201
|
Domingos M, Intranuovo F, Russo T, De Santis R, Gloria A, Ambrosio L, Ciurana J, Bartolo P. The first systematic analysis of 3D rapid prototyped poly(ε-caprolactone) scaffolds manufactured through BioCell printing: the effect of pore size and geometry on compressive mechanical behaviour and in vitro hMSC viability. Biofabrication 2013; 5:045004. [PMID: 24192056 DOI: 10.1088/1758-5082/5/4/045004] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Novel additive manufacturing processes are increasingly recognized as ideal techniques to produce 3D biodegradable structures with optimal pore size and spatial distribution, providing an adequate mechanical support for tissue regeneration while shaping in-growing tissues. With regard to the mechanical and biological performances of 3D scaffolds, pore size and geometry play a crucial role. In this study, a novel integrated automated system for the production and in vitro culture of 3D constructs, known as BioCell Printing, was used only to manufacture poly(ε-caprolactone) scaffolds for tissue engineering; the influence of pore size and shape on their mechanical and biological performances was investigated. Imposing a single lay-down pattern of 0°/90° and varying the filament distance, it was possible to produce scaffolds with square interconnected pores with channel sizes falling in the range of 245-433 µm, porosity 49-57% and a constant road width. Three different lay-down patterns were also adopted (0°/90°, 0°/60/120° and 0°/45°/90°/135°), thus resulting in scaffolds with quadrangular, triangular and complex internal geometries, respectively. Mechanical compression tests revealed a decrease of scaffold stiffness with the increasing porosity and number of deposition angles (from 0°/90° to 0°/45°/90°/135°). Results from biological analysis, carried out using human mesenchymal stem cells, suggest a strong influence of pore size and geometry on cell viability. On the other hand, after 21 days of in vitro static culture, it was not possible to detect any significant variation in terms of cell morphology promoted by scaffold topology. As a first systematic analysis, the obtained results clearly demonstrate the potential of the BioCell Printing process to produce 3D scaffolds with reproducible well organized architectures and tailored mechanical properties.
Collapse
Affiliation(s)
- M Domingos
- Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria (IPL), Leiria, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
202
|
WANG LU, CHEN YANNI, QIAN JUN, TAN YANYAN, HUANGFU SHAOHUA, DING YIJIANG, DING SHUQING, JIANG BIN. A BOTTOM-UP METHOD TO BUILD 3D SCAFFOLDS WITH PREDEFINED VASCULAR NETWORK. J MECH MED BIOL 2013. [DOI: 10.1142/s0219519413400083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Tissue engineering is a promising approach to regenerate transplantable tissue or organ substitutes in vitro. However, the existing methods are based on seeding cells on macroscale polymer scaffolds, which are associated with several challenges including limited control over cell microenvironment, limited nutrient diffusion, directed cell alignment. The emerging bottom-up tissue engineering methods hold great potential to address these challenges by assembling building blocks into complex 3D tissue constructs. In this study, we developed a layer-by-layer assembly approach to recreate 3D cell-laden constructs. Our experiment showed the predefined channels form a vascular system and help the transplant cells to transport the requirement of culture cells in early case of cells attaching and growing up. It is an original concept to demonstrate the feasibility of forming a network with a vascular geometry in a biocompatible polymer and fabricated different scaffold with different cells. The concept was developed to create a complete branching vascular circulation in 3D on surface of mixture of chitosan and gelatin structures and pre-define the structure of channel for culturing smooth muscle for controlling the SMC growing up as smooth muscle fiber.
Collapse
Affiliation(s)
- LU WANG
- Nanjing University of Chinese Medicine, Nanjing 210001, P. R. China
| | - YANNI CHEN
- Nanjing Dachang Hospital, Nanjing 210035, P. R. China
| | - JUN QIAN
- The Third Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing 210001, P. R. China
| | - YANYAN TAN
- The Third Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing 210001, P. R. China
| | - SHAOHUA HUANGFU
- The Third Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing 210001, P. R. China
| | - YIJIANG DING
- The Third Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing 210001, P. R. China
| | - SHUQING DING
- The Third Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing 210001, P. R. China
| | - BIN JIANG
- The Third Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing 210001, P. R. China
| |
Collapse
|
203
|
Declercq HA, Desmet T, Dubruel P, Cornelissen MJ. The role of scaffold architecture and composition on the bone formation by adipose-derived stem cells. Tissue Eng Part A 2013; 20:434-44. [PMID: 23998529 DOI: 10.1089/ten.tea.2013.0179] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Scaffold architecture and composition are crucial parameters determining the initial cell spatial distribution and consequently bone tissue formation. Three-dimensional poly-ε-caprolactone (PCL) scaffolds with a 0/90° lay-down pattern were plotted and subjected to (1) an oxygen plasma (PCL O) or (2) a postargon plasma modification with gelatin and fibronectin (PCL Fn). These scaffolds with an open pore structure were compared with more compact scaffolds fabricated by conventional processing techniques: oxidized polylactic acid (LA O) and collagen (COL) scaffolds. Human adipose tissue-derived stem cell/scaffold interactions were studied. The study revealed that the biomimetic surface modification of plotted scaffolds did not increase the seeding efficiency. The proliferation and colonization was superior for PCL Fn in comparison with PCL O. The plotted PCL Fn was completely colonized throughout the scaffold, whereas conventional scaffolds only at the edge. Protein-based scaffolds (PCL Fn and COL) enhanced the differentiation, although plotted scaffolds showed a delay in their differentiation compared with compact scaffolds. In conclusion, protein modification of plotted PCL scaffolds enhances uniform tissue formation, but shows a delayed differentiation in comparison with compact scaffolds. The present study demonstrates that biomimetic PCL scaffolds could serve as a guiding template to obtain a uniform bone tissue formation in vivo.
Collapse
Affiliation(s)
- Heidi A Declercq
- 1 Department of Basic Medical Sciences, Ghent University , Ghent, Belgium
| | | | | | | |
Collapse
|
204
|
Effect of permeation enhancers on dynamic mechanical properties of acrylate pressure sensitive adhesives. Int J Pharm 2013; 458:141-7. [PMID: 24120455 DOI: 10.1016/j.ijpharm.2013.09.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 09/30/2013] [Indexed: 11/20/2022]
Abstract
Physico-chemical properties of permeation enhancers like molecular weight/size, hydrophobicity/hydrophilicity, co-solvency, etc. are necessary during their selection for pharmaceutical product development. Chemical permeation enhancers modulate the viscoelastic properties of pressure sensitive adhesives. The extent of this modulation depends upon the molecular size and branching of the polymeric chains. The functional nature of this branching additionally changes the peel and tack properties of PSA's. Chemical permeation enhancers alone are not able to modify viscoelastic properties of aqueous based PSA's as compared with their solvent based counterparts. These modulated mechanical aspects need to be maintained throughout development of transdermal patch along with other pharmaceutical aspects like drug release and drug stability.
Collapse
|
205
|
Leung LH, Naguib HE. Characterizing the viscoelastic behaviour of poly(lactide-co-glycolide acid)–hydroxyapatite foams. J CELL PLAST 2013. [DOI: 10.1177/0021955x13503842] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The viscoelasticity of poly(lactide-co-glycolid acid) 75/25 and hydroxyapatite composite open-pore foams were examined in this study. The foams were fabricated using the gas foaming/salt leaching process, and two specific experiments were performed. The first was to test the viscoelastic dependency of the foams on the load frequency, and the second was to measure the creep of the foams under a static load. The experiments showed that the viscoelasticity of the foams did not vary with the addition nano-hydroxyapatite particles, but the environment of testing significantly affected these properties. These results can be used to better understand the behaviour of the scaffolds when in the physiological environment.
Collapse
Affiliation(s)
- Linus H Leung
- Department of Mechanical & Industrial Engineering, Department of Materials Science and Engineering, Institute of Biomaterials and Biomedical Engineering, Toronto, Ontario, Canada
| | - Hani E Naguib
- Department of Mechanical & Industrial Engineering, Department of Materials Science and Engineering, Institute of Biomaterials and Biomedical Engineering, Toronto, Ontario, Canada
| |
Collapse
|
206
|
Pérez-Ramírez Ú, López-Orive JJ, Arana E, Salmerón-Sánchez M, Moratal D. Micro-computed tomography image-based evaluation of 3D anisotropy degree of polymer scaffolds. Comput Methods Biomech Biomed Engin 2013; 18:446-55. [DOI: 10.1080/10255842.2013.818663] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
207
|
Melt-spun shaped fibers with enhanced surface effects: fiber fabrication, characterization and application to woven scaffolds. Acta Biomater 2013; 9:7719-26. [PMID: 23669620 DOI: 10.1016/j.actbio.2013.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 04/05/2013] [Accepted: 05/01/2013] [Indexed: 11/21/2022]
Abstract
Scaffolds with a high surface-area-to-volume ratio (SA:V) are advantageous with regard to the attachment and proliferation of cells in the field of tissue engineering. This paper reports on the development of novel melt-spun fibers with a high SA:V, which enhanced the surface effects of a fiber-based scaffold while maintaining its mechanical strength. The cross-section of the fibers was altered to a non-circular shape, producing a higher SA:V for a similar cross-sectional area. To obtain fibers with non-circular cross-sectional shape, or shaped fibers, three different types of metal spinnerets were fabricated for the melt-spinning process, each with circular, triangular or cruciform capillaries, using deep X-ray lithography followed by nickel electroforming. Using these spinnerets, circular and shaped fibers were manufactured with biodegradable polyester, polycaprolactone. The SA:V increase in the shaped fibers was experimentally investigated under different processing conditions. Tensile tests on the fibers and indentation tests on the woven fiber scaffolds were performed. The tested fibers and scaffolds exhibited similar mechanical characteristics, due to the similar cross-sectional area of the fibers. The degradation of the shaped fibers was notably faster than that of circular fibers, because of the enlarged surface area of the shaped fibers. The woven scaffolds composed of the shaped fibers significantly increased the proliferation of human osteosarcoma MG63 cells. This approach to increase the SA:V in shaped fibers could be useful for the fabrication of programmable, biodegradable fiber-based scaffolds in tissue engineering.
Collapse
|
208
|
Declercq HA, Desmet T, Berneel EEM, Dubruel P, Cornelissen MJ. Synergistic effect of surface modification and scaffold design of bioplotted 3-D poly-ε-caprolactone scaffolds in osteogenic tissue engineering. Acta Biomater 2013; 9:7699-708. [PMID: 23669624 DOI: 10.1016/j.actbio.2013.05.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 04/30/2013] [Accepted: 05/01/2013] [Indexed: 01/23/2023]
Abstract
The hydrophobic nature and the regular scaffold architecture of bioplotted poly(ε-caprolactone) (PCL) scaffolds present some hurdles for homogeneous tissue formation and differentiation. The current hypothesis is that a synergistic effect of applied surface modification and scaffold design enhances colonization and osteogenic differentiation. First, PCL scaffolds with a 0/90° lay-down pattern (0/90) were plotted and subjected to an oxygen plasma (O2) or multistep surface modification, including post-argon 2-amino-ethylmethacrylate grafting (AEMA), followed by immobilization of gelatin type B (gelB) and physisorption of fibronectin (gelB Fn). Secondly, scaffolds of different designs were plotted (0/90° shift (0/90 S), 0/45° and 0/90° with narrow pores (0/90 NP)) and subjected to the double protein coating. Preosteoblasts were cultured on the scaffolds and the seeding efficiency, colonization and differentiation were studied. The data revealed that a biomimetic surface modification improved colonization (gelB Fn>gelB>AEMA>O2). Compact scaffold architectures (0/90 NP, 0/45, 0/90 S>0/90) positively influenced the seeding efficiency and differentiation. Interestingly, the applied surface modification had a greater impact on colonization than the scaffold design. In conclusion, the combination of a double protein coating with a compact design enhances tissue formation in the plotted PCL scaffolds.
Collapse
Affiliation(s)
- Heidi A Declercq
- Department of Basic Medical Sciences, Ghent University, De Pintelaan 185 6B3, Ghent 9000, Belgium.
| | | | | | | | | |
Collapse
|
209
|
Sethuraman V, Makornkaewkeyoon K, Khalf A, Madihally SV. Influence of scaffold forming techniques on stress relaxation behavior of polycaprolactone scaffolds. J Appl Polym Sci 2013. [DOI: 10.1002/app.39599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Vijayalakshmi Sethuraman
- School of Chemical Engineering; Oklahoma State University; 423 Engineering North; Stillwater; OK; 74078
| | - Kornkarn Makornkaewkeyoon
- School of Chemical Engineering; Oklahoma State University; 423 Engineering North; Stillwater; OK; 74078
| | - Abdurizzagh Khalf
- School of Chemical Engineering; Oklahoma State University; 423 Engineering North; Stillwater; OK; 74078
| | - Sundararajan V. Madihally
- School of Chemical Engineering; Oklahoma State University; 423 Engineering North; Stillwater; OK; 74078
| |
Collapse
|
210
|
Bettahalli NMS, Arkesteijn ITM, Wessling M, Poot AA, Stamatialis D. Corrugated round fibers to improve cell adhesion and proliferation in tissue engineering scaffolds. Acta Biomater 2013; 9:6928-35. [PMID: 23485858 DOI: 10.1016/j.actbio.2013.02.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 02/15/2013] [Accepted: 02/19/2013] [Indexed: 11/19/2022]
Abstract
Optimal cell interaction with biomaterial scaffolds is one of the important requirements for the development of successful in vitro tissue-engineered tissues. Fast, efficient and spatially uniform cell adhesion can improve the clinical potential of engineered tissue. Three-dimensional (3-D) solid free form fabrication is one widely used scaffold fabrication technique today. By means of deposition of polymer fibers, scaffolds with various porosity, 3-D architecture and mechanical properties can be prepared. These scaffolds consist mostly of solid round fibers. In this study, it was hypothesized that a corrugated fiber morphology enhances cell adhesion and proliferation and therefore leads to the development of successful in vitro tissue-engineered constructs. Corrugated round fibers were prepared and characterized by extruding poly(ethylene oxide terephthalate)-co-poly(butylene terephthalate) (300PEOT55PBT45) block co-polymer through specially designed silicon wafer inserts. Corrugated round fibers with 6 and 10 grooves on the fiber surface were compared with solid round fibers of various diameters. The culture of mouse pre-myoblast (C2C12) cells on all fibers was studied under static and dynamic conditions by means of scanning electron microscopy, cell staining and DNA quantification. After 7days of culturing under static conditions, the DNA content on the corrugated round fibers was approximately twice as high as that on the solid round fibers. Moreover, under dynamic culture conditions, the cells on the corrugated round fibers seemed to experience lower mechanical forces and therefore adhered better than on the solid round fibers. The results of this study show that the surface architecture of fibers in a tissue engineering scaffold can be used as a tool to improve the performance of the scaffold in terms of cell adhesion and proliferation.
Collapse
Affiliation(s)
- N M S Bettahalli
- MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Membrane Technology Group, Faculty of Science and Technology, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | | | | | | | | |
Collapse
|
211
|
Buitinga M, Truckenmüller R, Engelse MA, Moroni L, Ten Hoopen HWM, van Blitterswijk CA, de Koning EJP, van Apeldoorn AA, Karperien M. Microwell scaffolds for the extrahepatic transplantation of islets of Langerhans. PLoS One 2013; 8:e64772. [PMID: 23737999 PMCID: PMC3667808 DOI: 10.1371/journal.pone.0064772] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 04/17/2013] [Indexed: 11/30/2022] Open
Abstract
Allogeneic islet transplantation into the liver has the potential to restore normoglycemia in patients with type 1 diabetes. However, the suboptimal microenvironment for islets in the liver is likely to be involved in the progressive islet dysfunction that is often observed post-transplantation. This study validates a novel microwell scaffold platform to be used for the extrahepatic transplantation of islet of Langerhans. Scaffolds were fabricated from either a thin polymer film or an electrospun mesh of poly(ethylene oxide terephthalate)-poly(butylene terephthalate) (PEOT/PBT) block copolymer (composition: 4000PEOT30PBT70) and were imprinted with microwells, ∼400 µm in diameter and ∼350 µm in depth. The water contact angle and water uptake were 39±2° and 52.1±4.0 wt%, respectively. The glucose flux through electrospun scaffolds was three times higher than for thin film scaffolds, indicating enhanced nutrient diffusion. Human islets cultured in microwell scaffolds for seven days showed insulin release and insulin content comparable to those of free-floating control islets. Islet morphology and insulin and glucagon expression were maintained during culture in the microwell scaffolds. Our results indicate that the microwell scaffold platform prevents islet aggregation by confinement of individual islets in separate microwells, preserves the islet’s native rounded morphology, and provides a protective environment without impairing islet functionality, making it a promising platform for use in extrahepatic islet transplantation.
Collapse
Affiliation(s)
- Mijke Buitinga
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Roman Truckenmüller
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Marten A. Engelse
- Department of Nephrology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Lorenzo Moroni
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Hetty W. M. Ten Hoopen
- Department of BioMedical Chemisty, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | | | - Eelco JP. de Koning
- Department of Nephrology, Leiden University Medical Centre, Leiden, The Netherlands
- Department of Endocrinology, Leiden University Medical Centre, Leiden, The Netherlands
- Hubrecht Institute–Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Aart A. van Apeldoorn
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
- * E-mail:
| | - Marcel Karperien
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| |
Collapse
|
212
|
Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 2013; 40:363-408. [PMID: 23339648 DOI: 10.1615/critrevbiomedeng.v40.i5.10] [Citation(s) in RCA: 1350] [Impact Index Per Article: 122.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The worldwide incidence of bone disorders and conditions has trended steeply upward and is expected to double by 2020, especially in populations where aging is coupled with increased obesity and poor physical activity. Engineered bone tissue has been viewed as a potential alternative to the conventional use of bone grafts, due to their limitless supply and no disease transmission. However, bone tissue engineering practices have not proceeded to clinical practice due to several limitations or challenges. Bone tissue engineering aims to induce new functional bone regeneration via the synergistic combination of biomaterials, cells, and factor therapy. In this review, we discuss the fundamentals of bone tissue engineering, highlighting the current state of this field. Further, we review the recent advances of biomaterial and cell-based research, as well as approaches used to enhance bone regeneration. Specifically, we discuss widely investigated biomaterial scaffolds, micro- and nano-structural properties of these scaffolds, and the incorporation of biomimetic properties and/or growth factors. In addition, we examine various cellular approaches, including the use of mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), adult stem cells, induced pluripotent stem cells (iPSCs), and platelet-rich plasma (PRP), and their clinical application strengths and limitations. We conclude by overviewing the challenges that face the bone tissue engineering field, such as the lack of sufficient vascularization at the defect site, and the research aimed at functional bone tissue engineering. These challenges will drive future research in the field.
Collapse
Affiliation(s)
- Ami R Amini
- Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT, USA
| | | | | |
Collapse
|
213
|
Holzapfel BM, Reichert JC, Schantz JT, Gbureck U, Rackwitz L, Nöth U, Jakob F, Rudert M, Groll J, Hutmacher DW. How smart do biomaterials need to be? A translational science and clinical point of view. Adv Drug Deliv Rev 2013; 65:581-603. [PMID: 22820527 DOI: 10.1016/j.addr.2012.07.009] [Citation(s) in RCA: 243] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 04/29/2012] [Accepted: 07/06/2012] [Indexed: 02/05/2023]
Abstract
Over the last 4 decades innovations in biomaterials and medical technology have had a sustainable impact on the development of biopolymers, titanium/stainless steel and ceramics utilized in medical devices and implants. This progress was primarily driven by issues of biocompatibility and demands for enhanced mechanical performance of permanent and non-permanent implants as well as medical devices and artificial organs. In the 21st century, the biomaterials community aims to develop advanced medical devices and implants, to establish techniques to meet these requirements, and to facilitate the treatment of older as well as younger patient cohorts. The major advances in the last 10 years from a cellular and molecular knowledge point of view provided the scientific foundation for the development of third-generation biomaterials. With the introduction of new concepts in molecular biology in the 2000s and specifically advances in genomics and proteomics, a differentiated understanding of biocompatibility slowly evolved. These cell biological discoveries significantly affected the way of biomaterials design and use. At the same time both clinical demands and patient expectations continued to grow. Therefore, the development of cutting-edge treatment strategies that alleviate or at least delay the need of implants could open up new vistas. This represents the main challenge for the biomaterials community in the 21st century. As a result, the present decade has seen the emergence of the fourth generation of biomaterials, the so-called smart or biomimetic materials. A key challenge in designing smart biomaterials is to capture the degree of complexity needed to mimic the extracellular matrix (ECM) of natural tissue. We are still a long way from recreating the molecular architecture of the ECM one to one and the dynamic mechanisms by which information is revealed in the ECM proteins in response to challenges within the host environment. This special issue on smart biomaterials lists a large number of excellent review articles which core is to present and discuss the basic sciences on the topic of smart biomaterials. On the other hand, the purpose of our review is to assess state of the art and future perspectives of the so called "smart biomaterials" from a translational science and specifically clinical point of view. Our aim is to filter out and discuss which biomedical advances and innovations help us to achieve the objective to translate smart biomaterials from bench to bedside. The authors predict that analyzing the field of smart biomaterials from a clinical point of view, looking back 50 years from now, it will show that this is our heritage in the 21st century.
Collapse
Affiliation(s)
- Boris Michael Holzapfel
- Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland, University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Hendriks JAA, Moroni L, Riesle J, de Wijn JR, van Blitterswijk CA. The effect of scaffold-cell entrapment capacity and physico-chemical properties on cartilage regeneration. Biomaterials 2013; 34:4259-65. [PMID: 23489921 DOI: 10.1016/j.biomaterials.2013.02.060] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 02/20/2013] [Indexed: 11/16/2022]
Abstract
An important tenet in designing scaffolds for regenerative medicine consists in mimicking the dynamic mechanical properties of the tissues to be replaced to facilitate patient rehabilitation and restore daily activities. In addition, it is important to determine the contribution of the forming tissue to the mechanical properties of the scaffold during culture to optimize the pore network architecture. Depending on the biomaterial and scaffold fabrication technology, matching the scaffolds mechanical properties to articular cartilage can compromise the porosity, which hampers tissue formation. Here, we show that scaffolds with controlled and interconnected pore volume and matching articular cartilage dynamic mechanical properties, are indeed effective to support tissue regeneration by co-cultured primary and expanded chondrocyte (1:4). Cells were cultured on scaffolds in vitro for 4 weeks. A higher amount of cartilage specific matrix (ECM) was formed on mechanically matching (M) scaffolds after 28 days. A less protein adhesive composition supported chondrocytes rounded morphology, which contributed to cartilaginous differentiation. Interestingly, the dynamic stiffness of matching constructs remained approximately at the same value after culture, suggesting a comparable kinetics of tissue formation and scaffold degradation. Cartilage regeneration in matching scaffolds was confirmed subcutaneously in vivo. These results imply that mechanically matching scaffolds with appropriate physico-chemical properties support chondrocyte differentiation.
Collapse
Affiliation(s)
- J A A Hendriks
- Institute for BioMedical Technology (MIRA), University of Twente, Enschede, The Netherlands.
| | | | | | | | | |
Collapse
|
215
|
Nandakumar A, Cruz C, Mentink A, Tahmasebi Birgani Z, Moroni L, van Blitterswijk C, Habibovic P. Monolithic and assembled polymer-ceramic composites for bone regeneration. Acta Biomater 2013; 9:5708-17. [PMID: 23142480 DOI: 10.1016/j.actbio.2012.10.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 10/23/2012] [Accepted: 10/30/2012] [Indexed: 02/05/2023]
Abstract
The rationale for the use of polymer-ceramic composites for bone regeneration stems from the natural composition of bone, with collagen type I and biological apatite as the main organic and inorganic constituents, respectively. In the present study composite materials of PolyActive™ (PA), a poly(ethylene oxide terephthalate)/poly(butylene terephtalate) co-polymer, and hydroxyapatite (HA) at a weight ratio of 85:15 were prepared by rapid prototyping (RP) using two routes. In the first approach pre-extruded composite filaments of PA-HA were processed using three-dimensional fibre deposition (3DF) (conventional composite scaffolds). In the second approach PA scaffolds were fabricated using 3DF and combined with HA pillars produced inside stereolithographic moulds that fitted inside the pores of the PA three-dimensional structure (assembled composite scaffolds). Analysis of calcium and phosphate release in a simulated physiological solution, not containing calcium or phosphate, revealed significantly higher values for the HA pillars compared with other scaffolds. Release in simulated body fluid saturated with respect to HA did not show significant differences among the different scaffolds. Human mesenchymal stromal cells were cultured on polymer (3DF), conventional composite (3DF-HA) and assembled composite (HA assembled in 3DF) scaffolds and assessed for morphology, metabolic activity, DNA amount and gene expression of osteogenic markers using real time quantitative polymerase chain reaction (PCR). Scanning electron microscopy images showed that the cells attached to and infiltrated all the scaffolds. Assembled composites had a higher metabolic activity compared with 3DF-HA scaffolds while no significant differences were observed in DNA amounts. Gene expression of osteopontin in the assembled composite was significantly higher compared with the conventional composites. The strategy of composite fabrication by assembly appears to be a promising alternative to the conventional composite fabrication route for scaffolds for bone regeneration.
Collapse
Affiliation(s)
- Anandkumar Nandakumar
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
216
|
High-resolution PLA-based composite scaffolds via 3-D printing technology. Acta Biomater 2013; 9:5521-30. [PMID: 23142224 DOI: 10.1016/j.actbio.2012.10.041] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 10/15/2012] [Accepted: 10/30/2012] [Indexed: 11/22/2022]
Abstract
Fabrication of new biodegradable scaffolds that guide and stimulate tissue regeneration is still a major issue in tissue engineering approaches. Scaffolds that possess adequate biodegradability, pore size, interconnectivity, bioactivity and mechanical properties in accordance with the injured tissue are required. This work aimed to develop and characterize three-dimensional (3-D) scaffolds that fulfill the aforementioned requirements. For this, a nozzle-based rapid prototyping system was used to combine polylactic acid and a bioactive CaP glass to fabricate 3-D biodegradable scaffolds with two patterns (orthogonal and displaced double layer). Scanning electron microscopy and micro-computer tomography showed that 3-D scaffolds had completely interconnected porosity, uniform distribution of the glass particles, and a controlled and repetitive architecture. Surface properties were also assessed, showing that the incorporation of glass particles increased both the roughness and the hydrophilicity of the scaffolds. Mechanical tests indicated that compression strength is dependent on the scaffold geometry and the presence of glass. Preliminary cell response was studied with primary mesenchymal stem cells (MSC) and revealed that CaP glass improved cell adhesion. Overall, the results showed the suitability of the technique/materials combination to develop 3-D porous scaffolds and their initial biocompatibility, both being valuable characteristics for tissue engineering applications.
Collapse
|
217
|
Pore Geometry Regulates Early Stage Human Bone Marrow Cell Tissue Formation and Organisation. Ann Biomed Eng 2013; 41:917-30. [DOI: 10.1007/s10439-013-0748-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 01/20/2013] [Indexed: 11/25/2022]
|
218
|
Zhang Q, Luo H, Zhang Y, Zhou Y, Ye Z, Tan W, Lang M. Fabrication of three-dimensional poly(ε-caprolactone) scaffolds with hierarchical pore structures for tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:2094-103. [PMID: 23498237 DOI: 10.1016/j.msec.2013.01.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 12/03/2012] [Accepted: 01/14/2013] [Indexed: 12/17/2022]
Abstract
The physical properties of tissue engineering scaffolds such as microstructures play important roles in controlling cellular behaviors and neotissue formation. Among them, the pore size stands out as a key determinant factor. In the present study, we aimed to fabricate porous scaffolds with pre-defined hierarchical pore sizes, followed by examining cell growth in these scaffolds. This hierarchical porous microstructure was implemented via integrating different pore-generating methodologies, including salt leaching and thermal induced phase separation (TIPS). Specifically, large (L, 200-300 μm), medium (M, 40-50 μm) and small (S, <10 μm) pores were able to be generated. As such, three kinds of porous scaffolds with a similar porosity of ~90% creating pores of either two (LS or MS) or three (LMS) different sizes were successfully prepared. The number fractions of different pores in these scaffolds were determined to confirm the hierarchical organization of pores. It was found that the interconnectivity varied due to the different pore structures. Besides, these scaffolds demonstrated similar compressive moduli under dry and hydrated states. The adhesion, proliferation, and spatial distribution of human fibroblasts within the scaffolds during a 14-day culture were evaluated with MTT assay and fluorescence microscopy. While all three scaffolds well supported the cell attachment and proliferation, the best cell spatial distribution inside scaffolds was achieved with LMS, implicating that such a controlled hierarchical microstructure would be advantageous in tissue engineering applications.
Collapse
Affiliation(s)
- Qingchun Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | | | | | | | | | | | | |
Collapse
|
219
|
Yoo D. New paradigms in hierarchical porous scaffold design for tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:1759-72. [PMID: 23827634 DOI: 10.1016/j.msec.2012.12.092] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 12/10/2012] [Accepted: 12/28/2012] [Indexed: 11/16/2022]
Abstract
This paper presented an effective method for the three-dimensional (3D) hierarchical porous scaffold design for tissue engineering. To achieve such a hierarchical porous structure with accurately controlled internal pore architectures, the recursive intersection Boolean operation (RIBO) was proposed in order to satisfy computational efficiency and biological function requirements of a porous scaffold. After generating the distance field (DF) for the given anatomic model and required pore architectures, the recursive DF modifications enable us to design hierarchical porous scaffolds with complex combinations of pore morphologies. A variety of experimental results showed that the proposed hierarchical porous scaffold design method has the potential benefits for accurately controlling both the porosity and the pore architecture gradients while preserving the advantages of triply periodic minimal surface pore geometries.
Collapse
Affiliation(s)
- Dongjin Yoo
- Department of Computer Aided Mechanical Design Engineering, Daejin University, Sundan-dong, San 11-1, Pocheon-si 487-711, Republic of Korea.
| |
Collapse
|
220
|
Nandakumar A, Barradas A, de Boer J, Moroni L, van Blitterswijk C, Habibovic P. Combining technologies to create bioactive hybrid scaffolds for bone tissue engineering. BIOMATTER 2013; 3:23705. [PMID: 23507924 PMCID: PMC3749798 DOI: 10.4161/biom.23705] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Combining technologies to engineer scaffolds that can offer physical and chemical cues to cells is an attractive approach in tissue engineering and regenerative medicine. In this study, we have fabricated polymer-ceramic hybrid scaffolds for bone regeneration by combining rapid prototyping (RP), electrospinning (ESP) and a biomimetic coating method in order to provide mechanical support and a physico-chemical environment mimicking both the organic and inorganic phases of bone extracellular matrix (ECM). Poly(ethylene oxide terephthalate)-poly(buthylene terephthalate) (PEOT/PBT) block copolymer was used to produce three dimensional scaffolds by combining 3D fiber (3DF) deposition, and ESP, and these constructs were then coated with a Ca-P layer in a simulated physiological solution. Scaffold morphology and composition were studied using scanning electron microscopy (SEM) coupled to energy dispersive X-ray analyzer (EDX) and Fourier Tranform Infrared Spectroscopy (FTIR). Bone marrow derived human mesenchymal stromal cells (hMSCs) were cultured on coated and uncoated 3DF and 3DF + ESP scaffolds for up to 21 d in basic and mineralization medium and cell attachment, proliferation, and expression of genes related to osteogenesis were assessed. Cells attached, proliferated and secreted ECM on all the scaffolds. There were no significant differences in metabolic activity among the different groups on days 7 and 21. Coated 3DF scaffolds showed a significantly higher DNA amount in basic medium at 21 d compared with the coated 3DF + ESP scaffolds, whereas in mineralization medium, the presence of coating in 3DF+ESP scaffolds led to a significant decrease in the amount of DNA. An effect of combining different scaffolding technologies and material types on expression of a number of osteogenic markers (cbfa1, BMP-2, OP, OC and ON) was observed, suggesting the potential use of this approach in bone tissue engineering.
Collapse
Affiliation(s)
- Anandkumar Nandakumar
- Department of Tissue Regeneration; MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; Enschede, The Netherlands
| | - Ana Barradas
- Department of Tissue Regeneration; MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; Enschede, The Netherlands
| | - Jan de Boer
- Department of Tissue Regeneration; MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; Enschede, The Netherlands
| | - Lorenzo Moroni
- Department of Tissue Regeneration; MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; Enschede, The Netherlands
| | - Clemens van Blitterswijk
- Department of Tissue Regeneration; MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; Enschede, The Netherlands
| | - Pamela Habibovic
- Department of Tissue Regeneration; MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; Enschede, The Netherlands
| |
Collapse
|
221
|
Computer-Aided Tissue Engineering: Application to the Case of Anterior Cruciate Ligament Repair. LECTURE NOTES IN COMPUTATIONAL VISION AND BIOMECHANICS 2013. [DOI: 10.1007/978-94-007-5890-2_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
222
|
Chien KB, Makridakis E, Shah RN. Three-dimensional printing of soy protein scaffolds for tissue regeneration. Tissue Eng Part C Methods 2012; 19:417-26. [PMID: 23102234 DOI: 10.1089/ten.tec.2012.0383] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Fabricating three-dimensional (3D) porous scaffolds with controlled structure and geometry is crucial for tissue regeneration. To date, exploration in printing 3D natural protein scaffolds is limited. In this study, soy protein slurry was successfully printed using the 3D Bioplotter to form scaffolds. A method to verify the structural integrity of resulting scaffolds during printing was developed. This process involved measuring the mass extrusion flow rate of the slurry from the instrument, which was directly affected by the extrusion pressure and the soy protein slurry properties. The optimal mass flow rate for printing soy slurry at 27°C was 0.0072±0.0002 g/s. The addition of dithiothreitol to soy slurries demonstrated the importance of disulfide bonds in forming solid structures upon printing. Resulting Bioplotted soy protein scaffolds were cured using 95% ethanol and post-treated using dehydrothermal treatment (DHT), a combination of freeze-drying and DHT, and chemical crosslinking using 1-ethyl-3-(3 dimethylaminopropyl)carbodiimide (EDC) chemistry. Surface morphologies of the different treatment groups were characterized using scanning electron microscopy. Scaffold properties, including relative crosslink density, mass loss upon rinsing, and compressive modulus revealed that EDC crosslinked scaffolds were the most robust with moduli of approximately 4 kPa. Scaffold geometry (45° and 90° layer rotations) affected the mechanical properties for DHT and EDC crosslinked scaffolds. Seeding efficiency of human mesenchymal stem cells (hMSC) was highest for nontreated and thermally treated scaffolds, and all scaffolds supported hMSC viability over time.
Collapse
Affiliation(s)
- Karen B Chien
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois, USA
| | | | | |
Collapse
|
223
|
Mota C, Puppi D, Chiellini F, Chiellini E. Additive manufacturing techniques for the production of tissue engineering constructs. J Tissue Eng Regen Med 2012; 9:174-90. [PMID: 23172792 DOI: 10.1002/term.1635] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 08/02/2012] [Accepted: 09/27/2012] [Indexed: 02/06/2023]
Abstract
'Additive manufacturing' (AM) refers to a class of manufacturing processes based on the building of a solid object from three-dimensional (3D) model data by joining materials, usually layer upon layer. Among the vast array of techniques developed for the production of tissue-engineering (TE) scaffolds, AM techniques are gaining great interest for their suitability in achieving complex shapes and microstructures with a high degree of automation, good accuracy and reproducibility. In addition, the possibility of rapidly producing tissue-engineered constructs meeting patient's specific requirements, in terms of tissue defect size and geometry as well as autologous biological features, makes them a powerful way of enhancing clinical routine procedures. This paper gives an extensive overview of different AM techniques classes (i.e. stereolithography, selective laser sintering, 3D printing, melt-extrusion-based techniques, solution/slurry extrusion-based techniques, and tissue and organ printing) employed for the development of tissue-engineered constructs made of different materials (i.e. polymeric, ceramic and composite, alone or in combination with bioactive agents), by highlighting their principles and technological solutions.
Collapse
Affiliation(s)
- Carlos Mota
- Laboratory of Bioactive Polymeric Materials for Biomedical and Environmental Applications (BIOLab), UdR-INSTM, Department of Chemistry and Industrial Chemistry, University of Pisa, San Piero a Grado, (Pi), Italy
| | | | | | | |
Collapse
|
224
|
Izadifar Z, Chen X, Kulyk W. Strategic design and fabrication of engineered scaffolds for articular cartilage repair. J Funct Biomater 2012; 3:799-838. [PMID: 24955748 PMCID: PMC4030923 DOI: 10.3390/jfb3040799] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 09/13/2012] [Accepted: 10/17/2012] [Indexed: 01/19/2023] Open
Abstract
Damage to articular cartilage can eventually lead to osteoarthritis (OA), a debilitating, degenerative joint disease that affects millions of people around the world. The limited natural healing ability of cartilage and the limitations of currently available therapies make treatment of cartilage defects a challenging clinical issue. Hopes have been raised for the repair of articular cartilage with the help of supportive structures, called scaffolds, created through tissue engineering (TE). Over the past two decades, different designs and fabrication techniques have been investigated for developing TE scaffolds suitable for the construction of transplantable artificial cartilage tissue substitutes. Advances in fabrication technologies now enable the strategic design of scaffolds with complex, biomimetic structures and properties. In particular, scaffolds with hybrid and/or biomimetic zonal designs have recently been developed for cartilage tissue engineering applications. This paper reviews critical aspects of the design of engineered scaffolds for articular cartilage repair as well as the available advanced fabrication techniques. In addition, recent studies on the design of hybrid and zonal scaffolds for use in cartilage tissue repair are highlighted.
Collapse
Affiliation(s)
- Zohreh Izadifar
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon SK S7N5A9, Canada.
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon SK S7N5A9, Canada.
| | - William Kulyk
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, 107 Wiggins Rd., Saskatoon SK S7N 5E5, Canada.
| |
Collapse
|
225
|
|
226
|
Gloria A, Causa F, Russo T, Battista E, Della Moglie R, Zeppetelli S, De Santis R, Netti PA, Ambrosio L. Three-Dimensional Poly(ε-caprolactone) Bioactive Scaffolds with Controlled Structural and Surface Properties. Biomacromolecules 2012; 13:3510-21. [DOI: 10.1021/bm300818y] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- A. Gloria
- Institute of Composite and Biomedical
Materials, National Research Council, P.le
Tecchio 80, 80125, Naples, Italy
| | - F. Causa
- Interdisciplinary Research Centre
on Biomaterials (CRIB), University of Naples “Federico II”,
and Center for Advanced Biomaterials for Healthcare (CABHC), Istituto Italiano di Tecnologia (IIT), P.le Tecchio
80, 80125, Naples, Italy
| | - T. Russo
- Institute of Composite and Biomedical
Materials, National Research Council, P.le
Tecchio 80, 80125, Naples, Italy
| | - E. Battista
- Interdisciplinary Research Centre
on Biomaterials (CRIB), University of Naples “Federico II”,
and Center for Advanced Biomaterials for Healthcare (CABHC), Istituto Italiano di Tecnologia (IIT), P.le Tecchio
80, 80125, Naples, Italy
| | - R. Della Moglie
- Interdisciplinary Research Centre
on Biomaterials (CRIB), University of Naples “Federico II”,
and Center for Advanced Biomaterials for Healthcare (CABHC), Istituto Italiano di Tecnologia (IIT), P.le Tecchio
80, 80125, Naples, Italy
| | - S. Zeppetelli
- Institute of Composite and Biomedical
Materials, National Research Council, P.le
Tecchio 80, 80125, Naples, Italy
| | - R. De Santis
- Institute of Composite and Biomedical
Materials, National Research Council, P.le
Tecchio 80, 80125, Naples, Italy
| | - P. A. Netti
- Interdisciplinary Research Centre
on Biomaterials (CRIB), University of Naples “Federico II”,
and Center for Advanced Biomaterials for Healthcare (CABHC), Istituto Italiano di Tecnologia (IIT), P.le Tecchio
80, 80125, Naples, Italy
| | - L. Ambrosio
- Institute of Composite and Biomedical
Materials, National Research Council, P.le
Tecchio 80, 80125, Naples, Italy
| |
Collapse
|
227
|
Lee H, Ahn S, Bonassar LJ, Kim G. Cell(MC3T3-E1)-Printed Poly(ϵ-caprolactone)/Alginate Hybrid Scaffolds for Tissue Regeneration. Macromol Rapid Commun 2012; 34:142-9. [DOI: 10.1002/marc.201200524] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 09/20/2012] [Indexed: 11/09/2022]
|
228
|
Lohfeld S, Cahill S, Barron V, McHugh P, Dürselen L, Kreja L, Bausewein C, Ignatius A. Fabrication, mechanical and in vivo performance of polycaprolactone/tricalcium phosphate composite scaffolds. Acta Biomater 2012; 8:3446-56. [PMID: 22652444 DOI: 10.1016/j.actbio.2012.05.018] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 05/14/2012] [Accepted: 05/18/2012] [Indexed: 11/27/2022]
Abstract
This paper explores the use of selective laser sintering (SLS) for the generation of bone tissue engineering scaffolds from polycaprolactone (PCL) and PCL/tricalcium phosphate (TCP). Different scaffold designs are generated, and assessed from the point of view of manufacturability, porosity and mechanical performance. Large scaffold specimens are produced, with a preferred design, and are assessed through an in vivo study of the critical size bone defect in sheep tibia with subsequent microscopic, histological and mechanical evaluation. Further explorations are performed to generate scaffolds with increasing TCP content. Scaffold fabrication from PCL and PCL/TCP mixtures with up to 50 mass% TCP is shown to be possible. With increasing macroporosity the stiffness of the scaffolds is seen to drop; however, the stiffness can be increased by minor geometrical changes, such as the addition of a cage around the scaffold. In the animal study the selected scaffold for implantation did not perform as well as the TCP control in terms of new bone formation and the resulting mechanical performance of the defect area. A possible cause for this is presented.
Collapse
|
229
|
Huang C, Niu H, Wu C, Ke Q, Mo X, Lin T. Disc-electrospun cellulose acetate butyrate nanofibers show enhanced cellular growth performances. J Biomed Mater Res A 2012; 101:115-22. [DOI: 10.1002/jbm.a.34306] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 05/19/2012] [Accepted: 05/24/2012] [Indexed: 11/07/2022]
|
230
|
Ragaert K, De Baere I, Moerman M, Cardon L, Degrieck J. Design and thermoregulation of a new microextrusion dispense head for 3D-plotting of thermally sensitive thermoplastics. POLYM ENG SCI 2012. [DOI: 10.1002/pen.23254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
231
|
Sun Y, Finne-Wistrand A, Albertsson AC, Xing Z, Mustafa K, Hendrikson WJ, Grijpma DW, Moroni L. Degradable amorphous scaffolds with enhanced mechanical properties and homogeneous cell distribution produced by a three-dimensional fiber deposition method. J Biomed Mater Res A 2012; 100:2739-49. [DOI: 10.1002/jbm.a.34210] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 03/30/2012] [Indexed: 01/29/2023]
|
232
|
Bundela H, Bharadwaj V. Synthesis and characterization of hydroxyapatite-poly-(vinyl alcohol) based nanocomposites for their perspective use as bone substitutes. POLYMER SCIENCE SERIES A 2012. [DOI: 10.1134/s0965545x12040013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
233
|
Berneel E, Desmet T, Declercq H, Dubruel P, Cornelissen M. Double protein-coated poly-ε-caprolactone scaffolds: Successful 2D to 3D transfer. J Biomed Mater Res A 2012; 100:1783-91. [DOI: 10.1002/jbm.a.34125] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 12/08/2011] [Accepted: 02/16/2012] [Indexed: 12/30/2022]
|
234
|
Oliveira JT, Crawford A, Mundy JL, Sol PC, Correlo VM, Bhattacharya M, Neves NM, Hatton PV, Reis RL. Novel Melt-Processable Chitosan–Polybutylene Succinate Fibre Scaffolds for Cartilage Tissue Engineering. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 22:773-88. [DOI: 10.1163/092050610x494604] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- João T. Oliveira
- a 3B's Research Group — Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Taipas, Guimarães 4806-909, Portugal; IBB, Institute for Biotechnology and Bioengineering, PT Associated Laboratory, Guimarães, Portugal
| | - Aileen Crawford
- b Centre for Biomaterials and Tissue Engineering, School of Clinical Dentistry, University of Sheffield, Claremont Crescent, Sheffield S10 2TA, UK
| | - Jenifer L. Mundy
- c Centre for Biomaterials and Tissue Engineering, School of Clinical Dentistry, University of Sheffield, Claremont Crescent, Sheffield S10 2TA, UK
| | - Paula C. Sol
- d 3B's Research Group — Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Taipas, Guimarães 4806-909, Portugal; IBB, Institute for Biotechnology and Bioengineering, PT Associated Laboratory, Guimarães, Portugal
| | - Vitor M. Correlo
- e 3B's Research Group — Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Taipas, Guimarães 4806-909, Portugal; IBB, Institute for Biotechnology and Bioengineering, PT Associated Laboratory, Guimarães, Portugal
| | - Mrinal Bhattacharya
- f Department of Biosystems Engineering, University of Minnesota, St. Paul, MN 55108, USA
| | - Nuno M. Neves
- g 3B's Research Group — Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Taipas, Guimarães 4806-909, Portugal; IBB, Institute for Biotechnology and Bioengineering, PT Associated Laboratory, Guimarães, Portugal
| | - Paul V. Hatton
- h Centre for Biomaterials and Tissue Engineering, School of Clinical Dentistry, University of Sheffield, Claremont Crescent, Sheffield S10 2TA, UK
| | - Rui L. Reis
- i 3B's Research Group — Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Taipas, Guimarães 4806-909, Portugal; IBB, Institute for Biotechnology and Bioengineering, PT Associated Laboratory, Guimarães, Portugal
| |
Collapse
|
235
|
Leung LH, Naguib HE. Characterization of the viscoelastic properties of poly(ε-caprolactone)-hydroxyapatite microcomposite and nanocomposite scaffolds. POLYM ENG SCI 2012. [DOI: 10.1002/pen.23108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
236
|
Yilgor P, Yilmaz G, Onal MB, Solmaz I, Gundogdu S, Keskil S, Sousa RA, Reis RL, Hasirci N, Hasirci V. Anin vivostudy on the effect of scaffold geometry and growth factor release on the healing of bone defects. J Tissue Eng Regen Med 2012; 7:687-96. [DOI: 10.1002/term.1456] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 11/01/2011] [Accepted: 11/24/2011] [Indexed: 01/09/2023]
Affiliation(s)
| | - G. Yilmaz
- Department of Pathology; Gazi University Faculty of Medicine; Ankara; Turkey
| | - M. B. Onal
- Department of Neurosurgery; Gulhane Military Medical Academy; Ankara; Turkey
| | - I. Solmaz
- Department of Neurosurgery; Gulhane Military Medical Academy; Ankara; Turkey
| | - S. Gundogdu
- Department of Radiology; Ufuk University Faculty of Medicine; Ankara; Turkey
| | - S. Keskil
- Department of Neurosurgery; Bayindir Medical Centre; Kavaklidere; Ankara; Turkey
| | - R. A. Sousa
- 3Bs Research Group; University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; Guimarães; Portugal
| | - R. L. Reis
- 3Bs Research Group; University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; Guimarães; Portugal
| | | | | |
Collapse
|
237
|
Schon BS, Schrobback K, van der Ven M, Stroebel S, Hooper GJ, Woodfield TBF. Validation of a high-throughput microtissue fabrication process for 3D assembly of tissue engineered cartilage constructs. Cell Tissue Res 2012; 347:629-642. [PMID: 22293974 DOI: 10.1007/s00441-011-1311-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 12/19/2011] [Indexed: 10/14/2022]
Abstract
Described here is a simple, high-throughput process to fabricate pellets with regular size and shape and the assembly of pre-cultured pellets in a controlled manner into specifically designed 3D plotted porous scaffolds. Culture of cartilage pellets is a well-established process for inducing re-differentiation in expanded chondrocytes. Commonly adopted pellet culture methods using conical tubes are inconvenient, time-consuming and space-intensive. We compared the conventional 15-mL tube pellet culture method with 96-well plate-based methods, examining two different well geometries (round- and v-bottom plates). The high-throughput production method was then used to demonstrate guided placement of pellets within a scaffold of defined pore size and geometry for the 3D assembly of tissue engineered cartilage constructs. While minor differences were observed in tissue quality and size, the chondrogenic re-differentiation capacity of human chondrocytes, as assessed by GAG/DNA, collagen type I and II immunohistochemistry and collagen type I, II and aggrecan mRNA expression, was maintained in the 96-well plate format and pellets of regular size and spheroidal shape were produced. This allowed for simple production of large numbers of reproducible tissue spheroids. Furthermore, the pellet-assembly method successfully allowed fluorescently labelled pellets to be individually visualised in 3D. During subsequent culture of 3D assembled tissue engineered constructs in vitro, pellets fused to form a coherent tissue, promoting chondrogenic differentiation and GAG accumulation.
Collapse
Affiliation(s)
- B S Schon
- Christchurch Regenerative Medicine and Tissue Engineering (CReATE) Group, Department of Orthopaedic Surgery, University of Otago Christchurch, PO Box 4345, Christchurch, New Zealand
| | | | | | | | | | | |
Collapse
|
238
|
Jones DS, Tian Y, Abu-Diak O, Andrews GP. Pharmaceutical applications of dynamic mechanical thermal analysis. Adv Drug Deliv Rev 2011; 64:440-8. [PMID: 22192684 DOI: 10.1016/j.addr.2011.12.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 11/25/2011] [Accepted: 12/01/2011] [Indexed: 11/26/2022]
Abstract
The successful development of polymeric drug delivery and biomedical devices requires a comprehensive understanding of the viscoleastic properties of polymers as these have been shown to directly affect clinical efficacy. Dynamic mechanical thermal analysis (DMTA) is an accessible and versatile analytical technique in which an oscillating stress or strain is applied to a sample as a function of oscillatory frequency and temperature. Through cyclic application of a non-destructive stress or strain, a comprehensive understanding of the viscoelastic properties of polymers may be obtained. In this review, we provide a concise overview of the theory of DMTA and the basic instrumental/operating principles. Moreover, the application of DMTA for the characterization of solid pharmaceutical and biomedical systems has been discussed in detail. In particular we have described the potential of DMTA to measure and understand relaxation transitions and miscibility in binary and higher-order systems and describe the more recent applications of the technique for this purpose.
Collapse
Affiliation(s)
- David S Jones
- Queen's University Belfast, School of Pharmacy, The Drug Delivery and Biomaterials Group, Medical Biology Centre, 97 Lisburn Road, Belfast. BT9 7BL, Northern Ireland, UK
| | | | | | | |
Collapse
|
239
|
Sun F, Zhou H, Lee J. Various preparation methods of highly porous hydroxyapatite/polymer nanoscale biocomposites for bone regeneration. Acta Biomater 2011; 7:3813-28. [PMID: 21784182 DOI: 10.1016/j.actbio.2011.07.002] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 06/28/2011] [Accepted: 07/05/2011] [Indexed: 12/12/2022]
Abstract
Tissue engineering utilizes expertise in the fields of materials science, biology, chemistry, transplantation medicine, and engineering to design materials that can temporarily serve in a structural and/or functional capacity during regeneration of a defect. Hydroxyapatite (HAp) scaffolds are among the most extensively studied materials for this application. However, HAp has been reported to be too weak to treat such defects and, therefore, has been limited to non-load-bearing applications. To capitalize the advantages of HAp and at the same time overcome the drawbacks nanocrystalline HAp (nHAp) is combined with various types of bioactive polymers to generate highly porous biocomposite materials that are used for osteoconduction in the field of orthopedic surgery. In this study we have reviewed nanosized HAp-based highly porous composite materials used for bone tissue engineering, introduced various fabrication methods to prepare nHAp/polymer composite scaffolds, and characterized these scaffolds on the basis of their biodegradability and biocompatibility through in vitro and in vivo tests. Finally, we provide a summary and our own perspectives on this active area of research.
Collapse
Affiliation(s)
- Fangfang Sun
- Department of Nanomedical Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Miryang 627-706, Republic of Korea
| | | | | |
Collapse
|
240
|
Hoque ME, Chuan YL, Pashby I. Extrusion based rapid prototyping technique: an advanced platform for tissue engineering scaffold fabrication. Biopolymers 2011; 97:83-93. [PMID: 21830198 DOI: 10.1002/bip.21701] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 05/27/2011] [Accepted: 06/23/2011] [Indexed: 11/08/2022]
Abstract
Advances in scaffold design and fabrication technology have brought the tissue engineering field stepping into a new era. Conventional techniques used to develop scaffolds inherit limitations, such as lack of control over the pore morphology and architecture as well as reproducibility. Rapid prototyping (RP) technology, a layer-by-layer additive approach offers a unique opportunity to build complex 3D architectures overcoming those limitations that could ultimately be tailored to cater for patient-specific applications. Using RP methods, researchers have been able to customize scaffolds to mimic the biomechanical properties (in terms of structural integrity, strength, and microenvironment) of the organ or tissue to be repaired/replaced quite closely. This article provides intensive description on various extrusion based scaffold fabrication techniques and review their potential utility for TE applications. The extrusion-based technique extrudes the molten polymer as a thin filament through a nozzle onto a platform layer-by-layer and thus building 3D scaffold. The technique allows full control over pore architecture and dimension in the x- and y- planes. However, the pore height in z-direction is predetermined by the extruding nozzle diameter rather than the technique itself. This review attempts to assess the current state and future prospects of this technology.
Collapse
Affiliation(s)
- M Enamul Hoque
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Malaysia Campus, Jalan Broga, Selangor Darul Ehsan, Malaysia.
| | | | | |
Collapse
|
241
|
Organ printing: the future of bone regeneration? Trends Biotechnol 2011; 29:601-6. [PMID: 21831463 DOI: 10.1016/j.tibtech.2011.07.001] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 06/01/2011] [Accepted: 07/05/2011] [Indexed: 12/18/2022]
Abstract
In engineered bone grafts, the combined actions of bone-forming cells, matrix and bioactive stimuli determine the eventual performance of the implant. The current notion is that well-built 3D constructs include the biological elements that recapitulate native bone tissue structure to achieve bone formation once implanted. The relatively new technology of organ/tissue printing now enables the accurate 3D organization of the components that are important for bone formation and also addresses issues, such as graft porosity and vascularization. Bone printing is seen as a great promise, because it combines rapid prototyping technology to produce a scaffold of the desired shape and internal structure with incorporation of multiple living cell types that can form the bone tissue once implanted.
Collapse
|
242
|
Little CJ, Bawolin NK, Chen X. Mechanical Properties of Natural Cartilage and Tissue-Engineered Constructs. TISSUE ENGINEERING PART B-REVIEWS 2011; 17:213-27. [DOI: 10.1089/ten.teb.2010.0572] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Christopher James Little
- Department of Biomedical Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Nahshon Kenneth Bawolin
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Xiongbiao Chen
- Department of Biomedical Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
243
|
Schuurman W, Khristov V, Pot MW, van Weeren PR, Dhert WJA, Malda J. Bioprinting of hybrid tissue constructs with tailorable mechanical properties. Biofabrication 2011; 3:021001. [PMID: 21597163 DOI: 10.1088/1758-5082/3/2/021001] [Citation(s) in RCA: 242] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Tissue/organ printing aims to recapitulate the intrinsic complexity of native tissues. For a number of tissues, in particular those of musculoskeletal origin, adequate mechanical characteristics are an important prerequisite for their initial handling and stability, as well as long-lasting functioning. Hence, organized implants, possessing mechanical characteristics similar to the native tissue, may result in improved clinical outcomes of regenerative approaches. Using a bioprinter, grafts were constructed by alternate deposition of thermoplastic fibers and (cell-laden) hydrogels. Constructs of different shapes and sizes were manufactured and mechanical properties, as well as cell viability, were assessed. This approach yields novel organized viable hybrid constructs, which possess favorable mechanical characteristics, within the same range as those of native tissues. Moreover, the approach allows the use of multiple hydrogels and can thus produce constructs containing multiple cell types or bioactive factors. Furthermore, since the hydrogel is supported by the thermoplastic material, a broader range of hydrogel types can be used compared to bioprinting of hydrogels alone. In conclusion, we present an innovative and versatile approach for bioprinting, yielding constructs of which the mechanical stiffness provided by thermoplastic polymers can potentially be tailored, and combined specific cell placement patterns of multiple cell types embedded in a wide range of hydrogels.
Collapse
Affiliation(s)
- W Schuurman
- Department of Orthopaedics, University Medical Center Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
244
|
Teo KY, DeHoyos TO, Dutton JC, Grinnell F, Han B. Effects of freezing-induced cell-fluid-matrix interactions on the cells and extracellular matrix of engineered tissues. Biomaterials 2011; 32:5380-90. [PMID: 21549425 DOI: 10.1016/j.biomaterials.2011.04.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 04/05/2011] [Indexed: 11/16/2022]
Abstract
The two most significant challenges for successful cryopreservation of engineered tissues (ETs) are preserving tissue functionality and controlling highly tissue-type dependent preservation outcomes. In order to address these challenges, freezing-induced cell-fluid-matrix interactions should be understood, which determine the post-thaw cell viability and extracellular matrix (ECM) microstructure. However, the current understanding of this tissue-level biophysical interaction is still limited. In this study, freezing-induced cell-fluid-matrix interactions and their impact on the cells and ECM microstructure of ETs were investigated using dermal equivalents as a model ET. The dermal equivalents were constructed by seeding human dermal fibroblasts in type I collagen matrices with varying cell seeding density and collagen concentration. While these dermal equivalents underwent an identical freeze/thaw condition, their spatiotemporal deformation during freezing, post-thaw ECM microstructure, and cellular level cryoresponse were characterized. The results showed that the extent and characteristics of freezing-induced deformation were significantly different among the experimental groups, and the ETs with denser ECM microstructure experienced a larger deformation. The magnitude of the deformation was well correlated to the post-thaw ECM structure, suggesting that the freezing-induced deformation is a good indicator of post-thaw ECM structure. A significant difference in the extent of cellular injury was also noted among the experimental groups, and it depended on the extent of freezing-induced deformation of the ETs and the initial cytoskeleton organization. These results suggest that the cells have been subjected to mechanical insult due to the freezing-induced deformation as well as thermal insult. These findings provide insight on tissue-type dependent cryopreservation outcomes, and can help to design and modify cryopreservation protocols for new types of tissues from a pre-developed cryopreservation protocol.
Collapse
Affiliation(s)
- Ka Yaw Teo
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | | | | | | | | |
Collapse
|
245
|
Neurogenesis of adipose-derived stem cells in hydrogel. ACTA ACUST UNITED AC 2011; 31:174-177. [PMID: 21505979 DOI: 10.1007/s11596-011-0246-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Indexed: 12/11/2022]
Abstract
Adipose tissue is a readily available source of adult stem cells with multipotent properties suitable for tissue engineering and regenerative medical applications. Peptide hydrogel is a novel biomaterial which provides three-dimensional microenvironments for a variety of cells for tissue grafting. In this study, adipose-derived stem cells (ADSCs) were isolated from rats, seeded into the peptide hydrogel polymer scaffolds and cultured in Neurobasal (NB) media supplemented with B27, basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF). Ten days after the culture, some cells were expanded into clonal populations in which the expression of both Nestin and Brdu was detected but only Brdu expression was detected in the cells that were not expanded into clonal populations. Our results suggested that ADSCs in peptide hydrogel polymer scaffolds can be induced to differentiate into cells capable of expressing the neuron-associated markers, self-renewal and self-propagation.
Collapse
|
246
|
Gu Y, Chen L, Yang HL, Luo ZP, Tang TS. Evaluation of an injectable silk fibroin enhanced calcium phosphate cement loaded with human recombinant bone morphogenetic protein-2 in ovine lumbar interbody fusion. J Biomed Mater Res A 2011; 97:177-85. [PMID: 21381189 DOI: 10.1002/jbm.a.33018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 07/30/2010] [Accepted: 11/18/2010] [Indexed: 11/09/2022]
Abstract
The objective of this study was to investigate the efficacy of an injectable calcium phosphate cement/silk fibroin/human recombinant bone morphogenetic protein-2 composite (CPC/SF/rhBMP-2) in an ovine interbody fusion model. Twenty-four mature sheep underwent anterior lumbar interbody fusion at the levels of L1/2, L3/4, and L5/6 with random implantation of CPC/SF, CPC/rhBMP-2, CPC/SF/rhBMP-2, or autogenous iliac bone. After the sheep were sacrificed, the fusion segments were evaluated by manual palpation, CT scan, undestructive biomechanical testing, undecalcified histology, and histomorphology. The fusion rates of CPC/SF/rhBMP-2 were 55.56% and 77.78% at 6 and 12 months, respectively. The fusion was superior to all the biomaterial grafts in stiffness, and reached the same stiffness as the autograft at 12 months. The new bone formation was less than autograft at 6 months, but similar with that at 12 months. However, the ceramic residue volume of CPC/SF/rhBMP-2 was significantly decreased compared with CPC/SF and CPC/rhBMP-2 at both times. The results indicated that CPC/SF/rhBMP-2 composite had excellent osteoconduction and osteoinduction, and balanced degradation and osteogenesis.
Collapse
Affiliation(s)
- Yong Gu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | | | | | | | | |
Collapse
|
247
|
Bioactive glass–poly (ε-caprolactone) composite scaffolds with 3 dimensionally hierarchical pore networks. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2011. [DOI: 10.1016/j.msec.2010.08.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
248
|
Sobral JM, Caridade SG, Sousa RA, Mano JF, Reis RL. Three-dimensional plotted scaffolds with controlled pore size gradients: Effect of scaffold geometry on mechanical performance and cell seeding efficiency. Acta Biomater 2011; 7:1009-18. [PMID: 21056125 DOI: 10.1016/j.actbio.2010.11.003] [Citation(s) in RCA: 320] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 10/26/2010] [Accepted: 11/01/2010] [Indexed: 12/20/2022]
Abstract
Scaffolds produced by rapid prototyping (RP) techniques have proved their value for tissue engineering applications, due to their ability to produce predetermined forms and structures featuring fully interconnected pore architectures. Nevertheless, low cell seeding efficiency and non-uniform distribution of cells remain major limitations when using such types of scaffold. This can be mainly attributed to the inadequate pore architecture of scaffolds produced by RP and the limited efficiency of cell seeding techniques normally adopted. In this study we aimed at producing scaffolds with pore size gradients to enhance cell seeding efficiency and control the spatial organization of cells within the scaffold. Scaffolds based on blends of starch with poly(ε-caprolactone) featuring both homogeneously spaced pores (based on pore sizes of 0.75 and 0.1 mm) and pore size gradients (based on pore sizes of 0.1-0.75-0.1 and 0.75-0.1-0.75 mm) were designed and produced by three-dimensional plotting. The mechanical performance of the scaffolds was characterized using dynamic mechanical analysis (DMA) and conventional compression testing under wet conditions and subsequently characterized using scanning electron microscopy and micro-computed tomography. Osteoblast-like cells were seeded onto such scaffolds to investigate cell seeding efficiency and the ability to control the zonal distribution of cells upon seeding. Scaffolds featuring continuous pore size gradients were originally produced. These scaffolds were shown to have intermediate mechanical and morphological properties compared with homogenous pore size scaffolds. The pore size gradient scaffolds improved seeding efficiency from ∼35% in homogeneous scaffolds to ∼70% under static culture conditions. Fluorescence images of cross-sections of the scaffolds revealed that scaffolds with pore size gradients induce a more homogeneous distribution of cells within the scaffold.
Collapse
Affiliation(s)
- Jorge M Sobral
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal
| | | | | | | | | |
Collapse
|
249
|
Djordjevic I, Choudhury NR, Dutta NK, Kumar S. Poly[octanediol-co
-(citric acid)-co
-(sebacic acid)] elastomers: novel bio-elastomers for tissue engineering. POLYM INT 2011. [DOI: 10.1002/pi.2996] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
250
|
Yilgor P, Sousa RA, Reis RL, Hasirci N, Hasirci V. Effect of scaffold architecture and BMP-2/BMP-7 delivery on in vitro bone regeneration. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2010; 21:2999-3008. [PMID: 20740306 DOI: 10.1007/s10856-010-4150-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 08/07/2010] [Indexed: 05/29/2023]
Abstract
The aim of this study was to develop 3-D tissue engineered constructs that mimic the in vivo conditions through a self-contained growth factor delivery system. A set of nanoparticles providing the release of BMP-2 initially followed by the release of BMP-7 were incorporated in poly(ε-caprolactone) scaffolds with different 3-D architectures produced by 3-D plotting and wet spinning. The release patterns were: each growth factor alone, simultaneous, and sequential. The orientation of the fibers did not have a significant effect on the kinetics of release of the model protein BSA; but affected proliferation of bone marrow mesenchymal stem cells. Cell proliferation on random scaffolds was significantly higher compared to the oriented ones. Delivery of BMP-2 alone suppressed MSC proliferation and increased the ALP activity to a higher level than that with BMP-7 delivery. Proliferation rate was suppressed the most by the sequential delivery of the two growth factors from the random scaffold on which the ALP activity was the highest. Results indicated the distinct effect of scaffold architecture and the mode of growth factor delivery on the proliferation and osteogenic differentiation of MSCs, enabling us to design multifunctional scaffolds capable of controlling bone healing.
Collapse
Affiliation(s)
- Pinar Yilgor
- METU, BIOMAT, Department of Biotechnology, Biotechnology Research Unit, 06531 Ankara, Turkey
| | | | | | | | | |
Collapse
|