the Gene Ontology function and Kyoto Encyclopedia of Genes and Genomes enrichment analysis were obtained by R Studio software. AutoDock was used to perform molecular docking for verification. In this study, 150 active ingredients of XQLD were obtained, including quercetin, kaempferol, β-sitosterol, luteolin, stigmasterol, and so on. And 92 intersection targets of drugs and diseases were obtained, including interleukin 6 (IL6), cystatin 3, estrogen receptor 1, hypoxia inducible factor 1A, HSP90AA1, epidermal growth factor receptor and so on. There were 127 items of Gene Ontology enrichment analysis and 125 Kyoto Encyclopedia of Genes and Genomes enrichment results, showing that apoptosis, IL-17 signaling pathway, tumor necrosis factor signaling pathway, P13K-Akt signaling pathway and other pathways may play a key role in the treatment of IA by XQLD. The results of molecular docking showed that the key active ingredients including quercetin, kaempferol, β-sitosterol, luteolin, stigmasterol, and the core targets including IL6, cystatin 3, estrogen receptor 1, hypoxia inducible factor 1A, HSP90AA1, and epidermal growth factor receptor had good binding activity. Through network pharmacology and molecular docking, the potential targets and modern biological mechanisms of XQLD in the treatment of IA were preliminarily revealed in the study, which will provide reference for subsequent animal experiments and clinical trials.
Collapse
Affiliation(s)
- Daman Chen
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Qiqi Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kaibo Zhao
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongqi Guo
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuxin Huang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zehuan Yuan
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yujia Cai
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Sitong Li
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jiarong Xu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaohong Lin
- Traditional Chinese Medicine Hospital of Guangdong Province, Guangzhou, China
| |
Collapse
|
250
|
Micrococcus luteus-derived extracellular vesicles attenuate neutrophilic asthma by regulating miRNAs in airway epithelial cells. Exp Mol Med 2023; 55:196-204. [PMID: 36639716 PMCID: PMC9898544 DOI: 10.1038/s12276-022-00910-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 01/15/2023] Open
Abstract
Bacterial extracellular vesicles (EVs) have been shown to regulate various pulmonary diseases, but their functions in asthma remain uncertain. To demonstrate the clinical significance of Micrococcus luteus-derived EVs (MlEVs) in asthma, we enrolled 45 asthmatic patients (20 patients with neutrophilic asthma [NA], 25 patients with eosinophilic asthma [EA]) and 40 healthy controls (HCs). When the prevalence of IgG1 and IgG4 specific to MlEVs was evaluated in serum by ELISA, lower levels of MlEV-specific IgG4 (but not IgG1) were noted in asthmatic patients than in HCs. Among asthmatic patients, significantly lower levels of MIEV-specific IgG4 were noted in patients with NA than in those with EA. Moreover, there was a positive correlation between serum MlEV-specific IgG4 levels and FEV1 (%) values. In asthmatic C57BL/6 mice, MlEVs significantly attenuated neutrophilic airway inflammation by reducing the production of IL-1β and IL-17 in bronchoalveolar lavage fluid as well as the number of group 3 innate lymphoid cells (ILC3s) in lung tissues. To clarify the functional mechanism of MlEVs in NA, the effect of MlEVs on airway epithelial cells (AECs) and immune cells was investigated ex vivo. According to microarray analysis, MlEVs upregulated hsa-miR-4517 expression in AECs. Moreover, this miRNA could suppress IL-1β production by monocytes, resulting in the inhibition of ILC3 activation and neutrophil recruitment. These findings suggest that MlEVs could be a novel therapeutic agent for managing unresolved NA by regulating miRNA expression in AECs.
Collapse
|