201
|
Xu F, Yu L, Peng X, Zhang J, Li S, Liu S, Yin Y, An Z, Wang F, Fu Y, Xu P. Unambiguous Phosphosite Localization through the Combination of Trypsin and LysargiNase Mirror Spectra in a Large-Scale Phosphoproteome Study. J Proteome Res 2020; 19:2185-2194. [PMID: 32388983 DOI: 10.1021/acs.jproteome.9b00562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding of the kinase-guided signaling pathways requires the identification and analysis of phosphosites. Mass spectrometry (MS)-based phosphoproteomics is a rapid and highly sensitive approach for high-throughput identification of phosphosites. However, phosphosite determination from MS data with a single protease is more likely to be ambiguous, regardless of the strategy used for phosphopeptide detection. Here, we explored the application of LysargiNase, which was recently reported to mirror trypsin in specificity to cleave arginine and lysine residues exclusively at the N-terminal side. We found that the combination of trypsin and LysargiNase mirror spectra resulted in higher ion coverage in MS2 spectra. The median ion coverage values of b ions in tryptic spectra, LysargiNase spectra, and combined spectra are 8.3, 20.5, and 25.0%, respectively. As for the median ion coverage of y ions, these values are 27.8, 10.0, and 32.3%. Higher ion coverage was helpful to pinpoint the precise phosphosites. Compared to trypsin alone, the combined use of trypsin and LysargiNase mirror spectra enabled 67.1% of mirror spectra with unreliable scores (confidence score <0.75) to become reliable (confidence score ≥ 0.75). Meanwhile, all of the mirror peptide-spectrum matches (PSMs) with multiple potential phosphosites from trypsin and LysargiNase digests could be assigned one precise phosphosite after applying the combination strategy. Besides, the combination strategy could identify more novel phosphosites than the union strategy did. We synthesized three phosphopeptides corresponding to the three novel phosphosites and validated the reliability of the identification. Taken together, our data demonstrated the distinctive potential of the combination strategy presented here for unambiguous phosphosite localization (Project accession PXD011178).
Collapse
Affiliation(s)
- Feng Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Li Yu
- National Center for Mathematics and Interdisciplinary Sciences, Key Laboratory of Random Complex Structures and Data Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100864, China.,School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuehui Peng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Lifeomics, Beijing 102206, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, School of Medicine, Wuhan University, Wuhan430072, China
| | - Junling Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Suzhen Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Lifeomics, Beijing 102206, China.,Anhui Medical University, Hefei 230032, China
| | - Shu Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yanan Yin
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, School of Medicine, Wuhan University, Wuhan430072, China
| | - Zhiwu An
- National Center for Mathematics and Interdisciplinary Sciences, Key Laboratory of Random Complex Structures and Data Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100864, China.,School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuqiang Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yan Fu
- National Center for Mathematics and Interdisciplinary Sciences, Key Laboratory of Random Complex Structures and Data Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100864, China.,School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Lifeomics, Beijing 102206, China.,Anhui Medical University, Hefei 230032, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, School of Medicine, Wuhan University, Wuhan430072, China
| |
Collapse
|
202
|
Chen Z, Zhao P, Li F, Leier A, Marquez-Lago TT, Webb GI, Baggag A, Bensmail H, Song J. PROSPECT: A web server for predicting protein histidine phosphorylation sites. J Bioinform Comput Biol 2020; 18:2050018. [DOI: 10.1142/s0219720020500183] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background: Phosphorylation of histidine residues plays crucial roles in signaling pathways and cell metabolism in prokaryotes such as bacteria. While evidence has emerged that protein histidine phosphorylation also occurs in more complex organisms, its role in mammalian cells has remained largely uncharted. Thus, it is highly desirable to develop computational tools that are able to identify histidine phosphorylation sites. Result: Here, we introduce PROSPECT that enables fast and accurate prediction of proteome-wide histidine phosphorylation substrates and sites. Our tool is based on a hybrid method that integrates the outputs of two convolutional neural network (CNN)-based classifiers and a random forest-based classifier. Three features, including the one-of-K coding, enhanced grouped amino acids content (EGAAC) and composition of k-spaced amino acid group pairs (CKSAAGP) encoding, were taken as the input to three classifiers, respectively. Our results show that it is able to accurately predict histidine phosphorylation sites from sequence information. Our PROSPECT web server is user-friendly and publicly available at http://PROSPECT.erc.monash.edu/ . Conclusions: PROSPECT is superior than other pHis predictors in both the running speed and prediction accuracy and we anticipate that the PROSPECT webserver will become a popular tool for identifying the pHis sites in bacteria.
Collapse
Affiliation(s)
- Zhen Chen
- School of Basic Medical Science, Qingdao University, Qingdao, P. R. China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese, Academy of Agricultural Sciences (CAAS), Anyang, P. R. China
| | - Pei Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese, Academy of Agricultural Sciences (CAAS), Anyang, P. R. China
| | - Fuyi Li
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Australia
- Monash Centre for Data Science, Faculty of Information Technology, Monash University, VIC 3800, Australia
| | - André Leier
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, USA
- Informatics Institute, School of Medicine, University of Alabama at Birmingham, USA
| | - Tatiana T. Marquez-Lago
- School of Basic Medical Science, Qingdao University, Qingdao, P. R. China
- Informatics Institute, School of Medicine, University of Alabama at Birmingham, USA
| | - Geoffrey I. Webb
- Monash Centre for Data Science, Faculty of Information Technology, Monash University, VIC 3800, Australia
| | - Abdelkader Baggag
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Halima Bensmail
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Jiangning Song
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Australia
- Monash Centre for Data Science, Faculty of Information Technology, Monash University, VIC 3800, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
203
|
Naderi M, Salahinejad A, Attaran A, Chivers DP, Niyogi S. Chronic exposure to environmentally relevant concentrations of bisphenol S differentially affects cognitive behaviors in adult female zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114060. [PMID: 32045791 DOI: 10.1016/j.envpol.2020.114060] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/02/2019] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Evidence is emerging that environmental exposure to bisphenol S (BPS), a substitute for bisphenol A (BPA), to humans and wildlife is on the rise. However, research on the neurobehavioral effects of this endocrine disruptive chemical is still in its infancy. In this study, we aimed to investigate the effects of long-term exposure to environmentally relevant concentrations of BPS on recognition memory and its mechanism(s) of action, especially focusing on the glutamatergic/ERK/CREB pathway in the brain. Adult female zebrafish were exposed to the vehicle, 17β-estradiol (E2, 1 μg/L), or BPS (1, 10 and 30 μg/L) for 120 days. Fish were then tested in the object recognition (OR), object placement (OP), and social recognition tasks (SR). Chronic exposure to E2 and 1 μg/L of BPS improved fish performance in OP task. This was associated with an up-regulation in the mRNA expression of several subtypes of metabotropic and ionotropic glutamate receptors, an increase in the phosphorylation levels of ERK1/2 and CREB, and an elevated transcript abundance of several immediate early genes involved in synaptic plasticity and memory formation. In contrast, the exposure to 10 and 30 μg/L of BPS attenuated fish performance in all recognition memory tasks. The impairment of these memory functions was associated with a marked down-regulation in the expression and activity of genes and proteins involved in glutamatergic/ERK/CREB signaling cascade. Collectively, our study demonstrated that the long-term exposure to BPS elicits hermetic effects on the recognition memory in zebrafish. Furthermore, the effect of BPS on the recognition memory seems to be mediated by the glutamatergic/ERK/CREB signaling pathway.
Collapse
Affiliation(s)
- Mohammad Naderi
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada.
| | - Arash Salahinejad
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Anoosha Attaran
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| |
Collapse
|
204
|
Deznabi I, Arabaci B, Koyutürk M, Tastan O. DeepKinZero: zero-shot learning for predicting kinase-phosphosite associations involving understudied kinases. Bioinformatics 2020; 36:3652-3661. [PMID: 32044914 PMCID: PMC7320620 DOI: 10.1093/bioinformatics/btaa013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/17/2019] [Accepted: 01/06/2020] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION Protein phosphorylation is a key regulator of protein function in signal transduction pathways. Kinases are the enzymes that catalyze the phosphorylation of other proteins in a target-specific manner. The dysregulation of phosphorylation is associated with many diseases including cancer. Although the advances in phosphoproteomics enable the identification of phosphosites at the proteome level, most of the phosphoproteome is still in the dark: more than 95% of the reported human phosphosites have no known kinases. Determining which kinase is responsible for phosphorylating a site remains an experimental challenge. Existing computational methods require several examples of known targets of a kinase to make accurate kinase-specific predictions, yet for a large body of kinases, only a few or no target sites are reported. RESULTS We present DeepKinZero, the first zero-shot learning approach to predict the kinase acting on a phosphosite for kinases with no known phosphosite information. DeepKinZero transfers knowledge from kinases with many known target phosphosites to those kinases with no known sites through a zero-shot learning model. The kinase-specific positional amino acid preferences are learned using a bidirectional recurrent neural network. We show that DeepKinZero achieves significant improvement in accuracy for kinases with no known phosphosites in comparison to the baseline model and other methods available. By expanding our knowledge on understudied kinases, DeepKinZero can help to chart the phosphoproteome atlas. AVAILABILITY AND IMPLEMENTATION The source codes are available at https://github.com/Tastanlab/DeepKinZero. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Iman Deznabi
- Computer Engineering Department, Bilkent University, Ankara 06800, Turkey
- College of Information and Computer Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Busra Arabaci
- Computer Engineering Department, Bilkent University, Ankara 06800, Turkey
| | - Mehmet Koyutürk
- Department of Computer and Data Sciences
- Center for Proteomics & Bioinformatics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Oznur Tastan
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| |
Collapse
|
205
|
Yu K, Zhang Q, Liu Z, Zhao Q, Zhang X, Wang Y, Wang ZX, Jin Y, Li X, Liu ZX, Xu RH. qPhos: a database of protein phosphorylation dynamics in humans. Nucleic Acids Res 2020; 47:D451-D458. [PMID: 30380102 PMCID: PMC6323974 DOI: 10.1093/nar/gky1052] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/17/2018] [Indexed: 12/21/2022] Open
Abstract
Temporal and spatial protein phosphorylation dynamically orchestrates a broad spectrum of biological processes and plays various physiological and pathological roles in diseases and cancers. Recent advancements in high-throughput proteomics techniques greatly promoted the profiling and quantification of phosphoproteome. However, although several comprehensive databases have reserved the phosphorylated proteins and sites, a resource for phosphorylation quantification still remains to be constructed. In this study, we developed the qPhos (http://qphos.cancerbio.info) database to integrate and host the data on phosphorylation dynamics. A total of 3 537 533 quantification events for 199 071 non-redundant phosphorylation sites on 18 402 proteins under 484 conditions were collected through exhaustive curation of published literature. The experimental details, including sample materials, conditions and methods, were recorded. Various annotations, such as protein sequence and structure properties, potential upstream kinases and their inhibitors, were systematically integrated and carefully organized to present details about the quantified phosphorylation sites. Various browse and search functions were implemented for the user-defined filtering of samples, conditions and proteins. Furthermore, the qKinAct service was developed to dissect the kinase activity profile from user-submitted quantitative phosphoproteome data through annotating the kinase activity-related phosphorylation sites. Taken together, the qPhos database provides a comprehensive resource for protein phosphorylation dynamics to facilitate related investigations.
Collapse
Affiliation(s)
- Kai Yu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Qingfeng Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zekun Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.,Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Qi Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xiaolong Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yan Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zi-Xian Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ying Jin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xiaoxing Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ze-Xian Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Rui-Hua Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
206
|
Yu Y, Zhao Q, Zhu S, Dong H, Huang B, Liang S, Wang Q, Wang H, Yu S, Han H. Molecular characterization of serine/threonine protein phosphatase of Eimeria tenella. J Eukaryot Microbiol 2020; 67:510-520. [PMID: 32358794 DOI: 10.1111/jeu.12798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/13/2020] [Accepted: 04/23/2020] [Indexed: 12/17/2022]
Abstract
Avian coccidiosis is a widespread and economically significant poultry disease caused by several Eimeria species, including Eimeria tenella. Previously, E. tenella serine/threonine protein phosphatase (EtSTP) was found to be differentially expressed in drug-sensitive (DS) and drug-resistant strains using RNA-seq. In the present study, we found that transcription and translation levels of EtSTP were higher in diclazuril-resistant (DZR) strains and maduramicin-resistant (MRR) strains than in DS strains using quantitative real-time PCR (qPCR) and Western blotting. Enzyme activity results indicated that the catalytic activity of EtSTP was higher in the two drug-resistant strains than in DS strains. Western blot and qPCR analysis also showed that expression levels of EtSTP were higher in unsporulated oocysts (UO) and second-generation merozoites (SM). Indirect immunofluorescence localization showed that EtSTP was located in most areas of the parasite with the exception of refractile bodies, and fluorescence intensity was enhanced during development. In vitro inhibition experiments showed that the ability of sporozoites (SZ) to invade cells was significantly decreased after treatment with anti-rEtSTP antibody. These results indicated that EtSTP acted mainly during the developmental and reproductive stages of the parasite and may be related to the resistance of coccidia to external drug pressure.
Collapse
Affiliation(s)
- Yu Yu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, 200241, China.,College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Qiping Zhao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, 200241, China
| | - Shunhai Zhu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, 200241, China
| | - Hui Dong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, 200241, China
| | - Bing Huang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, 200241, China
| | - Shanshan Liang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, 200241, China.,College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Qingjie Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, 200241, China
| | - Haixia Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, 200241, China
| | - Shuilan Yu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, 200241, China
| | - Hongyu Han
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, 200241, China
| |
Collapse
|
207
|
Synthesis and biological evaluation of selected 7-azaindole derivatives as CDK9/Cyclin T and Haspin inhibitors. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02560-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
208
|
MARK4 Inhibited by AChE Inhibitors, Donepezil and Rivastigmine Tartrate: Insights into Alzheimer's Disease Therapy. Biomolecules 2020; 10:biom10050789. [PMID: 32443670 PMCID: PMC7277793 DOI: 10.3390/biom10050789] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 12/26/2022] Open
Abstract
Microtubule affinity-regulating kinase (MARK4) plays a key role in Alzheimer’s disease (AD) development as its overexpression is directly linked to increased tau phosphorylation. MARK4 is a potential drug target of AD and is thus its structural features are employed in the development of new therapeutic molecules. Donepezil (DP) and rivastigmine tartrate (RT) are acetylcholinesterase (AChE) inhibitors and are used to treat symptomatic patients of mild to moderate AD. In keeping with the therapeutic implications of DP and RT in AD, we performed binding studies of these drugs with the MARK4. Both DP and RT bound to MARK4 with a binding constant (K) of 107 M−1. The temperature dependency of binding parameters revealed MARK−DP complex to be guided by static mode while MARK−RT complex to be guided by both static and dynamic quenching. Both drugs inhibited MARK4 with IC50 values of 5.3 μM (DP) and 6.74 μM (RT). The evaluation of associated enthalpy change (ΔH) and entropy change (ΔS) implied the complex formation to be driven by hydrogen bonding making it seemingly strong and specific. Isothermal titration calorimetry further advocated a spontaneous binding. In vitro observations were further complemented by the calculation of binding free energy by molecular docking and interactions with the functionally-important residues of the active site pocket of MARK4. This study signifies the implications of AChE inhibitors, RT, and DP in Alzheimer’s therapy targeting MARK4.
Collapse
|
209
|
Fallek A, Weiss-Shtofman M, Kramer M, Dobrovetsky R, Portnoy M. Phosphorylation Organocatalysts Highly Active by Design. Org Lett 2020; 22:3722-3727. [PMID: 32319783 DOI: 10.1021/acs.orglett.0c01226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The activity of nucleophilic organocatalysts for alcohol/phenol phosphorylation was enhanced through attaching oligoether appendages to a benzyl substituent on imidazole- or aminopyridine-based active units, presumably because of stabilizing n-cation interactions of the ethereal oxygens with the positively charged aza-heterocycle in the catalytic intermediates, and was substantially higher than that of known benchmark catalysts for a range of substrates. Density functional theory calculations and the study of analogues having a lower potential for such stabilizing interactions support our hypothesis.
Collapse
Affiliation(s)
- Amit Fallek
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Mor Weiss-Shtofman
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Maria Kramer
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Roman Dobrovetsky
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Moshe Portnoy
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
210
|
Bernatik O, Pejskova P, Vyslouzil D, Hanakova K, Zdrahal Z, Cajanek L. Phosphorylation of multiple proteins involved in ciliogenesis by Tau Tubulin kinase 2. Mol Biol Cell 2020; 31:1032-1046. [PMID: 32129703 PMCID: PMC7346730 DOI: 10.1091/mbc.e19-06-0334] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 12/23/2019] [Accepted: 02/25/2020] [Indexed: 11/11/2022] Open
Abstract
Primary cilia are organelles necessary for proper implementation of developmental and homeostasis processes. To initiate their assembly, coordinated actions of multiple proteins are needed. Tau tubulin kinase 2 (TTBK2) is a key player in the cilium assembly pathway, controlling the final step of cilia initiation. The function of TTBK2 in ciliogenesis is critically dependent on its kinase activity; however, the precise mechanism of TTBK2 action has so far not been fully understood due to the very limited information about its relevant substrates. In this study, we demonstrate that CEP83, CEP89, CCDC92, Rabin8, and DVL3 are substrates of TTBK2 kinase activity. Further, we characterize a set of phosphosites of those substrates and CEP164 induced by TTBK2 in vitro and in vivo. Intriguingly, we further show that identified TTBK2 phosphosites and consensus sequence delineated from those are distinct from motifs previously assigned to TTBK2. Finally, we show that TTBK2 is also required for efficient phosphorylation of many S/T sites in CEP164 and provide evidence that TTBK2-induced phosphorylations of CEP164 modulate its function, which in turn seems relevant for the process of cilia formation. In summary, our work provides important insight into the substrates-TTBK2 kinase relationship and suggests that phosphorylation of substrates on multiple sites by TTBK2 is probably involved in the control of ciliogenesis in human cells.
Collapse
Affiliation(s)
- Ondrej Bernatik
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Petra Pejskova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - David Vyslouzil
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Katerina Hanakova
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Zbynek Zdrahal
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Lukas Cajanek
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| |
Collapse
|
211
|
Johnson CN, Hashim MM, Bailey CA, Byrd JA, Kogut MH, Arsenault RJ. Feeding of yeast cell wall extracts during a necrotic enteritis challenge enhances cell growth, survival and immune signaling in the jejunum of broiler chickens. Poult Sci 2020; 99:2955-2966. [PMID: 32475430 PMCID: PMC7597693 DOI: 10.1016/j.psj.2020.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/30/2020] [Accepted: 03/04/2020] [Indexed: 11/13/2022] Open
Abstract
Necrotic enteritis (NE) is one of the most common and costly diseases in the modern broiler industry, having an estimated economic impact of $6 billion dollars annually. Increasing incidents of NE have resulted from restrictions on the use of antibiotic feed additives throughout the broiler industry. As such, finding effective antibiotic alternatives has become a priority. In this study, an experimental model of NE was used, comprising a commercial infectious bursal disease virus vaccine and Clostridium perfringens (C. perfringens) inoculation. Yeast cells wall (YCW) components, β-glucan (BG), and mannoproteins (MPTs) were evaluated for their effects on disease development. Chicken-specific immunometabolic kinome peptide arrays were used to measure differential phosphorylation between control (uninfected), challenged (infected), and challenged and treated birds in duodenal, jejunal, and ileal tissues. Treatment groups included crude YCW preparation, BG, MPT, or BG+MPT as feed additives. Data analysis revealed kinome profiles cluster predominantly by tissue, with duodenum showing the greatest relative signaling and jejunum showing the greatest response to treatment. BG, MPT, and BG+MPT cluster together, separate from controls and challenge birds in each tissue. Changes in signaling resulting from the treatments were observed in cell growth and survival responses as well as immune responses. None of the treatments of disease challenge returned the profiles to control-like. This is attributable to immune modulation and metabolic effects of the treatments generating distinct profiles from control. Importantly, all the treatments are distinct from the challenge group despite being challenged themselves. Only BG+MPT treatment had a significant effect on bird weight gain compared with the NE challenge group, and this treatment had the greatest impact on gut tissue signaling in all segments. The signaling changes elicited by BG+MPT during an NE challenge were increased cell growth and survival signaling, reducing cell death, apoptosis and innate inflammatory responses, and generating compensatory signaling to reduce disease severity.
Collapse
Affiliation(s)
- Casey N Johnson
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA
| | - Mohammed M Hashim
- Department of Poultry Science, Texas A&M University, College Station, TX 77843, USA
| | - Christopher A Bailey
- Department of Poultry Science, Texas A&M University, College Station, TX 77843, USA
| | - James A Byrd
- USDA - ARS, Southern Plains Agricultural Research Center, College Station, TX 77845, USA
| | - Michael H Kogut
- USDA - ARS, Southern Plains Agricultural Research Center, College Station, TX 77845, USA
| | - Ryan J Arsenault
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
212
|
Miccoli A, Dhiani BA, Thornton PJ, Lambourne OA, James E, Kadri H, Mehellou Y. Aryloxy Triester Phosphoramidates as Phosphoserine Prodrugs: A Proof of Concept Study. ChemMedChem 2020; 15:671-674. [DOI: 10.1002/cmdc.202000034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/02/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Ageo Miccoli
- School of Pharmacy and Pharmaceutical Sciences Cardiff University King Edward VII Avenue Cardiff CF10 3NB UK
| | - Binar A. Dhiani
- School of Pharmacy and Pharmaceutical Sciences Cardiff University King Edward VII Avenue Cardiff CF10 3NB UK
| | | | - Olivia A. Lambourne
- School of Pharmacy and Pharmaceutical Sciences Cardiff University King Edward VII Avenue Cardiff CF10 3NB UK
| | - Edward James
- School of Pharmacy and Pharmaceutical Sciences Cardiff University King Edward VII Avenue Cardiff CF10 3NB UK
| | - Hachemi Kadri
- Department of Chemistry Durham University South Road Durham DH1 3LE UK
| | - Youcef Mehellou
- School of Pharmacy and Pharmaceutical Sciences Cardiff University King Edward VII Avenue Cardiff CF10 3NB UK
| |
Collapse
|
213
|
Wang C, Xu H, Lin S, Deng W, Zhou J, Zhang Y, Shi Y, Peng D, Xue Y. GPS 5.0: An Update on the Prediction of Kinase-specific Phosphorylation Sites in Proteins. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 18:72-80. [PMID: 32200042 PMCID: PMC7393560 DOI: 10.1016/j.gpb.2020.01.001] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/18/2019] [Accepted: 02/26/2020] [Indexed: 02/07/2023]
Abstract
In eukaryotes, protein phosphorylation is specifically catalyzed by numerous protein kinases (PKs), faithfully orchestrates various biological processes, and reversibly determines cellular dynamics and plasticity. Here we report an updated algorithm of Group-based Prediction System (GPS) 5.0 to improve the performance for predicting kinase-specific phosphorylation sites (p-sites). Two novel methods, position weight determination (PWD) and scoring matrix optimization (SMO), were developed. Compared with other existing tools, GPS 5.0 exhibits a highly competitive accuracy. Besides serine/threonine or tyrosine kinases, GPS 5.0 also supports the prediction of dual-specificity kinase-specific p-sites. In the classical module of GPS 5.0, 617 individual predictors were constructed for predicting p-sites of 479 human PKs. To extend the application of GPS 5.0, a species-specific module was implemented to predict kinase-specific p-sites for 44,795 PKs in 161 eukaryotes. The online service and local packages of GPS 5.0 are freely available for academic research at http://gps.biocuckoo.cn.
Collapse
Affiliation(s)
- Chenwei Wang
- (1)Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Haodong Xu
- (1)Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shaofeng Lin
- (1)Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wankun Deng
- (1)Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiaqi Zhou
- (1)Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ying Zhang
- (1)Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ying Shi
- (1)Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Di Peng
- (1)Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yu Xue
- (1)Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (2)Huazhong University of Science and Technology Ezhou Industrial Technology Research Institute, Ezhou 436044, China.
| |
Collapse
|
214
|
System-Wide Analysis of Protein Acetylation and Ubiquitination Reveals a Diversified Regulation in Human Cancer Cells. Biomolecules 2020; 10:biom10030411. [PMID: 32155916 PMCID: PMC7175279 DOI: 10.3390/biom10030411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 12/23/2022] Open
Abstract
Post-translational modifications are known to be widely involved in the regulation of various biological processes, through the extensive diversification of each protein function at the cellular network level. In order to unveil the system-wide function of the protein lysine modification in cancer cell signaling, we performed global acetylation and ubiquitination proteome analyses of human cancer cells, based on high-resolution nanoflow liquid chromatography–tandem mass spectrometry, in combination with the efficient biochemical enrichment of target modified peptides. Our large-scale proteomic analysis enabled us to identify more than 5000 kinds of ubiquitinated sites and 1600 kinds of acetylated sites, from representative human cancer cell lines, leading to the identification of approximately 900 novel lysine modification sites in total. Very interestingly, 236 lysine residues derived from 141 proteins were found to be modified with both ubiquitination and acetylation. As a consequence of the subsequent motif extraction analyses, glutamic acid (E) was found to be highly enriched at the position (−1) for the lysine acetylation sites, whereas the same amino acid was relatively dispersed along the neighboring residues of the lysine ubiquitination sites. Our pathway analysis also indicated that the protein translational control pathways, such as the eukaryotic initiation factor 2 (EIF2) and the ubiquitin signaling pathways, were highly enriched in both of the acetylation and ubiquitination proteome data at the network level. This report provides the first integrative description of the protein acetylation and ubiquitination-oriented systematic regulation in human cancer cells.
Collapse
|
215
|
Zhang J, Chen Y, Namani A, Elshaer M, Jiang Z, Shi H, Tang X, Wang XJ. Comparative transcriptome analysis reveals Dusp1 as a critical regulator of inflammatory response to fly ash particle exposure in mouse. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110116. [PMID: 31911387 DOI: 10.1016/j.ecoenv.2019.110116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/27/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
Exposure to outdoor concentrations of fine particulate matter (PM2.5) is a leading global health concern. Waste incineration emission has been recognized as a potential major contributor of ambient PM2.5. Respiratory inflammation is a central feature induced by PM2.5 exposure by inhalation. However, the molecular mechanisms are not fully understood. Dual-specificity phosphatase 1 (Dusp1) plays an instrumental role in the regulation of airway inflammation. In this study, fly ash particles (20 mg/kg BW) collected from a municipal waste incinerator in China were given to BALB/c wild-type (WT) and Dusp1-/- mice by intranasal administration daily for three consecutive days. While these particles induced mild inflammation in both genotypes, a significantly higher level of serum interleukin-6 (665 pg/ml) was measured in Dusp1-/- mice challenged with fly ash particles than in their WT counterparts. Genome-wide transcriptome profiling of pulmonary coding genes in response to the exposure were performed in both genotypes by RNA sequencing. We identified 487 differentially-expressed genes (DEGs) in fly ash-challenged Dusp1-/- mice versus their WT counterparts with a log2fold-change >1.5 and p < 0.05. Functional enrichment and molecular pathway mapping of the DEGs specific to Dusp1-/- mice exposed to the particles revealed that the top 10 perturbed molecular pathways were associated with the immune response. Our study demonstrates the anti-inflammatory role of Dusp1 in protecting the lung against insults by fly ash particles, suggesting that Dusp1 might be a therapeutic target for the treatment of PM2.5-induced respiratory diseases.
Collapse
Affiliation(s)
- Jingwen Zhang
- Department of Pharmacology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
| | - Yiping Chen
- Department of Pharmacology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
| | - Akhileshwar Namani
- Department of Biochemistry and Department of Thoracic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
| | - Mohamed Elshaer
- Department of Biochemistry and Department of Thoracic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
| | - Zhinong Jiang
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, PR China
| | - Hongfei Shi
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, PR China
| | - Xiuwen Tang
- Department of Biochemistry and Department of Thoracic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
| | - Xiu Jun Wang
- Department of Pharmacology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, PR China.
| |
Collapse
|
216
|
|
217
|
Chen G, Gan J, Yang C, Zuo Y, Peng J, Li M, Huo W, Xie Y, Zhang Y, Wang T, Deng X, Liang H. The SiaA/B/C/D signaling network regulates biofilm formation in Pseudomonas aeruginosa. EMBO J 2020; 39:e103412. [PMID: 32090355 DOI: 10.15252/embj.2019103412] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 01/21/2020] [Accepted: 02/03/2020] [Indexed: 11/09/2022] Open
Abstract
Bacterial cyclic-di-GMP (c-di-GMP) production is associated with biofilm development and the switch from acute to chronic infections. In Pseudomonas aeruginosa, the diguanylate cyclase (DGC) SiaD and phosphatase SiaA, which are co-transcribed as part of a siaABCD operon, are essential for cellular aggregation. However, the detailed functions of this operon and the relationships among its constituent genes are unknown. Here, we demonstrate that the siaABCD operon encodes for a signaling network that regulates SiaD enzymatic activity to control biofilm and aggregates formation. Through protein-protein interaction, SiaC promotes SiaD diguanylate cyclase activity. Biochemical and structural data revealed that SiaB is an unusual protein kinase that phosphorylates SiaC, whereas SiaA phosphatase can dephosphorylate SiaC. The phosphorylation state of SiaC is critical for its interaction with SiaD, which will switch on or off the DGC activity of SiaD and regulate c-di-GMP levels and subsequent virulence phenotypes. Collectively, our data provide insights into the molecular mechanisms underlying the modulation of DGC activity associated with chronic infections, which may facilitate the development of antimicrobial drugs.
Collapse
Affiliation(s)
- Gukui Chen
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Jianhua Gan
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Chun Yang
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Yili Zuo
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Juan Peng
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Meng Li
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Weiping Huo
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Yingpeng Xie
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Yani Zhang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Tietao Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Haihua Liang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| |
Collapse
|
218
|
Effects of SDS on the activity and conformation of protein tyrosine phosphatase from thermus thermophilus HB27. Sci Rep 2020; 10:3195. [PMID: 32081966 PMCID: PMC7035334 DOI: 10.1038/s41598-020-60263-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 02/03/2020] [Indexed: 11/20/2022] Open
Abstract
Deciphering the activity-conformation relationship of PTPase is of great interest to understand how PTPase activity is determined by its conformation. Here we studied the activity and conformational transitions of PTPase from thermus thermophilus HB27 in the presence of sodium dodecyl sulfate (SDS). Activity assays showed the inactivation of PTPase induced by SDS was in a concentration-dependent manner. Fluorescence and circular dichroism spectra suggested SDS induced significant conformational transitions of PTPase, which resulted in the inactivation of PTPase, and the changes of α-helical structure and tertiary structure of PTPase. Structural analysis revealed a number of hydrophobic and charged residues around the active sites of PTPase may be involved in the hydrophobic and ionic bonds interactions of PTPase and SDS, which are suggested to be the major driving force to result in PTPase inactivation and conformational transitions induced by SDS. Our results suggested the hydrophobic and charged residues around the active sites were essential for the activity and conformation of PTPase. Our study promotes a better understanding of the activity and conformation of PTPase.
Collapse
|
219
|
Hyper-phosphorylation of nsp2-related proteins of porcine reproductive and respiratory syndrome virus. Virology 2020; 543:63-75. [PMID: 32174300 PMCID: PMC7112050 DOI: 10.1016/j.virol.2020.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/31/2020] [Accepted: 01/31/2020] [Indexed: 01/07/2023]
Abstract
Viruses exploit phosphorylation of both viral and host proteins to support viral replication. In this study, we demonstrate that porcine reproductive and respiratory syndrome virus replicase nsp2, and two nsp2-related −2/−1 frameshifting products, nsp2TF and nsp2N, are hyper-phosphorylated. By mapping phosphorylation sites, we subdivide an extended, previously uncharacterized region, located between the papain-like protease-2 (PLP2) domain and frameshifting site, into three distinct domains. These domains include two large hypervariable regions (HVR) with putative intrinsically disordered structures, separated by a conserved and partly structured interval domain that we defined as the inter-HVR conserved domain (IHCD). Abolishing phosphorylation of the inter-species conserved residue serine918, which is located within the IHCD region, abrogates accumulation of viral genomic and subgenomic RNAs and recombinant virus production. Our study reveals the biological significance of phosphorylation events in nsp2-related proteins, emphasizes pleiotropic functions of nsp2-related proteins in the viral life cycle, and presents potential links to pathogenesis.
Collapse
|
220
|
Solleder M, Guillaume P, Racle J, Michaux J, Pak HS, Müller M, Coukos G, Bassani-Sternberg M, Gfeller D. Mass Spectrometry Based Immunopeptidomics Leads to Robust Predictions of Phosphorylated HLA Class I Ligands. Mol Cell Proteomics 2020; 19:390-404. [PMID: 31848261 PMCID: PMC7000122 DOI: 10.1074/mcp.tir119.001641] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 12/06/2019] [Indexed: 12/19/2022] Open
Abstract
The presentation of peptides on class I human leukocyte antigen (HLA-I) molecules plays a central role in immune recognition of infected or malignant cells. In cancer, non-self HLA-I ligands can arise from many different alterations, including non-synonymous mutations, gene fusion, cancer-specific alternative mRNA splicing or aberrant post-translational modifications. Identifying HLA-I ligands remains a challenging task that requires either heavy experimental work for in vivo identification or optimized bioinformatics tools for accurate predictions. To date, no HLA-I ligand predictor includes post-translational modifications. To fill this gap, we curated phosphorylated HLA-I ligands from several immunopeptidomics studies (including six newly measured samples) covering 72 HLA-I alleles and retrieved a total of 2,066 unique phosphorylated peptides. We then expanded our motif deconvolution tool to identify precise binding motifs of phosphorylated HLA-I ligands. Our results reveal a clear enrichment of phosphorylated peptides among HLA-C ligands and demonstrate a prevalent role of both HLA-I motifs and kinase motifs on the presentation of phosphorylated peptides. These data further enabled us to develop and validate the first predictor of interactions between HLA-I molecules and phosphorylated peptides.
Collapse
Affiliation(s)
- Marthe Solleder
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Philippe Guillaume
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Julien Racle
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Justine Michaux
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Department of Oncology, Ludwig Institute for Cancer Research, University Hospital of Lausanne, Lausanne, Switzerland
| | - Hui-Song Pak
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Department of Oncology, Ludwig Institute for Cancer Research, University Hospital of Lausanne, Lausanne, Switzerland
| | - Markus Müller
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - George Coukos
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Department of Oncology, Ludwig Institute for Cancer Research, University Hospital of Lausanne, Lausanne, Switzerland
| | - Michal Bassani-Sternberg
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Department of Oncology, Ludwig Institute for Cancer Research, University Hospital of Lausanne, Lausanne, Switzerland.
| | - David Gfeller
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
221
|
Recent developments of chalcones as potential antibacterial agents in medicinal chemistry. Eur J Med Chem 2020; 187:111980. [DOI: 10.1016/j.ejmech.2019.111980] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 12/31/2022]
|
222
|
Ferré-Dolcet L, Rodríguez-Gil JE, Yeste M, Rigau T, Rivera Del Alamo MM. Tyrosine phosphorylation is not a relevant mechanism to modulate aquaporin 2 activity in gestational queen endometrium and placenta. Reprod Domest Anim 2020; 55:448-453. [PMID: 31951059 DOI: 10.1111/rda.13636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/09/2020] [Indexed: 11/30/2022]
Abstract
Aquaporins have been shown to be regulated by phosphorylation of serine residues, but the possible role of tyrosine residues phosphorylation has not been evaluated. Changes in the localization of aquaporin 2 (AQP2) in the queen endometrium have been related to serum progesterone levels. The aim of this study was to determine whether these AQP2-localization changes are mediated by variations in its tyrosine phosphorylation levels. Twelve queens were included in the study and divided into (a) non-macroscopically pregnant with low levels of progesterone; (b) non-macroscopically pregnant with high levels of progesterone; (c) 30 days of pregnancy; and (d) 60 days of pregnancy. Samples from endometrium and placental transference zone were obtained, immunoprecipitated and analysed by immunoblotting to determine the abundance of AQP2 and its relative levels of tyrosine phosphorylation. No significant differences in the tyrosine phosphorylation levels of immunoprecipated-AQP2 were observed between groups. We can thus conclude that changes in the localization of AQP2 in the queen endometrium are not modulated by tyrosine phosphorylation.
Collapse
Affiliation(s)
- Lluis Ferré-Dolcet
- Unit of Animal Reproduction, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Bellaterra, Spain
| | - Joan Enric Rodríguez-Gil
- Unit of Animal Reproduction, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Bellaterra, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain.,Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Teresa Rigau
- Unit of Animal Reproduction, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Bellaterra, Spain
| | - Maria Montserrat Rivera Del Alamo
- Unit of Animal Reproduction, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Bellaterra, Spain
| |
Collapse
|
223
|
Nishi M, Miyakawa K, Matsunaga S, Khatun H, Yamaoka Y, Watashi K, Sugiyama M, Kimura H, Wakita T, Ryo A. Prolyl Isomerase Pin1 Regulates the Stability of Hepatitis B Virus Core Protein. Front Cell Dev Biol 2020; 8:26. [PMID: 32083080 PMCID: PMC7005485 DOI: 10.3389/fcell.2020.00026] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/14/2020] [Indexed: 01/14/2023] Open
Abstract
The dynamic interplay between virus and host proteins is critical for establishing efficient viral replication and virus-induced pathogenesis. Phosphorylation-dependent prolyl isomerization by Pin1 provides a unique mechanism of molecular switching to control both protein function and stability. We demonstrate here that Pin1 binds and stabilizes hepatitis B virus core protein (HBc) in a phosphorylation-dependent manner, and promotes the efficient viral propagation. Phos-tag gel electrophoresis with various site-directed mutants of HBc revealed that Thr160 and Ser162 residues within the C terminal arginine-rich domain are phosphorylated concomitantly. GST pull-down assay and co-immunoprecipitation analysis demonstrated that Pin1 associated with phosphorylated HBc at the Thr160-Pro and Ser162-Pro motifs. Chemical or genetic inhibition of Pin1 significantly accelerated the rapid degradation of HBc via a lysosome-dependent pathway. Furthermore, we found that the pyruvate dehydrogenase phosphatase catalytic subunit 2 (PDP2) could dephosphorylate HBc at the Pin1-binding sites, thereby suppressing Pin1-mediated HBc stabilization. Our findings reveal an important regulatory mechanism of HBc stability catalyzed by Pin1 and may facilitate the development of new antiviral therapeutics targeting Pin1 function.
Collapse
Affiliation(s)
- Mayuko Nishi
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Kei Miyakawa
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Satoko Matsunaga
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Hajera Khatun
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Yutaro Yamaoka
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama, Japan.,Isehara Research Laboratory, Technology and Development Division, Kanto Chemical Co., Inc., Isehara, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masaya Sugiyama
- Genome Medical Sciences Project, National Center for Global Health and Medicine, Chiba, Japan
| | - Hirokazu Kimura
- Faculty of Health Sciences, School of Medical Technology, Gunma Paz University, Takasaki, Japan
| | - Takaji Wakita
- Genome Medical Sciences Project, National Center for Global Health and Medicine, Chiba, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama, Japan
| |
Collapse
|
224
|
Arora N, Raj A, Anjum F, Kaur R, Rawat SS, Kumar R, Tripathi S, Singh G, Prasad A. Unveiling Taenia solium kinome profile and its potential for new therapeutic targets. Expert Rev Proteomics 2020; 17:85-94. [DOI: 10.1080/14789450.2020.1719835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Naina Arora
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - Anand Raj
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
- Department of Biotechnology, Motilal Nehru Institute of Technology, Allahabad, India
| | - Farhan Anjum
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - Rimanpreet Kaur
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - Suraj Singh Rawat
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - Rajiv Kumar
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Shweta Tripathi
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - Gagandeep Singh
- Department of Neurology, Dayanand Medical College, Ludhiana, India
| | - Amit Prasad
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| |
Collapse
|
225
|
Abstract
Adaptive mutations play an important role in molecular evolution. However, the frequency and nature of these mutations at the intramolecular level are poorly understood. To address this, we analyzed the impact of protein architecture on the rate of adaptive substitutions, aiming to understand how protein biophysics influences fitness and adaptation. Using Drosophila melanogaster and Arabidopsis thaliana population genomics data, we fitted models of distribution of fitness effects and estimated the rate of adaptive amino-acid substitutions both at the protein and amino-acid residue level. We performed a comprehensive analysis covering genome, gene, and protein structure, by exploring a multitude of factors with a plausible impact on the rate of adaptive evolution, such as intron number, protein length, secondary structure, relative solvent accessibility, intrinsic protein disorder, chaperone affinity, gene expression, protein function, and protein-protein interactions. We found that the relative solvent accessibility is a major determinant of adaptive evolution, with most adaptive mutations occurring at the surface of proteins. Moreover, we observe that the rate of adaptive substitutions differs between protein functional classes, with genes encoding for protein biosynthesis and degradation signaling exhibiting the fastest rates of protein adaptation. Overall, our results suggest that adaptive evolution in proteins is mainly driven by intermolecular interactions, with host-pathogen coevolution likely playing a major role.
Collapse
Affiliation(s)
- Ana Filipa Moutinho
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Fernanda Fontes Trancoso
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Julien Yann Dutheil
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Unité Mixte de Recherche 5554 Institut des Sciences de l'Evolution, CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
| |
Collapse
|
226
|
Yan J, Long Y, Zhou T, Ren J, Li Q, Song G, Cui Z. Dynamic Phosphoproteome Profiling of Zebrafish Embryonic Fibroblasts during Cold Acclimation. Proteomics 2020; 20:e1900257. [PMID: 31826332 DOI: 10.1002/pmic.201900257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/24/2019] [Indexed: 11/09/2022]
Abstract
Temperature affects almost all aspects of the fish life. To cope with low temperature, fish have evolved the ability of cold acclimation for survival. However, intracellular signaling events underlying cold acclimation in fish remain largely unknown. Here, the formation of cold acclimation in zebrafish embryonic fibroblasts (ZF4) is monitored and the phosphorylation events during the process are investigated through a large-scale quantitative phosphoproteomic approach. In total, 11 474 phosphorylation sites are identified on 4066 proteins and quantified 5772 phosphosites on 2519 proteins. Serine, threonine, and tyrosine (Ser/Thr/Tyr) phosphorylation accounted for 85.5%, 13.3%, and 1.2% of total phosphosites, respectively. Among all phosphosites, 702 phosphosites on 510 proteins show differential regulation during cold acclimation of ZF4 cells. These phosphosites are divided into six clusters according to their dynamic changes during cold exposure. Kinase-substrate prediction reveals that mitogen-activated protein kinase (MAPK) among the kinase groups is predominantly responsible for phosphorylation of these phosphosites. The differentially regulated phosphoproteins are functionally associated with various cellular processes such as regulation of actin cytoskeleton and MAPK signaling pathway. These data enrich the database of protein phosphorylation sites in zebrafish and provide key clues for the elucidation of intracellular signaling networks during cold acclimation of fish.
Collapse
Affiliation(s)
- Junjun Yan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Hubei, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Long
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Hubei, Wuhan, 430072, China
| | - Tong Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Hubei, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Ren
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Hubei, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Hubei, Wuhan, 430072, China
| | - Guili Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Hubei, Wuhan, 430072, China
| | - Zongbin Cui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Hubei, Wuhan, 430072, China.,The Innovative Academy of Seed Design, Chinese Academy of Sciences, Hubei, Wuhan, 430072, China
| |
Collapse
|
227
|
N-Terminal Acetylation by NatB Is Required for the Shutoff Activity of Influenza A Virus PA-X. Cell Rep 2020; 24:851-860. [PMID: 30044982 DOI: 10.1016/j.celrep.2018.06.078] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/26/2018] [Accepted: 06/18/2018] [Indexed: 12/17/2022] Open
Abstract
N-terminal acetylation is a major posttranslational modification in eukaryotes catalyzed by N-terminal acetyltransferases (NATs), NatA through NatF. Although N-terminal acetylation modulates diverse protein functions, little is known about its roles in virus replication. We found that NatB, which comprises NAA20 and NAA25, is involved in the shutoff activity of influenza virus PA-X. The shutoff activity of PA-X was suppressed in NatB-deficient cells, and PA-X mutants that are not acetylated by NatB showed reduced shutoff activities. We also evaluated the importance of N-terminal acetylation of PA, because PA-X shares its N-terminal sequence with PA. Viral polymerase activity was reduced in NatB-deficient cells. Moreover, mutant PAs that are not acetylated by NatB lost their function in the viral polymerase complex. Taken together, our findings demonstrate that N-terminal acetylation is required for the shutoff activity of PA-X and for viral polymerase activity.
Collapse
|
228
|
Zapata-Carmona H, Soriano-Úbeda C, París-Oller E, Matás C. Periovulatory oviductal fluid decreases sperm protein kinase A activity, tyrosine phosphorylation, and in vitro fertilization in pig. Andrology 2020; 8:756-768. [PMID: 31872543 DOI: 10.1111/andr.12751] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 12/05/2019] [Accepted: 12/20/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Molecules from the female reproductive tract modulate capacitation and function of sperm cells in vivo. These molecules vary in a quantitative and qualitative manner throughout the estrous cycle. OBJECTIVES This work evaluates the effect of using various female reproductive fluids on capacitation and fertilization of pig spermatozoa in vitro. MATERIAL AND METHODS The effects of culturing spermatozoa in different fluids on the levels of sperm protein kinase A (pPKA), tyrosine phosphorylation, acrosome reaction, and in vitro fertilization (IVF) were evaluated. The fluids tested were as follows: oviductal fluid (OF) from five phases of the estrous cycle, namely early and late follicular (OF-EF, OF-LF), early and late luteal (OF-EL, OF-LL) and periovulatory (pOF), follicular fluid from medium-sized follicles, and secretions of cumulus-oocyte complexes (conditioned medium). RESULTS The pPKAs and tyrosine phosphorylation were decreased by OF-EF, OF-LF, OF-EL, and pOF but not by follicular fluid and conditioned medium. OF-EF, OF-LF, and pOF also decreased the sperm acrosome reaction. Moreover, the effect of pOF on pPKAs and tyrosine phosphorylation was reversible. In in vitro fertilization, OF-EF, OF-LF, OF-EL, and pOF reduced the percentage of penetrated oocytes, the mean number of spermatozoa per penetrated oocyte, and increased monospermy. CONCLUSION OF from follicular, early luteal, and periovulatory phases of the estrous cycle modulates the sperm protein phosphorylation as well as the acrosome reaction involved in capacitation and increases monospermic fertilization in in vitro fertilization. Our findings suggest that fluids from the female reproductive tract could be used as additives in porcine IVF systems to modulate sperm-oocyte interaction.
Collapse
Affiliation(s)
- Héctor Zapata-Carmona
- Department of Physiology, Faculty of Veterinary Science, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain.,Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain.,Laboratorio de Biología de la Reproducción, Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Cristina Soriano-Úbeda
- Department of Physiology, Faculty of Veterinary Science, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain.,Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Evelyne París-Oller
- Department of Physiology, Faculty of Veterinary Science, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain.,Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Carmen Matás
- Department of Physiology, Faculty of Veterinary Science, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain.,Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| |
Collapse
|
229
|
Benedetti AM, Gill DM, Tsang CW, Jones AM. Chemical Methods for N- and O-Sulfation of Small Molecules, Amino Acids and Peptides. Chembiochem 2020; 21:938-942. [PMID: 31692230 DOI: 10.1002/cbic.201900673] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Indexed: 11/06/2022]
Abstract
Sulfation of the amino acid residues of proteins is a significant post-translational modification, the functions of which are yet to be fully understood. Current sulfation methods are limited mainly to O-tyrosine (sY), which requires negatively charged species around the desired amino acid residue and a specific sulfotransferase enzyme. Alternatively, for solid-phase peptide synthesis, a de novo protected sY is required. Therefore, synthetic routes that go beyond O-sulfation are required. We have developed a novel route to N-sulfamation and can dial-in/out O-sulfation (without S-sulfurothiolation), mimicking the initiation step of the ping-pong sulfation mechanism identified in structural biology. This rapid, low-temperature and non-racemising method is applicable to a range of amines, amides, amino acids, and peptide sequences.
Collapse
Affiliation(s)
- Anna Mary Benedetti
- School of Pharmacy, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Daniel M Gill
- School of Pharmacy, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Chi W Tsang
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Alan M Jones
- School of Pharmacy, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
230
|
Wang Y, Wang P, Xu J. Phosphorylation: A Fast Switch For Checkpoint Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1248:347-398. [PMID: 32185718 DOI: 10.1007/978-981-15-3266-5_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Checkpoint signaling involves a variety of upstream and downstream factors that participate in the regulation of checkpoint expression, activation, and degradation. During the process, phosphorylation plays a critical role. Phosphorylation is one of the most well-documented post-translational modifications of proteins. Of note, the importance of phosphorylation has been emphasized in aspects of cell activities, including proliferation, metabolism, and differentiation. Here we summarize how phosphorylation of specific molecules affects the immune activities with preference in tumor immunity. Of course, immune checkpoints are given extra attention in this book. There are many common pathways that are involved in signaling of different checkpoints. Some of them are integrated and presented as common activities in the early part of this chapter, especially those associated with PD-1/PD-L1 and CTLA-4, because investigations concerning them are particularly abundant and variant. Their distinct regulation is supplementarily discussed in their respective section. As for checkpoints that are so far not well explored, their related phosphorylation modulations are listed separately in the later part. We hope to provide a clear and systematic view of the phosphorylation-modulated immune signaling.
Collapse
Affiliation(s)
- Yiting Wang
- School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Wang
- Shanghai Tenth People's Hospital of Tongji University, School of Medicine, School of Life Sciences and Technology, Tongji University Cancer Center, Tongji University, Shanghai, 200092, China
| | - Jie Xu
- Institutes of Biomedical Sciences, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
231
|
Hasan R, Leo MD, Muralidharan P, Mata-Daboin A, Yin W, Bulley S, Fernandez-Peña C, MacKay CE, Jaggar JH. SUMO1 modification of PKD2 channels regulates arterial contractility. Proc Natl Acad Sci U S A 2019; 116:27095-27104. [PMID: 31822608 PMCID: PMC6936352 DOI: 10.1073/pnas.1917264116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PKD2 (polycystin-2, TRPP1) channels are expressed in a wide variety of cell types and can regulate functions, including cell division and contraction. Whether posttranslational modification of PKD2 modifies channel properties is unclear. Similarly uncertain are signaling mechanisms that regulate PKD2 channels in arterial smooth muscle cells (myocytes). Here, by studying inducible, cell-specific Pkd2 knockout mice, we discovered that PKD2 channels are modified by SUMO1 (small ubiquitin-like modifier 1) protein in myocytes of resistance-size arteries. At physiological intravascular pressures, PKD2 exists in approximately equal proportions as either nonsumoylated (PKD2) or triple SUMO1-modifed (SUMO-PKD2) proteins. SUMO-PKD2 recycles, whereas unmodified PKD2 is surface-resident. Intravascular pressure activates voltage-dependent Ca2+ influx that stimulates the return of internalized SUMO-PKD2 channels to the plasma membrane. In contrast, a reduction in intravascular pressure, membrane hyperpolarization, or inhibition of Ca2+ influx leads to lysosomal degradation of internalized SUMO-PKD2 protein, which reduces surface channel abundance. Through this sumoylation-dependent mechanism, intravascular pressure regulates the surface density of SUMO-PKD2-mediated Na+ currents (INa) in myocytes to control arterial contractility. We also demonstrate that intravascular pressure activates SUMO-PKD2, not PKD2, channels, as desumoylation leads to loss of INa activation in myocytes and vasodilation. In summary, this study reveals that PKD2 channels undergo posttranslational modification by SUMO1, which enables physiological regulation of their surface abundance and pressure-mediated activation in myocytes and thus control of arterial contractility.
Collapse
Affiliation(s)
- Raquibul Hasan
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163
| | - M. Dennis Leo
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163
| | | | - Alejandro Mata-Daboin
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Wen Yin
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Simon Bulley
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Carlos Fernandez-Peña
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Charles E. MacKay
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Jonathan H. Jaggar
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163
| |
Collapse
|
232
|
The role of phosphorylation of MLF2 at serine 24 in BCR-ABL leukemogenesis. Cancer Gene Ther 2019; 27:98-107. [PMID: 31831854 DOI: 10.1038/s41417-019-0152-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 01/29/2023]
Abstract
Chronic myelogenous leukemia (CML) is a myeloproliferative disorder defined by the presence of the fusion gene BCR-ABL1 in primitive hematopoietic progenitors. The myeloid leukemia factors (MLFs) were identified in the fly and human, and are involved in acute leukemia and enhancing the myeloid factor; however, the function of MLF2 in CML is poorly understood. In this study, we demonstrated that MLF2 may play an oncogenic role in CML. The expression level of MLF2 was related to the proliferation, colony-formation ability, and sensitivity to imatinib in K562 cells. Moreover, phosphorylation at serine 24, detected through Phos-tag sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was required to maintain the activity of MLF2 in CML. The effects of MLF2 overexpression on the colony-formation ability in vitro and mouse survival in vivo could be alleviated by point mutation of MLF2 at serine 24. These findings uncover the oncogenic role of MLF2 through phosphorylation at serine 24 and provide a novel therapeutic target in CML.
Collapse
|
233
|
García-Blanco N, Vázquez-Bolado A, Moreno S. Greatwall-Endosulfine: A Molecular Switch that Regulates PP2A/B55 Protein Phosphatase Activity in Dividing and Quiescent Cells. Int J Mol Sci 2019; 20:ijms20246228. [PMID: 31835586 PMCID: PMC6941129 DOI: 10.3390/ijms20246228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022] Open
Abstract
During the cell cycle, hundreds of proteins become phosphorylated and dephosphorylated, indicating that protein kinases and protein phosphatases play a central role in its regulation. It has been widely recognized that oscillation in cyclin-dependent kinase (CDK) activity promotes DNA replication, during S-phase, and chromosome segregation, during mitosis. Each CDK substrate phosphorylation status is defined by the balance between CDKs and CDK-counteracting phosphatases. In fission yeast and animal cells, PP2A/B55 is the main protein phosphatase that counteracts CDK activity. PP2A/B55 plays a key role in mitotic entry and mitotic exit, and it is regulated by the Greatwall-Endosulfine (ENSA) molecular switch that inactivates PP2A/B55 at the onset of mitosis, allowing maximal CDK activity at metaphase. The Greatwall-ENSA-PP2A/B55 pathway is highly conserved from yeast to animal cells. In yeasts, Greatwall is negatively regulated by nutrients through TORC1 and S6 kinase, and couples cell growth, regulated by TORC1, to cell cycle progression, driven by CDK activity. In animal cells, Greatwall is phosphorylated and activated by Cdk1 at G2/M, generating a bistable molecular switch that results in full activation of Cdk1/CyclinB. Here we review the current knowledge of the Greatwall-ENSA-PP2A/B55 pathway and discuss its role in cell cycle progression and as an integrator of nutritional cues.
Collapse
|
234
|
Wu Z, Jin Y, Chen B, Gugger MK, Wilkinson-Johnson CL, Tiambeng TN, Jin S, Ge Y. Comprehensive Characterization of the Recombinant Catalytic Subunit of cAMP-Dependent Protein Kinase by Top-Down Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2561-2570. [PMID: 31792770 PMCID: PMC6922056 DOI: 10.1007/s13361-019-02341-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/04/2019] [Accepted: 09/09/2019] [Indexed: 05/22/2023]
Abstract
Reversible phosphorylation plays critical roles in cell growth, division, and signal transduction. Kinases which catalyze the transfer of γ-phosphate groups of nucleotide triphosphates to their substrates are central to the regulation of protein phosphorylation and are therefore important therapeutic targets. Top-down mass spectrometry (MS) presents unique opportunities to study protein kinases owing to its capabilities in comprehensive characterization of proteoforms that arise from alternative splicing, sequence variations, and post-translational modifications. Here, for the first time, we developed a top-down MS method to characterize the catalytic subunit (C-subunit) of an important kinase, cAMP-dependent protein kinase (PKA). The recombinant PKA C-subunit was expressed in Escherichia coli and successfully purified via his-tag affinity purification. By intact mass analysis with high resolution and high accuracy, four different proteoforms of the affinity-purified PKA C-subunit were detected, and the most abundant proteoform was found containing seven phosphorylations with the removal of N-terminal methionine. Subsequently, the seven phosphorylation sites of the most abundant PKA C-subunit proteoform were characterized simultaneously using tandem MS methods. Four sites were unambiguously identified as Ser10, Ser11, Ser18, and Ser30, and the remaining phosphorylation sites were localized to Ser2/Ser3, Ser358/Thr368, and Thr[215-224]Tyr in the PKA C-subunit sequence with a 20mer 6xHis-tag added at the N-terminus. Interestingly, four of these seven phosphorylation sites were located at the 6xHis-tag. Furthermore, we have performed dephosphorylation reaction by Lambda protein phosphatase and showed that all phosphorylations of the recombinant PKA C-subunit phosphoproteoforms were removed by this phosphatase.
Collapse
Affiliation(s)
- Zhijie Wu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Yutong Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Bifan Chen
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Morgan K Gugger
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | | | - Timothy N Tiambeng
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Song Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
235
|
Zhou S, Zheng WJ, Liu BH, Zheng JC, Dong FS, Liu ZF, Wen ZY, Yang F, Wang HB, Xu ZS, Zhao H, Liu YW. Characterizing the Role of TaWRKY13 in Salt Tolerance. Int J Mol Sci 2019; 20:ijms20225712. [PMID: 31739570 PMCID: PMC6888956 DOI: 10.3390/ijms20225712] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 01/09/2023] Open
Abstract
The WRKY transcription factor superfamily is known to participate in plant growth and stress response. However, the role of this family in wheat (Triticum aestivum L.) is largely unknown. Here, a salt-induced gene TaWRKY13 was identified in an RNA-Seq data set from salt-treated wheat. The results of RT-qPCR analysis showed that TaWRKY13 was significantly induced in NaCl-treated wheat and reached an expression level of about 22-fold of the untreated wheat. Then, a further functional identification was performed in both Arabidopsis thaliana and Oryza sativa L. Subcellular localization analysis indicated that TaWRKY13 is a nuclear-localized protein. Moreover, various stress-related regulatory elements were predicted in the promoter. Expression pattern analysis revealed that TaWRKY13 can also be induced by polyethylene glycol (PEG), exogenous abscisic acid (ABA), and cold stress. After NaCl treatment, overexpressed Arabidopsis lines of TaWRKY13 have a longer root and a larger root surface area than the control (Columbia-0). Furthermore, TaWRKY13 overexpression rice lines exhibited salt tolerance compared with the control, as evidenced by increased proline (Pro) and decreased malondialdehyde (MDA) contents under salt treatment. The roots of overexpression lines were also more developed. These results demonstrate that TaWRKY13 plays a positive role in salt stress.
Collapse
Affiliation(s)
- Shuo Zhou
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China; (S.Z.); (F.-S.D.); (Z.-Y.W.); (H.-B.W.)
| | - Wei-Jun Zheng
- College of Agronomy, Northwest A&F University, Yangling 712100, China;
| | - Bao-Hua Liu
- Handan Academy of Agricultural Sciences, Handan 056001, China;
| | - Jia-Cheng Zheng
- College of Agronomy, Anhui Science and Technology University, Fengyang, Chuzhou 239000, China;
| | - Fu-Shuang Dong
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China; (S.Z.); (F.-S.D.); (Z.-Y.W.); (H.-B.W.)
| | | | - Zhi-Yu Wen
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China; (S.Z.); (F.-S.D.); (Z.-Y.W.); (H.-B.W.)
| | - Fan Yang
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China; (S.Z.); (F.-S.D.); (Z.-Y.W.); (H.-B.W.)
| | - Hai-Bo Wang
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China; (S.Z.); (F.-S.D.); (Z.-Y.W.); (H.-B.W.)
| | - Zhao-Shi Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China;
| | - He Zhao
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China; (S.Z.); (F.-S.D.); (Z.-Y.W.); (H.-B.W.)
- Correspondence: (H.Z.); (Y.-W.L.)
| | - Yong-Wei Liu
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China; (S.Z.); (F.-S.D.); (Z.-Y.W.); (H.-B.W.)
- Correspondence: (H.Z.); (Y.-W.L.)
| |
Collapse
|
236
|
Fan K, Yuan S, Chen J, Chen Y, Li Z, Lin W, Zhang Y, Liu J, Lin W. Molecular evolution and lineage-specific expansion of the PP2C family in Zea mays. PLANTA 2019; 250:1521-1538. [PMID: 31346803 DOI: 10.1007/s00425-019-03243-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/16/2019] [Indexed: 05/19/2023]
Abstract
97 ZmPP2Cs were clustered into 10 subfamilies with biased subfamily evolution and lineage-specific expansion. Segmental duplication after the divergence of maize and sorghum might have led to primary expansion of ZmPP2Cs. The protein phosphatase 2C (PP2C) enzymes control many stress responses and developmental processes in plants. In Zea mays, a comprehensive understanding of the evolution and expansion of the PP2C family is still lacking. In the current study, 97 ZmPP2Cs were identified and clustered into 10 subfamilies. Through the analysis of the PP2C family in monocots, the ZmPP2C subfamilies displayed biased subfamily molecular evolution and lineage-specific expansion, as evidenced by their differing numbers of member genes, expansion and evolutionary rates, conserved subdomains, chromosomal distributions, expression levels, responsive-regulatory elements and regulatory networks. Moreover, while segmental duplication events have caused the primary expansion of the ZmPP2Cs, the majority of their diversification occurred following the additional whole-genome duplication that took place after the divergence of maize and sorghum (Sorghum bicolor). After this event, the PP2C subfamilies showed asymmetric evolutionary rates, with the D, F2 and H subfamily likely the most closely to resemble its ancestral subfamily's genes. These findings could provide novel insights into the molecular evolution and expansion of the PP2C family in maize, and lay the foundation for the functional analysis of these enzymes in maize and related monocots.
Collapse
Affiliation(s)
- Kai Fan
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 35002, China
| | - Shuna Yuan
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences/Danzhou Investigation and Experiment Station of Tropical Crops, Ministry of Agriculture, Danzhou, 571737, China
| | - Jie Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 35002, China
| | - Yunrui Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 35002, China
| | - Zhaowei Li
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 35002, China
| | - Weiwei Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 35002, China
| | - Yongqiang Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 35002, China
| | - Jianping Liu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 35002, China
| | - Wenxiong Lin
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 35002, China.
| |
Collapse
|
237
|
Siddiqui G, Proellochs NI, Cooke BM. Identification of essential exported
Plasmodium falciparum
protein kinases in malaria‐infected red blood cells. Br J Haematol 2019; 188:774-783. [DOI: 10.1111/bjh.16219] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/31/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Ghizal Siddiqui
- Department of Microbiology Biomedicine Discovery Institute Monash University Clayton Victoria Australia
- Drug Delivery, Disposition and Dynamics Monash Institute of Pharmaceutical Sciences Monash University Parkville Victoria Australia
| | - Nicholas I. Proellochs
- Department of Microbiology Biomedicine Discovery Institute Monash University Clayton Victoria Australia
- Department of Medical Microbiology Radboud University Medical Center Nijmegen the Netherlands
| | - Brian M. Cooke
- Department of Microbiology Biomedicine Discovery Institute Monash University Clayton Victoria Australia
- Australian Institute of Tropical Health and Medicine James Cook University Cairns Queensland Australia
| |
Collapse
|
238
|
Vitrac H, Mallampalli VKPS, Dowhan W. Importance of phosphorylation/dephosphorylation cycles on lipid-dependent modulation of membrane protein topology by posttranslational phosphorylation. J Biol Chem 2019; 294:18853-18862. [PMID: 31645436 DOI: 10.1074/jbc.ra119.010785] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/10/2019] [Indexed: 12/29/2022] Open
Abstract
Posttranslational modifications of proteins, such as phosphorylation and dephosphorylation, play critical roles in cellular functions through diverse cell signaling pathways. Protein kinases and phosphatases have been described early on as key regulatory elements of the phosphorylated state of proteins. Tight spatial and temporal regulation of protein kinase and phosphatase activities has to be achieved in the cell to ensure accurate signal transduction. We demonstrated previously that phosphorylation of a membrane protein can lead to its topological rearrangement. Additionally, we found that both the rate and extent of topological rearrangement upon phosphorylation are lipid charge- and lipid environment-dependent. Here, using a model membrane protein (the bacterial lactose permease LacY reconstituted in proteoliposomes) and a combination of real-time measurements and steady-state assessments of protein topology, we established a set of experimental conditions to dissect the effects of phosphorylation and dephosphorylation of a membrane protein on its topological orientation. We also demonstrate that the phosphorylation-induced topological switch of a membrane protein can be reversed upon protein dephosphorylation, revealing a new regulatory role for phosphorylation/dephosphorylation cycles. Furthermore, we determined that the rate of topological rearrangement reversal is correlated with phosphatase activity and is influenced by the membrane's lipid composition, presenting new insights into the spatiotemporal control of the protein phosphorylation state. Together, our results highlight the importance of the compartmentalization of phosphorylation/dephosphorylation cycles in controlling membrane protein topology and, therefore, function, which are influenced by the local lipid environment of the membrane protein.
Collapse
Affiliation(s)
- Heidi Vitrac
- Department of Biochemistry and Molecular Biology and the Center for Membrane Biology, McGovern Medical School, University of Texas Houston, Texas 77030.
| | - Venkata K P S Mallampalli
- Department of Biochemistry and Molecular Biology and the Center for Membrane Biology, McGovern Medical School, University of Texas Houston, Texas 77030
| | - William Dowhan
- Department of Biochemistry and Molecular Biology and the Center for Membrane Biology, McGovern Medical School, University of Texas Houston, Texas 77030.
| |
Collapse
|
239
|
Sharma R, Sharma A, Kumar A, Jaganathan BG. Phospho-protein Analysis in Adherent Cells Using Flow Cytometry. Bio Protoc 2019; 9:e3395. [PMID: 33654896 DOI: 10.21769/bioprotoc.3395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 11/02/2022] Open
Abstract
Protein phosphorylation is one of the most important post-translational modifications, which acts as a reversible on or off switch for the activity of a large number of proteins. Analyzing the phosphorylation status of different proteins can reveal the alterations in the state of the cells in response to cellular damage, cancer and pharmaceutical drugs. Techniques such as mass spectrometry, radiolabeling, 2D-gel electrophoresis and western blotting are used to quantify protein phosphorylation. These assays can quantify phosphorylation in the bulk population of cells, however, flow cytometry can couple cell surface marker expression data with phosphorylation data to understand differential signaling in a sub-population within a heterogeneous population of cells. Our protocol describes the use of flow-cytometry for rapid and single cell-based quantification of intracellular phospho-protein with the help of anti-phospho protein specific antibody.
Collapse
Affiliation(s)
- Renu Sharma
- Stem Cells and Cancer Biology Group, Department of Biosciences and Bioengineering, Guwahati, India
| | - Amit Sharma
- Stem Cells and Cancer Biology Group, Department of Biosciences and Bioengineering, Guwahati, India
| | - Atul Kumar
- Stem Cells and Cancer Biology Group, Department of Biosciences and Bioengineering, Guwahati, India
| | - Bithiah Grace Jaganathan
- Stem Cells and Cancer Biology Group, Department of Biosciences and Bioengineering, Guwahati, India
| |
Collapse
|
240
|
Zhao X, Nedvetsky P, Stanchi F, Vion AC, Popp O, Zühlke K, Dittmar G, Klussmann E, Gerhardt H. Endothelial PKA activity regulates angiogenesis by limiting autophagy through phosphorylation of ATG16L1. eLife 2019; 8:e46380. [PMID: 31580256 PMCID: PMC6797479 DOI: 10.7554/elife.46380] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 10/01/2019] [Indexed: 12/15/2022] Open
Abstract
The cAMP-dependent protein kinase A (PKA) regulates various cellular functions in health and disease. In endothelial cells PKA activity promotes vessel maturation and limits tip cell formation. Here, we used a chemical genetic screen to identify endothelial-specific direct substrates of PKA in human umbilical vein endothelial cells (HUVEC) that may mediate these effects. Amongst several candidates, we identified ATG16L1, a regulator of autophagy, as novel target of PKA. Biochemical validation, mass spectrometry and peptide spot arrays revealed that PKA phosphorylates ATG16L1α at Ser268 and ATG16L1β at Ser269, driving phosphorylation-dependent degradation of ATG16L1 protein. Reducing PKA activity increased ATG16L1 protein levels and endothelial autophagy. Mouse in vivo genetics and pharmacological experiments demonstrated that autophagy inhibition partially rescues vascular hypersprouting caused by PKA deficiency. Together these results indicate that endothelial PKA activity mediates a critical switch from active sprouting to quiescence in part through phosphorylation of ATG16L1, which in turn reduces endothelial autophagy.
Collapse
Affiliation(s)
- Xiaocheng Zhao
- Vascular Patterning Laboratory, Center for Cancer BiologyVIBLeuvenBelgium
- Vascular Patterning Laboratory, Center for Cancer Biology, Department of OncologyVIBLeuvenBelgium
| | - Pavel Nedvetsky
- Vascular Patterning Laboratory, Center for Cancer BiologyVIBLeuvenBelgium
- Vascular Patterning Laboratory, Center for Cancer Biology, Department of OncologyVIBLeuvenBelgium
- Medical Cell Biology, Medical Clinic DUniversity Hospital MünsterMünsterGermany
| | - Fabio Stanchi
- Vascular Patterning Laboratory, Center for Cancer BiologyVIBLeuvenBelgium
- Vascular Patterning Laboratory, Center for Cancer Biology, Department of OncologyVIBLeuvenBelgium
| | - Anne-Clemence Vion
- Integrative Vascular Biology LabMax-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
- INSERM UMR-970, Paris Cardiovascular Research CenterParis Descartes UniversityParisFrance
| | - Oliver Popp
- ProteomicsMax-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
| | - Kerstin Zühlke
- Anchored Signaling LabMax-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
| | - Gunnar Dittmar
- ProteomicsMax-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
- CRP Santé · Department of OncologyLIH Luxembourg Institute of HealthLuxembourgLuxembourg
| | - Enno Klussmann
- Anchored Signaling LabMax-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
- DZHK (German Center for Cardiovascular Research)BerlinGermany
| | - Holger Gerhardt
- Vascular Patterning Laboratory, Center for Cancer BiologyVIBLeuvenBelgium
- Vascular Patterning Laboratory, Center for Cancer Biology, Department of OncologyVIBLeuvenBelgium
- Integrative Vascular Biology LabMax-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
- DZHK (German Center for Cardiovascular Research)BerlinGermany
- Berlin Institute of Health (BIH)BerlinGermany
| |
Collapse
|
241
|
Lu M, Ma L, Shan P, Liu A, Yu X, Jiang W, Wang X, Zhao X, Ye X, Wang T. DYRK1A aggravates β cell dysfunction and apoptosis by promoting the phosphorylation and degradation of IRS2. Exp Gerontol 2019; 125:110659. [PMID: 31306739 DOI: 10.1016/j.exger.2019.110659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 01/21/2023]
Abstract
In this study, we aimed to investigate the role of dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A (DYRK1A), which is one of the most important regulators of Alzheimer's disease development, in islet β cell dysfunction and apoptosis. We found significantly increased expression of DYRK1A in both the hippocampus and pancreatic islets of APPswe/PS1ΔE9 transgenic mice than in wild-type littermates. Furthermore, we observed that the overexpression of DYRK1A greatly aggravated β cell apoptosis. Most importantly, we found that DYRK1A directly interacted with insulin receptor substrate-2 (IRS2) and promoted IRS2 phosphorylation, leading to the proteasomal degradation of IRS2 and promotion of β cell dysfunction and apoptosis. These findings suggested that DYRK1A is a potential drug target in diabetes mellitus.
Collapse
Affiliation(s)
- Mei Lu
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China; Shandong Provincial Key laboratory of Cardiovascular Proteomics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lin Ma
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China; Shandong Provincial Key laboratory of Cardiovascular Proteomics, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Peiyan Shan
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China; Shandong Provincial Key laboratory of Cardiovascular Proteomics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Aifen Liu
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaolin Yu
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wenjing Jiang
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xinbang Wang
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xinjing Zhao
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiang Ye
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Tan Wang
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
242
|
Mullis BT, Hwang S, Lee LA, Iliuk A, Woolsey R, Quilici D, Wang Q. Automating Complex, Multistep Processes on a Single Robotic Platform to Generate Reproducible Phosphoproteomic Data. SLAS DISCOVERY 2019; 25:277-286. [PMID: 31556780 DOI: 10.1177/2472555219878152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mass spectrometry-based phosphoproteomics holds promise for advancing drug treatment and disease diagnosis; however, its clinical translation has thus far been limited. This is in part due to an unstandardized and segmented sample preparation process that involves cell lysis, protein digestion, peptide desalting, and phosphopeptide enrichment. Automating this entire sample preparation process will be key in facilitating standardization and clinical translation of phosphoproteomics. While peptide desalting and phosphopeptide enrichment steps have been individually automated, integrating these two extractions and, further, the entire process requires more advanced robotic platforms as well as automation-friendly extraction tools. Here we describe a fully automated peptide desalting and phosphopeptide enrichment method using IMCStips on a Hamilton STAR. Using our established automated method, we identified more than 10,000 phosphopeptides from 200 µg of HCT116 cell lysate without fractionation with >85% phosphopeptide specificities. Compared with titania-based Spin Tip products, the automated IMCStips-based method gave 50% higher phosphopeptide identifications. The method reproducibility was further assessed using multiple reaction monitoring (MRM) to show >50% phosphopeptide recoveries after the automated phosphopeptide extraction with coefficients of variation (CVs) of <20% over a 3-week period. The established automated method is a step toward standardization of the sample preparation of phosphopeptide samples and could be further expanded upon to create a fully automated "cells to phosphopeptides" method.
Collapse
Affiliation(s)
- B Todd Mullis
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Sunil Hwang
- UNC Nutrition Research Institute, Kannapolis, NC, USA
| | - L Andrew Lee
- Integrated Micro-Chromatography Systems, Inc., Irmo, SC, USA
| | - Anton Iliuk
- Tymora Analytical Operations, West Lafayette, IN, USA
| | - Rebekah Woolsey
- Mick Hitchcock, Ph.D. Nevada Proteomics Center, Reno, NV, USA
| | - David Quilici
- Mick Hitchcock, Ph.D. Nevada Proteomics Center, Reno, NV, USA
| | - Qian Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
243
|
Iida M, Sahashi K, Kondo N, Nakatsuji H, Tohnai G, Tsutsumi Y, Noda S, Murakami A, Onodera K, Okada Y, Nakatochi M, Tsukagoshi Okabe Y, Shimizu S, Mizuno M, Adachi H, Okano H, Sobue G, Katsuno M. Src inhibition attenuates polyglutamine-mediated neuromuscular degeneration in spinal and bulbar muscular atrophy. Nat Commun 2019; 10:4262. [PMID: 31537808 PMCID: PMC6753158 DOI: 10.1038/s41467-019-12282-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 08/29/2019] [Indexed: 12/12/2022] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disease caused by an expanded CAG repeat in the androgen receptor (AR) gene. Here, we perform a comprehensive analysis of signaling pathways in a mouse model of SBMA (AR-97Q mice) utilizing a phosphoprotein assay. We measure the levels of 17 phosphorylated proteins in spinal cord and skeletal muscle of AR-97Q mice at three stages. The level of phosphorylated Src (p-Src) is markedly increased in the spinal cords and skeletal muscles of AR-97Q mice prior to the onset. Intraperitoneal administration of a Src kinase inhibitor improves the behavioral and histopathological phenotypes of the transgenic mice. We identify p130Cas as an effector molecule of Src and show that the phosphorylated p130Cas is elevated in murine and cellular models of SBMA. These results suggest that Src kinase inhibition is a potential therapy for SBMA.
Collapse
Affiliation(s)
- Madoka Iida
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya city, Aichi, 466-8550, Japan
- Japan Society for the Promotion of Science, 5-3-1, Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Kentaro Sahashi
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya city, Aichi, 466-8550, Japan
| | - Naohide Kondo
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya city, Aichi, 466-8550, Japan
| | - Hideaki Nakatsuji
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya city, Aichi, 466-8550, Japan
| | - Genki Tohnai
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya city, Aichi, 466-8550, Japan
| | - Yutaka Tsutsumi
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya city, Aichi, 466-8550, Japan
| | - Seiya Noda
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya city, Aichi, 466-8550, Japan
- Department of Neurology, National Hospital Organization Suzuka National Hospital, 3-2-1, Kasado, Suzuka city, Mie, 513-8501, Japan
| | - Ayuka Murakami
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya city, Aichi, 466-8550, Japan
- Department of Neurology, National Hospital Organization Suzuka National Hospital, 3-2-1, Kasado, Suzuka city, Mie, 513-8501, Japan
| | - Kazunari Onodera
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya city, Aichi, 466-8550, Japan
- Department of Neurology, Aichi Medical University School of Medicine, 1, Karimata, Yazako, Nagakute-city, Aichi, 480-1195, Japan
| | - Yohei Okada
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya city, Aichi, 466-8550, Japan
- Department of Neurology, Aichi Medical University School of Medicine, 1, Karimata, Yazako, Nagakute-city, Aichi, 480-1195, Japan
- Department of Physiology, Keio University School of Medicine, 35, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masahiro Nakatochi
- Department of Nursing, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya city, Aichi, 461-8673, Japan
| | - Yuka Tsukagoshi Okabe
- Department of Advanced Medicine, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya city, Aichi, 466-8560, Japan
| | - Shinobu Shimizu
- Department of Advanced Medicine, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya city, Aichi, 466-8560, Japan
| | - Masaaki Mizuno
- Department of Advanced Medicine, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya city, Aichi, 466-8560, Japan
| | - Hiroaki Adachi
- Department of Neurology, University of Occupational and Environmental Health School of Medicine, 1-1, Iseigaoka, Yahatanichi-ku, Kitakyushu-city, Fukuoka, 807-0804, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Gen Sobue
- Brain and Mind Research Center, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya city, Aichi, 466-8550, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya city, Aichi, 466-8550, Japan.
| |
Collapse
|
244
|
Abstract
Castration-resistant prostate cancer (CRPC) remains incurable despite the approval of several new treatments. Identification of new biomarkers and therapeutic targets to enable personalization of CRPC therapy, with the aim of maximizing therapeutic responses and minimizing toxicity in patients, is urgently needed. Prostate cancer progression and therapeutic resistance are frequently driven by aberrantly activated kinase signalling pathways that are amenable to pharmacological inhibition. Personalized phosphoproteomics, which enables the analysis of signalling networks in individual tumours, is a promising approach to advance personalized therapy by discovering biomarkers of pathway activity and clinically actionable targets. Several technologies for global and targeted phosphoproteomic analysis exist, each with its own strengths and shortcomings. Global discovery phosphoproteomics is predominantly conducted using liquid chromatography-tandem mass spectrometry coupled with data-dependent or data-independent acquisition technologies. Multiplexed targeted phosphoproteomics can be divided into platforms based on mass spectrometry or antibodies, including selected or parallel reaction monitoring and triggered by offset, multiplexed, accurate mass, high-resolution, absolute quantification (known as TOMAHAQ) or forward-phase or reverse-phase protein arrays, respectively. Several obstacles still need to be overcome before the full potential of phosphoproteomics can be realized in routine clinical practice, but a future phosphoproteomics-centric trans-omic profiling approach should enable optimized personalized CRPC management through improved biomarkers and targeted treatments.
Collapse
|
245
|
Kim VY, Batty A, Li J, Kirk SG, Crowell SA, Jin Y, Tang J, Zhang J, Rogers LK, Deng HX, Nelin LD, Liu Y. Glutathione Reductase Promotes Fungal Clearance and Suppresses Inflammation during Systemic Candida albicans Infection in Mice. THE JOURNAL OF IMMUNOLOGY 2019; 203:2239-2251. [PMID: 31501257 DOI: 10.4049/jimmunol.1701686] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 08/07/2019] [Indexed: 01/16/2023]
Abstract
Glutathione reductase (Gsr) catalyzes the reduction of glutathione disulfide to glutathione, which plays an important role in redox regulation. We have previously shown that Gsr facilitates neutrophil bactericidal activities and is pivotal for host defense against bacterial pathogens. However, it is unclear whether Gsr is required for immune defense against fungal pathogens. It is also unclear whether Gsr plays a role in immunological functions outside of neutrophils during immune defense. In this study, we report that Gsr-/- mice exhibited markedly increased susceptibility to Candida albicans challenge. Upon C. albicans infection, Gsr-/- mice exhibited dramatically increased fungal burden in the kidneys, cytokine and chemokine storm, striking neutrophil infiltration, histological abnormalities in both the kidneys and heart, and substantially elevated mortality. Large fungal foci surrounded by massive numbers of neutrophils were detected outside of the glomeruli in the kidneys of Gsr -/- mice but were not found in wild-type mice. Examination of the neutrophils and macrophages of Gsr-/- mice revealed several defects. Gsr -/- neutrophils exhibited compromised phagocytosis, attenuated respiratory burst, and impaired fungicidal activity in vitro. Moreover, upon C. albicans stimulation, Gsr -/- macrophages produced increased levels of inflammatory cytokines and exhibited elevated p38 and JNK activities, at least in part, because of lower MAPK phosphatase (Mkp)-1 activity and greater Syk activity. Thus, Gsr-mediated redox regulation is crucial for fungal clearance by neutrophils and the proper control of the inflammatory response by macrophages during host defense against fungal challenge.
Collapse
Affiliation(s)
- Victoria Y Kim
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215
| | - Abel Batty
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215
| | - Jinhui Li
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215
| | - Sean G Kirk
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215
| | - Sara A Crowell
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215
| | - Yi Jin
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215
| | - Juan Tang
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
| | - Jian Zhang
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Lynette K Rogers
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205; and
| | - Han-Xiang Deng
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Leif D Nelin
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205; and
| | - Yusen Liu
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215; .,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205; and
| |
Collapse
|
246
|
Ding T, Zhou Y, Long R, Chen C, Zhao J, Cui P, Guo M, Liang G, Xu L. DUSP8 phosphatase: structure, functions, expression regulation and the role in human diseases. Cell Biosci 2019; 9:70. [PMID: 31467668 PMCID: PMC6712826 DOI: 10.1186/s13578-019-0329-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/12/2019] [Indexed: 12/28/2022] Open
Abstract
Dual-specificity phosphatases (DUSPs) are a subset of protein tyrosine phosphatases (PTPs), many of which dephosphorylate the residues of phosphor-serine/threonine and phosphor-tyrosine on mitogen-activated protein kinases (MAPKs), and hence are also referred to as MAPK phosphatases (MKPs). Homologue of Vaccinia virus H1 phosphatase gene clone 5 (HVH-5), also known as DUSP8, is a unique member of the DUSPs family of phosphatases. Accumulating evidence has shown that DUSP8 plays an important role in phosphorylation-mediated signal transduction of MAPK signaling ranging from cell oxidative stress response, cell apoptosis and various human diseases. It is generally believed that DUSP8 exhibits significant dephosphorylation activity against JNK, however, with the deepening of research, plenty of new literature reports that DUSP8 also has effective dephosphorylation activity on p38 MAPK and ERKs, successfully affects the transduction of MAPKs pathway, indicating that DUSP8 presents a unknown diversity of DUSPs family on distinct corresponding dephosphorylated substrates in different biological events. Therefore, the in-depth study of DUSP8 not only throws a new light on the multi-biological function of DUSPs, but also is much valuable for the reveal of complex pathobiology of clinical diseases. In this review, we provide a detail overview of DUSP8 phosphatase structure, biological function and expression regulation, as well as its role in related clinical human diseases, which might be help for the understanding of biological function of DUSP8 and the development of prevention, diagnosis and therapeutics in related human diseases.
Collapse
Affiliation(s)
- Tao Ding
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, 563000 Guizhou China.,2Department of Immunology, Zunyi Medical University, Zunyi, 563000 Guizhou China
| | - Ya Zhou
- 3Department of Medical Physics, Zunyi Medical University, Zunyi, 563000 Guizhou China
| | - Runying Long
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, 563000 Guizhou China.,2Department of Immunology, Zunyi Medical University, Zunyi, 563000 Guizhou China
| | - Chao Chen
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, 563000 Guizhou China
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, 563000 Guizhou China
| | - Panpan Cui
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, 563000 Guizhou China
| | - Mengmeng Guo
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, 563000 Guizhou China
| | - Guiyou Liang
- 4Department of Cardiovascular Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004 Guizhou China.,5Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000 Guizhou China
| | - Lin Xu
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, 563000 Guizhou China.,2Department of Immunology, Zunyi Medical University, Zunyi, 563000 Guizhou China
| |
Collapse
|
247
|
Das S, Bhattacharya B, Das B, Sinha B, Jamatia T, Paul K. Etiologic Role of Kinases in the Progression of Human Cancers and Its Targeting Strategies. Indian J Surg Oncol 2019; 12:34-45. [PMID: 33994726 DOI: 10.1007/s13193-019-00972-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 08/07/2019] [Indexed: 11/30/2022] Open
Abstract
Cancer is one of the dominant causes of death worldwide while lifelong prognosis is still inauspicious. The maturation of the cancer is seen as a process of transformation of a healthy cell into a tumor-sensitive cell, which is held entirely at the cellular, molecular, and genetic levels of the organism. Tyrosine kinases can play a major, etiologic role in the inception of malignancy and devote to the uncontrolled proliferation of cancerous cells and the progression of a tumor as well as the development of metastatic disease. Angiogenesis and oncogene activation are the major event in cell proliferation. The growth of a tumor and metastasis are fully depending on angiogenesis and lymphangiogenesis triggered by chemical signals from tumor cells in a phase of rapid growth. Tyrosine kinase inhibitors are compounds that inhibit tyrosine kinases and effective in targeting angiogenesis and blocking the signaling pathways of oncogenes. Small molecule tyrosine kinase inhibitors like afatinib, erlotinib, crizotinib, gefitinib, and cetuximab are shown to a selective cut off tactic toward the constitutive activation of an oncogene in tumor cells, and thus contemplated as promising therapeutic approaches for the diagnosis of cancer and malignancies.
Collapse
Affiliation(s)
- Sanjoy Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Bireswar Bhattacharya
- Regional Institute of Pharmaceutical Science and Technology, Agartala, Tripura 799005 India
| | - Biplajit Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Bibek Sinha
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Taison Jamatia
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Kishan Paul
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| |
Collapse
|
248
|
Luan Z, Zhao L, Liu C, Song W, He P, Zhang X. Detection of casein kinase II by aggregation-induced emission. Talanta 2019; 201:450-454. [PMID: 31122448 DOI: 10.1016/j.talanta.2019.04.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/12/2019] [Accepted: 04/14/2019] [Indexed: 10/27/2022]
Abstract
A novel aggregation-induced emission (AIE) probe comprised of a hydrophilic protein kinase specific peptide and a hydrophobic tetraphenylethene (TPE) unit was synthesized through click reaction. The prepared TPE-peptide probe could be completely degraded by carboxypeptidase Y (CPY) to release hydrophobic TPE part, which aggregated in buffer solution and showed strong TPE emission. In the presence of casein kinase (CKII), the phosphorylation of peptide prevented the complete degradation by CPY producing the nonemissive probe. Thus, the developed probe can be used to detect CKII homogeneously and conveniently. This detection process can be finished within 1.5 h with high sensitivity (0.05 mU/μL) and good selectivity. The developed method can also be used to screen protein kinase inhibitor even in a complex biological system.
Collapse
Affiliation(s)
- Zhenzhu Luan
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Key Laboratory of Biochemical Analysis, Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Li Zhao
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Key Laboratory of Biochemical Analysis, Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Chao Liu
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Key Laboratory of Biochemical Analysis, Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Weiling Song
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Key Laboratory of Biochemical Analysis, Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Peng He
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Key Laboratory of Biochemical Analysis, Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Xiaoru Zhang
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Key Laboratory of Biochemical Analysis, Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
249
|
Li H, Guan Y. Machine learning empowers phosphoproteome prediction in cancers. Bioinformatics 2019; 36:859-864. [PMID: 31410451 PMCID: PMC7868059 DOI: 10.1093/bioinformatics/btz639] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 07/25/2019] [Accepted: 08/12/2019] [Indexed: 02/06/2023] Open
Abstract
MOTIVATION Reversible protein phosphorylation is an essential post-translational modification regulating protein functions and signaling pathways in many cellular processes. Aberrant activation of signaling pathways often contributes to cancer development and progression. The mass spectrometry-based phosphoproteomics technique is a powerful tool to investigate the site-level phosphorylation of the proteome in a global fashion, paving the way for understanding the regulatory mechanisms underlying cancers. However, this approach is time-consuming and requires expensive instruments, specialized expertise and a large amount of starting material. An alternative in silico approach is predicting the phosphoproteomic profiles of cancer patients from the available proteomic, transcriptomic and genomic data. RESULTS Here, we present a winning algorithm in the 2017 NCI-CPTAC DREAM Proteogenomics Challenge for predicting phosphorylation levels of the proteome across cancer patients. We integrate four components into our algorithm, including (i) baseline correlations between protein and phosphoprotein abundances, (ii) universal protein-protein interactions, (iii) shareable regulatory information across cancer tissues and (iv) associations among multi-phosphorylation sites of the same protein. When tested on a large held-out testing dataset of 108 breast and 62 ovarian cancer samples, our method ranked first in both cancer tissues, demonstrating its robustness and generalization ability. AVAILABILITY AND IMPLEMENTATION Our code and reproducible results are freely available on GitHub: https://github.com/GuanLab/phosphoproteome_prediction. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Hongyang Li
- To whom correspondence should be addressed. or
| | | |
Collapse
|
250
|
Przychodzen P, Kuban-Jankowska A, Wyszkowska R, Barone G, Bosco GL, Celso FL, Kamm A, Daca A, Kostrzewa T, Gorska-Ponikowska M. PTP1B phosphatase as a novel target of oleuropein activity in MCF-7 breast cancer model. Toxicol In Vitro 2019; 61:104624. [PMID: 31419504 DOI: 10.1016/j.tiv.2019.104624] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/30/2019] [Accepted: 08/12/2019] [Indexed: 02/06/2023]
Abstract
Phosphatase PTP1B has become a therapeutic target for the treatment of type 2-diabetes, whereas recent studies have revealed that PTP1B plays a pivotal role in pathophysiology and development of breast cancer. Oleuropein is a natural, phenolic compound with anticancer activity. The aim of this study was to address the question whether PTP1B constitutes a target for oleuropein in breast cancer MCF-7 cells. The cellular MCF-7 breast cancer model was used in the study. The experiments were performed using cellular viability tests, Elisa assays, immunoprecipitation, flow cytometry analyses and computer modelling. Herein, we evidenced that the reduced activity of phosphatase PTP1B after treatment with oleuropein is strictly correlated with decreased MCF-7 cellular viability and cell cycle arrest. These results provide new insight into further research on oleuropein and possible role of the compound in adjuvant treatment of breast cancer.
Collapse
Affiliation(s)
- Paulina Przychodzen
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | | | - Roksana Wyszkowska
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Giampaolo Barone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Giosuè Lo Bosco
- Department of Mathematics and Computer Science, University of Palermo, Palermo, Italy; The Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
| | - Fabrizio Lo Celso
- Department of Physics and Chemistry 'Emilio Segrè', University of Palermo, Palermo, Italy
| | - Anna Kamm
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Agnieszka Daca
- Department of Pathology and Experimental Rheumatology, Medical University of Gdansk, Gdansk, Poland
| | - Tomasz Kostrzewa
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Magdalena Gorska-Ponikowska
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, Poland; Institute of Biomaterials and Biomolecular Systems, Department of Biophysics, University of Stuttgart, Stuttgart, Germany; The Euro-Mediterranean Institute of Science and Technology, Palermo, Italy.
| |
Collapse
|