201
|
Khadangi F, Azzi A. Vitamin E - The Next 100 Years. IUBMB Life 2018; 71:411-415. [PMID: 30550633 DOI: 10.1002/iub.1990] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/13/2018] [Accepted: 11/24/2018] [Indexed: 12/16/2022]
Abstract
α-Tocopherol is the only tocopherol that has been shown to prevent the human deficiency disease Ataxia with Isolated Vitamin E Deficiency (AVED), and thus it is the only one that, for humans, can be called vitamin E. Vitamin E in addition to preventing AVED has documented immune boosting properties and an activity against nonalcoholic hepatosteatosis and low-grade inflammation. Epidemiological studies indicating that vitamin E could prevent cardiovascular events, neurodegenerative disease, macular degeneration, and cancer were in general not confirmed by clinical intervention studies. Vitamin E and some of its metabolites modulate cell signaling and gene transcription. Future research is needed to achieve a better understanding of the molecular events leading to gene regulation by vitamin E, especially in its phosphorylated form. Isolation and characterization of the vitamin E kinase and vitamin E phosphate phosphatase will help in the understanding of cell regulation processes modulated by vitamin E. A clarification of the pathogenesis of AVED remains an important goal to be achieved. © 2018 IUBMB Life, 71(4):411-415, 2019.
Collapse
Affiliation(s)
| | - Angelo Azzi
- Vascular Biology Laboratory, JM USDA-HNRCA at Tufts University, Boston, Massachusetts
| |
Collapse
|
202
|
Desrumaux CM, Mansuy M, Lemaire S, Przybilski J, Le Guern N, Givalois L, Lagrost L. Brain Vitamin E Deficiency During Development Is Associated With Increased Glutamate Levels and Anxiety in Adult Mice. Front Behav Neurosci 2018; 12:310. [PMID: 30618663 PMCID: PMC6297247 DOI: 10.3389/fnbeh.2018.00310] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/28/2018] [Indexed: 12/24/2022] Open
Abstract
Vitamin E, the most important lipophilic radical scavenging antioxidant in vivo, has a pivotal role in brain. In an earlier study, we observed that adult mice with a defect in the gene encoding plasma phospholipid transfer protein (PLTP) display a moderate reduction in cerebral vitamin E levels, and exacerbated anxiety despite normal locomotion and memory functions. Here we sought to determine whether dietary vitamin E supplementation can modulate neurotransmitter levels and alleviate the increased anxiety phenotype of PLTP-deficient (PLTP−/−) mice. To address this question, a vitamin E-enriched diet was used, and two complementary approches were implemented: (i) “early supplementation”: neurotransmitter levels and anxiety were assessed in 6 months old PLTP−/− mice born from vitamin E-supplemented parents; and (ii) “late supplementation”: neurotransmitter levels and anxiety were assessed in 6 months old PLTP−/− mice fed a vitamin E-enriched diet from weaning. Our results show for the first time that an inadequate supply of vitamin E during development, due to moderate maternal vitamin E deficiency, is associated with reduced brain vitamin E levels at birth and irreversible alterations in brain glutamate levels. They also suggest this deficiency is associated with increased anxiety at adulthood. Thus, the present study leads to conclude on the importance of the micronutrient vitamin E during pregnancy.
Collapse
Affiliation(s)
- Catherine M Desrumaux
- INSERM, U1198, Team "Environmental Impacts in Alzheimer's Disease and Related Disorders" (EiAlz), Montpellier, France.,Faculty of Sciences, Université Montpellier, Montpellier, France.,EPHE, Paris, France.,LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté, Dijon, France
| | - Marine Mansuy
- INSERM, U1198, Team "Environmental Impacts in Alzheimer's Disease and Related Disorders" (EiAlz), Montpellier, France.,Faculty of Sciences, Université Montpellier, Montpellier, France.,EPHE, Paris, France.,LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté, Dijon, France
| | - Stéphanie Lemaire
- LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté, Dijon, France.,INSERM, LNC UMR1231, Dijon, France.,University Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,Hôpital du Bocage, Dijon, France
| | - Justine Przybilski
- INSERM, U1198, Team "Environmental Impacts in Alzheimer's Disease and Related Disorders" (EiAlz), Montpellier, France.,Faculty of Sciences, Université Montpellier, Montpellier, France.,EPHE, Paris, France.,LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté, Dijon, France
| | - Naig Le Guern
- LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté, Dijon, France.,INSERM, LNC UMR1231, Dijon, France.,University Bourgogne Franche-Comté, LNC UMR1231, Dijon, France
| | - Laurent Givalois
- INSERM, U1198, Team "Environmental Impacts in Alzheimer's Disease and Related Disorders" (EiAlz), Montpellier, France.,Faculty of Sciences, Université Montpellier, Montpellier, France.,EPHE, Paris, France.,LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté, Dijon, France
| | - Laurent Lagrost
- LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté, Dijon, France.,INSERM, LNC UMR1231, Dijon, France.,University Bourgogne Franche-Comté, LNC UMR1231, Dijon, France
| |
Collapse
|
203
|
Vitamin E Metabolic Effects and Genetic Variants: A Challenge for Precision Nutrition in Obesity and Associated Disturbances. Nutrients 2018; 10:nu10121919. [PMID: 30518135 PMCID: PMC6316334 DOI: 10.3390/nu10121919] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 02/07/2023] Open
Abstract
Vitamin E (VE) has a recognized leading role as a contributor to the protection of cell constituents from oxidative damage. However, evidence suggests that the health benefits of VE go far beyond that of an antioxidant acting in lipophilic environments. In humans, VE is channeled toward pathways dealing with lipoproteins and cholesterol, underlining its relevance in lipid handling and metabolism. In this context, both VE intake and status may be relevant in physiopathological conditions associated with disturbances in lipid metabolism or concomitant with oxidative stress, such as obesity. However, dietary reference values for VE in obese populations have not yet been defined, and VE supplementation trials show contradictory results. Therefore, a better understanding of the role of genetic variants in genes involved in VE metabolism may be crucial to exert dietary recommendations with a higher degree of precision. In particular, genetic variability should be taken into account in targets concerning VE bioavailability per se or concomitant with impaired lipoprotein transport. Genetic variants associated with impaired VE liver balance, and the handling/resolution of oxidative stress might also be relevant, but the core information that exists at present is insufficient to deliver precise recommendations.
Collapse
|
204
|
Trotta E, Bortolotti S, Fugazzotto G, Gellera C, Montagnese S, Amodio P. Familial vitamin E deficiency: Multiorgan complications support the adverse role of oxidative stress. Nutrition 2018; 63-64:57-60. [PMID: 30933726 DOI: 10.1016/j.nut.2018.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 11/04/2018] [Accepted: 11/20/2018] [Indexed: 11/26/2022]
Abstract
Vitamin E is an essential micronutrient with relevant antioxidant and anti-inflammatory properties found in plant leaves, seeds, and products derived from their processing. Familial vitamin E deficiency is a rare inherited syndrome characterized by ataxia and peripheral neuropathy with a massive decrease in plasma vitamin E (<0.5 mg/dL). This report describes the history of two siblings suffering from ataxia with vitamin E deficiency who developed premature systemic disorders (atherosclerotic vascular disease, ischemic heart disease, and liver steatosis) in absence of relevant risk factors. The association of neuromuscular symptoms and multiorgan involvement in patients with ataxia with vitamin E deficiency has not been reported to our knowledge. The lack of an effective vitamin E activity seems to be implicated in the pathogenesis of cardiovascular, gastrointestinal, and other diseases in which oxidative stress is a risk factor.
Collapse
Affiliation(s)
- Elisa Trotta
- Department of Medicine, University of Padova, Padova, Italy
| | | | | | - Cinzia Gellera
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | | | - Piero Amodio
- Department of Medicine, University of Padova, Padova, Italy.
| |
Collapse
|
205
|
HAMACEK FR, DELLA LUCIA CM, SILVA BPD, MOREIRA AVB, PINHEIRO-SANT’ANA HM. Buriti of the cerrado of Minas Gerais, Brazil: physical and chemical characterization and content of carotenoids and vitamins. FOOD SCIENCE AND TECHNOLOGY 2018. [DOI: 10.1590/fst.15417] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
206
|
Haley HMS, Hill AG, Greenwood AI, Woerly EM, Rienstra CM, Burke MD. Peridinin Is an Exceptionally Potent and Membrane-Embedded Inhibitor of Bilayer Lipid Peroxidation. J Am Chem Soc 2018; 140:15227-15240. [PMID: 30388000 PMCID: PMC6452872 DOI: 10.1021/jacs.8b06933] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Antilipoperoxidant protein dysfunction is associated with many human diseases, suggesting that bilayer lipid peroxidation may contribute broadly to pathogenesis. Small molecule inhibitors of this membrane-localized chemistry could in theory enable better understanding and/or treatment of such diseases, but currently available compounds have important limitations. Many biological questions thus remain unanswered, and clinical trials have largely been disappointing. Enabled by efficient, building block-based syntheses of three atypical carotenoid natural products produced by microorganisms that thrive in environments of extreme oxidative stress, we found that peridinin is a potent inhibitor of nonenzymatic bilayer lipid peroxidation in liposomes and in primary human endothelial cells. We also found that peridinin blocks monocyte-endothelial cell adhesion, a key step in atherogenesis. A series of frontier solid-state NMR experiments with a site-specifically 13C-labeled isotopolog synthesized using the same MIDA boronate building block-based total synthesis approach revealed that peridinin is completely embedded within and physically spans the hydrophobic core of POPC membranes, maximizing its effective molarity at the site of the targeted lipid peroxidation reactions. Alternatively, the widely used carotenoid astaxanthin is significantly less potent and was found to primarily localize extramembranously. Peridinin thus represents a promising and biophysically well-characterized starting point for the development of small molecule antilipoperoxidants that serve as more effective biological probes and/or therapeutics.
Collapse
Affiliation(s)
- Hannah M. S. Haley
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Adam G. Hill
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Alexander I. Greenwood
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
- Nuclear Magnetic Resonance (NMR) Facility in Applied Science and Physics, William & Mary, Williamsburg, Virginia 23185, United States (A.I.G.)
| | - Eric M. Woerly
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
- Eli Lilly and Company, Indianapolis, Indiana 46225, United States (E.M.W.)
| | - Chad M. Rienstra
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
- Department of Biochemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
- Center for Biophysics and Computational Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Martin D. Burke
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
- Department of Biochemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
- Carle Illinois College of Medicine, University of Illinois at Urbana–Champaign, Champaign, Illinois 61821, United States
| |
Collapse
|
207
|
Margaritelis NV, Paschalis V, Theodorou AA, Kyparos A, Nikolaidis MG. Antioxidants in Personalized Nutrition and Exercise. Adv Nutr 2018; 9:813-823. [PMID: 30256898 PMCID: PMC6247356 DOI: 10.1093/advances/nmy052] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The present review highlights the idea that antioxidant supplementation can be optimized when tailored to the precise antioxidant status of each individual. A novel methodologic approach involving personalized nutrition, the mechanisms by which antioxidant status regulates human metabolism and performance, and similarities between antioxidants and other nutritional supplements are described. The usefulness of higher-level phenotypes for data-driven personalized treatments is also explained. We conclude that personally tailored antioxidant interventions based on specific antioxidant inadequacies or deficiencies could result in improved exercise performance accompanied by consistent alterations in redox profile.
Collapse
Affiliation(s)
- Nikos V Margaritelis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece,Intensive Care Unit, 424 General Military Hospital of Thessaloniki, Thessaloniki, Greece,Address correspondence to NVM (e-mail: )
| | - Vassilis Paschalis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios A Theodorou
- Department of Health Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Antonios Kyparos
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Michalis G Nikolaidis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| |
Collapse
|
208
|
Yazgan B, Sozen E, Karademir B, Ustunsoy S, Ince U, Zarkovic N, Ozer NK. CD36 expression in peripheral blood mononuclear cells reflects the onset of atherosclerosis. Biofactors 2018; 44:588-596. [PMID: 28677864 DOI: 10.1002/biof.1372] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/29/2017] [Accepted: 06/07/2017] [Indexed: 11/06/2022]
Abstract
Together with complex genetic and environmental factors, increased serum cholesterol and ox-LDL levels are considered as major triggering factors of atherosclerosis. Mononuclear cell infiltration to the arterial wall and uptake of ox-LDL, which is facilitated by CD36 receptor through an uncontrolled manner, play a key role in foam cell formation followed by atherogenesis development. The aim of this study was to analyze if CD36 expression in peripheral blood mononuclear cells reflect its aortic tissue level in hypercholesterolemia. In this study, CD36 protein expression was evaluated in aortic specimens of cholesterol or cholesterol plus Vitamin E treated animals in relation to the immunohistochemical analyses for the HNE-protein adducts, as well as for smooth muscle actin and vimentin. The CD36 mRNA expression was determined by RT-PCR in PBMC of hypercholesterolemic rabbits and hypercholesterolemic versus normocholesterolemic individuals. Immunohistochemistry findings revealed that smooth muscle actin, smooth muscle vimentin, HNE-protein conjugates, and CD36 protein expressions were significantly increased in aorta of hypercholesterolemic group where foam cells were present. High cholesterol diet significantly induced CD36 mRNA expression in both rabbit aorta and PBMCs, while positive correlation between aortic and PBMC CD36 expression has been found. In addition, consistent with the rabbit model, CD36 mRNA expression levels in human PBMCs were significantly higher in hypercholesterolemic patients than in normocholesterolemic individuals. Taken together, these results demonstrate that the CD36 mRNA levels of PBMCs could reflect the CD36 mRNA levels in aorta and could be used as a biomarker for diagnosis of atherosclerotic burden. © 2018 BioFactors, 44(6):588-596, 2018.
Collapse
Affiliation(s)
- Burak Yazgan
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research Center (GEMHAM), Marmara University, Maltepe, Istanbul, 34854, Turkey
| | - Erdi Sozen
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research Center (GEMHAM), Marmara University, Maltepe, Istanbul, 34854, Turkey
| | - Betul Karademir
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research Center (GEMHAM), Marmara University, Maltepe, Istanbul, 34854, Turkey
| | - Seyfettin Ustunsoy
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research Center (GEMHAM), Marmara University, Maltepe, Istanbul, 34854, Turkey
| | - Umit Ince
- Acıbadem University and Acıbadem Heath Group, Istanbul, Turkey
| | - Neven Zarkovic
- Laboratory for Oxidative Stress, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Nesrin Kartal Ozer
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research Center (GEMHAM), Marmara University, Maltepe, Istanbul, 34854, Turkey
| |
Collapse
|
209
|
Tang B, Qian Y, Gou Y, Cheng G, Fang G. VE-Albumin Core-Shell Nanoparticles for Paclitaxel Delivery to Treat MDR Breast Cancer. Molecules 2018; 23:E2760. [PMID: 30366367 PMCID: PMC6278303 DOI: 10.3390/molecules23112760] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/18/2018] [Accepted: 10/20/2018] [Indexed: 11/17/2022] Open
Abstract
Multi-drug resistance (MDR) presents a serious problem in cancer chemotherapy. In this study, Vitamin E (VE)-Albumin core-shell nanoparticles were developed for paclitaxel (PTX) delivery to improve the chemotherapy efficacy in an MDR breast cancer model. The PTX-loaded VE-Albumin core-shell nanoparticles (PTX-VE NPs) had small particle sizes (about 100 nm), high drug entrapment efficiency (95.7%) and loading capacity (12.5%), and showed sustained release profiles, in vitro. Docking studies indicated that the hydrophobic interaction and hydrogen bonds play a significant role in the formation of the PTX-VE NPs. The results of confocal laser scanning microscopy analysis demonstrated that the cell uptake of PTX was significantly increased by the PTX-VE NPs, compared with the NPs without VE (PTX NPs). The PTX-VE NPs also exhibited stronger cytotoxicity, compared with PTX NPs with an increased accumulation of PTX in the MCF-7/ADR cells. Importantly, the PTX-VE NPs showed a higher anti-cancer efficacy in MCF-7/ADR tumor xenograft model than the PTX NPs and the PTX solutions. Overall, the VE-Albumin core-shell nanoparticles could be a promising nanocarrier for PTX delivery to improve the chemotherapeutic efficacy of MDR cancer.
Collapse
Affiliation(s)
- Bo Tang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, China.
| | - Yu Qian
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, China.
| | - Yi Gou
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, China.
| | - Gang Cheng
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, Liaoning, China.
| | - Guihua Fang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, China.
| |
Collapse
|
210
|
Tan BL, Norhaizan ME, Liew WPP, Sulaiman Rahman H. Antioxidant and Oxidative Stress: A Mutual Interplay in Age-Related Diseases. Front Pharmacol 2018; 9:1162. [PMID: 30405405 PMCID: PMC6204759 DOI: 10.3389/fphar.2018.01162] [Citation(s) in RCA: 533] [Impact Index Per Article: 88.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/24/2018] [Indexed: 12/14/2022] Open
Abstract
Aging is the progressive loss of organ and tissue function over time. Growing older is positively linked to cognitive and biological degeneration such as physical frailty, psychological impairment, and cognitive decline. Oxidative stress is considered as an imbalance between pro- and antioxidant species, which results in molecular and cellular damage. Oxidative stress plays a crucial role in the development of age-related diseases. Emerging research evidence has suggested that antioxidant can control the autoxidation by interrupting the propagation of free radicals or by inhibiting the formation of free radicals and subsequently reduce oxidative stress, improve immune function, and increase healthy longevity. Indeed, oxidation damage is highly dependent on the inherited or acquired defects in enzymes involved in the redox-mediated signaling pathways. Therefore, the role of molecules with antioxidant activity that promote healthy aging and counteract oxidative stress is worth to discuss further. Of particular interest in this article, we highlighted the molecular mechanisms of antioxidants involved in the prevention of age-related diseases. Taken together, a better understanding of the role of antioxidants involved in redox modulation of inflammation would provide a useful approach for potential interventions, and subsequently promoting healthy longevity.
Collapse
Affiliation(s)
- Bee Ling Tan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Mohd Esa Norhaizan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
- Research Centre of Excellent, Nutrition and Non-Communicable Diseases (NNCD), Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Winnie-Pui-Pui Liew
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | | |
Collapse
|
211
|
Aboudzadeh MA, Mehravar E, Fernandez M, Lezama L, Tomovska R. Low-Energy Encapsulation of α-Tocopherol Using Fully Food Grade Oil-in-Water Microemulsions. ACS OMEGA 2018; 3:10999-11008. [PMID: 31459210 PMCID: PMC6645536 DOI: 10.1021/acsomega.8b01272] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/07/2018] [Indexed: 06/10/2023]
Abstract
Encapsulation of active agents, such as vitamins and antioxidants, is one of the possibilities that allow their incorporation in beverages, food, or in pharmaceutical products. Simultaneously, encapsulation protects these active agents from oxidation, producing more stable active compounds. Formation of nanodroplets by spontaneously formed microemulsion (ME) offers, on one hand, a low-energy technology of encapsulation and, on the other hand, because of a small size of the droplets, it assures long-term stability even in harsher environments. In this study, oil-in-water MEs allowed the low-energy encapsulation of α-tocopherol (αToc) into an aqueous medium with the aid of fully food-grade ingredients, using isoamyl acetate as the dispersed oil phase, which was selected between three different types of oils. Both cosurfactant-free and cosurfactant-holder ME systems were formulated, in which Tween 20 and glycerol were employed as the surfactant and the cosurfactant, respectively. The ME monophasic area was determined through the construction of pseudoternary phase diagrams. The encapsulated αToc within 10-20 nm nanocapsules showed radical scavenging activity dependent on the encapsulated amount of αToc, as it was demonstrated by electron paramagnetic resonance spectroscopy. The radical scavenging activity slightly increased within the time investigated, indicating a slow release of the active compound from the nanodroplets, which is a promising result for their application, especially in pharmaceuticals.
Collapse
Affiliation(s)
- M. Ali Aboudzadeh
- POLYMAT,
University of the Basque Country, UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - Ehsan Mehravar
- POLYMAT,
University of the Basque Country, UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - Mercedes Fernandez
- POLYMAT,
University of the Basque Country, UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - Luis Lezama
- Departamento
de Química Inorgánica, Universidad
del País Vasco UPV/EHU, B° Sarriena, 48970 Leioa, Spain
- BC Materials,
Basque Center for Materials, Applications & Nanostructures, UPV/EHU Science Park, B° Sarriena, 48970 Leioa, Spain
| | - Radmila Tomovska
- POLYMAT,
University of the Basque Country, UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018 Donostia-San Sebastián, Spain
- Ikerbasque,
Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
212
|
Wilhelm EA, Vogt AG, Reis AS, Pinz MP, de Souza JF, Haas SE, Pereira AAM, Fajardo AR, Luchese C. The efficacy of microemulsion-based delivery to improve vitamin E properties: evaluation of the antinociceptive, antioxidant, antidepressant- and anxiolytic-like activities in mice. J Pharm Pharmacol 2018; 70:1723-1732. [DOI: 10.1111/jphp.13018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/02/2018] [Indexed: 01/24/2023]
Abstract
Abstract
Objectives
A microemulsion-based delivery system was designed to improve vitamin E (VE) properties, and its antinociceptive, antioxidant, antidepressant- and anxiolytic-like activities in mice were evaluated.
Methods
Male Swiss mice received, by intragastric route, canola oil (20 ml/kg), blank microemulsion (B-ME) (20 ml/kg), VE free (VE-F) (200 mg/kg) or VE microemulsion (VE-ME) (200 mg/kg). In acute treatment, a single dose of treatments was administrated and 30 min after behavioural tests were performed. In the subchronic treatment, mice received such treatments, once a day, for 8 days. On the eighth day, behavioural tests were performed.
Key findings
In the subchronic treatment, VE-ME increased entries and spent time in the open arms in the elevated plus-maze test and decreased the immobility time in the tail suspension test, but no change was found after acute treatment. Acute and subchronic treatments with VE-ME increased response latency to thermal stimulus in the hot-plate test. VE-ME decreased the thiobarbituric acid reactive species levels in the acute and subchronic protocols. Additionally, in subchronic treatment, VE-ME increased renal catalase activity, but VE-F reduced its activity.
Conclusions
Vitamin E-microemulsions showed antioxidant, antinociceptive, antidepressant- and anxiolytic-like actions; thus, ME-based delivery improved pharmacological properties of VE.
Collapse
Affiliation(s)
- Ethel A Wilhelm
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | - Ane G Vogt
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | - Angélica S Reis
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | - Mikaela P Pinz
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | - Jaqueline F de Souza
- Laboratório de Tecnologia e Desenvolvimento de Materiais Poliméricos e Compósitos (LaCoPol), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | - Sandra E Haas
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pampa (UNIPAMPA), Uruguaiana, RS, Brazil
| | | | - André R Fajardo
- Laboratório de Tecnologia e Desenvolvimento de Materiais Poliméricos e Compósitos (LaCoPol), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | - Cristiane Luchese
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| |
Collapse
|
213
|
Pein H, Ville A, Pace S, Temml V, Garscha U, Raasch M, Alsabil K, Viault G, Dinh CP, Guilet D, Troisi F, Neukirch K, König S, Bilancia R, Waltenberger B, Stuppner H, Wallert M, Lorkowski S, Weinigel C, Rummler S, Birringer M, Roviezzo F, Sautebin L, Helesbeux JJ, Séraphin D, Mosig AS, Schuster D, Rossi A, Richomme P, Werz O, Koeberle A. Endogenous metabolites of vitamin E limit inflammation by targeting 5-lipoxygenase. Nat Commun 2018; 9:3834. [PMID: 30237488 PMCID: PMC6148290 DOI: 10.1038/s41467-018-06158-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 08/22/2018] [Indexed: 12/19/2022] Open
Abstract
Systemic vitamin E metabolites have been proposed as signaling molecules, but their physiological role is unknown. Here we show, by library screening of potential human vitamin E metabolites, that long-chain ω-carboxylates are potent allosteric inhibitors of 5-lipoxygenase, a key enzyme in the biosynthesis of chemoattractant and vasoactive leukotrienes. 13-((2R)-6-hydroxy-2,5,7,8-tetramethylchroman-2-yl)-2,6,10-trimethyltridecanoic acid (α-T-13'-COOH) can be synthesized from α-tocopherol in a human liver-on-chip, and is detected in human and mouse plasma at concentrations (8-49 nM) that inhibit 5-lipoxygenase in human leukocytes. α-T-13'-COOH accumulates in immune cells and inflamed murine exudates, selectively inhibits the biosynthesis of 5-lipoxygenase-derived lipid mediators in vitro and in vivo, and efficiently suppresses inflammation and bronchial hyper-reactivity in mouse models of peritonitis and asthma. Together, our data suggest that the immune regulatory and anti-inflammatory functions of α-tocopherol depend on its endogenous metabolite α-T-13'-COOH, potentially through inhibiting 5-lipoxygenase in immune cells.
Collapse
Affiliation(s)
- Helmut Pein
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Alexia Ville
- Substances d'Origine Naturelle et Analogues Structuraux, SONAS, SFR4207 QUASAV, UNIV Angers, Université Bretagne Loire, 49070, Beaucouzé, France
| | - Simona Pace
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Veronika Temml
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Ulrike Garscha
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Martin Raasch
- Institute of Biochemistry II and Center for Sepsis Control and Care, University Hospital Jena, 07743, Jena, Germany
| | - Khaled Alsabil
- Substances d'Origine Naturelle et Analogues Structuraux, SONAS, SFR4207 QUASAV, UNIV Angers, Université Bretagne Loire, 49070, Beaucouzé, France
| | - Guillaume Viault
- Substances d'Origine Naturelle et Analogues Structuraux, SONAS, SFR4207 QUASAV, UNIV Angers, Université Bretagne Loire, 49070, Beaucouzé, France
| | - Chau-Phi Dinh
- Substances d'Origine Naturelle et Analogues Structuraux, SONAS, SFR4207 QUASAV, UNIV Angers, Université Bretagne Loire, 49070, Beaucouzé, France
| | - David Guilet
- Substances d'Origine Naturelle et Analogues Structuraux, SONAS, SFR4207 QUASAV, UNIV Angers, Université Bretagne Loire, 49070, Beaucouzé, France
| | - Fabiana Troisi
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Konstantin Neukirch
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Stefanie König
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Rosella Bilancia
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131, Naples, Italy
| | - Birgit Waltenberger
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Hermann Stuppner
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Maria Wallert
- Chair of Nutritional Biochemistry and Physiology, Institute of Nutrition, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Stefan Lorkowski
- Chair of Nutritional Biochemistry and Physiology, Institute of Nutrition, Friedrich-Schiller-University Jena, 07743, Jena, Germany.,Competence Cluster of Nutrition and Cardiovascular Health (nutriCARD), Halle, Jena and Leipzig, Jena, 07743, Germany
| | - Christina Weinigel
- Institute of Transfusion Medicine, University Hospital Jena, 07747, Jena, Germany
| | - Silke Rummler
- Institute of Transfusion Medicine, University Hospital Jena, 07747, Jena, Germany
| | - Marc Birringer
- Department of Nutritional, Food and Consumer Sciences, Fulda University of Applied Sciences, 36037, Fulda, Germany
| | - Fiorentina Roviezzo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131, Naples, Italy
| | - Lidia Sautebin
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131, Naples, Italy
| | - Jean-Jacques Helesbeux
- Substances d'Origine Naturelle et Analogues Structuraux, SONAS, SFR4207 QUASAV, UNIV Angers, Université Bretagne Loire, 49070, Beaucouzé, France
| | - Denis Séraphin
- Substances d'Origine Naturelle et Analogues Structuraux, SONAS, SFR4207 QUASAV, UNIV Angers, Université Bretagne Loire, 49070, Beaucouzé, France
| | - Alexander S Mosig
- Institute of Biochemistry II and Center for Sepsis Control and Care, University Hospital Jena, 07743, Jena, Germany
| | - Daniela Schuster
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria.,Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University Salzburg, 5020, Salzburg, Austria
| | - Antonietta Rossi
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131, Naples, Italy
| | - Pascal Richomme
- Substances d'Origine Naturelle et Analogues Structuraux, SONAS, SFR4207 QUASAV, UNIV Angers, Université Bretagne Loire, 49070, Beaucouzé, France
| | - Oliver Werz
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743, Jena, Germany.
| | - Andreas Koeberle
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743, Jena, Germany.
| |
Collapse
|
214
|
Mężyńska M, Brzóska MM. Review of polyphenol-rich products as potential protective and therapeutic factors against cadmium hepatotoxicity. J Appl Toxicol 2018; 39:117-145. [PMID: 30216481 DOI: 10.1002/jat.3709] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 12/11/2022]
Abstract
Recently, the growing attention of the scientific community has been focused on the threat to health created by environmental pollutants, including toxic metals such as cadmium (Cd), and on the need of finding effective ways to prevent and treat the unfavorable health effects of exposure to them. Particularly promising for Cd, and thus arousing the greatest interest, is the possibility of using various ingredients present in plants, including mainly polyphenolic compounds. As the liver is one of the target organs for this toxic metal and disturbances in the proper functioning of this organ have serious consequences for health, the aim of the present review was to discuss the possibility of using polyphenol-rich food products (e.g., chokeberry, black and green tea, blueberry, olive oil, rosemary and ginger) as the strategy in protection from this xenobiotic hepatotoxicity and treatment of this heavy metal-induced liver damage. Owing to the ability of polyphenols to bind ions of Cd and the strong antioxidative potential of these compounds, as well as their abundance in dietary products, it seems to be of high importance to consider the possibility of using polyphenols as potential preventive and therapeutic agents against Cd hepatotoxicity, determined by its strong pro-oxidative properties. Although most of the data on the effectiveness of polyphenols comes from studies in animals, the fact that some of them are derived from experimental models that reflect human exposure to this metal allows us to assume that some polyphenol-rich food products may be promising protective agents against Cd hepatotoxicity in humans.
Collapse
Affiliation(s)
- Magdalena Mężyńska
- Department of Toxicology, Medical University of Bialystok, Adama Mickiewicza 2C Street, 15-222, Bialystok, Poland
| | - Malgorzata M Brzóska
- Department of Toxicology, Medical University of Bialystok, Adama Mickiewicza 2C Street, 15-222, Bialystok, Poland
| |
Collapse
|
215
|
de Souza CP, Gambeta E, Stern CAJ, Zanoveli JM. Posttraumatic stress disorder-type behaviors in streptozotocin-induced diabetic rats can be prevented by prolonged treatment with vitamin E. Behav Brain Res 2018; 359:749-754. [PMID: 30219262 DOI: 10.1016/j.bbr.2018.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/04/2018] [Accepted: 09/12/2018] [Indexed: 01/05/2023]
Abstract
Anxiety and stress disorders, such as posttraumatic stress disorder (PTSD) have been described as debilitating comorbidities of diabetes. In the present study, we aimed to investigate anxiety-like behavior and the extinction and generalization of aversive memories in fear conditioning using a streptozotocin-induced model of diabetes (DBT). Moreover, considering that DBT animals present increased oxidative stress in brain areas related to anxiety and memory, we aimed to evaluate the effect of prolonged treatment with antioxidant vitamin E on behavioral parameters of anxiety and fear memory and on the diabetic condition. It was observed that DBT animals showed a deficiency in extinguishing the aversive memory in a fear conditioning test, along with a generalization of the fear memory. They also present a more pronounced anxiety-like behavior in the elevated plus maze test. VIT E treatment (300 mg/kg, p.o.) was not able to reduce hyperglycemia; however, it was able to block the anxiogenic-like behavior, also improving the deficit in the extinction of the aversive memory as well as blocking the generalization of such memory in a different context. Taken together, our data suggest that DBT animals are prone to extinction deficits and generalization of fear memories, behaviors which are observed in models of PTSD. Lastly, prolonged VIT E supplementation may be effective in the treatment of anxiety, extinction deficit and generalization of fear memories induced by the diabetic condition.
Collapse
Affiliation(s)
- Camila Pasquini de Souza
- Department of Pharmacology, Biological Science Sector, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Eder Gambeta
- Department of Pharmacology, Biological Science Sector, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | - Janaína Menezes Zanoveli
- Department of Pharmacology, Biological Science Sector, Federal University of Paraná, Curitiba, Paraná, Brazil.
| |
Collapse
|
216
|
Abdulla KA, Um CY, Gross MD, Bostick RM. Circulating γ-Tocopherol Concentrations Are Inversely Associated with Antioxidant Exposures and Directly Associated with Systemic Oxidative Stress and Inflammation in Adults. J Nutr 2018; 148:1453-1461. [PMID: 30184224 PMCID: PMC6669952 DOI: 10.1093/jn/nxy132] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/31/2018] [Indexed: 12/21/2022] Open
Abstract
Background Although α- and γ-tocopherol are co-consumed antioxidants, circulating γ-tocopherol concentrations were paradoxically found to be inversely associated with total vitamin E intake and circulating α-tocopherol concentrations. There are limited data on this apparent paradox or on determinants of circulating γ-tocopherol concentrations. Objective To help clarify possible determinants of circulating γ-tocopherol concentrations, we investigated associations of circulating γ-tocopherol concentrations with various dietary and lifestyle factors and biomarkers of oxidative stress and inflammation. Methods We pooled cross-sectional data from 2 outpatient, adult, elective colonoscopy populations (pooled n = 419) on whom extensive dietary, lifestyle, and medical information was collected, and the following plasma concentrations were measured: α- and γ-tocopherol (via HPLC), F2-isoprostanes (FiPs; via gas chromatography-mass spectrometry), and high-sensitivity C-reactive protein (hsCRP; via latex-enhanced immunonephelometry). Multivariable general linear models were used to assess mean γ-tocopherol differences across quantiles of plasma antioxidant micronutrients, FiPs, and hsCRP; an oxidative balance score [OBS; a composite of anti- and pro-oxidant dietary and lifestyle exposures (a higher score indicates higher antioxidant relative to pro-oxidant exposures)]; and multiple dietary and lifestyle factors. Results Adjusted for serum total cholesterol, mean γ-tocopherol concentrations among those in the highest relative to the lowest tertiles of circulating α-tocopherol and β-carotene, the OBS, and total calcium and dietary fiber intakes were 31.0% (P < 0.0001), 29.0% (P < 0.0001), 27.6% (P = 0.0001), 29.7% (P < 0.0001), and 18.6% (P = 0.008) lower, respectively. For those in the highest relative to the lowest tertiles of circulating FiPs and hsCRP, mean γ-tocopherol concentrations were 50% (P < 0.0001) and 39.0% (P < 0.0001) higher, respectively. Conclusions These findings support the conclusion that circulating γ-tocopherol concentrations are inversely associated with antioxidant exposures and directly associated with systemic oxidative stress and inflammation in adults. Additional research on possible mechanisms underlying these findings and on whether circulating γ-tocopherol may serve as a biomarker of oxidative stress, inflammation, or both is needed.
Collapse
Affiliation(s)
- Kennadiid A Abdulla
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Caroline Y Um
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Myron D Gross
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Minnesota, Minneapolis, MN
| | - Roberd M Bostick
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA,Winship Cancer Institute, Emory University, Atlanta, GA,Address correspondence to RMB (e-mail: )
| |
Collapse
|
217
|
Tapia G, Silva D, Romero N, Pettinelli P, Dossi CG, de Miguel M, González-Mañán D. Role of dietary α- and γ-tocopherol from Rosa mosqueta oil in the prevention of alterations induced by high-fat diet in a murine model. Nutrition 2018; 53:1-8. [DOI: 10.1016/j.nut.2018.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/04/2018] [Accepted: 01/04/2018] [Indexed: 01/04/2023]
|
218
|
Barko PC, Williams DA. Serum concentrations of lipid-soluble vitamins in dogs with exocrine pancreatic insufficiency treated with pancreatic enzymes. J Vet Intern Med 2018; 32:1600-1608. [PMID: 30133868 PMCID: PMC6189355 DOI: 10.1111/jvim.15292] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/31/2018] [Accepted: 06/27/2018] [Indexed: 02/06/2023] Open
Abstract
Background In humans, exocrine pancreatic insufficiency (EPI) is associated with deficiencies in lipid‐soluble vitamins. Little is reported regarding lipid‐soluble vitamin status in dogs with EPI. Hypothesis/Objectives Compare serum concentrations of retinol, 25‐hydrocholecalciferol (25OHD), and α‐tocopherol among dogs with EPI, those with subclinical EPI (sEPI), and healthy dogs. Detect associations between serum concentrations of lipid‐soluble vitamins and residual clinical signs in treated dogs with EPI and sEPI. Animals Twenty dogs with EPI and five dogs with sEPI receiving pancreatic enzyme replacement therapy. Ten healthy dogs sampled before and after 10 days of pancreatic enzyme supplementation. Methods Case‐control study. Serum retinol and α‐tocopherol concentrations were measured by high‐performance liquid chromatography. Serum 25OHD concentrations were measured by radioimmunoassay. Results Serum retinol concentration was significantly lower in dogs with EPI (median, 490 ng/mL; range, 322‐990 ng/mL) and serum α‐tocopherol concentration was significantly lower in dogs with EPI (median, 11.51 μg/L; range, 4.8‐27.1 μg/L) and sEPI (median, 12.66 μg/L; range, 10.21‐21.03 μg/L) compared with healthy dogs (median, 1203 ng/mL; range, 637‐1768 ng/mL and median, 43.54 μg/L; range, 34.26‐53.97 μg/L, respectively). Dogs with weight loss had significantly lower 25OHD (mean, 243.50 nmol/L; standard deviation [SD], 3.54 nmol/L) than dogs with stable weight (314.0 nmol/L; SD, 138.38 nmol/L). Conclusions and Clinical Importance Altered homeostasis of lipid‐soluble vitamins is present in dogs with EPI and sEPI, despite enzyme replacement therapy. Additional studies are needed to determine the clinical relevance of these findings and the therapeutic potential of lipid‐soluble vitamin supplementation in dogs with EPI and sEPI.
Collapse
Affiliation(s)
- Patrick C Barko
- Veterinary Clinical Medicine, University of Illinois at Urbana, Champaign, Illinois
| | - David A Williams
- Veterinary Clinical Medicine, University of Illinois at Urbana, Champaign, Illinois
| |
Collapse
|
219
|
Irías-Mata A, Sus N, Flory S, Stock D, Woerner D, Podszun M, Frank J. α-Tocopherol transfer protein does not regulate the cellular uptake and intracellular distribution of α- and γ-tocopherols and -tocotrienols in cultured liver cells. Redox Biol 2018; 19:28-36. [PMID: 30098456 PMCID: PMC6082990 DOI: 10.1016/j.redox.2018.07.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/20/2018] [Accepted: 07/31/2018] [Indexed: 02/02/2023] Open
Abstract
Liver cells express a cytosolic α-tocopherol transfer protein (αTTP) with high binding affinity for α-tocopherol (αT) and much lower affinities for the non-αT congeners. The role of αTTP in the intracellular distribution of the different vitamin E forms is currently unknown. We therefore investigated the intracellular localization of αT, γ-tocopherol (γT), α-tocotrienol (αT3), and γ-tocotrienol (γT3) in cultured hepatic cells with and without stable expression of αTTP. We first determined cellular uptake of the four congeners and found the methylation of the chromanol ring and saturation of the sidechain to be important factors, with tocotrienols being taken up more efficiently than tocopherols and the γ-congeners more than the α-congeners, irrespective of the expression of αTTP. This, however, could perhaps also be due to an observed higher stability of tocotrienols, compared to tocopherols, in culture media rather than a higher absorption. We then incubated HepG2 cells and αTTP-expressing HepG2 cells with αT, γT, αT3, or γT3, isolated organelle fractions by density gradient centrifugation, and determined the concentrations of the congeners in the subcellular fractions. All four congeners were primarily associated with the lysosomes, endoplasmic reticulum, and plasma membrane, whereas only αT correlated with mitochondria. Neither the chromanol ring methylation or sidechain saturation, nor the expression of αTTP were important factors for the intracellular distribution of vitamin E. In conclusion, αTTP does not appear to regulate the uptake and intracellular localization of different vitamin E congeners in cultured liver cells. We studied how αTTP affects intracellular distribution of αT, γT, αT3, γT3 in HepG2 cells. All congeners associated with lysosomes, endoplasmic reticulum and the plasma membrane. Only αT significantly correlated with mitochondria. Neither the chemical structure, nor αTTP were important for intracellular localization.
Collapse
Affiliation(s)
- Andrea Irías-Mata
- Institute of Biological Chemistry and Nutrition, University of Hohenheim, D-70599 Stuttgart, Germany
| | - Nadine Sus
- Institute of Biological Chemistry and Nutrition, University of Hohenheim, D-70599 Stuttgart, Germany
| | - Sandra Flory
- Institute of Biological Chemistry and Nutrition, University of Hohenheim, D-70599 Stuttgart, Germany
| | - Daniela Stock
- Institute of Biological Chemistry and Nutrition, University of Hohenheim, D-70599 Stuttgart, Germany
| | - Denise Woerner
- Institute of Biological Chemistry and Nutrition, University of Hohenheim, D-70599 Stuttgart, Germany
| | - Maren Podszun
- Institute of Biological Chemistry and Nutrition, University of Hohenheim, D-70599 Stuttgart, Germany
| | - Jan Frank
- Institute of Biological Chemistry and Nutrition, University of Hohenheim, D-70599 Stuttgart, Germany.
| |
Collapse
|
220
|
Schmölz L, Schubert M, Kirschner J, Kluge S, Galli F, Birringer M, Wallert M, Lorkowski S. Long-chain metabolites of vitamin E: Interference with lipotoxicity via lipid droplet associated protein PLIN2. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:919-927. [DOI: 10.1016/j.bbalip.2018.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 04/17/2018] [Accepted: 05/03/2018] [Indexed: 01/25/2023]
|
221
|
Luna RCP, Dos Santos Nunes MK, Monteiro MGCA, da Silva CSO, do Nascimento RAF, Lima RPA, Pimenta FCF, de Oliveira NFP, Persuhn DC, de Almeida ATC, da Silva Diniz A, Pissetti CW, Vianna RPT, de Lima Ferreira FEL, Rodrigues Gonçalves MDC, de Carvalho Costa MJ. α-Tocopherol influences glycaemic control and miR-9-3 DNA methylation in overweight and obese women under an energy-restricted diet: a randomized, double-blind, exploratory, controlled clinical trial. Nutr Metab (Lond) 2018; 15:49. [PMID: 30008789 PMCID: PMC6042339 DOI: 10.1186/s12986-018-0286-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/03/2018] [Indexed: 12/14/2022] Open
Abstract
Background Excess weight is a strong risk factor for the development of dysglycaemia. It has been suggested that changes in the metabolism microRNAs, small non-coding RNAs that regulate gene expression, could precede late glycaemic changes. Vitamin E in turn may exert important functions in methylation and gene expression processes. This study aimed to determine the effect of α-tocopherol on glycaemic variables and miR-9-1 and miR-9-3 promoter DNA methylation in overweight women. Methods A randomized, double-blind, exploratory, placebo-controlled study was conducted in overweight and obese adult women (n = 44) who ingested synthetic vitamin E (all-rac-α-tocopherol), natural source vitamin E (RRR-rac-α-tocopherol) or placebo capsules and were followed up for a period of 8 weeks. Supplemented groups also received dietary guidance for an energy-restricted diet. An additional group that received no supplementation and did not follow an energy-restricted diet was also followed up. The intervention effect was evaluated by DNA methylation levels (quantitative real-time PCR assay) and anthropometric and biochemical variables (fasting plasma glucose, haemoglobin A1C, insulin, and vitamin E). Results Increased methylation levels of the miR-9-3 promoter region (P < 0.001) and reduced haemoglobin A1C (P < 0.05) were observed in the natural source vitamin E group after intervention. Increased fasting plasma glucose was observed in the synthetic vitamin E group, despite the significant reduction of anthropometric variables compared to the other groups. Conclusions α-Tocopherol from natural sources increased methylation levels of the miR-9-3 promoter region and reduced haemoglobin A1C in overweight women following an energy-restricted diet. These results provide novel information about the influence of vitamin E on DNA methylation. Trial registration ClinicalTrials.gov, NCT02922491. Registered 4 October, 2016. Electronic supplementary material The online version of this article (10.1186/s12986-018-0286-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rafaella Cristhine Pordeus Luna
- 1Postgraduate in Nutrition Sciences, Health Sciences Center, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Paraíba 58051-900 Brazil.,10Postgraduate in Nutrition Sciences, Health Sciences Center, Health and Nutrition Studies Interdisciplinary Center (NIESN), Federal University of Paraíba (Universidade Federal da Paraíba), Castelo Branco, João Pessoa, Paraíba 58051-900 Brazil
| | - Mayara Karla Dos Santos Nunes
- 2Postgraduate Program in Cellular and Molecular Biology, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Paraíba 58059-900 Brazil
| | - Mussara Gomes Cavalcante Alves Monteiro
- 1Postgraduate in Nutrition Sciences, Health Sciences Center, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Paraíba 58051-900 Brazil
| | - Cássia Surama Oliveira da Silva
- 3Health and Nutrition Studies Interdisciplinary Center, Health Sciences Center, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Paraíba 58051-900 Brazil
| | - Rayner Anderson Ferreira do Nascimento
- 2Postgraduate Program in Cellular and Molecular Biology, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Paraíba 58059-900 Brazil
| | - Raquel Patrícia Ataíde Lima
- 1Postgraduate in Nutrition Sciences, Health Sciences Center, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Paraíba 58051-900 Brazil
| | - Flávia Cristina Fernandes Pimenta
- 4Department of Internal Medicine, Health Sciences Center, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Paraíba 58051-900 Brazil
| | - Naila Francis Paulo de Oliveira
- 5Departament of Molecular Biology, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, 58059-900 Paraíba Brasil
| | - Darlene Camati Persuhn
- 1Postgraduate in Nutrition Sciences, Health Sciences Center, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Paraíba 58051-900 Brazil.,2Postgraduate Program in Cellular and Molecular Biology, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Paraíba 58059-900 Brazil.,5Departament of Molecular Biology, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, 58059-900 Paraíba Brasil
| | - Aléssio Tony Cavalcanti de Almeida
- 6Department of Economics, Postgraduate Program in Applied Economics and Economics of the Public Sector, Center for Applied Social Sciences, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Paraíba 58059-900 Brazil
| | - Alcides da Silva Diniz
- 7Department of Nutrition, Graduate Program in Nutrition, Health Sciences Center, Federal University of Pernambuco, Recife, Pernambuco 50670901 Brazil
| | - Cristina Wide Pissetti
- 8Department of Obstetrics and Gynecology, Health Sciences Center, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Paraíba 58051-900 Brazil
| | - Rodrigo Pinheiro Toledo Vianna
- 9Department of Nutrition, Graduate Program in Nutrition Sciences, Health Sciences Center, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Paraíba 58051-900 Brazil
| | - Flavia Emília Leite de Lima Ferreira
- 9Department of Nutrition, Graduate Program in Nutrition Sciences, Health Sciences Center, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Paraíba 58051-900 Brazil
| | - Maria da Conceição Rodrigues Gonçalves
- 1Postgraduate in Nutrition Sciences, Health Sciences Center, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Paraíba 58051-900 Brazil.,9Department of Nutrition, Graduate Program in Nutrition Sciences, Health Sciences Center, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Paraíba 58051-900 Brazil
| | - Maria José de Carvalho Costa
- 1Postgraduate in Nutrition Sciences, Health Sciences Center, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Paraíba 58051-900 Brazil.,9Department of Nutrition, Graduate Program in Nutrition Sciences, Health Sciences Center, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Paraíba 58051-900 Brazil
| |
Collapse
|
222
|
Calvo-Castro LA, Sus N, Schiborr C, Bosy-Westphal A, Duran ML, Fesenmeyer D, Fesenmeyer G, Frank J. Pharmacokinetics of vitamin E, γ-oryzanol, and ferulic acid in healthy humans after the ingestion of a rice bran-enriched porridge prepared with water or with milk. Eur J Nutr 2018; 58:2099-2110. [DOI: 10.1007/s00394-018-1770-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 06/28/2018] [Indexed: 02/03/2023]
|
223
|
Jomphe V, Lands LC, Mailhot G. Nutritional Requirements of Lung Transplant Recipients: Challenges and Considerations. Nutrients 2018; 10:E790. [PMID: 29921799 PMCID: PMC6024852 DOI: 10.3390/nu10060790] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 06/15/2018] [Indexed: 12/19/2022] Open
Abstract
An optimal nutritional status is associated with better post-transplant outcomes and survival. Post-lung transplant nutrition management is however particularly challenging as lung recipients represent a very heterogeneous group of patients in terms of age, underlying diseases, weight status and presence of comorbidities. Furthermore, the post-transplant period encompasses several stages characterized by physiological and pathophysiological changes that affect nutritional status of patients and necessitate tailored nutrition management. We provide an overview of the current state of knowledge regarding nutritional requirements in the post-lung transplant period from the immediate post-operative phase to long-term follow-up. In the immediate post-transplantation phase, the high doses of immunosuppressants and corticosteroids, the goal of maintaining hemodynamic stability, the presence of a catabolic state, and the wound healing process increase nutritional demands and lead to metabolic perturbations that necessitate nutritional interventions. As time from transplantation increases, complications such as obesity, osteoporosis, cancer, diabetes, and kidney disease, may develop and require adjustments to nutrition management. Until specific nutritional guidelines for lung recipients are elaborated, recommendations regarding nutrient requirements are formulated to provide guidance for clinicians caring for these patients. Finally, the management of recipients with special considerations is also briefly addressed.
Collapse
Affiliation(s)
- Valerie Jomphe
- Lung Transplant Program, Centre Hospitalier de l'Université de Montréal, 900 Saint-Denis Street, Montreal, QC H2X 0A9, Canada.
| | - Larry C Lands
- Lung Transplant Program, Centre Hospitalier de l'Université de Montréal, 900 Saint-Denis Street, Montreal, QC H2X 0A9, Canada.
- Department of Pediatrics, Montreal Children's Hospital-McGill University Health Centre, 1001 Décarie Boulevard, Montreal, QC H4A 3J1, Canada.
- Meakins Christie Laboratories, Research Institute of the McGill University Health Centre, 1001 Décarie Boulevard, Montreal, QC H4A 3J1, Canada.
| | - Genevieve Mailhot
- Department of Nutrition, Faculty of Medicine, Université de Montreal, 2405 Cote Sainte-Catherine Rd., Montreal, QC H3T 1A8, Canada.
- Research Centre, CHU Sainte-Justine, 3175 Cote Sainte-Catherine Rd., Montreal, QC H3T 1C5, Canada.
| |
Collapse
|
224
|
Bartosińska E, Borsuk-De Moor A, Siluk D, Markuszewski MJ, Wiczling P. Ionization of tocopherols and tocotrienols in atmospheric pressure chemical ionization. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:919-927. [PMID: 29578620 DOI: 10.1002/rcm.8124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE Tocopherols and tocotrienols are chemical compounds insusceptible to the ionization process under atmospheric pressure conditions. Therefore, the selection of the optimal ion source settings for their quantification requires special attention. The aim of this study was to analyse the influence of the APCI source parameters on the response of tocochromanols and two related compounds. METHODS Standard solutions of target compounds were injected on the high-performance liquid chromatography/atmospheric pressure chemical ionization tandem mass spectrometry (HPLC/APCI-MS/MS) system separately and analysed with 30 randomly selected ion source settings. The obtained responses were modelled by multivariate linear regression with least absolute shrinkage and selection operator. The developed models were used to choose the best APCI conditions. RESULTS Multivariate linear models were built for eight tocochromanols, trolox and BHT. The APCI settings derived from the models did not increase the peak areas obtained for T and T3 during the ionization process. Ionization conditions based on models for trolox and BHT improved analytical responses by 12-36% and 4-32%, respectively. The application of the ion source settings optimal for trolox and BHT to tocochromanols did not result in better analytical responses. CONCLUSIONS The ionization pattern of tocochromanols in the APCI source is problematic and should be further investigated. Modelling methodology for response improvement presented in this study can be applied in similar studies.
Collapse
Affiliation(s)
- Ewa Bartosińska
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Hallera 107, 80-416, Gdańsk, Poland
| | - Agnieszka Borsuk-De Moor
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Hallera 107, 80-416, Gdańsk, Poland
| | - Danuta Siluk
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Hallera 107, 80-416, Gdańsk, Poland
| | - Michał J Markuszewski
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Hallera 107, 80-416, Gdańsk, Poland
| | - Paweł Wiczling
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Hallera 107, 80-416, Gdańsk, Poland
| |
Collapse
|
225
|
Niero G, Penasa M, Berard J, Kreuzer M, Cassandro M, De Marchi M. Technical note: Development and validation of an HPLC method for the quantification of tocopherols in different types of commercial cow milk. J Dairy Sci 2018; 101:6866-6871. [PMID: 29885892 DOI: 10.3168/jds.2017-14187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/03/2018] [Indexed: 02/04/2023]
Abstract
In the present study, a methanol-fluorescence-based HPLC method was validated for its use to quantify α-tocopherol and γ-tocopherol in raw milk, whole UHT milk, partially skimmed UHT milk, whole pasteurized milk, and partially skimmed pasteurized milk. Repeatability and reproducibility, calculated as relative standard deviation of 10 measurements within the same day and 30 measurements across 3 d, respectively, were always below 5% for both tocopherols concentrations and retention times. Recovery was assessed through 3 spiking levels and it ranged from 89 to 107%. The method was able to detect the expected declines in tocopherols in milk exposed to UHT or skimming treatments. Vitamin E, calculated as the sum of α-tocopherol and γ-tocopherol, was similar in whole pasteurized and raw milk, averaging 1.57 and 1.56 mg/L, respectively, followed by whole UHT (1.33 mg/L), partially skimmed pasteurized (0.77 mg/L), and partially skimmed UHT milk (0.61 mg/L).
Collapse
Affiliation(s)
- G Niero
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy.
| | - M Penasa
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - J Berard
- ETH Zurich, Institute of Agricultural Sciences, Universitätstrasse 2, 8092 Zurich, Switzerland; ETH Zurich, AgroVet-Strickhof, Eschikon 27, 8315 Lindau, Switzerland
| | - M Kreuzer
- ETH Zurich, Institute of Agricultural Sciences, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - M Cassandro
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - M De Marchi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| |
Collapse
|
226
|
Rehman K, Saeed K, Munawar SM, Akash MSH. Resveratrol regulates hyperglycemia-induced modulations in experimental diabetic animal model. Biomed Pharmacother 2018; 102:140-146. [DOI: 10.1016/j.biopha.2018.03.050] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/07/2018] [Accepted: 03/09/2018] [Indexed: 10/17/2022] Open
|
227
|
Niki E. Oxidant-specific biomarkers of oxidative stress. Association with atherosclerosis and implication for antioxidant effects. Free Radic Biol Med 2018; 120:425-440. [PMID: 29625172 DOI: 10.1016/j.freeradbiomed.2018.04.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/30/2018] [Accepted: 04/02/2018] [Indexed: 12/16/2022]
Abstract
The unregulated oxidative modification of lipids, proteins, and nucleic acids induced by multiple oxidants has been implicated in the pathogenesis of many diseases. Antioxidants with diverse functions exert their roles either directly or indirectly in the physiological defense network to inhibit such deleterious oxidative modification of biological molecules and resulting damage. The efficacy of antioxidants depends on the nature of oxidants. Therefore, it is important to identify the oxidants which are responsible for modification of biological molecules. Some oxidation products produced selectively by specific oxidant enable to identify the responsible oxidants, while other products are produced by several oxidants similarly. In this review article, several oxidant-specific products produced selectively by peroxyl radicals, peroxynitrite, hypochlorous acid, lipoxygenase, and singlet oxygen were summarized and their potential role as biomarker is discussed. It is shown that the levels of specific oxidation products including hydroxylinoleate isomers, nitrated and chlorinated products, and oxysterols produced by the above-mentioned oxidants are elevated in the human atherosclerotic lesions, suggesting that all these oxidants may contribute to the development of atherosclerosis. Further, it was shown that the reactivities of physiological antioxidants toward the above-mentioned oxidants vary extensively, suggesting that multiple antioxidants effective against these different oxidants are required, since no single antioxidant alone can cope with these multiple oxidants.
Collapse
Affiliation(s)
- Etsuo Niki
- National Institute of Advanced Industrial Science & Technology, Takamatsu 761-0395, Japan.
| |
Collapse
|
228
|
Bernard L, Bonnet M, Delavaud C, Delosière M, Ferlay A, Fougère H, Graulet B. Milk Fat Globule in Ruminant: Major and Minor Compounds, Nutritional Regulation and Differences Among Species. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201700039] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Laurence Bernard
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores; F-63122 Saint-Genès-Champanelle France
| | - Muriel Bonnet
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores; F-63122 Saint-Genès-Champanelle France
| | - Carole Delavaud
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores; F-63122 Saint-Genès-Champanelle France
| | - Mylène Delosière
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores; F-63122 Saint-Genès-Champanelle France
| | - Anne Ferlay
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores; F-63122 Saint-Genès-Champanelle France
| | - Hélène Fougère
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores; F-63122 Saint-Genès-Champanelle France
| | - Benoît Graulet
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores; F-63122 Saint-Genès-Champanelle France
| |
Collapse
|
229
|
Polyak E, Ostrovsky J, Peng M, Dingley SD, Tsukikawa M, Kwon YJ, McCormack SE, Bennett M, Xiao R, Seiler C, Zhang Z, Falk MJ. N-acetylcysteine and vitamin E rescue animal longevity and cellular oxidative stress in pre-clinical models of mitochondrial complex I disease. Mol Genet Metab 2018; 123. [PMID: 29526616 PMCID: PMC5891356 DOI: 10.1016/j.ymgme.2018.02.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Oxidative stress is a known contributing factor in mitochondrial respiratory chain (RC) disease pathogenesis. Yet, no efficient means exists to objectively evaluate the comparative therapeutic efficacy or toxicity of different antioxidant compounds empirically used in human RC disease. We postulated that pre-clinical comparative analysis of diverse antioxidant drugs having suggested utility in primary RC disease using animal and cellular models of RC dysfunction may improve understanding of their integrated effects and physiologic mechanisms, and enable prioritization of lead antioxidant molecules to pursue in human clinical trials. Here, lifespan effects of N-acetylcysteine (NAC), vitamin E, vitamin C, coenzyme Q10 (CoQ10), mitochondrial-targeted CoQ10 (MS010), lipoate, and orotate were evaluated as the primary outcome in a well-established, short-lived C. elegans gas-1(fc21) animal model of RC complex I disease. Healthspan effects were interrogated to assess potential reversal of their globally disrupted in vivo mitochondrial physiology, transcriptome profiles, and intermediary metabolic flux. NAC or vitamin E fully rescued, and coenzyme Q, lipoic acid, orotic acid, and vitamin C partially rescued gas-1(fc21) lifespan toward that of wild-type N2 Bristol worms. MS010 and CoQ10 largely reversed biochemical pathway expression changes in gas-1(fc21) worms. While nearly all drugs normalized the upregulated expression of the "cellular antioxidant pathway", they failed to rescue the mutant worms' increased in vivo mitochondrial oxidant burden. NAC and vitamin E therapeutic efficacy were validated in human fibroblast and/or zebrafish complex I disease models. Remarkably, rotenone-induced zebrafish brain death was preventable partially with NAC and fully with vitamin E. Overall, these pre-clinical model animal data demonstrate that several classical antioxidant drugs do yield significant benefit on viability and survival in primary mitochondrial disease, where their major therapeutic benefit appears to result from targeting global cellular, rather than intramitochondria-specific, oxidative stress. Clinical trials are needed to evaluate whether the two antioxidants, NAC and vitamin E, that show greatest efficacy in translational model animals significantly improve the survival, function, and feeling of human subjects with primary mitochondrial RC disease.
Collapse
Affiliation(s)
- Erzsebet Polyak
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Julian Ostrovsky
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Min Peng
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Stephen D Dingley
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Mai Tsukikawa
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Young Joon Kwon
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Shana E McCormack
- Division of Endocrinology and Diabetes, Department of Pediatrics, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Michael Bennett
- Department of Pathology and Lab Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA; Department of Pathology, University of Pennsylvania Perelman School of Medicine, PA 19104, USA
| | - Rui Xiao
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Biostatistics and Epidemiology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Christoph Seiler
- Zebrafish Core Facility, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Zhe Zhang
- Center for Biomedical Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Marni J Falk
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
230
|
|
231
|
Correa-Rodríguez M, Pocovi G, Schmidt-RioValle J, González-Jiménez E, Rueda-Medina B. Assessment of dietary intake in Spanish university students of health sciences. ACTA ACUST UNITED AC 2018; 65:265-273. [PMID: 29599102 DOI: 10.1016/j.endinu.2018.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/12/2017] [Accepted: 01/02/2018] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Nutritional intake during early ages has been associated to disease onset later in life. This study aimed to assess dietary intake in Spanish university students of health sciences as compared to national recommended dietary intakes (DRIs). METHODS A cross-sectional study was conducted including 585 university students of health sciences aged 18-25 years. Dietary intake was assessed using a 72-h diet recall. A control group was selected from Spanish National Dietary Intake Survey (ENIDE) data. RESULTS Intake of energy, protein, fat, fatty acids, and cholesterol was significantly lower (p<0.001) in university students compared to controls, while fiber intake showed the opposite trend (p<0.001). Total fat and carbohydrate intake was consistent with recommendations, but protein intake was lower than recommended. Intake of saturated fatty acids (SFAs) was markedly higher than nutrition goals, while intake of monounsaturated fatty acids (MUFAs) was lower. Both students and the reference control group did not reach the optimal dietary intake of iodine and vitamins D and E, while sodium intake was excessive in both groups. CONCLUSIONS Dietary habits of university students were mainly characterized by low intakes of energy, protein, fats, fatty acids, and cholesterol, and high intake of fiber as compared to the general population. Intake of iodine and vitamins D and E was low, while sodium intake was excessive in both university students and the general population. Dietary interventions should be considered to prevent nutritional deficiencies and to ensure a balanced diet.
Collapse
Affiliation(s)
- María Correa-Rodríguez
- Faculty of Health Sciences, University of Granada, Av. Ilustración S/N, 18007 Granada, Spain.
| | | | | | - Emilio González-Jiménez
- Faculty of Health Sciences, University of Granada, Av. Ilustración S/N, 18007 Granada, Spain
| | - Blanca Rueda-Medina
- Faculty of Health Sciences, University of Granada, Av. Ilustración S/N, 18007 Granada, Spain
| |
Collapse
|
232
|
Huang Z, Huang X, Wang Q, Jiang R, Sun G, Xu Y, Wu Q. Extract of Euryale ferox Salisb
exerts antidepressant effects and regulates autophagy through the adenosine monophosphate-activated protein kinase-UNC-51-like kinase 1 pathway. IUBMB Life 2018; 70:300-309. [DOI: 10.1002/iub.1731] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/02/2018] [Indexed: 01/20/2023]
Affiliation(s)
- Zhiheng Huang
- School of Pharmacy; Nanjing University of Chinese Medicine; Nanjing China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization; Nanjing China
| | - Xiaoyan Huang
- School of Pharmacy; Nanjing University of Chinese Medicine; Nanjing China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization; Nanjing China
| | - Qian Wang
- School of Pharmacy; Nanjing University of Chinese Medicine; Nanjing China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization; Nanjing China
| | - Ruizhi Jiang
- School of Pharmacy; Nanjing University of Chinese Medicine; Nanjing China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization; Nanjing China
| | - Guangda Sun
- School of Pharmacy; Nanjing University of Chinese Medicine; Nanjing China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization; Nanjing China
| | - Yiming Xu
- School of Pharmacy; Nanjing University of Chinese Medicine; Nanjing China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization; Nanjing China
| | - Qinan Wu
- School of Pharmacy; Nanjing University of Chinese Medicine; Nanjing China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization; Nanjing China
| |
Collapse
|
233
|
Redondo-Cuevas L, Castellano G, Torrens F, Raikos V. Revealing the relationship between vegetable oil composition and oxidative stability: A multifactorial approach. J Food Compost Anal 2018. [DOI: 10.1016/j.jfca.2017.12.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
234
|
Ambrogini P, Albertini MC, Betti M, Galati C, Lattanzi D, Savelli D, Di Palma M, Saccomanno S, Bartolini D, Torquato P, Ruffolo G, Olivieri F, Galli F, Palma E, Minelli A, Cuppini R. Neurobiological Correlates of Alpha-Tocopherol Antiepileptogenic Effects and MicroRNA Expression Modulation in a Rat Model of Kainate-Induced Seizures. Mol Neurobiol 2018; 55:7822-7838. [PMID: 29468563 PMCID: PMC6132771 DOI: 10.1007/s12035-018-0946-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/31/2018] [Indexed: 12/19/2022]
Abstract
Seizure-triggered maladaptive neural plasticity and neuroinflammation occur during the latent period as a key underlying event in epilepsy chronicization. Previously, we showed that α-tocopherol (α-T) reduces hippocampal neuroglial activation and neurodegeneration in the rat model of kainic acid (KA)-induced status epilepticus (SE). These findings allowed us to postulate an antiepileptogenic potential for α-T in hippocampal excitotoxicity, in line with clinical evidence showing that α-T improves seizure control in drug-resistant patients. To explore neurobiological correlates of the α-T antiepileptogenic role, rats were injected with such vitamin during the latent period starting right after KA-induced SE, and the effects on circuitry excitability, neuroinflammation, neuronal death, and microRNA (miRNA) expression were investigated in the hippocampus. Results show that in α-T-treated epileptic rats, (1) the number of population spikes elicited by pyramidal neurons, as well as the latency to the onset of epileptiform-like network activity recover to control levels; (2) neuronal death is almost prevented; (3) down-regulation of claudin, a blood-brain barrier protein, is fully reversed; (4) neuroinflammation processes are quenched (as indicated by the decrease of TNF-α, IL-1β, GFAP, IBA-1, and increase of IL-6); (5) miR-146a, miR-124, and miR-126 expression is coherently modulated in hippocampus and serum by α-T. These findings support the potential of a timely intervention with α-T in clinical management of SE to reduce epileptogenesis, thus preventing chronic epilepsy development. In addition, we suggest that the analysis of miRNA levels in serum could provide clinicians with a tool to evaluate disease evolution and the efficacy of α-T therapy in SE.
Collapse
Affiliation(s)
- Patrizia Ambrogini
- Department of Biomolecular Sciences, Section of Physiology, University of Urbino Carlo Bo, I-61029, Urbino, Italy.
| | - Maria Cristina Albertini
- Department of Biomolecular Sciences, Section of Physiology, University of Urbino Carlo Bo, I-61029, Urbino, Italy
| | - Michele Betti
- Department of Biomolecular Sciences, Section of Physiology, University of Urbino Carlo Bo, I-61029, Urbino, Italy
| | - Claudia Galati
- Department of Biomolecular Sciences, Section of Physiology, University of Urbino Carlo Bo, I-61029, Urbino, Italy
| | - Davide Lattanzi
- Department of Biomolecular Sciences, Section of Physiology, University of Urbino Carlo Bo, I-61029, Urbino, Italy
| | - David Savelli
- Department of Biomolecular Sciences, Section of Physiology, University of Urbino Carlo Bo, I-61029, Urbino, Italy
| | - Michael Di Palma
- Department of Biomolecular Sciences, Section of Physiology, University of Urbino Carlo Bo, I-61029, Urbino, Italy
| | - Stefania Saccomanno
- Department of Gastroenterology, Marche Polytechnic University, Ancona, Italy
| | - Desirée Bartolini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Pierangelo Torquato
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Gabriele Ruffolo
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
| | - Fabiola Olivieri
- Department of Molecular and Clinical Sciences, Marche Polytechnic University, Ancona, Italy.,Center of Clinical Pathology and Innovative Therapy, INRCA-IRCCS, Ancona, Italy
| | - Francesco Galli
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Eleonora Palma
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
| | - Andrea Minelli
- Department of Biomolecular Sciences, Section of Physiology, University of Urbino Carlo Bo, I-61029, Urbino, Italy
| | - Riccardo Cuppini
- Department of Biomolecular Sciences, Section of Physiology, University of Urbino Carlo Bo, I-61029, Urbino, Italy
| |
Collapse
|
235
|
Qin W, Deng T, Cui H, Zhang Q, Liu X, Yang X, Chen M. Exposure to diisodecyl phthalate exacerbated Th2 and Th17-mediated asthma through aggravating oxidative stress and the activation of p38 MAPK. Food Chem Toxicol 2018; 114:78-87. [PMID: 29448086 DOI: 10.1016/j.fct.2018.02.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 02/07/2018] [Accepted: 02/10/2018] [Indexed: 01/25/2023]
Abstract
Diisodecyl phthalate (DIDP) is considered to be one of the less toxic phthalates. However epidemiological studies suggest that DIDP is associated with the occurrence of asthma. The effect of DIDP exposure on allergic asthma and the underlying mechanism have not been fully elucidated. Here, mice were exposed to DIDP and sensitization with OVA. The results demonstrated that DIDP exposure aggravated allergic asthma. Exposure to 15 mg/kg/day DIDP markedly exacerbated airway remodeling and promoted airway hyperresponsiveness (AhR). The study suggests that exposure to DIDP not only promotes a predominant Th2 response, but also induces Th17-type immunity. The induced allergic asthma was accompanied by elevation of IgE, an increase in TSLP expression and exacerbation of oxidative stress. Inhibition of oxidative stress by Vitamin E effectively alleviated the airway remodeling and AhR induced by DIDP and OVA sensitization. Treatment with Vitamin E inhibited the Th2 response and the production of TSLP. Blocking the activation of p38 MAPK by SB203580 prevented elevation of IL-1β and IL-17A induced by DIDP and OVA sensitization and effectively alleviated Th17 type asthmatic lesions. These results suggest that exposure to DIDP exacerbates the Th2 and Th17 response through aggravating oxidative stress and activation of the p38 MAPK pathway.
Collapse
Affiliation(s)
- Wei Qin
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Ting Deng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Haiyan Cui
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Qian Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Xudong Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Xu Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Mingqing Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
236
|
Abstract
The hydrophobicity of vitamin E poses transport and metabolic challenges to regulate its bioavailability and to prevent its accumulation in lipid-rich tissues such as adipose tissue, brain, and liver. Water-soluble precursors of vitamin E (α-tocopherol, αT), such as its esters with acetate (αTA), succinate (αTS), or phosphate (αTP), have increased solubility in water and stability against reaction with free radicals, but they are rapidly converted during their uptake into the lipid-soluble vitamin E. Therefore, the bioavailability of these precursors as intact molecules is low; nevertheless, at least for αTS and αTP, the recent research has revealed unique regulatory effects on signal transduction and gene expression and the modulation of cellular events ranging from proliferation, survival/apoptosis, lipid uptake and metabolism, phagocytosis, long term potentiation, cell migration, telomere maintenance, and angiogenesis. Moreover, water-soluble derivatives of vitamin E including some based on αTP are increasingly used as components of nanocarriers for enhanced and targeted delivery of drugs and other molecules (vitamins, including αT and αTP itself, vitamin D3, carnosine, caffeine, docosahexaenoic acid (DHA), insulin) and cofactors such as coenzyme Q10. In this review, the chemical characteristics, transport, metabolic pathways, and molecular mechanisms of action of αTP in cells and tissues are summarized and put into perspective with its possible role in the prevention of a number of diseases.
Collapse
Affiliation(s)
- Jean-Marc Zingg
- Miller School of Medicine, University of Miami, Miami, FL, United States.
| |
Collapse
|
237
|
Birringer M, Siems K, Maxones A, Frank J, Lorkowski S. Natural 6-hydroxy-chromanols and -chromenols: structural diversity, biosynthetic pathways and health implications. RSC Adv 2018; 8:4803-4841. [PMID: 35539527 PMCID: PMC9078042 DOI: 10.1039/c7ra11819h] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/18/2018] [Indexed: 01/26/2023] Open
Abstract
We present the first comprehensive and systematic review on the structurally diverse toco-chromanols and -chromenols found in photosynthetic organisms, including marine organisms, and as metabolic intermediates in animals. The focus of this work is on the structural diversity of chromanols and chromenols that result from various side chain modifications. We describe more than 230 structures that derive from a 6-hydroxy-chromanol- and 6-hydroxy-chromenol core, respectively, and comprise di-, sesqui-, mono- and hemiterpenes. We assort the compounds into a structure-activity relationship with special emphasis on anti-inflammatory and anti-carcinogenic activities of the congeners. This review covers the literature published from 1970 to 2017.
Collapse
Affiliation(s)
- Marc Birringer
- Department of Nutritional, Food and Consumer Sciences, Fulda University of Applied Sciences Leipziger Straße 123 36037 Fulda Germany
| | - Karsten Siems
- AnalytiCon Discovery GmbH Hermannswerder Haus 17 14473 Potsdam Germany
| | - Alexander Maxones
- Department of Nutritional, Food and Consumer Sciences, Fulda University of Applied Sciences Leipziger Straße 123 36037 Fulda Germany
| | - Jan Frank
- Institute of Biological Chemistry and Nutrition, University of Hohenheim Garbenstr. 28 70599 Stuttgart Germany
| | - Stefan Lorkowski
- Institute of Nutrition, Friedrich Schiller University Jena Dornburger Str. 25 07743 Jena Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig Germany
| |
Collapse
|
238
|
Schubert M, Kluge S, Schmölz L, Wallert M, Galli F, Birringer M, Lorkowski S. Long-Chain Metabolites of Vitamin E: Metabolic Activation as a General Concept for Lipid-Soluble Vitamins? Antioxidants (Basel) 2018; 7:antiox7010010. [PMID: 29329238 PMCID: PMC5789320 DOI: 10.3390/antiox7010010] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/05/2018] [Accepted: 01/11/2018] [Indexed: 02/06/2023] Open
Abstract
Vitamins E, A, D and K comprise the class of lipid-soluble vitamins. For vitamins A and D, a metabolic conversion of precursors to active metabolites has already been described. During the metabolism of vitamin E, the long-chain metabolites (LCMs) 13'-hydroxychromanol (13'-OH) and 13'-carboxychromanol (13'-COOH) are formed by oxidative modification of the side-chain. The occurrence of these metabolites in human serum indicates a physiological relevance. Indeed, effects of the LCMs on lipid metabolism, apoptosis, proliferation and inflammatory actions as well as tocopherol and xenobiotic metabolism have been shown. Interestingly, there are several parallels between the actions of the LCMs of vitamin E and the active metabolites of vitamin A and D. The recent findings that the LCMs exert effects different from that of their precursors support their putative role as regulatory metabolites. Hence, it could be proposed that the mode of action of the LCMs might be mediated by a mechanism similar to vitamin A and D metabolites. If the physiological relevance and this concept of action of the LCMs can be confirmed, a general concept of activation of lipid-soluble vitamins via their metabolites might be deduced.
Collapse
Affiliation(s)
- Martin Schubert
- Department of Biochemistry and Physiology of Nutrition, Friedrich-Schiller-University Jena, 07743 Jena, Germany.
- Competence Center for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, 07743 Jena, Germany.
| | - Stefan Kluge
- Department of Biochemistry and Physiology of Nutrition, Friedrich-Schiller-University Jena, 07743 Jena, Germany.
- Competence Center for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, 07743 Jena, Germany.
| | - Lisa Schmölz
- Department of Biochemistry and Physiology of Nutrition, Friedrich-Schiller-University Jena, 07743 Jena, Germany.
- Competence Center for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, 07743 Jena, Germany.
| | - Maria Wallert
- Department of Biochemistry and Physiology of Nutrition, Friedrich-Schiller-University Jena, 07743 Jena, Germany.
- Baker IDI Heart and Diabetes Institute, Melbourne VIC 3004, Australia.
| | - Francesco Galli
- Department of Pharmaceutical Sciences, Laboratory of Nutrition and Clinical Biochemistry, University of Perugia, 06123 Perugia, Italy.
| | - Marc Birringer
- Department of Nutrition, Food and Consumer Sciences, University of Applied Sciences Fulda, 36037 Fulda, Germany.
| | - Stefan Lorkowski
- Department of Biochemistry and Physiology of Nutrition, Friedrich-Schiller-University Jena, 07743 Jena, Germany.
- Competence Center for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, 07743 Jena, Germany.
| |
Collapse
|
239
|
Kothencz A, Hajagos-Tóth J, Csányi A, Gáspár R. Alpha-tocopherol succinate increases cyclooxygenase-2 activity: Tissue-specific action in pregnant rat uterus in vitro. Life Sci 2018; 192:199-204. [DOI: 10.1016/j.lfs.2017.11.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/22/2017] [Accepted: 11/27/2017] [Indexed: 01/01/2023]
|
240
|
Guo X, Zhang T, Shi L, Gong M, Jin J, Zhang Y, Liu R, Chang M, Jin Q, Wang X. The relationship between lipid phytochemicals, obesity and its related chronic diseases. Food Funct 2018; 9:6048-6062. [DOI: 10.1039/c8fo01026a] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review focuses on phytochemicals in oils, and summarizes the mechanisms of the anti-obesity effects of these compounds in in vitro studies, animal models, and human trials.
Collapse
|
241
|
Dossi CG, González-Mañán D, Romero N, Silva D, Videla LA, Tapia GS. Anti-oxidative and anti-inflammatory effects of Rosa Mosqueta oil supplementation in rat liver ischemia-reperfusion. Food Funct 2018; 9:4847-4857. [DOI: 10.1039/c8fo00969d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ischemia-reperfusion (IR) is a deleterious condition associated with liver transplantation or resection that involves pro-oxidant and pro-inflammatory mechanisms.
Collapse
Affiliation(s)
- Camila G. Dossi
- Molecular and Clinical Pharmacology Program
- Institute of Biomedical Sciences
- Faculty of Medicine
- University of Chile
- Santiago
| | - Daniel González-Mañán
- Molecular and Clinical Pharmacology Program
- Institute of Biomedical Sciences
- Faculty of Medicine
- University of Chile
- Santiago
| | - Nalda Romero
- Department of Food Science and Chemical Technology
- University of Chile
- Santiago
- Chile
| | - David Silva
- Molecular and Clinical Pharmacology Program
- Institute of Biomedical Sciences
- Faculty of Medicine
- University of Chile
- Santiago
| | - Luis A. Videla
- Molecular and Clinical Pharmacology Program
- Institute of Biomedical Sciences
- Faculty of Medicine
- University of Chile
- Santiago
| | - Gladys S. Tapia
- Molecular and Clinical Pharmacology Program
- Institute of Biomedical Sciences
- Faculty of Medicine
- University of Chile
- Santiago
| |
Collapse
|
242
|
Mène-Saffrané L. Vitamin E Biosynthesis and Its Regulation in Plants. Antioxidants (Basel) 2017; 7:E2. [PMID: 29295607 PMCID: PMC5789312 DOI: 10.3390/antiox7010002] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 12/17/2022] Open
Abstract
Vitamin E is one of the 13 vitamins that are essential to animals that do not produce them. To date, six natural organic compounds belonging to the chemical family of tocochromanols-four tocopherols and two tocotrienols-have been demonstrated as exhibiting vitamin E activity in animals. Edible plant-derived products, notably seed oils, are the main sources of vitamin E in the human diet. Although this vitamin is readily available, independent nutritional surveys have shown that human populations do not consume enough vitamin E, and suffer from mild to severe deficiency. Tocochromanols are mostly produced by plants, algae, and some cyanobacteria. Tocochromanol metabolism has been mainly studied in higher plants that produce tocopherols, tocotrienols, plastochromanol-8, and tocomonoenols. In contrast to the tocochromanol biosynthetic pathways that are well characterized, our understanding of the physiological and molecular mechanisms regulating tocochromanol biosynthesis is in its infancy. Although it is known that tocochromanol biosynthesis is strongly conditioned by the availability in homogentisate and polyprenyl pyrophosphate, its polar and lipophilic biosynthetic precursors, respectively, the mechanisms regulating their biosyntheses are barely known. This review summarizes our current knowledge of tocochromanol biosynthesis in plants, and highlights future challenges regarding the understanding of its regulation.
Collapse
Affiliation(s)
- Laurent Mène-Saffrané
- Department of Biology, University of Fribourg, Chemin du Musée, 10, 1700 Fribourg, Switzerland.
| |
Collapse
|
243
|
Vitamin E (α- and γ-Tocopherol) Levels in the Community: Distribution, Clinical and Biochemical Correlates, and Association with Dietary Patterns. Nutrients 2017; 10:nu10010003. [PMID: 29267223 PMCID: PMC5793231 DOI: 10.3390/nu10010003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/11/2017] [Accepted: 12/18/2017] [Indexed: 12/25/2022] Open
Abstract
Little is known about the distribution and determinants of circulating vitamin E levels in a German population. In this cross-sectional study we assessed the distribution of both α- and γ-tocopherol levels, identified their clinical and biochemical correlates, and assessed their relationships with a priori and a posteriori derived dietary patterns. Plasma α- and γ-tocopherol concentrations were measured using high performance liquid chromatography (HPLC) with fluorescence detection in 641 individuals (mean-age: 61 years; 40.6% women). Correlates of both markers were determined using linear regression with backward selection. Using a validated food-frequency questionnaire (FFQ), an a priori defined vitamin E-rich dietary pattern was constructed, and three a posteriori derived dietary patterns were identified by principal component analysis. Each pattern was related to α- and γ-tocopherol levels using linear regression. Median concentrations of α- and γ-tocopherol were 31.54 μmol/L and 1.35 µmol/L, respectively. 57.6% of participants had α-tocopherol levels >30 µmol/L. Triglycerides, high density lipoprotein (HDL)- and low density lipoprotein (LDL)-cholesterol, and vitamin E supplementation were identified as correlates of vitamin E levels. After excluding supplement users, a dietary pattern rich in meat, bread, fats, potatoes, and sugar/confectionery was inversely related to α-tocopherol levels (β, −0.032, SE = 0.016; p = 0.047). Prospective studies are warranted to evaluate the actual impact of the reported findings in terms of nutrition and health outcomes.
Collapse
|
244
|
Abu-Fayyad A, Kamal MM, Carroll JL, Dragoi AM, Cody R, Cardelli J, Nazzal S. Development and in-vitro characterization of nanoemulsions loaded with paclitaxel/γ-tocotrienol lipid conjugates. Int J Pharm 2017; 536:146-157. [PMID: 29195915 DOI: 10.1016/j.ijpharm.2017.11.062] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/24/2017] [Accepted: 11/26/2017] [Indexed: 12/14/2022]
Abstract
Vitamin E TPGS is a tocopherol (α-T) based nonionic surfactant that was used in the formulation of the Tocosol™ paclitaxel nanoemulsion, which was withdrawn from phase III clinical trials. Unlike tocopherols, however, the tocotrienol (T3) isomers of vitamin E were found to have innate anticancer activity and were shown to potentiate the antitumor activity of paclitaxel. The primary objective of the present study was therefore to develop a paclitaxel nanoemulsions by substituting α-T oil core of Tocosol™ with γ-T3 in, and vitamin E TPGS with PEGylated γ-T3 as the shell, and test the nanoemulsions against Bx-PC-3 and PANC-1 pancreatic tumor cells. A secondary objective was to test the activity of paclitaxel when directly conjugated with the γ-T3 isomer of vitamin E. The synthesis of the conjugates was confirmed by NMR and mass spectroscopy. Developed nanoemulsions were loaded with free or lipid conjugated paclitaxel. Nanoemulsions droplets were <300 nm with fastest release observed with formulations loaded with free paclitaxel when γ-T3 was used as the core. Substituting α-T with γ-T3 was also found to potentiate the anticancer activity of the nanoemulsions. Although marginal increase in activity was observed when nanoemulsions were loaded with free paclitaxel, a significant increase in activity was observed when lipid conjugates were used. The results from this study suggest that the developed paclitaxel nanoemulsions with either γ-T3, PEGylated γ-T3, or paclitaxel lipid conjugates may represent a more promising option for paclitaxel delivery in cancer chemotherapy.
Collapse
Affiliation(s)
- Ahmed Abu-Fayyad
- College of Health and Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA; Modavar Pharmaceuticals, Washington, DC, USA
| | - Mohammad M Kamal
- College of Health and Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Jennifer L Carroll
- Feist-Weiller Cancer Center, Innovative Northwest Louisiana Experimental Therapeutics (INLET), Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Ana-Maria Dragoi
- Feist-Weiller Cancer Center, Innovative Northwest Louisiana Experimental Therapeutics (INLET), Louisiana State University Health Sciences Center, Shreveport, LA, USA; Department of Medicine, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | | | | | - Sami Nazzal
- College of Health and Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA.
| |
Collapse
|
245
|
Wild edible plants: Nutritional and toxicological characteristics, retrieval strategies and importance for today's society. Food Chem Toxicol 2017; 110:165-188. [DOI: 10.1016/j.fct.2017.10.020] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 12/16/2022]
|
246
|
Gugliandolo A, Bramanti P, Mazzon E. Role of Vitamin E in the Treatment of Alzheimer's Disease: Evidence from Animal Models. Int J Mol Sci 2017; 18:ijms18122504. [PMID: 29168797 PMCID: PMC5751107 DOI: 10.3390/ijms18122504] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/27/2017] [Accepted: 11/20/2017] [Indexed: 02/08/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder representing the major cause of dementia. It is characterized by memory loss, and cognitive and behavioral decline. In particular, the hallmarks of the pathology are amyloid-β (Aβ) plaques and neurofibrillary tangles (NFTs), formed by aggregated hyperphosphorylated tau protein. Oxidative stress plays a main role in AD, and it is involved in initiation and progression of AD. It is well known that Aβ induced oxidative stress, promoting reactive oxygen species (ROS) production and consequently lipid peroxidation, protein oxidation, tau hyperphosphorylation, results in toxic effects on synapses and neurons. In turn, oxidative stress can increase Aβ production. For these reasons, the administration of an antioxidant therapy in AD patients was suggested. The term vitamin E includes different fat-soluble compounds, divided into tocopherols and tocotrienols, that possess antioxidant action. α-Tocopherol is the most studied, but some studies suggested that tocotrienols may have different health promoting capacities. In this review, we focused our attention on the effects of vitamin E supplementation in AD animal models and AD patients or older population. Experimental models showed that vitamin E supplementation, by decreasing oxidative stress, may be a good strategy to improve cognitive and memory deficits. Furthermore, the combination of vitamin E with other antioxidant or anti-inflammatory compounds may increase its efficacy. However, even if some trials have evidenced some benefits, the effects of vitamin E in AD patients are still under debate.
Collapse
Affiliation(s)
- Agnese Gugliandolo
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| |
Collapse
|
247
|
Schmölz L, Wallert M, Rozzino N, Cignarella A, Galli F, Glei M, Werz O, Koeberle A, Birringer M, Lorkowski S. Structure–Function Relationship Studies In Vitro Reveal Distinct and Specific Effects of Long‐Chain Metabolites of Vitamin E. Mol Nutr Food Res 2017; 61. [DOI: 10.1002/mnfr.201700562] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/10/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Lisa Schmölz
- Department of Nutritional Biochemistry and PhysiologyInstitute of NutritionFriedrich Schiller University Jena Jena Germany
- Competence Center for Nutrition and Cardiovascular Health (nutriCARD)Halle‐Jena‐Leipzig
| | - Maria Wallert
- Department of Nutritional Biochemistry and PhysiologyInstitute of NutritionFriedrich Schiller University Jena Jena Germany
- Competence Center for Nutrition and Cardiovascular Health (nutriCARD)Halle‐Jena‐Leipzig
- Baker Heart and Diabetes Institute Melbourne Australia
| | - Nicolò Rozzino
- Department of Pharmaceutical and Pharmacological SciencesUniversity of Padova Padova Italy
| | | | - Francesco Galli
- Department of Pharmaceutical SciencesLaboratory of Nutrition and Clinical BiochemistryUniversity of Perugia Perugia Italy
| | - Michael Glei
- Competence Center for Nutrition and Cardiovascular Health (nutriCARD)Halle‐Jena‐Leipzig
- Department of Nutritional ToxicologyInstitute of NutritionFriedrich Schiller University Jena Jena Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal ChemistryInstitute of PharmacyFriedrich Schiller University Jena Jena Germany
| | - Andreas Koeberle
- Department of Pharmaceutical/Medicinal ChemistryInstitute of PharmacyFriedrich Schiller University Jena Jena Germany
| | - Marc Birringer
- Department of NutritionalFood and Consumer ScienceUniversity of Applied Sciences Fulda Germany
| | - Stefan Lorkowski
- Department of Nutritional Biochemistry and PhysiologyInstitute of NutritionFriedrich Schiller University Jena Jena Germany
- Competence Center for Nutrition and Cardiovascular Health (nutriCARD)Halle‐Jena‐Leipzig
| |
Collapse
|
248
|
Mâncio RD, Hermes TDA, Macedo AB, Mizobuti DS, Valduga AH, Rupcic IF, Minatel E. Vitamin E treatment decreases muscle injury in mdx mice. Nutrition 2017; 43-44:39-46. [DOI: 10.1016/j.nut.2017.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 01/19/2023]
|
249
|
Greene LE, Lincoln R, Cosa G. Rate of Lipid Peroxyl Radical Production during Cellular Homeostasis Unraveled via Fluorescence Imaging. J Am Chem Soc 2017; 139:15801-15811. [DOI: 10.1021/jacs.7b08036] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Lana E. Greene
- Department of Chemistry and Centre
for Self Assembled Chemical Structures (CSACS/CRMAA), McGill University, 801
Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Richard Lincoln
- Department of Chemistry and Centre
for Self Assembled Chemical Structures (CSACS/CRMAA), McGill University, 801
Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Gonzalo Cosa
- Department of Chemistry and Centre
for Self Assembled Chemical Structures (CSACS/CRMAA), McGill University, 801
Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
250
|
Bieszczad B, Gilheany DG. Highly stereoselective construction of the C2 stereocentre of α-tocopherol (vitamin E) by asymmetric addition of Grignard reagents to ketones. Org Biomol Chem 2017; 15:6483-6492. [PMID: 28741644 DOI: 10.1039/c7ob00751e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Tertiary alcohol precursors of both C2 diastereoisomers of α-tocopherol were prepared in three ways by our recently reported asymmetric Grignard synthesis. The versatility of Grignard chemistry inherent in its three-way disconnection was exploited to allow the synthesis of three product grades: 77 : 23 dr (5 steps), 81 : 19 dr (5 steps) and 96 : 4 dr (7 steps, one gram scale) from readily available and abundant starting materials. The products were converted to their respective α-tocopherols in 3 steps, which allowed a definitive re-assignment of their absolute configurations.
Collapse
Affiliation(s)
- Bartosz Bieszczad
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | | |
Collapse
|