201
|
Peruhova M, Banova-Chakarova S, Miteva DG, Velikova T. Genetic screening of liver cancer: State of the art. World J Hepatol 2024; 16:716-730. [PMID: 38818292 PMCID: PMC11135278 DOI: 10.4254/wjh.v16.i5.716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/14/2024] [Accepted: 04/09/2024] [Indexed: 05/22/2024] Open
Abstract
Liver cancer, primarily hepatocellular carcinoma, remains a global health challenge with rising incidence and limited therapeutic options. Genetic factors play a pivotal role in the development and progression of liver cancer. This state-of-the-art paper provides a comprehensive review of the current landscape of genetic screening strategies for liver cancer. We discuss the genetic underpinnings of liver cancer, emphasizing the critical role of risk-associated genetic variants, somatic mutations, and epigenetic alterations. We also explore the intricate interplay between environmental factors and genetics, highlighting how genetic screening can aid in risk stratification and early detection via using liquid biopsy, and advancements in high-throughput sequencing technologies. By synthesizing the latest research findings, we aim to provide a comprehensive overview of the state-of-the-art genetic screening methods for liver cancer, shedding light on their potential to revolutionize early detection, risk assessment, and targeted therapies in the fight against this devastating disease.
Collapse
Affiliation(s)
- Milena Peruhova
- Department of Gastroenterology, University Hospital "Heart and Brain", Burgas 8000, Bulgaria
| | - Sonya Banova-Chakarova
- Department of Gastroenterology, University Hospital "Heart and Brain", Burgas 8000, Bulgaria.
| | - Dimitrina Georgieva Miteva
- Department of Genetics, Faculty of Biology, Sofia University" St. Kliment Ohridski, Sofia 1164, Bulgaria
| | - Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| |
Collapse
|
202
|
Meroni M, Longo M, Dongiovanni P. Cardiometabolic risk factors in MASLD patients with HCC: the other side of the coin. Front Endocrinol (Lausanne) 2024; 15:1411706. [PMID: 38846491 PMCID: PMC11153718 DOI: 10.3389/fendo.2024.1411706] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/10/2024] [Indexed: 06/09/2024] Open
Abstract
Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) constitutes the commonest cause of chronic liver disorder worldwide, whereby affecting around one third of the global population. This clinical condition may evolve into Metabolic Dysfunction-Associated Steatohepatitis (MASH), fibrosis, cirrhosis and hepatocellular carcinoma (HCC), in a predisposed subgroup of patients. The complex pathogenesis of MASLD is severely entangled with obesity, dyslipidemia and type 2 diabetes (T2D), so far so nutritional and lifestyle recommendations may be crucial in influencing the risk of HCC and modifying its prognosis. However, the causative association between HCC onset and the presence of metabolic comorbidities is not completely clarified. Therefore, the present review aimed to summarize the main literature findings that correlate the presence of inherited or acquired hyperlipidemia and metabolic risk factors with the increased predisposition towards liver cancer in MASLD patients. Here, we gathered the evidence underlining the relationship between circulating/hepatic lipids, cardiovascular events, metabolic comorbidities and hepatocarcinogenesis. In addition, we reported previous studies supporting the impact of triglyceride and/or cholesterol accumulation in generating aberrancies in the intracellular membranes of organelles, oxidative stress, ATP depletion and hepatocyte degeneration, influencing the risk of HCC and its response to therapeutic approaches. Finally, our pursuit was to emphasize the link between HCC and the presence of cardiometabolic abnormalities in our large cohort of histologically-characterized patients affected by MASLD (n=1538), of whom 86 had MASLD-HCC by including unpublished data.
Collapse
|
203
|
Park Y, Hu S, Kim M, Oertel M, Singhi A, Monga SP, Liu S, Ko S. Therapeutic potential of SOX9 dysruption in Combined Hepatocellular Carcinoma-Cholangiocarcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595319. [PMID: 38826352 PMCID: PMC11142171 DOI: 10.1101/2024.05.22.595319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Combined hepatocellular carcinoma-cholangiocarcinoma (cHCC-CCA) represents a challenging subtype of primary liver cancer with limited treatment options and a poor prognosis. Recently, we and others have highlighted the context-dependent roles of the biliary-specific transcription factor SOX9 in the pathogenesis of liver cancers using various Cre applications in Sox9 (flox/flox) strains, to achieve elimination for exon 2 and 3 of the Sox9 gene locus as a preventive manner. Here, we reveal the contrasting responses of developmental Sox9 elimination using Alb-Cre;Sox9 (flox/flox) ( Sox9 LKO) versus CRISPR/Cas9 -based tumor specific acute Sox9 CKO in SB-HDTVI-based Akt-YAP1 and Akt-NRAS cHCC-CCA formation. Sox9 LKO specifically abrogates the Akt-YAP1 CCA region while robustly stimulating the proliferation of remaining poorly differentiated HCC pertaining liver progenitor cell characteristics, whereas Sox9 CKO potently prevents Akt-YAP1 and Akt-NRAS cHCC-CCA development irrespective of fate of tumor cells compared to respective controls. Additionally, we find that Akt-NRAS , but not Akt-YAP1 , tumor formation is partially dependent on the Sox9-Dnmt1 cascade. Pathologically, SOX9 is indispensable for Akt-YAP1 -mediated HC-to-BEC/CCA reprogramming but required for the maintenance of CCA nodules. Lastly, therapeutic elimination of Sox9 using the OPN-CreERT2 strain combined with an inducible CRISPR/Cas9 -based Sox9 iKO significantly reduces Akt-YAP1 cHCC-CCA tumor burden, similar to Sox9 CKO. Thus, we contrast the outcomes of acute Sox9 deletion with developmental Sox9 knockout models, emphasizing the importance of considering adaptation mechanisms in therapeutic strategies. This necessitates the careful consideration of genetic liver cancer studies using developmental Cre and somatic mutant lines, particularly for genes involved in hepatic commitment during development. Our findings suggest that SOX9 elimination may hold promise as a therapeutic approach for cHCC-CCA and underscore the need for further investigation to translate these preclinical insights into clinical applications.
Collapse
|
204
|
Azuma I, Mizuno T, Kusuhara H. GLDADec: marker-gene guided LDA modeling for bulk gene expression deconvolution. Brief Bioinform 2024; 25:bbae315. [PMID: 38982642 PMCID: PMC11233176 DOI: 10.1093/bib/bbae315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/21/2024] [Accepted: 06/14/2024] [Indexed: 07/11/2024] Open
Abstract
Inferring cell type proportions from bulk transcriptome data is crucial in immunology and oncology. Here, we introduce guided LDA deconvolution (GLDADec), a bulk deconvolution method that guides topics using cell type-specific marker gene names to estimate topic distributions for each sample. Through benchmarking using blood-derived datasets, we demonstrate its high estimation performance and robustness. Moreover, we apply GLDADec to heterogeneous tissue bulk data and perform comprehensive cell type analysis in a data-driven manner. We show that GLDADec outperforms existing methods in estimation performance and evaluate its biological interpretability by examining enrichment of biological processes for topics. Finally, we apply GLDADec to The Cancer Genome Atlas tumor samples, enabling subtype stratification and survival analysis based on estimated cell type proportions, thus proving its practical utility in clinical settings. This approach, utilizing marker gene names as partial prior information, can be applied to various scenarios for bulk data deconvolution. GLDADec is available as an open-source Python package at https://github.com/mizuno-group/GLDADec.
Collapse
Affiliation(s)
- Iori Azuma
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Bunkyo-ku 113-0033, Japan
| | - Tadahaya Mizuno
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Bunkyo-ku 113-0033, Japan
| | - Hiroyuki Kusuhara
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Bunkyo-ku 113-0033, Japan
| |
Collapse
|
205
|
Feng F, Zhao Y. Hepatocellular Carcinoma: Prevention, Diagnosis, and Treatment. Med Princ Pract 2024; 33:414-423. [PMID: 38772352 PMCID: PMC11460940 DOI: 10.1159/000539349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 05/14/2024] [Indexed: 05/23/2024] Open
Abstract
Hepatocellular carcinoma (HCC), the most prevalent form of liver cancer globally, poses a substantial health burden. Influenced by risk factors such as hepatitis B or C virus infections, chronic consumption of alcohol, and metabolic dysfunction, its exact etiology likely involves a complex interplay between viral infection, hepatocyte mutations, and chronic liver diseases like cirrhosis and metabolic dysfunction-associated steatohepatitis, and demographic variables like sex, race, and age. Disease stage significantly impacts the prognosis of HCC. There is significant potential for life-saving and socioeconomic benefits through the implementation of surveillance programs and the introduction of low-cost screening measures for high-risk groups; these screening measures include ultrasound imaging and blood tests. Treatment options for HCC encompass liver resection, transplantation, transarterial chemoembolization, radiation therapy, chemotherapy, targeted therapy, and immunotherapy. Despite therapeutic advances, treating advanced HCC remains challenging, emphasizing the need for continued efforts in prevention, early detection, and development of treatments to improve prognosis and long-term survival.
Collapse
Affiliation(s)
- Fei Feng
- Ultrasound Medicine, The First Hospital of Lanzhou University, Lanzhou, China,
| | - Yue Zhao
- Department of Gastroenterology, The First Hospital of Lanzhou University, Key Laboratory for Gastrointestinal Disease of Gansu Province, Lanzhou, China
| |
Collapse
|
206
|
Lee JY, Bae K, Kim JH, Han HJ, Yoon HY, Yoon KA. Establishment and characterization of six canine hepatocellular carcinoma cell lines. Front Vet Sci 2024; 11:1392728. [PMID: 38840628 PMCID: PMC11150866 DOI: 10.3389/fvets.2024.1392728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/23/2024] [Indexed: 06/07/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the most common malignant liver tumor in dogs. Although surgical resection is a major treatment option for canine HCC, there are no distinct strategies for unresectable tumor subtypes or adjuvant chemotherapy for tumors with positive margins. We aimed to establish and characterize novel HCC cell lines from canine patients. Methods The cellular morphology, general growth features and tumorigenicity of the established cell lines were evaluated. We also examined the sensitivity of the cell lines to multi-target tyrosine kinase inhibitors (TKIs). Results We established novel canine HCC cell lines from hepatic tumors and an additional kidney tumor of six canine patients. All cell lines showed colony forming and migratory ability. KU-cHCC-001 and KU-cHCC-001-Kidney, two cell lines exhibiting high epithelial-mesenchymal transition characteristics, showed tumorigenicity in xenografted mice. Toceranib, a veterinary TKI that targets vascular endothelial growth factor (VEGFR)/platelet-derived growth factor receptor (PDGFR)/c-kit, effectively inhibited the mitogen-activated protein kinase pathway and induced apoptosis. The established canine HCC cell lines showed greater sensitivity to toceranib than to sorafenib, a first-line treatment for human HCC targeting RAF/VEGFR/PDGFR. Sorafenib showed improved anti-tumor effects when co-treated with SCH772984, an extracellular signal-regulated kinase inhibitor. Conclusion Our study suggests new therapeutic strategies for canine HCC, and these cell lines are valuable research materials for understanding HCC tumor biology in both humans and dogs.
Collapse
Affiliation(s)
- Ja Young Lee
- Department of Veterinary Biochemistry, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Kieun Bae
- Department of Veterinary Biochemistry, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
- KU Animal Cancer Center, Konkuk University Veterinary Medical Teaching Hospital, Seoul, Republic of Korea
| | - Jung-Hyun Kim
- KU Animal Cancer Center, Konkuk University Veterinary Medical Teaching Hospital, Seoul, Republic of Korea
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Hyun-Jung Han
- KU Animal Cancer Center, Konkuk University Veterinary Medical Teaching Hospital, Seoul, Republic of Korea
- Department of Veterinary Emergency and Critical Care, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Hun-Young Yoon
- KU Animal Cancer Center, Konkuk University Veterinary Medical Teaching Hospital, Seoul, Republic of Korea
- Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Kyong-Ah Yoon
- Department of Veterinary Biochemistry, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
- KU Animal Cancer Center, Konkuk University Veterinary Medical Teaching Hospital, Seoul, Republic of Korea
| |
Collapse
|
207
|
Candia J, Ferrucci L. Assessment of Gene Set Enrichment Analysis using curated RNA-seq-based benchmarks. PLoS One 2024; 19:e0302696. [PMID: 38753612 PMCID: PMC11098418 DOI: 10.1371/journal.pone.0302696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/09/2024] [Indexed: 05/18/2024] Open
Abstract
Pathway enrichment analysis is a ubiquitous computational biology method to interpret a list of genes (typically derived from the association of large-scale omics data with phenotypes of interest) in terms of higher-level, predefined gene sets that share biological function, chromosomal location, or other common features. Among many tools developed so far, Gene Set Enrichment Analysis (GSEA) stands out as one of the pioneering and most widely used methods. Although originally developed for microarray data, GSEA is nowadays extensively utilized for RNA-seq data analysis. Here, we quantitatively assessed the performance of a variety of GSEA modalities and provide guidance in the practical use of GSEA in RNA-seq experiments. We leveraged harmonized RNA-seq datasets available from The Cancer Genome Atlas (TCGA) in combination with large, curated pathway collections from the Molecular Signatures Database to obtain cancer-type-specific target pathway lists across multiple cancer types. We carried out a detailed analysis of GSEA performance using both gene-set and phenotype permutations combined with four different choices for the Kolmogorov-Smirnov enrichment statistic. Based on our benchmarks, we conclude that the classic/unweighted gene-set permutation approach offered comparable or better sensitivity-vs-specificity tradeoffs across cancer types compared with other, more complex and computationally intensive permutation methods. Finally, we analyzed other large cohorts for thyroid cancer and hepatocellular carcinoma. We utilized a new consensus metric, the Enrichment Evidence Score (EES), which showed a remarkable agreement between pathways identified in TCGA and those from other sources, despite differences in cancer etiology. This finding suggests an EES-based strategy to identify a core set of pathways that may be complemented by an expanded set of pathways for downstream exploratory analysis. This work fills the existing gap in current guidelines and benchmarks for the use of GSEA with RNA-seq data and provides a framework to enable detailed benchmarking of other RNA-seq-based pathway analysis tools.
Collapse
Affiliation(s)
- Julián Candia
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States of America
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States of America
| |
Collapse
|
208
|
Hong JH, Yong CH, Heng HL, Chan JY, Lau MC, Chen J, Lee JY, Lim AH, Li Z, Guan P, Chu PL, Boot A, Ng SR, Yao X, Wee FYT, Lim JCT, Liu W, Wang P, Xiao R, Zeng X, Sun Y, Koh J, Kwek XY, Ng CCY, Klanrit P, Zhang Y, Lai J, Tai DWM, Pairojkul C, Dima S, Popescu I, Hsieh SY, Yu MC, Yeong J, Kongpetch S, Jusakul A, Loilome W, Tan P, Tan J, Teh BT. Integrative multiomics enhancer activity profiling identifies therapeutic vulnerabilities in cholangiocarcinoma of different etiologies. Gut 2024; 73:966-984. [PMID: 38050079 DOI: 10.1136/gutjnl-2023-330483] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/06/2023] [Indexed: 12/06/2023]
Abstract
OBJECTIVES Cholangiocarcinoma (CCA) is a heterogeneous malignancy with high mortality and dismal prognosis, and an urgent clinical need for new therapies. Knowledge of the CCA epigenome is largely limited to aberrant DNA methylation. Dysregulation of enhancer activities has been identified to affect carcinogenesis and leveraged for new therapies but is uninvestigated in CCA. Our aim is to identify potential therapeutic targets in different subtypes of CCA through enhancer profiling. DESIGN Integrative multiomics enhancer activity profiling of diverse CCA was performed. A panel of diverse CCA cell lines, patient-derived and cell line-derived xenografts were used to study identified enriched pathways and vulnerabilities. NanoString, multiplex immunohistochemistry staining and single-cell spatial transcriptomics were used to explore the immunogenicity of diverse CCA. RESULTS We identified three distinct groups, associated with different etiologies and unique pathways. Drug inhibitors of identified pathways reduced tumour growth in in vitro and in vivo models. The first group (ESTRO), with mostly fluke-positive CCAs, displayed activation in estrogen signalling and were sensitive to MTOR inhibitors. Another group (OXPHO), with mostly BAP1 and IDH-mutant CCAs, displayed activated oxidative phosphorylation pathways, and were sensitive to oxidative phosphorylation inhibitors. Immune-related pathways were activated in the final group (IMMUN), made up of an immunogenic CCA subtype and CCA with aristolochic acid (AA) mutational signatures. Intratumour differences in AA mutation load were correlated to intratumour variation of different immune cell populations. CONCLUSION Our study elucidates the mechanisms underlying enhancer dysregulation and deepens understanding of different tumourigenesis processes in distinct CCA subtypes, with potential significant therapeutics and clinical benefits.
Collapse
Affiliation(s)
- Jing Han Hong
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore
| | - Chern Han Yong
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore
- Department of Computer Science, National University of Singapore, Singapore
| | - Hong Lee Heng
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore
| | - Jason Yongsheng Chan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore
- Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - Mai Chan Lau
- Singapore Immunology Network, Agency for Science Technology and Research (A*STAR), Singapore
- Bioinformatics Institute (BII), Agency for Science Technology and Research (A*STAR), Singapore
| | - Jianfeng Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jing Yi Lee
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore
| | - Abner Herbert Lim
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore
| | - Zhimei Li
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore
| | - Peiyong Guan
- Genome Institute of Singapore, Agency for Science Technology and Research (A*STAR), Singapore
| | - Pek Lim Chu
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore
| | - Arnoud Boot
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore
- Centre for Computational Biology, Duke-NUS Medical School, Singapore
| | - Sheng Rong Ng
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), Singapore
| | - Xiaosai Yao
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), Singapore
| | - Felicia Yu Ting Wee
- Institute of Molecular and Cell Biology, Integrative Biology for Theranostics Lab, Agency for Science Technology and Research (A*STAR), Singapore
| | - Jeffrey Chun Tatt Lim
- Institute of Molecular and Cell Biology, Integrative Biology for Theranostics Lab, Agency for Science Technology and Research (A*STAR), Singapore
| | - Wei Liu
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore
| | - Peili Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Rong Xiao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xian Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yichen Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Joanna Koh
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), Singapore
| | - Xiu Yi Kwek
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore
| | - Cedric Chuan Young Ng
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore
| | - Poramate Klanrit
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Yaojun Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong
| | - Jiaming Lai
- Department of Pancreaticobiliary Surgery, Sun Yat-sen University, Guangzhou, China
| | - David Wai Meng Tai
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
- Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - Chawalit Pairojkul
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Simona Dima
- Center of Digestive Diseases and Liver Transplantation, Fundeni Clinical Institute, Bucuresti, Romania
| | - Irinel Popescu
- Center of Digestive Diseases and Liver Transplantation, Fundeni Clinical Institute, Bucuresti, Romania
| | - Sen-Yung Hsieh
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Ming-Chin Yu
- Department of General Surgery, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Joe Yeong
- Institute of Molecular and Cell Biology, Integrative Biology for Theranostics Lab, Agency for Science Technology and Research (A*STAR), Singapore
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
- Pathology Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - Sarinya Kongpetch
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Apinya Jusakul
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Watcharin Loilome
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Patrick Tan
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore
- Genome Institute of Singapore, Agency for Science Technology and Research (A*STAR), Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Jing Tan
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore
- State Key Laboratory of Oncology, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Bin Tean Teh
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore
- Genome Institute of Singapore, Agency for Science Technology and Research (A*STAR), Singapore
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), Singapore
| |
Collapse
|
209
|
Cai N, Cheng K, Ma Y, Liu S, Tao R, Li Y, Li D, Guo B, Jia W, Liang H, Zhao J, Xia L, Ding ZY, Chen J, Zhang W. Targeting MMP9 in CTNNB1 mutant hepatocellular carcinoma restores CD8 + T cell-mediated antitumour immunity and improves anti-PD-1 efficacy. Gut 2024; 73:985-999. [PMID: 38123979 PMCID: PMC11103337 DOI: 10.1136/gutjnl-2023-331342] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE The gain of function (GOF) CTNNB1 mutations (CTNNB1 GOF ) in hepatocellular carcinoma (HCC) cause significant immune escape and resistance to anti-PD-1. Here, we aimed to investigate the mechanism of CTNNB1 GOF HCC-mediated immune escape and raise a new therapeutic strategy to enhance anti-PD-1 efficacy in HCC. DESIGN RNA sequencing was performed to identify the key downstream genes of CTNNB1 GOF associated with immune escape. An in vitro coculture system, murine subcutaneous or orthotopic models, spontaneously tumourigenic models in conditional gene-knock-out mice and flow cytometry were used to explore the biological function of matrix metallopeptidase 9 (MMP9) in tumour progression and immune escape. Single-cell RNA sequencing and proteomics were used to gain insight into the underlying mechanisms of MMP9. RESULTS MMP9 was significantly upregulated in CTNNB1 GOF HCC. MMP9 suppressed infiltration and cytotoxicity of CD8+ T cells, which was critical for CTNNB1 GOF to drive the suppressive tumour immune microenvironment (TIME) and anti-PD-1 resistance. Mechanistically, CTNNB1 GOF downregulated sirtuin 2 (SIRT2), resulting in promotion of β-catenin/lysine demethylase 4D (KDM4D) complex formation that fostered the transcriptional activation of MMP9. The secretion of MMP9 from HCC mediated slingshot protein phosphatase 1 (SSH1) shedding from CD8+ T cells, leading to the inhibition of C-X-C motif chemokine receptor 3 (CXCR3)-mediated intracellular of G protein-coupled receptors signalling. Additionally, MMP9 blockade remodelled the TIME and potentiated the sensitivity of anti-PD-1 therapy in HCC. CONCLUSIONS CTNNB1 GOF induces a suppressive TIME by activating secretion of MMP9. Targeting MMP9 reshapes TIME and potentiates anti-PD-1 efficacy in CTNNB1 GOF HCC.
Collapse
Affiliation(s)
- Ning Cai
- Hepatic Surgery Center, Clinical Medicine Research Center of Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Kun Cheng
- Hepatic Surgery Center, Clinical Medicine Research Center of Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yue Ma
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, People's Republic of China
| | - Sha Liu
- Hepatic Surgery Center, Clinical Medicine Research Center of Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Ran Tao
- Hepatic Surgery Center, Clinical Medicine Research Center of Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yani Li
- Hepatic Surgery Center, Clinical Medicine Research Center of Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Danfeng Li
- Hepatic Surgery Center, Clinical Medicine Research Center of Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Bin Guo
- Hepatic Surgery Center, Clinical Medicine Research Center of Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Wenlong Jia
- Hepatic Surgery Center, Clinical Medicine Research Center of Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Huifang Liang
- Hepatic Surgery Center, Clinical Medicine Research Center of Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jianping Zhao
- Hepatic Surgery Center, Clinical Medicine Research Center of Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Ze-Yang Ding
- Hepatic Surgery Center, Clinical Medicine Research Center of Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jinhong Chen
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, People's Republic of China
| | - Wanguang Zhang
- Hepatic Surgery Center, Clinical Medicine Research Center of Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
210
|
Gong Y, Zhou M, Zhu Y, Pan J, Zhou X, Jiang Y, Zeng H, Zheng H, Geng X, Huang D. PVALB Was Identified as an Independent Prognostic Factor for HCC Closely Related to Immunity, and Its Absence Accelerates Tumor Progression by Regulating NK Cell Infiltration. J Hepatocell Carcinoma 2024; 11:813-838. [PMID: 38737383 PMCID: PMC11088852 DOI: 10.2147/jhc.s450479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/23/2024] [Indexed: 05/14/2024] Open
Abstract
Purpose Hepatocellular carcinoma is the most common primary liver cancer, with poor prognosis. Complex immune microenvironment of the liver is linked to the development of HCC. PVALB is a calcium-binding protein which has been described as a cancer suppressor gene in thyroid cancer and glioma. Nevertheless, the role of PVALB in HCC is unknown. Materials and Methods We obtained data from TCGA and GSE54236 datasets. MCP-counter, WGCNA and LASSO model were applied to identify PVALB. With UALCAN, MethSurv, and other websites, we probed the expression, methylation and survival of PVALB. LinkedOmics and GSEA were adopted for functional analysis, while TIMER, TISIDB, Kaplan-Meier plotter, TIDE databases were utilized to evaluate the relevance of PVALB to the tumor immune microenvironment and predict immunotherapy efficacy. TargetScan, DIANA, LncRNASNP2 databases and relevant experiments were employed to construct ceRNA network. Finally, molecular docking and drug sensitivity of PVALB were characterized by GeneMANIA, CTD, and so on. Results PVALB was recognized as a gene associated with HCC and NK cell. Its expression was down-regulated in HCC tissue, which lead to adverse prognosis. Besides, the hypomethylation of PVALB was related to its reduced expression. Notably, PVALB was tightly linked to immune, and its reduced expression attenuated the anticancer effect of NK cells via the Fas/FasL pathway, leading to a adverse outcome. The lnc-YY1AP1-3/hsa-miR-6735-5p/PVALB axis may regulate the PVALB expression. Finally, we found immunotherapy might be a viable treatment option. Conclusion In a word, PVALB is a prognostic indicator, whose low expression facilitates HCC progression by impacting NK cell infiltration.
Collapse
Affiliation(s)
- Yiyang Gong
- Department of Thyroid Surgery; Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Second College of Clinical Medicine, Nanchang University, Nanchang, People’s Republic of China
| | - Minqin Zhou
- Second College of Clinical Medicine, Nanchang University, Nanchang, People’s Republic of China
| | - Yanting Zhu
- Second College of Clinical Medicine, Nanchang University, Nanchang, People’s Republic of China
| | - Jingying Pan
- Second College of Clinical Medicine, Nanchang University, Nanchang, People’s Republic of China
| | - Xuanrui Zhou
- Second College of Clinical Medicine, Nanchang University, Nanchang, People’s Republic of China
| | - Yike Jiang
- Second College of Clinical Medicine, Nanchang University, Nanchang, People’s Republic of China
| | - Hong Zeng
- Second College of Clinical Medicine, Nanchang University, Nanchang, People’s Republic of China
| | - Hao Zheng
- Second College of Clinical Medicine, Nanchang University, Nanchang, People’s Republic of China
| | - Xitong Geng
- Second College of Clinical Medicine, Nanchang University, Nanchang, People’s Republic of China
| | - Da Huang
- Department of Thyroid Surgery; Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|
211
|
Zuo A, Li J, Weng S, Xu H, Zhang Y, Wang L, Xing Z, Luo P, Cheng Q, Li J, Han X, Liu Z. Integrated Exploration of Epigenetic Dysregulation Reveals a Stemness/EMT Subtype and MMP12 Linked to the Progression and Prognosis in Hepatocellular Carcinoma. J Proteome Res 2024; 23:1821-1833. [PMID: 38652053 DOI: 10.1021/acs.jproteome.4c00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Epigenetic dysregulation drives aberrant transcriptional programs playing a critical role in hepatocellular carcinoma (HCC), which may provide novel insights into the heterogeneity of HCC. This study performed an integrated exploration on the epigenetic dysregulation of miRNA and methylation. We discovered and validated three patterns endowed with gene-related transcriptional traits and clinical outcomes. Specially, a stemness/epithelial-mesenchymal transition (EMT) subtype was featured by immune exhaustion and the worst prognosis. Besides, MMP12, a characteristic gene, was highly expressed in the stemness/EMT subtype, which was verified as a pivotal regulator linked to the unfavorable prognosis and further proven to promote tumor proliferation, invasion, and metastasis in vitro experiments. Proteomic analysis by mass spectrometry sequencing also indicated that the overexpression of MMP12 was significantly associated with cell proliferation and adhesion. Taken together, this study unveils innovative insights into epigenetic dysregulation and identifies a stemness/EMT subtype-specific gene, MMP12, correlated with the progression and prognosis of HCC.
Collapse
Affiliation(s)
- Anning Zuo
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jinyu Li
- Center of Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Libo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zhe Xing
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jing Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
212
|
Tang Q, Hu G, Sang Y, Chen Y, Wei G, Zhu M, Chen M, Li S, Liu R, Peng Z. Therapeutic targeting of PLK1 in TERT promoter-mutant hepatocellular carcinoma. Clin Transl Med 2024; 14:e1703. [PMID: 38769666 PMCID: PMC11106514 DOI: 10.1002/ctm2.1703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/16/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Hotspot mutations in the promoter of telomerase reverse transcriptase (TERT) gene are the most common genetic variants in hepatocellular carcinoma (HCC) and associated with poor prognosis of the disease. However, no drug was currently approved for treating TERT promoter mutation positive HCC patients. Here, we aim to explore the potential therapeutic strategy for targeting TERT promoter mutation in HCC. METHODS The Liver Cancer Model Repository database was used for screening potential drugs to selectively suppress the growth of TERT promoter mutant HCC cells. RNA-seq, CRISPR-Cas9 technology and siRNA transfection were performed for mechanistic studies. Cell counting kit-8 (CCK8) assay and the xenograft tumour models were used for cell growth detection in vitro and in vivo, respectively. Cell apoptosis and cell cycle arrest were analysed by Annexin V-FITC staining and/or propidium iodide staining. RESULTS PLK1 inhibitors were remarkably more sensitive to HCC cells harbouring TERT promoter mutation than wild-type cells in vitro and in vivo, which were diminished after TERT promoter mutation was edited to the wild-type nucleotide. Comparing the HCC cells with wild-type promoter of TERT, PLK1 inhibitors specifically downregulated Smad3 to regulate TERT for inducing apoptosis and G2/M arrest in TERT mutant HCC cells. Moreover, knockout of Smad3 counteracted the effects of PLK1 inhibitors in TERT mutant HCC cells. Finally, a cooperative effect of PLK1 and Smad3 inhibition was observed in TERT mutant cells. CONCLUSIONS PLK1 inhibition selectively suppressed the growth of TERT mutant HCC cells through Smad3, thus contributed to discover a novel therapeutic strategy to treat HCC patients harbouring TERT promoter mutations. KEY POINTS TERT promoter mutation confers sensitivity to PLK1 inhibitors in HCC. The selective growth inhibition of TERT mutant HCC cells induced by PLK1 inhibitor was mediated by Smad3. Combined inhibition of PLK1 and Smad3 showed a cooperative anti-tumor effect in TERT mutant HCC cells.
Collapse
Affiliation(s)
- Qin Tang
- Department of Radiation OncologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Guanghui Hu
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Ye Sang
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Yulu Chen
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Guangyan Wei
- Department of Radiation OncologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Meiyan Zhu
- Department of Radiation OncologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Mengke Chen
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Shiyong Li
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Rengyun Liu
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Zhenwei Peng
- Department of Radiation OncologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Cancer CenterThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
213
|
Fujiwara N, Kimura G, Nakagawa H. Emerging Roles of Spatial Transcriptomics in Liver Research. Semin Liver Dis 2024; 44:115-132. [PMID: 38574750 DOI: 10.1055/a-2299-7880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Spatial transcriptomics, leveraging sequencing- and imaging-based techniques, has emerged as a groundbreaking technology for mapping gene expression within the complex architectures of tissues. This approach provides an in-depth understanding of cellular and molecular dynamics across various states of healthy and diseased livers. Through the integration of sophisticated bioinformatics strategies, it enables detailed exploration of cellular heterogeneity, transitions in cell states, and intricate cell-cell interactions with remarkable precision. In liver research, spatial transcriptomics has been particularly revelatory, identifying distinct zonated functions of hepatocytes that are crucial for understanding the metabolic and detoxification processes of the liver. Moreover, this technology has unveiled new insights into the pathogenesis of liver diseases, such as the role of lipid-associated macrophages in steatosis and endothelial cell signals in liver regeneration and repair. In the domain of liver cancer, spatial transcriptomics has proven instrumental in delineating intratumor heterogeneity, identifying supportive microenvironmental niches and revealing the complex interplay between tumor cells and the immune system as well as susceptibility to immune checkpoint inhibitors. In conclusion, spatial transcriptomics represents a significant advance in hepatology, promising to enhance our understanding and treatment of liver diseases.
Collapse
Affiliation(s)
- Naoto Fujiwara
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Mie, Japan
| | - Genki Kimura
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Mie, Japan
| | - Hayato Nakagawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Mie, Japan
| |
Collapse
|
214
|
Guo DZ, Huang A, Wang YC, Zhou S, Wang H, Xing XL, Zhang SY, Cheng JW, Xie KH, Yang QC, Ma CC, Li Q, Chen Y, Su ZX, Fan J, Liu R, Liu XL, Zhou J, Yang XR. Early detection and prognosis evaluation for hepatocellular carcinoma by circulating tumour DNA methylation: A multicentre cohort study. Clin Transl Med 2024; 14:e1652. [PMID: 38741204 DOI: 10.1002/ctm2.1652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/07/2024] [Accepted: 03/21/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Early diagnosis of hepatocellular carcinoma (HCC) can significantly improve patient survival. We aimed to develop a blood-based assay to aid in the diagnosis, detection and prognostic evaluation of HCC. METHODS A three-phase multicentre study was conducted to screen, optimise and validate HCC-specific differentially methylated regions (DMRs) using next-generation sequencing and quantitative methylation-specific PCR (qMSP). RESULTS Genome-wide methylation profiling was conducted to identify DMRs distinguishing HCC tumours from peritumoural tissues and healthy plasmas. The twenty most effective DMRs were verified and incorporated into a multilocus qMSP assay (HepaAiQ). The HepaAiQ model was trained to separate 293 HCC patients (Barcelona Clinic Liver Cancer (BCLC) stage 0/A, 224) from 266 controls including chronic hepatitis B (CHB) or liver cirrhosis (LC) (CHB/LC, 96), benign hepatic lesions (BHL, 23), and healthy controls (HC, 147). The model achieved an area under the curve (AUC) of 0.944 with a sensitivity of 86.0% in HCC and a specificity of 92.1% in controls. Blind validation of the HepaAiQ model in a cohort of 523 participants resulted in an AUC of 0.940 with a sensitivity of 84.4% in 205 HCC cases (BCLC stage 0/A, 167) and a specificity of 90.3% in 318 controls (CHB/LC, 100; BHL, 102; HC, 116). When evaluated in an independent test set, the HepaAiQ model exhibited a sensitivity of 70.8% in 65 HCC patients at BCLC stage 0/A and a specificity of 89.5% in 124 patients with CHB/LC. Moreover, HepaAiQ model was assessed in paired pre- and postoperative plasma samples from 103 HCC patients and correlated with 2-year patient outcomes. Patients with high postoperative HepaAiQ score showed a higher recurrence risk (Hazard ratio, 3.33, p < .001). CONCLUSIONS HepaAiQ, a noninvasive qMSP assay, was developed to accurately measure HCC-specific DMRs and shows great potential for the diagnosis, detection and prognosis of HCC, benefiting at-risk populations.
Collapse
Affiliation(s)
- De-Zhen Guo
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Ao Huang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Ying-Chao Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P. R. China
| | | | - Hui Wang
- Singlera Genomics Ltd., Shanghai, China
| | - Xiang-Lei Xing
- Biliary Tract Surgery Department IV, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Shi-Yu Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Jian-Wen Cheng
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | | | | | | | - Qing Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Chen
- XiangYa Medical Laboratory, Central South University, Changsha, Hunan, China
| | - Zhi-Xi Su
- Singlera Genomics Ltd., Shanghai, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Rui Liu
- Singlera Genomics Ltd., Shanghai, China
| | - Xiao-Long Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P. R. China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Xin-Rong Yang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| |
Collapse
|
215
|
Blukacz L, Nuciforo S, Fucile G, Trulsson F, Duthaler U, Wieland S, Heim MH. Inhibition of the transmembrane transporter ABCB1 overcomes resistance to doxorubicin in patient-derived organoid models of HCC. Hepatol Commun 2024; 8:e0437. [PMID: 38696353 PMCID: PMC11068137 DOI: 10.1097/hc9.0000000000000437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/12/2024] [Indexed: 05/04/2024] Open
Abstract
BACKGROUND Transarterial chemoembolization is the first-line treatment for intermediate-stage HCC. However, the response rate to transarterial chemoembolization varies, and the molecular mechanisms underlying variable responses are poorly understood. Patient-derived hepatocellular carcinoma organoids (HCCOs) offer a novel platform to investigate the molecular mechanisms underlying doxorubicin resistance. METHODS We evaluated the effects of hypoxia and doxorubicin on cell viability and cell cycle distribution in 20 patient-derived HCCO lines. The determinants of doxorubicin response were identified by comparing the transcriptomes of sensitive to resistant HCCOs. Candidate genes were validated by pharmacological inhibition. RESULTS Hypoxia reduced the proliferation of HCCOs and increased the number of cells in the G0/G1 phase of the cell cycle, while decreasing the number in the S phase. The IC50s of the doxorubicin response varied widely, from 29nM to >1µM. Doxorubicin and hypoxia did not exhibit synergistic effects but were additive in some HCCOs. Doxorubicin reduced the number of cells in the G0/G1 and S phases and increased the number in the G2 phase under both normoxia and hypoxia. Genes related to drug metabolism and export, most notably ABCB1, were differentially expressed between doxorubicin-resistant and doxorubicin-sensitive HCCOs. Small molecule inhibition of ABCB1 increased intracellular doxorubicin levels and decreased drug tolerance in resistant HCCOs. CONCLUSIONS The inhibitory effects of doxorubicin treatment and hypoxia on HCCO proliferation are variable, suggesting an important role of tumor-cell intrinsic properties in doxorubicin resistance. ABCB1 is a determinant of doxorubicin response in HCCOs. Combination treatment of doxorubicin and ABCB1 inhibition may increase the response rate to transarterial chemoembolization.
Collapse
MESH Headings
- Doxorubicin/pharmacology
- Humans
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- Organoids/drug effects
- Antibiotics, Antineoplastic/pharmacology
- Antibiotics, Antineoplastic/therapeutic use
- Cell Proliferation/drug effects
- Cell Line, Tumor
- Cell Survival/drug effects
- Chemoembolization, Therapeutic
- Cell Cycle/drug effects
Collapse
Affiliation(s)
- Lauriane Blukacz
- Department of Biomedicine, Hepatology Laboratory, University and University Hospital Basel, Basel, Switzerland
| | - Sandro Nuciforo
- Department of Biomedicine, Hepatology Laboratory, University and University Hospital Basel, Basel, Switzerland
| | - Geoffrey Fucile
- sciCORE Center for Scientific Computing and Center for Data Analytics, University of Basel, Basel, Switzerland
| | - Fredrik Trulsson
- Department of Biomedicine, Hepatology Laboratory, University and University Hospital Basel, Basel, Switzerland
| | - Urs Duthaler
- Department of Biomedicine, Clinical Pharmacology and Toxicology, University and University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, Clinical Pharmacology and Toxicology, University of Basel, Basel, Switzerland
| | - Stefan Wieland
- Department of Biomedicine, Hepatology Laboratory, University and University Hospital Basel, Basel, Switzerland
| | - Markus H. Heim
- Department of Biomedicine, Hepatology Laboratory, University and University Hospital Basel, Basel, Switzerland
- University Digestive Health Care Center Basel - Clarunis, Basel, Switzerland
| |
Collapse
|
216
|
Kodama T, Takehara T. Molecular Genealogy of Metabolic-associated Hepatocellular Carcinoma. Semin Liver Dis 2024; 44:147-158. [PMID: 38499207 PMCID: PMC11245329 DOI: 10.1055/a-2289-2298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
This review examines the latest epidemiological and molecular pathogenic findings of metabolic-associated hepatocellular carcinoma (HCC). Its increasing prevalence is a significant concern and reflects the growing burden of obesity and metabolic diseases, including metabolic dysfunction-associated steatotic liver disease, formerly known as nonalcoholic fatty liver disease, and type 2 diabetes. Metabolic-associated HCC has unique molecular abnormality and distinctive gene expression patterns implicating aberrations in bile acid, fatty acid metabolism, oxidative stress, and proinflammatory pathways. Furthermore, a notable frequency of single nucleotide polymorphisms in genes such as patatin-like phospholipase domain-containing 3, transmembrane 6 superfamily member 2, glucokinase regulator, and membrane-bound O-acyltransferase domain-containing 7 has been observed. The tumor immune microenvironment of metabolic-associated HCC is characterized by unique phenotypes of macrophages, neutrophils, and T lymphocytes. Additionally, the pathogenesis of metabolic-associated HCC is influenced by abnormal lipid metabolism, insulin resistance, and dysbiosis. In conclusion, deciphering the intricate interactions among metabolic processes, genetic predispositions, inflammatory responses, immune regulation, and microbial ecology is imperative for the development of novel therapeutic and preventative measures against metabolic-associated HCC.
Collapse
Affiliation(s)
- Takahiro Kodama
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
217
|
Das D, Wang X, Chiu YC, Bouamar H, Sharkey FE, Lopera JE, Lai Z, Weintraub ST, Han X, Zou Y, Chen HIH, Zeballos Torrez CR, Gu X, Cserhati M, Michalek JE, Halff GA, Chen Y, Zheng S, Cigarroa FG, Sun LZ. Integrative multi-omics characterization of hepatocellular carcinoma in Hispanic patients. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.27.24306447. [PMID: 38746245 PMCID: PMC11092709 DOI: 10.1101/2024.04.27.24306447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Background The incidence and mortality rates of hepatocellular carcinoma (HCC) among Hispanics in the United States are much higher than those of non-Hispanic whites. We conducted comprehensive multi-omics analyses to understand molecular alterations in HCC among Hispanic patients. Methods Paired tumor and adjacent non-tumor samples were collected from 31 Hispanic HCC in South Texas (STX-Hispanic) for genomic, transcriptomic, proteomic, and metabolomic profiling. Additionally, serum lipids were profiled in 40 Hispanic and non-Hispanic patients with or without clinically diagnosed HCC. Results Exome sequencing revealed high mutation frequencies of AXIN2 and CTNNB1 in STX Hispanic HCCs, suggesting a predominant activation of the Wnt/β-catenin pathway. The TERT promoter mutation frequency was also remarkably high in the Hispanic cohort. Cell cycles and liver functions were identified as positively- and negatively-enriched, respectively, with gene set enrichment analysis. Gene sets representing specific liver metabolic pathways were associated with dysregulation of corresponding metabolites. Negative enrichment of liver adipogenesis and lipid metabolism corroborated with a significant reduction in most lipids in the serum samples of HCC patients. Two HCC subtypes from our Hispanic cohort were identified and validated with the TCGA liver cancer cohort. The subtype with better overall survival showed higher activity of immune and angiogenesis signatures, and lower activity of liver function-related gene signatures. It also had higher levels of immune checkpoint and immune exhaustion markers. Conclusions Our study revealed some specific molecular features of Hispanic HCC and potential biomarkers for therapeutic management of HCC and provides a unique resource for studying Hispanic HCC.
Collapse
|
218
|
Bakiri L, Hasenfuss SC, Guío-Carrión A, Thomsen MK, Hasselblatt P, Wagner EF. Liver cancer development driven by the AP-1/c-Jun~Fra-2 dimer through c-Myc. Proc Natl Acad Sci U S A 2024; 121:e2404188121. [PMID: 38657045 PMCID: PMC11067056 DOI: 10.1073/pnas.2404188121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death. HCC incidence is on the rise, while treatment options remain limited. Thus, a better understanding of the molecular pathways involved in HCC development has become a priority to guide future therapies. While previous studies implicated the Activator Protein-1 (AP-1) (Fos/Jun) transcription factor family members c-Fos and c-Jun in HCC formation, the contribution of Fos-related antigens (Fra-) 1 and 2 is unknown. Here, we show that hepatocyte-restricted expression of a single chain c-Jun~Fra-2 protein, which functionally mimics the c-Jun/Fra-2 AP-1 dimer, results in spontaneous HCC formation in c-Jun~Fra-2hep mice. Several hallmarks of human HCC, such as cell cycle dysregulation and the expression of HCC markers are observed in liver tumors arising in c-Jun~Fra-2hep mice. Tumorigenesis occurs in the context of mild inflammation, low-grade fibrosis, and Pparγ-driven dyslipidemia. Subsequent analyses revealed increased expression of c-Myc, evidently under direct regulation by AP-1 through a conserved distal 3' enhancer. Importantly, c-Jun~Fra-2-induced tumors revert upon switching off transgene expression, suggesting oncogene addiction to the c-Jun~Fra-2 transgene. Tumors escaping reversion maintained c-Myc and c-Myc target gene expression, likely due to increased c-Fos. Interfering with c-Myc in established tumors using the Bromodomain and Extra-Terminal motif inhibitor JQ-1 diminished liver tumor growth in c-Jun~Fra-2 mutant mice. Thus, our data establish c-Jun~Fra-2hep mice as a model to study liver tumorigenesis and identify the c-Jun/Fra-2-Myc interaction as a potential target to improve HCC patient stratification and/or therapy.
Collapse
Affiliation(s)
- Latifa Bakiri
- Laboratory Genes and Disease, Department of Laboratory Medicine, Medical University of Vienna, 1090, Vienna, Austria
- Genes, Development and Disease Group, National Cancer Research Centre, 28029, Madrid, Spain
| | - Sebastian C. Hasenfuss
- Genes, Development and Disease Group, National Cancer Research Centre, 28029, Madrid, Spain
| | - Ana Guío-Carrión
- Genes, Development and Disease Group, National Cancer Research Centre, 28029, Madrid, Spain
| | - Martin K. Thomsen
- Department of Biomedicine, University of Aarhus, 8000, Aarhus, Denmark
| | - Peter Hasselblatt
- Department of Medicine II, University Hospital and Faculty of Medicine, 79106, Freiburg, Germany
| | - Erwin F. Wagner
- Laboratory Genes and Disease, Department of Laboratory Medicine, Medical University of Vienna, 1090, Vienna, Austria
- Laboratory Genes and Disease, Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
| |
Collapse
|
219
|
Ouyang G, Li Q, Wei Y, Dai W, Deng H, Liu Y, Li J, Li M, Luo S, Li S, Liang Y, Pan G, Yang J, Gan T. Identification of PANoptosis-related subtypes, construction of a prognosis signature, and tumor microenvironment landscape of hepatocellular carcinoma using bioinformatic analysis and experimental verification. Front Immunol 2024; 15:1323199. [PMID: 38742112 PMCID: PMC11089137 DOI: 10.3389/fimmu.2024.1323199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most lethal malignancies worldwide. PANoptosis is a recently unveiled programmed cell death pathway, Nonetheless, the precise implications of PANoptosis within the context of HCC remain incompletely elucidated. Methods We conducted a comprehensive bioinformatics analysis to evaluate both the expression and mutation patterns of PANoptosis-related genes (PRGs). We categorized HCC into two clusters and identified differentially expressed PANoptosis-related genes (DEPRGs). Next, a PANoptosis risk model was constructed using LASSO and multivariate Cox regression analyses. The relationship between PRGs, risk genes, the risk model, and the immune microenvironment was studies. In addition, drug sensitivity between high- and low-risk groups was examined. The expression profiles of these four risk genes were elucidate by qRT-PCR or immunohistochemical (IHC). Furthermore, the effect of CTSC knock down on HCC cell behavior was verified using in vitro experiments. Results We constructed a prognostic signature of four DEPRGs (CTSC, CDCA8, G6PD, and CXCL9). Receiver operating characteristic curve analyses underscored the superior prognostic capacity of this signature in assessing the outcomes of HCC patients. Subsequently, patients were stratified based on their risk scores, which revealed that the low-risk group had better prognosis than those in the high-risk group. High-risk group displayed a lower Stromal Score, Immune Score, ESTIMATE score, and higher cancer stem cell content, tumor mutation burden (TMB) values. Furthermore, a correlation was noted between the risk model and the sensitivity to 56 chemotherapeutic agents, as well as immunotherapy efficacy, in patient with. These findings provide valuable guidance for personalized clinical treatment strategies. The qRT-PCR analysis revealed that upregulated expression of CTSC, CDCA8, and G6PD, whereas downregulated expression of CXCL9 in HCC compared with adjacent tumor tissue and normal liver cell lines. The knockdown of CTSC significantly reduced both HCC cell proliferation and migration. Conclusion Our study underscores the promise of PANoptosis-based molecular clustering and prognostic signatures in predicting patient survival and discerning the intricacies of the tumor microenvironment within the context of HCC. These insights hold the potential to advance our comprehension of the therapeutic contribution of PANoptosis plays in HCC and pave the way for generating more efficacious treatment strategies.
Collapse
Affiliation(s)
- Guoqing Ouyang
- Department of General Surgery, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, Guangxi, China
- Liuzhou Hepatobiliary and Pancreatic Diseases Precision Diagnosis Research Center of Engineering Technology, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
| | - Qiuyun Li
- Department of General Surgery, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
- Liuzhou Hepatobiliary and Pancreatic Diseases Precision Diagnosis Research Center of Engineering Technology, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
| | - Yangnian Wei
- Department of Hepatobiliary Surgery, Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Wenbin Dai
- Department of Pathology, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
| | - Haojian Deng
- Department of Emergency Medical, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
| | - Youli Liu
- Department of Pathology, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
| | - Jiaguang Li
- Department of Pathology, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
| | - Mingjuan Li
- Department of General Surgery, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
| | - Shunwen Luo
- Department of General Surgery, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
| | - Shuang Li
- Department of General Surgery, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
| | - Yunying Liang
- Department of General Surgery, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
| | - Guandong Pan
- Department of General Surgery, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
- Liuzhou Hepatobiliary and Pancreatic Diseases Precision Diagnosis Research Center of Engineering Technology, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
| | - Jianqing Yang
- Department of General Surgery, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
- Liuzhou Hepatobiliary and Pancreatic Diseases Precision Diagnosis Research Center of Engineering Technology, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
| | - Tao Gan
- Department of General Surgery, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
- Department of Emergency Medical, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
- Key Specialty Department of Emergency Medicine in Guangxi, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
| |
Collapse
|
220
|
Ma J, Chen Z, Liu S, Chen C, Guan W, Geng M, Xiao H, Mao B, Wang B. Prognostic effect of DNA methylation of BTG2 gene in Chinese hepatocellular carcinoma. Heliyon 2024; 10:e28580. [PMID: 38560180 PMCID: PMC10979207 DOI: 10.1016/j.heliyon.2024.e28580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
Background This study aims to develop a prognostic model for overall survival based on potential methylation sites within B-cell translocation gene 2 (BTG2) in Chinese patients with hepatocellular carcinoma (HCC). Methods This is a retrospective study. The beta values of nine CpG sites and RSEM normalized count values of BTG2 gene were extracted from the Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA-LIHC) (TCGA-LIHC) dataset, with the beta value representing the methylation level by indicating the ratio of the intensity of the methylated bead type to the combined locus intensity. Pyrosequencing was performed to determine the range of methylation values surrounding cg01798157 site in BTG2 gene. A weighted linear model was developed to predict the overall survival (OS). Results The beta value of cg01798157 was significantly negatively associated with the mRNA expression of BTG2 in the TCGA-LIHC dataset (Spearman's rho = -0.5306, P = 2.27 × 10-27). The methylation level of cg01798157 was significantly associated with OS in the cohort of 51 Chinese HCC patients (Hazard ratio = 0.597, 95% CI: 0.434-0.820, P = 0.001). Multivariate Cox regression analysis identified methylation level of cg01798157, cirrhosis, and microvascular invasion as independent prognostic factors. The prognostic efficiency of death risk score was superior to that of cirrhosis or microvascular invasion alone. Conclusions The methylation level of cg01798157 in BTG2 may be an epigenetic biomarker in Chinese patients with resectable HCC.
Collapse
Affiliation(s)
- Jungang Ma
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Zhuo Chen
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Shuixia Liu
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Chuan Chen
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Wei Guan
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Mingying Geng
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - He Xiao
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Bijing Mao
- Department of Oncology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Bin Wang
- Department of Oncology, The Seventh People's Hospital of Chongqing (Affiliated Central Hospital of Chongqing University of Technology), Chongqing, 400054, China
| |
Collapse
|
221
|
Liu X, Zhang K, Kaya NA, Jia Z, Wu D, Chen T, Liu Z, Zhu S, Hillmer AM, Wuestefeld T, Liu J, Chan YS, Hu Z, Ma L, Jiang L, Zhai W. Tumor phylogeography reveals block-shaped spatial heterogeneity and the mode of evolution in Hepatocellular Carcinoma. Nat Commun 2024; 15:3169. [PMID: 38609353 PMCID: PMC11015015 DOI: 10.1038/s41467-024-47541-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Solid tumors are complex ecosystems with heterogeneous 3D structures, but the spatial intra-tumor heterogeneity (sITH) at the macroscopic (i.e., whole tumor) level is under-explored. Using a phylogeographic approach, we sequence genomes and transcriptomes from 235 spatially informed sectors across 13 hepatocellular carcinomas (HCC), generating one of the largest datasets for studying sITH. We find that tumor heterogeneity in HCC segregates into spatially variegated blocks with large genotypic and phenotypic differences. By dissecting the transcriptomic heterogeneity, we discover that 30% of patients had a "spatially competing distribution" (SCD), where different spatial blocks have distinct transcriptomic subtypes co-existing within a tumor, capturing the critical transition period in disease progression. Interestingly, the tumor regions with more advanced transcriptomic subtypes (e.g., higher cell cycle) often take clonal dominance with a wider geographic range, rejecting neutral evolution for SCD patients. Extending the statistical tests for detecting natural selection to many non-SCD patients reveal varying levels of selective signal across different tumors, implying that many evolutionary forces including natural selection and geographic isolation can influence the overall pattern of sITH. Taken together, tumor phylogeography unravels a dynamic landscape of sITH, pinpointing important evolutionary and clinical consequences of spatial heterogeneity in cancer.
Collapse
Affiliation(s)
- Xiaodong Liu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ke Zhang
- Department of General Surgery, Beijing Ditan Hospital, Capital Medical University, No. 8, Jingshun East Street, Chaoyang District, Beijing, P.R. China
| | - Neslihan A Kaya
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Zhe Jia
- Department of General Surgery, Beijing Ditan Hospital, Capital Medical University, No. 8, Jingshun East Street, Chaoyang District, Beijing, P.R. China
| | - Dafei Wu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tingting Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Zhiyuan Liu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Sinan Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Centre for Quantitative Medicine, Program in Health Services and Systems Research, Duke-NUS Medical School, Singapore, Singapore
| | - Axel M Hillmer
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Torsten Wuestefeld
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Jin Liu
- Centre for Quantitative Medicine, Program in Health Services and Systems Research, Duke-NUS Medical School, Singapore, Singapore
| | - Yun Shen Chan
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Zheng Hu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Liang Ma
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Li Jiang
- Department of General Surgery, Beijing Ditan Hospital, Capital Medical University, No. 8, Jingshun East Street, Chaoyang District, Beijing, P.R. China.
| | - Weiwei Zhai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
222
|
Yang H, Cheng J, Zhuang H, Xu H, Wang Y, Zhang T, Yang Y, Qian H, Lu Y, Han F, Cao L, Yang N, Liu R, Yang X, Zhang J, Wu J, Zhang N. Pharmacogenomic profiling of intra-tumor heterogeneity using a large organoid biobank of liver cancer. Cancer Cell 2024; 42:535-551.e8. [PMID: 38593780 DOI: 10.1016/j.ccell.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 12/27/2023] [Accepted: 03/11/2024] [Indexed: 04/11/2024]
Abstract
Inter- and intra-tumor heterogeneity is a major hurdle in primary liver cancer (PLC) precision therapy. Here, we establish a PLC biobank, consisting of 399 tumor organoids derived from 144 patients, which recapitulates histopathology and genomic landscape of parental tumors, and is reliable for drug sensitivity screening, as evidenced by both in vivo models and patient response. Integrative analysis dissects PLC heterogeneity, regarding genomic/transcriptomic characteristics and sensitivity to seven clinically relevant drugs, as well as clinical associations. Pharmacogenomic analysis identifies and validates multi-gene expression signatures predicting drug response for better patient stratification. Furthermore, we reveal c-Jun as a major mediator of lenvatinib resistance through JNK and β-catenin signaling. A compound (PKUF-01) comprising moieties of lenvatinib and veratramine (c-Jun inhibitor) is synthesized and screened, exhibiting a marked synergistic effect. Together, our study characterizes the landscape of PLC heterogeneity, develops predictive biomarker panels, and identifies a lenvatinib-resistant mechanism for combination therapy.
Collapse
Affiliation(s)
- Hui Yang
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
| | - Jinghui Cheng
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
| | - Hao Zhuang
- Department of Hepatobiliopancreatic Surgery, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Hongchuang Xu
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Yinuo Wang
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
| | - Tingting Zhang
- Department of Hepatobiliopancreatic Surgery, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Yinmo Yang
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, China
| | - Honggang Qian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yinying Lu
- Comprehensive Liver Cancer Department, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Feng Han
- Department of Hepatobiliopancreatic Surgery, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Lihua Cao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Center for Cancer Bioinformatics, Peking University Cancer Hospital & Institute, Beijing, China; International Cancer Institute, Peking University Health Science Center, Beijing, China
| | - Nanmu Yang
- Department of Hepatobiliopancreatic Surgery, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Rong Liu
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
| | - Xing Yang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Jiangong Zhang
- Department of Cancer Epidemiology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China.
| | - Jianmin Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Center for Cancer Bioinformatics, Peking University Cancer Hospital & Institute, Beijing, China; International Cancer Institute, Peking University Health Science Center, Beijing, China.
| | - Ning Zhang
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China; International Cancer Institute, Peking University Health Science Center, Beijing, China; Yunnan Baiyao Group, Kunming, China.
| |
Collapse
|
223
|
Wang C, Chen C, Hu W, Tao L, Chen J. Revealing the role of necroptosis microenvironment: FCGBP + tumor-associated macrophages drive primary liver cancer differentiation towards cHCC-CCA or iCCA. Apoptosis 2024; 29:460-481. [PMID: 38017206 DOI: 10.1007/s10495-023-01908-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 11/30/2023]
Abstract
Previous research has demonstrated that the conversion of hepatocellular carcinoma (HCC) to intrahepatic cholangiocarcinoma (iCCA) can be stimulated by manipulating the tumor microenvironment linked with necroptosis. However, the specific cells regulating the necroptosis microenvironment have not yet been identified. Additionally, further inquiry into the mechanism of how the tumor microenvironment regulates necroptosis and its impact on primary liver cancer(PLC) progression may be beneficial for precision therapy. We recruited a single-cell RNA sequencing dataset (scRNA-seq) with 34 samples from 4 HCC patients and 3 iCCA patients, and a Spatial Transcriptomic (ST) dataset including one each of HCC, iCCA, and combined hepatocellular-cholangiocarcinoma (cHCC-CCA). Quality control, dimensionality reduction and clustering were based on Seurat software (v4.2.2) process and batch effects were removed by harmony (v0.1.1) software. The pseudotime analysis (also known as cell trajectory) in the single cell dataset was performed by monocle2 software (v2.24.0). Calculation of necroptosis fraction was performed by AUCell (v1.16.0) software. Switch gene analysis was performed by geneSwitches(v0.1.0) software. Dimensionality reduction, clustering, and spatial image in ST dataset were performed by Seurat (v4.0.2). Tumor cell identification, tumor subtype characterization, and cell type deconvolution in spot were performed by SpaCET (v1.0.0) software. Immunofluorescence and immunohistochemistry experiments were used to prove our conclusions. Analysis of intercellular communication was performed using CellChat software (v1.4.0). ScRNA-seq analysis of HCC and iCCA revealed that necroptosis predominantly occurred in the myeloid cell subset, particularly in FCGBP + SPP1 + tumor-associated macrophages (TAMs), which had the highest likelihood of undergoing necroptosis. The existence of macrophages undergoing necroptosis cell death was further confirmed by immunofluorescence. Regions of HCC with poor differentiation, cHCC-CCA with more cholangiocarcinoma features, and the tumor region of iCCA shared spatial colocalization with FCGBP + macrophages, as confirmed by spatial transcriptomics, immunohistochemistry and immunofluorescence. Pseudotime analysis showed that premalignant cells could progress into two directions, one towards HCC and the other towards iCCA and cHCC-CCA. Immunofluorescence and immunohistochemistry experiments demonstrated that the number of macrophages undergoing necroptosis in cHCC-CCA was higher than in iCCA and HCC, the number of macrophages undergoing necroptosis in cHCC-CCA with cholangiocarcinoma features was more than in cHCC-CCA with hepatocellular carcinoma features. Further investigation showed that myeloid cells with the highest necroptosis score were derived from the HCC_4 case, which had a severe inflammatory background on pathological histology and was likely to progress towards iCCA and cHCC-CCA. Switchgene analysis indicated that S100A6 may play a significant role in the progression of premalignant cells towards iCCA and cHCC-CCA. Immunohistochemistry confirmed the expression of S100A6 in PLC, the more severe inflammatory background of the tumor area, the more cholangiocellular carcinoma features of the tumor area, S100A6 expression was higher. The emergence of necroptosis microenvironment was found to be significantly associated with FCGBP + SPP1 + TAMs in PLC. In the presence of necroptosis microenvironment, premalignant cells appeared to transform into iCCA or cHCC-CCA. In contrast, without a necroptosis microenvironment, premalignant cells tended to develop into HCC, exhibiting amplified stemness-related genes (SRGs) and heightened malignancy.
Collapse
Affiliation(s)
- Chun Wang
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Cuimin Chen
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Wenting Hu
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Lili Tao
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Jiakang Chen
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China.
| |
Collapse
|
224
|
Eteleeb AM, Novotny BC, Tarraga CS, Sohn C, Dhungel E, Brase L, Nallapu A, Buss J, Farias F, Bergmann K, Bradley J, Norton J, Gentsch J, Wang F, Davis AA, Morris JC, Karch CM, Perrin RJ, Benitez BA, Harari O. Brain high-throughput multi-omics data reveal molecular heterogeneity in Alzheimer's disease. PLoS Biol 2024; 22:e3002607. [PMID: 38687811 PMCID: PMC11086901 DOI: 10.1371/journal.pbio.3002607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 05/10/2024] [Accepted: 03/28/2024] [Indexed: 05/02/2024] Open
Abstract
Unbiased data-driven omic approaches are revealing the molecular heterogeneity of Alzheimer disease. Here, we used machine learning approaches to integrate high-throughput transcriptomic, proteomic, metabolomic, and lipidomic profiles with clinical and neuropathological data from multiple human AD cohorts. We discovered 4 unique multimodal molecular profiles, one of them showing signs of poor cognitive function, a faster pace of disease progression, shorter survival with the disease, severe neurodegeneration and astrogliosis, and reduced levels of metabolomic profiles. We found this molecular profile to be present in multiple affected cortical regions associated with higher Braak tau scores and significant dysregulation of synapse-related genes, endocytosis, phagosome, and mTOR signaling pathways altered in AD early and late stages. AD cross-omics data integration with transcriptomic data from an SNCA mouse model revealed an overlapping signature. Furthermore, we leveraged single-nuclei RNA-seq data to identify distinct cell-types that most likely mediate molecular profiles. Lastly, we identified that the multimodal clusters uncovered cerebrospinal fluid biomarkers poised to monitor AD progression and possibly cognition. Our cross-omics analyses provide novel critical molecular insights into AD.
Collapse
Affiliation(s)
- Abdallah M. Eteleeb
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University, St. Louis, Missouri, United States of America
| | - Brenna C. Novotny
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
| | - Carolina Soriano Tarraga
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
| | - Christopher Sohn
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
| | - Eliza Dhungel
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Logan Brase
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
| | - Aasritha Nallapu
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
| | - Jared Buss
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
| | - Fabiana Farias
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
- NeuroGenomics and Informatics Center, Washington University, St. Louis, Missouri, United States of America
| | - Kristy Bergmann
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
- NeuroGenomics and Informatics Center, Washington University, St. Louis, Missouri, United States of America
| | - Joseph Bradley
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
- NeuroGenomics and Informatics Center, Washington University, St. Louis, Missouri, United States of America
| | - Joanne Norton
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
- NeuroGenomics and Informatics Center, Washington University, St. Louis, Missouri, United States of America
| | - Jen Gentsch
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
- NeuroGenomics and Informatics Center, Washington University, St. Louis, Missouri, United States of America
| | - Fengxian Wang
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
- NeuroGenomics and Informatics Center, Washington University, St. Louis, Missouri, United States of America
| | - Albert A. Davis
- Department of Neurology, Washington University, St. Louis, Missouri, United States of America
- Hope Center for Neurological Disorders, Washington University, St. Louis, Missouri, United States of America
| | - John C. Morris
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University, St. Louis, Missouri, United States of America
- Department of Neurology, Washington University, St. Louis, Missouri, United States of America
- Hope Center for Neurological Disorders, Washington University, St. Louis, Missouri, United States of America
| | - Celeste M. Karch
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University, St. Louis, Missouri, United States of America
- NeuroGenomics and Informatics Center, Washington University, St. Louis, Missouri, United States of America
- Hope Center for Neurological Disorders, Washington University, St. Louis, Missouri, United States of America
| | - Richard J. Perrin
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University, St. Louis, Missouri, United States of America
- Department of Neurology, Washington University, St. Louis, Missouri, United States of America
- Hope Center for Neurological Disorders, Washington University, St. Louis, Missouri, United States of America
- Department of Pathology and Immunology, Washington University, St. Louis, Missouri, United States of America
| | - Bruno A. Benitez
- Department of Neurology and Neuroscience, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Oscar Harari
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University, St. Louis, Missouri, United States of America
- Hope Center for Neurological Disorders, Washington University, St. Louis, Missouri, United States of America
| |
Collapse
|
225
|
Wu H, Geng Q, Shi W, Qiu C. Comprehensive pan-cancer analysis reveals CCDC58 as a carcinogenic factor related to immune infiltration. Apoptosis 2024; 29:536-555. [PMID: 38066393 DOI: 10.1007/s10495-023-01919-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 02/18/2024]
Abstract
CCDC58, a member of the CCDC protein family, has been primarily associated with the malignant progression of hepatocellular carcinoma (HCC) and breast cancer, with limited research conducted on its involvement in other tumor types. We aimed to assess the significance of CCDC58 in pan-cancer. We utilized the TCGA, GTEx, and UALCAN databases to perform the differential expression of CCDC58 at both mRNA and protein levels. Prognostic value was evaluated through univariate Cox regression and Kaplan-Meier methods. Mutation and methylation analyses were conducted using the cBioPortal and SMART databases. We identified genes interacting with and correlated to CCDC58 through STRING and GEPIA2, respectively. Subsequently, we performed GO and KEGG enrichment analyses. To gain insights into the functional status of CCDC58 at the single-cell level, we utilized CancerSEA. We explored the correlation between CCDC58 and immune infiltration as well as immunotherapy using the ESTIMATE package, TIMER2.0, TISIDB, TIDE, TIMSO, and TCIA. We examined the relationship between CCDC58 and tumor heterogeneity, stemness, DNA methyltransferases, and MMR genes. Lastly, we constructed a nomogram based on CCDC58 in HCC and investigated its association with drug sensitivity. CCDC58 expression was significantly upregulated and correlated with poor prognosis across various tumor types. The mutation frequency of CCDC58 was found to be increased in 25 tumors. We observed a negative correlation between CCDC58 expression and the methylation sites in the majority of tumors. CCDC58 showed negative correlations with immune and stromal scores, as well as with NK T cells, Tregs, CAFs, endothelial cells, and immunomodulators. Its value in immunotherapy was comparable to that of tumor mutational burden. CCDC58 exhibited positive correlations with tumor heterogeneity, stemness, DNA methyltransferase genes, and MMR genes. In HCC, CCDC58 was identified as an independent risk factor and demonstrated potential associations with multiple drugs. CCDC58 demonstrates significant clinical value as a prognostic marker and indicator of immune response across various tumor types. Its comprehensive analysis provides insights into its potential implications in pan-cancer research.
Collapse
Affiliation(s)
- Huili Wu
- Department of Endodontics, Zhonglou Hospital, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, China
| | - Qing Geng
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Wenxiang Shi
- Department of Pediatric Cardiology, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Chenjie Qiu
- Department of General Surgery, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, China.
| |
Collapse
|
226
|
Franses JW, Duda DG. Scirrhous HCC: Another 'omic thread in the HCC tapestry. Hepatology 2024; 79:747-748. [PMID: 37725712 DOI: 10.1097/hep.0000000000000609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023]
Affiliation(s)
- Joseph W Franses
- Department of Medicine, Section of Hematology-Oncology, The University of Chicago Comprehensive Cancer Center, Chicago, Illinois, USA
| | - Dan G Duda
- Department of Radiation Oncology, Steele Laboratories for Tumor Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
227
|
Chen S, Liao C, Hu H, Liao J, Chen Z, Li S, Zeng X, Peng B, Shen S, Li D, Li S, Lai J, Peng S, Xie Y, Kuang M. Hypoxia-driven tumor stromal remodeling and immunosuppressive microenvironment in scirrhous HCC. Hepatology 2024; 79:780-797. [PMID: 37725755 DOI: 10.1097/hep.0000000000000599] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/26/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND AND AIMS Scirrhous HCC (SHCC) is one of the unique subtypes of HCC, characterized by abundant fibrous stroma in the tumor microenvironment. However, the molecular traits of SHCC remain unclear, which is essential to develop specialized therapeutic approaches for SHCC. APPROACH AND RESULTS We presented an integrative analysis containing single-cell RNA-sequencing, whole-exome sequencing, and bulk RNA-sequencing in SHCC and usual HCC samples from 134 patients to delineate genomic features, transcriptomic profiles, and stromal immune microenvironment of SHCC. Multiplexed immunofluorescence staining, flow cytometry, and functional experiments were performed for validation. Here, we identified SHCC presented with less genomic heterogeneity while possessing a unique transcriptomic profile different from usual HCC. Insulin-like growth factor 2 was significantly upregulated in SHCC tumor cells compared to usual HCC, and could serve as a potential diagnostic biomarker for SHCC. Significant tumor stromal remodeling and hypoxia were observed in SHCC with enrichment of matrix cancer-associated fibroblasts and upregulation of hypoxic pathways. Insulin-like growth factor 2 was identified as a key mediator in shaping the hypoxic stromal microenvironment of SHCC. Under this microenvironment, SHCC exhibited an immunosuppressive niche correlated to enhanced VEGFA signaling activity, where CD4 + T cells and CD8 + T cells were dysfunctional. Furthermore, we found that another hypoxic-related molecule SPP1 from SHCC tumor cells suppressed the function of dendritic cells via the SPP1-CD44 axis, which also probably hindered the activation of T cells. CONCLUSION We uncovered the genomic characteristics of SHCC, and revealed a hypoxia-driven tumor stroma remodeling and immunosuppressive microenvironment in SHCC.
Collapse
Affiliation(s)
- Shuling Chen
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Changyi Liao
- Cancer Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Huanjing Hu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Junbin Liao
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zebin Chen
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Shuang Li
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xuezhen Zeng
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Bo Peng
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Shunli Shen
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Dongming Li
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Shaoqiang Li
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jiaming Lai
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Sui Peng
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Clinical Trials Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yubin Xie
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Ming Kuang
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
228
|
Wang M, Cao L, Wang Y, Huang H, Cao S, Tian X, Lei J. Prediction of vessels encapsulating tumor clusters pattern and prognosis of hepatocellular carcinoma based on preoperative gadolinium-ethoxybenzyl-diethylenetriaminepentaacetic acid magnetic resonance imaging. J Gastrointest Surg 2024; 28:442-450. [PMID: 38583894 DOI: 10.1016/j.gassur.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/26/2024] [Accepted: 02/03/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND Vessels encapsulating tumor clusters (VETC) is a novel vascular pattern distinct from microvascular invasion that is significantly associated with poor prognosis in patients with hepatocellular carcinoma (HCC). This study aimed to predict the VETC pattern and prognosis of patients with HCC based on preoperative gadolinium-ethoxybenzyl-diethylenetriaminepentaacetic acid (Gd-EOB-DTPA) magnetic resonance imaging (MRI). METHODS Patients with HCC who underwent surgical resection and preoperative Gd-EOB-DTPA MRI between January 1, 2016 and August 31, 2022 were retrospectively included. The variables associated with VETC were evaluated using logistic regression. A nomogram model was constructed on the basis of independent risk factors. COX regression was used to determine the variables associated with recurrence-free survival (RFS). RESULTS A total of 98 patients with HCC were retrospectively included. Peritumoral hypointensity on the hepatobiliary phase (HBP) (odd ratio [OR], 2.58; 95% CI, 1.05-6.33; P = .04), tumor-to-liver signal intensity ratio on HBP of ≤0.75 (OR, 27.80; 95% CI, 1.53-502.91; P = .02), and tumor-to-liver apparent diffusion coefficient ratio of ≤1.23 (OR, 4.65; 95% CI, 1.01-21.38; P = .04) were independent predictors of VETC pattern. A nomogram was constructed by combining the aforementioned 3 significant variables. The accuracy, sensitivity, and specificity were 69.79%, 71.74%, and 68.00%, respectively, with an area under the receiver operating characteristic curve of 0.75 (95% CI, 0.65-0.83). The variables significantly associated with RFS of patients with HCC after surgery were Barcelona Clinic Liver Cancer stage (hazard ratio [HR], 2.15; 95% CI, 1.09-4.22; P = .03) and VETC pattern (HR, 2.28; 95% CI, 1.29-4.02; P = .004). CONCLUSION The preoperative imaging features based on Gd-EOB-DTPA MRI can be used to predict the VETC pattern, which has prognostic significance for postoperative RFS of patients with HCC.
Collapse
Affiliation(s)
- Miaomiao Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou City, Gansu Province, China; Department of Radiology, The First Hospital of Lanzhou University, No.1 Donggang West Road, Lanzhou City, Gansu Province, China
| | - Liang Cao
- Department of Radiology, The First Hospital of Lanzhou University, No.1 Donggang West Road, Lanzhou City, Gansu Province, China
| | - Yinzhong Wang
- Department of Radiology, The First Hospital of Lanzhou University, No.1 Donggang West Road, Lanzhou City, Gansu Province, China
| | - Hongliang Huang
- Department of Radiology, The First Hospital of Lanzhou University, No.1 Donggang West Road, Lanzhou City, Gansu Province, China
| | - Shi Cao
- Department of Pathology, The First Hospital of Lanzhou University, Lanzhou City, Gansu Province, China
| | - Xiaoxue Tian
- Department of Nuclear Medicine, Second Hospital of LanZhou University, Lanzhou City, Gansu Province, China
| | - Junqiang Lei
- Department of Radiology, The First Hospital of Lanzhou University, No.1 Donggang West Road, Lanzhou City, Gansu Province, China.
| |
Collapse
|
229
|
Newhook TE, Tsai S, Meric-Bernstam F. Precision Oncology in Hepatopancreatobiliary Cancer Surgery. Surg Oncol Clin N Am 2024; 33:343-367. [PMID: 38401914 DOI: 10.1016/j.soc.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2024]
Abstract
Advances in technology have allowed for the characterization of tumors at the genomic, transcriptomic, and proteomic levels. There are well-established targets for biliary tract cancers, with exciting new targets emerging in pancreatic ductal adenocarcinoma and potential targets in hepatocellular carcinoma. Taken together, these data suggest an important role for molecular profiling for personalizing cancer therapy in advanced disease and need for design of novel neoadjuvant studies to leverage these novel therapeutics perioperatively in the surgical patient.
Collapse
Affiliation(s)
- Timothy E Newhook
- Department of Surgical Oncology, Division of Surgery, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Susan Tsai
- Division of Surgical Oncology, Department of Surgery, Ohio State University Comprehensive Cancer Center, N924 Doan Hall, 410 West 10th Avenue, Columbus, OH 43210, USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, FC8.3044, Houston, TX 77030, USA.
| |
Collapse
|
230
|
Kacar Z, Slud E, Levy D, Candia J, Budhu A, Forgues M, Wu X, Raziuddin A, Tran B, Shetty J, Pomyen Y, Chaisaingmongkol J, Rabibhadana S, Pupacdi B, Bhudhisawasdi V, Lertprasertsuke N, Auewarakul C, Sangrajrang S, Mahidol C, Ruchirawat M, Wang XW. Characterization of tumor evolution by functional clonality and phylogenetics in hepatocellular carcinoma. Commun Biol 2024; 7:383. [PMID: 38553628 PMCID: PMC11245610 DOI: 10.1038/s42003-024-06040-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 03/11/2024] [Indexed: 04/02/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a molecularly heterogeneous solid malignancy, and its fitness may be shaped by how its tumor cells evolve. However, ability to monitor tumor cell evolution is hampered by the presence of numerous passenger mutations that do not provide any biological consequences. Here we develop a strategy to determine the tumor clonality of three independent HCC cohorts of 524 patients with diverse etiologies and race/ethnicity by utilizing somatic mutations in cancer driver genes. We identify two main types of tumor evolution, i.e., linear, and non-linear models where non-linear type could be further divided into classes, which we call shallow branching and deep branching. We find that linear evolving HCC is less aggressive than other types. GTF2IRD2B mutations are enriched in HCC with linear evolution, while TP53 mutations are the most frequent genetic alterations in HCC with non-linear models. Furthermore, we observe significant B cell enrichment in linear trees compared to non-linear trees suggesting the need for further research to uncover potential variations in immune cell types within genomically determined phylogeny types. These results hint at the possibility that tumor cells and their microenvironment may collectively influence the tumor evolution process.
Collapse
Affiliation(s)
- Zeynep Kacar
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
- Department of Mathematics, University of Maryland, College Park, MD, 20742, USA
| | - Eric Slud
- Department of Mathematics, University of Maryland, College Park, MD, 20742, USA
| | - Doron Levy
- Department of Mathematics, University of Maryland, College Park, MD, 20742, USA
| | - Julián Candia
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, 21224, USA
| | - Anuradha Budhu
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Marshonna Forgues
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Xiaolin Wu
- Cancer Research Technology Program, Frederick, MD, 21702, USA
| | - Arati Raziuddin
- Cancer Research Technology Program, Frederick, MD, 21702, USA
| | - Bao Tran
- Cancer Research Technology Program, Frederick, MD, 21702, USA
| | - Jyoti Shetty
- Cancer Research Technology Program, Frederick, MD, 21702, USA
| | - Yotsawat Pomyen
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | | | - Siritida Rabibhadana
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Benjarath Pupacdi
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | | | | | - Chirayu Auewarakul
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| | | | - Chulabhorn Mahidol
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Mathuros Ruchirawat
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok, 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA.
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA.
| |
Collapse
|
231
|
Lachiondo-Ortega S, Rejano-Gordillo CM, Simon J, Lopitz-Otsoa F, C Delgado T, Mazan-Mamczarz K, Goikoetxea-Usandizaga N, Zapata-Pavas LE, García-Del Río A, Guerra P, Peña-Sanfélix P, Hermán-Sánchez N, Al-Abdulla R, Fernandez-Rodríguez C, Azkargorta M, Velázquez-Cruz A, Guyon J, Martín C, Zalamea JD, Egia-Mendikute L, Sanz-Parra A, Serrano-Maciá M, González-Recio I, Gonzalez-Lopez M, Martínez-Cruz LA, Pontisso P, Aransay AM, Barrio R, Sutherland JD, Abrescia NGA, Elortza F, Lujambio A, Banales JM, Luque RM, Gahete MD, Palazón A, Avila MA, G Marin JJ, De S, Daubon T, Díaz-Quintana A, Díaz-Moreno I, Gorospe M, Rodríguez MS, Martínez-Chantar ML. SUMOylation controls Hu antigen R posttranscriptional activity in liver cancer. Cell Rep 2024; 43:113924. [PMID: 38507413 PMCID: PMC11025316 DOI: 10.1016/j.celrep.2024.113924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 08/08/2023] [Accepted: 02/21/2024] [Indexed: 03/22/2024] Open
Abstract
The posttranslational modification of proteins critically influences many biological processes and is a key mechanism that regulates the function of the RNA-binding protein Hu antigen R (HuR), a hub in liver cancer. Here, we show that HuR is SUMOylated in the tumor sections of patients with hepatocellular carcinoma in contrast to the surrounding tissue, as well as in human cell line and mouse models of the disease. SUMOylation of HuR promotes major cancer hallmarks, namely proliferation and invasion, whereas the absence of HuR SUMOylation results in a senescent phenotype with dysfunctional mitochondria and endoplasmic reticulum. Mechanistically, SUMOylation induces a structural rearrangement of the RNA recognition motifs that modulates HuR binding affinity to its target RNAs, further modifying the transcriptomic profile toward hepatic tumor progression. Overall, SUMOylation constitutes a mechanism of HuR regulation that could be potentially exploited as a therapeutic strategy for liver cancer.
Collapse
Affiliation(s)
- Sofia Lachiondo-Ortega
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Claudia M Rejano-Gordillo
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Extremadura, University Institute of Biosanitary Research of Extremadura (INUBE), 06071 Badajoz, Spain; Biofisika Institute, Consejo Superior de Investigaciones Científicas (CSIC), Departamento Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), Leioa, Spain
| | - Jorge Simon
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Fernando Lopitz-Otsoa
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Teresa C Delgado
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Krystyna Mazan-Mamczarz
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA), Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Naroa Goikoetxea-Usandizaga
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - L Estefanía Zapata-Pavas
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Ana García-Del Río
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Pietro Guerra
- Unit of Internal Medicine and Hepatology (UIMH), Department of Medicine (DIMED), University of Padova, 35128 Padua, Italy
| | - Patricia Peña-Sanfélix
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Natalia Hermán-Sánchez
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Department of Cell Biology, Physiology and Immunology of University of Córdoba, Reina Sofia University Hospital, CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), 14004 Córdoba, Spain
| | - Ruba Al-Abdulla
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain; Institute of Medical Biochemistry and Molecular Biology, University Medicine of Greifswald, 17475 Greifswald, Germany
| | - Carmen Fernandez-Rodríguez
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Mikel Azkargorta
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain; Proteomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Carlos III Networked Proteomics Platform (ProteoRed-ISCIII), 48160 Derio, Bizkaia, Spain
| | - Alejandro Velázquez-Cruz
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Joris Guyon
- University of Bordeaux, INSERM, BPH, U1219, 33000 Bordeaux, France; CHU de Bordeaux, Service de Pharmacologie Médicale, 33000 Bordeaux, France
| | - César Martín
- Biofisika Institute, Consejo Superior de Investigaciones Científicas (CSIC), Departamento Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), Leioa, Spain
| | - Juan Diego Zalamea
- Structure and Cell Biology of Viruses Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Leire Egia-Mendikute
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Arantza Sanz-Parra
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Marina Serrano-Maciá
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Irene González-Recio
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Monika Gonzalez-Lopez
- Genome Analysis Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Luis Alfonso Martínez-Cruz
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Patrizia Pontisso
- Unit of Internal Medicine and Hepatology (UIMH), Department of Medicine (DIMED), University of Padova, 35128 Padua, Italy
| | - Ana M Aransay
- Genome Analysis Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Rosa Barrio
- Ubiquitin-likes and Development Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - James D Sutherland
- Ubiquitin-likes and Development Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Nicola G A Abrescia
- Structure and Cell Biology of Viruses Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Félix Elortza
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain; Proteomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Carlos III Networked Proteomics Platform (ProteoRed-ISCIII), 48160 Derio, Bizkaia, Spain
| | - Amaia Lujambio
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jesus M Banales
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain; Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, San Sebastian, Spain; Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Raúl M Luque
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Department of Cell Biology, Physiology and Immunology of University of Córdoba, Reina Sofia University Hospital, CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), 14004 Córdoba, Spain
| | - Manuel D Gahete
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Department of Cell Biology, Physiology and Immunology of University of Córdoba, Reina Sofia University Hospital, CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), 14004 Córdoba, Spain
| | - Asís Palazón
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Matias A Avila
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain; Hepatology Program, Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain; Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain
| | - Jose J G Marin
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain; Experimental Hepatology and Drug Targeting (HEVEPHARM), Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA), Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Thomas Daubon
- University of Bordeaux, CNRS, IBGC, UMR 5095, Bordeaux, France
| | - Antonio Díaz-Quintana
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Irene Díaz-Moreno
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA), Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Manuel S Rodríguez
- Laboratoire de Chimie de Coordination (LCC), UPR 8241, CNRS; IPBS-University of Toulouse III-Paul Sabatier, Toulouse, France
| | - María Luz Martínez-Chantar
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain.
| |
Collapse
|
232
|
Ramirez CFA, Taranto D, Ando-Kuri M, de Groot MHP, Tsouri E, Huang Z, de Groot D, Kluin RJC, Kloosterman DJ, Verheij J, Xu J, Vegna S, Akkari L. Cancer cell genetics shaping of the tumor microenvironment reveals myeloid cell-centric exploitable vulnerabilities in hepatocellular carcinoma. Nat Commun 2024; 15:2581. [PMID: 38519484 PMCID: PMC10959959 DOI: 10.1038/s41467-024-46835-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/12/2024] [Indexed: 03/25/2024] Open
Abstract
Myeloid cells are abundant and plastic immune cell subsets in the liver, to which pro-tumorigenic, inflammatory and immunosuppressive roles have been assigned in the course of tumorigenesis. Yet several aspects underlying their dynamic alterations in hepatocellular carcinoma (HCC) progression remain elusive, including the impact of distinct genetic mutations in shaping a cancer-permissive tumor microenvironment (TME). Here, in newly generated, clinically-relevant somatic female HCC mouse models, we identify cancer genetics' specific and stage-dependent alterations of the liver TME associated with distinct histopathological and malignant HCC features. Mitogen-activated protein kinase (MAPK)-activated, NrasG12D-driven tumors exhibit a mixed phenotype of prominent inflammation and immunosuppression in a T cell-excluded TME. Mechanistically, we report a NrasG12D cancer cell-driven, MEK-ERK1/2-SP1-dependent GM-CSF secretion enabling the accumulation of immunosuppressive and proinflammatory monocyte-derived Ly6Clow cells. GM-CSF blockade curbs the accumulation of these cells, reduces inflammation, induces cancer cell death and prolongs animal survival. Furthermore, GM-CSF neutralization synergizes with a vascular endothelial growth factor (VEGF) inhibitor to restrain HCC outgrowth. These findings underscore the profound alterations of the myeloid TME consequential to MAPK pathway activation intensity and the potential of GM-CSF inhibition as a myeloid-centric therapy tailored to subsets of HCC patients.
Collapse
Affiliation(s)
- Christel F A Ramirez
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Daniel Taranto
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Masami Ando-Kuri
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marnix H P de Groot
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Efi Tsouri
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Zhijie Huang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Daniel de Groot
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Roelof J C Kluin
- Genomics Core facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Daan J Kloosterman
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Joanne Verheij
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jing Xu
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Serena Vegna
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Leila Akkari
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
233
|
Jin W, Wang G, Dong M, Wang X. PDCL3 is a prognostic biomarker associated with immune infiltration in hepatocellular carcinoma. Eur J Med Res 2024; 29:177. [PMID: 38494503 PMCID: PMC10946092 DOI: 10.1186/s40001-024-01787-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/11/2024] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND Phosducin-like 3 (PDCL3) is a member of the photoreceptor family, characterized by a thioredoxin-like structural domain and evolutionary conservation. It plays roles in angiogenesis and apoptosis. Despite its significance, research on the biological role of PDCL3 in liver hepatocellular carcinoma (LIHC) remains limited. This study aims to explore the prognostic value and potential mechanisms of PDCL3 in cancer, particularly in LIHC, through bioinformatics analysis. METHODS RNA-seq data and corresponding clinical information for pan-cancer and LIHC were extracted from the TCGA database to analyze PDCL3 expression and survival prognosis. Differential expression of PDCL3 was analyzed using the HPA database. GO and KEGG enrichment analysis were performed for PDCL3-associated genes. The relationship between PDCL3 expression and various immune cell types was examined using the TIMER website. Clinical samples were collected, and immunohistochemistry and immunofluorescence experiments were conducted to validate the differential expression of PDCL3 in LIHC and normal tissues. In vitro assays, including CCK-8, wound healing, Transwell, and colony formation experiments, were employed to determine the biological functions of PDCL3 in LIHC cells. RESULTS Analysis from TIMER, GEPIA, UALCAN, and HPA databases revealed differential expression of PDCL3 in various tumors. Prognostic analysis from GEPIA and TCGA databases indicated that high PDCL3 expression was associated with poorer clinical staging and prognosis in LIHC. Enrichment analysis of PDCL3-associated genes revealed its involvement in various immune responses. TCGA and TIMER databases showed that high PDCL3 expression in LIHC decreased tumor immune activity by reducing macrophage infiltration. PDCL3 exhibited positive correlations with multiple immune checkpoint genes. Immunohistochemistry (IHC) and immunofluorescence (IF) experiments confirmed elevated PDCL3 expression in LIHC tissues compared to adjacent normal tissues. In vitro experiments demonstrated that PDCL3 promoted LIHC cell proliferation, migration, invasion, and colony-forming ability. CONCLUSION PDCL3 is highly expressed in various cancer types. Our study suggests that elevated PDCL3 expression in hepatocellular carcinoma is associated with poorer prognosis and may serve as a potential diagnostic biomarker for LIHC. PDCL3 may regulate the biological functions of LIHC by modulating immune infiltration. However, the precise regulatory mechanisms of PDCL3 in cancer warrant further investigation.
Collapse
Affiliation(s)
- Wenzhi Jin
- Department of Hepatobiliary Surgery, Pudong Hospital Affiliated to Fudan University, 2800 Gongwei Road Pudong, Shanghai, 201399, People's Republic of China
| | - Ganggang Wang
- Department of Hepatobiliary Surgery, Pudong Hospital Affiliated to Fudan University, 2800 Gongwei Road Pudong, Shanghai, 201399, People's Republic of China
| | - Meiyuan Dong
- Department of Endocrinology, Pudong Hospital Affiliated to Fudan University, 2800 Gongwei Road Pudong, Shanghai, 201399, People's Republic of China
| | - Xiaoliang Wang
- Department of Hepatobiliary Surgery, Pudong Hospital Affiliated to Fudan University, 2800 Gongwei Road Pudong, Shanghai, 201399, People's Republic of China.
| |
Collapse
|
234
|
D’Ambrosio A, Bressan D, Ferracci E, Carbone F, Mulè P, Rossi F, Barbieri C, Sorrenti E, Fiaccadori G, Detone T, Vezzoli E, Bianchi S, Sartori C, Corso S, Fukuda A, Bertalot G, Falqui A, Barbareschi M, Romanel A, Pasini D, Chiacchiera F. Increased genomic instability and reshaping of tissue microenvironment underlie oncogenic properties of Arid1a mutations. SCIENCE ADVANCES 2024; 10:eadh4435. [PMID: 38489371 PMCID: PMC10942108 DOI: 10.1126/sciadv.adh4435] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 02/12/2024] [Indexed: 03/17/2024]
Abstract
Oncogenic mutations accumulating in many chromatin-associated proteins have been identified in different tumor types. With a mutation rate from 10 to 57%, ARID1A has been widely considered a tumor suppressor gene. However, whether this role is mainly due to its transcriptional-related activities or its ability to preserve genome integrity is still a matter of intense debate. Here, we show that ARID1A is largely dispensable for preserving enhancer-dependent transcriptional regulation, being ARID1B sufficient and required to compensate for ARID1A loss. We provide in vivo evidence that ARID1A is mainly required to preserve genomic integrity in adult tissues. ARID1A loss primarily results in DNA damage accumulation, interferon type I response activation, and chronic inflammation leading to tumor formation. Our data suggest that in healthy tissues, the increased genomic instability that follows ARID1A mutations and the selective pressure imposed by the microenvironment might result in the emergence of aggressive, possibly immune-resistant, tumors.
Collapse
Affiliation(s)
- Alessandro D’Ambrosio
- Laboratory of stem cells and cancer genomics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
- SEMM, University of Milan, 20142 Milan, Italy
| | - Davide Bressan
- Laboratory of stem cells and cancer genomics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Elisa Ferracci
- Laboratory of stem cells and cancer genomics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Francesco Carbone
- Unità Operativa Multizonale di Anatomia Patologica, APSS, 38122 Trento, Italy
| | - Patrizia Mulè
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, 20139 Milan, Italy
| | - Federico Rossi
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, 20139 Milan, Italy
| | - Caterina Barbieri
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, 20139 Milan, Italy
| | - Elisa Sorrenti
- Laboratory of stem cells and cancer genomics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Gaia Fiaccadori
- Laboratory of stem cells and cancer genomics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Thomas Detone
- Unità Operativa Multizonale di Anatomia Patologica, APSS, 38122 Trento, Italy
| | - Elena Vezzoli
- Department of Biomedical sciences for Health, University of Milan, 20133 Milan, Italy
| | - Salvatore Bianchi
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | - Chiara Sartori
- Unità Operativa Multizonale di Anatomia Patologica, APSS, 38122 Trento, Italy
| | - Simona Corso
- Department of Oncology, University of Torino, 10060 Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Akihisa Fukuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Giovanni Bertalot
- Unità Operativa Multizonale di Anatomia Patologica, APSS, 38122 Trento, Italy
- Centre for Medical Sciences–CISMed, University of Trento, 38122 Trento, Italy
| | - Andrea Falqui
- Department of Physics, University of Milan, 20133 Milan, Italy
| | - Mattia Barbareschi
- Unità Operativa Multizonale di Anatomia Patologica, APSS, 38122 Trento, Italy
- Centre for Medical Sciences–CISMed, University of Trento, 38122 Trento, Italy
| | - Alessandro Romanel
- Laboratory of Bioinformatics and Computational Genomics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Diego Pasini
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, 20139 Milan, Italy
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Fulvio Chiacchiera
- Laboratory of stem cells and cancer genomics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| |
Collapse
|
235
|
Zhen L, Zhu Y, Wu Z, Liao J, Deng L, Ma Q, Wu Q, Ning G, Lin Q, Zhou L, Huang Y, Zhuo Z, Chen R, Yu D. Activated hedgehog gene pattern correlates with dismal clinical outcome and tumor microenvironment heterogeneity in hepatocellular carcinoma. Heliyon 2024; 10:e26989. [PMID: 38468970 PMCID: PMC10926087 DOI: 10.1016/j.heliyon.2024.e26989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 02/02/2024] [Accepted: 02/22/2024] [Indexed: 03/13/2024] Open
Abstract
Background Activation of the Hedgehog signaling pathway is linked to the initiation and development of human hepatocellular carcinoma (HCC). However, its impact on clinical outcomes and the HCC microenvironment remains unclear. Methods We performed comprehensive analyses of Hedgehog pathway genes in a large cohort of HCC patients. Specifically, we utilized univariate Cox regression analysis to identify Hedgehog genes linked to overall survival, and the LASSO algorithm was used to construct a Hedgehog-related gene pattern. We subsequently examined the correlation between the Hedgehog pattern and the HCC microenvironment employing the CIBERSORT and ssGSEA algorithms. Furthermore, Tumor Immune Dysfunction and Exclusion (TIDE) algorithm and the anti-PD-L1 treatment dataset (IMvigor210) are used to evaluate the clinical response of the Hedgehog pattern in predicting immune checkpoint inhibitors. Results We found that the Hedgehog activation score (HHAS), a prognostic score based on 11 Hedgehog genes, was significantly associated with HCC patient survival. Patients exhibiting high HHAS experienced markedly reduced survival rates compared to those with low HHAS, and HHAS emerged as an independent prognostic factor for HCC. Functional enrichment analysis unveiled the association of the HHAS phenotype with functions related to the immune system, and further investigation demonstrated that HCC patients exhibiting low HHAS displayed elevated levels of anti-tumor immune activation in CD8+ T cells, while high HHAS were linked to immune escape phenotypes and increased infiltration of immune suppressive cells. In addition, in the Immune Checkpoint Inhibitor (ICI) cohort of IMvigor210, patients with higher HHAS had worse ICI treatment outcomes and shortened survival time, indicating that the HHAS is a useful indicator for predicting patient response to immunotherapy. Conclusions In summary, our study offers valuable insights for advancing research on Hedgehog and its impact on tumor immunity, which provides an opportunity to optimize prognosis and immune therapy for HCC.
Collapse
Affiliation(s)
- Limin Zhen
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
- Department of Infectious Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Yi Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
- Department of Anesthesiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Zhen Wu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
- Department of Infectious Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Jinyao Liao
- Department of Infectious Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Liaoyuan Deng
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Qianqian Ma
- Department of Infectious Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Qili Wu
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Gang Ning
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Diseases Center, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Qiuxiong Lin
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Liya Zhou
- Department of Radiation Oncology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
| | - Yanjie Huang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Zewei Zhuo
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Ren Chen
- Department of Infectious Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Dongnan Yu
- Department of Anesthesiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| |
Collapse
|
236
|
Xie QY, Chen Y, Li CJ, Zhang JB, Cao XJ, Lu J. Ionizable copolymer functionalized magnetic nanocomposite as an adsorbent for boosting the extraction selectivity of aristolochic acids. J Food Drug Anal 2024; 32:65-78. [PMID: 38526591 PMCID: PMC10962652 DOI: 10.38212/2224-6614.3493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/19/2023] [Indexed: 03/26/2024] Open
Abstract
Aristolochic acid nephropathy (AAN) has drawn increasing public attention. Organic anion transporters (OATs) are considered to be responsible for mediating nephrotoxicity of aristolochic acids (AAs), as AAs are typical OAT1 substrates that exhibit anionic properties and contain one hydrophobic domain. Inspired by the OAT1 three-dimensional structure or substrate/protein interactions involved in transport, we designed a magnetic polymeric hybrid, mimicking the effect of basic and aromatic residues of OAT1, for efficient enriching aristolochic acid I (AA I) and aristolochic acid II (AA II) in Traditional Chinese patent medicines (TCPM). N, N-dimethylaminopropyl acrylamide (DMAPAm) was used as a cationic monomer and copolymerized with divinylbenzene (DVB) onto the surface of monodisperse magnetic nanoparticles (denoted as MNs@SiO2T-DvbDam). The magnetic polymer hybrid demonstrated high selectivity and capacity for AAs, which was mainly attributed to (1) electrostatic interactions from the cationic or basic moiety of DMAPAm and (2) the hydrophobic and π-π stacking interactions from the aromatic ring of DVB. Additionally, the surface of the hybrid exhibited amphiphilic property according to the ionization of DMAPAm, thus improving the compatibility of the adsorbent with the aqueous sample matrix. This strategy was proven to be robust in the analysis of real drug samples, which was characterized by a good linearity, high recovery and satisfactory reusability. This work confirmed that the proposed tool could be a promising candidate for enhancing the extraction selectivity of AAs in Traditional Chinese medicines (TCM).
Collapse
Affiliation(s)
- Qi-Yue Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR
China
| | - Yang Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR
China
| | - Chang-Jun Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR
China
| | - Jia-Bin Zhang
- Suzhou CretBiotech Ltd., 99 Jinji Lake Avenue, Suzhou, 215123 PR
China
| | - Xiu-Jun Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR
China
| | - Jun Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR
China
| |
Collapse
|
237
|
Yoshida M, Matsuzaki J, Fujita K, Kimura M, Umezu T, Tokuda N, Yamaguchi T, Kuroda M, Ochiya T, Saito Y, Kimura K. Plasma extracellular vesicle microRNAs reflecting the therapeutic effect of the CBP/β-catenin inhibitor PRI-724 in patients with liver cirrhosis. Sci Rep 2024; 14:6266. [PMID: 38491114 PMCID: PMC10943077 DOI: 10.1038/s41598-024-56942-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 03/12/2024] [Indexed: 03/18/2024] Open
Abstract
There is an unmet need for antifibrotic therapies to prevent the progression of liver cirrhosis. Previously, we conducted an exploratory trial to assess the safety and antifibrotic efficacy of PRI-724, a selective CBP/β-catenin inhibitor, in patients with liver cirrhosis. PRI-724 was well tolerated and exerted a potential antifibrotic effect. Here, we investigated whether the profiles of circulating microRNAs packaged in extracellular vesicles (EV-miRNAs) are associated with responses to liver fibrosis treatments. Eighteen patients who received PRI-724 for 12 weeks in a phase 1/2a study were classified as responders (n = 10) or non-responders (n = 8) based on changes in liver stiffness. Plasma samples were obtained before and after PRI-724 administration and the levels of EV-miRNAs were analyzed. Three miRNAs (miR-6510-5p, miR-6772-5p, and miR-4261) were identified as predictors of response or non-response to PRI-724, and the levels of three other miRNAs (miR-939-3p, miR-887-3p, and miR-7112-5p) correlated with the efficacy of treatment. Expression of miR-887-3p was detected in hepatocytes and was decreased significantly in liver tissue following PRI-724 treatment. In addition, transfection of a miR-887-3p mimic activated hepatic stellate cells. Thus, decreases in the miR-887-3p level in blood may reflect recovery from liver fibroses in patients with liver cirrhosis treated with PRI-724, although further validation studies are warranted to confirm this.
Collapse
Affiliation(s)
- Mayu Yoshida
- Division of Pharmacotherapeutics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Juntaro Matsuzaki
- Division of Pharmacotherapeutics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.
| | - Koji Fujita
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Masamichi Kimura
- Department of Hepatology, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo, 113-8677, Japan
| | - Tomohiro Umezu
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Noi Tokuda
- Division of Pharmacotherapeutics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Tomoko Yamaguchi
- Division of Pharmacotherapeutics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Yoshimasa Saito
- Division of Pharmacotherapeutics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Kiminori Kimura
- Department of Hepatology, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo, 113-8677, Japan
| |
Collapse
|
238
|
Mishra A, Huang SB, Dubash T, Burr R, Edd JF, Wittner BS, Cunneely QE, Putaturo VR, Deshpande A, Antmen E, Gopinathan KA, Otani K, Miyazawa Y, Kwak JE, Guay SY, Kelly J, Walsh J, Nieman L, Galler I, Chan P, Lawrence MS, Sullivan RJ, Bardia A, Micalizzi DS, Sequist LV, Lee RJ, Franses JW, Ting DT, Brunker PAR, Maheswaran S, Miyamoto DT, Haber DA, Toner M. Tumor cell-based liquid biopsy using high-throughput microfluidic enrichment of entire leukapheresis product. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.583573. [PMID: 38559183 PMCID: PMC10980012 DOI: 10.1101/2024.03.13.583573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Circulating Tumor Cells (CTCs), interrogated by sampling blood from patients with cancer, contain multiple analytes, including intact RNA, high molecular weight DNA, proteins, and metabolic markers. However, the clinical utility of tumor cell-based liquid biopsy has been limited since CTCs are very rare, and current technologies cannot process the blood volumes required to isolate a sufficient number of tumor cells for in-depth assays. We previously described a high-throughput microfluidic prototype utilizing high-flow channels and amplification of cell sorting forces through magnetic lenses. Here, we apply this technology to analyze patient-derived leukapheresis products, interrogating a mean blood volume of 5.83 liters from patients with metastatic cancer, with a median of 2,799 CTCs purified per patient. Isolation of many CTCs from individual patients enables characterization of their morphological and molecular heterogeneity, including cell and nuclear size and RNA expression. It also allows robust detection of gene copy number variation, a definitive cancer marker with potential diagnostic applications. High-volume microfluidic enrichment of CTCs constitutes a new dimension in liquid biopsies.
Collapse
|
239
|
Wen KW, Kakar S. Hepatic Precancerous Lesions and Early Hepatocellular Carcinoma. Gastroenterol Clin North Am 2024; 53:109-132. [PMID: 38280744 DOI: 10.1016/j.gtc.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
This review discusses the diagnostic challenges of diagnosing and treating precursor lesions of hepatocellular carcinoma (HCC) in both cirrhotic and non-cirrhotic livers. The distinction of high-grade dysplastic nodule (the primary precursor lesion in cirrhotic liver) from early HCC is emphasized based on morphologic, immunohistochemical, and genomic features. The risk factors associated with HCC in hepatocellular adenomas (precursor lesion in non-cirrhotic liver) are delineated, and the risk in different subtypes is discussed with emphasis on terminology, diagnosis, and genomic features.
Collapse
Affiliation(s)
- Kwun Wah Wen
- 505 Parnassus Avenue, M545, Box #0102, San Francisco, CA 94143, USA.
| | - Sanjay Kakar
- 505 Parnassus Avenue, M545, Box #0102, San Francisco, CA 94143, USA
| |
Collapse
|
240
|
Lehrich BM, Zhang J, Monga SP, Dhanasekaran R. Battle of the biopsies: Role of tissue and liquid biopsy in hepatocellular carcinoma. J Hepatol 2024; 80:515-530. [PMID: 38104635 PMCID: PMC10923008 DOI: 10.1016/j.jhep.2023.11.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/27/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
The diagnosis and management of hepatocellular carcinoma (HCC) have improved significantly in recent years. With the introduction of immunotherapy-based combination therapy, there has been a notable expansion in treatment options for patients with unresectable HCC. Simultaneously, innovative molecular tests for early detection and management of HCC are emerging. This progress prompts a key question: as liquid biopsy techniques rise in prominence, will they replace traditional tissue biopsies, or will both techniques remain relevant? Given the ongoing challenges of early HCC detection, including issues with ultrasound sensitivity, accessibility, and patient adherence to surveillance, the evolution of diagnostic techniques is more relevant than ever. Furthermore, the accurate stratification of HCC is limited by the absence of reliable biomarkers which can predict response to therapies. While the advantages of molecular diagnostics are evident, their potential has not yet been fully harnessed, largely because tissue biopsies are not routinely performed for HCC. Liquid biopsies, analysing components such as circulating tumour cells, DNA, and extracellular vesicles, provide a promising alternative, though they are still associated with challenges related to sensitivity, cost, and accessibility. The early results from multi-analyte liquid biopsy panels are promising and suggest they could play a transformative role in HCC detection and management; however, comprehensive clinical validation is still ongoing. In this review, we explore the challenges and potential of both tissue and liquid biopsy, highlighting that these diagnostic methods, while distinct in their approaches, are set to jointly reshape the future of HCC management.
Collapse
Affiliation(s)
- Brandon M Lehrich
- Department of Pathology and Pittsburgh Liver Institute, University of Pittsburgh, School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Josephine Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University, Staford, CA, 94303, USA
| | - Satdarshan P Monga
- Department of Pathology and Pittsburgh Liver Institute, University of Pittsburgh, School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.
| | - Renumathy Dhanasekaran
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University, Staford, CA, 94303, USA.
| |
Collapse
|
241
|
Weiler SME, Bissinger M, Rose F, von Bubnoff F, Lutz T, Ori A, Schirmacher P, Breuhahn K. SEPTIN10-mediated crosstalk between cytoskeletal networks controls mechanotransduction and oncogenic YAP/TAZ signaling. Cancer Lett 2024; 584:216637. [PMID: 38242197 DOI: 10.1016/j.canlet.2024.216637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/19/2023] [Accepted: 01/09/2024] [Indexed: 01/21/2024]
Abstract
The transcriptional co-activators of the Hippo pathway, YAP and TAZ, are regulated by mechanotransduction, which depends on dynamic actin cytoskeleton remodeling. Here, we identified SEPTIN10 as a novel cytoskeletal protein, which is transcriptionally regulated by YAP/TAZ and whose overexpression correlates with poor survival and vascular invasion in hepatocellular carcinoma (HCC) patients. Functional characterization demonstrated that SEPTIN10 promotes YAP/TAZ-dependent cell viability, migration and invasion of liver cancer cells. Mechanistically, SEPTIN10 interacts with actin and microtubule filaments supporting actin stress fiber formation and intracellular tension through binding to CAPZA2 while concurrently inhibiting microtubule polymerization through the blockage of MAP4 function. This functional antagonism is important for cytoskeleton-dependent feedback activation of YAP/TAZ, as microtubule depolymerization induces actin stress fiber formation and subsequently YAP/TAZ activity. Importantly, the crosstalk between microfilaments and microtubules is mediated by SEPTIN10 as its loss abrogates actin stress fiber formation after microtubule disruption. Together, the YAP/TAZ target gene SEPTIN10 controls the dynamic interplay between actin and microtubule filaments, which feeds back on Hippo pathway activity in HCC cells and thus acts as molecular switch with impact on oncogenic signaling and cancer cell biology.
Collapse
Affiliation(s)
- Sofia M E Weiler
- Institute of Pathology, University Hospital Heidelberg, 69120, Heidelberg, Germany.
| | - Michaela Bissinger
- Institute of Pathology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Fabian Rose
- Institute of Pathology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Fabian von Bubnoff
- Institute of Pathology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Teresa Lutz
- Institute of Pathology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Alessandro Ori
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745, Jena, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, 69120, Heidelberg, Germany.
| |
Collapse
|
242
|
Wang MD, Diao YK, Yao LQ, Fan ZQ, Wang KC, Wu H, Gu LH, Xu JH, Li C, Lv GY, Yang T. Emerging role of molecular diagnosis and personalized therapy for hepatocellular carcinoma. ILIVER 2024; 3:100083. [DOI: 10.1016/j.iliver.2024.100083] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2025]
|
243
|
Fan W, Cao D, Yang B, Wang J, Li X, Kitka D, Li TWH, You S, Shiao S, Gangi A, Posadas E, Di Vizio D, Tomasi ML, Seki E, Mato JM, Yang H, Lu SC. Hepatic prohibitin 1 and methionine adenosyltransferase α1 defend against primary and secondary liver cancer metastasis. J Hepatol 2024; 80:443-453. [PMID: 38086446 PMCID: PMC10922446 DOI: 10.1016/j.jhep.2023.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND & AIMS The liver is a common site of cancer metastasis, most commonly from colorectal cancer, and primary liver cancers that have metastasized are associated with poor outcomes. The underlying mechanisms by which the liver defends against these processes are largely unknown. Prohibitin 1 (PHB1) and methionine adenosyltransferase 1A (MAT1A) are highly expressed in the liver. They positively regulate each other and their deletion results in primary liver cancer. Here we investigated their roles in primary and secondary liver cancer metastasis. METHODS We identified common target genes of PHB1 and MAT1A using a metastasis array, and measured promoter activity and transcription factor binding using luciferase reporter assays and chromatin immunoprecipitation, respectively. We examined how PHB1 or MAT1A loss promotes liver cancer metastasis and whether their loss sensitizes to colorectal liver metastasis (CRLM). RESULTS Matrix metalloproteinase-7 (MMP-7) is a common target of MAT1A and PHB1 and its induction is responsible for increased migration and invasion when MAT1A or PHB1 is silenced. Mechanistically, PHB1 and MAT1A negatively regulate MMP7 promoter activity via an AP-1 site by repressing the MAFG-FOSB complex. Loss of MAT1A or PHB1 also increased MMP-7 in extracellular vesicles, which were internalized by colon and pancreatic cancer cells to enhance their oncogenicity. Low hepatic MAT1A or PHB1 expression sensitized to CRLM, but not if endogenous hepatic MMP-7 was knocked down first, which lowered CD4+ T cells while increasing CD8+ T cells in the tumor microenvironment. Hepatocytes co-cultured with colorectal cancer cells express less MAT1A/PHB1 but more MMP-7. Consistently, CRLM raised distant hepatocytes' MMP-7 expression in mice and humans. CONCLUSION We have identified a PHB1/MAT1A-MAFG/FOSB-MMP-7 axis that controls primary liver cancer metastasis and sensitization to CRLM. IMPACT AND IMPLICATIONS Primary and secondary liver cancer metastasis is associated with poor outcomes but whether the liver has underlying defense mechanism(s) against metastasis is unknown. Here we examined the hypothesis that hepatic prohibitin 1 (PHB1) and methionine adenosyltransferase 1A (MAT1A) cooperate to defend the liver against metastasis. Our studies found PHB1 and MAT1A form a complex that suppresses matrix metalloproteinase-7 (MMP-7) at the transcriptional level and loss of either PHB1 or MAT1A sensitizes the liver to metastasis via MMP-7 induction. Strategies that target the PHB1/MAT1A-MMP-7 axis may be a promising approach for the treatment of primary and secondary liver cancer metastasis.
Collapse
Affiliation(s)
- Wei Fan
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center (CSMC), Los Angeles, CA 90048, USA
| | - DuoYao Cao
- Department of Biomedical Sciences, CSMC, Los Angeles, CA 90048, USA
| | - Bing Yang
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center (CSMC), Los Angeles, CA 90048, USA; Department of Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jiaohong Wang
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center (CSMC), Los Angeles, CA 90048, USA
| | - Xiaomo Li
- Department of Pathology, CSMC, Los Angeles CA 90048, USA
| | - Diana Kitka
- Department of Biomedical Sciences, CSMC, Los Angeles, CA 90048, USA; Department of Surgery, Cedars-Sinai Cancer, CSMC, Los Angeles, CA, 90048, USA
| | - Tony W H Li
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center (CSMC), Los Angeles, CA 90048, USA
| | - Sungyong You
- Department of Biomedical Sciences, CSMC, Los Angeles, CA 90048, USA; Department of Surgery, Cedars-Sinai Cancer, CSMC, Los Angeles, CA, 90048, USA
| | - Stephen Shiao
- Department of Radiation Oncology, CSMC, LA, CA 90048, USA
| | | | | | - Dolores Di Vizio
- Department of Biomedical Sciences, CSMC, Los Angeles, CA 90048, USA; Department of Surgery, Cedars-Sinai Cancer, CSMC, Los Angeles, CA, 90048, USA
| | - Maria Lauda Tomasi
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center (CSMC), Los Angeles, CA 90048, USA
| | - Ekihiro Seki
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center (CSMC), Los Angeles, CA 90048, USA
| | - José M Mato
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticasy Digestivas (Ciberehd), Basque Research and Technology Alliance (BRTA), Technology, Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Heping Yang
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center (CSMC), Los Angeles, CA 90048, USA
| | - Shelly C Lu
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center (CSMC), Los Angeles, CA 90048, USA.
| |
Collapse
|
244
|
Tavabie OD, Salehi S, Aluvihare VR. The challenges and potential of microRNA-based therapy for patients with liver failure syndromes and hepatocellular carcinoma. Expert Opin Ther Targets 2024; 28:179-191. [PMID: 38487923 DOI: 10.1080/14728222.2024.2331598] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/13/2024] [Indexed: 03/20/2024]
Abstract
INTRODUCTION Morbidity and mortality from liver disease continues to rise worldwide. There are currently limited curative treatments for patients with liver failure syndromes, encompassing acute liver failure and decompensated cirrhosis states, outside of transplantation. Whilst there have been improvements in therapeutic options for patients with hepatocellular carcinoma (HCC), there remain challenges necessitating novel therapeutic agents. microRNA have long been seen as potential therapeutic targets but there has been limited clinical translation. AREAS COVERED We will discuss the limitations of conventional non-transplant management of patients with liver failure syndromes and HCC. We will provide an overview of microRNA and the challenges in developing and delivering microRNA-based therapeutic agents. We will finally provide an overview of microRNA-based therapeutic agents which have progressed to clinical trials. EXPERT OPINION microRNA have great potential to be developed into therapeutic agents due to their association with critical biological processes which govern health and disease. Utilizing microRNA sponges to target multiple microRNA associated with specific biological processes may improve their therapeutic efficacy. However, there needs to be significant improvements in delivery systems to ensure the safe delivery of microRNA to target sites and minimize systemic distribution. This currently significantly impacts the clinical translation of microRNA-based therapeutic agents.
Collapse
Affiliation(s)
| | - Siamak Salehi
- Institute of Liver Studies, King's College Hospital, London, UK
| | | |
Collapse
|
245
|
Ha SE, Paramanantham A, Kim HH, Bhosale PB, Park MY, Abusaliya A, Heo JD, Lee WS, Kim GS. Comprehensive transcriptomic profiling of liver cancer identifies that histone and PTEN are major regulators of SCU‑induced antitumor activity. Oncol Lett 2024; 27:94. [PMID: 38288037 PMCID: PMC10823307 DOI: 10.3892/ol.2024.14227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 11/16/2023] [Indexed: 01/31/2024] Open
Abstract
Worldwide, liver cancer is the most frequent fatal malignancy. Liver cancer prognosis is poor because patients frequently receive advanced-stage diagnoses. The current study aimed to establish the potential pharmacological targets and the biological networks of scutellarein (SCU) in liver cancer, a natural product known to have low toxicity and side effects. To identify the differentially expressed genes between SCU-treated and SCU-untreated HepG2 cells, RNA sequencing (RNA-seq) was carried out. A total of 463 genes were revealed to have differential expression, of which 288 were upregulated and 175 were downregulated in the group that had received SCU treatment compared with a control group. Gene Ontology (GO) enrichment analysis of associated biological process terms revealed they were mostly involved in the regulation of protein heterodimerization activity and nucleosomes. Interaction of protein-protein network analysis using Search Tool for the Retrieval of Interacting Genes/Proteins resulted in two crucial interacting hub targets; namely, histone H1-4 and protein tyrosine phosphatase receptor type C. Additionally, the crucial targets were validated using western blotting. Overall, the present study demonstrated that the use of RNA-seq data, with bioinformatics tools, can provide a valuable resource to identify the pharmacological targets that could have important biological roles in liver cancer.
Collapse
Affiliation(s)
- Sang Eun Ha
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam-do 52828, Republic of Korea
- Gyeongnam Bio-Health Research Support Center, Gyeongnam Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology, Jinju, Gyeongsangnam-do 52834, Republic of Korea
| | - Anjugam Paramanantham
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam-do 52828, Republic of Korea
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65201, USA
| | - Hun Hwan Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam-do 52828, Republic of Korea
| | - Pritam Bhagwan Bhosale
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam-do 52828, Republic of Korea
| | - Min Yeong Park
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam-do 52828, Republic of Korea
| | - Abuyaseer Abusaliya
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam-do 52828, Republic of Korea
| | - Jeong Doo Heo
- Gyeongnam Bio-Health Research Support Center, Gyeongnam Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology, Jinju, Gyeongsangnam-do 52834, Republic of Korea
| | - Won Sup Lee
- Department of Internal Medicine, Institute of Health Sciences and Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju, Gyeongsangnam-do 52727, Republic of Korea
| | - Gon Sup Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam-do 52828, Republic of Korea
| |
Collapse
|
246
|
Zheng J, Chen J, Wang S, Yang D, Zhou P. Genomic and immune landscape in hepatocellular carcinoma: Implications for personalized therapeutics. ENVIRONMENTAL TOXICOLOGY 2024; 39:1601-1616. [PMID: 38009667 DOI: 10.1002/tox.24062] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023]
Abstract
Hepatocellular carcinoma (HCC) is a globally prevalent malignancy, marked by genetic heterogeneity and intricate tumor microenvironment interactions. In this study, we undertook a detailed single-cell analysis of six active HCC patients, highlighting strong correlations between gene expression levels and cellular characteristics. UMAP clustering revealed seven distinct cell categories with associated gene expressions. A divergence was observed in tumor cells into high and low cuproptosis groups, each associated with distinct pathways: oxidative stress for the high cuproptosis group and inflammatory and angiogenesis pathways for the low group. CellChat analysis on the TCGA-LIHC cohort displayed unique intercellular interactions among hepatocytes, T cells, and other cells, with pathways like COLLAGEN and VEGF being pivotal. Functional enrichment analyses exposed pathways enriched between cuproptosis groups, with KEGG emphasizing diseases like Parkinson's. COX survival analysis identified key prognostic genes, revealing distinct survival rates between risk groups in TCGA and GSE14520 cohorts. Mutation data highlighted missense mutations, with TTN, TP53, and CTNNB1 being the most mutated in HCC. Immune infiltration analysis via CIBERSORTx indicated differences between risk groups in NK cells, neutrophils, and other cells. Our drug sensitivity investigation showed significant correlations between model genes and drug responsiveness, emphasizing the importance of patient risk stratification for therapeutic approaches. Further, ATP6V1G1 was recognized in its role in apoptosis and migration in HCC cells. In conclusion, our findings illuminate the complexities of HCC progression, potential predictive genetic markers for drug response, and the pivotal role of ATP6V1G1, suggesting avenues for targeted therapeutic strategies in HCC.
Collapse
Affiliation(s)
- Jiaoyun Zheng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Hunan, Changsha, China
| | - Junyan Chen
- The Third Clinical Department, China Medical University, Shenyang, Liaoning, China
| | - Shuchao Wang
- Center for Medical Research, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dun Yang
- Department of Pathology, Taoyuan People's Hospital, Changde, Hunan, China
| | - Peng Zhou
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Hunan, Changsha, China
| |
Collapse
|
247
|
Jung KH, Lee S, Kim HS, Kim JM, Lee YJ, Park MS, Seo MS, Lee M, Yun M, Park S, Hong SS. Acetyl-CoA synthetase 2 contributes to a better prognosis for liver cancer by switching acetate-glucose metabolism. Exp Mol Med 2024; 56:721-733. [PMID: 38528124 PMCID: PMC10984961 DOI: 10.1038/s12276-024-01185-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 03/27/2024] Open
Abstract
Acetyl-CoA synthetase 2 (ACSS2)-dependent acetate usage has generally been associated with tumorigenesis and increased malignancy in cancers under nutrient-depleted conditions. However, the nutrient usage and metabolic characteristics of the liver differ from those of other organs; therefore, the mechanism of ACSS2-mediated acetate metabolism may also differ in liver cancer. To elucidate the underlying mechanisms of ACSS2 in liver cancer and acetate metabolism, the relationships between patient acetate uptake and metabolic characteristics and between ACSS2 and tumor malignancies were comprehensively studied in vitro, in vivo and in humans. Clinically, we initially found that ACSS2 expression was decreased in liver cancer patients. Moreover, PET-CT imaging confirmed that lower-grade cancer cells take up more 11C-acetate but less 18F-fluorodeoxyglucose (18F-FDG); however, this trend was reversed in higher-grade cancer. Among liver cancer cells, those with high ACSS2 expression avidly absorbed acetate even in a glucose-sufficient environment, whereas those with low ACSS2 expression did not, thereby showing correlations with their respective ACSS2 expression. Metabolomic isotope tracing in vitro and in vivo revealed greater acetate incorporation, greater lipid anabolic metabolism, and less malignancy in high-ACSS2 tumors. Notably, ACSS2 downregulation in liver cancer cells was associated with increased tumor occurrence in vivo. In human patient cohorts, patients in the low-ACSS2 subgroup exhibited reduced anabolism, increased glycolysis/hypoxia, and poorer prognosis. We demonstrated that acetate uptake by ACSS2 in liver cancer is independent of glucose depletion and contributes to lipid anabolic metabolism and reduced malignancy, thereby leading to a better prognosis for liver cancer patients.
Collapse
Affiliation(s)
- Kyung Hee Jung
- Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 22332, Korea.
| | - Sujin Lee
- Department of Manufacturing Pharmacy, Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Korea
| | - Han Sun Kim
- Department of Manufacturing Pharmacy, Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Korea
| | - Jin-Mo Kim
- Department of Manufacturing Pharmacy, Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Korea
| | - Yun Ji Lee
- Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 22332, Korea
| | - Min Seok Park
- Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 22332, Korea
| | - Myeong-Seong Seo
- Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 22332, Korea
| | - Misu Lee
- Division of Life Science, College of Life Science and Bioengineering, Incheon National University, Incheon, 21999, Korea
| | - Mijin Yun
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul, 03722, Korea.
| | - Sunghyouk Park
- Department of Manufacturing Pharmacy, Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Korea.
| | - Soon-Sun Hong
- Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 22332, Korea.
| |
Collapse
|
248
|
Giraud J, Chalopin D, Ramel E, Boyer T, Zouine A, Derieppe MA, Larmonier N, Adotevi O, Le Bail B, Blanc JF, Laurent C, Chiche L, Derive M, Nikolski M, Saleh M. THBS1 + myeloid cells expand in SLD hepatocellular carcinoma and contribute to immunosuppression and unfavorable prognosis through TREM1. Cell Rep 2024; 43:113773. [PMID: 38350444 DOI: 10.1016/j.celrep.2024.113773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 11/05/2023] [Accepted: 01/25/2024] [Indexed: 02/15/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is an inflammation-associated cancer arising from viral or non-viral etiologies including steatotic liver diseases (SLDs). Expansion of immunosuppressive myeloid cells is a hallmark of inflammation and cancer, but their heterogeneity in HCC is not fully resolved and might underlie immunotherapy resistance. Here, we present a high-resolution atlas of innate immune cells from patients with HCC that unravels an SLD-associated contexture characterized by influx of inflammatory and immunosuppressive myeloid cells, including a discrete population of THBS1+ regulatory myeloid (Mreg) cells expressing monocyte- and neutrophil-affiliated genes. THBS1+ Mreg cells expand in SLD-associated HCC, populate fibrotic lesions, and are associated with poor prognosis. THBS1+ Mreg cells are CD163+ but distinguished from macrophages by high expression of triggering receptor expressed on myeloid cells 1 (TREM1), which contributes to their immunosuppressive activity and promotes HCC tumor growth in vivo. Our data support myeloid subset-targeted immunotherapies to treat HCC.
Collapse
Affiliation(s)
- Julie Giraud
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, 33000 Bordeaux, France
| | - Domitille Chalopin
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, 33000 Bordeaux, France; University of Bordeaux, CNRS, IBGC, UMR 5095, 33000 Bordeaux, France
| | - Eloïse Ramel
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, 33000 Bordeaux, France
| | - Thomas Boyer
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, 33000 Bordeaux, France
| | - Atika Zouine
- Bordeaux University, CNRS UMS3427, INSERM US05, Flow Cytometry Facility, TransBioMed Core, 33000 Bordeaux, France
| | | | - Nicolas Larmonier
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, 33000 Bordeaux, France
| | - Olivier Adotevi
- Université Bourgogne Franche-Comté, INSERM, UMR1098, 25000 Besançon, France
| | - Brigitte Le Bail
- Bordeaux University Hospital, Division of Pathology, Pellegrin Hospital, 33000 Bordeaux, France
| | - Jean-Frédéric Blanc
- University of Bordeaux Hospital, Division of Gastrohepatology and Oncology, Haut Leveque Hospital, 33604 Pessac, France
| | - Christophe Laurent
- University of Bordeaux Hospital, Division of Gastrohepatology and Oncology, Haut Leveque Hospital, 33604 Pessac, France
| | - Laurence Chiche
- University of Bordeaux Hospital, Division of Gastrohepatology and Oncology, Haut Leveque Hospital, 33604 Pessac, France
| | | | - Macha Nikolski
- University of Bordeaux, CNRS, IBGC, UMR 5095, 33000 Bordeaux, France
| | - Maya Saleh
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, 33000 Bordeaux, France; Institut National de la Recherche Scientifique (INRS), Armand Frappier Health & Biotechnology (AFSB) Research Center, Laval, QC H7V 1B7, Canada.
| |
Collapse
|
249
|
Zhang C, Huang Y, Liang M, Wu J, Wang G. Characterization of m6A RNA methylation mediated immune heterogeneity and functional validation in hepatocellular carcinoma. ENVIRONMENTAL TOXICOLOGY 2024. [PMID: 38409934 DOI: 10.1002/tox.24167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/20/2024] [Accepted: 01/26/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND N6 -methyladenosine (m6 A) mediates RNA modification in various biological processes. It plays a key role in hepatocellular carcinoma (HCC) through regulating methyltransferase. The present study aims to analyze the correlation between the m6 A and the immune status of HCC, and to construct an m6 A-related prognostic signature for HCC. METHODS HCC subtypes with different m6 A modification activities were identified based on the m6 A-related genes. Lasso Cox regression was applied to construct an m6 A-related prognostic model for HCC. Then, the prognostic potential of the constructed signature was evaluated and validated in the external validation dataset. Small interfering RNAs were designed to knockdown FBXO5. CCK-8 assay, Edu staining, wound healing assay, and Transwell cell invasion assay were used to detect cell proliferation, migration, and invasion ability. RESULTS Two m6 A-related HCC subtypes were identified. The m6 A modification active group showed an immune suppressive microenvironment compared to the m6 A modification inactive group. The differentially expressed genes (DEGs) between the HCC subtypes were screened. Enrichment analysis was performed using the DEGs. Subsequently, an m6 A-related prognostic model was established. The prognostic model performed well in both training and validation datasets. Moreover, knockdown of FBXO5, one of the genes in the prognostic model, inhibited the proliferation, migration, and invasion of HepG2 cells. CONCLUSIONS The heterogeneity of m6 A RNA methylation is associated with immune status in HCC. The constructed m6 A-related gene-based signature can predict the prognosis of HCC patients. The genes in the prognostic model also have therapeutic potential for HCC.
Collapse
Affiliation(s)
- Chongyou Zhang
- Department of neurobiology, Harbin Medical University, Harbin, China
| | - Yang Huang
- Department of gastroenterology, Heilongjiang red cross sengong general hospital, Harbin, China
| | - Ming Liang
- Department of infectious, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinrong Wu
- Department of anaesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guangyou Wang
- Department of neurobiology, Harbin Medical University, Harbin, China
- Ministry of Education Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Harbin, China
| |
Collapse
|
250
|
Pessino G, Scotti C, Maggi M, Immuno-Hub Consortium. Hepatocellular Carcinoma: Old and Emerging Therapeutic Targets. Cancers (Basel) 2024; 16:901. [PMID: 38473265 DOI: 10.3390/cancers16050901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Liver cancer, predominantly hepatocellular carcinoma (HCC), globally ranks sixth in incidence and third in cancer-related deaths. HCC risk factors include non-viral hepatitis, alcohol abuse, environmental exposures, and genetic factors. No specific genetic alterations are unequivocally linked to HCC tumorigenesis. Current standard therapies include surgical options, systemic chemotherapy, and kinase inhibitors, like sorafenib and regorafenib. Immunotherapy, targeting immune checkpoints, represents a promising avenue. FDA-approved checkpoint inhibitors, such as atezolizumab and pembrolizumab, show efficacy, and combination therapies enhance clinical responses. Despite this, the treatment of hepatocellular carcinoma (HCC) remains a challenge, as the complex tumor ecosystem and the immunosuppressive microenvironment associated with it hamper the efficacy of the available therapeutic approaches. This review explores current and advanced approaches to treat HCC, considering both known and new potential targets, especially derived from proteomic analysis, which is today considered as the most promising approach. Exploring novel strategies, this review discusses antibody drug conjugates (ADCs), chimeric antigen receptor T-cell therapy (CAR-T), and engineered antibodies. It then reports a systematic analysis of the main ligand/receptor pairs and molecular pathways reported to be overexpressed in tumor cells, highlighting their potential and limitations. Finally, it discusses TGFβ, one of the most promising targets of the HCC microenvironment.
Collapse
Affiliation(s)
- Greta Pessino
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Claudia Scotti
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Maristella Maggi
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Immuno-Hub Consortium
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|