201
|
Hacioglu C, Kar F, Kanbak G. Ex Vivo Investigation of Bexarotene and Nicotinamide Function as a Protectıve Agent on Rat Synaptosomes Treated with Aβ(1-42). Neurochem Res 2021; 46:804-818. [PMID: 33428094 DOI: 10.1007/s11064-020-03216-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/19/2020] [Accepted: 12/23/2020] [Indexed: 01/09/2023]
Abstract
In this study, we were aimed to investigate the neuroprotective effects of bexarotene and nicotinamide in synaptosomes incubated with amyloid-beta (Aβ). Our study consists of 2 parts, in vivo and in vitro. In the in vivo section, twenty-four Wistar albino male rats were divided into 4 groups (control, dimethyl sulfoxide (DMSO), nicotinamide and bexarotene) with six animals in each group. DMSO(1%), nicotinamide(100 mg/kg) and bexarotene(0.1 mg/kg) were administered intraperitoneally to animals in the experimental groups for seven days. In the in vitro part of our study, three different isolation methods were used to obtain the synaptosomes from the brain tissue. Total antioxidant capacity(TAS), total oxidant capacity(TOS), cleaved caspase 3(CASP3), cytochrome c(Cyt c), sirtuin 1(SIRT1), peroxisome proliferator-activated receptor gamma(PPARγ) and poly(ADP-ribose) polymerase-1(PARP-1) levels in the synaptosomes incubated with a concentration of 10 µM Aβ(1-42) were measured by enzyme-linked immunosorbent assay method. Biochemical analysis and histopathological examinations in serum and brain samples showed that DMSO, nicotinamide and bexarotene treatments did not cause any damage to the rat brain tissue. We found that in vitro Aβ(1-42) administration decreased TAS, SIRT1 and PPARγ levels in synaptosomes while increasing TOS, CASP3, Cyt c, and PARP1 levels. Nicotinamide treatment suppressed oxidative stress and apoptosis by supporting antioxidant capacity and increased PPARγ through SIRT1 activation, causing PARP1 to decrease. On the other hand, bexarotene caused a moderate increase in SIRT1 levels with PPARγ activation. Consequently, we found that nicotinamide can be more effective than bexarotene in AD pathogenesis by regulating mitochondrial functions in synaptosomes.
Collapse
Affiliation(s)
- Ceyhan Hacioglu
- Department of Medical Biochemistry, Faculty of Medicine, Duzce University, Duzce, Turkey.
| | - Fatih Kar
- Department of Medical Biochemistry, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Gungor Kanbak
- Department of Medical Biochemistry, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
202
|
Chandra A, Rajawat J. Skeletal Aging and Osteoporosis: Mechanisms and Therapeutics. Int J Mol Sci 2021; 22:ijms22073553. [PMID: 33805567 PMCID: PMC8037620 DOI: 10.3390/ijms22073553] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023] Open
Abstract
Bone is a dynamic organ maintained by tightly regulated mechanisms. With old age, bone homeostasis, which is maintained by an intricate balance between bone formation and bone resorption, undergoes deregulation. Oxidative stress-induced DNA damage, cellular apoptosis, and cellular senescence are all responsible for this tissue dysfunction and the imbalance in the bone homeostasis. These cellular mechanisms have become a target for therapeutics to treat age-related osteoporosis. Genetic mouse models have shown the importance of senescent cell clearance in alleviating age-related osteoporosis. Furthermore, we and others have shown that targeting cellular senescence pharmacologically was an effective tool to alleviate age- and radiation-induced osteoporosis. Senescent cells also have an altered secretome known as the senescence associated secretory phenotype (SASP), which may have autocrine, paracrine, or endocrine function. The current review discusses the current and potential pathways which lead to a senescence profile in an aged skeleton and how bone homeostasis is affected during age-related osteoporosis. The review has also discussed existing therapeutics for the treatment of osteoporosis and rationalizes for novel therapeutic options based on cellular senescence and the SASP as an underlying pathogenesis of an aging bone.
Collapse
Affiliation(s)
- Abhishek Chandra
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55902, USA
- Department of Internal Medicine, Division of Geriatric Medicine and Gerontology, Mayo Clinic, Rochester, MN 55902, USA
- Robert and Arlene Kogod Aging Center, Mayo Clinic, Rochester, MN 55902, USA
- Correspondence: ; Tel.: +1-507-266-1847
| | - Jyotika Rajawat
- Department of Zoology, University of Lucknow, University Rd, Babuganj, Hasanganj, Lucknow, Uttar Pradesh 226007, India;
| |
Collapse
|
203
|
Nicotinamide adenine dinucleotide (NAD+): essential redox metabolite, co-substrate and an anti-cancer and anti-ageing therapeutic target. Biochem Soc Trans 2021; 48:733-744. [PMID: 32573651 DOI: 10.1042/bst20190033] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 01/10/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+) and its reduced form NADH are essential coupled redox metabolites that primarily promote cellular oxidative (catabolic) metabolic reactions. This enables energy generation through glycolysis and mitochondrial respiration to support cell growth and survival. In addition, many key enzymes that regulate diverse cell functions ranging from gene expression to proteostasis require NAD+ as a co-substrate for their catalytic activity. This includes the NAD+-dependent sirtuin family of protein deacetylases and the PARP family of DNA repair enzymes. Whilst their vital activity consumes NAD+ which is cleaved to nicotinamide, several pathways exist for re-generating NAD+ and sustaining NAD+ homeostasis. However, there is growing evidence of perturbed NAD+ homeostasis and NAD+-regulated processes contributing to multiple disease states. NAD+ levels decline in the human brain and other organs with age and this is associated with neurodegeneration and other age-related diseases. Dietary supplementation with NAD+ precursors is being investigated to counteract this. Paradoxically, many cancers have increased dependency on NAD+. Clinical efforts to exploit this have so far shown limited success. Emerging new opportunities to exploit dysregulation of NAD+ metabolism in cancers are critically discussed. An update is also provided on other key NAD+ research including perturbation of the NAD+ salvage enzyme NAMPT in the context of the tumour microenvironment (TME), methodology to study subcellular NAD+ dynamics in real-time and the regulation of differentiation by competing NAD+ pools.
Collapse
|
204
|
Role of NAD + in regulating cellular and metabolic signaling pathways. Mol Metab 2021; 49:101195. [PMID: 33609766 PMCID: PMC7973386 DOI: 10.1016/j.molmet.2021.101195] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/02/2021] [Accepted: 02/15/2021] [Indexed: 12/15/2022] Open
Abstract
Background Nicotinamide adenine dinucleotide (NAD+), a critical coenzyme present in every living cell, is involved in a myriad of metabolic processes associated with cellular bioenergetics. For this reason, NAD+ is often studied in the context of aging, cancer, and neurodegenerative and metabolic disorders. Scope of review Cellular NAD+ depletion is associated with compromised adaptive cellular stress responses, impaired neuronal plasticity, impaired DNA repair, and cellular senescence. Increasing evidence has shown the efficacy of boosting NAD+ levels using NAD+ precursors in various diseases. This review provides a comprehensive understanding into the role of NAD+ in aging and other pathologies and discusses potential therapeutic targets. Major conclusions An alteration in the NAD+/NADH ratio or the NAD+ pool size can lead to derailment of the biological system and contribute to various neurodegenerative disorders, aging, and tumorigenesis. Due to the varied distribution of NAD+/NADH in different locations within cells, the direct role of impaired NAD+-dependent processes in humans remains unestablished. In this regard, longitudinal studies are needed to quantify NAD+ and its related metabolites. Future research should focus on measuring the fluxes through pathways associated with NAD+ synthesis and degradation. NAD+ regulates energy metabolism, DNA damage repair, gene expression, and stress response. NAD+ deterioration contributes to the progression of multiple metabolic disorders, cancers, and neurodegenerative diseases. Nicotinamide mononucleotide and nicotinamide riboside raise NAD+ levels in different tissues in preclinical models. Imaging studies on genetic models can illustrate the pathways of NAD+metabolism and their downstream functional effects. Human clinical trials to determine benefits of restoration of NAD+ by using NAD precursors are in progress.
Collapse
|
205
|
Seldeen KL, Shahini A, Thiyagarajan R, Redae Y, Leiker M, Rajabian N, Dynka A, Andreadis ST, Troen BR. Short-term nicotinamide riboside treatment improves muscle quality and function in mice and increases cellular energetics and differentiating capacity of myogenic progenitors. Nutrition 2021; 87-88:111189. [PMID: 33744645 DOI: 10.1016/j.nut.2021.111189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 01/29/2023]
Abstract
OBJECTIVES Nicotinamide adenine dinucleotide (NAD+), an essential cofactor for mitochondrial function, declines with aging, which may lead to impaired physical performance. Nicotinamide riboside (NR), a NAD+ precursor, restores cellular NAD+ levels. The aim of this study was to examine the effects of short-term NR supplementation on physical performance in middle-aged mice and the effects on mouse and human muscle stem cells. METHODS We treated 15-mo-old male C57BL/6J mice with NR at 300 mg·kg·d-1 (NR3), 600 mg·kg·d-1 (NR6), or placebo (PLB), n = 8 per group, and assessed changes in physical performance, muscle histology, and NAD+ content after 4 wk of treatment. RESULTS NR increased total NAD+ in muscle tissue (NR3 P = 0.01; NR6 P = 0.004, both versus PLB), enhanced treadmill endurance and open-field activity, and prevented decline in grip strength. Histologic analysis revealed NR-treated mice exhibited enlarged slow-twitch fibers (NR6 versus PLB P = 0.014; NR3 P = 0.16) and a trend toward more slow fibers (NR3 P = 0.14; NR6 P = 0.22). We next carried out experiments to characterize NR effects on mitochondrial activity and cellular energetics in vitro. We observed that NR boosted basal and maximal cellular aerobic and anaerobic respiration in both mouse and human myoblasts and human myotubes. Additionally, NR treatment improved the differentiating capacity of myoblasts and increased myotube size and fusion index upon stimulation of these progenitors to form multinucleated myotubes. CONCLUSION These findings support a role for NR in improving cellular energetics and functional capacity in mice, which support the translation of this work into clinical settings as a strategy for improving and/or maintaining health span during aging.
Collapse
Affiliation(s)
- Kenneth Ladd Seldeen
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY, United States
| | - Aref Shahini
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Ramkumar Thiyagarajan
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY, United States
| | - Yonas Redae
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY, United States
| | - Merced Leiker
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY, United States
| | - Nika Rajabian
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Andrew Dynka
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY, United States
| | - Stelios T Andreadis
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Bruce Robert Troen
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY, United States.
| |
Collapse
|
206
|
Covarrubias AJ, Perrone R, Grozio A, Verdin E. NAD + metabolism and its roles in cellular processes during ageing. Nat Rev Mol Cell Biol 2021; 22:119-141. [PMID: 33353981 PMCID: PMC7963035 DOI: 10.1038/s41580-020-00313-x] [Citation(s) in RCA: 801] [Impact Index Per Article: 200.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2020] [Indexed: 12/13/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a coenzyme for redox reactions, making it central to energy metabolism. NAD+ is also an essential cofactor for non-redox NAD+-dependent enzymes, including sirtuins, CD38 and poly(ADP-ribose) polymerases. NAD+ can directly and indirectly influence many key cellular functions, including metabolic pathways, DNA repair, chromatin remodelling, cellular senescence and immune cell function. These cellular processes and functions are critical for maintaining tissue and metabolic homeostasis and for healthy ageing. Remarkably, ageing is accompanied by a gradual decline in tissue and cellular NAD+ levels in multiple model organisms, including rodents and humans. This decline in NAD+ levels is linked causally to numerous ageing-associated diseases, including cognitive decline, cancer, metabolic disease, sarcopenia and frailty. Many of these ageing-associated diseases can be slowed down and even reversed by restoring NAD+ levels. Therefore, targeting NAD+ metabolism has emerged as a potential therapeutic approach to ameliorate ageing-related disease, and extend the human healthspan and lifespan. However, much remains to be learnt about how NAD+ influences human health and ageing biology. This includes a deeper understanding of the molecular mechanisms that regulate NAD+ levels, how to effectively restore NAD+ levels during ageing, whether doing so is safe and whether NAD+ repletion will have beneficial effects in ageing humans.
Collapse
Affiliation(s)
- Anthony J Covarrubias
- Buck Institute for Research on Aging, Novato, CA, USA
- UCSF Department of Medicine, San Francisco, CA, USA
| | | | | | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA, USA.
- UCSF Department of Medicine, San Francisco, CA, USA.
| |
Collapse
|
207
|
Chakravarti D, LaBella KA, DePinho RA. Telomeres: history, health, and hallmarks of aging. Cell 2021; 184:306-322. [PMID: 33450206 DOI: 10.1016/j.cell.2020.12.028] [Citation(s) in RCA: 357] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023]
Abstract
The escalating social and economic burden of an aging world population has placed aging research at center stage. The hallmarks of aging comprise diverse molecular mechanisms and cellular systems that are interrelated and act in concert to drive the aging process. Here, through the lens of telomere biology, we examine how telomere dysfunction may amplify or drive molecular biological processes underlying each hallmark of aging and contribute to development of age-related diseases such as neurodegeneration and cancer. The intimate link of telomeres to aging hallmarks informs preventive and therapeutic interventions designed to attenuate aging itself and reduce the incidence of age-associated diseases.
Collapse
Affiliation(s)
- Deepavali Chakravarti
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kyle A LaBella
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
208
|
Matsuno H, Tsuchimine S, Fukuzato N, O'Hashi K, Kunugi H, Sohya K. Sirtuin 6 is a regulator of dendrite morphogenesis in rat hippocampal neurons. Neurochem Int 2021; 145:104959. [PMID: 33444676 DOI: 10.1016/j.neuint.2021.104959] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/15/2020] [Accepted: 01/05/2021] [Indexed: 01/14/2023]
Abstract
Sirtuin 6 (SIRT6), a member of the Sirtuin family, acts as nicotinamide adenine dinucleotide (NAD)-dependent protein deacetylase, mono-adenosine diphosphate (ADP)-ribosyltransferase, and fatty acid deacylase, and plays critical roles in inflammation, aging, glycolysis, and DNA repair. Accumulating evidence has suggested that SIRT6 is involved in brain functions such as neuronal differentiation, neurogenesis, and learning and memory. However, the precise molecular roles of SIRT6 during neuronal circuit formation are not yet well understood. In this study, we tried to elucidate molecular roles of SIRT6 on neurite development by using primary-cultured hippocampal neurons. We observed that SIRT6 was abundantly localized in the nucleus, and its expression was markedly increased during neurite outgrowth and synaptogenesis. By using shRNA-mediated SIRT6-knockdown, we show that both dendritic length and the number of dendrite branches were significantly reduced in the SIRT6-knockdown neurons. Microarray and subsequent gene ontology analysis revealed that reducing SIRT6 caused the downregulation of immediate early genes (IEGs) and alteration of several biological processes including MAPK (ERK1/2) signaling. We found that nuclear accumulation of phosphorylated ERK1/2 was significantly reduced in SIRT6-knockdown neurons. Overexpression of SIRT6 promoted dendritic length and branching, but the mutants lacking deacetylase activity had no significant effect on the dendritic morphology. Collectively, the presented findings reveal a role of SIRT6 in dendrite morphogenesis, and suggest that SIRT6 may act as an important regulator of ERK1/2 signaling pathway that mediates IEG expression, which leads to dendritic development.
Collapse
Affiliation(s)
- Hitomi Matsuno
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.
| | - Shoko Tsuchimine
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Noriko Fukuzato
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Kazunori O'Hashi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan; Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan; Department of Psychiatry, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Kazuhiro Sohya
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.
| |
Collapse
|
209
|
[Potential significance of NAD + biology translational research in super-aged Japan]. Nihon Ronen Igakkai Zasshi 2021; 57:213-223. [PMID: 32893201 DOI: 10.3143/geriatrics.57.213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
210
|
Kratz EM, Sołkiewicz K, Kubis-Kubiak A, Piwowar A. Sirtuins as Important Factors in Pathological States and the Role of Their Molecular Activity Modulators. Int J Mol Sci 2021; 22:ijms22020630. [PMID: 33435263 PMCID: PMC7827102 DOI: 10.3390/ijms22020630] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
Sirtuins (SIRTs), enzymes from the family of NAD+-dependent histone deacetylases, play an important role in the functioning of the body at the cellular level and participate in many biochemical processes. The multi-directionality of SIRTs encourages scientists to undertake research aimed at understanding the mechanisms of their action and the influence that SIRTs have on the organism. At the same time, new substances are constantly being sought that can modulate the action of SIRTs. Extensive research on the expression of SIRTs in various pathological conditions suggests that regulation of their activity may have positive results in supporting the treatment of certain metabolic, neurodegenerative or cancer diseases or this connected with oxidative stress. Due to such a wide spectrum of activity, SIRTs may also be a prognostic markers of selected pathological conditions and prove helpful in assessing their progression, especially by modulating their activity. The article presents and discusses the activating or inhibiting impact of individual SIRTs modulators. The review also gathered selected currently available information on the expression of SIRTs in individual disease cases as well as the biological role that SIRTs play in the human organism, also in connection with oxidative stress condition, taking into account the progress of knowledge about SIRTs over the years, with particular reference to the latest research results.
Collapse
Affiliation(s)
- Ewa Maria Kratz
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-(71)-784-01-52
| | - Katarzyna Sołkiewicz
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Adriana Kubis-Kubiak
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.K.-K.); (A.P.)
| | - Agnieszka Piwowar
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.K.-K.); (A.P.)
| |
Collapse
|
211
|
Healthy Lifestyle Recommendations: Do the Beneficial Effects Originate from NAD + Amount at the Cellular Level? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2020:8819627. [PMID: 33414897 PMCID: PMC7752291 DOI: 10.1155/2020/8819627] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/13/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022]
Abstract
In this review, we describe the role of oxidized forms of nicotinamide adenine dinucleotide (NAD+) as a molecule central to health benefits as the result from observing selected healthy lifestyle recommendations. Namely, NAD+ level can be regulated by lifestyle and nutrition approaches such as fasting, caloric restriction, sports activity, low glucose availability, and heat shocks. NAD+ is reduced with age at a cellular, tissue, and organismal level due to inflammation, defect in NAMPT-mediated NAD+ biosynthesis, and the PARP-mediated NAD+ depletion. This leads to a decrease in cellular energy production and DNA repair and modifies genomic signalling leading to an increased incidence of chronic diseases and ageing. By implementing healthy lifestyle approaches, endogenous intracellular NAD+ levels can be increased, which explains the molecular mechanisms underlying health benefits at the organismal level. Namely, adherence to here presented healthy lifestyle approaches is correlated with an extended life expectancy free of major chronic diseases.
Collapse
|
212
|
Köritzer J, Blenn C, Bürkle A, Beneke S. Mitochondria are devoid of poly(ADP-ribose)polymerase-1, but harbor its product oligo(ADP-ribose). J Cell Biochem 2021; 122:507-523. [PMID: 33417272 DOI: 10.1002/jcb.29887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/28/2022]
Abstract
There are conflicting data about localization of poly(ADP-ribose)polymerase-1 and its product poly(ADP-ribose) in mitochondria. To finally clarify the discussion, we investigated with biochemical and cell biological methods the potential presence of poly(ADP-ribose) polymerase-1 in these organelles. Our data show that endogenous and overexpressed poly(ADP-ribose)polymerase 1 is only localized to the nucleus with a clear exclusion of cytosolic compartments. In addition, highly purified mitochondria devoid of nuclear contaminations do not contain poly(ADP-ribose)polymerase-1. Although no poly(ADP-ribose)polymerase-1 enzyme is detectable in mitochondria, a shorter variant of its product poly(ADP-ribose) is present, associated specifically with a small subset of mitochondrial proteins as revealed by immunoprecipitation and protein fingerprint analysis. These proteins are located at key-points of the Krebs-cycle, are chaperones involved in mitochondrial functionality and quality-control, and are RNA-binding proteins important for transcript stability, respectively. Of note, despite the fact that especially poly(ADP-ribose)polymerase-1 is its own major target for modification, we could not detect this enzyme by mass spectrometry in these organelles. These data suggests a new way of targeted nuclear-mitochondrial signaling, mediated by nuclear poly(ADP-ribosyl)ation dependent on poly(ADP-ribose)polymerase-1.
Collapse
Affiliation(s)
- Julia Köritzer
- Molecular Toxicology Group, University of Konstanz, Konstanz, Germany
| | - Christian Blenn
- Institute of Pharmacology and Toxicology, University of Zurich/Vetsuisse, Zurich, Switzerland
| | - Alexander Bürkle
- Molecular Toxicology Group, University of Konstanz, Konstanz, Germany
| | - Sascha Beneke
- Molecular Toxicology Group, University of Konstanz, Konstanz, Germany.,Human and Environmental Toxicology Group, University of Konstanz, Konstanz, Germany
| |
Collapse
|
213
|
Mishra R, Chen BS, Richa P, Yu-Wai-Man P. Wolfram syndrome: new pathophysiological insights and therapeutic strategies. THERAPEUTIC ADVANCES IN RARE DISEASE 2021; 2:26330040211039518. [PMID: 37181110 PMCID: PMC10032446 DOI: 10.1177/26330040211039518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/23/2021] [Indexed: 05/16/2023]
Abstract
Wolfram Syndrome (WS) is an ultra-rare, progressive neurodegenerative disease characterized by early-onset diabetes mellitus and irreversible loss of vision, secondary to optic nerve degeneration. Visual loss in WS is an important cause of registrable blindness in children and young adults and the pathological hallmark is the preferential loss of retinal ganglion cells within the inner retina. In addition to optic atrophy, affected individuals frequently develop variable combinations of neurological, endocrinological, and psychiatric complications. The majority of patients carry recessive mutations in the WFS1 (4p16.1) gene that encodes for a multimeric transmembrane protein, wolframin, embedded within the endoplasmic reticulum (ER). An increasingly recognised subgroup of patients harbor dominant WFS1 mutations that usually cause a milder phenotype, which can be limited to optic atrophy. Wolframin is a ubiquitous protein with high levels of expression in retinal, neuronal, and muscle tissues. It is a multifunctional protein that regulates a host of cellular functions, in particular the dynamic interaction with mitochondria at mitochondria-associated membranes. Wolframin has been implicated in several crucial cellular signaling pathways, including insulin signaling, calcium homeostasis, and the regulation of apoptosis and the ER stress response. There is currently no cure for WS; management remains largely supportive. This review will cover the clinical, genetic, and pathophysiological features of WS, with a specific focus on disease models and the molecular pathways that could serve as potential therapeutic targets. The current landscape of therapeutic options will also be discussed in the context of the latest evidence, including the pipeline for repurposed drugs and gene therapy. Plain language summary Wolfram syndrome - disease mechanisms and treatment options Wolfram syndrome (WS) is an ultra-rare genetic disease that causes diabetes mellitus and progressive loss of vision from early childhood. Vision is affected in WS because of damage to a specialized type of cells in the retina, known as retinal ganglion cells (RGCs), which converge at the back of the eye to form the optic nerve. The optic nerve is the fast-conducting cable that transmits visual information from the eye to the vision processing centers within the brain. As RGCs are lost, the optic nerve degenerates and it becomes pale in appearance (optic atrophy). Although diabetes mellitus and optic atrophy are the main features of WS, some patients can develop more severe problems because the brain and other organs, such as the kidneys and the bladder, are also affected. The majority of patients with WS carry spelling mistakes (mutations) in the WFS1 gene, which is located on the short arm of chromosome 4 (4p16.1). This gene is highly expressed in the eye and in the brain, and it encodes for a protein located within a compartment of the cell known as the endoplasmic reticulum. For reasons that still remain unclear, WFS1 mutations preferentially affect RGCs, accounting for the prominent visual loss in this genetic disorder. There is currently no effective treatment to halt or slow disease progression and management remains supportive, including the provision of visual aids and occupational rehabilitation. Research into WS has been limited by its relative rarity and the inability to get access to eye and brain tissues from affected patients. However, major advances in our understanding of this disease have been made recently by making use of more accessible cells from patients, such as skin cells (fibroblasts), or animal models, such as mice and zebrafish. This review summarizes the mechanisms by which WFS1 mutations affect cells, impairing their function and eventually leading to their premature loss. The possible treatment strategies to block these pathways are also discussed, with a particular focus on drug repurposing (i.e., using drugs that are already approved for other diseases) and gene therapy (i.e., replacing or repairing the defective WFS1 gene).
Collapse
Affiliation(s)
- Ratnakar Mishra
- Cambridge Centre for Brain Repair and MRC
Mitochondrial Biology Unit, Department of Clinical Neurosciences, University
of Cambridge, Cambridge, UK
| | - Benson S. Chen
- Cambridge Centre for Brain Repair and MRC
Mitochondrial Biology Unit, Department of Clinical Neurosciences, University
of Cambridge, Cambridge, UK
- Cambridge Eye Unit, Addenbrooke’s Hospital,
Cambridge University Hospitals, Cambridge, UK
| | - Prachi Richa
- Department of Physiology, Development and
Neuroscience, University of Cambridge, Cambridge, UK
| | - Patrick Yu-Wai-Man
- Cambridge Centre for Brain Repair and MRC
Mitochondrial Biology Unit, Department of Clinical Neurosciences, University
of Cambridge, ED Adrian Building, Robinson Way, Cambridge, CB2 0PY, UK
- Cambridge Eye Unit, Addenbrooke’s Hospital,
Cambridge University Hospitals, Cambridge, UK
- Moorfields Eye Hospital, London, UK
- UCL Institute of Ophthalmology, University
College London, London, UK
| |
Collapse
|
214
|
Navas LE, Carnero A. NAD + metabolism, stemness, the immune response, and cancer. Signal Transduct Target Ther 2021; 6:2. [PMID: 33384409 PMCID: PMC7775471 DOI: 10.1038/s41392-020-00354-w] [Citation(s) in RCA: 276] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/11/2020] [Accepted: 09/27/2020] [Indexed: 02/07/2023] Open
Abstract
NAD+ was discovered during yeast fermentation, and since its discovery, its important roles in redox metabolism, aging, and longevity, the immune system and DNA repair have been highlighted. A deregulation of the NAD+ levels has been associated with metabolic diseases and aging-related diseases, including neurodegeneration, defective immune responses, and cancer. NAD+ acts as a cofactor through its interplay with NADH, playing an essential role in many enzymatic reactions of energy metabolism, such as glycolysis, oxidative phosphorylation, fatty acid oxidation, and the TCA cycle. NAD+ also plays a role in deacetylation by sirtuins and ADP ribosylation during DNA damage/repair by PARP proteins. Finally, different NAD hydrolase proteins also consume NAD+ while converting it into ADP-ribose or its cyclic counterpart. Some of these proteins, such as CD38, seem to be extensively involved in the immune response. Since NAD cannot be taken directly from food, NAD metabolism is essential, and NAMPT is the key enzyme recovering NAD from nicotinamide and generating most of the NAD cellular pools. Because of the complex network of pathways in which NAD+ is essential, the important role of NAD+ and its key generating enzyme, NAMPT, in cancer is understandable. In the present work, we review the role of NAD+ and NAMPT in the ways that they may influence cancer metabolism, the immune system, stemness, aging, and cancer. Finally, we review some ongoing research on therapeutic approaches.
Collapse
Affiliation(s)
- Lola E Navas
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, Spain.,CIBER de Cancer, Sevilla, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, Spain. .,CIBER de Cancer, Sevilla, Spain.
| |
Collapse
|
215
|
The Paradoxical Effect of PARP Inhibitor BGP-15 on Irinotecan-Induced Cachexia and Skeletal Muscle Dysfunction. Cancers (Basel) 2020; 12:cancers12123810. [PMID: 33348673 PMCID: PMC7766767 DOI: 10.3390/cancers12123810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 12/14/2020] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Both cancer and the chemotherapy used to treat it are drivers of cachexia, a life-threatening body-wasting condition which complicates cancer treatment. Poly-(ADP-ribose) polymerase (PARP) inhibitors are currently being investigated as a treatment against cancer. Here, we present paradoxical evidence that they might also be useful for mitigating the skeletal muscle specific side-effects of anti-cancer chemotherapy or exacerbate them. BGP-15 is a small molecule PARP inhibitor which protected against irinotecan (IRI)-induced cachexia and loss of skeletal muscle mass and dysfunction in our study. However, peculiarly, BGP-15 adjuvant therapy reduced protein synthesis rates and the expression of key cytoskeletal proteins associated with the dystrophin-associated protein complex and increased matrix metalloproteinase activity, while it increased the propensity for fast-twitch muscles to tear during fatiguing contraction. Our data suggest that both IRI and BGP-15 cause structural remodeling involving proteins associated with the contractile apparatus, cytoskeleton and/or the extracellular matrix which may be only transient and ultimately beneficial or may paradoxically onset a muscular dystrophy phenotype and be detrimental if more permanent. Abstract Chemotherapy-induced muscle wasting and dysfunction is a contributing factor to cachexia alongside cancer and increases the risk of morbidity and mortality. Here, we investigate the effects of the chemotherapeutic agent irinotecan (IRI) on skeletal muscle mass and function and whether BGP-15 (a poly-(ADP-ribose) polymerase-1 (PARP-1) inhibitor and heat shock protein co-inducer) adjuvant therapy could protect against IRI-induced skeletal myopathy. Healthy 6-week-old male Balb/C mice (n = 24; 8/group) were treated with six intraperitoneal injections of either vehicle, IRI (30 mg/kg) or BGP-15 adjuvant therapy (IRI+BGP; 15 mg/kg) over two weeks. IRI reduced lean and tibialis anterior mass, which were attenuated by IRI+BGP treatment. Remarkably, IRI reduced muscle protein synthesis, while IRI+BGP reduced protein synthesis further. These changes occurred in the absence of a change in crude markers of mammalian/mechanistic target of rapamycin (mTOR) Complex 1 (mTORC1) signaling and protein degradation. Interestingly, the cytoskeletal protein dystrophin was reduced in both IRI- and IRI+BGP-treated mice, while IRI+BGP treatment also decreased β-dystroglycan, suggesting significant remodeling of the cytoskeleton. IRI reduced absolute force production of the soleus and extensor digitorum longus (EDL) muscles, while IRI+BGP rescued absolute force production of the soleus and strongly trended to rescue force output of the EDL (p = 0.06), which was associated with improvements in mass. During the fatiguing stimulation, IRI+BGP-treated EDL muscles were somewhat susceptible to rupture at the musculotendinous junction, likely due to BGP-15’s capacity to maintain the rate of force development within a weakened environment characterized by significant structural remodeling. Our paradoxical data highlight that BGP-15 has some therapeutic advantage by attenuating IRI-induced skeletal myopathy; however, its effects on the remodeling of the cytoskeleton and extracellular matrix, which appear to make fast-twitch muscles more prone to tearing during contraction, could suggest the induction of muscular dystrophy and, thus, require further characterization.
Collapse
|
216
|
NAD +/NADH redox alterations reconfigure metabolism and rejuvenate senescent human mesenchymal stem cells in vitro. Commun Biol 2020; 3:774. [PMID: 33319867 PMCID: PMC7738682 DOI: 10.1038/s42003-020-01514-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
Human mesenchymal stem cells (hMSCs) promote endogenous tissue regeneration and have become a promising candidate for cell therapy. However, in vitro culture expansion of hMSCs induces a rapid decline of stem cell properties through replicative senescence. Here, we characterize metabolic profiles of hMSCs during expansion. We show that alterations of cellular nicotinamide adenine dinucleotide (NAD + /NADH) redox balance and activity of the Sirtuin (Sirt) family enzymes regulate cellular senescence of hMSCs. Treatment with NAD + precursor nicotinamide increases the intracellular NAD + level and re-balances the NAD + /NADH ratio, with enhanced Sirt-1 activity in hMSCs at high passage, partially restores mitochondrial fitness and rejuvenates senescent hMSCs. By contrast, human fibroblasts exhibit limited senescence as their cellular NAD + /NADH balance is comparatively stable during expansion. These results indicate a potential metabolic and redox connection to replicative senescence in adult stem cells and identify NAD + as a metabolic regulator that distinguishes stem cells from mature cells. This study also suggests potential strategies to maintain cellular homeostasis of hMSCs in clinical applications. Yuan et al. characterise metabolic profiles of human mesenchymal stem cells (hMSCs) during cell expansion in culture. They find that late passage hMSCs exhibit a NAD + /NADH redox cycle imbalance and that adding NAD + precursor nicotinamide restores mitochondrial fitness and cellular homeostasis in senescent hMSCs indicating a possible route to preserve hMSC homeostasis for therapeutic use.
Collapse
|
217
|
van der Rijt S, Molenaars M, McIntyre RL, Janssens GE, Houtkooper RH. Integrating the Hallmarks of Aging Throughout the Tree of Life: A Focus on Mitochondrial Dysfunction. Front Cell Dev Biol 2020; 8:594416. [PMID: 33324647 PMCID: PMC7726203 DOI: 10.3389/fcell.2020.594416] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022] Open
Abstract
Since the identification and definition of the hallmarks of aging, these aspects of molecular and cellular decline have been most often described as isolated or distinct mechanisms. However, there is significant evidence demonstrating interplay between most of these hallmarks and that they have the capacity to influence and regulate one another. These interactions are demonstrable across the tree of life, yet not all aspects are conserved. Here, we describe an integrative view on the hallmarks of aging by using the hallmark "mitochondrial dysfunction" as a focus point, and illustrate its capacity to both influence and be influenced by the other hallmarks of aging. We discuss the effects of mitochondrial pathways involved in aging, such as oxidative phosphorylation, mitochondrial dynamics, mitochondrial protein synthesis, mitophagy, reactive oxygen species and mitochondrial DNA damage in relation to each of the primary, antagonistic and integrative hallmarks. We discuss the similarities and differences in these interactions throughout the tree of life, and speculate how speciation may play a role in the variation in these mechanisms. We propose that the hallmarks are critically intertwined, and that mapping the full extent of these interactions would be of significant benefit to the aging research community.
Collapse
Affiliation(s)
- Sanne van der Rijt
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Marte Molenaars
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Rebecca L McIntyre
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Georges E Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
218
|
Cyclobutane pyrimidine dimers from UVB exposure induce a hypermetabolic state in keratinocytes via mitochondrial oxidative stress. Redox Biol 2020; 38:101808. [PMID: 33264701 PMCID: PMC7708942 DOI: 10.1016/j.redox.2020.101808] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022] Open
Abstract
Ultraviolet B radiation (UVB) is an environmental complete carcinogen, which induces and promotes keratinocyte carcinomas, the most common human malignancies. UVB induces the formation of cyclobutane pyrimidine dimers (CPDs). Repairing CPDs through nucleotide excision repair is slow and error-prone in placental mammals. In addition to the mutagenic and malignancy-inducing effects, UVB also elicits poorly understood complex metabolic changes in keratinocytes, possibly through CPDs. To determine the effects of CPDs, CPD-photolyase was overexpressed in keratinocytes using an N1-methyl pseudouridine-containing in vitro-transcribed mRNA. CPD-photolyase, which is normally not present in placental mammals, can efficiently and rapidly repair CPDs to block signaling pathways elicited by CPDs. Keratinocytes surviving UVB irradiation turn hypermetabolic. We show that CPD-evoked mitochondrial reactive oxygen species production, followed by the activation of several energy sensor enzymes, including sirtuins, AMPK, mTORC1, mTORC2, p53, and ATM, is responsible for the compensatory metabolic adaptations in keratinocytes surviving UVB irradiation. Compensatory metabolic changes consist of enhanced glycolytic flux, Szent-Györgyi-Krebs cycle, and terminal oxidation. Furthermore, mitochondrial fusion, mitochondrial biogenesis, and lipophagy characterize compensatory hypermetabolism in UVB-exposed keratinocytes. These properties not only support the survival of keratinocytes, but also contribute to UVB-induced differentiation of keratinocytes. Our results indicate that CPD-dependent signaling acutely maintains skin integrity by supporting cellular energy metabolism.
Collapse
|
219
|
Pignatti C, D’Adamo S, Stefanelli C, Flamigni F, Cetrullo S. Nutrients and Pathways that Regulate Health Span and Life Span. Geriatrics (Basel) 2020; 5:geriatrics5040095. [PMID: 33228041 PMCID: PMC7709628 DOI: 10.3390/geriatrics5040095] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023] Open
Abstract
Both life span and health span are influenced by genetic, environmental and lifestyle factors. With the genetic influence on human life span estimated to be about 20–25%, epigenetic changes play an important role in modulating individual health status and aging. Thus, a main part of life expectance and healthy aging is determined by dietary habits and nutritional factors. Excessive or restricted food consumption have direct effects on health status. Moreover, some dietary interventions including a reduced intake of dietary calories without malnutrition, or a restriction of specific dietary component may promote health benefits and decrease the incidence of aging-related comorbidities, thus representing intriguing potential approaches to improve healthy aging. However, the relationship between nutrition, health and aging is still not fully understood as well as the mechanisms by which nutrients and nutritional status may affect health span and longevity in model organisms. The broad effect of different nutritional conditions on health span and longevity occurs through multiple mechanisms that involve evolutionary conserved nutrient-sensing pathways in tissues and organs. These pathways interacting each other include the evolutionary conserved key regulators mammalian target of rapamycin, AMP-activated protein kinase, insulin/insulin-like growth factor 1 pathway and sirtuins. In this review we provide a summary of the main molecular mechanisms by which different nutritional conditions, i.e., specific nutrient abundance or restriction, may affect health span and life span.
Collapse
Affiliation(s)
- Carla Pignatti
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (C.P.); (F.F.)
| | - Stefania D’Adamo
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, 40136 Bologna, Italy;
- Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Claudio Stefanelli
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 47921 Rimini, Italy;
| | - Flavio Flamigni
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (C.P.); (F.F.)
| | - Silvia Cetrullo
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (C.P.); (F.F.)
- Correspondence: ; Tel.: +39-051-209-1241
| |
Collapse
|
220
|
Ilie OD, Ciobica A, Riga S, Dhunna N, McKenna J, Mavroudis I, Doroftei B, Ciobanu AM, Riga D. Mini-Review on Lipofuscin and Aging: Focusing on The Molecular Interface, The Biological Recycling Mechanism, Oxidative Stress, and The Gut-Brain Axis Functionality. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E626. [PMID: 33228124 PMCID: PMC7699382 DOI: 10.3390/medicina56110626] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022]
Abstract
Intra-lysosomal accumulation of the autofluorescent "residue" known as lipofuscin, which is found within postmitotic cells, remains controversial. Although it was considered a harmless hallmark of aging, its presence is detrimental as it continually accumulates. The latest evidence highlighted that lipofuscin strongly correlates with the excessive production of reactive oxygen species; however, despite this, lipofuscin cannot be removed by the biological recycling mechanisms. The antagonistic effects exerted at the DNA level culminate in a dysregulation of the cell cycle, by inducing a loss of the entire internal environment and abnormal gene(s) expression. Additionally, it appears that a crucial role in the production of reactive oxygen species can be attributed to gut microbiota, due to their ability to shape our behavior and neurodevelopment through their maintenance of the central nervous system.
Collapse
Affiliation(s)
- Ovidiu-Dumitru Ilie
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, no 20A, 700505 Iasi, Romania
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, no 20A, 700505 Iasi, Romania
- Academy of Romanian Scientists, Splaiul Independentei, no. 54, sector 5, 050094 Bucharest, Romania; (S.R.); (D.R.)
| | - Sorin Riga
- Academy of Romanian Scientists, Splaiul Independentei, no. 54, sector 5, 050094 Bucharest, Romania; (S.R.); (D.R.)
| | - Nitasha Dhunna
- Mid Yorkshire Hospitals NHS Trust, Pinderfields Hospital, Wakefield WF1 4DG, UK;
| | - Jack McKenna
- York Hospital, Wigginton road Clifton, York YO31 8HE, UK;
| | - Ioannis Mavroudis
- Leeds Teaching Hospitals NHS Trust, Great George St, Leeds LS1 3EX, UK;
- Laboratory of Neuropathology and Electron Microscopy, School of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Bogdan Doroftei
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, no 16, 700115 Iasi, Romania;
| | - Adela-Magdalena Ciobanu
- Discipline of Psychiatry, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, Dionisie Lupu Street, no 37, 020021 Bucharest, Romania;
| | - Dan Riga
- Academy of Romanian Scientists, Splaiul Independentei, no. 54, sector 5, 050094 Bucharest, Romania; (S.R.); (D.R.)
| |
Collapse
|
221
|
Bottani E, Lamperti C, Prigione A, Tiranti V, Persico N, Brunetti D. Therapeutic Approaches to Treat Mitochondrial Diseases: "One-Size-Fits-All" and "Precision Medicine" Strategies. Pharmaceutics 2020; 12:E1083. [PMID: 33187380 PMCID: PMC7696526 DOI: 10.3390/pharmaceutics12111083] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Primary mitochondrial diseases (PMD) refer to a group of severe, often inherited genetic conditions due to mutations in the mitochondrial genome or in the nuclear genes encoding for proteins involved in oxidative phosphorylation (OXPHOS). The mutations hamper the last step of aerobic metabolism, affecting the primary source of cellular ATP synthesis. Mitochondrial diseases are characterized by extremely heterogeneous symptoms, ranging from organ-specific to multisystemic dysfunction with different clinical courses. The limited information of the natural history, the limitations of currently available preclinical models, coupled with the large variability of phenotypical presentations of PMD patients, have strongly penalized the development of effective therapies. However, new therapeutic strategies have been emerging, often with promising preclinical and clinical results. Here we review the state of the art on experimental treatments for mitochondrial diseases, presenting "one-size-fits-all" approaches and precision medicine strategies. Finally, we propose novel perspective therapeutic plans, either based on preclinical studies or currently used for other genetic or metabolic diseases that could be transferred to PMD.
Collapse
Affiliation(s)
- Emanuela Bottani
- Department of Diagnostics and Public Health, Section of Pharmacology, University of Verona, 37134 Verona, Italy
| | - Costanza Lamperti
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, 20126 Milan, Italy; (C.L.); (V.T.)
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Clinic Düsseldorf (UKD), Heinrich Heine University (HHU), 40225 Dusseldorf, Germany;
| | - Valeria Tiranti
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, 20126 Milan, Italy; (C.L.); (V.T.)
| | - Nicola Persico
- Department of Clinical Science and Community Health, University of Milan, 20122 Milan, Italy;
- Fetal Medicine and Surgery Service, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Dario Brunetti
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, 20126 Milan, Italy; (C.L.); (V.T.)
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| |
Collapse
|
222
|
Frederick DW, McDougal AV, Semenas M, Vappiani J, Nuzzo A, Ulrich JC, Becherer JD, Preugschat F, Stewart EL, Sévin DC, Kramer HF. Complementary NAD + replacement strategies fail to functionally protect dystrophin-deficient muscle. Skelet Muscle 2020; 10:30. [PMID: 33092650 PMCID: PMC7579925 DOI: 10.1186/s13395-020-00249-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a progressive muscle wasting disorder stemming from a loss of functional dystrophin. Current therapeutic options for DMD are limited, as small molecule modalities remain largely unable to decrease the incidence or mitigate the consequences of repetitive mechanical insults to the muscle during eccentric contractions (ECCs). METHODS Using a metabolomics-based approach, we observed distinct and transient molecular phenotypes in muscles of dystrophin-deficient MDX mice subjected to ECCs. Among the most chronically depleted metabolites was nicotinamide adenine dinucleotide (NAD), an essential metabolic cofactor suggested to protect muscle from structural and metabolic degeneration over time. We tested whether the MDX muscle NAD pool can be expanded for therapeutic benefit using two complementary small molecule strategies: provision of a biosynthetic precursor, nicotinamide riboside, or specific inhibition of the NAD-degrading ADP-ribosyl cyclase, CD38. RESULTS Administering a novel, potent, and orally available CD38 antagonist to MDX mice successfully reverted a majority of the muscle metabolome toward the wildtype state, with a pronounced impact on intermediates of the pentose phosphate pathway, while supplementing nicotinamide riboside did not significantly affect the molecular phenotype of the muscle. However, neither strategy sustainably increased the bulk tissue NAD pool, lessened muscle damage markers, nor improved maximal hindlimb strength following repeated rounds of eccentric challenge and recovery. CONCLUSIONS In the absence of dystrophin, eccentric injury contributes to chronic intramuscular NAD depletion with broad pleiotropic effects on the molecular phenotype of the tissue. These molecular consequences can be more effectively overcome by inhibiting the enzymatic activity of CD38 than by supplementing nicotinamide riboside. However, we found no evidence that either small molecule strategy is sufficient to restore muscle contractile function or confer protection from eccentric injury, undermining the modulation of NAD metabolism as a therapeutic approach for DMD.
Collapse
Affiliation(s)
- David W Frederick
- Muscle Metabolism Unit, GlaxoSmithKline R&D, Research Triangle Park, NC, Collegeville, PA, USA
| | - Alan V McDougal
- Muscle Metabolism Unit, GlaxoSmithKline R&D, Research Triangle Park, NC, Collegeville, PA, USA
| | - Melisa Semenas
- Muscle Metabolism Unit, GlaxoSmithKline R&D, Research Triangle Park, NC, Collegeville, PA, USA
| | | | - Andrea Nuzzo
- Target Sciences, Computational Biology, GlaxoSmithKline R&D, Collegeville, PA, USA
| | - John C Ulrich
- Muscle Metabolism Unit, GlaxoSmithKline R&D, Research Triangle Park, NC, Collegeville, PA, USA
| | - J David Becherer
- Muscle Metabolism Unit, GlaxoSmithKline R&D, Research Triangle Park, NC, Collegeville, PA, USA
| | - Frank Preugschat
- Muscle Metabolism Unit, GlaxoSmithKline R&D, Research Triangle Park, NC, Collegeville, PA, USA
| | - Eugene L Stewart
- Computational Sciences, Molecular Design, GlaxoSmithKline R&D, Collegeville, PA, USA.
| | | | - H Fritz Kramer
- Muscle Metabolism Unit, GlaxoSmithKline R&D, Research Triangle Park, NC, Collegeville, PA, USA
| |
Collapse
|
223
|
Cardoso D, Muchir A. Need for NAD +: Focus on Striated Muscle Laminopathies. Cells 2020; 9:cells9102248. [PMID: 33036437 PMCID: PMC7599962 DOI: 10.3390/cells9102248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 11/23/2022] Open
Abstract
Laminopathies are a heterogeneous group of rare diseases caused by genetic mutations in the LMNA gene, encoding A-type lamins. A-type lamins are nuclear envelope proteins which associate with B-type lamins to form the nuclear lamina, a meshwork underlying the inner nuclear envelope of differentiated cells. The laminopathies include lipodystrophies, progeroid phenotypes and striated muscle diseases. Research on striated muscle laminopathies in the recent years has provided novel perspectives on the role of the nuclear lamina and has shed light on the pathological consequences of altered nuclear lamina. The role of altered nicotinamide adenine dinucleotide (NAD+) in the physiopathology of striated muscle laminopathies has been recently highlighted. Here, we have summarized these findings and reviewed the current knowledge about NAD+ alteration in striated muscle laminopathies, providing potential therapeutic approaches.
Collapse
|
224
|
Kang BE, Choi JY, Stein S, Ryu D. Implications of NAD + boosters in translational medicine. Eur J Clin Invest 2020; 50:e13334. [PMID: 32594513 DOI: 10.1111/eci.13334] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/07/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+ ) is an essential metabolite in energy metabolism as well as a co-substrate in biochemical reactions such as protein deacylation, protein ADP-ribosylation and cyclic ADP-ribose synthesis mediated by sirtuins, poly (ADP-ribose) polymerases (PARPs) and CD38. In eukaryotic cells, NAD+ is synthesized through three distinct pathways, which offer different strategies to modulate the bioavailability of NAD+ . The therapeutic potential of dietarily available NAD+ boosters preserving the NAD+ pool has been attracting attention after the discovery of declining NAD+ levels in ageing model organisms as well as in several age-related diseases, including cardiometabolic and neurodegenerative diseases. Here, we review the recent advances in the biology of NAD+ , including the salubrious effects of NAD+ boosters and discuss their future translational strategies.
Collapse
Affiliation(s)
- Baeki E Kang
- Molecular and Integrative Biology Lab (MIB), Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Jun-Yong Choi
- Department of Internal Medicine, Pusan National University School of Korean Medicine, Yangsan, Korea
| | - Sokrates Stein
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.,Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Dongryeol Ryu
- Molecular and Integrative Biology Lab (MIB), Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea.,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon, Korea.,Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| |
Collapse
|
225
|
Gerbec ZJ, Hashemi E, Nanbakhsh A, Holzhauer S, Yang C, Mei A, Tsaih SW, Lemke A, Flister MJ, Riese MJ, Thakar MS, Malarkannan S. Conditional Deletion of PGC-1α Results in Energetic and Functional Defects in NK Cells. iScience 2020; 23:101454. [PMID: 32858341 PMCID: PMC7474003 DOI: 10.1016/j.isci.2020.101454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 12/30/2019] [Accepted: 08/10/2020] [Indexed: 01/07/2023] Open
Abstract
During an immune response, natural killer (NK) cells activate specific metabolic pathways to meet the increased energetic and biosynthetic demands associated with effector functions. Here, we found in vivo activation of NK cells during Listeria monocytogenes infection-augmented transcription of genes encoding mitochondria-associated proteins in a manner dependent on the transcriptional coactivator PGC-1α. Using an Ncr1Cre-based conditional knockout mouse, we found that PGC-1α was crucial for optimal NK cell effector functions and bioenergetics, as the deletion of PGC-1α was associated with decreased cytotoxic potential and cytokine production along with altered ADP/ATP ratios. Lack of PGC-1α also significantly impaired the ability of NK cells to control B16F10 tumor growth in vivo, and subsequent gene expression analysis showed that PGC-1α mediates transcription required to maintain mitochondrial activity within the tumor microenvironment. Together, these data suggest that PGC-1α-dependent transcription of specific target genes is required for optimal NK cell function during the response to infection or tumor growth.
Collapse
Affiliation(s)
- Zachary J. Gerbec
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Elaheh Hashemi
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Arash Nanbakhsh
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA
| | - Sandra Holzhauer
- Laboratory of Lymphocyte Signaling, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA
| | - Chao Yang
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ao Mei
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Shirng-Wern Tsaih
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Angela Lemke
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Michael J. Flister
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Matthew J. Riese
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Laboratory of Lymphocyte Signaling, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Monica S. Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
226
|
Diabetic Retinopathy: The Role of Mitochondria in the Neural Retina and Microvascular Disease. Antioxidants (Basel) 2020; 9:antiox9100905. [PMID: 32977483 PMCID: PMC7598160 DOI: 10.3390/antiox9100905] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Diabetic retinopathy (DR), a common chronic complication of diabetes mellitus and the leading cause of vision loss in the working-age population, is clinically defined as a microvascular disease that involves damage of the retinal capillaries with secondary visual impairment. While its clinical diagnosis is based on vascular pathology, DR is associated with early abnormalities in the electroretinogram, indicating alterations of the neural retina and impaired visual signaling. The pathogenesis of DR is complex and likely involves the simultaneous dysregulation of multiple metabolic and signaling pathways through the retinal neurovascular unit. There is evidence that microvascular disease in DR is caused in part by altered energetic metabolism in the neural retina and specifically from signals originating in the photoreceptors. In this review, we discuss the main pathogenic mechanisms that link alterations in neural retina bioenergetics with vascular regression in DR. We focus specifically on the recent developments related to alterations in mitochondrial metabolism including energetic substrate selection, mitochondrial function, oxidation-reduction (redox) imbalance, and oxidative stress, and critically discuss the mechanisms of these changes and their consequences on retinal function. We also acknowledge implications for emerging therapeutic approaches and future research directions to find novel mitochondria-targeted therapeutic strategies to correct bioenergetics in diabetes. We conclude that retinal bioenergetics is affected in the early stages of diabetes with consequences beyond changes in ATP content, and that maintaining mitochondrial integrity may alleviate retinal disease.
Collapse
|
227
|
Elamin M, Ruskin DN, Sacchetti P, Masino SA. A unifying mechanism of ketogenic diet action: The multiple roles of nicotinamide adenine dinucleotide. Epilepsy Res 2020; 167:106469. [PMID: 33038721 DOI: 10.1016/j.eplepsyres.2020.106469] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/22/2020] [Accepted: 09/09/2020] [Indexed: 01/23/2023]
Abstract
The ability of a ketogenic diet to treat seizures and render a neuronal network more resistant to strong electrical activity has been observed for a century in clinics and for decades in research laboratories. Alongside ongoing efforts to understand how this therapy works to stop seizures, metabolic health is increasingly appreciated as critical buffer to resisting and recovering from acute and chronic disease. Accordingly, links between metabolism and health, and the broader emerging impact of the ketogenic diet in improving diverse metabolic, immunological and neurological conditions, have served to intensify the search for its key and/or common mechanisms. Here we review diverse evidence for increased levels of NAD+, and thus an altered ratio of NAD+/NADH, during metabolic therapy with a ketogenic diet. We propose this as a potential unifying mechanism, and highlight some of the evidence linking altered NAD+/NADH with reduced seizures and with a range of short and long-term changes associated with the beneficial effects of a ketogenic diet. An increase in NAD+/NADH is consistent with multiple lines of evidence and hypotheses, and therefore we suggest that increased NAD+ may be a common mechanism underlying beneficial effects of ketogenic diet therapy.
Collapse
Affiliation(s)
- Marwa Elamin
- Neuroscience Department, UConn School of Medicine, Farmington CT, United States.
| | - David N Ruskin
- Neuroscience Program & Psychology Department, Trinity College, Hartford, CT, United States.
| | - Paola Sacchetti
- Neuroscience Program & Department of Biology, University of Hartford, West Hartford, CT, United States.
| | - Susan A Masino
- Neuroscience Program & Psychology Department, Trinity College, Hartford, CT, United States.
| |
Collapse
|
228
|
Curtin NJ, Szabo C. Poly(ADP-ribose) polymerase inhibition: past, present and future. Nat Rev Drug Discov 2020; 19:711-736. [PMID: 32884152 DOI: 10.1038/s41573-020-0076-6] [Citation(s) in RCA: 342] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2020] [Indexed: 12/11/2022]
Abstract
The process of poly(ADP-ribosyl)ation and the major enzyme that catalyses this reaction, poly(ADP-ribose) polymerase 1 (PARP1), were discovered more than 50 years ago. Since then, advances in our understanding of the roles of PARP1 in cellular processes such as DNA repair, gene transcription and cell death have allowed the investigation of therapeutic PARP inhibition for a variety of diseases - particularly cancers in which defects in DNA repair pathways make tumour cells highly sensitive to the inhibition of PARP activity. Efforts to identify and evaluate potent PARP inhibitors have so far led to the regulatory approval of four PARP inhibitors for the treatment of several types of cancer, and PARP inhibitors have also shown therapeutic potential in treating non-oncological diseases. This Review provides a timeline of PARP biology and medicinal chemistry, summarizes the pathophysiological processes in which PARP plays a role and highlights key opportunities and challenges in the field, such as counteracting PARP inhibitor resistance during cancer therapy and repurposing PARP inhibitors for the treatment of non-oncological diseases.
Collapse
Affiliation(s)
- Nicola J Curtin
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, University of Newcastle, Newcastle upon Tyne, UK.
| | - Csaba Szabo
- Chair of Pharmacology, Section of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
229
|
Zhou ZD, Tan EK. Oxidized nicotinamide adenine dinucleotide-dependent mitochondrial deacetylase sirtuin-3 as a potential therapeutic target of Parkinson's disease. Ageing Res Rev 2020; 62:101107. [PMID: 32535274 DOI: 10.1016/j.arr.2020.101107] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/18/2020] [Accepted: 06/05/2020] [Indexed: 12/11/2022]
Abstract
Mitochondrial impairment is associated with progressive dopamine (DA) neuron degeneration in Parkinson's disease (PD). Recent findings highlight that Sirtuin-3 (SIRT3), a mitochondrial protein, is an oxidized nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase and a key modulator in maintaining integrity and functions of mitochondria. SIRT3 plays vital roles in regulation of mitochondrial functions, including mitochondrial ATP generation and energy metabolism, anti-oxidant defense, and cell death and proliferation. SIRT3 can deacetylate the transcriptional factors and crosstalk with different signaling pathways to cooperatively modulate mitochondrial functions and regulate defensive mitochondrial quality control (QC) systems. Down-regulated NAD+ level and decreased SIRT3 activity are related to aging process and has been pathologically linked to PD pathogenesis. Further, SIRT3 can bind and deacetylate PTEN-induced kinase 1 (PINK1) and PD protein 2 E3 ubiquitin protein ligase (Parkin) to facilitate mitophagy. Leucine Rich Repeat Kinase 2 (LRRK2)-G2019S mutation in PD is linked to SIRT3 impairment. Furthermore, SIRT3 is inversely associated with α-synuclein aggregation and DA neuron degeneration in PD. SIRT3 chemical activators and NAD+ precursors can up-regulate SIRT3 activity to protect against DA neuron degeneration in PD models. Taken together, SIRT3 is a promising PD therapeutic target and studies of SIRT3 functional modulators with neuroprotective capability will be of clinical interest.
Collapse
Affiliation(s)
- Zhi Dong Zhou
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, 308433, Singapore; Duke-NUS Graduate Medical School, 8 College Road, 169857, Singapore.
| | - Eng King Tan
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, 308433, Singapore; Department of Neurology, Singapore General Hospital, Outram Road, 169608, Singapore; Duke-NUS Graduate Medical School, 8 College Road, 169857, Singapore.
| |
Collapse
|
230
|
Xu SJ, Wang X, Wang TY, Lin ZZ, Hu YJ, Huang ZL, Yang XJ, Xu P. Flavonoids from Rosaroxburghii Tratt prevent reactive oxygen species-mediated DNA damage in thymus cells both combined with and without PARP-1 expression after exposure to radiation in vivo. Aging (Albany NY) 2020; 12:16368-16389. [PMID: 32862153 PMCID: PMC7485694 DOI: 10.18632/aging.103688] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 06/13/2020] [Indexed: 11/25/2022]
Abstract
This study aimed to evaluate the role of FRT in ROS/DNA regulation with or without PARP-1 in radiation-injured thymus cells. The administration of FRT to PARP-1-/- (KO) mice demonstrated that FRT significantly increased the viability of thymus cells and decreased their rate of apoptosis through PARP-1. Radiation increased the levels of ROS, γ-H2AX and 53BP1, and induced DNA double strand breaks. Compared with wild type (WT) mice, levels of ROS, γ-H2AX and 53BP1 in KO mice were much less elevated. The FRT treatment groups also showed little reduction in these indicators in KO mice compared with WT mice. The results of the KO mice study indicated that FRT reduced ROS activation through inhibition of PARP-1. Furthermore, FRT reduced the concentrations of γ-H2AX by decreasing ROS activation. However, we found that FRT did not regulate 53BP1, a marker of DNA damage, because of its elimination of ROS. Levels of apoptosis-inducing factor (AIF), exhibited no significant difference after irradiation in KO mice. To summarize, ROS suppression by PARP-1 knockout in KO mice highlights potential therapeutic target either by PARP-1 inhibition combined with radiation or by treatment with a drug therapy alone. AIF-induced apoptosis could not be activated in KO mice.
Collapse
Affiliation(s)
- Sai-Juan Xu
- Department of Pharmacy, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Xia Wang
- College of Medical Laboratory, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Tao-Yang Wang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Zheng-Zhan Lin
- Department of Pharmacy, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Yong-Jian Hu
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Zhong-Lin Huang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Xian-Jun Yang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Ping Xu
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang 453003, Henan, China
| |
Collapse
|
231
|
Huang D, Camacho CV, Setlem R, Ryu KW, Parameswaran B, Gupta RK, Kraus WL. Functional Interplay between Histone H2B ADP-Ribosylation and Phosphorylation Controls Adipogenesis. Mol Cell 2020; 79:934-949.e14. [PMID: 32822587 DOI: 10.1016/j.molcel.2020.08.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 01/17/2023]
Abstract
Although ADP-ribosylation of histones by PARP-1 has been linked to genotoxic stress responses, its role in physiological processes and gene expression has remained elusive. We found that NAD+-dependent ADP-ribosylation of histone H2B-Glu35 by small nucleolar RNA (snoRNA)-activated PARP-1 inhibits AMP kinase-mediated phosphorylation of adjacent H2B-Ser36, which is required for the proadipogenic gene expression program. The activity of PARP-1 on H2B requires NMNAT-1, a nuclear NAD+ synthase, which directs PARP-1 catalytic activity to Glu and Asp residues. ADP-ribosylation of Glu35 and the subsequent reduction of H2B-Ser36 phosphorylation inhibits the differentiation of adipocyte precursors in cultured cells. Parp1 knockout in preadipocytes in a mouse lineage-tracing genetic model increases adipogenesis, leading to obesity. Collectively, our results demonstrate a functional interplay between H2B-Glu35 ADP-ribosylation and H2B-Ser36 phosphorylation that controls adipogenesis.
Collapse
Affiliation(s)
- Dan Huang
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cardiology, Clinical Center for Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P.R. China
| | - Cristel V Camacho
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rohit Setlem
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Keun Woo Ryu
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Balaji Parameswaran
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rana K Gupta
- Department of Internal Medicine, Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
232
|
Tian H, Liu S, Ren J, Lee JKW, Wang R, Chen P. Role of Histone Deacetylases in Skeletal Muscle Physiology and Systemic Energy Homeostasis: Implications for Metabolic Diseases and Therapy. Front Physiol 2020; 11:949. [PMID: 32848876 PMCID: PMC7431662 DOI: 10.3389/fphys.2020.00949] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle is the largest metabolic organ in the human body and is able to rapidly adapt to drastic changes during exercise. Histone acetyltransferases (HATs) and histone deacetylases (HDACs), which target histone and non-histone proteins, are two major enzyme families that control the biological process of histone acetylation and deacetylation. Balance between these two enzymes serves as an essential element for gene expression and metabolic and physiological function. Genetic KO/TG murine models reveal that HDACs possess pivotal roles in maintaining skeletal muscles' metabolic homeostasis, regulating skeletal muscles motor adaptation and exercise capacity. HDACs may be involved in mitochondrial remodeling, insulin sensitivity regulation, turn on/off of metabolic fuel switching and orchestrating physiological homeostasis of skeletal muscles from the process of myogenesis. Moreover, many myogenic factors and metabolic factors are modulated by HDACs. HDACs are considered as therapeutic targets in clinical research for treatment of cancer, inflammation, and neurological and metabolic-related diseases. This review will focus on physiological function of HDACs in skeletal muscles and provide new ideas for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Haili Tian
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Sujuan Liu
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
| | - Jason Kai Wei Lee
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Global Asia Institute, National University of Singapore, Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore, Singapore
| | - Ru Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Peijie Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
233
|
Curtin N, Bányai K, Thaventhiran J, Le Quesne J, Helyes Z, Bai P. Repositioning PARP inhibitors for SARS-CoV-2 infection(COVID-19); a new multi-pronged therapy for acute respiratory distress syndrome? Br J Pharmacol 2020; 177:3635-3645. [PMID: 32441764 PMCID: PMC7280733 DOI: 10.1111/bph.15137] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 01/08/2023] Open
Abstract
Clinically approved PARP inhibitors (PARPi) have a mild adverse effect profile and are well tolerated as continuous daily oral therapy. We review the evidence that justifies the repurposing of PARPi to block the proliferation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and combat the life-threatening sequelae of coronavirus disease 2019 (COVID-19) by several mechanisms. PARPi can effectively decrease IL-6, IL-1 and TNF-α levels (key interleukins in SARS-CoV-2-induced cytokine storm) and can alleviate subsequent lung fibrosis, as demonstrated in murine experiments and clinical trials. PARPi can tune macrophages towards a tolerogenic phenotype. PARPi may also counteract SARS-CoV-2-induced and inflammation-induced cell death and support cell survival. PARPi is effective in animal models of acute respiratory distress syndrome (ARDS), asthma and ventilator-induced lung injury. PARPi may potentiate the effectiveness of tocilizumab, anakinra, sarilumab, adalimumab, canakinumab or siltuximab therapy. The evidence suggests that PARPi would benefit COVID-19 patients and trials should be undertaken.
Collapse
Affiliation(s)
- Nicola Curtin
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Krisztián Bányai
- Institute for Veterinary Medical ResearchCentre for Agricultural ResearchBudapestHungary
| | | | - John Le Quesne
- MRC Toxicology UnitUniversity of CambridgeLeicesterUK
- Leicester Cancer Research CentreUniversity of Leicester, Leicester Royal InfirmaryLeicesterUK
- Glenfield HospitalUniversity Hospitals Leicester NHS TrustLeicesterUK
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School; Centre for Neuroscience and János Szentágothai Research CentreUniversity of PécsPécsHungary
| | - Péter Bai
- Department of Medical Chemistry, Faculty of MedicineUniversity of DebrecenDebrecenHungary
- MTA‐DE Lendület Laboratory of Cellular MetabolismDebrecenHungary
- Research Center for Molecular Medicine, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| |
Collapse
|
234
|
Jang KH, Hwang Y, Kim E. PARP1 Impedes SIRT1-Mediated Autophagy during Degeneration of the Retinal Pigment Epithelium under Oxidative Stress. Mol Cells 2020; 43:632-644. [PMID: 32732457 PMCID: PMC7398797 DOI: 10.14348/molcells.2020.0078] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/23/2020] [Accepted: 06/05/2020] [Indexed: 01/01/2023] Open
Abstract
The molecular mechanism underlying autophagy impairment in the retinal pigment epithelium (RPE) in dry age-related macular degeneration (AMD) is not yet clear. Based on the causative role of poly(ADP-ribose) polymerase 1 (PARP1) in RPE necrosis, this study examined whether PARP1 is involved in the autophagy impairment observed during dry AMD pathogenesis. We found that autophagy was downregulated following H2O2-induced PARP1 activation in ARPE-19 cells and olaparib, PARP1 inhibitor, preserved the autophagy process upon H2O2 exposure in ARPE-19 cells. These findings imply that PARP1 participates in the autophagy impairment upon oxidative stress in ARPE-19 cells. Furthermore, PARP1 inhibited autolysosome formation but did not affect autophagosome formation in H2O2-exposed ARPE-19 cells, demonstrating that PARP1 is responsible for impairment of late-stage autophagy in particular. Because PARP1 consumes NAD+ while exerting its catalytic activity, we investigated whether PARP1 impedes autophagy mediated by sirtuin1 (SIRT1), which uses NAD+ as its cofactor. A NAD+ precursor restored autophagy and protected mitochondria in ARPE-19 cells by preserving SIRT1 activity upon H2O2. Moreover, olaparib failed to restore autophagy in SIRT1-depleted ARPE-19 cells, indicating that PARP1 inhibits autophagy through SIRT1 inhibition. Next, we further examined whether PARP1-induced autophagy impairment occurs in the retinas of dry AMD model mice. Histological analyses revealed that olaparib treatment protected mouse retinas against sodium iodate (SI) insult, but not in retinas cotreated with SI and wortmannin, an autophagy inhibitor. Collectively, our data demonstrate that PARP1-dependent inhibition of SIRT1 activity impedes autophagic survival of RPE cells, leading to retinal degeneration during dry AMD pathogenesis.
Collapse
Affiliation(s)
- Ki-Hong Jang
- Department of Biological Sciences, Chungnam National University, Daejeon, Korea
| | - Yeseong Hwang
- Department of Biological Sciences, Chungnam National University, Daejeon, Korea
| | - Eunhee Kim
- Department of Biological Sciences, Chungnam National University, Daejeon, Korea
| |
Collapse
|
235
|
Marcar L, Bardhan K, Gheorghiu L, Dinkelborg P, Pfäffle H, Liu Q, Wang M, Piotrowska Z, Sequist LV, Borgmann K, Settleman JE, Engelman JA, Hata AN, Willers H. Acquired Resistance of EGFR-Mutated Lung Cancer to Tyrosine Kinase Inhibitor Treatment Promotes PARP Inhibitor Sensitivity. Cell Rep 2020; 27:3422-3432.e4. [PMID: 31216465 PMCID: PMC6624074 DOI: 10.1016/j.celrep.2019.05.058] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 02/25/2019] [Accepted: 05/16/2019] [Indexed: 12/21/2022] Open
Abstract
Lung cancers with oncogenic mutations in the epidermal growth factor receptor (EGFR) invariably acquire resistance to tyrosine kinase inhibitor (TKI) treatment. Vulnerabilities of EGFR TKI-resistant cancer cells that could be therapeutically exploited are incompletely understood. Here, we describe a poly (ADP-ribose) polymerase 1 (PARP-1) inhibitor-sensitive phenotype that is conferred by TKI treatment in vitro and in vivo and appears independent of any particular TKI resistance mechanism. We find that PARP-1 protects cells against cytotoxic reactive oxygen species (ROS) produced by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX). Compared to TKI-naive cells, TKI-resistant cells exhibit signs of increased RAC1 activity. PARP-1 catalytic function is required for PARylation of RAC1 at evolutionarily conserved sites in TKI-resistant cells, which restricts NOX-mediated ROS production. Our data identify a role of PARP-1 in controlling ROS levels upon EGFR TKI treatment, with potentially broad implications for therapeutic targeting of the mechanisms that govern the survival of oncogene-driven cancer cells.
Collapse
Affiliation(s)
- Lynnette Marcar
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kankana Bardhan
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Liliana Gheorghiu
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Patrick Dinkelborg
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Laboratory of Radiobiology and Experimental Radiooncology, University Hospital Eppendorf, Hamburg 20251, Germany
| | - Heike Pfäffle
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Qi Liu
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Meng Wang
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Zofia Piotrowska
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lecia V Sequist
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kerstin Borgmann
- Laboratory of Radiobiology and Experimental Radiooncology, University Hospital Eppendorf, Hamburg 20251, Germany
| | - Jeffrey E Settleman
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jeffrey A Engelman
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Aaron N Hata
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
236
|
Singh A, Bodakhe SH. Biochemical Evidence Indicates the Preventive Effect of Resveratrol and Nicotinamide in the Treatment of STZ-induced Diabetic Cataract. Curr Eye Res 2020; 46:52-63. [PMID: 32631099 DOI: 10.1080/02713683.2020.1782941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE High glucose level is a strong initiator of both oxidative stress and DNA damage to various cellular proteins. This activates the poly ADP-ribose polymerase (PARP) enzyme, which is responsible for disturbing physiological energy metabolic homeostasis. The present study aimed to elucidate the association between stress and the PARP pathway by using resveratrol (RSV) and nicotinamide (NAM, PARP inhibitor) to treat diabetic cataract. METHOD Albino rats were used for the experimental study. A single streptozotocin administration (55 mg/kg, i.p.) prompted diabetes in the animals. The experimental groups were the normal group (non-diabetic) and the diabetic groups: the diabetic control animals (group D), the diabetic animals treated with RSV at 40 mg/kg/day, i.p. (D+ RSV group), NAM at 100 and 300 mg/kg/day, i.p. (D+ NAM100, D+ NAM300 groups, respectively), and a combination of RSV and NAM i.p. (D+ RSV+NAM100 = Combi 1 group, D+ RSV+NAM300 = Combi 2 group). Glucose levels and the eyes were examined biweekly; various cataractogenic parameters in the lenses were examined after completion of the eight-week experimental protocol. RESULTS Compared to diabetic control, RSV monotherapy significantly decreased hyperglycemia and other lenticular alterations. NAM at the high dose only showed beneficial effects without altering the blood glucose level, lenticular aldose reductase (AR) activity, and sorbitol content, primarily restored the lenticular NAD level and decreased oxidative stress in diabetic rats. These findings regarding NAM treatment indicate that a pathway other than the antioxidant defense system and the polyol pathway, which might be due to PARP inhibition, is involved in diabetic cataracts. Moreover, compared to RSV monotherapy, combination treatments were effective. CONCLUSION These results indicate that hyperglycemia and oxidative-osmotic-nitrosative stress play central roles in the pathophysiology of diabetic cataracts. Moreover, our study also revealed that concurrent treatment with the RSV and NAM may prove useful in the pharmacotherapy of diabetes and its secondary complications such as cataract.
Collapse
Affiliation(s)
- Amrita Singh
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University) , Bilaspur, India
| | - Surendra H Bodakhe
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University) , Bilaspur, India
| |
Collapse
|
237
|
Tuntevski K, Hajira A, Nichols A, Alway SE, Mohamed JS. Muscle-specific sirtuin1 gain-of-function ameliorates skeletal muscle atrophy in a pre-clinical mouse model of cerebral ischemic stroke. FASEB Bioadv 2020; 2:387-397. [PMID: 32676579 PMCID: PMC7354693 DOI: 10.1096/fba.2020-00017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/03/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
Stroke causes severe long-term disability in patients due to the induction of skeletal muscle atrophy and weakness, but the molecular mechanisms remain elusive. Using a preclinical mouse model of cerebral ischemic stroke, we show that stroke robustly induced atrophy and significantly decreased SirT1 gene expression in the PTA (paralytic tibialis anterior) muscle. Muscle-specific SirT1 gain-of-function mice are resistant to stroke-induced muscle atrophy and this protective effect requires its deacetylase activity. Although SirT1 counteracts the stroke-induced up-regulation of atrogin1, MuRF1 and ZNF216 genes, we found a mechanism that regulates the ZNF216 gene transcription in post-stroke muscle. Stroke increased the expression of the ZNF216 gene in PTA muscle by activating PARP-1, which binds on the ZNF216 promoter. The SirT1 gain-of-function or SirT1 activator, resveratrol, reversed the PARP-1-mediated up-regulation of ZNF216 expression at the promoter level, suggesting a contradicted role for SirT1 and PARP-1 in the regulation of ZNF216 gene. Overall, our study for the first-time demonstrated that (a) stroke causes muscle atrophy, in part, through the SirT1/PARP-1/ZNF216 signaling mechanism; (b) SirT1 can block muscle atrophy in response to different types of atrophic signals via different signaling mechanisms; and (c) SirT1 is a critical regulator of post-stroke muscle mass.
Collapse
Affiliation(s)
- Kiril Tuntevski
- Department of Human PerformanceWest Virginia University School of MedicineMorgantownWVUSA
| | - Ameena Hajira
- Department of Human PerformanceWest Virginia University School of MedicineMorgantownWVUSA
| | - Austin Nichols
- Department of Human PerformanceWest Virginia University School of MedicineMorgantownWVUSA
| | - Stephen E. Alway
- Department of Human PerformanceWest Virginia University School of MedicineMorgantownWVUSA
- Laboratory of Muscle Biology and SarcopeniaDepartment of Physical TherapyCollege of Health ProfessionsUniversity of Tennessee Health Science CenterMemphisTNUSA
- Center for Muscle, Metabolism and NeuropathologyDivision of Rehabilitation SciencesCollege of Health ProfessionsUniversity of Tennessee Health Science CenterMemphisTNUSA
| | - Junaith S. Mohamed
- Department of Human PerformanceWest Virginia University School of MedicineMorgantownWVUSA
- Laboratory of Muscle and NerveDepartment of Diagnostic and Health SciencesCollege of Health ProfessionsUniversity of Tennessee Health Science CenterMemphisTNUSA
- Center for Muscle, Metabolism and NeuropathologyDivision of Rehabilitation SciencesCollege of Health ProfessionsUniversity of Tennessee Health Science CenterMemphisTNUSA
| |
Collapse
|
238
|
Proshkina E, Shaposhnikov M, Moskalev A. Genome-Protecting Compounds as Potential Geroprotectors. Int J Mol Sci 2020; 21:E4484. [PMID: 32599754 PMCID: PMC7350017 DOI: 10.3390/ijms21124484] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Throughout life, organisms are exposed to various exogenous and endogenous factors that cause DNA damages and somatic mutations provoking genomic instability. At a young age, compensatory mechanisms of genome protection are activated to prevent phenotypic and functional changes. However, the increasing stress and age-related deterioration in the functioning of these mechanisms result in damage accumulation, overcoming the functional threshold. This leads to aging and the development of age-related diseases. There are several ways to counteract these changes: 1) prevention of DNA damage through stimulation of antioxidant and detoxification systems, as well as transition metal chelation; 2) regulation of DNA methylation, chromatin structure, non-coding RNA activity and prevention of nuclear architecture alterations; 3) improving DNA damage response and repair; 4) selective removal of damaged non-functional and senescent cells. In the article, we have reviewed data about the effects of various trace elements, vitamins, polyphenols, terpenes, and other phytochemicals, as well as a number of synthetic pharmacological substances in these ways. Most of the compounds demonstrate the geroprotective potential and increase the lifespan in model organisms. However, their genome-protecting effects are non-selective and often are conditioned by hormesis. Consequently, the development of selective drugs targeting genome protection is an advanced direction.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky prosp., 167001 Syktyvkar, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
239
|
Borsos BN, Majoros H, Pankotai T. Emerging Roles of Post-Translational Modifications in Nucleotide Excision Repair. Cells 2020; 9:cells9061466. [PMID: 32549338 PMCID: PMC7349741 DOI: 10.3390/cells9061466] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022] Open
Abstract
Nucleotide excision repair (NER) is a versatile DNA repair pathway which can be activated in response to a broad spectrum of UV-induced DNA damage, such as bulky adducts, including cyclobutane-pyrimidine dimers (CPDs) and 6–4 photoproducts (6–4PPs). Based on the genomic position of the lesion, two sub-pathways can be defined: (I) global genomic NER (GG-NER), involved in the ablation of damage throughout the whole genome regardless of the transcription activity of the damaged DNA locus, and (II) transcription-coupled NER (TC-NER), activated at DNA regions where RNAPII-mediated transcription takes place. These processes are tightly regulated by coordinated mechanisms, including post-translational modifications (PTMs). The fine-tuning modulation of the balance between the proteins, responsible for PTMs, is essential to maintain genome integrity and to prevent tumorigenesis. In this review, apart from the other substantial PTMs (SUMOylation, PARylation) related to NER, we principally focus on reversible ubiquitylation, which involves E3 ubiquitin ligase and deubiquitylase (DUB) enzymes responsible for the spatiotemporally precise regulation of NER.
Collapse
|
240
|
Kadam A, Jubin T, Roychowdhury R, Begum R. Role of PARP-1 in mitochondrial homeostasis. Biochim Biophys Acta Gen Subj 2020; 1864:129669. [PMID: 32553688 DOI: 10.1016/j.bbagen.2020.129669] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Nuclear poly(ADP-ribose) polymerase-1 (PARP-1) is a well characterised protein that accounts for the majority of PARylation reactions using NAD+ as a substrate, regulating diverse cellular functions. In addition to its nuclear functions, several recent studies have identified localization of PARP-1 in mitochondria and emphasized its possible role in maintaining mitochondrial homeostasis. Various reports suggest that nuclear PARP-1 has been implicated in diverse mitochondria-specific communication processes. SCOPE OF REVIEW The present review emphasizes on the potential role of PARP-1 in mitochondrial processes such as bioenergetics, mtDNA maintenance, cell death and mitophagy. MAJOR CONCLUSIONS The origin of mitochondrial PARP-1 is still an enigma; however researchers are trying to establish the cross-talk between nuclear and mitochondrial PARP-1 and how these PARP-1 pools modulate mitochondrial activity. GENERAL SIGNIFICANCE A better understanding of the possible role of PARP-1 in mitochondrial homeostasis helps us to explore the potential therapeutic targets to protect mitochondrial dysfunctions.
Collapse
Affiliation(s)
- Ashlesha Kadam
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| | - Tina Jubin
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| | - Rittwika Roychowdhury
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India.
| |
Collapse
|
241
|
Abstract
IMPACT STATEMENT NAD is a central metabolite connecting energy balance and organismal growth with genomic integrity and function. It is involved in the development of malignancy and has a regulatory role in the aging process. These processes are mediated by a diverse series of enzymes whose common focus is either NAD's biosynthesis or its utilization as a redox cofactor or enzyme substrate. These enzymes include dehydrogenases, cyclic ADP-ribose hydrolases, mono(ADP-ribosyl)transferases, poly(ADP-ribose) polymerases, and sirtuin deacetylases. This article describes the manifold pathways that comprise NAD metabolism and promotes an increased awareness of how perturbations in these systems may be important in disease prevention and/or progression.
Collapse
Affiliation(s)
- John Wr Kincaid
- Department of Nutrition, 12304Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,151230Case Comprehensive Cancer Center, 12304Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Nathan A Berger
- 151230Case Comprehensive Cancer Center, 12304Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Department of Biochemistry, 12304Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Department of Genetics and Genome Sciences, 12304Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Department of Medicine, 12304Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Center for Science, Health and Society, 12304Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
242
|
Yeo D, Kang C, Ji LL. Aging alters acetylation status in skeletal and cardiac muscles. GeroScience 2020; 42:963-976. [PMID: 32300965 PMCID: PMC7286993 DOI: 10.1007/s11357-020-00171-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/14/2020] [Indexed: 12/13/2022] Open
Abstract
During aging, organs such as skeletal muscle and heart require sufficient NAD+ both as a coenzyme for oxidative-reductive electron transfer and as a substrate for multiple signaling pathways. Sirtuins (SIRTs), a family of NAD+-dependent deacetylase, play an important role in regulating mitochondrial homeostasis and antioxidant defense by deacetylating transcription factors and enzymes such as PGC-1α, p65, GCN5, and SOD2. However, age-related DNA damage and increased SASP activate PARP-1 and CD38, the enzymes competing with SIRTs for NAD+. Thus, it is important to know how aging alters intracellular NAD+ status and NAD+-depending enzyme expression in muscles. In this study, we report that the acetylation level of muscle protein pool, as well as major SIRTs target proteins (PGC-1α, GCN5, p65, and SOD2), was significantly increased in hindlimb and cardiac muscles of 24-month old mice compared with their 6-month old counterparts, despite the fact that most members of the SIRT family were upregulated with aging. Aging increased the protein content of PARP-1 and CD38, whereas decreased NAD+ levels in both skeletal and heart muscles. Aged muscles demonstrated clear signs of mitochondrial dysfunction, oxidative stress, and inflammation. Taken together, our data suggest that despite the upregulation of SIRTs, aged muscles suffered from NAD+ deficit partly due to the competition of elevated CD38 and PARP-1. The enhanced acetylation of several key proteins involved in broad cellular functions may contribute to the age-related muscle deterioration.
Collapse
Affiliation(s)
- Dongwook Yeo
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
- Laboratory of Physiological Hygiene and Exercise Science, School of Kinesiology, University of Minnesota Twin Cities, 1900 University Avenue SE, Minneapolis, MN, 55455, USA
| | - Chounghun Kang
- Department of Physical Education, Inha University, Incheon, 22212, South Korea
| | - Li Li Ji
- Laboratory of Physiological Hygiene and Exercise Science, School of Kinesiology, University of Minnesota Twin Cities, 1900 University Avenue SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
243
|
Mao K, Chen J, Yu H, Li H, Ren Y, Wu X, Wen Y, Zou F, Li W. Poly (ADP-ribose) polymerase 1 inhibition prevents neurodegeneration and promotes α-synuclein degradation via transcription factor EB-dependent autophagy in mutant α-synucleinA53T model of Parkinson's disease. Aging Cell 2020; 19:e13163. [PMID: 32475059 PMCID: PMC7294777 DOI: 10.1111/acel.13163] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/03/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
Poly (ADP‐ribose) polymerase 1 (PARP1) is a master regulator of diverse biological processes such as DNA repair, oxidative stress, and apoptosis. PARP1 can be activated by aggregated α‐synuclein, and this process in turn exacerbates toxicity of α‐synuclein. This circle is closely linked to the evolution of Parkinson's disease (PD) that characterized by progressive neurodegeneration and motor deficits. Here, we reported the PARP1, as a novel upstream molecular of transcription factor EB (TFEB), participates in regulation of autophagy in α‐synuclein aggregated cells and mice. PARP1 inhibition not only enhances the nuclear transcription of TFEB via SIRT1 mediated down‐regulation of mTOR signaling but also reduces nuclear export of TFEB by attenuating the TFEB‐CRM1 interaction. Our results revealed that PARP1 inhibition lessened the accumulation of α‐synuclein in PD models. Also, oral administration of PARP1 inhibitor Veliparib prevented neurodegeneration and improved motor ability in α‐synucleinA53T transgenic mice. These findings identify that PARP1 signaling pathway regulates TFEB‐mediated autophagy, pointing to potential therapeutic strategy of PD via enhancing protein degradation systems.
Collapse
Affiliation(s)
- Kanmin Mao
- Department of Occupational Health and Occupational Medicine Guangdong Provincial Key Laboratory of Tropical Disease Research School of Public Health Southern Medical University Guangzhou China
| | - Jialong Chen
- Department of Occupational Health and Occupational Medicine Guangdong Provincial Key Laboratory of Tropical Disease Research School of Public Health Southern Medical University Guangzhou China
| | - Honglin Yu
- Department of Occupational Health and Occupational Medicine Guangdong Provincial Key Laboratory of Tropical Disease Research School of Public Health Southern Medical University Guangzhou China
| | - Huihui Li
- Department of Occupational Health and Occupational Medicine Guangdong Provincial Key Laboratory of Tropical Disease Research School of Public Health Southern Medical University Guangzhou China
| | - Yixian Ren
- Department of Occupational Health and Occupational Medicine Guangdong Provincial Key Laboratory of Tropical Disease Research School of Public Health Southern Medical University Guangzhou China
| | - Xian Wu
- Department of Occupational Health and Occupational Medicine Guangdong Provincial Key Laboratory of Tropical Disease Research School of Public Health Southern Medical University Guangzhou China
| | - Yue Wen
- Department of Occupational Health and Occupational Medicine Guangdong Provincial Key Laboratory of Tropical Disease Research School of Public Health Southern Medical University Guangzhou China
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine Guangdong Provincial Key Laboratory of Tropical Disease Research School of Public Health Southern Medical University Guangzhou China
| | - Wenjun Li
- Department of Occupational Health and Occupational Medicine Guangdong Provincial Key Laboratory of Tropical Disease Research School of Public Health Southern Medical University Guangzhou China
| |
Collapse
|
244
|
Mehmel M, Jovanović N, Spitz U. Nicotinamide Riboside-The Current State of Research and Therapeutic Uses. Nutrients 2020; 12:E1616. [PMID: 32486488 PMCID: PMC7352172 DOI: 10.3390/nu12061616] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022] Open
Abstract
Nicotinamide riboside (NR) has recently become one of the most studied nicotinamide adenine dinucleotide (NAD+) precursors, due to its numerous potential health benefits mediated via elevated NAD+ content in the body. NAD+ is an essential coenzyme that plays important roles in various metabolic pathways and increasing its overall content has been confirmed as a valuable strategy for treating a wide variety of pathophysiological conditions. Accumulating evidence on NRs' health benefits has validated its efficiency across numerous animal and human studies for the treatment of a number of cardiovascular, neurodegenerative, and metabolic disorders. As the prevalence and morbidity of these conditions increases in modern society, the great necessity has arisen for a rapid translation of NR to therapeutic use and further establishment of its availability as a nutritional supplement. Here, we summarize currently available data on NR effects on metabolism, and several neurodegenerative and cardiovascular disorders, through to its application as a treatment for specific pathophysiological conditions. In addition, we have reviewed newly published research on the application of NR as a potential therapy against infections with several pathogens, including SARS-CoV-2. Additionally, to support rapid NR translation to therapeutics, the challenges related to its bioavailability and safety are addressed, together with the advantages of NR to other NAD+ precursors.
Collapse
Affiliation(s)
- Mario Mehmel
- Biosynth Carbosynth, Rietlistrasse 4, 9422 Staad, Switzerland;
| | - Nina Jovanović
- Faculty of Biology, Department of Biochemistry and Molecular Biology, Institute of Physiology and Biochemistry, University of Belgrade, Studentski Trg 1, 11000 Belgrade, Serbia;
| | - Urs Spitz
- Biosynth Carbosynth, Axis House, High Street, Compton, Berkshire RG20 6NL, UK
| |
Collapse
|
245
|
Custodero C, Saini SK, Shin MJ, Jeon YK, Christou DD, McDermott MM, Leeuwenburgh C, Anton SD, Mankowski RT. Nicotinamide riboside-A missing piece in the puzzle of exercise therapy for older adults? Exp Gerontol 2020; 137:110972. [PMID: 32450270 DOI: 10.1016/j.exger.2020.110972] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023]
Abstract
Maintaining physical mobility is important for preventing age-related comorbidities in older adults. Endurance and resistance training prevent mobility loss in aging, but exercise alone does not always achieve the expected improvements in physical and cardiopulmonary function. Recent preclinical evidence suggests that a reason for the variability in exercise training responses may be the age-related dysregulation of the nicotinamide adenine dinucleotide (NAD+) metabolome. NAD+ is an essential enzymatic cofactor in energetic and signaling pathways. Endogenous NAD+ pool is lower in several chronic and degenerative diseases (e.g., cardiovascular diseases, Alzheimer's and Parkinson's diseases, muscular dystrophies), and also in aging. Exercise requires a higher energy expenditure than a resting state, thus a state of NAD+ insufficiency with reduced energy metabolism, could result in an inadequate exercise response. Recently, the NAD+ precursor nicotinamide riboside (NR), a vitamin B3 derivate, showed an ability to improve NAD+ metabolome homeostasis, restoring energy metabolism and cellular function in various organs in animals. NR has also been tested in older humans and is considered safe, but the effects of NR supplementation alone on physical performance are unclear. The purpose of this review is to examine the preclinical and clinical evidence on the effect of NR supplementation strategies alone and in combination with physical activity on mobility and skeletal muscle and cardiovascular function.
Collapse
Affiliation(s)
- Carlo Custodero
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA.; Dipartimento Interdisciplinare di Medicina, Clinica Medica Cesare Frugoni, University of Bari Aldo Moro, Bari, Italy
| | - Sunil K Saini
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - Myung J Shin
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA.; Department of Rehabilitation Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Yun K Jeon
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA.; Division of Endocrinology and Metabolism, Department of Internal Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Demetra D Christou
- Department of Applied Physiology in Kinesiology, University of Florida, Gainesville, FL, USA
| | - Mary M McDermott
- Department of Internal Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Stephen D Anton
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - Robert T Mankowski
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA..
| |
Collapse
|
246
|
Duer M, Cobb AM, Shanahan CM. DNA Damage Response: A Molecular Lynchpin in the Pathobiology of Arteriosclerotic Calcification. Arterioscler Thromb Vasc Biol 2020; 40:e193-e202. [PMID: 32404005 DOI: 10.1161/atvbaha.120.313792] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Vascular calcification is a ubiquitous pathology of aging. Oxidative stress, persistent DNA damage, and senescence are major pathways driving both cellular and tissue aging, and emerging evidence suggests that these pathways are activated, and even accelerated, in patients with vascular calcification. The DNA damage response-a complex signaling platform that maintains genomic integrity-is induced by oxidative stress and is intimately involved in regulating cell death and osteogenic differentiation in both bone and the vasculature. Unexpectedly, a posttranslational modification, PAR (poly[ADP-ribose]), which is a byproduct of the DNA damage response, initiates biomineralization by acting to concentrate calcium into spheroidal structures that can nucleate apatitic mineral on the ECM (extracellular matrix). As we start to dissect the molecular mechanisms driving aging-associated vascular calcification, novel treatment strategies to promote healthy aging and delay pathological change are being unmasked. Drugs targeting the DNA damage response and senolytics may provide new avenues to tackle this detrimental and intractable pathology.
Collapse
Affiliation(s)
- Melinda Duer
- From the Department of Chemistry, University of Cambridge, United Kingdom (M.D.)
| | - Andrew M Cobb
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, United Kingdom (A.M.C., C.M.S.)
| | - Catherine M Shanahan
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, United Kingdom (A.M.C., C.M.S.)
| |
Collapse
|
247
|
Braidy N, Villalva MD, van Eeden S. Sobriety and Satiety: Is NAD+ the Answer? Antioxidants (Basel) 2020; 9:antiox9050425. [PMID: 32423100 PMCID: PMC7278809 DOI: 10.3390/antiox9050425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential pyridine nucleotide that has garnered considerable interest in the last century due to its critical role in cellular processes associated with energy production, cellular protection against stress and longevity. Research in NAD+ has been reinvigorated by recent findings that components of NAD+ metabolism and NAD-dependent enzymes can influence major signalling processes associated with the neurobiology of addiction. These studies implicate raising intracellular NAD+ levels as a potential target for managing and treating addictive behaviour and reducing cravings and withdrawal symptoms in patients with food addiction and/or substance abuse. Since clinical studies showing the use of NAD+ for the treatment of addiction are limited, this review provides literature evidence that NAD+ can influence the neurobiology of addiction and may have benefits as an anti-addiction intervention.
Collapse
Affiliation(s)
- Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW 2052, Australia;
- Correspondence:
| | - Maria D. Villalva
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW 2052, Australia;
| | - Sam van Eeden
- Centre for Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK;
| |
Collapse
|
248
|
Arenas-Jal M, Suñé-Negre JM, García-Montoya E. Therapeutic potential of nicotinamide adenine dinucleotide (NAD). Eur J Pharmacol 2020; 879:173158. [PMID: 32360833 DOI: 10.1016/j.ejphar.2020.173158] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/06/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022]
Abstract
Nicotinamide adenine nucleotide (NAD) is a small ubiquitous hydrophilic cofactor that participates in several aspects of cellular metabolism. As a coenzyme it has an essential role in the regulation of energetic metabolism, but it is also a cosubstrate for enzymes that regulate fundamental biological processes such as transcriptional regulation, signaling and DNA repairing among others. The fluctuation and oxidative state of NAD levels regulate the activity of these enzymes, which is translated into marked effects on cellular function. While alterations in NAD homeostasis are a common feature of different conditions and age-associated diseases, in general, increased NAD levels have been associated with beneficial health effects. Due to its therapeutic potential, the interest in this molecule has been renewed, and the regulation of NAD metabolism has become an attractive target for drug discovery. In fact, different approaches to replenish or increase NAD levels have been tested, including enhancement of biosynthesis and inhibition of NAD breakdown. Despite further research is needed, this review provides an overview and update on NAD metabolism, including the therapeutic potential of its regulation, as well as pharmacokinetics, safety, precautions and formulation challenges of NAD supplementation.
Collapse
Affiliation(s)
- Marta Arenas-Jal
- Pharmacy and Pharmaceutical Technology Department (Faculty of Pharmacy and Food Sciences), University of Barcelona, Barcelona, Spain; ICN2 - Catalan Institute of Nanoscience and Nanotechnology (Autonomous University of Barcelona), Bellaterra (Barcelona), Spain.
| | - J M Suñé-Negre
- Pharmacy and Pharmaceutical Technology Department (Faculty of Pharmacy and Food Sciences), University of Barcelona, Barcelona, Spain
| | - Encarna García-Montoya
- Pharmacy and Pharmaceutical Technology Department (Faculty of Pharmacy and Food Sciences), University of Barcelona, Barcelona, Spain
| |
Collapse
|
249
|
Hong W, Mo F, Zhang Z, Huang M, Wei X. Nicotinamide Mononucleotide: A Promising Molecule for Therapy of Diverse Diseases by Targeting NAD+ Metabolism. Front Cell Dev Biol 2020; 8:246. [PMID: 32411700 PMCID: PMC7198709 DOI: 10.3389/fcell.2020.00246] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 03/24/2020] [Indexed: 02/05/2023] Open
Abstract
NAD+, a co-enzyme involved in a great deal of biochemical reactions, has been found to be a network node of diverse biological processes. In mammalian cells, NAD+ is synthetized, predominantly through NMN, to replenish the consumption by NADase participating in physiologic processes including DNA repair, metabolism, and cell death. Correspondingly, aberrant NAD+ metabolism is observed in many diseases. In this review, we discuss how the homeostasis of NAD+ is maintained in healthy condition and provide several age-related pathological examples related with NAD+ unbalance. The sirtuins family, whose functions are NAD-dependent, is also reviewed. Administration of NMN surprisingly demonstrated amelioration of the pathological conditions in some age-related disease mouse models. Further clinical trials have been launched to investigate the safety and benefits of NMN. The NAD+ production and consumption pathways including NMN are essential for more precise understanding and therapy of age-related pathological processes such as diabetes, ischemia–reperfusion injury, heart failure, Alzheimer’s disease, and retinal degeneration.
Collapse
Affiliation(s)
- Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Mo
- West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Department of Biotherapy, Chengdu, China
| | - Ziqi Zhang
- West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Department of Biotherapy, Chengdu, China
| | - Mengyuan Huang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
250
|
Tankyrase inhibition ameliorates lipid disorder via suppression of PGC-1α PARylation in db/db mice. Int J Obes (Lond) 2020; 44:1691-1702. [PMID: 32317752 PMCID: PMC7381423 DOI: 10.1038/s41366-020-0573-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 03/06/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022]
Abstract
Objective Human TNKS, encoding tankyrase 1 (TNKS1), localizes to a susceptibility locus for obesity and type 2 diabetes mellitus (T2DM). Here, we addressed the therapeutic potential of G007-LK, a TNKS-specific inhibitor, for obesity and T2DM. Methods We administered G007-LK to diabetic db/db mice and measured the impact on body weight, abdominal adiposity, and serum metabolites. Muscle, liver, and white adipose tissues were analyzed by quantitative RT-PCR and western blotting to determine TNKS inhibition, lipolysis, beiging, adiponectin level, mitochondrial oxidative metabolism and mass, and gluconeogenesis. Protein interaction and PARylation analyses were carried out by immunoprecipitation, pull-down and in situ proximity ligation assays. Results TNKS inhibition reduced body weight gain, abdominal fat content, serum cholesterol levels, steatosis, and proteins associated with lipolysis in diabetic db/db mice. We discovered that TNKS associates with PGC-1α and that TNKS inhibition attenuates PARylation of PGC-1α, contributing to increased PGC-1α level in WAT and muscle in db/db mice. PGC-1α upregulation apparently modulated transcriptional reprogramming to increase mitochondrial mass and fatty acid oxidative metabolism in muscle, beiging of WAT, and raised circulating adiponectin level in db/db mice. This was in sharp contrast to the liver, where TNKS inhibition in db/db mice had no effect on PGC-1α expression, lipid metabolism, or gluconeogenesis. Conclusion Our study unravels a novel molecular mechanism whereby pharmacological inhibition of TNKS in obesity and diabetes enhances oxidative metabolism and ameliorates lipid disorder. This happens via tissue-specific PGC-1α-driven transcriptional reprogramming in muscle and WAT, without affecting liver. This highlights inhibition of TNKS as a potential pharmacotherapy for obesity and T2DM.
Collapse
|