201
|
Inhibitory Effects of Methylglyoxal on Light-Induced Stomatal Opening and Inward K+Channel Activity inArabidopsis. Biosci Biotechnol Biochem 2014; 76:617-9. [DOI: 10.1271/bbb.110885] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
202
|
Scavenging Systems for Reactive Carbonyls in the CyanobacteriumSynechocystissp. PCC 6803. Biosci Biotechnol Biochem 2014; 77:2441-8. [DOI: 10.1271/bbb.130554] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
203
|
Schertl P, Cabassa C, Saadallah K, Bordenave M, Savouré A, Braun HP. Biochemical characterization of proline dehydrogenase in Arabidopsis mitochondria. FEBS J 2014; 281:2794-804. [PMID: 24751239 DOI: 10.1111/febs.12821] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/14/2014] [Accepted: 04/11/2014] [Indexed: 01/17/2023]
Abstract
Proline has multiple functions in plants. Besides being a building block for protein biosynthesis proline plays a central role in the plant stress response and in further cellular processes. Here, we report an analysis on the integration of proline dehydrogenase (ProDH) into mitochondrial metabolism in Arabidopsis thaliana. An experimental system to induce ProDH activity was established using cell cultures. Induction of ProDH was measured by novel photometric activity assays and by a ProDH in gel activity assay. Effects of increased ProDH activity on other mitochondrial enzymes were systematically investigated. Activities of the protein complexes of the respiratory chain were not significantly altered. In contrast, some mitochondrial dehydrogenases had markedly changed activities. Activity of glutamate dehydrogenase substantially increased, indicating upregulation of the entire proline catabolic pathway, which was confirmed by co-expression analyses of the corresponding genes. Furthermore, activity of d-lactate dehydrogenase was increased. d-lactate was identified to be a competitive inhibitor of ProDH in plants. We suggest that induction of d-lactate dehydrogenase activity allows rapid upregulation of ProDH activity during the short-term stress response in plants.
Collapse
Affiliation(s)
- Peter Schertl
- Institute of Plant Genetics, Plant Proteomics, Leibniz University Hannover, Germany
| | | | | | | | | | | |
Collapse
|
204
|
Tan L, Chen S, Wang T, Dai S. Proteomic insights into seed germination in response to environmental factors. Proteomics 2014; 13:1850-70. [PMID: 23986916 DOI: 10.1002/pmic.201200394] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Seed germination is a critical process in the life cycle of higher plants. During germination, the imbibed mature seed is highly sensitive to different environmental factors.However, knowledge about the molecular and physiological mechanisms underlying the environmental effects on germination has been lacking. Recent proteomic work has provided invaluable insight into the molecular processes in germinating seeds of Arabidopsis, rice (Oryza sativa), soybean (Glycine max), barley (Hordeum vulgare), maize (Zeamays), tea (Camellia sinensis), European beech (Fagus sylvatica), and Norway maple (Acer platanoides) under different treatments including metal ions (e.g. copper and cadmium), drought, low temperature, hormones, and chemicals (gibberellic acid, abscisic acid, salicylic acid, and α-amanitin), as well as Fusarium graminearum infection. A total of 561 environmental factor-responsive proteins have been identified with various expression patterns in germinating seeds. The data highlight diverse regulatory and metabolic mechanisms upon seed germination, including induction of environmental factor-responsive signaling pathways, seed storage reserve mobilization and utilization, enhancement of DNA repair and modification, regulation of gene expression and protein synthesis, modulation of cell structure, and cell defense. In this review, we summarize the interesting findings and discuss the relevance and significance for our understanding of environmental regulation of seed germination.
Collapse
Affiliation(s)
- Longyan Tan
- Alkali Soil Natural Environmental Science Center, Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Northeast Forestry University, Harbin, China
| | | | | | | |
Collapse
|
205
|
Why don't plants have diabetes? Systems for scavenging reactive carbonyls in photosynthetic organisms. Biochem Soc Trans 2014; 42:543-7. [DOI: 10.1042/bst20130273] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the present paper, we review the toxicity of sugar- and lipid-derived RCs (reactive carbonyls) and the RC-scavenging systems observed in photosynthetic organisms. Similar to heterotrophs, photosynthetic organisms are exposed to the danger of RCs produced in sugar metabolism during both respiration and photosynthesis. RCs such as methylglyoxal and acrolein have toxic effects on the photosynthetic activity of higher plants and cyanobacteria. These toxic effects are assumed to occur uniquely in photosynthetic organisms, suggesting that RC-scavenging systems are essential for their survival. The aldo–keto reductase and the glyoxalase systems mainly scavenge sugar-derived RCs in higher plants and cyanobacteria. 2-Alkenal reductase and alkenal/alkenone reductase catalyse the reduction of lipid-derived RCs in higher plants. In cyanobacteria, medium-chain dehydrogenases/reductases are the main scavengers of lipid-derived RCs.
Collapse
|
206
|
Wang WQ, Ye JQ, Rogowska-Wrzesinska A, Wojdyla KI, Jensen ON, Møller IM, Song SQ. Proteomic Comparison between Maturation Drying and Prematurely Imposed Drying of Zea mays Seeds Reveals a Potential Role of Maturation Drying in Preparing Proteins for Seed Germination, Seedling Vigor, and Pathogen Resistance. J Proteome Res 2013; 13:606-26. [DOI: 10.1021/pr4007574] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wei-Qing Wang
- Key
Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing 100093, China
| | - Jian-Qing Ye
- Key
Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing 100093, China
| | - Adelina Rogowska-Wrzesinska
- Department of Biochemistry & Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Katarzyna I. Wojdyla
- Department of Biochemistry & Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Ole Nørregaard Jensen
- Department of Biochemistry & Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Ian Max Møller
- Department
of Molecular Biology and Genetics, Aarhus University, Flakkebjerg,
Forsøgsvej 1, DK-4200 Slagelse, Denmark
| | - Song-Quan Song
- Key
Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing 100093, China
| |
Collapse
|
207
|
Functional analysis of the AKR4C subfamily of Arabidopsis thaliana: model structures, substrate specificity, acrolein toxicity, and responses to light and [CO(2)]. Biosci Biotechnol Biochem 2013; 77:2038-45. [PMID: 24096666 DOI: 10.1271/bbb.130353] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In Arabidopsis thaliana, the aldo-keto reductase (AKR) family includes four enzymes (The AKR4C subfamily: AKR4C8, AKR4C9, AKR4C10, and AKR4C11). AKR4C8 and AKR4C9 might detoxify sugar-derived reactive carbonyls (RCs). We analyzed AKR4C10 and AKR4C11, and compared the enzymatic functions of the four enzymes. Modeling of protein structures based on the known structure of AKR4C9 found an (α/β)8-barrel motif in all four enzymes. Loop structures (A, B, and C) which determine substrate specificity, differed among the four. Both AKR4C10 and AKR4C11 reduced methylglyoxal. AKR4C10 reduced triose phosphates, dihydroxyacetone phosphate (DHAP), and glyceraldehydes 3-phosphate (GAP), the most efficiently of all the AKR4Cs. Acrolein, a lipid-derived RC, inactivated the four enzymes to different degrees. Expression of the AKR4C genes was induced under high-[CO2] and high light, when photosynthesis was enhanced and photosynthates accumulated in the cells. These results suggest that the AKR4C subfamily contributes to the detoxification of sugar-derived RCs in plants.
Collapse
|
208
|
Daglia M, Amoroso A, Rossi D, Mascherpa D, Maga G. Identification and quantification of α-dicarbonyl compounds in balsamic and traditional balsamic vinegars and their cytotoxicity against human cells. J Food Compost Anal 2013. [DOI: 10.1016/j.jfca.2013.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
209
|
Kumar D, Singh P, Yusuf MA, Upadhyaya CP, Roy SD, Hohn T, Sarin NB. The Xerophyta viscosa aldose reductase (ALDRXV4) confers enhanced drought and salinity tolerance to transgenic tobacco plants by scavenging methylglyoxal and reducing the membrane damage. Mol Biotechnol 2013; 54:292-303. [PMID: 22678928 DOI: 10.1007/s12033-012-9567-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
We report the efficacy of an aldose reductase (ALDRXV4) enzyme from Xerophyta viscosa Baker in enhancing the prospects of plant's survival under abiotic stress. Transgenic tobacco plants overexpressing ALDRXV4 cDNA showed alleviation of NaCl and mannitol-induced abiotic stress. The transgenic plants survived longer periods of water deficiency and salinity stress and exhibited improved recovery after rehydration as compared to the wild type plants. The increased synthesis of aldose reductase in transgenic plants correlated with reduced methylglyoxal and malondialdehyde accumulation and an elevated level of sorbitol under stress conditions. In addition, the transgenic lines showed better photosynthetic efficiency, less electrolyte damage, greater water retention, higher proline accumulation, and favorable ionic balance under stress conditions. Together, these findings suggest the potential of engineering aldose reductase levels for better performance of crop plants growing under drought and salt stress conditions.
Collapse
Affiliation(s)
- Deepak Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | | | | | | | | | |
Collapse
|
210
|
Wu C, Ma C, Pan Y, Gong S, Zhao C, Chen S, Li H. Sugar beet M14 glyoxalase I gene can enhance plant tolerance to abiotic stresses. JOURNAL OF PLANT RESEARCH 2013; 126:415-25. [PMID: 23203352 DOI: 10.1007/s10265-012-0532-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 09/20/2012] [Indexed: 05/06/2023]
Abstract
Glyoxalase I is the first enzyme of the glyoxalase system that can detoxify methylglyoxal, a cytotoxic compound increased rapidly under stress conditions. Here we report cloning and characterization of a glyoxalase I from sugar beet M14 line (an interspecific hybrid between a wild species Beta corolliflora Zoss and a cultivated species B. vulgaris L). The full-length gene BvM14-glyoxalase I has 1,449 bp in length with an open reading frame of 1,065 bp encoding 354 amino acids. Sequence analysis shows the conserved glyoxalase I domains, metal and glutathione binding sites and secondary structure (α-helixes and β-sheets). The BvM14-glyoxalase I gene was ubiquitously expressed in different tissues of sugar beet M14 line and up-regulated in response to salt, mannitol and oxidative stresses. Heterologous expression of BvM14-glyoxalase I could increase E. coli tolerance to methylglyoxal. Transgenic tobacco plants constitutively expressing BvM14-glyoxalase I were generated. Both leaf discs and seedlings showed significant tolerance to methylglyoxal, salt, mannitol and H2O2. These results suggest an important role of BvM14-glyoxalase I in cellular detoxification and tolerance to abiotic stresses.
Collapse
Affiliation(s)
- Chuan Wu
- College of Life Sciences, Heilongjiang University, Harbin, China.
| | | | | | | | | | | | | |
Collapse
|
211
|
Keiko NA, Vchislo NV, Larina LI. 2-alkoxypropenals as synthetic equivalents of methylglyoxal in the synthesis of heterocycles. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2013. [DOI: 10.1134/s1070428013030196] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
212
|
Hasanuzzaman M, Fujita M. Exogenous sodium nitroprusside alleviates arsenic-induced oxidative stress in wheat (Triticum aestivum L.) seedlings by enhancing antioxidant defense and glyoxalase system. ECOTOXICOLOGY (LONDON, ENGLAND) 2013; 22:584-96. [PMID: 23430410 DOI: 10.1007/s10646-013-1050-4] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/05/2013] [Indexed: 05/20/2023]
Abstract
The present study investigates the possible regulatory role of exogenous nitric oxide (NO) in mitigating oxidative stress in wheat seedlings exposed to arsenic (As). Seedlings were treated with NO donor (0.25 mM sodium nitroprusside, SNP) and As (0.25 and 0.5 mM Na2HAsO4·7H2O) separately and/or in combination and grown for 72 h. Relative water content (RWC) and chlorophyll (chl) content were decreased by As treatment but proline (Pro) content was increased. The ascorbate (AsA) content was decreased significantly with increased As concentration. The imposition of As caused marked increase in the MDA and H2O2 content. The amount of reduced glutathione (GSH) and glutathione disulfide (GSSG) significantly increased with an increase in the level of As (both 0.25 and 0.5 mM), while the GSH/GSSG ratio decreased at higher concentration (0.5 mM). The ascorbate peroxidase and glutathione S-transferase activities consistently increased with an increase in the As concentration, while glutathione reductase (GR) activities increased only at 0.25 mM. The monodehydroascorbate reductase (MDHAR) and catalase (CAT) activities were not changed upon exposure to As. The activities of dehydroascorbate reductase (DHAR) and glyoxalase I (Gly I) decreased at any levels of As, while glutathione peroxidase (GPX) and glyoxalase II (Gly II) activities decreased only upon 0.5 mM As. Exogenous NO alone had little influence on the non-enzymatic and enzymatic components compared to the control seedlings. These inhibitory effects of As were markedly recovered by supplementation with SNP; that is, the treatment with SNP increased the RWC, chl and Pro contents; AsA and GSH contents and the GSH/GSSG ratio as well as the activities of MDHAR, DHAR, GR, GPX, CAT, Gly I and Gly II in the seedlings subjected to As stress. These results suggest that the exogenous application of NO rendered the plants more tolerant to As-induced oxidative damage by enhancing their antioxidant defense and glyoxalase system.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Kita-gun, Kagawa, Japan.
| | | |
Collapse
|
213
|
Comparative proteomic analysis of Puccinellia tenuiflora leaves under Na2CO3 stress. Int J Mol Sci 2013; 14:1740-62. [PMID: 23322023 PMCID: PMC3565345 DOI: 10.3390/ijms14011740] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 12/31/2012] [Accepted: 01/06/2013] [Indexed: 11/29/2022] Open
Abstract
Soil salt-alkalinization is a widespread environmental stress that limits crop growth and agricultural productivity. The influence of soil alkalization caused by Na2CO3 on plants is more severe than that of soil salinization. Plants have evolved some unique mechanisms to cope with alkali stress; however, the plant alkaline-responsive signaling and molecular pathways are still unknown. In the present study, Na2CO3 responsive characteristics in leaves from 50-day-old seedlings of halophyte Puccinellia tenuiflora were investigated using physiological and proteomic approaches. Comparative proteomics revealed 43 differentially expressed proteins in P. tenuiflora leaves in response to Na2CO3 treatment for seven days. These proteins were mainly involved in photosynthesis, stress and defense, carbohydrate/energy metabolism, protein metabolism, signaling, membrane and transport. By integrating the changes of photosynthesis, ion contents, and stress-related enzyme activities, some unique Na2CO3 responsive mechanisms have been discovered in P. tenuiflora. This study provides new molecular information toward improving the alkali tolerance of cereals.
Collapse
|
214
|
Comparative proteomic analysis for assessment of the ecological significance of maize and peanut intercropping. J Proteomics 2013; 78:447-60. [DOI: 10.1016/j.jprot.2012.10.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 10/04/2012] [Accepted: 10/14/2012] [Indexed: 12/25/2022]
|
215
|
Gómez Ojeda A, Corrales Escobosa AR, Wrobel K, Yanez Barrientos E, Wrobel K. Effect of Cd(ii) and Se(iv) exposure on cellular distribution of both elements and concentration levels of glyoxal and methylglyoxal in Lepidium sativum. Metallomics 2013; 5:1254-61. [DOI: 10.1039/c3mt00058c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
216
|
Amoroso A, Maga G, Daglia M. Cytotoxicity of α-dicarbonyl compounds submitted to in vitro simulated digestion process. Food Chem 2012; 140:654-9. [PMID: 23692749 DOI: 10.1016/j.foodchem.2012.10.063] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 10/01/2012] [Accepted: 10/22/2012] [Indexed: 11/29/2022]
Abstract
α-Dicarbonyl compounds (α-DCs), such as glyoxal, methylglyoxal and 2,3-butanedione, are highly reactive substances occurring in thermally treated and fermented foods, that may react with amino and sulphydryl groups of side chains of proteins to form Maillard reaction end products, inducing a negative impact on the digestibility and on nutritional value of protein. In recent years the role of food derived α-DCs in gastroduodenal tract is under investigation to understand whether excess consumption of such dietary compounds might be a risk for human health. In this study the interactions between a mixture of glyoxal, methylglyoxal and 2,3-butanedione and the digestive enzymes (pepsin and pancreatin) were studied. The results showed that during gastroduodenal digestion α-DCs react with digestive enzymes to produce carbonylated proteins. Moreover, undigested and digested α-DC cytotoxicity against human cells, as well as their ability to inhibit the function of human enzymes responsible for DNA repair were shown.
Collapse
Affiliation(s)
- Alessandra Amoroso
- Institute of Molecular Genetics, IGM-CNR, via Abbiategrasso 207, 27100 Pavia, Italy
| | | | | |
Collapse
|
217
|
Hasanuzzaman M, Hossain MA, Fujita M. Exogenous selenium pretreatment protects rapeseed seedlings from cadmium-induced oxidative stress by upregulating antioxidant defense and methylglyoxal detoxification systems. Biol Trace Elem Res 2012; 149:248-61. [PMID: 22535598 DOI: 10.1007/s12011-012-9419-4] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 04/04/2012] [Indexed: 11/27/2022]
Abstract
The protective effect of selenium (Se) on antioxidant defense and methylglyoxal (MG) detoxification systems was investigated in leaves of rapeseed (Brassica napus cv. BINA sharisha 3) seedlings under cadmium (Cd)-induced oxidative stress. Two sets of 11-day-old seedlings were pretreated with both 50 and 100 μM Se (Na(2)SeO(4), sodium selenate) for 24 h. Two concentrations of CdCl(2) (0.5 and 1.0 mM) were imposed separately or on the Se-pretreated seedlings, which were grown for another 48 h. Cadmium stress at any levels resulted in the substantial increase in malondialdehyde and H(2)O(2) levels. The ascorbate (AsA) content of the seedlings decreased significantly upon exposure to Cd stress. The amount of reduced glutathione (GSH) increased only at 0.5 mM CdCl(2), while glutathione disulfide (GSSG) increased at any level of Cd, with concomitant decrease in GSH/GSSG ratio. The activities of ascorbate peroxidase (APX) and glutathione S-transferase (GST) increased significantly with increased concentration of Cd (both at 0.5 and 1.0 mM CdCl(2)), while the activities of glutathione reductase (GR) and glutathione peroxidase (GPX) increased only at moderate stress (0.5 mM CdCl(2)) and then decreased at 1.0 mM severe stress (1.0 mM CdCl(2)). Monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), catalase (CAT), glyoxalase I (Gly I), and glyoxalase II (Gly II) activities decreased upon exposure to any levels of Cd. Selenium pretreatment had little effect on the nonenzymatic and enzymatic components of seedlings grown under normal conditions; i.e., they slightly increased the GSH content and the activities of APX, GR, GST, and GPX. On the other hand, Se pretreatment of seedlings under Cd-induced stress showed a synergistic effect; it increased the AsA and GSH contents, the GSH/GSSG ratio, and the activities of APX, MDHAR, DHAR, GR, GPX, CAT, Gly I, and Gly II which ultimately reduced the MDA and H(2)O(2) levels. However, in most cases, pretreatment with 50 μM Se showed better results compared to pretreatment with 100 μM Se. The results indicate that the exogenous application of Se at low concentrations increases the tolerance of plants to Cd-induced oxidative damage by enhancing their antioxidant defense and MG detoxification systems.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0795, Japan.
| | | | | |
Collapse
|
218
|
Sharma S, Mustafiz A, Singla-Pareek SL, Shankar Srivastava P, Sopory SK. Characterization of stress and methylglyoxal inducible triose phosphate isomerase (OscTPI) from rice. PLANT SIGNALING & BEHAVIOR 2012; 7:1337-45. [PMID: 22902706 PMCID: PMC3493422 DOI: 10.4161/psb.21415] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
As compared with plant system, triose phosphate isomerase (TPI), a crucial enzyme of glycolysis, has been well studied in animals. In order to characterize TPI in plants, a full-length cDNA encoding OscTPI was cloned from rice and expressed in E. coli. The recombinant OscTPI was purified to homogeneity and it showed Km value of 0.1281 ± 0.025 µM, and the Vmax value of 138.7 ± 16 µmol min (-1) mg (-1) which is comparable to the kinetic values studied in other plants. The OscTPI was found to be exclusively present in the cytoplasm when checked with the various methods. Functional assay showed that OscTPI could complement a TPI mutation in yeast. Real time PCR analysis revealed that OscTPI transcript level was regulated in response to various abiotic stresses. Interestingly, it was highly induced under different concentration of methylglyoxal (MG) stress in a concentration dependent manner. There was also a corresponding increase in the protein and the enzyme activity of OscTPI both in shoot and root tissues under MG stress. Our result shows that increases in MG leads to the increase in TPI which results in decrease of DHAP and consequently decrease in the level of toxic MG.
Collapse
Affiliation(s)
- Shweta Sharma
- Plant Molecular Biology; International Centre for Genetic Engineering and Biotechnology; New Delhi, India
| | - Ananda Mustafiz
- Plant Molecular Biology; International Centre for Genetic Engineering and Biotechnology; New Delhi, India
| | - Sneh L. Singla-Pareek
- Plant Molecular Biology; International Centre for Genetic Engineering and Biotechnology; New Delhi, India
| | | | - Sudhir Kumar Sopory
- Plant Molecular Biology; International Centre for Genetic Engineering and Biotechnology; New Delhi, India
- Correspondence to: Sudhir Kumar Sopory,
| |
Collapse
|
219
|
Hoque TS, Uraji M, Tuya A, Nakamura Y, Murata Y. Methylglyoxal inhibits seed germination and root elongation and up-regulates transcription of stress-responsive genes in ABA-dependent pathway in Arabidopsis. PLANT BIOLOGY (STUTTGART, GERMANY) 2012; 14:854-8. [PMID: 22676051 DOI: 10.1111/j.1438-8677.2012.00607.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Methylglyoxal (MG) is a highly reactive metabolite derived from glycolysis. In this study, we examined the effect of MG on seed germination, root elongation, chlorosis and stress-responsive gene expression in Arabidopsis using an abscisic acid (ABA)-deficient mutant, aba2-2. In the wild type, 0.1 mm MG did not affect germination but delayed root elongation, whereas 1.0 mm MG inhibited germination and root elongation and induced chlorosis. MG increased transcription levels of RD29B and RAB18 in a dose-dependent manner but did not affect RD29A transcription level. In contrast, in the aba2-2 mutant, MG inhibition of seed germination at 1.0 mm and 10.0 mm and a delay of root elongation at 0.1 mm MG were mitigated, although there was no significant difference in chlorosis between the wild type and mutant. Moreover, the aba2-2 mutation impaired MG-induced RD29B and RAB18 gene expression. These observations suggest that MG not only directly inhibits germination and root elongation but also indirectly modulates these processes via endogenous ABA in Arabidopsis.
Collapse
Affiliation(s)
- T S Hoque
- Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - M Uraji
- Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - A Tuya
- Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Y Nakamura
- Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Y Murata
- Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| |
Collapse
|
220
|
Hoque MA, Uraji M, Torii A, Banu MNA, Mori IC, Nakamura Y, Murata Y. Methylglyoxal inhibition of cytosolic ascorbate peroxidase from Nicotiana tabacum. J Biochem Mol Toxicol 2012; 26:315-21. [PMID: 22696433 DOI: 10.1002/jbt.21423] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 05/02/2012] [Accepted: 05/15/2012] [Indexed: 01/29/2023]
Abstract
Methylglyoxal (MG) is one of the aldehydes accumulated in plants under environmental stress. Cytosolic ascorbate peroxidase (cAPX) plays a key role in the protection of cells from oxidative damage by scavenging reactive oxygen species in higher plants. A cDNA encoding cAPX, named NtcAPX, was isolated from Nicotiana tabacum. We characterized recombinant NtcAPX (rNtcAPX) as a fusion protein with glutathione S-transferase to investigate the effects of MG on APX. NtcAPX consists of 250 amino acids and has a deduced molecular mass of 27.5 kDa. The rNtcAPX showed a higher APX activity. MG treatments resulted in a reduction of APX activity and modifications of amino groups in rNtcAPX with increasing K(m) for ascorbate. On the contrary, neither NaCl nor cadmium reduced the activity of APX. The present study suggests that inhibition of APX is in part due to the modification of amino acids by MG.
Collapse
Affiliation(s)
- Md Anamul Hoque
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | | | | | | | | | | | | |
Collapse
|
221
|
Hoque TS, Uraji M, Ye W, Hossain MA, Nakamura Y, Murata Y. Methylglyoxal-induced stomatal closure accompanied by peroxidase-mediated ROS production in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:979-86. [PMID: 22437147 DOI: 10.1016/j.jplph.2012.02.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 02/24/2012] [Accepted: 02/25/2012] [Indexed: 05/20/2023]
Abstract
Methylglyoxal (MG) is an oxygenated short aldehyde and a glycolytic intermediate that accumulates in plants under environmental stresses. Being a reactive α-oxoaldehyde, MG may act as a signaling molecule in plants during stresses. We investigated whether MG induces stomatal closure, reactive oxygen species (ROS) production, and cytosolic free calcium concentration ([Ca²⁺](cyt)) to clarify roles of MG in Arabidopsis guard cells. MG induced production of ROS and [Ca²⁺](cyt) oscillations, leading to stomatal closure. The MG-induced stomatal closure and ROS production were completely inhibited by a peroxidase inhibitor, salicylhydroxamic acid (SHAM), but were not affected by an NAD(P)H oxidase mutation, atrbohD atrbohF. Furthermore, the MG-elicited [Ca²⁺](cyt) oscillations were significantly suppressed by SHAM but not by the atrbohD atrbohF mutation. Neither endogenous abscisic acid nor endogenous methyl jasmonate was involved in MG-induced stomatal closure. These results suggest that intrinsic metabolite MG can induce stomatal closure in Arabidopsis accompanied by extracellular ROS production mediated by SHAM-sensitive peroxidases, intracellular ROS accumulation, and [Ca²⁺](cyt) oscillations.
Collapse
Affiliation(s)
- Tahsina Sharmin Hoque
- Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | | | | | | | | | | |
Collapse
|
222
|
Hao JH, Dong CJ, Zhang ZG, Wang XL, Shang QM. Insights into salicylic acid responses in cucumber (Cucumis sativus L.) cotyledons based on a comparative proteomic analysis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 187:69-82. [PMID: 22404834 DOI: 10.1016/j.plantsci.2012.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 12/20/2011] [Accepted: 01/04/2012] [Indexed: 05/04/2023]
Abstract
To investigate the response of cucumber seedlings to exogenous salicylic acid (SA) and gain a better understanding of SA action mechanism, we generated a proteomic profile of cucumber (Cucumis sativus L.) cotyledons treated with exogenous SA. Analysis of 1500 protein spots from each gel revealed 63 differentially expressed proteins, 59 of which were identified successfully. Of the identified proteins, 97% matched cucumber proteins using a whole cucumber protein database based on the newly completed genome established by our laboratory. The identified proteins were involved in various cellular responses and metabolic processes, including antioxidative reactions, cell defense, photosynthesis, carbohydrate metabolism, respiration and energy homeostasis, protein folding and biosynthesis. The two largest functional categories included proteins involved in antioxidative reactions (23.7%) and photosynthesis (18.6%). Furthermore, the SA-responsive protein interaction network revealed 13 key proteins, suggesting that the expression changes of these proteins could be critical for SA-induced resistance. An analysis of these changes suggested that SA-induced resistance and seedling growth might be regulated in part through pathways involving antioxidative reactions and photosynthesis.
Collapse
Affiliation(s)
- J H Hao
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing 100081, PR China
| | | | | | | | | |
Collapse
|
223
|
Narawongsanont R, Kabinpong S, Auiyawong B, Tantitadapitak C. Cloning and characterization of AKR4C14, a rice aldo-keto reductase, from Thai Jasmine rice. Protein J 2012; 31:35-42. [PMID: 22101802 DOI: 10.1007/s10930-011-9371-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Aldo-keto reductase (AKR) is an enzyme superfamily whose members are involved in the metabolism of aldehydes/ketones. The AKR4 subfamily C (AKR4C) is a group of aldo-keto reductases that are found in plants. Some AKR4C(s) in dicot plants are capable of metabolizing reactive aldehydes whereas, such activities have not been reported for AKR4C(s) from monocot species. In this study, we have screened Indica rice genome for genes with significant homology to dicot AKR4C(s) and identified a cluster of putative AKR4C(s) located on the Indica rice chromosome I. The genes including OsI_04426, OsI_04428 and OsI_04429 were successfully cloned and sequenced by qRT-PCR from leaves of Thai Jasmine rice (KDML105). OsI_04428, later named AKR4C14, was chosen for further studies because it shares highest homology to the dicot AKR4C(s). The bacterially expressed recombinant protein of AKR4C14 was successfully produced as a MBP fusion protein and his-tagged protein. The recombinant AKR4C14 were capable of metabolizing sugars and reactive aldehydes i.e. methylglyoxal, a toxic by-product of the glycolysis pathway, glutaraldehyde, and trans-2-hexenal, a natural reactive 2-alkenal. AKR4C14 was highly expressed in green tissues, i.e. leaf sheets and stems, whereas flowers and roots had a significantly lower level of expression. These findings indicated that monocot AKR4C(s) can metabolize reactive aldehydes like the dicot AKR4C(s) and possibly play a role in detoxification mechanism of reactive aldehydes.
Collapse
Affiliation(s)
- Rawint Narawongsanont
- Department of Biochemistry, Faculty of Science, Kasetsart University, Pahonyothin Rd, Bangkok, 10903, Thailand
| | | | | | | |
Collapse
|
224
|
2D-DIGE analysis of mango (Mangifera indica L.) fruit reveals major proteomic changes associated with ripening. J Proteomics 2012; 75:3331-41. [PMID: 22504795 DOI: 10.1016/j.jprot.2012.03.047] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/16/2012] [Accepted: 03/26/2012] [Indexed: 11/23/2022]
Abstract
A comparative proteomic investigation between the pre-climacteric and climacteric mango fruits (cv. Keitt) was performed to identify protein species with variable abundance during ripening. Proteins were phenol-extracted from fruits, cyanine-dye-labeled, and separated on 2D gels at pH 4-7. Total spot count of about 373 proteins spots was detected in each gel and forty-seven were consistently different between pre-climacteric and climacteric fruits and were subjected to LC-MS/MS analysis. Functional classification revealed that protein species involved in carbon fixation and hormone biosynthesis decreased during ripening, whereas those related to catabolism and the stress-response, including oxidative stress and abiotic and pathogen defense factors, accumulated. In relation to fruit quality, protein species putatively involved in color development and pulp softening were also identified. This study on mango proteomics provides an overview of the biological processes that occur during ripening.
Collapse
|
225
|
Molecular Mechanism of Heavy Metal Toxicity and Tolerance in Plants: Central Role of Glutathione in Detoxification of Reactive Oxygen Species and Methylglyoxal and in Heavy Metal Chelation. ACTA ACUST UNITED AC 2012. [DOI: 10.1155/2012/872875] [Citation(s) in RCA: 432] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Heavy metal (HM) toxicity is one of the major abiotic stresses leading to hazardous effects in plants. A common consequence of HM toxicity is the excessive accumulation of reactive oxygen species (ROS) and methylglyoxal (MG), both of which can cause peroxidation of lipids, oxidation of protein, inactivation of enzymes, DNA damage and/or interact with other vital constituents of plant cells. Higher plants have evolved a sophisticated antioxidant defense system and a glyoxalase system to scavenge ROS and MG. In addition, HMs that enter the cell may be sequestered by amino acids, organic acids, glutathione (GSH), or by specific metal-binding ligands. Being a central molecule of both the antioxidant defense system and the glyoxalase system, GSH is involved in both direct and indirect control of ROS and MG and their reaction products in plant cells, thus protecting the plant from HM-induced oxidative damage. Recent plant molecular studies have shown that GSH by itself and its metabolizing enzymes—notably glutathione S-transferase, glutathione peroxidase, dehydroascorbate reductase, glutathione reductase, glyoxalase I and glyoxalase II—act additively and coordinately for efficient protection against ROS- and MG-induced damage in addition to detoxification, complexation, chelation and compartmentation of HMs. The aim of this review is to integrate a recent understanding of physiological and biochemical mechanisms of HM-induced plant stress response and tolerance based on the findings of current plant molecular biology research.
Collapse
|
226
|
Nishiyama R, Le DT, Watanabe Y, Matsui A, Tanaka M, Seki M, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP. Transcriptome analyses of a salt-tolerant cytokinin-deficient mutant reveal differential regulation of salt stress response by cytokinin deficiency. PLoS One 2012; 7:e32124. [PMID: 22355415 PMCID: PMC3280229 DOI: 10.1371/journal.pone.0032124] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 01/19/2012] [Indexed: 01/04/2023] Open
Abstract
Soil destruction by abiotic environmental conditions, such as high salinity, has resulted in dramatic losses of arable land, giving rise to the need of studying mechanisms of plant adaptation to salt stress aimed at creating salt-tolerant plants. Recently, it has been reported that cytokinins (CKs) regulate plant environmental stress responses through two-component systems. A decrease in endogenous CK levels could enhance salt and drought stress tolerance. Here, we have investigated the global transcriptional change caused by a reduction in endogenous CK content under both normal and salt stress conditions. Ten-day-old Arabidopsis thaliana wild-type (WT) and CK-deficient ipt1,3,5,7 plants were transferred to agar plates containing either 0 mM (control) or 200 mM NaCl and maintained at normal growth conditions for 24 h. Our experimental design allowed us to compare transcriptome changes under four conditions: WT-200 mM vs. WT-0 mM, ipt1,3,5,7-0 mM vs. WT-0 mM, ipt1,3,5,7-200 mM vs. ipt1,3,5,7-0 mM and ipt1,3,5,7-200 mM vs. WT-200 mM NaCl. Our results indicated that the expression of more than 10% of all of the annotated Arabidopsis genes was altered by CK deficiency under either normal or salt stress conditions when compared to WT. We found that upregulated expression of many genes encoding either regulatory proteins, such as NAC, DREB and ZFHD transcription factors and the calcium sensor SOS3, or functional proteins, such as late embryogenesis-abundant proteins, xyloglucan endo-transglycosylases, glycosyltransferases, glycoside hydrolases, defensins and glyoxalase I family proteins, may contribute to improved salt tolerance of CK-deficient plants. We also demonstrated that the downregulation of photosynthesis-related genes and the upregulation of several NAC genes may cause the altered morphological phenotype of CK-deficient plants. This study highlights the impact of CK regulation on the well-known stress-responsive signaling pathways, which regulate plant adaptation to high salinity as well as other environmental stresses.
Collapse
Affiliation(s)
- Rie Nishiyama
- Signaling Pathway Research Unit, RIKEN Plant Science Center, Yokohama, Kanagawa, Japan
| | - Dung Tien Le
- Signaling Pathway Research Unit, RIKEN Plant Science Center, Yokohama, Kanagawa, Japan
- Agricultural Genetics Institute, Vietnamese Academy of Agricultural Science, Hanoi, Vietnam
| | - Yasuko Watanabe
- Signaling Pathway Research Unit, RIKEN Plant Science Center, Yokohama, Kanagawa, Japan
| | - Akihiro Matsui
- Plant Genomic Network Research Team, RIKEN Plant Science Center, Yokohama, Kanagawa, Japan
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Plant Science Center, Yokohama, Kanagawa, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Plant Science Center, Yokohama, Kanagawa, Japan
| | | | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Plant Science Center, Yokohama, Kanagawa, Japan
| | - Lam-Son Phan Tran
- Signaling Pathway Research Unit, RIKEN Plant Science Center, Yokohama, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
227
|
Zhang H, Han B, Wang T, Chen S, Li H, Zhang Y, Dai S. Mechanisms of plant salt response: insights from proteomics. J Proteome Res 2011; 11:49-67. [PMID: 22017755 DOI: 10.1021/pr200861w] [Citation(s) in RCA: 206] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Soil salinity is a major abiotic stress that limits plant growth and agriculture productivity. To cope with salt stress, plants have evolved complex salt-responsive signaling and metabolic processes at the cellular, organ, and whole-plant levels. Investigation of the physiological and molecular mechanisms underlying plant salinity tolerance will provide valuable information for effective engineering strategies. Current proteomics provides a high-throughput approach to study sophisticated molecular networks in plants. In this review, we describe a salt-responsive protein database by an integrated analysis of proteomics-based studies. The database contains 2171 salt-responsive protein identities representing 561 unique proteins. These proteins have been identified from leaves, roots, shoots, seedlings, unicells, grains, hypocotyls, radicles, and panicles from 34 plant species. The identified proteins provide invaluable information toward understanding the complex and fine-tuned plant salt-tolerance mechanisms in photosynthesis, reactive oxygen species (ROS) scavenging, ion homeostasis, osmotic modulation, signaling transduction, transcription, protein synthesis/turnover, cytoskeleton dynamics, and cross-tolerance to different stress conditions.
Collapse
Affiliation(s)
- Heng Zhang
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040, China
| | | | | | | | | | | | | |
Collapse
|
228
|
Yu HT, Xu SB, Zheng CH, Wang T. Comparative Proteomic Study Reveals the Involvement of Diurnal Cycle in Cell Division, Enlargement, and Starch Accumulation in Developing Endosperm of Oryza sativa. J Proteome Res 2011; 11:359-71. [DOI: 10.1021/pr200779p] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hua Tao Yu
- Key Laboratory for Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing 100093, China
- Graduate School of Chinese Academy of Sciences, Beijing 100049, China
| | - Sheng Bao Xu
- Key Laboratory for Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing 100093, China
| | - Can Hui Zheng
- Key Laboratory for Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing 100093, China
- Graduate School of Chinese Academy of Sciences, Beijing 100049, China
| | - Tai Wang
- Key Laboratory for Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing 100093, China
| |
Collapse
|
229
|
Hasanuzzaman M, Fujita M. Selenium pretreatment upregulates the antioxidant defense and methylglyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed seedlings. Biol Trace Elem Res 2011; 143:1758-76. [PMID: 21347652 DOI: 10.1007/s12011-011-8998-9] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 02/08/2011] [Indexed: 11/24/2022]
Abstract
In order to observe the possible regulatory role of selenium (Se) in relation to the changes in ascorbate (AsA) glutathione (GSH) levels and to the activities of antioxidant and glyoxalase pathway enzymes, rapeseed (Brassica napus) seedlings were grown in Petri dishes. A set of 10-day-old seedlings was pretreated with 25 μM Se (Sodium selenate) for 48 h. Two levels of drought stress (10% and 20% PEG) were imposed separately as well as on Se-pretreated seedlings, which were grown for another 48 h. Drought stress, at any level, caused a significant increase in GSH and glutathione disulfide (GSSG) content; however, the AsA content increased only under mild stress. The activity of ascorbate peroxidase (APX) was not affected by drought stress. The monodehydroascorbate reductase (MDHAR) and glutathione reductase (GR) activity increased only under mild stress (10% PEG). The activity of dehydroascorbate reductase (DHAR), glutathione S-transferase (GST), glutathione peroxidase (GPX), and glyoxalase I (Gly I) activity significantly increased under any level of drought stress, while catalase (CAT) and glyoxalase II (Gly II) activity decreased. A sharp increase in hydrogen peroxide (H(2)O(2)) and lipid peroxidation (MDA content) was induced by drought stress. On the other hand, Se-pretreated seedlings exposed to drought stress showed a rise in AsA and GSH content, maintained a high GSH/GSSG ratio, and evidenced increased activities of APX, DHAR, MDHAR, GR, GST, GPX, CAT, Gly I, and Gly II as compared with the drought-stressed plants without Se. These seedlings showed a concomitant decrease in GSSG content, H(2)O(2), and the level of lipid peroxidation. The results indicate that the exogenous application of Se increased the tolerance of the plants to drought-induced oxidative damage by enhancing their antioxidant defense and methylglyoxal detoxification systems.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0795, Japan.
| | | |
Collapse
|
230
|
Hasanuzzaman M, Hossain MA, Fujita M. Selenium-induced up-regulation of the antioxidant defense and methylglyoxal detoxification system reduces salinity-induced damage in rapeseed seedlings. Biol Trace Elem Res 2011; 143:1704-21. [PMID: 21264525 DOI: 10.1007/s12011-011-8958-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Accepted: 01/05/2011] [Indexed: 11/28/2022]
Abstract
The present study investigates the regulatory role of exogenous selenium (Se) in the antioxidant defense and methylglyoxal (MG) detoxification systems in rapeseed seedlings exposed to salt stress. Twelve-day-old seedlings, grown in Petri dishes, were supplemented with selenium (25 μM Na(2)SeO(4)) and salt (100 and 200 mM NaCl) separately and in combination, and further grown for 48 h. The ascorbate (AsA) content of the seedlings decreased significantly with increased salt stress. The amount of reduced glutathione (GSH) and glutathione disulfide (GSSG) increased with an increase in the level of salt stress, while the GSH/GSSG ratio decreased. In addition, the ascorbate peroxidase (APX) and glutathione S-transferase (GST) activity increased significantly with increased salt concentration (both at 100 and 200 mM NaCl), while glutathione peroxidase (GPX) activity increased only at moderate salt stress (100 mM NaCl). Glutathione reductase (GR) activity remained unchanged at 100 mM NaCl, while it was decreased under severe (200 mM NaCl) salt stress. Monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), catalase (CAT), glyoxalase I (Gly I), and glyoxalase II (Gly II) activities decreased upon the imposition of salt stress, whereas a sharp decrease of these activities was observed under severe salt stress (200 mM NaCl). Concomitant increases in the levels of H(2)O(2) and lipid peroxidation (MDA) were also measured. Exogenous Se treatment alone had little effect on the non-enzymatic and enzymatic components. However, further investigation revealed that Se treatment had a synergistic effect: in salt-stressed seedlings, it increased the AsA and GSH contents; GSH/GSSG ratio; and the activities of APX, MDHAR, DHAR, GR, GST, GPX, CAT, Gly I, and Gly II. As a result, addition of Se in salt-stressed seedlings led to a reduction in the levels of H(2)O(2) and MDA as compared to salt stress alone. These results suggest that the exogenous application of Se rendered the plants more tolerant to salt stress-induced oxidative damage by enhancing their antioxidant defense and MG detoxification systems.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa, 761-0795, Japan.
| | | | | |
Collapse
|
231
|
Ford KL, Cassin A, Bacic A. Quantitative proteomic analysis of wheat cultivars with differing drought stress tolerance. FRONTIERS IN PLANT SCIENCE 2011; 2:44. [PMID: 22639595 PMCID: PMC3355674 DOI: 10.3389/fpls.2011.00044] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 08/13/2011] [Indexed: 05/18/2023]
Abstract
Using a series of multiplexed experiments we studied the quantitative changes in protein abundance of three Australian bread wheat cultivars (Triticum aestivum L.) in response to a drought stress. Three cultivars differing in their ability to maintain grain yield during drought, Kukri (intolerant), Excalibur (tolerant), and RAC875 (tolerant), were grown in the glasshouse with cyclic drought treatment that mimicked conditions in the field. Proteins were isolated from leaves of mature plants and isobaric tags were used to follow changes in the relative protein abundance of 159 proteins. This is the first shotgun proteomics study in wheat, providing important insights into protein responses to drought as well as identifying the largest number of wheat proteins (1,299) in a single study. The changes in the three cultivars at the different time points reflected their differing physiological responses to drought, with the two drought tolerant varieties (Excalibur and RAC875) differing in their protein responses. Excalibur lacked significant changes in proteins during the initial onset of the water deficit in contrast to RAC875 that had a large number of significant changes. All three cultivars had changes consistent with an increase in oxidative stress metabolism and reactive O(2) species (ROS) scavenging capacity seen through increases in superoxide dismutases and catalases as well as ROS avoidance through the decreases in proteins involved in photosynthesis and the Calvin cycle.
Collapse
Affiliation(s)
- Kristina L. Ford
- Australian Centre for Plant Functional Genomics, School of Botany, University of MelbourneParkville, VIC, Australia
- The Australian Research Council Centre of Excellence in Plant Cell Walls, School of Botany, University of MelbourneParkville, VIC, Australia
| | - Andrew Cassin
- Australian Centre for Plant Functional Genomics, School of Botany, University of MelbourneParkville, VIC, Australia
| | - Antony Bacic
- Australian Centre for Plant Functional Genomics, School of Botany, University of MelbourneParkville, VIC, Australia
- The Australian Research Council Centre of Excellence in Plant Cell Walls, School of Botany, University of MelbourneParkville, VIC, Australia
| |
Collapse
|
232
|
Saito R, Yamamoto H, Makino A, Sugimoto T, Miyake C. Methylglyoxal functions as Hill oxidant and stimulates the photoreduction of O(2) at photosystem I: a symptom of plant diabetes. PLANT, CELL & ENVIRONMENT 2011; 34:1454-64. [PMID: 21535016 DOI: 10.1111/j.1365-3040.2011.02344.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We elucidated the metabolism of methylglyoxal (MG) in chloroplasts of higher plants. Spinach chloroplasts showed MG-dependent NADPH oxidation because of aldo-keto reductase (AKR) activity. K(m) for MG and V(max) of AKR activity were 6.5 mm and 3.3 µmol NADPH (mg Chl)(-1) h(-1) , respectively. Addition of MG to illuminated chloroplasts induced photochemical quenching (Qp) of Chl fluorescence, indicating that MG stimulated photosynthetic electron transport (PET). Furthermore, MG enhanced the light-dependent uptake of O(2) into chloroplasts. After illumination of chloroplasts, accumulation of H(2) O(2) was observed. K(m) for MG and V(max) of O(2) uptake were about 100 µm and 200 µmol O(2) (mg Chl)(-1) h(-1) , respectively. MG-dependent O(2) uptake was inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB). Under anaerobic conditions, the Qp of Chl fluorescence was suppressed. These results indicate that MG was reduced as a Hill oxidant by the photosystem I (PSI), and that O(2) was reduced to O(2) (-) by the reduced MG. In other words, MG produced in chloroplasts is preferentially reduced by PSI rather than through AKR. This triggers a type of oxidative stress that may be referred to as 'plant diabetes', because it ultimately originates from a common metabolite of the primary pathways of sugar anabolism and catabolism.
Collapse
Affiliation(s)
- Ryota Saito
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | | | | | | | | |
Collapse
|
233
|
Ricardo CP, Martins I, Francisco R, Sergeant K, Pinheiro C, Campos A, Renaut J, Fevereiro P. Proteins associated with cork formation in Quercus suber L. stem tissues. J Proteomics 2011; 74:1266-78. [DOI: 10.1016/j.jprot.2011.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 02/01/2011] [Accepted: 02/02/2011] [Indexed: 11/29/2022]
|
234
|
Upadhyaya CP, Venkatesh J, Gururani MA, Asnin L, Sharma K, Ajappala H, Park SW. Transgenic potato overproducing L-ascorbic acid resisted an increase in methylglyoxal under salinity stress via maintaining higher reduced glutathione level and glyoxalase enzyme activity. Biotechnol Lett 2011; 33:2297-307. [PMID: 21750996 DOI: 10.1007/s10529-011-0684-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 06/22/2011] [Indexed: 12/28/2022]
Abstract
Salt-tolerance was studied in transgenic potato. It was conferred by overexpression of ascorbate pathway enzyme (D-galacturonic acid reductase, GalUR). As genetic engineering of the GalUR gene in potato enhances its ascorbic acid content (L-AsA), and subsequently plants suffered minimal oxidative stress-induced damage, we now report on the comprehensive aptness of this engineering approach for enhanced salt tolerance in transgenic potato (Solanum tuberosum L. cv. Taedong Valley). Potatoes overexpressing GalUR grew and tuberized in continuous presence of 200 mM of NaCl. The transgenic plants maintained a higher reduced to oxidized glutathione (GSH:GSSG) ratio together with enhanced activity of glutathione dependent antioxidative and glyoxalase enzymes under salinity stress. The transgenics resisted an increase in methylglyoxal that increased radically in untransformed control plants under salinity stress. This is the first report of genetic engineering of ascorbate pathway gene in maintaining higher level of GSH homeostasis along with higher glyoxalase activity inhibiting the accumulation in methylglyoxal (a potent cytotoxic compound) under salt stress. These results suggested the engineering of ascorbate pathway enzymes as a major step towards developing salinity tolerant crop plants.
Collapse
|
235
|
Xue GP, Way HM, Richardson T, Drenth J, Joyce PA, McIntyre CL. Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat. MOLECULAR PLANT 2011; 4:697-712. [PMID: 21459832 DOI: 10.1093/mp/ssr013] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
NAC proteins are plant-specific transcription factors and enriched with members involved in plant response to drought stress. In this study, we analyzed the expression profiles of TaNAC69 in bread wheat using Affymetrix Wheat Genome Array datasets and quantitative RT-PCR. TaNAC69 expression was positively associated with wheat responses to both abiotic and biotic stresses and was closely correlated with a number of stress up-regulated genes. The functional analyses of TaNAC69 in transgenic wheat showed that TaNAC69 driven by a barley drought-inducible HvDhn4s promoter led to marked drought-inducible overexpression of TaNAC69 in the leaves and roots of transgenic lines. The HvDhn4s:TaNAC69 transgenic lines produced more shoot biomass under combined mild salt stress and water-limitation conditions, had longer root and more root biomass under polyethylene glycol-induced dehydration. Analysis of transgenic lines with constitutive overexpression of TaNAC69 showed the enhanced expression levels of several stress up-regulated genes. DNA-binding assays revealed that TaNAC69 and its rice homolog (ONAC131) were capable of binding to the promoter elements of three rice genes (chitinase, ZIM, and glyoxalase I) and an Arabidopsis glyoxalase I family gene, which are homologs of TaNAC69 up-regulated stress genes. These data suggest that TaNAC69 is involved in regulating stress up-regulated genes and wheat adaptation to drought stress.
Collapse
Affiliation(s)
- Gang-Ping Xue
- CSIRO Plant Industry, 306 Carmody Road, St Lucia, QLD 4067, Australia.
| | | | | | | | | | | |
Collapse
|
236
|
Tuomainen M, Ahonen V, Kärenlampi SO, Schat H, Paasela T, Svanys A, Tuohimetsä S, Peräniemi S, Tervahauta A. Characterization of the glyoxalase 1 gene TcGLX1 in the metal hyperaccumulator plant Thlaspi caerulescens. PLANTA 2011; 233:1173-84. [PMID: 21327818 DOI: 10.1007/s00425-011-1370-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 01/24/2011] [Indexed: 05/14/2023]
Abstract
Stress tolerance is currently one of the major research topics in plant biology because of the challenges posed by changing climate and increasing demand to grow crop plants in marginal soils. Increased Zn tolerance and accumulation has been reported in tobacco expressing the glyoxalase 1-encoding gene from Brassica juncea. Previous studies in our laboratory showed some Zn tolerance-correlated differences in the levels of glyoxalase 1-like protein among accessions of Zn hyperaccumulator Thlaspi caerulescens. We have now isolated the corresponding gene (named here TcGLX1), including ca. 570 bp of core and proximal promoter region. The predicted protein contains three glyoxalase 1 motifs and several putative sites for post-translational modification. In silico analysis predicted a number of cis-acting elements related to stress. The expression of TcGLX1 was not responsive to Zn. There was no correlation between the levels of TcGLX1 expression and the degrees of Zn tolerance or accumulation among T. caerulescens accessions nor was there co-segregation of TcGLX1 expression with Zn tolerance or Zn accumulation among F3 lines derived from crosses between plants from accessions with contrasting phenotypes for these properties. No phenotype was observed in an A. thaliana T-DNA insertion line for the closest A. thaliana homolog of TcGLX1, ATGLX1. These results suggest that glyoxalase 1 or at least the particular isoform studied here is not a major determinant of Zn tolerance in the Zn hyperaccumulator plant T. caerulescens. In addition, ATGLX1 is not essential for normal Zn tolerance in the non-tolerant, non-accumulator plant A. thaliana. Possible explanations for the apparent discrepancy between this and previous studies are discussed.
Collapse
Affiliation(s)
- Marjo Tuomainen
- Department of Biosciences, University of Eastern Finland, Kuopio Campus, P.O. Box 1627, 70211 Kuopio, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
237
|
Akashi K, Yoshida K, Kuwano M, Kajikawa M, Yoshimura K, Hoshiyasu S, Inagaki N, Yokota A. Dynamic changes in the leaf proteome of a C3 xerophyte, Citrullus lanatus (wild watermelon), in response to water deficit. PLANTA 2011; 233:947-960. [PMID: 21259065 DOI: 10.1007/s00425-010-1341-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 12/10/2010] [Indexed: 05/30/2023]
Abstract
Wild watermelon (Citrullus lanatus) is a xerophyte native to the Kalahari Desert, Africa. To better understand the molecular mechanisms of drought resistance in this plant, we examined changes in the proteome in response to water deficit. Wild watermelon leaves showed decreased transpiration and a concomitant increase in leaf temperature under water deficit conditions. Comparison of the proteome of stressed plants with that of unstressed plants by two-dimensional gel electrophoresis revealed that the intensity of 40 spots increased in response to the stress, and the intensity of 11 spots decreased. We positively identified 23 stress-induced and 6 stress-repressed proteins by mass spectrometry and database analyses. Interestingly, 15 out of the 23 up-regulated proteins (65% of annotated up-regulated proteins) were heat shock proteins (HSPs). Especially, 10 out of the 15 up-regulated HSPs belonged to the small heat shock protein (sHSP) family. Other stress-induced proteins included those related to antioxidative defense and carbohydrate metabolism. Fifteen distinct cDNA sequences encoding the sHSP were characterized from wild watermelon. Quantitative real-time PCR analysis of the representative sHSP genes revealed strong transcriptional up-regulation in the leaves under water deficit. Moreover, immunoblot analysis confirmed that protein abundance of sHSPs was massively increased under water deficit. Overall, these observations suggest that the defense response of wild watermelon may involve orchestrated regulation of a diverse array of functional proteins related to cellular defense and metabolism, of which HSPs may play a pivotal role on the protection of the plant under water deficit in the presence of strong light.
Collapse
Affiliation(s)
- Kinya Akashi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
238
|
Turóczy Z, Kis P, Török K, Cserháti M, Lendvai A, Dudits D, Horváth GV. Overproduction of a rice aldo-keto reductase increases oxidative and heat stress tolerance by malondialdehyde and methylglyoxal detoxification. PLANT MOLECULAR BIOLOGY 2011; 75:399-412. [PMID: 21246257 DOI: 10.1007/s11103-011-9735-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 01/11/2011] [Indexed: 05/19/2023]
Abstract
The accumulation of toxic compounds generated by the interaction between reactive oxygen species and polyunsaturated fatty acids of membrane lipids can significantly damage plant cells. A plethora of enzymes act on these reactive carbonyls, reducing their toxicity. Based on the chromosomal localization and on their homology with other stress-induced aldo-keto reductases (AKRs) we have selected three rice AKR genes. The transcription level of OsAKR1 was greatly induced by abscisic acid and various stress treatments; the other two AKR genes tested were moderately stress-inducible. The OsAKR1 recombinant protein exhibited a high nicotinamide adenine dinucleotide phosphate-dependent catalytic activity to reduce toxic aldehydes including glycolysis-derived methylglyoxal (MG) and lipid peroxidation-originated malondialdehyde (MDA). The function of this enzyme in MG detoxification was demonstrated in vivo in E. coli and in transgenic plants overproducing the OsAKR1 protein. Heterologous synthesis of the OsAKR1 enzyme in transgenic tobacco plants resulted in increased tolerance against oxidative stress generated by methylviologen (MV) and improved resistance to high temperature. In these plants lower levels of MDA were detected both following MV and heat treatment due to the activity of the OsAKR1 enzyme. The transgenic tobaccos also exhibited higher AKR activity and accumulated less MG in their leaves than the wild type plants; both in the presence and absence of heat stress. These results support the positive role of OsAKR1 in abiotic stress-related reactive aldehyde detoxification pathways and its use for improvement of stress tolerance in plants.
Collapse
Affiliation(s)
- Zoltán Turóczy
- Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, Temesvári krt. 62, 6726, Szeged, Hungary
| | | | | | | | | | | | | |
Collapse
|
239
|
Hossain MA, Hasanuzzaman M, Fujita M. Coordinate induction of antioxidant defense and glyoxalase system by exogenous proline and glycinebetaine is correlated with salt tolerance in mung bean. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11703-010-1070-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
240
|
Mustafiz A, Singh AK, Pareek A, Sopory SK, Singla-Pareek SL. Genome-wide analysis of rice and Arabidopsis identifies two glyoxalase genes that are highly expressed in abiotic stresses. Funct Integr Genomics 2011; 11:293-305. [PMID: 21213008 DOI: 10.1007/s10142-010-0203-2] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 11/16/2010] [Accepted: 11/16/2010] [Indexed: 10/18/2022]
Abstract
Glyoxalase pathway, ubiquitously found in all organisms from prokaryotes to eukaryotes, consists of glyoxalase I (GLY I) and glyoxalase II (GLY II) enzymes, which detoxify a cytotoxic molecule, methylglyoxal (MG). Increase in MG has been correlated with various diseases in humans and different abiotic stresses in plants. We have previously shown that overproduction of GLY I and/or GLY II enzymes in transgenic plants provide tolerance towards salinity and heavy metal stresses. We have identified nineteen potential GLY I and four GLY II proteins in rice and twenty two GLY I and nine GLY II proteins in Arabidopsis. An analysis of complete set of genes coding for the glyoxalase proteins in these two genomes is presented, including classification and chromosomal distribution. Expression profiling of these genes has been performed in response to multiple abiotic stresses, in different tissues and during various stages of vegetative and reproductive development using publicly available databases (massively parallel signature sequencing and microarray). AtGLYI8, OsGLYI3, and OsGLYI10 expresses constitutively high in seeds while AtGLYI4, AtGLYI7, OsGLYI6, and OsGLYI11 are highly stress inducible. To complement this analyses, qRT-PCR is performed in two contrasting rice genotypes, i.e., IR64 and Pokkali where OsGLYI6 and OsGLYI11 are found to be highly stress inducible.
Collapse
Affiliation(s)
- Ananda Mustafiz
- Plant Molecular Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | | | | | | | |
Collapse
|
241
|
Yamauchi Y, Hasegawa A, Taninaka A, Mizutani M, Sugimoto Y. NADPH-dependent reductases involved in the detoxification of reactive carbonyls in plants. J Biol Chem 2010; 286:6999-7009. [PMID: 21169366 DOI: 10.1074/jbc.m110.202226] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reactive carbonyls, especially α,β-unsaturated carbonyls produced through lipid peroxidation, damage biomolecules such as proteins and nucleotides; elimination of these carbonyls is therefore essential for maintaining cellular homeostasis. In this study, we focused on an NADPH-dependent detoxification of reactive carbonyls in plants and explored the enzyme system involved in this detoxification process. Using acrolein (CH(2) = CHCHO) as a model α,β-unsaturated carbonyl, we purified a predominant NADPH-dependent acrolein-reducing enzyme from cucumber leaves, and we identified the enzyme as an alkenal/one oxidoreductase (AOR) catalyzing reduction of an α,β-unsaturated bond. Cloning of cDNA encoding AORs revealed that cucumber contains two distinct AORs, chloroplastic AOR and cytosolic AOR. Homologs of cucumber AORs were found among various plant species, including Arabidopsis, and we confirmed that a homolog of Arabidopsis (At1g23740) also had AOR activity. Phylogenetic analysis showed that these AORs belong to a novel class of AORs. They preferentially reduced α,β-unsaturated ketones rather than α,β-unsaturated aldehydes. Furthermore, we selected candidates of other classes of enzymes involved in NADPH-dependent reduction of carbonyls based on the bioinformatic information, and we found that an aldo-keto reductase (At2g37770) and aldehyde reductases (At1g54870 and At3g04000) were implicated in the reduction of an aldehyde group of saturated aldehydes and methylglyoxal as well as α,β-unsaturated aldehydes in chloroplasts. These results suggest that different classes of NADPH-dependent reductases cooperatively contribute to the detoxification of reactive carbonyls.
Collapse
Affiliation(s)
- Yasuo Yamauchi
- Laboratory of Functional Phytochemistry, Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe 657-8501, Japan.
| | | | | | | | | |
Collapse
|
242
|
Pechanova O, Hsu CY, Adams JP, Pechan T, Vandervelde L, Drnevich J, Jawdy S, Adeli A, Suttle JC, Lawrence AM, Tschaplinski TJ, Séguin A, Yuceer C. Apoplast proteome reveals that extracellular matrix contributes to multistress response in poplar. BMC Genomics 2010; 11:674. [PMID: 21114852 PMCID: PMC3091788 DOI: 10.1186/1471-2164-11-674] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 11/29/2010] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Riverine ecosystems, highly sensitive to climate change and human activities, are characterized by rapid environmental change to fluctuating water levels and siltation, causing stress on their biological components. We have little understanding of mechanisms by which riverine plant species have developed adaptive strategies to cope with stress in dynamic environments while maintaining growth and development. RESULTS We report that poplar (Populus spp.) has evolved a systems level "stress proteome" in the leaf-stem-root apoplast continuum to counter biotic and abiotic factors. To obtain apoplast proteins from P. deltoides, we developed pressure-chamber and water-displacement methods for leaves and stems, respectively. Analyses of 303 proteins and corresponding transcripts coupled with controlled experiments and bioinformatics demonstrate that poplar depends on constitutive and inducible factors to deal with water, pathogen, and oxidative stress. However, each apoplast possessed a unique set of proteins, indicating that response to stress is partly compartmentalized. Apoplast proteins that are involved in glycolysis, fermentation, and catabolism of sucrose and starch appear to enable poplar to grow normally under water stress. Pathogenesis-related proteins mediating water and pathogen stress in apoplast were particularly abundant and effective in suppressing growth of the most prevalent poplar pathogen Melampsora. Unexpectedly, we found diverse peroxidases that appear to be involved in stress-induced cell wall modification in apoplast, particularly during the growing season. Poplar developed a robust antioxidative system to buffer oxidation in stem apoplast. CONCLUSION These findings suggest that multistress response in the apoplast constitutes an important adaptive trait for poplar to inhabit dynamic environments and is also a potential mechanism in other riverine plant species.
Collapse
Affiliation(s)
- Olga Pechanova
- Department of Forestry, Mississippi State University, Mississippi State, MS 39762 USA
| | - Chuan-Yu Hsu
- Department of Forestry, Mississippi State University, Mississippi State, MS 39762 USA
| | - Joshua P Adams
- Department of Forestry, Mississippi State University, Mississippi State, MS 39762 USA
| | - Tibor Pechan
- Life Sciences and Biotechnology Institute, Mississippi Agricultural and Forestry Experiment Station, Mississippi State University, Mississippi State, MS 39762 USA
| | - Lindsay Vandervelde
- Department of Forestry, Mississippi State University, Mississippi State, MS 39762 USA
| | - Jenny Drnevich
- W.M. Keck Center for Comparative and Functional Genomics, University of Illinois, Urbana, IL 61801 USA
| | - Sara Jawdy
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | | | | | - Amanda M Lawrence
- Electron Microscopy Center, Mississippi State University, Mississippi State, MS 39762 USA
| | | | - Armand Séguin
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Quebec, Quebec G1V 4C7, Canada
| | - Cetin Yuceer
- Department of Forestry, Mississippi State University, Mississippi State, MS 39762 USA
| |
Collapse
|
243
|
Sobhanian H, Motamed N, Jazii FR, Nakamura T, Komatsu S. Salt stress induced differential proteome and metabolome response in the shoots of Aeluropus lagopoides (Poaceae), a halophyte C(4) plant. J Proteome Res 2010; 9:2882-97. [PMID: 20397718 DOI: 10.1021/pr900974k] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A proteomic approach was used to identify proteins affected by salt in the halophyte C(4) plant Aeluropus lagopoides (Poaceae) in an attempt to understand the mechanism of salt tolerance. Plants were treated with 450 mM NaCl for 10 days, and proteins were then extracted from the shoots and separated by two-dimensional polyacrylamide gel electrophoresis. A total of 1805 protein spots were detected, of which 39 were up-regulated and 44 were down-regulated by treatment with NaCl. Metabolism-related proteins were up-regulated, whereas photosynthesis-related proteins were down-regulated. Dose-dependence studies showed that the up-regulation continued at NaCl concentrations above 450 mM for defense-related proteins alone. Western blot analysis confirmed the down-regulation of RuBisCO LSU and RuBisCO SSU and severe down-regulation of RuBisCO activase. The activity of glyoxalase I increased with increasing NaCl concentration. Metabolome studies indicated up-regulation of amino acids and down-regulation of tricarboxylic acid cycle-related metabolites. These studies suggest that up-regulation of energy formation, amino acid biosynthesis, C(4) photosynthesis, and detoxification are the main strategies for salt tolerance in A. lagopoides.
Collapse
|
244
|
Xu SB, Yu HT, Yan LF, Wang T. Integrated proteomic and cytological study of rice endosperms at the storage phase. J Proteome Res 2010; 9:4906-18. [PMID: 20712379 DOI: 10.1021/pr900954p] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The endosperm at the storage phase undergoes a series of coordinated cellular and metabolic events, including starchy endosperm cell death, starch synthesis, and starch granule packaging, which leads to efficient accumulation of starch. However, the mechanism underlying the interconnections remains unknown. We used integrated proteomic and cytological approaches to probe the interconnections in rice (Oryza sativa) endosperm at the storage phase from 12 to 18 days after flowering (DAF). Starch granule packaging was completed first in the inner part of endosperm at 15 DAF and spread to almost the entire endosperm at 18 DAF. Programmed starchy endosperm cell death occurred after the starch granule packaging. Endogenous H(2)O(2) was detectable in the inner part of endosperm at 12 DAF and the region beyond the inner part at 15 DAF, with an H(2)O(2) burst at 15 DAF. Proteomics analysis with 2-D fluorescent difference gel electrophoresis and matrix-assisted laser-desorption ionization time-of-flight/time-of-flight mass spectrometry revealed 317 proteins, including almost all known antioxidants, differentially expressed throughout the 3 stages of the developmental phase. More than two-thirds of the 317 proteins were potential thioredoxin targets, with a preferential skew toward central carbon metabolism, alcoholic fermentation, starch metabolism, amino acid metabolism, and protein synthesis or folding. These proteins implicated in starch synthesis and gluconeogenesis were upregulated, whereas those involved in anabolism of biomacromolecules such as proteins, lipids, and cell wall components were downregulated, with upregulated expression of proteins involved in catabolism of these biomacromolecules, which suggests remobilization of nutrients for starch synthesis. These data suggested important roles of the H(2)O(2)-antioxidant interface in coordinating starch accumulation, programmed cell death of starchy endosperm, and remobilization of nutrients during the cell death.
Collapse
Affiliation(s)
- Sheng Bao Xu
- Research Center for Molecular & Developmental Biology, Key Laboratory of Photosynthesis & Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences and National Center for Plant Gene Research, Beijing, China
| | | | | | | |
Collapse
|
245
|
Hossain MA, Hasanuzzaman M, Fujita M. Up-regulation of antioxidant and glyoxalase systems by exogenous glycinebetaine and proline in mung bean confer tolerance to cadmium stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2010; 16:259-72. [PMID: 23572976 PMCID: PMC3550671 DOI: 10.1007/s12298-010-0028-4] [Citation(s) in RCA: 184] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The present study investigates the possible mediatory role of exogenously applied glycinebetaine (betaine) and proline on reactive oxygen species (ROS) and methylglyoxal (MG) detoxification systems in mung bean seedlings subjected to cadmium (Cd) stress (1 mM CdCl2, 48 h). Cadmium stress caused a significant increase in glutathione (GSH) and glutathione disulfide (GSSG) content, while the ascorbate (AsA) content decreased significantly with a sharp increase in hydrogen peroxide (H2O2) and lipid peroxidation level (MDA). Ascorbate peroxidase (APX), glutathione S-transferase (GST), glutathione peroxidase (GPX), and glyoxalase I (Gly I) activities were increased in response to Cd stress, while the activities of catalase (CAT), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), glutathione reductase (GR) and glyoxalase II (Gly II) were sharply decreased. Exogenous application of 5 mM betaine or 5 mM proline resulted in an increase in GSH and AsA content, maintenance of a high GSH/GSSG ratio and increased the activities of APX, DHAR, MDHAR, GR, GST, GPX, CAT, Gly I and Gly II involved in ROS and MG detoxification system as compared to the control and mostly also Cd-stressed plants, with a concomitant decrease in GSSG content, H2O2 and lipid peroxidation level. These findings together with our earlier findings suggest that both betaine and proline provide a protective action against Cd-induced oxidative stress by reducing H2O2 and lipid peroxidation levels and by increasing the antioxidant defense and MG detoxification systems.
Collapse
Affiliation(s)
- Mohammad Anwar Hossain
- />Department of Applied Biological Science, Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa, 761-0795 Japan
- />Department of Genetics & Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202 Bangladesh
| | - Mirza Hasanuzzaman
- />Department of Applied Biological Science, Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa, 761-0795 Japan
- />Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka, 1207 Bangladesh
| | - Masayuki Fujita
- />Department of Applied Biological Science, Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa, 761-0795 Japan
| |
Collapse
|
246
|
Sun W, Xu X, Zhu H, Liu A, Liu L, Li J, Hua X. Comparative Transcriptomic Profiling of a Salt-Tolerant Wild Tomato Species and a Salt-Sensitive Tomato Cultivar. ACTA ACUST UNITED AC 2010; 51:997-1006. [DOI: 10.1093/pcp/pcq056] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
247
|
Quan S, Switzenberg R, Reumann S, Hu J. In vivo subcellular targeting analysis validates a novel peroxisome targeting signal type 2 and the peroxisomal localization of two proteins with putative functions in defense in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2010; 5:151-3. [PMID: 20009535 PMCID: PMC2884121 DOI: 10.4161/psb.5.2.10412] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 10/23/2009] [Indexed: 05/09/2023]
Abstract
Plant peroxisomes are essential organelles that house diverse metabolic activities. To understand the full spectrum of peroxisomal functions, we recently performed a proteomic analysis of Arabidopsis leaf peroxisomes followed by in vivo subcellular targeting validation of some novel proteins. Here, we continue with the targeting analysis and demonstrate that the nonapeptide RVx5HF, which is present near the N terminus of the newly identified peroxisomal protein, HIT3 (histidine triad family protein 3), is a functional peroxisome targeting signal type 2 (PTS2). In addition, we have confirmed the peroxisomal localization of UP6 (unknown protein 6) and GLX1 (glyoxalase 1 homolog), two proteins with possible roles in stress responses and glutathione-dependent detoxification, respectively. These data, together with results from our previous analysis of the peroxisomal proteome, reinforce the notion that peroxisomes are involved in various stress responses and suggest glutathione as a major antioxidant in plant peroxisomes.
Collapse
Affiliation(s)
- Sheng Quan
- Department of Energy Plant Research Laboratory; Michigan State University; East Lansing, MI USA
| | - Robert Switzenberg
- Department of Energy Plant Research Laboratory; Michigan State University; East Lansing, MI USA
| | - Sigrun Reumann
- Centre for Organelle Research; Faculty of Science and Technology; University of Stavanger; Stavanger, Norway
| | - Jianping Hu
- Department of Energy Plant Research Laboratory; Michigan State University; East Lansing, MI USA
| |
Collapse
|
248
|
Mustafiz A, Sahoo KK, Singla-Pareek SL, Sopory SK. Metabolic engineering of glyoxalase pathway for enhancing stress tolerance in plants. Methods Mol Biol 2010; 639:95-118. [PMID: 20387042 DOI: 10.1007/978-1-60761-702-0_6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Glyoxalase system consists of two enzymes glyoxalase I (Gly I) and glyoxalase II (Gly II). Gly I detoxifies methylglyoxal (MG), a cytotoxic byproduct of glycolysis, to S-lactoylglutathione (SLG) where it uses one molecule of reduced glutathione. Subsequently, SLG is converted to lactate by Gly II and one molecule of reduced glutathione is recycled back into the system. The level of MG, which is produced ubiquitously in all living organisms, is enhanced upon exposure to different abiotic stresses in plants. Overexpression of glyoxalase pathway genes in transgenic plants has been found to keep a check on the MG level under stress conditions, regulate glutathione homeostasis, and the transgenic plants are able to survive and grow under various abiotic stresses.
Collapse
Affiliation(s)
- Ananda Mustafiz
- Plant Molecular Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | | | | | |
Collapse
|
249
|
Hossain MA, Fujita M. Evidence for a role of exogenous glycinebetaine and proline in antioxidant defense and methylglyoxal detoxification systems in mung bean seedlings under salt stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2010; 16:19-29. [PMID: 23572951 PMCID: PMC3550627 DOI: 10.1007/s12298-010-0003-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In mung bean seedlings, salt stress (300 mM NaCl) caused a significant increase in reduced glutathione (GSH) content within 24 h of treatment as compared to control whereas a slight increase was observed after 48 h of treatment. Highest oxidized glutathione (GSSG) content was observed after 48 h to treatment with a concomitant decrease in glutathione redox state. Glutathione peroxidase, glutathione S-transferase, and glyoxalase II enzyme activities were significantly elevated up to 48 h, whereas glutathione reductase and glyoxalase I activities were increased only up to 24 h and then gradually decreased. Application of 15 mM proline or 15 mM glycinebetaine resulted in an increase in GSH content, maintenance of a high glutathione redox state and higher activities of glutathione peroxidase, glutathione S-transferase, glutathione reductase, glyoxalase I and glyoxalase II enzymes involved in the ROS and methylglyoxal (MG) detoxification system for up to 48 h, compared to those of the control and mostly also salt stressed plants, with a simultaneous decrease in GSSG content, H2O2 and lipid peroxidation level. The present study suggests that both proline and glycinebetaine provide a protective action against saltinduced oxidative damage by reducing H2O2 and lipid peroxidation level and by enhancing antioxidant defense and MG detoxification systems.
Collapse
Affiliation(s)
- Mohammad Anwar Hossain
- Department of Applied Biological Science, Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa, 761-0795 Japan
| | - Masayuki Fujita
- Department of Applied Biological Science, Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa, 761-0795 Japan
| |
Collapse
|
250
|
Purification of glyoxalase I from onion bulbs and molecular cloning of its cDNA. Biosci Biotechnol Biochem 2009; 73:2007-13. [PMID: 19734676 DOI: 10.1271/bbb.90194] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Glyoxalase I was highly purified from onion bulbs by DEAE-cellulose, hydroxyapatite, and S-hexylglutathione-agarose column chromatography. With 356 micromol min(-1) mg(-1) protein, the specific enzymatic activity of the purified enzyme is the highest reported to date in plants. The purified enzyme showed a single major band with a relative molecular mass of approximately 25,000 on SDS-PAGE. A cDNA encoding glyoxalase I was cloned and sequenced. Sequence comparison suggested that it is to be classified as a short-type glyoxalase I. The expression pattern of glyoxalase I in healthy onion plants and responses to various stresses were examined by Western blotting. Glyoxalase I exists at high concentration in roots, young bulbs, mature bulbs, and mature leaves, the highest concentration being in mature bulbs. Up-regulation of glyoxalase I and glyoxalase II enzyme activities were observed in response to various stresses, and an increase in Gly I protein was also seen by immunoblotting. Our results suggest an important role of the glyoxalase I gene in the plant abiotic stress response.
Collapse
|