201
|
Springer ML, Ozawa CR, Blau HM. Transient production of alpha-smooth muscle actin by skeletal myoblasts during differentiation in culture and following intramuscular implantation. CELL MOTILITY AND THE CYTOSKELETON 2002; 51:177-86. [PMID: 11977092 DOI: 10.1002/cm.10022] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
alpha-smooth muscle actin (SMA) is typically not present in post-embryonic skeletal muscle myoblasts or skeletal muscle fibers. However, both primary myoblasts isolated from neonatal mouse muscle tissue, and C2C12, an established myoblast cell line, produced SMA in culture within hours of exposure to differentiation medium. The SMA appeared during the cells' initial elongation, persisted through differentiation and fusion into myotubes, remained abundant in early myotubes, and was occasionally observed in a striated pattern. SMA continued to be present during the initial appearance of sarcomeric actin, but disappeared shortly thereafter leaving only sarcomeric actin in contractile myotubes derived from primary myoblasts. Within one day after implantation of primary myoblasts into mouse skeletal muscle, SMA was observed in the myoblasts; but by 9 days post-implantation, no SMA was detectable in myoblasts or muscle fibers. Thus, both neonatal primary myoblasts and an established myoblast cell line appear to similarly reprise an embryonic developmental program during differentiation in culture as well as differentiation within adult mouse muscles.
Collapse
Affiliation(s)
- Matthew L Springer
- Baxter Laboratory for Genetic Pharmacology, Stanford University, Stanford, California 94305-5175, USA
| | | | | |
Collapse
|
202
|
Abstract
Actin and small heat shock proteins (sHsps) are ubiquitous and multifaceted proteins that exist in 2 reversible forms, monomers and multimers, ie, the microfilament of the cytoskeleton and oligomers of the sHsps, generally, supposed to be in a spherical and hollow form. Two situations are described in the literature, where the properties of actin are modulated by sHsps; the actin polymerization is inhibited in vitro by some sHsps acting as capping proteins, and the actin cytoskeleton is protected by some sHsps against the disruption induced by various stressful conditions. We propose that a direct actin-sHsp interaction occurs to inhibit actin polymerization and to participate in the in vivo regulation of actin filament dynamics. Protection of the actin cytoskeleton would result from an F-actin-sHsp interaction in which microfilaments would be coated by small oligomers of phosphorylated sHsps. Both proteins share common structural motives suggesting direct binding sites, but they remain to be demonstrated. Some sHsps would behave with the actin cytoskeleton as actin-binding proteins capable of either capping a microfilament when present as a nonphosphorylated monomer or stabilizing and protecting the microfilament when organized in small, phosphorylated oligomers.
Collapse
Affiliation(s)
- Nicole Mounier
- Laboratoire du Stress Oxydant, Chaperons et Apoptose, Centre de Génétique Moléculaire et Cellulaire (UMR-CNRS 5534), Université Claude Bernard Lyon1, Villeurbanne, France.
| | | |
Collapse
|
203
|
Gómez-Márquez J, Anadón R. The beta-thymosins, small actin-binding peptides widely expressed in the developing and adult cerebellum. CEREBELLUM (LONDON, ENGLAND) 2002; 1:95-102. [PMID: 12882358 DOI: 10.1007/bf02941895] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The beta-thymosins are a highly conserved family of small polar peptides known to bind monomeric actin and inhibit its polymerization. The beta-thymosins show a high degree of sequence conservation among all vertebrate classes and they have been also identified in some invertebrate phyla. The most abundant beta-thymosins in mammals are thymosin beta4 (Tbeta4) and thymosin beta10 (Tbeta10), two ubiquitous small (43 amino acids) peptides sharing a high degree of sequence homology. Both beta-thymosins are present in virtually all mammalian tissues and cells studied, showing distinct patterns of expression in several tissues. The beta-thymosins are expressed in the developing and mature nervous system, indicating their participation with other actin-binding peptides in the control of actin polymerization. In the rat cerebellum the temporal and cellular patterns of expression of Tbeta4 and Tbeta10 are different, suggesting that each beta-thymosin could play a specific physiological function during cerebellum development. The possible roles of beta-thymosins in the developing mammalian cerebellum are discussed.
Collapse
Affiliation(s)
- Jaime Gómez-Márquez
- Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad de Santiago, Santiago de Compostela, Spain.
| | | |
Collapse
|
204
|
|
205
|
Fong TH, Wu CH, Liao EW, Chang CY, Pai MH, Chiou RJ, Lee AW. Association of globular beta-actin with intracellular lipid droplets in rat adrenocortical cells and adipocytes. Biochem Biophys Res Commun 2001; 289:1168-74. [PMID: 11741315 DOI: 10.1006/bbrc.2001.6080] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Proteins located on the surface of lipid droplets may mediate intracellular lipid metabolism. In the present study, immunofluorescent staining and polyacrylamide gel electrophoresis demonstrated that actin (43 kD) is associated with isolated intracellular lipid droplets of rat adrenocortical cells and adipocytes. Two-dimensional gel electrophoresis and immunoblot analysis further confirmed that the lipid droplet-associated actin is the beta isoform. In cultured adrenocortical cells, stress fibers and the surface of intracellular lipid droplets were labeled with anti-beta-actin monoclonal antibody, whereas FITC-phalloidin staining did not mark the rim of lipid droplets. The present results provide the first morphological evidence that globular beta-actin is associated with intracellular lipid droplets. This significant association of actin with the surface of lipid droplets suggests that beta-actin might be involved in the regulation of intracellular lipid metabolism, particularly providing insight into the important transport of lipid constituents.
Collapse
Affiliation(s)
- T H Fong
- Department of Anatomy, Taipei Medical University, Taipei, 110, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
206
|
McRobbie SJ, Newell PC. Cytoskeletal accumulation of a specific iso-actin during chemotaxis ofDictyostelium. FEBS Lett 2001. [DOI: 10.1016/0014-5793(85)81121-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
207
|
Abstract
To investigate the precise localization of cytoplasmic gamma actin in skeletal muscle and the relationship to dystrophin molecules, we designed an antibody against the N-terminal peptide of cytoplasmic gamma actin. Western blot analysis using SDS-PAGE and isoelectric focusing (IEF) gel revealed that the antibody reacted only with the actin isoforms having gamma motility, confirming that the antibody is specific to the cytoplasmic (nonmuscle) gamma actin. Immunohistochemical analysis of the skeletal muscle of the adult mouse revealed a dot-like staining pattern of the antibody in transverse sections and a striated staining pattern in longitudinal sections. The double immunostaining technique revealed the colocalization of cytoplasmic gamma actin with alpha-actinin, implying the localization of the actin on the Z-disc. Contrary to previous findings (1), we did not detect the colocalization of cytochrome oxidase, a mitochondria marker, with this actin.
Collapse
Affiliation(s)
- T Nakata
- Department of Anatomy, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan.
| | | | | |
Collapse
|
208
|
Hatch V, Zhi G, Smith L, Stull JT, Craig R, Lehman W. Myosin light chain kinase binding to a unique site on F-actin revealed by three-dimensional image reconstruction. J Cell Biol 2001; 154:611-7. [PMID: 11481347 PMCID: PMC2196421 DOI: 10.1083/jcb.200105079] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Ca2+-calmodulin-dependent phosphorylation of myosin regulatory light chains by the catalytic COOH-terminal half of myosin light chain kinase (MLCK) activates myosin II in smooth and nonmuscle cells. In addition, MLCK binds to thin filaments in situ and F-actin in vitro via a specific repeat motif in its NH2 terminus at a stoichiometry of one MLCK per three actin monomers. We have investigated the structural basis of MLCK-actin interactions by negative staining and helical reconstruction. F-actin was decorated with a peptide containing the NH2-terminal 147 residues of MLCK (MLCK-147) that binds to F-actin with high affinity. MLCK-147 caused formation of F-actin rafts, and single filaments within rafts were used for structural analysis. Three-dimensional reconstructions showed MLCK density on the extreme periphery of subdomain-1 of each actin monomer forming a bridge to the periphery of subdomain-4 of the azimuthally adjacent actin. Fitting the reconstruction to the atomic model of F-actin revealed interaction of MLCK-147 close to the COOH terminus of the first actin and near residues 228-232 of the second. This unique location enables MLCK to bind to actin without interfering with the binding of any other key actin-binding proteins, including myosin, tropomyosin, caldesmon, and calponin.
Collapse
Affiliation(s)
- V Hatch
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118-2526, USA
| | | | | | | | | | | |
Collapse
|
209
|
Moutou KA, Socorro S, Power DM, Mamuris Z, Canario AV. Molecular cloning and sequence of gilthead sea bream (Sparus aurata) alpha-skeletal actin: tissue and developmental expression. Comp Biochem Physiol B Biochem Mol Biol 2001; 130:13-21. [PMID: 11470440 DOI: 10.1016/s1096-4959(01)00381-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In the present study, the Sparus aurata alpha-skeletal actin was cloned from a mixed larvae complementary DNA library. The clone isolated was 1523 bp long with an open reading frame of 1134 bp coding for a 377-amino acid protein. The deduced amino acid sequence of sea bream alpha-actin is identical to Fugu alpha-actin-1. The expression of alpha-actin was initiated at the onset of segmentation. In adult fish, alpha-actin is expressed predominantly in white and red muscle.
Collapse
Affiliation(s)
- K A Moutou
- Department of Biochemistry and Biotechnology, University of Thessaly, 26 Ploutonos Street, 41221, Larissa, Greece.
| | | | | | | | | |
Collapse
|
210
|
Wei L, Roberts W, Wang L, Yamada M, Zhang S, Zhao Z, Rivkees SA, Schwartz RJ, Imanaka-Yoshida K. Rho kinases play an obligatory role in vertebrate embryonic organogenesis. Development 2001; 128:2953-62. [PMID: 11532918 DOI: 10.1242/dev.128.15.2953] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rho-associated kinases (Rho kinases), which are downstream effectors of RhoA GTPase, regulate diverse cellular functions including actin cytoskeletal organization. We have demonstrated that Rho kinases also direct the early stages of chick and mouse embryonic morphogenesis. We observed that Rho kinase transcripts were enriched in cardiac mesoderm, lateral plate mesoderm and the neural plate. Treatment of neurulating embryos with Y27632, a specific inhibitor of Rho kinases, blocked migration and fusion of the bilateral heart primordia, formation of the brain and neural tube, caudalward movement of Hensen’s node, and establishment of normal left-right asymmetry. Moreover, Y27632 induced precocious expression of cardiac α-actin, an early marker of cardiomyocyte differentiation, coincident with the upregulated expression of serum response factor and GATA4. In addition, specific antisense oligonucleotides significantly diminished Rho kinase mRNA levels and replicated many of the teratologies induced by Y27632. Thus, our study reveals new biological functions for Rho kinases in regulating major morphogenetic events during early chick and mouse development.
Collapse
Affiliation(s)
- L Wei
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Leuschner I, Harms D, Mattke A, Koscielniak E, Treuner J. Rhabdomyosarcoma of the urinary bladder and vagina: a clinicopathologic study with emphasis on recurrent disease: a report from the Kiel Pediatric Tumor Registry and the German CWS Study. Am J Surg Pathol 2001; 25:856-64. [PMID: 11420456 DOI: 10.1097/00000478-200107000-00003] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Rhabdomyosarcomas (RMS) of the urinary bladder and vagina vary in their biologic and clinical behavior and require different types of treatment. Anatomically the two organs are close, and the reason for these differences in behavior is unknown. We investigated tumor specimens of 51 urinary bladder RMS and 14 vaginal RMS with regard to histologic subtype, growth pattern, differentiation, and proliferation morphologically and immunohistochemically. Recurrences and/or "second look" specimens from 15 patients after chemotherapy were compared with the primary tumors. Within the 65 specimens we found 31 "classical" embryonal RMS, 26 embryonal RMS of botryoid subtype (BRMS), 3 embryonal RMS of spindle cell subtype, and 5 alveolar RMS. BRMS is more common in the vagina (11 BRMS of 14 cases) than in the urinary bladder RMS (15 BRMS of 54 cases). Classical embryonal RMS with a polypoid (exophytic) growth pattern is associated with a more favorable prognosis (92% 10-year survival) than the same type with a diffuse intramural (endophytic) growth pattern (68% 10-year survival, p = 0.02). The proliferation rate was associated with the degree of differentiation, but neither showed a correlation with prognosis. A marked maturation after chemotherapy was seen in the majority of recurrences and SL specimens, associated with lowered proliferation activity. Two of 12 patients with recurrences showing chemotherapy-induced maturation died of the disease. In conclusion, we determined that polypoid embryonal RMS of both the urinary bladder and the vagina have a comparably good prognosis. This includes all botryoid RMS. The poorer prognosis of the group of urinary bladder RMS as a whole was caused by a high incidence of diffusely growing RMS, which have a less favorable prognosis than polypoid RMS. Maturation after chemotherapy occurs frequently in RMS. In contrast to the excellent prognosis reported in other studies, we had two patients with fatal outcome despite chemotherapy-induced maturation in the recurrences.
Collapse
Affiliation(s)
- I Leuschner
- Kiel Pediatric Tumor Registry, Institute for Pediatric Pathology, University of Kiel, Germany.
| | | | | | | | | |
Collapse
|
212
|
Hartzel DK, Arnoczky SP, Kilfoyle SJ, Stick JA. Myofibroblasts in the accessory ligament (distal check ligament) and the deep digital flexor tendon of foals. Am J Vet Res 2001; 62:823-7. [PMID: 11400835 DOI: 10.2460/ajvr.2001.62.823] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To demonstrate myofibroblasts in the accessory ligament of the deep digital flexor tendon (ie, distal check ligament) and deep digital flexor tendon of clinically normal foals. SAMPLE POPULATION Tissue specimens from 25 foals that were necropsied for reasons unrelated to this study and unrelated to musculoskeletal disease. PROCEDURE The distal check ligament and deep digital flexor tendon of both forelimbs were examined histologically. Myofibroblasts were identified by immunohistochemical staining specific for alpha-smooth muscle actin (alpha-SMA). RESULTS Most of the cells in the distal check ligament and deep digital flexor tendon of all foals stained positive for alpha-SMA. CONCLUSION AND CLINICAL RELEVANCE Myofibroblasts made up most of the cells in the distal check ligament and deep digital flexor tendon of clinically normal foals. These cells have contractile ability and therefore, may play a role in flexure contracture of these tendons. The ability of tetracycline to chelate calcium or decrease the expression of the contractile protein alpha-smooth muscle actin could inhibit the myofibroblasts' ability to contract, thus providing a rationale for tetracycline administration as a treatment of distal interphalangeal joint flexor deformity in foals.
Collapse
Affiliation(s)
- D K Hartzel
- Laboratory for Comparative Orthopaedic Research, College of Veterinary Medicine, Michigan State University, East Lansing 48824, USA
| | | | | | | |
Collapse
|
213
|
Abstract
Actin, one of the main proteins of muscle and cytoskeleton, exists as a variety of highly conserved isoforms whose distribution in vertebrates is tissue-specific. Synthesis of specific actin isoforms is accompanied by their subcellular compartmentalization, with both processes being regulated by factors of cell proliferation and differentiation. Actin isoforms cannot substitute for each other, and the high-level synthesis of exogenous actins leads to alterations in cell organization and morphology. This indicates that the highly conserved actins are functionally specialized for the tissues in which they predominate. The first goal of this review is to analyze the data on the polymerizability of actin isoforms to show that cytoskeleton isoactins form less stable polymers than skeletal muscle actin. This difference correlates with the dynamics of actin microfilaments versus the stability of myofibrillar systems. The three-dimensional actin structure as well as progress in the analysis of conformational changes in both the actin monomer and the filament allows us to view the data on the structure and polymerization of isoactins in terms of structure-function relationships within the actin molecule. Most of the amino acid substitutions that distinguish actin isoforms are located apart from actin-actin contact sites in the polymer. We suggest that these substitutions can modulate the ability of actin monomers to form more or less stable polymers by long-range (allosteric) regulation of the contact sites.
Collapse
Affiliation(s)
- S Y Khaitlina
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg
| |
Collapse
|
214
|
Abstract
The unipolar brush cell (UBC), a small interneuron occurring at high density in the granular layer of the mammalian vestibulocerebellum, receives a giant glutamatergic synapse from a single mossy fiber (MF) rosette, usually on a brush of dendritic branchlets. MF stimulation produces a current in the UBC several orders of magnitude greater in duration than at other glutamatergic synapses. We assumed that the cytoskeleton would have a special role in plasticity of the MF-UBC synapse. Neurofilaments and microtubules are enriched in the UBC somatodendritic compartment but are conspicuously absent in close proximity to the giant synapse, where standard electron microscopy reveals a granulo-flocculent material. Because osmium tetroxide fixation during sample preparation for standard electron microscopy destabilizes actin filaments, we hypothesized that this subsynaptic granulo-flocculent material is actin-based. After actin stabilization, we observed prominent, but loosely organized, bundles of microfilaments at the subsynaptic region of the MF-UBC synapse that linked the postsynaptic density with the cytoskeletal core of the dendritic branchlets. Confocal fluorescence microscopy and pre- and postembedding immunogold labeling with phalloidin and actin antibodies showed that these microfilaments consist of f-actin and contain little beta-actin. This extraordinary postsynaptic actin apparatus is ideally situated to form a dynamic framework for glutamate receptors and other postsynaptic molecules, and to mediate activity-dependent plastic rearrangements of the giant synapse.
Collapse
Affiliation(s)
- M R Diño
- Northwestern University Institute for Neuroscience, Chicago, Illinois 60611, USA
| | | |
Collapse
|
215
|
Schildmeyer LA, Braun R, Taffet G, Debiasi M, Burns AE, Bradley A, Schwartz RJ. Impaired vascular contractility and blood pressure homeostasis in the smooth muscle alpha-actin null mouse. FASEB J 2000; 14:2213-20. [PMID: 11053242 DOI: 10.1096/fj.99-0927com] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The smooth muscle (SM) alpha-actin gene activated during the early stages of embryonic cardiovascular development is switched off in late stage heart tissue and replaced by cardiac and skeletal alpha-actins. SM alpha-actin also appears during vascular development, but becomes the single most abundant protein in adult vascular smooth muscle cells. Tissue-specific expression of SM alpha-actin is thought to be required for the principal force-generating capacity of the vascular smooth muscle cell. We wanted to determine whether SM alpha-actin gene expression actually relates to an actin isoform's function. Analysis of SM alpha-actin null mice indicated that SM alpha-actin is not required for the formation of the cardiovascular system. Also, SM alpha-actin null mice appeared to have no difficulty feeding or reproducing. Survival in the absence of SM alpha-actin may result from other actin isoforms partially substituting for this isoform. In fact, skeletal alpha-actin gene, an actin isoform not usually expressed in vascular smooth muscle, was activated in the aortas of these SM alpha-actin null mice. However, even with a modest increase in skeletal alpha-actin activity, highly compromised vascular contractility, tone, and blood flow were detected in SM alpha-actin-defective mice. This study supports the concept that SM alpha-actin has a central role in regulating vascular contractility and blood pressure homeostasis, but is not required for the formation of the cardiovascular system.
Collapse
MESH Headings
- Actins/genetics
- Actins/metabolism
- Animals
- Blood Flow Velocity/physiology
- Blood Pressure/physiology
- Blotting, Northern
- Female
- Gene Expression Regulation, Developmental
- Homeostasis
- Immunohistochemistry
- In Vitro Techniques
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Mice, Knockout
- Muscle Contraction/physiology
- Muscle, Skeletal/metabolism
- Muscle, Smooth, Vascular/blood supply
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Mutation
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Tissue Distribution
Collapse
Affiliation(s)
- L A Schildmeyer
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Department of Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
216
|
Abd-El-Basset EM. The effect of dibutyryl cyclic AMP on the expression of actin isoforms in astroglia. THE HISTOCHEMICAL JOURNAL 2000; 32:581-90. [PMID: 11202154 DOI: 10.1023/a:1026738600838] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mammalian cells contain at least 8 actin isoforms. The functional significance and the mechanisms that regulate the expression of each actin isoform are not yet known. Using immunofluorescence staining, it was found that all astroglia in tissue culture express beta-actin isoform and about 86% of astroglia express alpha-smooth muscle actin isoform. When astroglia were treated with dibutyryl cyclic AMP for 4, 7, 14 and 21 days, it was found that the number of the cells expressing alpha-smooth muscle actin isoform progressively decreased, whereas, the number of the cells expressing beta-actin isoform remained constant. The western blot experiment showed that the amount of total alpha-smooth muscle actin isoform (soluble and insoluble) and of the insoluble isoform expressed by astroglia treated with dibutyryl cAMP decreased whereas, the amount of total and insoluble beta-actin isoform expressed by the same cells did not show any significant changes. The cells treated with the cAMP failed to migrate and to close the area created by the scratch wound in monolayer culture. However, the non-treated cells migrated and closed the area created by the scratch after 3 days. This study shows that the astroglia have different mechanisms in regulating the expression of different actin isoforms and that the alpha-sm actin isoform is important in migration of astroglia.
Collapse
Affiliation(s)
- E M Abd-El-Basset
- Department of Anatomy, Faculty of Medicine, Kuwait University, Safat
| |
Collapse
|
217
|
Labelle C, Leclerc N. Exogenous BDNF, NT-3 and NT-4 differentially regulate neurite outgrowth in cultured hippocampal neurons. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2000; 123:1-11. [PMID: 11020545 DOI: 10.1016/s0165-3806(00)00069-9] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Multiple growth factors contribute to the differentiation of dendritic and axonal processes by a neuron. Cultured hippocampal cells elaborate dendritic and axonal processes following well-defined steps. We used this culture system to determine the specific effects of brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and neurotrophin-4 (NT-4) on dendritic and axonal differentiation in hippocampal pyramidal neurons. We demonstrated that each of these neurotrophins exert distinct effects on neurite outgrowth. Both BDNF and NT-3 had positive effects on the outgrowth of undifferentiated neurites, called minor neurites, and on the axonal process of hippocampal pyramidal neurons. However, the effect of NT-3 was more important than that of BDNF. On the other hand, NT-4 did not enhance axonal outgrowth but had only an effect on the outgrowth of minor neurites. Since cytoskeletal proteins play crucial roles in promoting neurite outgrowth, we examined the protein levels of some of these proteins that are associated with neurite outgrowth: beta-actin, gamma-actin, alpha-tubulin, MAP2 and tau. Surprisingly, we did not detect any change in their protein levels. Taken together, our results show that BDNF, NT-3 and NT-4 exert distinct effects on the neuritic compartments of hippocampal neurons.
Collapse
Affiliation(s)
- C Labelle
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, C.P. 6128, Succ. Centre-ville, H3C 3J7, Québec, Canada
| | | |
Collapse
|
218
|
Carlini DB, Reece KS, Graves JE. Actin gene family evolution and the phylogeny of coleoid cephalopods (Mollusca: Cephalopoda). Mol Biol Evol 2000; 17:1353-70. [PMID: 10958852 DOI: 10.1093/oxfordjournals.molbev.a026419] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Phylogenetic analysis conducted on a 784-bp fragment of 82 actin gene sequences of 44 coleoid cephalopod taxa, along with results obtained from genomic Southern blot analysis, confirmed the presence of at least three distinct actin loci in coleoids. Actin isoforms were characteri zed through phylogenetic analysis of representative cephalopod sequences from each of the three isoforms, along with translated actin cDNA sequences from a diverse array of metazoan taxa downloaded from GenBank. One of the three isoforms found in cephalopods was closely related to actin sequences expressed in the muscular tissues of other molluscs. A second isoform was most similar to cytoplasmic-specific actin amino acid sequences. The muscle type actins of molluscs were found to be distinct from those of arthropods, suggesting at least two independent derivations of muscle actins in the protostome lineage, although statistical support for this conclusion was lacking. Parsimony and maximum-likelihood analyses of two of the isoforms from which >30 orthologous coleoid sequences had been obtained (one of the cytoplasmic actins and the muscle actin) supported the monophyly of several higher-level coleoid taxa. These included the superorders Octopodiformes and Decapodiformes, the order Octopoda, the octopod suborder Incirrata, and the teuthoid suborder Myopsida. The monophyly of several taxonomic groups within the Decapodiformes was not supported, including the orders Teuthoidea and Sepioidea and the teuthoid suborder Oegopsida. Parametric bootstrap analysis conducted on the simulated cytoplasmic actin data set provided statistical support to reject the monophyly of the Sepioidea. Although parametric bootstrap analysis of the muscle actin isoform did not reject sepioid monophyly at the 5% level, the results (rejection at P: = 0.068) were certainly suggestive of sepioid nonmonophyly.
Collapse
Affiliation(s)
- D B Carlini
- School of Marine Science, Virginia Institute of Marine Science, The College of William and Mary, Virginia, USA.
| | | | | |
Collapse
|
219
|
Tandai-Hiruma M, Mori-Okamoto J, Kotani M, Miura K, Takishima K, Nishida Y. Expression and electrophysiological function of actin in chick cerebellar neurons. Neurochem Res 2000; 25:1095-106. [PMID: 11055747 DOI: 10.1023/a:1007670012531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Among several monoclonal antibodies obtained by immunizing Balb/c mice with cerebellar synaptic membrane fractions from E20 chick embryos, the antibody, named M35, suppressed Ca-spikes in immature cultured chick cerebellar neurons. M35 immunoprecipitated 43 kDa protein from a 125I-labeled embryonic crude cerebellar membrane fraction. Immunohistochemically, the M35 antigen was expressed most intensively in Purkinje cells, but its expression was limited to highly motile structures at developmental neuronal remodeling. Electrophysiologically, M35 facilitated current responses to AMPA and inhibited the responses to GABA in cultured cerebellar Purkinje neurons. The several peptides derived from the affinity-purified 43 kDa protein were found to have homologous amino acid sequences to non-muscle actins. These results suggest that the antigen recognized by M35 may play an essential role probably as membrane ion channels modulating synaptic functions in not only the development and growth but also the neuronal activity of chick cerebellar Purkinje cells.
Collapse
Affiliation(s)
- M Tandai-Hiruma
- Department of Physiology, National Defense Medical College, Tokorozawa, Saitama, Japan.
| | | | | | | | | | | |
Collapse
|
220
|
Kim S, Karsi A, Dunham RA, Liu Z. The skeletal muscle alpha-actin gene of channel catfish (Ictalurus punctatus) and its association with piscine specific SINE elements. Gene 2000; 252:173-81. [PMID: 10903449 DOI: 10.1016/s0378-1119(00)00198-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The alpha-actin gene of channel catfish (Ictalurus punctatus) was cloned and sequenced. The gene has a similar organization and exhibited a high level of sequence similarity to those from other vertebrate animals. The upstream region of the alpha-actin gene included a TATA box, a CAAT box, three E-boxes, and a CArG box. Nested deletion segments containing these transcriptional motifs were fused to the reporter gene chloramphenicol acetyl transferase (CAT). Transfection of the clones into C2C12 cells indicated that all these motifs are required for transcriptional activities. The channel catfish alpha-actin gene is associated with two distinct short interspersed repetitive elements (SINEs). The first SINE element showed high levels of sequence similarity to the zebrafish Mermaid element, while the second SINE element is not similar to the Mermaid element except for an 8bp sequence CCCCGTGC suggesting their evolutionary linkage. However, the second SINE element appeared to co-exist with the Mermaid element in most cases and therefore was designated as the Merman element. Approximately 9000 copies and 1200 copies of the Mermaid and Merman elements exist per haploid channel catfish genome, respectively. BLAST searches indicated that both the Mermaid and the Merman elements were frequently associated with gene sequences, mostly those of aquatic animals, suggesting their evolutionary origin in association with aquatic organisms and their function in shaping the evolution of genomes in aquatic animals.
Collapse
Affiliation(s)
- S Kim
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Auburn University, 36849, Auburn, AL, USA
| | | | | | | |
Collapse
|
221
|
Changes in the composition of myosin isoforms in smooth muscle hypertrophy following urinary bladder outlet obstruction. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s1569-2590(00)08004-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
222
|
Nakajima Y, Yamagishi T, Yoshimura K, Nomura M, Nakamura H. Antisense oligodeoxynucleotide complementary to smooth muscle alpha-actin inhibits endothelial-mesenchymal transformation during chick cardiogenesis. Dev Dyn 1999; 216:489-98. [PMID: 10633868 DOI: 10.1002/(sici)1097-0177(199912)216:4/5<489::aid-dvdy17>3.0.co;2-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
alpha-Smooth-muscle actin (SMA) is the major isoform of adult vascular tissues. During early development, SMA is expressed in various mesodermally derived tissues in a spatiotemporally restricted manner; however, its exact role remains unknown. We examined its role in the formation of chicken atrioventricular (AV) endocardial cushion tissue. This developmental process possesses the characteristics of endothelial-mesenchymal transformation and is partly TGF beta-dependent. Immunohistochemistry showed that SMA was (1) expressed homogeneously in the newly formed appendages of transforming endothelial/mesenchymal cells, and (2) distributed in a punctate manner in the lamellipodia/filopodia of invading mesenchymal cells. Antisense oligodeoxynucleotide (ODNs) specific for SMA reduced both SMA expression and mesenchymal formation in AV endothelial cells cultured with myocardium on a collagen gel lattice. Perturbation of SMA by antisense ODN also inhibited TGF beta-inducible migratory appendage formation in a cultured AV endothelial monolayer. However, it did not inhibit cell:cell separation or cellular hypertrophy. These results suggest that the expression of SMA is necessary for migratory appendage formation during the TGF beta-dependent initial phenotypic changes that occur in endothelial-mesenchymal transformation.
Collapse
Affiliation(s)
- Y Nakajima
- Department of Anatomy, Saitama Medical School, Japan.
| | | | | | | | | |
Collapse
|
223
|
Ciszak L, Krawczenko A, Polzar B, Mannherz HG, Malicka-Blaszkiewicz M. Carp liver actin: isolation, polymerization and interaction with deoxyribonuclease I (DNase I). BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1451:141-52. [PMID: 10446396 DOI: 10.1016/s0167-4889(99)00083-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of this study was to isolate and to characterize actin from the carp liver cytosol and to examine its ability to polymerize and interact with bovine pancreatic DNase I. Carp liver actin was isolated by ion-exchange chromatography, followed by gel filtration and a polymerization/depolymerization cycle or by affinity chromatography using DNase I immobilized to agarose. The purified carp liver actin was a cytoplasmic beta-actin isoform as verified by immunoblotting using isotype specific antibodies. Its isoelectric point (pI) was slightly higher than the pI of rabbit skeletal muscle alpha-actin. Polymerization of purified carp liver actin by 2 mM MgCl(2) or CaCl(2) was only obtained after addition of phalloidin or in the presence of 1 M potassium phosphate. Carp liver actin interacted with DNase I leading to the formation of a stable complex with concomitant inhibition of the DNA degrading activity of DNase I and its ability to polymerize. The estimated binding constant (K(b)) of carp liver actin to DNase I was calculated to be 1.85x10(8) M(-1) which is about 5-fold lower than the affinity of rabbit skeletal muscle alpha-actin to DNase I.
Collapse
Affiliation(s)
- L Ciszak
- Department of Cell Pathology, Institute of Biochemistry and Molecular Biology, University of Wroclaw, Przybyszewskiego 63/77, 51-148, Wroclaw, Poland
| | | | | | | | | |
Collapse
|
224
|
Gunst SJ. Applicability of the sliding filament/crossbridge paradigm to smooth muscle. Rev Physiol Biochem Pharmacol 1999; 134:7-61. [PMID: 10087907 DOI: 10.1007/3-540-64753-8_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- S J Gunst
- Indiana University School of Medicine, USA
| |
Collapse
|
225
|
Sartore S, Franch R, Roelofs M, Chiavegato A. Molecular and cellular phenotypes and their regulation in smooth muscle. Rev Physiol Biochem Pharmacol 1999; 134:235-320. [PMID: 10087911 DOI: 10.1007/3-540-64753-8_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- S Sartore
- Department of Biomedical Sciences, University of Padua, Italy
| | | | | | | |
Collapse
|
226
|
Arner A, Pfitzer G. Regulation of cross-bridge cycling by Ca2+ in smooth muscle. Rev Physiol Biochem Pharmacol 1999; 134:63-146. [PMID: 10087908 DOI: 10.1007/3-540-64753-8_3] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- A Arner
- Department of Physiology and Neuroscience, Lund University, Sweden
| | | |
Collapse
|
227
|
Saga H, Kimura K, Hayashi K, Gotow T, Uchiyama Y, Momiyama T, Tadokoro S, Kawashima N, Jimbou A, Sobue K. Phenotype-dependent expression of alpha-smooth muscle actin in visceral smooth muscle cells. Exp Cell Res 1999; 247:279-92. [PMID: 10047470 DOI: 10.1006/excr.1998.4339] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Alpha-Smooth muscle actin is one of the molecular markers for a phenotype of vascular smooth muscle cells, because the actin is a major isoform expressed in vascular smooth muscle cells and its expression is upregulated during differentiation. Here, we first demonstrate that the phenotype-dependent expression of this actin in visceral smooth muscles is quite opposite to that in vascular smooth muscles. This actin isoform is not expressed in adult chicken visceral smooth muscles including gizzard, trachea, and intestine except for the inner layer of intestinal muscle layers, whereas its expression is clearly detected in these visceral smooth muscles at early stages of the embryo (10-day-old embryo) and is developmentally downregulated. In cultured gizzard smooth muscle cells maintaining a differentiated phenotype, alpha-smooth muscle actin is not detected while its expression dramatically increases during serum-induced dedifferentiation. Promoter analysis reveals that a sequence (-238 to -219) in the promoter region of this actin gene acts as a novel negative cis-element. In conclusion, the phenotype-dependent expression of alpha-smooth muscle actin would be regulated by the sum of the cooperative contributions of the negative element and well-characterized positive elements, purine-rich motif, and CArG boxes and their respective transacting factors.
Collapse
MESH Headings
- Actins/biosynthesis
- Actins/genetics
- Animals
- Aorta/embryology
- Aorta/metabolism
- Chick Embryo
- Enhancer Elements, Genetic
- Gene Expression Regulation, Developmental
- Gizzard, Avian/embryology
- Gizzard, Avian/metabolism
- Intestine, Small/embryology
- Intestine, Small/metabolism
- Muscle, Smooth/cytology
- Muscle, Smooth/embryology
- Muscle, Smooth/metabolism
- Organ Specificity/genetics
- Phenotype
- Promoter Regions, Genetic
- Trachea/embryology
- Trachea/metabolism
- Trans-Activators/physiology
- Viscera/cytology
- Viscera/embryology
- Viscera/metabolism
Collapse
Affiliation(s)
- H Saga
- Department of Neurochemistry and Neuropharmacology, Department of Anatomy, Biomedical Research Center, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
228
|
|
229
|
Gunning P, Weinberger R, Jeffrey P, Hardeman E. Isoform sorting and the creation of intracellular compartments. Annu Rev Cell Dev Biol 1999; 14:339-72. [PMID: 9891787 DOI: 10.1146/annurev.cellbio.14.1.339] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The generation of isoforms via gene duplication and alternative splicing has been a valuable evolutionary tool for the creation of biological diversity. In addition to the formation of molecules with related but different functional characteristics, it is now apparent that isoforms can be segregated into different intracellular sites within the same cell. Sorting has been observed in a wide range of genes, including those encoding structural molecules, receptors, channels, enzymes, and signaling molecules. This results in the creation of intracellular compartments that (a) can be independently controlled and (b) have different functional properties. The sorting mechanisms are likely to operate at the level of both proteins and mRNAs. Isoform sorting may be an important consequence of the evolution of isoforms and is likely to have contributed to the diversity of functional properties within groups of isoforms.
Collapse
Affiliation(s)
- P Gunning
- Oncology Research Unit, New Children's Hospital, Parramatta, NSW, Australia.
| | | | | | | |
Collapse
|
230
|
Van Troys M, Vandekerckhove J, Ampe C. Structural modules in actin-binding proteins: towards a new classification. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1448:323-48. [PMID: 9990286 DOI: 10.1016/s0167-4889(98)00152-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The number of actin binding proteins for which (part of) the three-dimensional structure is known, is steadily increasing. This has led to a picture in which defined structural modules with actin binding capacity are shared between different actin binding proteins. A classification of these based on their common three-dimensional modules appears a logical future step and in this review we provide an initial list starting from the currently known structures. The discussed cases illustrate that a comparison of the similarities and variations within the common structural actin binding unit of different members of a particular class may ultimately provide shortcuts for defining their actin target site and for understanding their effect on actin dynamics. Within this concept, the multitude of possible interactions by an extensive, and still increasing, list of actin binding proteins becomes manageable because they can be presented as variations upon a limited number of structural themes. We discuss the possible evolutionary routes that may have produced the present array of actin binding modules.
Collapse
Affiliation(s)
- M Van Troys
- Flanders Interuniversity Institute for Biotechnology, Department of Biochemistry, Faculty of Medicine, University of Gent, Belgium
| | | | | |
Collapse
|
231
|
Barrallo A, González-Sarmiento R, García-Isidoro M, Cidad P, Porteros A, Rodríguez RE. Differential brain expression of a new beta-actin gene from zebrafish (Danio rerio). Eur J Neurosci 1999; 11:369-72. [PMID: 9987040 DOI: 10.1046/j.1460-9568.1999.00474.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It has been shown that actin genes exhibit distinct tissue and stage-specific patterns of expression. We have cloned a new beta-actin gene from the teleost zebrafish (Danio rerio), a well-established model for developmental studies, and analysed its expression by Northern blot and in situ hybridization studies. Our results suggest that in adult brain zebrafish, this new gene is expressed during neuronal cell proliferation.
Collapse
Affiliation(s)
- A Barrallo
- Department of Biochemistry and Molecular Biology, University of Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
232
|
Chacko S, DiSanto M, Menon C, Zheng Y, Hypolite J, Wein AJ. Contractile Protein Changes in Urinary Bladder Smooth Muscle Following Outlet Obstruction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 462:137-53. [PMID: 10599420 DOI: 10.1007/978-1-4615-4737-2_11] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Affiliation(s)
- S Chacko
- Department of Pathobiology, University of Pennsylvania, Philadelphia 19104-4274, USA
| | | | | | | | | | | |
Collapse
|
233
|
Micheva KD, Vallée A, Beaulieu C, Herman IM, Leclerc N. beta-Actin is confined to structures having high capacity of remodelling in developing and adult rat cerebellum. Eur J Neurosci 1998; 10:3785-98. [PMID: 9875357 DOI: 10.1046/j.1460-9568.1998.00391.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neurons undergo complex morphological changes during differentiation and in cases of plasticity. A major determinant of cell morphology is the actin cytoskeleton, which in neurons is comprised of two actin isoforms, non-muscle gamma- and beta-actin. To better understand their respective roles during differentiation and plasticity, their cellular and subcellular localization was examined in developing and adult cerebellar cortex. It was observed that gamma-actin is expressed at a constant level throughout development, while the level of beta-actin expression rapidly decreases with age. At the light microscopic level, gamma-actin staining is ubiquitous and the only developmental change observed is a relative reduction of its concentration in cell bodies and white matter. In contrast, beta-actin staining almost completely disappears from the cytoplasm of cell bodies, primary dendrites and axons. In young cerebellar cultures, gamma-actin is found in the cell body, neurites and growth cones, while beta-actin is mainly found in growth cones, as previously reported in other primary neuronal culture systems [Kaech et al. (1997), J. Neuroscience, 17, 9565-9572; Bassell et al., (1998), J. Neuroscience, 18, 251-265]. Electron microscopy of post-embedding immunogold-labelled tissue confirms the widespread distribution of gamma-actin, and also reveals an increased concentration of gamma-actin in dendritic spines in the adult. During development, beta-actin accumulation is observed in actively growing structures, e.g., growth cones, filopodia, cell bodies and axonal tracts. In the adult cerebellar cortex, beta-actin is preferentially found in dendritic spines, structures which are known to retain their capacity for morphological modifications in the adult brain. This differential subcellular localization and developmental regulation of the two actin isoforms point to their different roles in neurons.
Collapse
Affiliation(s)
- K D Micheva
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
234
|
Kobayashi K, Kubota T, Aso T. Study on myofibroblast differentiation in the stromal cells of Wharton's jelly: expression and localization of alpha-smooth muscle actin. Early Hum Dev 1998; 51:223-33. [PMID: 9692792 DOI: 10.1016/s0378-3782(97)00123-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To confirm the characteristics of the stromal cells of Wharton's jelly, we investigated the morphological changes in these cells during each trimester of pregnancy. We evaluated the cytoskeletal features of these cells by examining immunohistochemically the localization of one of the contractile proteins, alpha-smooth muscle actin (ASMA). After the second trimester, the stromal cells of Wharton's jelly were stained with ASMA antibody, exhibited the ultrastructural characteristics of the myofibroblasts, and began to express numerous microfilaments in the cytoplasm. Postembedding immunogold labeling detected immunoreactivity for ASMA on these microfilaments. The finding indicated that the stromal cells of Wharton's jelly undergo a time-dependent maturation involving the differentiation of myofibroblasts during the last 6 months of pregnancy. These cells possess a contractile function that may help to protect the umbilical vessels from compression, considering that ASMA was detected in the microfilamentous bundles.
Collapse
Affiliation(s)
- K Kobayashi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Tokyo Medical and Dental University, Japan
| | | | | |
Collapse
|
235
|
Kivelä T, Uusitalo M. Structure, development and function of cytoskeletal elements in non-neuronal cells of the human eye. Prog Retin Eye Res 1998; 17:385-428. [PMID: 9695798 DOI: 10.1016/s1350-9462(98)00001-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The cytoskeleton, of which the main components in the human eye are actin microfilaments, intermediate filaments and microtubules with their associated proteins, is essential for the normal growth, maturation, differentiation, integrity and function of its cells. These components interact with intra- and extracellular environment and each other, and their profile frequently changes during development, according to physiologic demands, and in various diseases. The ocular cytoskeleton is unique in many ways. A special pair of cytokeratins, CK 3 and 12, has apparently evolved only for the purposes of the corneal epithelium. However, other cytokeratins such as CK 4, 5, 14, and 19 are also important for the normal ocular surface epithelia, and other types may be acquired in keratinizing diseases. The intraocular tissues, which have a relatively simple cytoskeleton consisting mainly of vimentin and simple epithelial CK 8 and 18, differ in many details from extraocular ones. The iris and lens epithelium characteristically lack cytokeratins in adults, and the intraocular muscles all have a cytoskeletal profile of their own. The dilator of the iris contains vimentin, desmin and cytokeratins, being an example of triple intermediate filament expression, but the ciliary muscle lacks cytokeratin and the sphincter of the iris is devoid even of vimentin. Conversion from extraocular-type cytoskeletal profile occurs during fetal life. It seems that posttranslational modification of cytokeratins in the eye may also differ from that of extraocular tissues. So far, it has not been possible to reconcile the cytoskeletal profile of intraocular tissues with their specific functional demands, but many theories have been put forward. Systematic search for cytoskeletal elements has also revealed novel cell populations in the human eye. These include transitional cells of the cornea that may represent stem cells on migration, myofibroblasts of the scleral spur and juxtacanalicular tissue that may modulate aqueous outflow, and subepithelial matrix cells of the ciliary body and myofibroblasts of the choroid that may both participate in accommodation. In contrast to the structure and development of the ocular cytoskeleton, changes that take place in ocular disease have not been analysed systematically. Nevertheless, potentially meaningful changes have already been observed in corneal dystrophies (Meesmann's dystrophy, posterior polymorphous dystrophy and iridocorneal endothelial syndrome), degenerations (pterygium) and inflammatory diseases (Pseudomonas keratitis), in opacification of the lens (anterior subcapsular and secondary cataract), in diseases characterized by proliferation of the retinal pigment epithelium (macular degeneration and proliferative vitreoretinopathy), and in intraocular tumours (uveal melanoma). In particular, upregulation of alpha-smooth muscle actin seems to be a relatively general response typical of spreading and migrating corneal stromal and lens epithelial cells, trabecular cells and retinal pigment epithelial cells.
Collapse
Affiliation(s)
- T Kivelä
- Department of Ophthalmology, Helsinki University Central Hospital, Finland.
| | | |
Collapse
|
236
|
Villablanca FX, Roderick GK, Palumbi SR. Invasion genetics of the Mediterranean fruit fly: variation in multiple nuclear introns. Mol Ecol 1998; 7:547-60. [PMID: 9633100 DOI: 10.1046/j.1365-294x.1998.00351.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Biological invasions generally start from low initial population sizes, leading to reduced genetic variation in nuclear and especially mitochondrial DNA. Consequently, genetic approaches for the study of invasion history and population structure are difficult. An extreme example is the Mediterranean fruit fly, Ceratitis capitata (Medfly), for which successive invasions during this century have resulted in a loss of 60% of ancestral genetic variation in isozymes and 75% of variation in mitochondrial DNA. Using Medflies as an example, we present a new approach to invasion genetics that measures DNA sequence variation within introns from multiple nuclear loci. These loci are so variable that even relatively recently founded Medfly populations within California and Hawaii retain ample genetic diversity. Invading populations have only lost 35% of the ancestral genetic variation. Intron variation will allow high-resolution genetic characterization of invading populations in both natural and managed systems, although non-equilibrium methods of analysis may be necessary if the genetic diversity represents sorting ancestral polymorphism.
Collapse
Affiliation(s)
- F X Villablanca
- Center for Conservation Research and Training, University of Hawaii, Honolulu 96822, USA.
| | | | | |
Collapse
|
237
|
Shojaee N, Patton WF, Chung-Welch N, Su Q, Hechtman HB, Shepro D. Expression and subcellular distribution of filamin isotypes in endothelial cells and pericytes. Electrophoresis 1998; 19:323-32. [PMID: 9548299 DOI: 10.1002/elps.1150190230] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Two principal forms of the actin binding protein, filamin, are expressed in mammalian cells: nonmuscle and muscle isotypes (FLN-1 and FLN-2). A protein that copurifies with an alpha-naphthyl acetate hydrolyzing esterase from human omentum microvessel endothelial cells (EC) is isolated by nondenaturing electrophoresis, sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis and electroblotting. The purified protein is subjected to in situ trypsin cleavage, reversed-phase high performance liquid chromatography (HPLC) and automated Edman degradation. Six peptide fragments from the protein are identified to have 60-66% identity with nonmuscle filamin (ABP-280). Two of these peptides are 100% identical to a previously sequenced human muscle filamin fragment. Polyclonal antibody is produced using a 16-residue synthetic peptide corresponding to a structural beta-sheet region of muscle filamin. Compared with a variety of vascular cells evaluated, retinal pericytes express an abundance of both muscle and non-muscle filamin isotypes. Pericytes contain at least 10 times more muscle filamin than human umbilical vein EC and at least three times the amount expressed in human omentum microvessel and bovine pulmonary artery EC. Differential detergent fractionation indicates that both filamin isotypes are primarily localized in the cytosol and membrane/organelle fractions of pericytes. Another actin crosslinking protein, alpha-actinin, is primarily found in the cytosol and cytoskeletal fractions. The dynamic regulation of actin microfilament organization in pericytes may be controlled in part by the two filamin isotypes, which in turn may contribute to pericyte contractility.
Collapse
Affiliation(s)
- N Shojaee
- Microvascular Research Laboratory, Biological Science Center, Boston University, MA, USA
| | | | | | | | | | | |
Collapse
|
238
|
Ulloa L, Serra R, Asenjo A, Villanueva N. Interactions between cellular actin and human respiratory syncytial virus (HRSV). Virus Res 1998; 53:13-25. [PMID: 9617766 DOI: 10.1016/s0168-1702(97)00121-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Actin the main component of the cellular microfilament network, is present in human respiratory syncytial virus (HRSV) purified virions, as an internal component. This fact and the results of immunoprecipitation studies indicate that during HRSV infection in HEp-2 cells there are interactions between cellular actin and viral components, that can promote a transitory increase in the polymerization of synthetized actin, mainly of the beta isotype. This increased actin polymerization can be related with the formation of cytoplasmic extensions, that contain beta actin and viral particles observed in the HRSV infected HEp-2 cells. The formation of these structures may indicate that HRSV has developed an actin-based motility system similar to that described for other viral and bacterial systems.
Collapse
Affiliation(s)
- L Ulloa
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Universidad Autonóma de Madrid, Cantoblanco, Spain
| | | | | | | |
Collapse
|
239
|
Hodgkinson JL, el-Mezgueldi M, Craig R, Vibert P, Marston SB, Lehman W. 3-D image reconstruction of reconstituted smooth muscle thin filaments containing calponin: visualization of interactions between F-actin and calponin. J Mol Biol 1997; 273:150-9. [PMID: 9367753 DOI: 10.1006/jmbi.1997.1307] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Calponin is a putative thin filament regulatory protein of smooth muscle that inhibits actomyosin ATPase in vitro. We have used electron microscopy and three-dimensional reconstruction to elucidate the structural organization of calponin on actin and actin-tropomyosin filaments. Calponin density was clearly delineated in the reconstructions and found to occur peripherally along the long-pitch actin-helix. The main calponin mass was located over sub-domain 2 of actin, and connected axially adjacent actin monomers by binding to the "upper" and "lower" edges of sub-domains 1 of each actin. When the reconstructions were fitted to the atomic model of F-actin, calponin appeared to contact actin near the N terminus and at residues 349 to 352 close to the C terminus of sub-domain 1 on one monomer. It also touched residues 92 to 95 of sub-domain 1 on the axially neighboring actin and continued up the side of this monomer as far as residues 43 to 48 of sub-domain 2. These positions are consensus binding sites for a number of actin-associated proteins and are also near to sites of weak myosin interaction. Calponin did not appear to block strong myosin binding sites on actin. In contrast to the calponin mass which appeared monomeric in reconstructions, tropomyosin formed a continuous strand of added density along F-actin. When added to tropomyosin-containing filaments, calponin caused a shift of tropomyosin away from sub-domain 1 towards sub-domain 3 of actin, exposing strong myosin-binding sites that were previously covered by tropomyosin. This structural effect is unlike that of troponin and therefore inhibition of actomyosin ATPase by calponin and troponin cannot be strictly analogous. The location of calponin would allow it to directly compete or interact with a number of actin-binding proteins.
Collapse
Affiliation(s)
- J L Hodgkinson
- Imperial College School of Medicine, National Heart and Lung Institute, London, UK
| | | | | | | | | | | |
Collapse
|
240
|
Abstract
A set of at least 11 actin genes has been isolated from genomic recombinant deoxyribonucleic acid libraries of the sea urchin Strongylocentrotus purpuratus. Most of the isolates derive from a library which represents the genome of a single animal. There are at least five distinct types of sea urchin actin gene, some of which are represented by multiple copies in the genome. The actin gene types are distinguished by nonhomologous flanking sequences and intervening sequences, though the protein coding sequences appear in most cases to be quite similar. Eight of the 11 genes isolated have been recovered in lambda recombinants that contain two actin genes, linked at 5- to 9-kilobase distances. Restriction map overlaps suggest that the genome contains an array of at least three of these genes spaced over about 30 kilobases of deoxyribonucleic acid. In the linkage patterns observed, actin genes of diverse types were linked to each other. In early embryos, actin messenger ribonucleic acid (RNA) transcripts of 1.8 and 2.2 kilobases were found, and the longer of these transcripts was more prevalent in the maternal RNA of the egg. From RNA gel blot experiments, we conclude that the two transcripts derive from different actin gene types. Different repetitive sequences were located to either side of most of the actin genes, and in most observed cases the repeat sequences which were adjacent to actin genes of a given type were similar. The repeat sequences flanking the actin genes belonged to families which were transcribed, but those repeats in the neighborhood of the actin genes which have been investigated were not themselves represented in the stable RNAs of eggs or early embryos.
Collapse
|
241
|
Nakajima Y, Mironov V, Yamagishi T, Nakamura H, Markwald RR. Expression of smooth muscle alpha-actin in mesenchymal cells during formation of avian endocardial cushion tissue: a role for transforming growth factor beta3. Dev Dyn 1997; 209:296-309. [PMID: 9215644 DOI: 10.1002/(sici)1097-0177(199707)209:3<296::aid-aja5>3.0.co;2-d] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
During early cardiac morphogenesis, outflow tract (OT) and atrio-ventricular (AV) endothelial cells differentiate into mesenchymal cells, which have characteristics of smooth muscle-like myofibroblasts, and which form endocardial cushion tissue, the primordia of valves, and septa in the adult heart. During this embryonic event, transforming growth factor beta3 (TGF beta3) is an essential element in the progression of endothelial-transformation into mesenchyme. TGF beta(s) are known to be a potent inducer for mesodermal differentiation and a promoter for differentiation of endothelial cells into smooth muscle-like cells. Using a monoclonal antibody against smooth muscle-specific alpha-actin (SMA), we examined the immunohistochemical staining of this form of actin in avian endocardial cushion tissue formation. To determine whether TGF beta3 initiates the expression of SMA, the pre-migratory AV endothelial monolayer was cultured with or without chicken recombinant TGF beta3 and the expression of SMA was examined immunochemically. Migrating mesenchymal cells expressed SMA beneath the cell surface membrane. These cells showed a reduction of endothelial specific marker antigen, QH1. Stationary endothelial cells did not express SMA. The deposition of SMA in the mesenchymal tissue persisted until the end of the fetal period. Pre-migratory endothelial cells cultured in complete medium (CM199) that contained TGF beta3 expressed SMA, whereas cells cultured in CM199 alone did not. At the onset of the endothelial-mesenchymal transformation, migrating mesenchymal cells express SMA and the expression of this form of actin is upregulated by TGF beta3. The induction of the expression of SMA by TGF beta3 is one of the initial events in the cytoskeletal reorganization in endothelial cells which separate from one another during the initial phenotypic change associated with the endothelial-mesenchymal transformation.
Collapse
Affiliation(s)
- Y Nakajima
- Department of Anatomy and Cell Biology, Medical College of Wisconsin, Milwaukee, USA
| | | | | | | | | |
Collapse
|
242
|
el-Rady J, Shearer G. Cloning and analysis of an actin-encoding cDNA from the dimorphic pathogenic fungus Histoplasma capsulatum. JOURNAL OF MEDICAL AND VETERINARY MYCOLOGY : BI-MONTHLY PUBLICATION OF THE INTERNATIONAL SOCIETY FOR HUMAN AND ANIMAL MYCOLOGY 1997; 35:159-66. [PMID: 9229331 DOI: 10.1080/02681219780001091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have cloned an actin-encoding cDNA from the dimorphic fungus Histoplasma capsulatum, an important pathogen of humans. The predicted amino acid sequence as well as the general codon pattern of Histoplasma actin revealed the highest degree of similarity to the actin of the filamentous ascomycete Aspergillus nidulans. Southern blot analysis determined that actin was encoded by a single copy in the Histoplasma genome. Northern blot analysis showed a single 1700 nt transcript in yeast and mould cells as well as in cells undergoing the temperature induced mould-to-yeast conversion. Actin mRNA levels normalized to 18 S rRNA were found to be equivalent in all the stages examined, except for a sharp four-fold transient decrease 4 h into the mould-to-yeast conversion. These data suggest that actin mRNA would not be a suitable internal marker for expression studies during Histoplasma mould-to-yeast morphogenesis.
Collapse
Affiliation(s)
- J el-Rady
- University of Southern Mississippi, Department of Biological Sciences, Hattiesburg 39406-5018, USA
| | | |
Collapse
|
243
|
Höfer D, Ness W, Drenckhahn D. Sorting of actin isoforms in chicken auditory hair cells. J Cell Sci 1997; 110 ( Pt 6):765-70. [PMID: 9099950 DOI: 10.1242/jcs.110.6.765] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Most nonmuscle cells of higher vertebrates contain two different actin isoforms, beta- and gamma-cytoplasmic actin. The beta-isoform is with few exceptions the predominant isoform in nonmuscle cells and tissues. Perturbation of the beta:gamma ratio has been shown to affect the organization of bundled actin filaments indicating that the beta- and gamma-genes encode functionally distinct cytoarchitectural information. In the present study we localized by immunostaining beta- and gamma-actin in chicken auditory hair cells. These highly specialized cells serve as model system for studying certain developmental and structural aspects of a complex actin filament system with high architectural precision. We show that gamma-actin is the predominant actin isoform in auditory hair cells with an apparent beta:gamma ratio of approximately 1:2. gamma-Actin is not sorted and occurs in all three actin assemblies of the hair border, i.e. the cores of sensory hairs (stereocilia), the subjacent gel-like actin filament meshwork (cuticular plate) and the zonula adherens ring. In contrast to gamma-actin, the beta-isoform is specifically sorted to the actin filament core bundle of stereocilia that is extensively crosslinked by fimbrin. In view of recent studies showing that L-plastin, the leukocyte homolog of fimbrin, has a higher binding affinity for beta-actin than for gamma-actin, a mechanism is proposed for how hair cells might restrict formation of actin filament bundles to a single cellular site (i.e. the stereocilia). The limited level of expression of beta-actin in hair cells may help to prevent ectopic bundle formation in other cellular compartments.
Collapse
Affiliation(s)
- D Höfer
- Institute of Anatomy, University of Würzburg, Germany
| | | | | |
Collapse
|
244
|
Kusano K, Abe H, Obinata T. Primary structure of mouse actin-related protein 1 (Arp1) and its tissue expression. Zoolog Sci 1997; 14:77-82. [PMID: 9200982 DOI: 10.2108/zsj.14.77] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Different types of actin-related proteins which constitute an actin-superfamily together with conventional actin have recently been described (Mullins et al., 1996). Among them, Arp1 exhibits the highest homology with conventional actin. With the aim of clarifying the cellular function of Arp1 in mammalian cells, we cloned the cDNA encoding mouse alpha-Arp1, one of the variants of Arp1, from a mouse diaphragm cDNA library; two types of alpha-Arp1 cDNAs, which are probably generated by alternative RNA splicing from a single gene, were obtained and the entire sequences were determined. They differed only in the presence or absence of an insertion of 1.3 kb in the 3'-non-cooling region but shared a common open reading frame. The deduced amino acid sequence was identical with that of human alpha-Arp1. Northern blot analysis showed that the alpha-Arp1 mRNA corresponding to the longer cDNA is transcribed not only in various non-muscle tissues but also in muscle tissues, while the transcript corresponding to the shorter one becomes expressed only in skeletal muscle as development progresses. It is suggested that alpha-Arp1 may play some role in muscle, as judged by the significant level of its expression.
Collapse
Affiliation(s)
- K Kusano
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Japan
| | | | | |
Collapse
|
245
|
Iglesias MM, Cymes GD, Wolfenstein-Todel C. A sialic acid-binding lectin from ovine placenta: purification, specificity and interaction with actin. Glycoconj J 1996; 13:967-76. [PMID: 8981088 DOI: 10.1007/bf01053192] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A sialic-acid-specific lectin from ovine placental cotyledons was purified by affinity chromatography on bovine submaxillary mucin-agarose followed by gel filtration, and it showed a molecular weight of 65000 by sodium dodecylsulfate-polyacrylamide gel electrophoresis. This lectin has the capacity to interact with actin, since it binds to actin-F in a cosedimentation assay and it acts as a mediator in the binding of actin to the affinity column. The lectin agglutinated rabbit and rat erythrocytes, but not human A, B or O erythrocytes. Haemagglutination inhibition assays of different saccharides, glycoproteins and glycolipids indicate that this lectin has affinity for sialic acid, which is enhanced by its O-acetylation. The N-terminal sequence of the protein shows 92% identity with rabbit and porcine uterine calreticulin.
Collapse
Affiliation(s)
- M M Iglesias
- Instituto de Química y Fisicoquimica Biológicas (UBA-CONICET), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | | | | |
Collapse
|
246
|
Takahashi Y, Imanaka T, Takano T. Spatial and temporal pattern of smooth muscle cell differentiation during development of the vascular system in the mouse embryo. ANATOMY AND EMBRYOLOGY 1996; 194:515-26. [PMID: 8905017 DOI: 10.1007/bf00185997] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The initial phase of smooth muscle differentiation in the vascular system of the mouse embryo was observed immunohistochemically with monoclonal antibody against alpha-smooth muscle actin. Few smooth muscle cells were detected in the vascular system of the 9.5-day embryo, where only the dorsal aorta and umbilical artery showed signs of smooth muscle differentiation. In the 10.5-day embryo, smooth muscle cells were observed in the dorsal aorta, ventral aorta, omphalomesenteric artery and vein, umbilical artery and vein, internal carotid artery, aortic arches III and IV, and subclavian artery. The extent of smooth muscle differentiation varied among these vessels and among regions of a vessel. At 11.5 days of gestation, smooth muscle cells appeared in the basilar artery, vertebral artery, aortic arches VI, intersomitic artery, ductus venosus, and caudal artery. Smooth muscle cells were absent from the venous system characteristic of the embryo at the stages examined. Alpha-smooth muscle actin-positive cells were also observed in allantoic mesoderm in the placenta at 9.5 days, when the umbilical vessels were not surrounded by smooth muscle cells. Vascular smooth muscle cells appear to arise independently from mesenchyme at multiple sites in the vascular system.
Collapse
Affiliation(s)
- Y Takahashi
- Department of Microbiology and Molecular Pathology, Faculty of Pharmaceutical Sciences, Teikyo University, Kanagawa, Japan
| | | | | |
Collapse
|
247
|
Ott DE, Coren LV, Kane BP, Busch LK, Johnson DG, Sowder RC, Chertova EN, Arthur LO, Henderson LE. Cytoskeletal proteins inside human immunodeficiency virus type 1 virions. J Virol 1996; 70:7734-43. [PMID: 8892894 PMCID: PMC190843 DOI: 10.1128/jvi.70.11.7734-7743.1996] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have identified three types of cytoskeletal proteins inside human immunodeficiency virus type 1 (HIV-1) virions by analyzing subtilisin-digested particles. HIV-1 virions were digested with protease, and the treated particles were isolated by sucrose density centrifugation. This method removes both exterior viral proteins and proteins associated with microvesicles that contaminate virion preparations. Since the proteins inside the virion are protected from digestion by the viral lipid envelope, they can be isolated and analyzed after treatment. Experiments presented here demonstrated that this procedure removed more than 95% of the protein associated with microvesicles. Proteins in digested HIV-1(MN) particles from infected H9 and CEM(ss) cell lines were analyzed by high-pressure liquid chromatography, protein sequencing, and immunoblotting. The data revealed that three types of cytoskeletal proteins are present in virions at different concentrations relative to the molar level of Gag: actin (approximately 10 to 15%), ezrin and moesin (approximately 2%), and cofilin (approximately 2 to 10%). Our analysis of proteins within virus particles detected proteolytic fragments of alpha-smooth muscle actin and moesin that were cleaved at sites which might be recognized by HIV-1 protease. These cleavage products are not present in microvesicles from uninfected cells. Therefore, these processed proteins are most probably produced by HIV-1 protease digestion. The presence of these fragments, as well as the incorporation of a few specific cytoskeletal proteins into virions, suggests an active interaction between cytoskeletal and viral proteins.
Collapse
Affiliation(s)
- D E Ott
- AIDS Vaccine Program, National Cancer Institute, Frederick Cancer Research and Development Center, Maryland 21702-1201, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Hovland R, Hesketh JE, Pryme IF. The compartmentalization of protein synthesis: importance of cytoskeleton and role in mRNA targeting. Int J Biochem Cell Biol 1996; 28:1089-105. [PMID: 8930133 DOI: 10.1016/1357-2725(96)00059-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Following the synthesis of mRNA molecules in eukaryotic cells, the transcripts are processed in the nucleus and subsequently transported through the nuclear membrane into the cytoplasm before being sequestered into polysomes where the information contained in the RNA molecule is translated into an amino acid sequence. Recent evidence suggests that an association of mRNAs with the cytoskeleton might be important in targeting mechanisms and, furthermore, in the transport of mRNA from the nucleus to its correct location in the cytoplasm. Until recently, polysomes have been considered to exist in two classes, namely free or membrane-bound. There is now compelling evidence, however, that ribosomes, in addition to being associated with endoplasmic reticulum membranes, also are associated with components of the cytoskeleton. Thus, a large number of morphological and biochemical studies have shown that mRNA, polysomes and translational factors are associated with cytoskeletal structures. Although the actual nature and significance of the interaction between components of the translational apparatus and the cytoskeleton is not yet understood in detail, it would seem evident that such interactions are important in both the spatial organization and control of protein synthesis. Recent work has shown that a subcellular fraction, enriched in cytoskeletal components, contains polysomes and these (cytoskeletal-bound) polysomes have been shown to contain specific mRNA species. Thus, a population of cytoskeletal-bound polysomes may provide a specialized mechanism for the sorting, targeting and topographical segregation of mRNAs. In this review, current knowledge of the subcellular compartmentalization of mRNAs is discussed.
Collapse
Affiliation(s)
- R Hovland
- Department of Biochemistry and Molecular Biology, University of Bergen, Norway
| | | | | |
Collapse
|
249
|
Qian J, Kumar A, Szucsik JC, Lessard JL. Tissue and developmental specific expression of murine smooth muscle gamma-actin fusion genes in transgenic mice. Dev Dyn 1996; 207:135-44. [PMID: 8906417 DOI: 10.1002/(sici)1097-0177(199610)207:2<135::aid-aja2>3.0.co;2-i] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Smooth muscle gamma-actin (SMGA) is an excellent marker of smooth muscle differentiation because it is essentially restricted to smooth muscle. As a first step toward unraveling the mechanisms underlying smooth muscle development and differentiation, we have examined the tissue-specific and developmental expression patterns of six constructs carrying portions of the murine SMGA gene linked to chloramphenicol acetyltransferase (CAT) in stable lines of transgenic mice. Based on the transgenic studies most, if not all, of the regulatory elements necessary for proper spatial and temporal expression of SMGA are present within a 13.7 kb segment of the SMGA gene containing 4.9 kb of upstream sequence, exon 1, intron 1, and a portion of exon 2 up to the start codon for translation. A second construct (SMGA11.6CAT) that lacks the distal 2.1 kb of upstream sequence but is otherwise identical to SMGA13.7CAT shows a similar level of smooth muscle-specific CAT activity. However, SMGA9.3CAT fusion gene containing only 571 bp of 5' flanking sequence, but otherwise identical to SMGA13.7CAT, and SMGA6.0CAT containing only the 4.9 kb upstream sequence, exon 1, and a miniintron 1 show a more than a 100-fold reduction of CAT activity in most smooth muscle-rich tissues. Furthermore, removal of most or all of intron 1 from a transgene with 571 bp of upstream sequence (SMGA2.0 CAT and SMGA0.6CAT) results in a near-complete or complete loss of activity, respectively, in all tissues. Overall, the studies suggest that upstream elements between -2.7 kb and -571 bp and elements within intron 1 are required for high levels of SMGA gene expression in an appropriate temporal-spatial fashion.
Collapse
Affiliation(s)
- J Qian
- Division of Developmental Biology, Children's Hospital Medical Center, College of Medicine, University of Cincinnati, Ohio 45229-3039, USA
| | | | | | | |
Collapse
|
250
|
Rønnov-Jessen L. Stromal Reaction to Invasive Cancer: The Cellular Origin of the Myofibroblast and Implications for Tumor Development. Breast J 1996. [DOI: 10.1111/j.1524-4741.1996.tb00117.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|