201
|
Rai TS, Adams PD. ChIP-Sequencing to Map the Epigenome of Senescent Cells Using Benzonase Endonuclease. Methods Enzymol 2016; 574:355-364. [PMID: 27423868 DOI: 10.1016/bs.mie.2016.01.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cellular senescence is a state of stable cell cycle arrest triggered by diverse stresses. Establishment of senescence occurs in conjunction with a multitude of chromatin changes, which are just beginning to be studied. These chromatin changes are hypothesized to be causative for senescence. Currently, a preferred method to study such changes is chromatin immunoprecipitation followed by sequencing (ChIP-Seq). This is usually done by cross-linking the cells with formaldehyde and then generating chromatin fragments between 150 and 300bp by sonication. The DNA replication-independent histone chaperone HIRA plays an important role in control of chromatin in nonproliferating senescent cells. While investigating the role of HIRA in senescence, we found conventional ChIP protocols to be problematic, routinely yielding too low amounts of DNA for sequencing. To overcome these problems we adapted and optimized an alternative ChIP method that does not rely on cross-linking and sonication for chromatin fragmentation, and is able to easily isolate chromatin from senescent cells ready for immunoprecipitation. This method uses Benzonase endonuclease for solubilization of uncross-linked chromatin by digestion of DNA and RNA, in the absence of proteolytic activity. Using this protocol, we were easily able to immunoprecipitate HIRA with sufficient DNA for Illumina sequencing.
Collapse
Affiliation(s)
- T S Rai
- Institute of Biomedical and Environmental Health Research, University of the West of Scotland, Paisley, United Kingdom.
| | - P D Adams
- CR-UK Beatson Labs, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
202
|
Criscione SW, De Cecco M, Siranosian B, Zhang Y, Kreiling JA, Sedivy JM, Neretti N. Reorganization of chromosome architecture in replicative cellular senescence. SCIENCE ADVANCES 2016; 2:e1500882. [PMID: 26989773 PMCID: PMC4788486 DOI: 10.1126/sciadv.1500882] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 12/02/2015] [Indexed: 05/02/2023]
Abstract
Replicative cellular senescence is a fundamental biological process characterized by an irreversible arrest of proliferation. Senescent cells accumulate a variety of epigenetic changes, but the three-dimensional (3D) organization of their chromatin is not known. We applied a combination of whole-genome chromosome conformation capture (Hi-C), fluorescence in situ hybridization, and in silico modeling methods to characterize the 3D architecture of interphase chromosomes in proliferating, quiescent, and senescent cells. Although the overall organization of the chromatin into active (A) and repressive (B) compartments and topologically associated domains (TADs) is conserved between the three conditions, a subset of TADs switches between compartments. On a global level, the Hi-C interaction matrices of senescent cells are characterized by a relative loss of long-range and gain of short-range interactions within chromosomes. Direct measurements of distances between genetic loci, chromosome volumes, and chromatin accessibility suggest that the Hi-C interaction changes are caused by a significant reduction of the volumes occupied by individual chromosome arms. In contrast, centromeres oppose this overall compaction trend and increase in volume. The structural model arising from our study provides a unique high-resolution view of the complex chromosomal architecture in senescent cells.
Collapse
Affiliation(s)
- Steven W. Criscione
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Marco De Cecco
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Benjamin Siranosian
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Yue Zhang
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Jill A. Kreiling
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - John M. Sedivy
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Nicola Neretti
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI 02912, USA
- Corresponding author. E-mail:
| |
Collapse
|
203
|
Bernadotte A, Mikhelson VM, Spivak IM. Markers of cellular senescence. Telomere shortening as a marker of cellular senescence. Aging (Albany NY) 2016; 8:3-11. [PMID: 26805432 PMCID: PMC4761709 DOI: 10.18632/aging.100871] [Citation(s) in RCA: 285] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
The cellular senescence definition comes to the fact of cells irreversible proliferation disability. Besides the cell cycle arrest, senescent cells go through some morphological, biochemical, and functional changes which are the signs of cellular senescence. The senescent cells (including replicative senescence and stress-induced premature senescence) of all the tissues look alike. They are metabolically active and possess the set of characteristics in vitro and in vivo, which are known as biomarkers of aging and cellular senescence. Among biomarkers of cellular senescence telomere shortening is a rather elegant frequently used biomarker. Validity of telomere shortening as a marker for cellular senescence is based on theoretical and experimental data.
Collapse
Affiliation(s)
- Alexandra Bernadotte
- Karolinska Institute, Department of Medical Biochemistry and Biophysics, Stockholm, 14157, Sweden
- St. Petersburg Institute of Bioregulation and Gerontology, Russian Academy of Sciences, Saint-Petersburg, 197110 Russia
| | - Victor M. Mikhelson
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, 194064, Russia
| | - Irina M. Spivak
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, 194064, Russia
- Saint-Petersburg's State University, Saint-Petersburg, 199034, Russia
- Saint-Petersburg's Polytechnic State University, Saint-Petersburg, 195251 Russia
| |
Collapse
|
204
|
Pacheco-Rivera R, Fattel-Fazenda S, Arellanes-Robledo J, Silva-Olivares A, Alemán-Lazarini L, Rodríguez-Segura M, Pérez-Carreón J, Villa-Treviño S, Shibayama M, Serrano-Luna J. Double staining of β-galactosidase with fibrosis and cancer markers reveals the chronological appearance of senescence in liver carcinogenesis induced by diethylnitrosamine. Toxicol Lett 2016; 241:19-31. [DOI: 10.1016/j.toxlet.2015.11.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 11/06/2015] [Accepted: 11/07/2015] [Indexed: 01/04/2023]
|
205
|
Shi Z, Li X, Wu D, Tang R, Chen R, Xue S, Sun X. Silencing of HMGA2 suppresses cellular proliferation, migration, invasion, and epithelial–mesenchymal transition in bladder cancer. Tumour Biol 2015; 37:7515-23. [DOI: 10.1007/s13277-015-4625-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/10/2015] [Indexed: 12/12/2022] Open
|
206
|
Saâda-Bouzid E, Burel-Vandenbos F, Ranchère-Vince D, Birtwisle-Peyrottes I, Chetaille B, Bouvier C, Château MC, Peoc'h M, Battistella M, Bazin A, Gal J, Michiels JF, Coindre JM, Pedeutour F, Bianchini L. Prognostic value of HMGA2, CDK4, and JUN amplification in well-differentiated and dedifferentiated liposarcomas. Mod Pathol 2015; 28:1404-14. [PMID: 26336885 DOI: 10.1038/modpathol.2015.96] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 07/16/2015] [Accepted: 07/17/2015] [Indexed: 11/09/2022]
Abstract
HMGA2, CDK4, and JUN genes have been described as frequently coamplified with MDM2 in atypical lipomatous tumor, well-differentiated liposarcoma, and dedifferentiated liposarcoma. We studied the frequency of amplification of these genes in a series of 48 dedifferentiated liposarcomas and 68 atypical lipomatous tumors/well-differentiated liposarcomas. We correlated their amplification status with clinicopathological features and outcomes. Histologically, both CDK4 (P=0.007) and JUN (P=0.005) amplifications were associated with dedifferentiated liposarcoma, whereas amplification of the proximal parts of HMGA2 (5'-untranslated region (UTR) and exons 1-3) was associated with atypical lipomatous tumor/well-differentiated liposarcoma (P=0.01). CDK4 amplification was associated with axial tumors. Amplification of 5'-UTR and exons 1-3 of HMGA2 was associated with primary status and grade 1. Shorter overall survival was correlated with: age >64 years (P=0.03), chemotherapy used in first intent (P<0.001), no surgery (P=0.003), grade 3 (P<0.001), distant metastasis (P<0.001), node involvement (P=0.006), and CDK4 amplification (P=0.07). In multivariate analysis, distant metastasis (HR=8.8) and grade 3 (HR=18.2) were associated with shorter overall survival. A shorter recurrence-free survival was associated with dedifferentiated liposarcoma (P<0.001), grade 3 (P<0.001), node involvement (P<0.001), distant metastasis (P=0.02), recurrent status (P=0.009), axial location (P=0.001), and with molecular features such as CDK4 (P=0.05) and JUN amplification (P=0.07). Amplification of 5'-UTR and exons 1-3 (P=0.08) and 3'-UTR (P=0.01) of HMGA2 were associated with longer recurrence-free survival. Distant metastasis was associated with shorter recurrence-free survival (HR=5.8) in multivariate analysis. Dedifferentiated liposarcoma type was associated with axial location, grade 3 and recurrent status. In conclusion, we showed that the amplification of HMGA2 was associated with the atypical lipomatous tumor/well-differentiated liposarcoma histological type and a good prognosis, whereas CDK4 and JUN amplifications were associated with dedifferentiated liposarcoma histology and a bad prognosis. In addition, we also provided the first description of the molecular evolution of a well-differentiated liposarcoma into four successive dedifferentiated liposarcoma relapses, which was consistent with our general observations.
Collapse
Affiliation(s)
- Esma Saâda-Bouzid
- Laboratory of Solid Tumor Genetics, IRCAN, Nice University Hospital, Nice, France.,Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284/INSERM U1081, University of Nice-Sophia Antipolis, Nice, France.,Medical Oncology Department, Centre Antoine-Lacassagne, Nice, France
| | | | | | | | - Bruno Chetaille
- Biopathology Department, Institut Paoli-Calmettes, Marseille, France
| | - Corinne Bouvier
- Pathology Department, Marseille University Hospital La Timone, Marseille, France
| | | | - Michel Peoc'h
- Laboratory of Pathology, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Maxime Battistella
- Laboratory of Pathology, Assistance Publique-Hôpitaux de Paris, Saint-Louis Hospital, Paris, France
| | - Audrey Bazin
- Laboratory of Solid Tumor Genetics, IRCAN, Nice University Hospital, Nice, France
| | - Jocelyn Gal
- Department of Biostatistics, Centre Antoine-Lacassagne, Nice, France
| | | | | | - Florence Pedeutour
- Laboratory of Solid Tumor Genetics, IRCAN, Nice University Hospital, Nice, France.,Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284/INSERM U1081, University of Nice-Sophia Antipolis, Nice, France
| | - Laurence Bianchini
- Laboratory of Solid Tumor Genetics, IRCAN, Nice University Hospital, Nice, France.,Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284/INSERM U1081, University of Nice-Sophia Antipolis, Nice, France
| |
Collapse
|
207
|
Linking replication stress with heterochromatin formation. Chromosoma 2015; 125:523-33. [PMID: 26511280 PMCID: PMC4901112 DOI: 10.1007/s00412-015-0545-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 09/27/2015] [Accepted: 09/30/2015] [Indexed: 11/23/2022]
Abstract
The eukaryotic genome can be roughly divided into euchromatin and heterochromatin domains that are structurally and functionally distinct. Heterochromatin is characterized by its high compaction that impedes DNA transactions such as gene transcription, replication, or recombination. Beyond its role in regulating DNA accessibility, heterochromatin plays essential roles in nuclear architecture, chromosome segregation, and genome stability. The formation of heterochromatin involves special histone modifications and the recruitment and spreading of silencing complexes that impact the higher-order structures of chromatin; however, its molecular nature varies between different chromosomal regions and between species. Although heterochromatin has been extensively characterized, its formation and maintenance throughout the cell cycle are not yet fully understood. The biggest challenge for the faithful transmission of chromatin domains is the destabilization of chromatin structures followed by their reassembly on a novel DNA template during genomic replication. This destabilizing event also provides a window of opportunity for the de novo establishment of heterochromatin. In recent years, it has become clear that different types of obstacles such as tight protein-DNA complexes, highly transcribed genes, and secondary DNA structures could impede the normal progression of the replisome and thus have the potential to endanger the integrity of the genome. Multiple studies carried out in different model organisms have demonstrated the capacity of such replisome impediments to favor the formation of heterochromatin. Our review summarizes these reports and discusses the potential role of replication stress in the formation and maintenance of heterochromatin and the role that silencing proteins could play at sites where the integrity of the genome is compromised.
Collapse
|
208
|
HMGA1 overexpression in adipose tissue impairs adipogenesis and prevents diet-induced obesity and insulin resistance. Sci Rep 2015; 5:14487. [PMID: 26411793 PMCID: PMC4585969 DOI: 10.1038/srep14487] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 08/12/2015] [Indexed: 01/14/2023] Open
Abstract
High-Mobility-Group-A1 (HMGA1) proteins are non-histone proteins that regulate chromatin structure and gene expression during embryogenesis, tumourigenesis and immune responses. In vitro studies suggest that HMGA1 proteins may be required to regulate adipogenesis. To examine the role of HMGA1 in vivo, we generated transgenic mice overexpressing HMGA1 in adipose tissues. HMGA1 transgenic mice showed a marked reduction in white and brown adipose tissue mass that was associated with downregulation of genes involved in adipogenesis and concomitant upregulation of preadipocyte markers. Reduced adipogenesis and decreased fat mass were not associated with altered glucose homeostasis since HMGA1 transgenic mice fed a regular-chow diet exhibited normal glucose tolerance and insulin sensitivity. However, when fed a high-fat diet, overexpression of HMGA1 resulted in decreased body-weight gain, reduced fat mass, but improved insulin sensitivity and glucose tolerance. Although HMGA1 transgenic mice exhibited impaired glucose uptake in adipose tissue due to impaired adipogenesis, the increased glucose uptake observed in skeletal muscle may account for the improved glucose homeostasis. Our results indicate that HMGA1 plays an important function in the regulation of white and brown adipogenesis in vivo and suggests that impaired adipocyte differentiation and decreased fat mass is not always associated with impaired whole-body glucose homeostasis.
Collapse
|
209
|
Reeves R. High mobility group (HMG) proteins: Modulators of chromatin structure and DNA repair in mammalian cells. DNA Repair (Amst) 2015; 36:122-136. [PMID: 26411874 DOI: 10.1016/j.dnarep.2015.09.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
It has been almost a decade since the last review appeared comparing and contrasting the influences that the different families of High Mobility Group proteins (HMGA, HMGB and HMGN) have on the various DNA repair pathways in mammalian cells. During that time considerable progress has been made in our understanding of how these non-histone proteins modulate the efficiency of DNA repair by all of the major cellular pathways: nucleotide excision repair, base excision repair, double-stand break repair and mismatch repair. Although there are often similar and over-lapping biological activities shared by all HMG proteins, members of each of the different families appear to have a somewhat 'individualistic' impact on various DNA repair pathways. This review will focus on what is currently known about the roles that different HMG proteins play in DNA repair processes and discuss possible future research areas in this rapidly evolving field.
Collapse
Affiliation(s)
- Raymond Reeves
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-4660, USA.
| |
Collapse
|
210
|
Replication Stress: A Lifetime of Epigenetic Change. Genes (Basel) 2015; 6:858-77. [PMID: 26378584 PMCID: PMC4584333 DOI: 10.3390/genes6030858] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/04/2015] [Accepted: 09/08/2015] [Indexed: 12/29/2022] Open
Abstract
DNA replication is essential for cell division. Challenges to the progression of DNA polymerase can result in replication stress, promoting the stalling and ultimately collapse of replication forks. The latter involves the formation of DNA double-strand breaks (DSBs) and has been linked to both genome instability and irreversible cell cycle arrest (senescence). Recent technological advances have elucidated many of the factors that contribute to the sensing and repair of stalled or broken replication forks. In addition to bona fide repair factors, these efforts highlight a range of chromatin-associated changes at and near sites of replication stress, suggesting defects in epigenome maintenance as a potential outcome of aberrant DNA replication. Here, we will summarize recent insight into replication stress-induced chromatin-reorganization and will speculate on possible adverse effects for gene expression, nuclear integrity and, ultimately, cell function.
Collapse
|
211
|
Sadaie M, Dillon C, Narita M, Young ARJ, Cairney CJ, Godwin LS, Torrance CJ, Bennett DC, Keith WN, Narita M. Cell-based screen for altered nuclear phenotypes reveals senescence progression in polyploid cells after Aurora kinase B inhibition. Mol Biol Cell 2015; 26:2971-85. [PMID: 26133385 PMCID: PMC4551313 DOI: 10.1091/mbc.e15-01-0003] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 05/22/2015] [Accepted: 06/23/2015] [Indexed: 12/23/2022] Open
Abstract
Cellular senescence is a widespread stress response and is widely considered to be an alternative cancer therapeutic goal. Unlike apoptosis, senescence is composed of a diverse set of subphenotypes, depending on which of its associated effector programs are engaged. Here we establish a simple and sensitive cell-based prosenescence screen with detailed validation assays. We characterize the screen using a focused tool compound kinase inhibitor library. We identify a series of compounds that induce different types of senescence, including a unique phenotype associated with irregularly shaped nuclei and the progressive accumulation of G1 tetraploidy in human diploid fibroblasts. Downstream analyses show that all of the compounds that induce tetraploid senescence inhibit Aurora kinase B (AURKB). AURKB is the catalytic component of the chromosome passenger complex, which is involved in correct chromosome alignment and segregation, the spindle assembly checkpoint, and cytokinesis. Although aberrant mitosis and senescence have been linked, a specific characterization of AURKB in the context of senescence is still required. This proof-of-principle study suggests that our protocol is capable of amplifying tetraploid senescence, which can be observed in only a small population of oncogenic RAS-induced senescence, and provides additional justification for AURKB as a cancer therapeutic target.
Collapse
Affiliation(s)
- Mahito Sadaie
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Christian Dillon
- Cancer Research Technology Discovery Laboratories, Wolfson Institute for Biomedical Research, London WC1E 6BT, United Kingdom
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Andrew R. J. Young
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Claire J. Cairney
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Lauren S. Godwin
- St. George's, University of London, London SW17 0RE, United Kingdom
| | | | | | - W. Nicol Keith
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| |
Collapse
|
212
|
Finley J. Reactivation of latently infected HIV-1 viral reservoirs and correction of aberrant alternative splicing in the LMNA gene via AMPK activation: Common mechanism of action linking HIV-1 latency and Hutchinson–Gilford progeria syndrome. Med Hypotheses 2015; 85:320-32. [DOI: 10.1016/j.mehy.2015.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 05/25/2015] [Accepted: 06/08/2015] [Indexed: 12/30/2022]
|
213
|
Chen H, Ruiz PD, McKimpson WM, Novikov L, Kitsis RN, Gamble MJ. MacroH2A1 and ATM Play Opposing Roles in Paracrine Senescence and the Senescence-Associated Secretory Phenotype. Mol Cell 2015; 59:719-31. [PMID: 26300260 DOI: 10.1016/j.molcel.2015.07.011] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/28/2015] [Accepted: 07/15/2015] [Indexed: 01/07/2023]
Abstract
Oncogene-induced senescence (OIS) is a tumor-suppressive mechanism typified by stable proliferative arrest, a persistent DNA damage response, and the senescence-associated secretory phenotype (SASP), which helps to maintain the senescent state and triggers bystander senescence in a paracrine fashion. Here, we demonstrate that the tumor suppressive histone variant macroH2A1 is a critical component of the positive feedback loop that maintains SASP gene expression and triggers the induction of paracrine senescence. MacroH2A1 undergoes dramatic genome-wide relocalization during OIS, including its removal from SASP gene chromatin. The removal of macroH2A1 from SASP genes results from a negative feedback loop activated by SASP-mediated endoplasmic reticulum (ER) stress. ER stress leads to increased reactive oxygen species and persistent DNA damage response including activation of ATM, which mediates removal macroH2A1 from SASP genes. Together, our findings indicate that macroH2A1 is a critical control point for the regulation of SASP gene expression during senescence.
Collapse
Affiliation(s)
- Hongshan Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA
| | - Penelope D Ruiz
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA
| | - Wendy M McKimpson
- Department of Cell Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA; Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA
| | - Leonid Novikov
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA
| | - Richard N Kitsis
- Department of Cell Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA; Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA
| | - Matthew J Gamble
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA.
| |
Collapse
|
214
|
Madhu B, Narita M, Jauhiainen A, Menon S, Stubbs M, Tavaré S, Narita M, Griffiths JR. Metabolomic changes during cellular transformation monitored by metabolite-metabolite correlation analysis and correlated with gene expression. Metabolomics 2015; 11:1848-1863. [PMID: 26491426 PMCID: PMC4605990 DOI: 10.1007/s11306-015-0838-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/27/2015] [Indexed: 12/13/2022]
Abstract
To investigate metabolic changes during cellular transformation, we used a 1H NMR based metabolite-metabolite correlation analysis (MMCA) method, which permits analysis of homeostatic mechanisms in cells at the steady state, in an inducible cell transformation model. Transcriptomic data were used to further explain the results. Transformed cells showed many more metabolite-metabolite correlations than control cells. Some had intuitively plausible explanations: a shift from glycolysis to amino acid oxidation after transformation was accompanied by a strongly positive correlation between glucose and glutamine and a strongly negative one between lactate and glutamate; there were also many correlations between the branched chain amino acids and the aromatic amino acids. Others remain puzzling: after transformation strong positive correlations developed between choline and a group of five amino acids, whereas the same amino acids showed negative correlations with phosphocholine, a membrane phospholipid precursor. MMCA in conjunction with transcriptome analysis has opened a new window into the metabolome.
Collapse
Affiliation(s)
- Basetti Madhu
- Li Ka Shing Centre, Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE UK
| | - Masako Narita
- Li Ka Shing Centre, Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE UK
| | - Alexandra Jauhiainen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Early Clinical Biometrics, AstraZeneca AB R&D, Mölndal, Sweden
| | - Suraj Menon
- Li Ka Shing Centre, Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE UK
| | - Marion Stubbs
- Li Ka Shing Centre, Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE UK
| | - Simon Tavaré
- Li Ka Shing Centre, Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE UK
| | - Masashi Narita
- Li Ka Shing Centre, Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE UK
| | - John R. Griffiths
- Li Ka Shing Centre, Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE UK
| |
Collapse
|
215
|
Chen Z, Li Q, Wang S, Zhang J. miR‑485‑5p inhibits bladder cancer metastasis by targeting HMGA2. Int J Mol Med 2015; 36:1136-42. [PMID: 26239806 DOI: 10.3892/ijmm.2015.2302] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/20/2015] [Indexed: 11/06/2022] Open
Abstract
MicroRNA (miRNA or miR)‑485 is a functional miRNA which has received much attention in recent years. However, little is known about the expression of miR‑485 or the role it plays in bladder cancer [namely in metastasis and epithelial‑mesenchymal transition (EMT)]. Thus, in the present study, we aimed to detect the expression of miR‑485 in human bladder cancer tissues and bladder cancer cell lines, and to examine the effects of miR‑485‑5p on bladder cancer cell metastasis and EMT. We found that the expression of miR‑485‑5p was downregulated in the human bladder cancer tissues and different bladder cancer cell lines compared with the normal tissues and cell lines, as demonstrated by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). We enforced the expression of miR‑485‑5p in T24 cells and inhibited the expression of miR‑485‑5p in SW780 cells by transfection with miR‑485‑5p mimic or miR‑485‑5p inhibitor, respectively. The ectopic expression of miR‑485‑5p was shown to inhibit cell metastasis and EMT, whereas the inhibition of miR‑485‑5p expression promoted cell metastasis and EMT, as shown by transwell‑matrigel assay, cell adhesion assay and western blot analysis. Furthermore, a luciferase reporter assay revealed that high mobility group AT‑hook 2 (HMGA2) was a direct target of miR‑485‑5p and that the overexpression of HMGA2 reversed the effects of miR‑485‑5p on cell metastasis and EMT. In conclusion and to the very best of our knowledge, the present study, for the first time, identified miR‑485‑5p as a suppressive miRNA in human bladder cancer, and demonstrated that miR‑485‑5p inhibits cell metastasis and EMT at least partly through the suppression of HMGA2 expression.
Collapse
Affiliation(s)
- Zhijun Chen
- Department of Urinary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233003, P.R. China
| | - Qingwen Li
- Department of Urinary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233003, P.R. China
| | - Sheng Wang
- Department of Urinary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233003, P.R. China
| | - Jiajun Zhang
- Department of Urinary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233003, P.R. China
| |
Collapse
|
216
|
Sun Z, Pan X, Zou Z, Ding Q, Wu G, Peng G. Increased SHP-1 expression results in radioresistance, inhibition of cellular senescence, and cell cycle redistribution in nasopharyngeal carcinoma cells. Radiat Oncol 2015. [PMID: 26215037 PMCID: PMC4517406 DOI: 10.1186/s13014-015-0445-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Radioresistance is the main limit to the efficacy of radiotherapy in nasopharyngeal carcinoma (NPC). SHP-1 is involved in cancer progression, but its role in radioresistance and senescence of NPC is not well understood. This study aimed to assess the role of SHP-1 in the radioresistance and senescence of NPC cells. Methods SHP-1 was knocked-down and overexpressed in CNE-1 and CNE-2 cells using lentiviruses. Cells were irradiated to observe their radiosensitivity by colony forming assay. BrdU incorporation assay and flow cytometry were used to monitor cell cycle. A β-galactosidase assay was used to assess senescence. Western blot was used to assess SHP-1, p21, p53, pRb, Rb, H3K9Me3, HP1γ, CDK4, cyclin D1, cyclin E, and p16 protein expressions. Results Compared with CNE-1-scramble shRNA cells, SHP-1 downregulation resulted in increased senescence (+107 %, P < 0.001), increased radiosensitivity, higher proportion of cells in G0/G1 (+33 %, P < 0.001), decreased expressions of CDK4 (−44 %, P < 0.001), cyclin D1 (−41 %, P = 0.001), cyclin E (−97 %, P < 0.001), Rb (−79 %, P < 0.001), and pRb (−76 %, P = 0.001), and increased expression of p16 (+120 %, P = 0.02). Furthermore, SHP-1 overexpression resulted in radioresistance, inhibition of cellular senescence, and cell cycle arrest in the S phase. Levels of p53 and p21 were unchanged in both cell lines (all P > 0.05). Conclusion SHP-1 has a critical role in radioresistance, cell cycle progression, and senescence of NPC cells. Down-regulating SHP-1 may be a promising therapeutic approach for treating patients with NPC.
Collapse
Affiliation(s)
- Ziyi Sun
- Cancer Center, Union hosipital, Wuhan, 430022, Hubei Province, China.
| | - Xiaofen Pan
- Cancer Center, Union hosipital, Wuhan, 430022, Hubei Province, China. .,Cancer center, Affliated Hospital of Guangdong Medical College, Zhanjiang, 524001, Guangdong Province, China.
| | - Zhenwei Zou
- Cancer Center, Union hosipital, Wuhan, 430022, Hubei Province, China.
| | - Qian Ding
- Cancer Center, Union hosipital, Wuhan, 430022, Hubei Province, China.
| | - Gang Wu
- Cancer Center, Union hosipital, Wuhan, 430022, Hubei Province, China.
| | - Gang Peng
- Cancer Center, Union hosipital, Wuhan, 430022, Hubei Province, China.
| |
Collapse
|
217
|
Grammatikakis I, Panda AC, Abdelmohsen K, Gorospe M. Long noncoding RNAs(lncRNAs) and the molecular hallmarks of aging. Aging (Albany NY) 2015; 6:992-1009. [PMID: 25543668 PMCID: PMC4298369 DOI: 10.18632/aging.100710] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During aging, progressive deleterious changes increase the risk of disease and death. Prominent molecular hallmarks of aging are genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, cellular senescence, stem cell exhaustion, and altered intercellular communication. Long noncoding RNAs (lncRNAs) play important roles in a wide range of biological processes, including age-related diseases like cancer, cardiovascular pathologies, and neurodegenerative disorders. Evidence is emerging that lncRNAs influence the molecular processes that underlie age-associated phenotypes. Here, we review our current understanding of lncRNAs that control the development of aging traits.
Collapse
Affiliation(s)
- Ioannis Grammatikakis
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Amaresh C Panda
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| |
Collapse
|
218
|
Esposito F, De Martino M, Petti MG, Forzati F, Tornincasa M, Federico A, Arra C, Pierantoni GM, Fusco A. HMGA1 pseudogenes as candidate proto-oncogenic competitive endogenous RNAs. Oncotarget 2015; 5:8341-54. [PMID: 25268743 PMCID: PMC4226687 DOI: 10.18632/oncotarget.2202] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The High Mobility Group A (HMGA) are nuclear proteins that participate in the organization of nucleoprotein complexes involved in chromatin structure, replication and gene transcription. HMGA overexpression is a feature of human cancer and plays a causal role in cell transformation. Since non-coding RNAs and pseudogenes are now recognized to be important in physiology and disease, we investigated HMGA1 pseudogenes in cancer settings using bioinformatics analysis. Here we report the identification and characterization of two HMGA1 non-coding pseudogenes, HMGA1P6 and HMGA1P7. We show that their overexpression increases the levels of HMGA1 and other cancer-related proteins by inhibiting the suppression of their synthesis mediated by microRNAs. Consistently, embryonic fibroblasts from HMGA1P7-overexpressing transgenic mice displayed a higher growth rate and reduced susceptibility to senescence. Moreover, HMGA1P6 and HMGA1P7 were overexpressed in human anaplastic thyroid carcinomas, which are highly aggressive, but not in differentiated papillary carcinomas, which are less aggressive. Lastly, the expression of the HMGA1 pseudogenes was significantly correlated with HMGA1 protein levels thereby implicating HMGA1P overexpression in cancer progression. In conclusion, HMGA1P6 and HMGA1P7 are potential proto-oncogenic competitive endogenous RNAs.
Collapse
Affiliation(s)
- Francesco Esposito
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Marco De Martino
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Maria Grazia Petti
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Floriana Forzati
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Mara Tornincasa
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Antonella Federico
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Claudio Arra
- Istituto Nazionale dei Tumori, Fondazione Pascale, Naples, Italy
| | - Giovanna Maria Pierantoni
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Alfredo Fusco
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", Naples, Italy
| |
Collapse
|
219
|
Swanson EC, Rapkin LM, Bazett-Jones DP, Lawrence JB. Unfolding the story of chromatin organization in senescent cells. Nucleus 2015; 6:254-60. [PMID: 26107557 DOI: 10.1080/19491034.2015.1057670] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Cell senescence, the permanent withdrawal of a cell from the cell cycle, is characterized by dramatic, cytological scale changes to DNA condensation throughout the genome. While prior emphasis has been placed on increases in heterochromatin, such as the formation of compact Senescent Associated Heterochromatin Foci (SAHF) structures, our recent findings showed that SAHF formation is preceded by the unravelling of constitutive heterochromatin into visibly extended structures, which we have termed Senescent Associated Distension of Satellites or SADS. Interestingly, neither of these marked changes in DNA condensation appear to be mediated by changes in canonical, heterochromatin-associated histone modifications. Rather, several observations suggest that these events may be facilitated by changes in LaminB1 levels and/or other factors that control higher-order chromatin architecture. Here, we review what is known about senescence-associated chromatin reorganization and present preliminary results using high-resolution microscopy techniques to show that each peri/centromeric satellite in senescent cells is comprised of several condensed domains connected by thin fibrils of satellite DNA. We then discuss the potential importance of these striking changes in chromatin condensation for cell senescence, and also as a model to provide a needed window into the higher-order packaging of the genome.
Collapse
Affiliation(s)
- Eric C Swanson
- a Department of Cell and Developmental Biology ; University of Massachusetts Medical School ; Worcester , MA USA
| | | | | | | |
Collapse
|
220
|
Liu K, Jin B, Wu C, Yang J, Zhan X, Wang L, Shen X, Chen J, Chen H, Mao Z. NQO1 Stabilizes p53 in Response to Oncogene-Induced Senescence. Int J Biol Sci 2015; 11:762-71. [PMID: 26078718 PMCID: PMC4466457 DOI: 10.7150/ijbs.11978] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/07/2015] [Indexed: 02/07/2023] Open
Abstract
Cellular senescence is a state of permanent cellular arrest that provides an initial barrier to cell transformation and tumorigenesis. In this study, we report that expression of NAD(P)H:quinone oxidoreductase 1 (NQO1), a cytoplasmic 2-electron reductase, is induced during oncogene-induced senescence (OIS). Depletion of NQO1 resulted in the delayed onset of senescence. In contrast, ectopic expression of NQO1 enhanced the senescence phenotype. Analysis of the mechanism underlying the up-regulation of NQO1 expression during senescence identified that NQO1 promotes p53 accumulation in an MDM2 and ubiquitin independent manner, which reinforces the cellular senescence phenotype. Specifically, we demonstrated that NRF2/KEAP1 signaling regulates NQO1 expression during OIS. More importantly, we confirmed that depletion of NQO1 facilitates cell transformation and tumorigenesis, which indicates that NQO1 takes part in the senescence barrier and has anti-oncogenic properties in cell transformation.
Collapse
Affiliation(s)
- Kaiyu Liu
- 1. Department of Biochemistry and Molecular Biology, Peking University Health Science Center; Beijing, 100191 People's Republic of China
| | - Bo Jin
- 2. Department of Clinical Laboratory, Peking University First Hospital, Beijing, 100034 People's Republic of China
| | - Chenglin Wu
- 3. Center of Basic Medical Sciences, Navy General Hospital; Beijing, 100048 People's Republic of China
| | - Jianming Yang
- 1. Department of Biochemistry and Molecular Biology, Peking University Health Science Center; Beijing, 100191 People's Republic of China
| | - Xiangwen Zhan
- 1. Department of Biochemistry and Molecular Biology, Peking University Health Science Center; Beijing, 100191 People's Republic of China
| | - Le Wang
- 1. Department of Biochemistry and Molecular Biology, Peking University Health Science Center; Beijing, 100191 People's Republic of China
| | - Xiaomeng Shen
- 1. Department of Biochemistry and Molecular Biology, Peking University Health Science Center; Beijing, 100191 People's Republic of China
| | - Jing Chen
- 1. Department of Biochemistry and Molecular Biology, Peking University Health Science Center; Beijing, 100191 People's Republic of China
| | - Hao Chen
- 1. Department of Biochemistry and Molecular Biology, Peking University Health Science Center; Beijing, 100191 People's Republic of China
| | - Zebin Mao
- 1. Department of Biochemistry and Molecular Biology, Peking University Health Science Center; Beijing, 100191 People's Republic of China
| |
Collapse
|
221
|
Tominaga K. The emerging role of senescent cells in tissue homeostasis and pathophysiology. PATHOBIOLOGY OF AGING & AGE RELATED DISEASES 2015; 5:27743. [PMID: 25994420 PMCID: PMC4439419 DOI: 10.3402/pba.v5.27743] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/03/2015] [Accepted: 05/03/2015] [Indexed: 12/21/2022]
Abstract
Cellular senescence is a state of permanent growth arrest and is thought to play a pivotal role in tumor suppression. Cellular senescence may play an important role in tumor suppression, wound healing, and protection against tissue fibrosis in physiological conditions in vivo. However, accumulating evidence that senescent cells may have harmful effects in vivo and may contribute to tissue remodeling, organismal aging, and many age-related diseases also exists. Cellular senescence can be induced by various intrinsic and extrinsic factors. Both p53/p21 and p16/RB pathways are important for irreversible growth arrest in senescent cells. Senescent cells secret numerous biologically active factors. This specific secretion phenotype by senescent cells may largely contribute to physiological and pathological consequences in organisms. Here I review the molecular basis of cell cycle arrest and the specific secretion phenotype in cellular senescence. I also summarize the current knowledge of the role of cellular senescence in vivo in physiological and pathological settings.
Collapse
Affiliation(s)
- Kaoru Tominaga
- Division of Functional Biochemistry, Department of Biochemistry, Jichi Medical University, Shimotsuke, Japan;
| |
Collapse
|
222
|
Yaswen P, MacKenzie KL, Keith WN, Hentosh P, Rodier F, Zhu J, Firestone GL, Matheu A, Carnero A, Bilsland A, Sundin T, Honoki K, Fujii H, Georgakilas AG, Amedei A, Amin A, Helferich B, Boosani CS, Guha G, Ciriolo MR, Chen S, Mohammed SI, Azmi AS, Bhakta D, Halicka D, Niccolai E, Aquilano K, Ashraf SS, Nowsheen S, Yang X. Therapeutic targeting of replicative immortality. Semin Cancer Biol 2015; 35 Suppl:S104-S128. [PMID: 25869441 PMCID: PMC4600408 DOI: 10.1016/j.semcancer.2015.03.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 03/06/2015] [Accepted: 03/13/2015] [Indexed: 12/15/2022]
Abstract
One of the hallmarks of malignant cell populations is the ability to undergo continuous proliferation. This property allows clonal lineages to acquire sequential aberrations that can fuel increasingly autonomous growth, invasiveness, and therapeutic resistance. Innate cellular mechanisms have evolved to regulate replicative potential as a hedge against malignant progression. When activated in the absence of normal terminal differentiation cues, these mechanisms can result in a state of persistent cytostasis. This state, termed “senescence,” can be triggered by intrinsic cellular processes such as telomere dysfunction and oncogene expression, and by exogenous factors such as DNA damaging agents or oxidative environments. Despite differences in upstream signaling, senescence often involves convergent interdependent activation of tumor suppressors p53 and p16/pRB, but can be induced, albeit with reduced sensitivity, when these suppressors are compromised. Doses of conventional genotoxic drugs required to achieve cancer cell senescence are often much lower than doses required to achieve outright cell death. Additional therapies, such as those targeting cyclin dependent kinases or components of the PI3K signaling pathway, may induce senescence specifically in cancer cells by circumventing defects in tumor suppressor pathways or exploiting cancer cells’ heightened requirements for telomerase. Such treatments sufficient to induce cancer cell senescence could provide increased patient survival with fewer and less severe side effects than conventional cytotoxic regimens. This positive aspect is countered by important caveats regarding senescence reversibility, genomic instability, and paracrine effects that may increase heterogeneity and adaptive resistance of surviving cancer cells. Nevertheless, agents that effectively disrupt replicative immortality will likely be valuable components of new combinatorial approaches to cancer therapy.
Collapse
Affiliation(s)
- Paul Yaswen
- Life Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA, United States.
| | - Karen L MacKenzie
- Children's Cancer Institute Australia, Kensington, New South Wales, Australia.
| | | | | | | | - Jiyue Zhu
- Washington State University College of Pharmacy, Pullman, WA, United States.
| | | | | | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, HUVR, Consejo Superior de Investigaciones Cientificas, Universdad de Sevilla, Seville, Spain.
| | | | | | | | | | | | | | - Amr Amin
- United Arab Emirates University, Al Ain, United Arab Emirates; Cairo University, Cairo, Egypt
| | - Bill Helferich
- University of Illinois at Urbana Champaign, Champaign, IL, United States
| | | | - Gunjan Guha
- SASTRA University, Thanjavur, Tamil Nadu, India
| | | | - Sophie Chen
- Ovarian and Prostate Cancer Research Trust, Guildford, Surrey, United Kingdom
| | | | - Asfar S Azmi
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | | | | | | | | | - S Salman Ashraf
- United Arab Emirates University, Al Ain, United Arab Emirates; Cairo University, Cairo, Egypt
| | | | - Xujuan Yang
- University of Illinois at Urbana Champaign, Champaign, IL, United States
| |
Collapse
|
223
|
Kirschner K, Samarajiwa SA, Cairns JM, Menon S, Pérez-Mancera PA, Tomimatsu K, Bermejo-Rodriguez C, Ito Y, Chandra T, Narita M, Lyons SK, Lynch AG, Kimura H, Ohbayashi T, Tavaré S, Narita M. Phenotype specific analyses reveal distinct regulatory mechanism for chronically activated p53. PLoS Genet 2015; 11:e1005053. [PMID: 25790137 PMCID: PMC4366240 DOI: 10.1371/journal.pgen.1005053] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 02/02/2015] [Indexed: 01/15/2023] Open
Abstract
The downstream functions of the DNA binding tumor suppressor p53 vary depending on the cellular context, and persistent p53 activation has recently been implicated in tumor suppression and senescence. However, genome-wide information about p53-target gene regulation has been derived mostly from acute genotoxic conditions. Using ChIP-seq and expression data, we have found distinct p53 binding profiles between acutely activated (through DNA damage) and chronically activated (in senescent or pro-apoptotic conditions) p53. Compared to the classical 'acute' p53 binding profile, 'chronic' p53 peaks were closely associated with CpG-islands. Furthermore, the chronic CpG-island binding of p53 conferred distinct expression patterns between senescent and pro-apoptotic conditions. Using the p53 targets seen in the chronic conditions together with external high-throughput datasets, we have built p53 networks that revealed extensive self-regulatory 'p53 hubs' where p53 and many p53 targets can physically interact with each other. Integrating these results with public clinical datasets identified the cancer-associated lipogenic enzyme, SCD, which we found to be directly repressed by p53 through the CpG-island promoter, providing a mechanistic link between p53 and the 'lipogenic phenotype', a hallmark of cancer. Our data reveal distinct phenotype associations of chronic p53 targets that underlie specific gene regulatory mechanisms.
Collapse
Affiliation(s)
- Kristina Kirschner
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Shamith A. Samarajiwa
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Jonathan M. Cairns
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Suraj Menon
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Pedro A. Pérez-Mancera
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Kosuke Tomimatsu
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Camino Bermejo-Rodriguez
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Yoko Ito
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Tamir Chandra
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Masako Narita
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Scott K. Lyons
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Andy G. Lynch
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Hiroshi Kimura
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Tetsuya Ohbayashi
- Research Center for Bioscience and Technology, Tottori University, Yonago, Japan
| | - Simon Tavaré
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| |
Collapse
|
224
|
Re-expression of HPV16 E2 in SiHa (human cervical cancer) cells potentiates NF-κB activation induced by TNF-α concurrently increasing senescence and survival. Biosci Rep 2015; 35:BSR20140160. [PMID: 25572145 PMCID: PMC4340273 DOI: 10.1042/bsr20140160] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Re-expression of E2 in human papillomavirus (HPV) transformed tumour cells can induce apoptosis; however, some evidences also attribute an important role to E2 in sustaining tumorigenesis. In the present paper, we studied the effects of tumour necrosis factor (TNF)-α-mediated NF-κB (nuclear factor kappa-light-chain-enhancer of activated B-cells) activation on E2-induced senescence in HPV16-integrated SiHa cells. The results show that E2 inhibits endogenous E6 gene expression and sensitizes SiHa cells to TNF-α-induced NF-κB activation. Under this condition there was an increase in the expression of senescent proteins p53, p21, p27 and p16 and senescence-associated (SA)-β-galactosidase activity indicating that TNF-α augments E2-mediated senescence. Re-expression of E2 expression with TNF-α treatment resulted in an increase in the expression of anti-apoptotic Bcl2 (B-cell lymphoma 2) protein and other pro-survival genes like cyclin D1 (cyc D1), survivin and hTERT (human telomerase reverse transcriptase). Concomitantly, E2 + TNF-α combination increased the survival of SiHa cells by positive changes in viability, proliferation and colony formation. E2-induced apoptotic tendency shifted towards senescence in presence of TNF-α by arresting the cells at both G0/G1 and G2/M phases, thus enhancing cell survival. Another observation in the present study is the significant up-regulation of key senescence messaging factors regulated by NF-κB namely interleukin (IL)-6, IL-8, high-mobility group protein A (HMGA)1 and B (HMGB)1 in E2-transfected cells treated with TNF-α. Our data provide a mechanistic basis and a new insight for the role of TNF-α and E2 in linking cellular senescence, tumorigenesis and HPV re-infection. Human papillomavirus (HPV)16 E2 potentiates NF-κB (nuclear factor kappa-light-chain-enhancer of activated B-cells) activation induced by tumour necrosis factor (TNF)-α in SiHa (human cervical cancer) cells and significantly influences cell viability, apoptosis and expression of pro-survival genes regulated by NF-κB.
Collapse
|
225
|
JMJD3 promotes SAHF formation in senescent WI38 cells by triggering an interplay between demethylation and phosphorylation of RB protein. Cell Death Differ 2015; 22:1630-40. [PMID: 25698448 DOI: 10.1038/cdd.2015.6] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 01/08/2015] [Accepted: 01/12/2015] [Indexed: 01/13/2023] Open
Abstract
Primary human fibroblasts undergoing oncogene-induced or replicative senescence are known to form senescence-associated heterochromatin foci (SAHF), which can stabilize the state of senescence. The retinoblastoma (RB) protein has an important role in SAHF; cells that lack active RB pathway fail to form SAHF. It has been known that the posttranslational modifications of RB, for example, phosphorylation, regulate its function. To date, whether methylation of RB impacts on the SAHF formation is unknown. Here we report that JMJD3, a histone demethylase catalyzing the tri-methylation of H3K27 (H3K27me3), can demethylate the non-histone protein RB at the lysine810 residue (K810), which is a target of the methyltransferase Set7/9. We detected a significant upregulation of JMJD3 during cellular senescence and SAHF formation in WI38 cells induced by H-RasV(12), and we found that ectopic expression of JMJD3 promoted cellular senescence and SAHF formation in WI38 cells. Furthermore, during the process of SAHF assembly, JMJD3 was transported to the cytoplasm and interacted with RB through its demethylase domain JmjC. Significantly, our data demonstrated that the JMJD3-mediated demethylation of RB at K810 impeded the interaction of RB with the protein kinase CDK4 and resulted in reduced level of phosphorylation of RB at Serine807/811 (S807/811), implicating an important role of the interplay between the demethylation and phosphorylation of RB in SAHF assembly. This study highlights the role of JMJD3 as a novel inducer of SAHF formation through demethylating RB and provides new insights into the mechanisms of cellular senescence and SAHF assembly.
Collapse
|
226
|
Cellular senescence: a hitchhiker’s guide. Hum Cell 2015; 28:51-64. [DOI: 10.1007/s13577-015-0110-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 02/03/2015] [Indexed: 12/21/2022]
|
227
|
Piano A, Titorenko VI. The Intricate Interplay between Mechanisms Underlying Aging and Cancer. Aging Dis 2015; 6:56-75. [PMID: 25657853 PMCID: PMC4306474 DOI: 10.14336/ad.2014.0209] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/30/2014] [Accepted: 02/09/2014] [Indexed: 12/15/2022] Open
Abstract
Age is the major risk factor in the incidence of cancer, a hyperplastic disease associated with aging. Here, we discuss the complex interplay between mechanisms underlying aging and cancer as a reciprocal relationship. This relationship progresses with organismal age, follows the history of cell proliferation and senescence, is driven by common or antagonistic causes underlying aging and cancer in an age-dependent fashion, and is maintained via age-related convergent and divergent mechanisms. We summarize our knowledge of these mechanisms, outline the most important unanswered questions and suggest directions for future research.
Collapse
Affiliation(s)
- Amanda Piano
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | |
Collapse
|
228
|
Chandra T, Ewels PA, Schoenfelder S, Furlan-Magaril M, Wingett SW, Kirschner K, Thuret JY, Andrews S, Fraser P, Reik W. Global reorganization of the nuclear landscape in senescent cells. Cell Rep 2015; 10:471-83. [PMID: 25640177 PMCID: PMC4542308 DOI: 10.1016/j.celrep.2014.12.055] [Citation(s) in RCA: 219] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/13/2014] [Accepted: 12/22/2014] [Indexed: 02/03/2023] Open
Abstract
Cellular senescence has been implicated in tumor suppression, development, and aging and is accompanied by large-scale chromatin rearrangements, forming senescence-associated heterochromatic foci (SAHF). However, how the chromatin is reorganized during SAHF formation is poorly understood. Furthermore, heterochromatin formation in senescence appears to contrast with loss of heterochromatin in Hutchinson-Gilford progeria. We mapped architectural changes in genome organization in cellular senescence using Hi-C. Unexpectedly, we find a dramatic sequence- and lamin-dependent loss of local interactions in heterochromatin. This change in local connectivity resolves the paradox of opposing chromatin changes in senescence and progeria. In addition, we observe a senescence-specific spatial clustering of heterochromatic regions, suggesting a unique second step required for SAHF formation. Comparison of embryonic stem cells (ESCs), somatic cells, and senescent cells shows a unidirectional loss in local chromatin connectivity, suggesting that senescence is an endpoint of the continuous nuclear remodelling process during differentiation.
Collapse
Affiliation(s)
- Tamir Chandra
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK; The Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK.
| | | | | | | | | | - Kristina Kirschner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Jean-Yves Thuret
- CEA, iBiTec-S, SBIGeM/CNRS FRE3377 I2BC/Université Paris-Sud, Gif-sur-Yvette 91191, France
| | - Simon Andrews
- Bioinformatics Group, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Peter Fraser
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Wolf Reik
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK; The Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
| |
Collapse
|
229
|
Lazorthes S, Vallot C, Briois S, Aguirrebengoa M, Thuret JY, St Laurent G, Rougeulle C, Kapranov P, Mann C, Trouche D, Nicolas E. A vlincRNA participates in senescence maintenance by relieving H2AZ-mediated repression at the INK4 locus. Nat Commun 2015; 6:5971. [PMID: 25601475 PMCID: PMC4309439 DOI: 10.1038/ncomms6971] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/25/2014] [Indexed: 01/06/2023] Open
Abstract
Non-coding RNAs (ncRNAs) play major roles in proper chromatin organization and function. Senescence, a strong anti-proliferative process and a major anticancer barrier, is associated with dramatic chromatin reorganization in heterochromatin foci. Here we analyze strand-specific transcriptome changes during oncogene-induced human senescence. Strikingly, while differentially expressed RNAs are mostly repressed during senescence, ncRNAs belonging to the recently described vlincRNA (very long intergenic ncRNA) class are mainly activated. We show that VAD, a novel antisense vlincRNA strongly induced during senescence, is required for the maintenance of senescence features. VAD modulates chromatin structure in cis and activates gene expression in trans at the INK4 locus, which encodes cell cycle inhibitors important for senescence-associated cell proliferation arrest. Importantly, VAD inhibits the incorporation of the repressive histone variant H2A.Z at INK4 gene promoters in senescent cells. Our data underline the importance of vlincRNAs as sensors of cellular environment changes and as mediators of the correct transcriptional response. Senescence is associated with chromatin reorganization in heterochromatin foci. Here the authors show that VAD, a very long intergenic non-coding RNA activated by senescence, inhibits the incorporation of the repressive histone variant H2A.Z to INK4 promoters in senescent cells.
Collapse
Affiliation(s)
- Sandra Lazorthes
- 1] Université de Toulouse; UPS; LBCMCP; F-31062 Toulouse, France [2] CNRS; LBCMCP; F-31062 Toulouse, France
| | - Céline Vallot
- UMR 7216, Université Paris Diderot, 75205 Paris, France
| | - Sébastien Briois
- 1] Université de Toulouse; UPS; LBCMCP; F-31062 Toulouse, France [2] CNRS; LBCMCP; F-31062 Toulouse, France
| | - Marion Aguirrebengoa
- 1] Université de Toulouse; UPS; LBCMCP; F-31062 Toulouse, France [2] CNRS; LBCMCP; F-31062 Toulouse, France
| | - Jean-Yves Thuret
- CEA, iBiTec-S, SBIGeM/CNRS-FRE3377 and I2BC/Université Paris-Sud and Paris-Saclay, 91191 Gif-sur-Yvette, France
| | | | | | - Philipp Kapranov
- 1] St Laurent Institute, Woburn, Massachusetts 01801, USA [2] Institute of Genomics, Huaqiao University School of Medicine, Xiamen 361021, China [3] Academy of Biology and Biotechnology, South Federal University, Rostov-on-Don, Russia
| | - Carl Mann
- CEA, iBiTec-S, SBIGeM/CNRS-FRE3377 and I2BC/Université Paris-Sud and Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Didier Trouche
- 1] Université de Toulouse; UPS; LBCMCP; F-31062 Toulouse, France [2] CNRS; LBCMCP; F-31062 Toulouse, France
| | - Estelle Nicolas
- 1] Université de Toulouse; UPS; LBCMCP; F-31062 Toulouse, France [2] CNRS; LBCMCP; F-31062 Toulouse, France
| |
Collapse
|
230
|
A novel anti-proliferative role of HMGA2 in induction of apoptosis through caspase 2 in primary human fibroblast cells. Biosci Rep 2015; 35:BSR20140112. [PMID: 25300915 PMCID: PMC4293904 DOI: 10.1042/bsr20140112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The HMGA2 (high-mobility group AT-hook) protein has previously been shown as an oncoprotein, whereas ectopic expression of HMGA2 is found to induce growth arrest in primary cells. The precise mechanisms underlying this phenomenon remain to be unravelled. In the present study, we determined that HMGA2 was able to induce apoptosis in WI38 primary human cells. We show that WI38 cells expressing high level of HMGA2 were arrested at G2/M phase and exhibited apoptotic nuclear phenotypes. Meanwhile, the cleaved caspase 3 (cysteine aspartic acid-specific protease 3) was detected 8 days after HMGA2 overexpression. Flow cytometric analysis confirmed that the ratio of cells undergoing apoptosis increased dramatically. Concurrently, other major apoptotic markers were also detected, including the up-regulation of p53, Bax and cleaved caspase 9, down-regulation of Bcl-2; as well as release of cytochrome c from the mitochondria. We further demonstrate that the shRNA (small-hairpin RNA)-mediated Apaf1 (apoptotic protease activating factor 1) silencing partially rescued the HMGA2-induced apoptosis, which was accompanied by the decrease of cleaved caspase-3 level and a decline of cell death ratio. Our results also reveal that γH2A was accumulated in nuclei during the HMGA2-induced apoptosis along with the up-regulation of cleaved caspase 2, suggesting that the HMGA2-induced apoptosis was dependent on the pathway of DNA damage. Overall, the present study unravelled a novel function of HMGA2 in induction of apoptosis in human primary cell lines, and provided clues for clarification of the mechanistic action of HMGA2 in addition to its function as an oncoprotein.
Collapse
|
231
|
Rai TS, Cole JJ, Nelson DM, Dikovskaya D, Faller WJ, Vizioli MG, Hewitt RN, Anannya O, McBryan T, Manoharan I, van Tuyn J, Morrice N, Pchelintsev NA, Ivanov A, Brock C, Drotar ME, Nixon C, Clark W, Sansom OJ, Anderson KI, King A, Blyth K, Adams PD. HIRA orchestrates a dynamic chromatin landscape in senescence and is required for suppression of neoplasia. Genes Dev 2014; 28:2712-25. [PMID: 25512559 PMCID: PMC4265675 DOI: 10.1101/gad.247528.114] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 11/04/2014] [Indexed: 01/06/2023]
Abstract
Cellular senescence is a stable proliferation arrest that suppresses tumorigenesis. Cellular senescence and associated tumor suppression depend on control of chromatin. Histone chaperone HIRA deposits variant histone H3.3 and histone H4 into chromatin in a DNA replication-independent manner. Appropriately for a DNA replication-independent chaperone, HIRA is involved in control of chromatin in nonproliferating senescent cells, although its role is poorly defined. Here, we show that nonproliferating senescent cells express and incorporate histone H3.3 and other canonical core histones into a dynamic chromatin landscape. Expression of canonical histones is linked to alternative mRNA splicing to eliminate signals that confer mRNA instability in nonproliferating cells. Deposition of newly synthesized histones H3.3 and H4 into chromatin of senescent cells depends on HIRA. HIRA and newly deposited H3.3 colocalize at promoters of expressed genes, partially redistributing between proliferating and senescent cells to parallel changes in expression. In senescent cells, but not proliferating cells, promoters of active genes are exceptionally enriched in H4K16ac, and HIRA is required for retention of H4K16ac. HIRA is also required for retention of H4K16ac in vivo and suppression of oncogene-induced neoplasia. These results show that HIRA controls a specialized, dynamic H4K16ac-decorated chromatin landscape in senescent cells and enforces tumor suppression.
Collapse
Affiliation(s)
- Taranjit Singh Rai
- Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, United Kingdom; Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G61 1BD, United Kingdom; Institute of Biomedical and Environmental Health Research, University of West of Scotland, Paisley PA1 2BE, United Kingdom
| | - John J Cole
- Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, United Kingdom; Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G61 1BD, United Kingdom
| | - David M Nelson
- Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, United Kingdom; Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G61 1BD, United Kingdom
| | - Dina Dikovskaya
- Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, United Kingdom; Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G61 1BD, United Kingdom
| | - William J Faller
- Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, United Kingdom
| | - Maria Grazia Vizioli
- Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, United Kingdom; Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G61 1BD, United Kingdom
| | - Rachael N Hewitt
- Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, United Kingdom; Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G61 1BD, United Kingdom
| | - Orchi Anannya
- Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, United Kingdom
| | - Tony McBryan
- Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, United Kingdom; Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G61 1BD, United Kingdom
| | - Indrani Manoharan
- Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, United Kingdom; Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G61 1BD, United Kingdom
| | - John van Tuyn
- Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, United Kingdom; Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G61 1BD, United Kingdom
| | - Nicholas Morrice
- Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, United Kingdom
| | - Nikolay A Pchelintsev
- Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, United Kingdom; Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G61 1BD, United Kingdom
| | - Andre Ivanov
- Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, United Kingdom; Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G61 1BD, United Kingdom
| | - Claire Brock
- Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, United Kingdom; Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G61 1BD, United Kingdom
| | - Mark E Drotar
- Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, United Kingdom; Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G61 1BD, United Kingdom
| | - Colin Nixon
- Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, United Kingdom
| | - William Clark
- Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, United Kingdom
| | - Owen J Sansom
- Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, United Kingdom
| | - Kurt I Anderson
- Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, United Kingdom
| | - Ayala King
- Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, United Kingdom
| | - Karen Blyth
- Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, United Kingdom
| | - Peter D Adams
- Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, United Kingdom; Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G61 1BD, United Kingdom;
| |
Collapse
|
232
|
The senescent hepatocyte gene signature in chronic liver disease. Exp Gerontol 2014; 60:37-45. [DOI: 10.1016/j.exger.2014.09.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/10/2014] [Accepted: 09/16/2014] [Indexed: 12/25/2022]
|
233
|
Althubiti M, Lezina L, Carrera S, Jukes-Jones R, Giblett SM, Antonov A, Barlev N, Saldanha GS, Pritchard CA, Cain K, Macip S. Characterization of novel markers of senescence and their prognostic potential in cancer. Cell Death Dis 2014; 5:e1528. [PMID: 25412306 PMCID: PMC4260747 DOI: 10.1038/cddis.2014.489] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/30/2014] [Accepted: 10/13/2014] [Indexed: 12/13/2022]
Abstract
Cellular senescence is a terminal differentiation state that has been proposed to have a role in both tumour suppression and ageing. This view is supported by the fact that accumulation of senescent cells can be observed in response to oncogenic stress as well as a result of normal organismal ageing. Thus, identifying senescent cells in in vivo and in vitro has an important diagnostic and therapeutic potential. The molecular pathways involved in triggering and/or maintaining the senescent phenotype are not fully understood. As a consequence, the markers currently utilized to detect senescent cells are limited and lack specificity. In order to address this issue, we screened for plasma membrane-associated proteins that are preferentially expressed in senescent cells. We identified 107 proteins that could be potential markers of senescence and validated 10 of them (DEP1, NTAL, EBP50, STX4, VAMP3, ARMX3, B2MG, LANCL1, VPS26A and PLD3). We demonstrated that a combination of these proteins can be used to specifically recognize senescent cells in culture and in tissue samples and we developed a straightforward fluorescence-activated cell sorting-based detection approach using two of them (DEP1 and B2MG). Of note, we found that expression of several of these markers correlated with increased survival in different tumours, especially in breast cancer. Thus, our results could facilitate the study of senescence, define potential new effectors and modulators of this cellular mechanism and provide potential diagnostic and prognostic tools to be used clinically.
Collapse
Affiliation(s)
- M Althubiti
- Department of Biochemistry, University of
Leicester, Leicester, UK
- Department of Biochemistry, Faculty of
Medicine, Umm AL-Qura University, Mecca, Saudi Arabia
| | - L Lezina
- Department of Biochemistry, University of
Leicester, Leicester, UK
- Institute of Cytology RAS,
Saint-Petersburg, Russia
| | - S Carrera
- Department of Biochemistry, University of
Leicester, Leicester, UK
| | | | - S M Giblett
- Department of Biochemistry, University of
Leicester, Leicester, UK
| | | | - N Barlev
- Department of Biochemistry, University of
Leicester, Leicester, UK
- Institute of Cytology RAS,
Saint-Petersburg, Russia
| | - G S Saldanha
- Department of Cancer Studies and
Molecular Medicine, University of Leicester, Leicester,
UK
| | - C A Pritchard
- Department of Biochemistry, University of
Leicester, Leicester, UK
- Department of Cancer Studies and
Molecular Medicine, University of Leicester, Leicester,
UK
| | - K Cain
- MRC Toxicology Unit,
Leicester, UK
- Department of Cancer Studies and
Molecular Medicine, University of Leicester, Leicester,
UK
| | - S Macip
- Department of Biochemistry, University of
Leicester, Leicester, UK
| |
Collapse
|
234
|
Duarte LF, Young ARJ, Wang Z, Wu HA, Panda T, Kou Y, Kapoor A, Hasson D, Mills NR, Ma’ayan A, Narita M, Bernstein E. Histone H3.3 and its proteolytically processed form drive a cellular senescence programme. Nat Commun 2014; 5:5210. [PMID: 25394905 PMCID: PMC4235654 DOI: 10.1038/ncomms6210] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 09/09/2014] [Indexed: 01/24/2023] Open
Abstract
The process of cellular senescence generates a repressive chromatin environment, however, the role of histone variants and histone proteolytic cleavage in senescence remains unclear. Here, using models of oncogene-induced and replicative senescence, we report novel histone H3 tail cleavage events mediated by the protease Cathepsin L. We find that cleaved forms of H3 are nucleosomal and the histone variant H3.3 is the preferred cleaved form of H3. Ectopic expression of H3.3 and its cleavage product (H3.3cs1), which lacks the first 21 amino acids of the H3 tail, is sufficient to induce senescence. Further, H3.3cs1 chromatin incorporation is mediated by the HUCA histone chaperone complex. Genome-wide transcriptional profiling revealed that H3.3cs1 facilitates transcriptional silencing of cell cycle regulators including RB/E2F target genes, likely via the permanent removal of H3K4me3. Collectively, our study identifies histone H3.3 and its proteolytically processed forms as key regulators of cellular senescence.
Collapse
Affiliation(s)
- Luis F. Duarte
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Andrew R. J. Young
- Cancer Research UK Cambridge Institute, University of Cambridge, The Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Zichen Wang
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Pharmacology and Systems Therapeutics and Systems Biology Center New York (SBCNY); Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Hsan-Au Wu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Taniya Panda
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Yan Kou
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Pharmacology and Systems Therapeutics and Systems Biology Center New York (SBCNY); Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Avnish Kapoor
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Dan Hasson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Nicholas R. Mills
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Avi Ma’ayan
- Department of Pharmacology and Systems Therapeutics and Systems Biology Center New York (SBCNY); Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, University of Cambridge, The Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Emily Bernstein
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
235
|
Kim TH, Song JY, Park H, Jeong JY, Kwon AY, Heo JH, Kang H, Kim G, An HJ. miR-145, targeting high-mobility group A2, is a powerful predictor of patient outcome in ovarian carcinoma. Cancer Lett 2014; 356:937-45. [PMID: 25444913 DOI: 10.1016/j.canlet.2014.11.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 11/04/2014] [Accepted: 11/05/2014] [Indexed: 11/25/2022]
Abstract
MicroRNA-145 (miR-145) expression is downregulated in several human cancers, but its clinical and functional relevance to ovarian carcinoma has not yet been elucidated. This study addressed the hypothesis that miR-145 serves as a prognostic biomarker and a tumor suppressor that regulates the expression of high-mobility group A2 (HMGA2) oncoprotein in ovarian cancer. Here, we found that low miR-145 expression and HMGA2 overexpression determined by qRT-PCR and immunohistochemistry significantly correlated with advanced stage, lymph node involvement, and distant metastasis in 74 ovarian carcinomas. Low miR-145 expression significantly correlated with tumor recurrence and worse overall survival (HR=8.62, P = 0.039). Transfection of pre-miR-145 resulted in reduced cell growth and migration, and increased apoptosis of ovarian cancer cells by TUNEL, colony forming, and cell migration assays. MiR-145 was found to directly target HMGA2 by luciferase assay and Western blotting. Our findings suggest that miR-145 functions as a tumor suppressor in ovarian cancer and directly targets HMGA2 oncoprotein. Low miR-145 and high HMGA2 expressions are potential biomarkers of poor prognosis of ovarian carcinoma and miR-145 is the more powerful predictor of patient outcome.
Collapse
Affiliation(s)
- Tae Hoen Kim
- Department of Pathology, CHA Bundang Medical Center, CHA University, 59 Yatap-rho, Bundang-gu, Seongnam-si, Gyeonggi-do 463-712, Republic of Korea; Institute for Clinical Research, CHA Bundang Medical Center, CHA University, 59 Yatap-rho, Bundang-gu, Seongnam-si, Gyeonggi-do 463-712, Republic of Korea
| | - Ji-Ye Song
- Institute for Clinical Research, CHA Bundang Medical Center, CHA University, 59 Yatap-rho, Bundang-gu, Seongnam-si, Gyeonggi-do 463-712, Republic of Korea
| | - Hyun Park
- Institute for Clinical Research, CHA Bundang Medical Center, CHA University, 59 Yatap-rho, Bundang-gu, Seongnam-si, Gyeonggi-do 463-712, Republic of Korea; Department of Gynecologic Oncology, CHA Bundang Medical Center, CHA University, 59 Yatap-rho, Bundang-gu, Seongnam-si, Gyeonggi-do 463-712, Republic of Korea
| | - Ju-Yeon Jeong
- Institute for Clinical Research, CHA Bundang Medical Center, CHA University, 59 Yatap-rho, Bundang-gu, Seongnam-si, Gyeonggi-do 463-712, Republic of Korea
| | - A-Young Kwon
- Department of Pathology, CHA Bundang Medical Center, CHA University, 59 Yatap-rho, Bundang-gu, Seongnam-si, Gyeonggi-do 463-712, Republic of Korea
| | - Jin Hyung Heo
- Department of Pathology, CHA Bundang Medical Center, CHA University, 59 Yatap-rho, Bundang-gu, Seongnam-si, Gyeonggi-do 463-712, Republic of Korea
| | - Haeyoun Kang
- Department of Pathology, CHA Bundang Medical Center, CHA University, 59 Yatap-rho, Bundang-gu, Seongnam-si, Gyeonggi-do 463-712, Republic of Korea
| | - Gwangil Kim
- Department of Pathology, CHA Bundang Medical Center, CHA University, 59 Yatap-rho, Bundang-gu, Seongnam-si, Gyeonggi-do 463-712, Republic of Korea; Institute for Clinical Research, CHA Bundang Medical Center, CHA University, 59 Yatap-rho, Bundang-gu, Seongnam-si, Gyeonggi-do 463-712, Republic of Korea
| | - Hee Jung An
- Department of Pathology, CHA Bundang Medical Center, CHA University, 59 Yatap-rho, Bundang-gu, Seongnam-si, Gyeonggi-do 463-712, Republic of Korea; Institute for Clinical Research, CHA Bundang Medical Center, CHA University, 59 Yatap-rho, Bundang-gu, Seongnam-si, Gyeonggi-do 463-712, Republic of Korea.
| |
Collapse
|
236
|
Ma Y, Bai XY, Du X, Fu B, Chen X. NaDC3 Induces Premature Cellular Senescence by Promoting Transport of Krebs Cycle Intermediates, Increasing NADH, and Exacerbating Oxidative Damage. J Gerontol A Biol Sci Med Sci 2014; 71:1-12. [PMID: 25384549 DOI: 10.1093/gerona/glu198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 10/05/2014] [Indexed: 11/12/2022] Open
Abstract
High-affinity sodium-dependent dicarboxylate cotransporter 3 (NaDC3) is a key metabolism-regulating membrane protein responsible for transport of Krebs cycle intermediates. NaDC3 is upregulated as organs age, but knowledge regarding the underlying mechanisms by which NaDC3 modulates mammalian aging is limited. In this study, we showed that NaDC3 overexpression accelerated cellular senescence in young human diploid cells (MRC-5 and WI-38) and primary renal tubular cells, leading to cell cycle arrest in G1 phase and increased expression of senescent biomarkers, senescence-associated β-galactosidase and p16. Intracellular levels of reactive oxygen species, 8-hydroxy-2'-deoxyguanosine, malondialdehyde, and carbonyl were significantly enhanced, and activities of respiratory complexes I and III and ATP level were significantly decreased in NaDC3-infected cells. Stressful premature senescent phenotypes induced by NaDC3 were markedly ameliorated via treatment with the antioxidants Tiron and Tempol. High expression of NaDC3 caused a prominent increase in intracellular levels of Krebs cycle intermediates and NADH. Exogenous NADH and NAD(+) may aggravate and attenuate the aging phenotypes induced by NaDC3, respectively. These results suggest that NaDC3 can induce premature cellular senescence by promoting the transport of Krebs cycle intermediates, increasing generation of NADH and reactive oxygen species and leading to oxidative damage. Our results clarify the aging signaling pathway regulated by NaDC3.
Collapse
Affiliation(s)
- Yuxiang Ma
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China. Department of Internal Medicine, Beijing Chuiyangliu Hospital, China
| | - Xue-Yuan Bai
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Xuan Du
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Bo Fu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| |
Collapse
|
237
|
Wang P, Sun X, Xie Y, Li M, Chen W, Zhang S, Liang D, Ma F. Melatonin regulates proteomic changes during leaf senescence in Malus hupehensis. J Pineal Res 2014; 57:291-307. [PMID: 25146528 DOI: 10.1111/jpi.12169] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 08/15/2014] [Indexed: 01/10/2023]
Abstract
Despite the relationship between melatonin and aging, the overall changes and regulation of proteome profiling by long-term melatonin exposure during leaf senescence is not well understood. In this study, leaf senescence in Malus hupehensis plants was delayed when exogenous melatonin was regularly applied to the roots for 2 months compared with natural leaf senescence. Proteins of samples 0 and 50 day for both treatments were extracted and labeled with TMT regents before being examined via NanoLC-MS/MS. The proteomics data showed that 622 and 309 proteins were altered by senescence and melatonin, respectively. Our GO analysis by Blast2GO revealed that most of the altered proteins that are involved in major metabolic processes exhibited hydrolase activity and were mainly located in the plastids. These proteins were classified into several senescence-related functional categories, including degradation of macromolecules, redox and stress responses, transport, photosynthesis, development, and other regulatory proteins. We found that melatonin treatment led to the downregulation of proteins that are normally upregulated during senescence. The melatonin-related delay in senescence might have occurred due to the altering of proteins involved in processes associated with senescence. And as well, there are many unknown regulatory proteins possibly being involved in the melatonin's function. This study is the first to demonstrate changes at the proteome level in response to exogenous melatonin in plants. Our findings provide a set of informative and fundamental data about the role of melatonin in apple leaf senescence.
Collapse
Affiliation(s)
- Ping Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | | | | | | | | | | | | | | |
Collapse
|
238
|
Jin B, Wang Y, Wu CL, Liu KY, Chen H, Mao ZB. PIM-1 modulates cellular senescence and links IL-6 signaling to heterochromatin formation. Aging Cell 2014; 13:879-89. [PMID: 25040935 PMCID: PMC4331745 DOI: 10.1111/acel.12249] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2014] [Indexed: 11/28/2022] Open
Abstract
Cellular senescence is a stable state of proliferative arrest that provides a barrier against malignant transformation and contributes to the antitumor activity of certain chemotherapies. Unexpectedly, we found that the expression of proto-oncogene PIM-1, which can promote tumorigenesis, is induced at transcriptional level during senescence. Inhibition of PIM-1 alleviated both replicative and oncogene-induced senescence. Conversely, ectopic expression of PIM-1 resulted in premature senescence. We also revealed that PIM-1 interacts with and phosphorylates heterochromatin protein 1γ (HP1γ) on Ser93. This PIM-1-mediated HP1γ phosphorylation enhanced HP1γ's capacity to bind to H3K9me3, resulting in heterochromatin formation and suppression of proliferative genes, such as CCNA2 and PCNA. Analysis of the mechanism underlying the up-regulation of PIM-1 expression during senescence demonstrated that IL-6, a critical regulator of cellular senescence, is responsible for PIM-1 induction. Our study demonstrated that PIM-1 is a key component of the senescence machinery that contributes to heterochromatin formation. More importantly, we demonstrated that PIM-1 is also a direct target of IL-6/STAT3 signaling and mediates cytokine-induced cellular senescence.
Collapse
Affiliation(s)
- Bo Jin
- Department of Biochemistry and Molecular Biology Health Science Center Peking University 38 Xueyuan Road Beijing 100191China
| | - Yu Wang
- Department of Microbiology School of Medicine New York University 550 First Avenue New York NY 10016USA
| | - Chen Lin Wu
- Department of Biochemistry and Molecular Biology Health Science Center Peking University 38 Xueyuan Road Beijing 100191China
| | - Kai Yu Liu
- Department of Biochemistry and Molecular Biology Health Science Center Peking University 38 Xueyuan Road Beijing 100191China
| | - Hao Chen
- Department of Biochemistry and Molecular Biology Health Science Center Peking University 38 Xueyuan Road Beijing 100191China
| | - Ze Bin Mao
- Department of Biochemistry and Molecular Biology Health Science Center Peking University 38 Xueyuan Road Beijing 100191China
| |
Collapse
|
239
|
Klement K, Goodarzi AA. DNA double strand break responses and chromatin alterations within the aging cell. Exp Cell Res 2014; 329:42-52. [PMID: 25218945 DOI: 10.1016/j.yexcr.2014.09.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/28/2014] [Accepted: 09/01/2014] [Indexed: 12/23/2022]
Abstract
Cellular senescence is a state of permanent replicative arrest that allows cells to stay viable and metabolically active but resistant to apoptotic and mitogenic stimuli. Specific, validated markers can identify senescent cells, including senescence-associated β galactosidase activity, chromatin alterations, cell morphology changes, activated p16- and p53-dependent signaling and permanent cell cycle arrest. Senescence is a natural consequence of DNA replication-associated telomere erosion, but can also be induced prematurely by telomere-independent events such as failure to repair DNA double strand breaks. Here, we review the molecular pathways of senescence onset, focussing on the changes in chromatin organization that are associated with cellular senescence, particularly senescence-associated heterochromatin foci formation. We also discuss the altered dynamics of the DNA double strand break response within the context of aging cells. Appreciating how, mechanistically, cellular senescence is induced, and how changes to chromatin organization and DNA repair contributes to this, is fundamental to our understanding of the normal and premature human aging processes associated with loss of organ and tissue function in humans.
Collapse
Affiliation(s)
- Karolin Klement
- Southern Alberta Cancer Research Institute, Departments of Biochemistry & Molecular Biology and Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Aaron A Goodarzi
- Southern Alberta Cancer Research Institute, Departments of Biochemistry & Molecular Biology and Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1.
| |
Collapse
|
240
|
Abstract
Metastases arise from residual disseminated tumour cells (DTCs). This can happen years after primary tumour treatment because residual tumour cells can enter dormancy and evade therapies. As the biology of minimal residual disease seems to diverge from that of proliferative lesions, understanding the underpinnings of this new cancer biology is key to prevent metastasis. Analysis of approximately 7 years of literature reveals a growing focus on tumour and normal stem cell quiescence, extracellular and stromal microenvironments, autophagy and epigenetics as mechanisms that dictate tumour cell dormancy. In this Review, we attempt to integrate this information and highlight both the weaknesses and the strengths in the field to provide a framework to understand and target this crucial step in cancer progression.
Collapse
Affiliation(s)
- María Soledad Sosa
- Division of Hematology and Oncology, Department of Medicine, Department of Otolaryngology, Tisch Cancer Institute
- Black Family Stem Cell Institute, Ichan School of Medicine at Mount Sinai, New York NY 10029, USA
| | - Paloma Bragado
- Division of Hematology and Oncology, Department of Medicine, Department of Otolaryngology, Tisch Cancer Institute
- Black Family Stem Cell Institute, Ichan School of Medicine at Mount Sinai, New York NY 10029, USA
| | - Julio A. Aguirre-Ghiso
- Division of Hematology and Oncology, Department of Medicine, Department of Otolaryngology, Tisch Cancer Institute
- Black Family Stem Cell Institute, Ichan School of Medicine at Mount Sinai, New York NY 10029, USA
| |
Collapse
|
241
|
Biron-Shental T, Sukenik-Halevy R, Sharon Y, Laish I, Fejgin MD, Amiel A. Telomere shortening in intra uterine growth restriction placentas. Early Hum Dev 2014; 90:465-9. [PMID: 25010904 DOI: 10.1016/j.earlhumdev.2014.06.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/29/2014] [Accepted: 06/04/2014] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Placentas from pregnancies complicated with IUGR (intrauterine growth restriction) express altered telomere homeostasis. In the current study, we examined mechanisms of telomere shortening in these placentas. METHODS Placental biopsies from 15 IUGR and 15 healthy control pregnancies were examined. The percentage of trophoblasts with fragmented nuclei: senescence-associated heterochromatin foci (SAHF), was calculated using DAPI staining. The amount of human telomerase reverse transcriptase (hTERT) mRNA was evaluated using RtPCR levels of telomere capture using FISH in those samples were estimated. RESULTS The percentage of trophoblasts with SAHF was higher in IUGR compared to control samples, (25±13.4% vs. 1.6±1.6%, P<0.0001), hTERT mRNA was decreased (0.5±0.2 vs. 0.9±0.1, P<0.0001) and telomere capture was increased (13.2±9.7% vs.1.3±2.5%, P<0.001). CONCLUSIONS We suggest that IUGR placentas express increased signs of senescence as part of the impaired telomere homeostasis. One factor that mediates telomere shortening in these placentas is decreased hTERT mRNA, leading to decreased protein expression and therefore, reduced telomere elongation. Telomere capture, which is a healing process, is increased in IUGR trophoblasts as a compensatory mechanism.
Collapse
Affiliation(s)
- Tal Biron-Shental
- Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Rivka Sukenik-Halevy
- Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Genetic Institute, Meir Medical Center, Kfar Saba, Israel
| | - Yudith Sharon
- Genetic Institute, Meir Medical Center, Kfar Saba, Israel; Faculty of Life Science, Bar Ilan University, Ramat Gan, Israel
| | - Ido Laish
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Moshe D Fejgin
- Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Genetic Institute, Meir Medical Center, Kfar Saba, Israel
| | - Aliza Amiel
- Genetic Institute, Meir Medical Center, Kfar Saba, Israel; Faculty of Life Science, Bar Ilan University, Ramat Gan, Israel
| |
Collapse
|
242
|
Physiological and pathological consequences of cellular senescence. Cell Mol Life Sci 2014; 71:4373-86. [PMID: 25080110 PMCID: PMC4207941 DOI: 10.1007/s00018-014-1691-3] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/21/2014] [Accepted: 07/23/2014] [Indexed: 12/11/2022]
Abstract
Cellular senescence, a permanent state of cell cycle arrest accompanied by a complex phenotype, is an essential mechanism that limits tumorigenesis and tissue damage. In physiological conditions, senescent cells can be removed by the immune system, facilitating tumor suppression and wound healing. However, as we age, senescent cells accumulate in tissues, either because an aging immune system fails to remove them, the rate of senescent cell formation is elevated, or both. If senescent cells persist in tissues, they have the potential to paradoxically promote pathological conditions. Cellular senescence is associated with an enhanced pro-survival phenotype, which most likely promotes persistence of senescent cells in vivo. This phenotype may have evolved to favor facilitation of a short-term wound healing, followed by the elimination of senescent cells by the immune system. In this review, we provide a perspective on the triggers, mechanisms and physiological as well as pathological consequences of senescent cells.
Collapse
|
243
|
Abstract
Cellular senescence has historically been viewed as an irreversible cell-cycle arrest mechanism that acts to protect against cancer, but recent discoveries have extended its known role to complex biological processes such as development, tissue repair, ageing and age-related disorders. New insights indicate that, unlike a static endpoint, senescence represents a series of progressive and phenotypically diverse cellular states acquired after the initial growth arrest. A deeper understanding of the molecular mechanisms underlying the multi-step progression of senescence and the development and function of acute versus chronic senescent cells may lead to new therapeutic strategies for age-related pathologies and extend healthy lifespan.
Collapse
|
244
|
Willenbrock S, Wagner S, Reimann-Berg N, Moulay M, Hewicker-Trautwein M, Nolte I, Escobar HM. Generation and characterisation of a canine EGFP-HMGA2 prostate cancer in vitro model. PLoS One 2014; 9:e98788. [PMID: 24914948 PMCID: PMC4051699 DOI: 10.1371/journal.pone.0098788] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/07/2014] [Indexed: 12/15/2022] Open
Abstract
The architectural transcription factor HMGA2 is abundantly expressed during embryonic development. In several malignant neoplasias including prostate cancer, high re-expression of HMGA2 is correlated with malignancy and poor prognosis. The let-7 miRNA family is described to regulate HMGA2 negatively. The balance of let-7 and HMGA2 is discussed to play a major role in tumour aetiology. To further analyse the role of HMGA2 in prostate cancer a stable and highly reproducible in vitro model system is precondition. Herein we established a canine CT1258-EGFP-HMGA2 prostate cancer cell line stably overexpressing HMGA2 linked to EGFP and in addition the reference cell line CT1258-EGFP expressing solely EGFP to exclude EGFP-induced effects. Both recombinant cell lines were characterised by fluorescence microscopy, flow cytometry and immunocytochemistry. The proliferative effect of ectopically overexpressed HMGA2 was determined via BrdU assays. Comparative karyotyping of the derived and the initial CT1258 cell lines was performed to analyse chromosome consistency. The impact of the ectopic HMGA2 expression on its regulator let-7a was analysed by quantitative real-time PCR. Fluorescence microscopy and immunocytochemistry detected successful expression of the EGFP-HMGA2 fusion protein exclusively accumulating in the nucleus. Gene expression analyses confirmed HMGA2 overexpression in CT1258-EGFP-HMGA2 in comparison to CT1258-EGFP and native cells. Significantly higher let-7a expression levels were found in CT1258-EGFP-HMGA2 and CT1258-EGFP. The BrdU assays detected an increased proliferation of CT1258-HMGA2-EGFP cells compared to CT1258-EGFP and native CT1258. The cytogenetic analyses of CT1258-EGFP and CT1258-EGFP-HMGA2 resulted in a comparable hyperdiploid karyotype as described for native CT1258 cells. To further investigate the impact of recombinant overexpressed HMGA2 on CT1258 cells, other selected targets described to underlie HMGA2 regulation were screened in addition. The new fluorescent CT1258-EGFP-HMGA2 cell line is a stable tool enabling in vitro and in vivo analyses of the HMGA2-mediated effects on cells and the development and pathogenesis of prostate cancer.
Collapse
Affiliation(s)
- Saskia Willenbrock
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Siegfried Wagner
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
- Institute of Biophysics, Leibniz University Hannover, Hannover, Germany
| | - Nicola Reimann-Berg
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Mohammed Moulay
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Ingo Nolte
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Hugo Murua Escobar
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
- Division of Medicine, Haematology, Oncology and Palliative Medicine, University of Rostock, Rostock, Germany
| |
Collapse
|
245
|
Chromatin maintenance and dynamics in senescence: a spotlight on SAHF formation and the epigenome of senescent cells. Chromosoma 2014; 123:423-36. [PMID: 24861957 DOI: 10.1007/s00412-014-0469-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 05/09/2014] [Accepted: 05/09/2014] [Indexed: 01/28/2023]
Abstract
Senescence is a stable proliferation arrest characterized by profound changes in cellular morphology and metabolism as well as by extensive chromatin reorganization in the nucleus. One particular hallmark of chromatin changes during senescence is the formation of punctate DNA foci in DAPI-stained senescent cells that have been called senescence-associated heterochromatin foci (SAHF). While many advances have been made concerning our understanding of the effectors of senescence, how chromatin is reorganized and maintained in senescent cells has remained largely elusive. Because chromatin structure is inherently dynamic, senescent cells face the challenge of developing chromatin maintenance mechanisms in the absence of DNA replication in order to maintain the senescent phenotype. Here, we summarize and review recent findings shedding light on SAHF composition and formation via spatial repositioning of chromatin, with a specific focus on the role of lamin B1 for this process. In addition, we discuss the physiological implication of SAHF formation, the role of histone variants, and histone chaperones during senescence and also elaborate on the more general changes observed in the epigenome of the senescent cells.
Collapse
|
246
|
Liu B, Pang B, Hou X, Fan H, Liang N, Zheng S, Feng B, Liu W, Guo H, Xu S, Pang Q. Expression of high-mobility group AT-hook protein 2 and its prognostic significance in malignant gliomas. Hum Pathol 2014; 45:1752-8. [PMID: 24935062 DOI: 10.1016/j.humpath.2014.02.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 01/29/2014] [Accepted: 02/07/2014] [Indexed: 10/25/2022]
Abstract
High-mobility group AT-hook protein 2 (HMGA2) is an architectural transcription factor associated with malignancy, invasiveness, and poor prognosis in a variety of human neoplasms. This study investigated HMGA2 expression and prognostic value in human gliomas. We also correlated HMGA2 expression with Ki-67 labeling index and matrix metalloproteinase-2. Expression of HMGA2 in 78 human gliomas and 7 human normal brain samples was studied using immunohistochemistry, and 29 gliomas were randomly selected and studied along with the normal brain by real-time quantitative polymerase chain reaction and Western blot analysis. Expression of HMGA2 protein was significantly higher in glioblastoma multiforme (World Health Organization [WHO] grade IV; P = .007) and anaplastic astrocytoma (WHO grade III; P = .037) than in diffuse astrocytoma (WHO grade II). Expression of HMGA2 correlated significantly with expression of Ki-67 (r = 0.415, P < .01) and matrix metalloproteinase-2 (r = 0.363, P < .01), but not with patient sex and age. The real-time quantitative polymerase chain reaction and Western blot analysis revealed similar results. Patients with tumors expressing HMGA2 at a higher level had a significantly shorter progression-free survival time (11.2 months versus 18.8 months; P = .021). Expression of HMGA2 significantly correlates with tumor cell proliferation, invasion, and survival in gliomas. The results suggest that HMGA2 has an important role in the treatment and prognosis of these cancers.
Collapse
Affiliation(s)
- Bin Liu
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, People's Republic of China; Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto 606-8527, Japan
| | - Bo Pang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong 250021, People's Republic of China
| | - Xianzeng Hou
- Department of Neurosurgery, Qianfoshan Hospital of Shandong University, Jinan, Shandong 250021, People's Republic of China
| | - Haitao Fan
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, People's Republic of China
| | - Nan Liang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, People's Republic of China
| | - Shuai Zheng
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, People's Republic of China
| | - Bin Feng
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, People's Republic of China
| | - Wei Liu
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, People's Republic of China
| | - Hua Guo
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, People's Republic of China
| | - Shangchen Xu
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, People's Republic of China.
| | - Qi Pang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, People's Republic of China.
| |
Collapse
|
247
|
Federico A, Forzati F, Esposito F, Arra C, Palma G, Barbieri A, Palmieri D, Fedele M, Pierantoni GM, De Martino I, Fusco A. Hmga1/Hmga2 double knock-out mice display a "superpygmy" phenotype. Biol Open 2014; 3:372-8. [PMID: 24728959 PMCID: PMC4021359 DOI: 10.1242/bio.20146759] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The HMGA1 and HMGA2 genes code for proteins belonging to the High Mobility Group A family. Several genes are negatively or positively regulated by both these proteins, but a number of genes are specifically regulated by only one of them. Indeed, knock-out of the Hmga1 and Hmga2 genes leads to different phenotypes: cardiac hypertrophy and type 2 diabetes in the former case, and a large reduction in body size and amount of fat tissue in the latter case. Therefore, to better elucidate the functions of the Hmga genes, we crossed Hmga1-null mice with mice null for Hmga2. The Hmga1(-/-)/Hmga2(-/-) mice showed reduced vitality and a very small size (75% smaller than the wild-type mice); they were even smaller than pygmy Hmga2-null mice. The drastic reduction in E2F1 activity, and consequently in the expression of the E2F-dependent genes involved in cell cycle regulation, likely accounts for some phenotypic features of the Hmga1(-/-)/Hmga2(-/-) mice.
Collapse
Affiliation(s)
- Antonella Federico
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Facoltà di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", via Pansini 5, 80131 Naples, Italy
| | - Floriana Forzati
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Facoltà di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", via Pansini 5, 80131 Naples, Italy
| | - Francesco Esposito
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Facoltà di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", via Pansini 5, 80131 Naples, Italy
| | - Claudio Arra
- Istituto Nazionale dei Tumori, Fondazione Pascale, 80131 Naples, Italy
| | - Giuseppe Palma
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Facoltà di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", via Pansini 5, 80131 Naples, Italy Istituto Nazionale dei Tumori, Fondazione Pascale, 80131 Naples, Italy
| | - Antonio Barbieri
- Istituto Nazionale dei Tumori, Fondazione Pascale, 80131 Naples, Italy
| | - Dario Palmieri
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Facoltà di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", via Pansini 5, 80131 Naples, Italy
| | - Monica Fedele
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Facoltà di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", via Pansini 5, 80131 Naples, Italy
| | - Giovanna Maria Pierantoni
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Facoltà di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", via Pansini 5, 80131 Naples, Italy
| | - Ivana De Martino
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Facoltà di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", via Pansini 5, 80131 Naples, Italy
| | - Alfredo Fusco
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Facoltà di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
248
|
Swanson EC, Manning B, Zhang H, Lawrence JB. Higher-order unfolding of satellite heterochromatin is a consistent and early event in cell senescence. ACTA ACUST UNITED AC 2014; 203:929-42. [PMID: 24344186 PMCID: PMC3871423 DOI: 10.1083/jcb.201306073] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Higher-order unfolding of peri/centromeric satellite DNA is a consistent and early event in senescence of cultured normal human and mouse cells, progeria cells, and a senescent tumor. Epigenetic changes to chromatin are thought to be essential to cell senescence, which is key to tumorigenesis and aging. Although many studies focus on heterochromatin gain, this work demonstrates large-scale unraveling of peri/centromeric satellites, which occurs in all models of human and mouse senescence examined. This was not seen in cancer cells, except in a benign senescent tumor in vivo. Senescence-associated distension of satellites (SADS) occurs earlier and more consistently than heterochromatin foci formation, and SADS is not exclusive to either the p16 or p21 pathways. Because Hutchinson Guilford progeria syndrome patient cells do not form excess heterochromatin, the question remained whether or not proliferative arrest in this aging syndrome involved distinct epigenetic mechanisms. Here, we show that SADS provides a unifying event in both progeria and normal senescence. Additionally, SADS represents a novel, cytological-scale unfolding of chromatin, which is not concomitant with change to several canonical histone marks nor a result of DNA hypomethylation. Rather, SADS is likely mediated by changes to higher-order nuclear structural proteins, such as LaminB1.
Collapse
|
249
|
Hong Y, Won J, Lee Y, Lee S, Park K, Chang KT, Hong Y. Melatonin treatment induces interplay of apoptosis, autophagy, and senescence in human colorectal cancer cells. J Pineal Res 2014; 56:264-74. [PMID: 24484372 DOI: 10.1111/jpi.12119] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/03/2014] [Indexed: 12/13/2022]
Abstract
In Asia, the incidence of colorectal cancer has been increasing gradually due to a more Westernized lifestyle. The aim of study is to determine the interaction between melatonin-induced cell death and cellular senescence. We treated HCT116 human colorectal adenocarcinoma cells with 10 μm melatonin and determined the levels of cell death-related proteins and evaluated cell cycle kinetics. The plasma membrane melatonin receptor, MT1, was significantly decreased by melatonin in a time-dependent manner, whereas the nuclear receptor, RORα, was increased only after 12 hr treatment. HCT116 cells, which upregulated both pro-apoptotic Bax and anti-apoptotic Bcl-xL in the early response to melatonin treatment, activated autophagic as well as apoptotic machinery within 18 hr. Melatonin decreased the S-phase population of the cells to 57% of the control at 48 hr, which was concomitant with a reduction in BrdU-positive cells in the melatonin-treated cell population. We found not only marked attenuation of E- and A-type cyclins, but also increased expression of p16 and p-p21. Compared to the cardiotoxicity of Trichostatin A in vitro, single or cumulative melatonin treatment induced insignificant detrimental effects on neonatal cardiomyocytes. We found that 10 μm melatonin activated cell death programs early and induced G1-phase arrest at the advanced phase. Therefore, we suggest that melatonin is a potential chemotherapeutic agent for treatment of colon cancer, the effects of which are mediated by regulation of both cell death and senescence in cancerous cells with minimized cardiotoxicity.
Collapse
Affiliation(s)
- Yunkyung Hong
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, Korea; Cardiovascular & Metabolic Disease Center, College of Biomedical Science & Engineering, Inje University, Gimhae, Korea; Ubiquitous Healthcare Research Center, Inje University, Gimhae, Korea
| | | | | | | | | | | | | |
Collapse
|
250
|
Xu X, Lu Z, Qiang W, Vidimar V, Kong B, Kim JJ, Wei JJ. Inactivation of AKT induces cellular senescence in uterine leiomyoma. Endocrinology 2014; 155:1510-9. [PMID: 24476133 PMCID: PMC3959594 DOI: 10.1210/en.2013-1929] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Uterine leiomyomas (fibroids) are a major public health problem. Current medical treatments with GnRH analogs do not provide long-term benefit. Thus, permanent shrinkage or inhibition of fibroid growth via medical means remains a challenge. The AKT pathway is a major growth and survival pathway for fibroids. We propose that AKT inhibition results in a transient regulation of specific mechanisms that ultimately drive cells into cellular senescence or cell death. In this study, we investigated specific mechanisms of AKT inhibition that resulted in senescence. We observed that administration of MK-2206, an allosteric AKT inhibitor, increased levels of reactive oxygen species, up-regulated the microRNA miR-182 and several senescence-associated genes (including p16, p53, p21, and β-galactosidase), and drove leiomyoma cells into stress-induced premature senescence (SIPS). Moreover, induction of SIPS was mediated by HMGA2, which colocalized to senescence-associated heterochromatin foci. This study provides a conceivable molecular mechanism of SIPS by AKT inhibition in fibroids.
Collapse
Affiliation(s)
- Xiaofei Xu
- Department of Pathology (X.X., J.-J.W.) and Department of Obstetrics and Gynecology (Z.L., W.Q., J.J.K., J.-J.W., V.V.), Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, Illinois; and Department of Obstetrics and Gynecology (X.X., B.K.), Shandong University, Shandong, China
| | | | | | | | | | | | | |
Collapse
|