201
|
A molecular threshold for effector CD8(+) T cell differentiation controlled by transcription factors Blimp-1 and T-bet. Nat Immunol 2016; 17:422-32. [PMID: 26950239 DOI: 10.1038/ni.3410] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/01/2016] [Indexed: 12/11/2022]
Abstract
T cell responses are guided by cytokines that induce transcriptional regulators, which ultimately control differentiation of effector and memory T cells. However, it is unknown how the activities of these molecular regulators are coordinated and integrated during the differentiation process. Using genetic approaches and transcriptional profiling of antigen-specific CD8(+) T cells, we reveal a common program of effector differentiation that is regulated by IL-2 and IL-12 signaling and the combined activities of the transcriptional regulators Blimp-1 and T-bet. The loss of both T-bet and Blimp-1 leads to abrogated cytotoxic function and ectopic IL-17 production in CD8(+) T cells. Overall, our data reveal two major overlapping pathways of effector differentiation governed by the availability of Blimp-1 and T-bet and suggest a model for cytokine-induced transcriptional changes that combine, quantitatively and qualitatively, to promote robust effector CD8(+) T cell differentiation.
Collapse
|
202
|
Karagiannis P, Iriguchi S, Kaneko S. Reprogramming away from the exhausted T cell state. Semin Immunol 2016; 28:35-44. [DOI: 10.1016/j.smim.2015.10.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/23/2015] [Accepted: 10/29/2015] [Indexed: 02/07/2023]
|
203
|
Zhang L, Tschumi BO, Lopez-Mejia IC, Oberle SG, Meyer M, Samson G, Rüegg MA, Hall MN, Fajas L, Zehn D, Mach JP, Donda A, Romero P. Mammalian Target of Rapamycin Complex 2 Controls CD8 T Cell Memory Differentiation in a Foxo1-Dependent Manner. Cell Rep 2016; 14:1206-1217. [PMID: 26804903 DOI: 10.1016/j.celrep.2015.12.095] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 11/23/2015] [Accepted: 12/18/2015] [Indexed: 11/18/2022] Open
Abstract
Upon infection, antigen-specific naive CD8 T cells are activated and differentiate into short-lived effector cells (SLECs) and memory precursor cells (MPECs). The underlying signaling pathways remain largely unresolved. We show that Rictor, the core component of mammalian target of rapamycin complex 2 (mTORC2), regulates SLEC and MPEC commitment. Rictor deficiency favors memory formation and increases IL-2 secretion capacity without dampening effector functions. Moreover, mTORC2-deficient memory T cells mount more potent recall responses. Enhanced memory formation in the absence of mTORC2 was associated with Eomes and Tcf-1 upregulation, repression of T-bet, enhanced mitochondrial spare respiratory capacity, and fatty acid oxidation. This transcriptional and metabolic reprogramming is mainly driven by nuclear stabilization of Foxo1. Silencing of Foxo1 reversed the increased MPEC differentiation and IL-2 production and led to an impaired recall response of Rictor KO memory T cells. Therefore, mTORC2 is a critical regulator of CD8 T cell differentiation and may be an important target for immunotherapy interventions.
Collapse
Affiliation(s)
- Lianjun Zhang
- Ludwig Center for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland.
| | - Benjamin O Tschumi
- Ludwig Center for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland
| | | | | | - Marten Meyer
- German Cancer Research Center, 69120 Heidelberg, Germany
| | - Guerric Samson
- Ludwig Center for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland
| | - Markus A Rüegg
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Michael N Hall
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Lluis Fajas
- Department of Physiology, University of Lausanne, 1011 Lausanne, Switzerland
| | - Dietmar Zehn
- Swiss Vaccine Research Institute, 1066 Epalinges, Switzerland
| | - Jean-Pierre Mach
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Alena Donda
- Ludwig Center for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland
| | - Pedro Romero
- Ludwig Center for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland.
| |
Collapse
|
204
|
Jain R, Chen Y, Kanno Y, Joyce-Shaikh B, Vahedi G, Hirahara K, Blumenschein WM, Sukumar S, Haines CJ, Sadekova S, McClanahan TK, McGeachy MJ, O'Shea JJ, Cua DJ. Interleukin-23-Induced Transcription Factor Blimp-1 Promotes Pathogenicity of T Helper 17 Cells. Immunity 2016; 44:131-142. [PMID: 26750311 PMCID: PMC11608061 DOI: 10.1016/j.immuni.2015.11.009] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 09/02/2015] [Accepted: 09/23/2015] [Indexed: 01/12/2023]
Abstract
Interleukin-23 (IL-23) is a pro-inflammatory cytokine required for the pathogenicity of T helper 17 (Th17) cells but the molecular mechanisms governing this process remain unclear. We identified the transcription factor Blimp-1 (Prdm1) as a key IL-23-induced factor that drove the inflammatory function of Th17 cells. In contrast to thymic deletion of Blimp-1, which causes T cell development defects and spontaneous autoimmunity, peripheral deletion of this transcription factor resulted in reduced Th17 activation and reduced severity of autoimmune encephalomyelitis. Furthermore, genome-wide occupancy and overexpression studies in Th17 cells revealed that Blimp-1 co-localized with transcription factors RORγt, STAT-3, and p300 at the Il23r, Il17a/f, and Csf2 cytokine loci to enhance their expression. Blimp-1 also directly bound to and repressed cytokine loci Il2 and Bcl6. Taken together, our results demonstrate that Blimp-1 is an essential transcription factor downstream of IL-23 that acts in concert with RORγt to activate the Th17 inflammatory program.
Collapse
Affiliation(s)
- Renu Jain
- Merck Research Laboratories, 901 California Avenue, Palo Alto, CA 94304, USA
| | - Yi Chen
- Merck Research Laboratories, 901 California Avenue, Palo Alto, CA 94304, USA
| | - Yuka Kanno
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, & Musculoskeletal and Skin Diseases, National Institute of Health, Bethesda, MD 20892, USA
| | | | - Golnaz Vahedi
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, & Musculoskeletal and Skin Diseases, National Institute of Health, Bethesda, MD 20892, USA
| | - Kiyoshi Hirahara
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, & Musculoskeletal and Skin Diseases, National Institute of Health, Bethesda, MD 20892, USA
| | | | - Selvakumar Sukumar
- Merck Research Laboratories, 901 California Avenue, Palo Alto, CA 94304, USA
| | | | - Svetlana Sadekova
- Merck Research Laboratories, 901 California Avenue, Palo Alto, CA 94304, USA
| | | | - Mandy J McGeachy
- Merck Research Laboratories, 901 California Avenue, Palo Alto, CA 94304, USA
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, & Musculoskeletal and Skin Diseases, National Institute of Health, Bethesda, MD 20892, USA
| | - Daniel J Cua
- Merck Research Laboratories, 901 California Avenue, Palo Alto, CA 94304, USA.
| |
Collapse
|
205
|
Blimp-1 controls plasma cell function through the regulation of immunoglobulin secretion and the unfolded protein response. Nat Immunol 2016; 17:323-30. [PMID: 26779600 PMCID: PMC4757736 DOI: 10.1038/ni.3348] [Citation(s) in RCA: 259] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/02/2015] [Indexed: 12/17/2022]
Abstract
Plasma cell differentiation requires silencing of B cell transcription, while establishing antibody-secretory function and long-term survival. The transcription factors Blimp-1 and IRF4 are essential for plasma cell generation, however their function in mature plasma cells has remained elusive. We have found that while IRF4 was essential for plasma cell survival, Blimp-1 was dispensable. Blimp-1-deficient plasma cells retained their transcriptional identity, but lost the ability to secrete antibody. Blimp-1 regulated many components of the unfolded protein response (UPR), including XBP-1 and ATF6. The overlap of Blimp-1 and XBP-1 function was restricted to the UPR, with Blimp-1 uniquely regulating mTOR activity and plasma cell size. Thus, Blimp-1 is required for the unique physiological capacity of plasma cells that enables the secretion of protective antibody.
Collapse
|
206
|
McQueen B, Trace K, Whitman E, Bedsworth T, Barber A. Natural killer group 2D and CD28 receptors differentially activate mammalian/mechanistic target of rapamycin to alter murine effector CD8+ T-cell differentiation. Immunology 2016; 147:305-20. [PMID: 26661515 DOI: 10.1111/imm.12563] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 12/02/2015] [Accepted: 12/02/2015] [Indexed: 12/30/2022] Open
Abstract
Memory CD8+ T cells are an essential component of anti-tumour and anti-viral immunity. Activation of the mammalian/mechanistic target of rapamycin (mTOR) pathway has been implicated in regulating the differentiation of effector and memory T cells. However, the mechanisms that control mTOR activity during immunity to tumours and infections are not well known. Activation of co-stimulatory receptors, including CD28 and natural killer group 2D (NKG2D), activate phosphatidylinositol-3 kinase and subsequently may activate the mTOR pathway in CD8+ T cells. This study compared the activation of the mTOR signalling pathway after co-stimulation through CD28 or NKG2D receptors in murine effector CD8+ T cells. Compared with CD28 co-stimulation, activation through CD3 and NKG2D receptors had weaker activation of mTORc1, as shown by decreased phosphorylation of mTORc1 targets S6K1, ribosomal protein S6 and eukaryotic initiation factor 4E binding protein 1. NKG2D co-stimulation also showed increased gene expression of tuberous sclerosis protein 2, a negative regulator of mTORc1, whereas CD28 co-stimulation increased gene expression of Ras homologue enriched in brain, an activator of mTORc1, and hypoxia-inducible factor-1α and vascular endothelial growth factor-α, pro-angiogenic factors downstream of mTORc1. Strong mTORc1 activation in CD28-co-stimulated cells also increased expression of transcription factors that support effector cell differentiation, namely T-bet, B lymphocyte-induced maturation protein (BLIMP-1), interferon regulatory factor 4, and inhibitor of DNA binding 2, whereas low levels of mTORc1 activation allowed for the expression of Eomes, B-cell lymphoma 6 (BCL6), and inhibitor of DNA binding 3 during NKG2D stimulation, and increased expression of memory markers CD62 ligand and CD127. These data show that compared with CD28, co-stimulation through the NKG2D receptor leads to the differential activation of the mTOR signalling pathway and potentially supports memory CD8+ T-cell differentiation.
Collapse
Affiliation(s)
- Bryan McQueen
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA, USA
| | - Kelsey Trace
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA, USA
| | - Emily Whitman
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA, USA
| | - Taylor Bedsworth
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA, USA
| | - Amorette Barber
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA, USA
| |
Collapse
|
207
|
Montes de Oca M, Kumar R, de Labastida Rivera F, Amante FH, Sheel M, Faleiro RJ, Bunn PT, Best SE, Beattie L, Ng SS, Edwards CL, Muller W, Cretney E, Nutt SL, Smyth MJ, Haque A, Hill GR, Sundar S, Kallies A, Engwerda CR. Blimp-1-Dependent IL-10 Production by Tr1 Cells Regulates TNF-Mediated Tissue Pathology. PLoS Pathog 2016; 12:e1005398. [PMID: 26765224 PMCID: PMC4713066 DOI: 10.1371/journal.ppat.1005398] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/22/2015] [Indexed: 12/14/2022] Open
Abstract
Tumor necrosis factor (TNF) is critical for controlling many intracellular infections, but can also contribute to inflammation. It can promote the destruction of important cell populations and trigger dramatic tissue remodeling following establishment of chronic disease. Therefore, a better understanding of TNF regulation is needed to allow pathogen control without causing or exacerbating disease. IL-10 is an important regulatory cytokine with broad activities, including the suppression of inflammation. IL-10 is produced by different immune cells; however, its regulation and function appears to be cell-specific and context-dependent. Recently, IL-10 produced by Th1 (Tr1) cells was shown to protect host tissues from inflammation induced following infection. Here, we identify a novel pathway of TNF regulation by IL-10 from Tr1 cells during parasitic infection. We report elevated Blimp-1 mRNA levels in CD4+ T cells from visceral leishmaniasis (VL) patients, and demonstrate IL-12 was essential for Blimp-1 expression and Tr1 cell development in experimental VL. Critically, we show Blimp-1-dependent IL-10 production by Tr1 cells prevents tissue damage caused by IFNγ-dependent TNF production. Therefore, we identify Blimp-1-dependent IL-10 produced by Tr1 cells as a key regulator of TNF-mediated pathology and identify Tr1 cells as potential therapeutic tools to control inflammation. Many parasitic diseases are associated with the generation of potent inflammatory responses. These are often needed to control infection, but can also cause tissue damage if not appropriately regulated. IL-10 has emerged as an important immune regulator that protects tissues by dampening inflammation. Recently, some T cells that initially produce inflammatory cytokines have been found to start producing IL-10 as a mechanism of auto-regulation. We identified an important transcriptional regulator called B lymphocyte-induced maturation protein 1 (Blimp-1), which promotes IL-10 production by IFNγ-producing CD4+ T (Tr1) cells during malaria and visceral leishmaniasis, two important diseases caused by protozoan parasites. We found that Tr1 cell-derived IL-10 suppressed anti-parasitic immunity, but played a critical role in preventing tissue damage caused by the potent pro-inflammatory cytokine TNF. Specifically, IL-10 protected macrophages from TNF-mediated destruction, and this enabled lymphocytes to continue to migrate to regions in the spleen where T and B cell responses are generated. These findings allow us to better understand how parasites persist in a host, but also identify new opportunities to control inflammation to prevent disease.
Collapse
Affiliation(s)
- Marcela Montes de Oca
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- University of Queensland, School of Medicine, Brisbane, Australia
| | - Rajiv Kumar
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Netaji Subhas Institute of Technology, New Delhi, India
| | | | - Fiona H Amante
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Meru Sheel
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Rebecca J. Faleiro
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Queensland University of Technology, Institute of Health and Biomedical Innovation, Brisbane, Australia
| | - Patrick T. Bunn
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Griffith University, Institute of Glycomics, Gold Coast, Australia
| | - Shannon E. Best
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Lynette Beattie
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Susanna S. Ng
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Griffith University, School of Natural Sciences, Nathan, Australia
| | - Chelsea L. Edwards
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- University of Queensland, School of Medicine, Brisbane, Australia
| | - Werner Muller
- University of Manchester, Faculty of Life Sciences, Manchester, United Kingdom
| | - Erika Cretney
- Walter and Eliza Hall Medical Research Institute, Division of Molecular Immunology, Melbourne, Australia
- The University of Melbourne, Department of Medical Biology, Melbourne, Australia
| | - Stephen L. Nutt
- Walter and Eliza Hall Medical Research Institute, Division of Molecular Immunology, Melbourne, Australia
- The University of Melbourne, Department of Medical Biology, Melbourne, Australia
| | - Mark J. Smyth
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Ashraful Haque
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - Shyam Sundar
- Banaras Hindu University, Institute of Medical Sciences, Varanasi, Uttar Pradesh, India
| | - Axel Kallies
- Walter and Eliza Hall Medical Research Institute, Division of Molecular Immunology, Melbourne, Australia
- The University of Melbourne, Department of Medical Biology, Melbourne, Australia
| | | |
Collapse
|
208
|
McDonald PW, Read KA, Baker CE, Anderson AE, Powell MD, Ballesteros-Tato A, Oestreich KJ. IL-7 signalling represses Bcl-6 and the TFH gene program. Nat Commun 2016; 7:10285. [PMID: 26743592 PMCID: PMC4729877 DOI: 10.1038/ncomms10285] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/25/2015] [Indexed: 01/05/2023] Open
Abstract
The transcriptional repressor Bcl-6 is linked to the development of both CD4+ T follicular helper (TFH) and central memory T (TCM) cells. Here, we demonstrate that in response to decreased IL-2 signalling, T helper 1 (TH1) cells upregulate Bcl-6 and co-initiate TFH- and TCM-like gene programs, including expression of the cytokine receptors IL-6Rα and IL-7R. Exposure of this potentially bi-potent cell population to IL-6 favours the TFH gene program, whereas IL-7 signalling represses TFH-associated genes including Bcl6 and Cxcr5, but not the TCM-related genes Klf2 and Sell. Mechanistically, IL-7-dependent activation of STAT5 contributes to Bcl-6 repression. Importantly, antigen-specific IL-6Rα+IL-7R+ CD4+ T cells emerge from the effector population at late time points post influenza infection. These data support a novel role for IL-7 in the repression of the TFH gene program and evoke a divergent regulatory mechanism by which post-effector TH1 cells may contribute to long-term cell-mediated and humoral immunity. It remains incompletely understood how cytokines shape TH1 cell differentiation to central memory T (TCM) and follicular T helper (TFH) cells. Here the authors show that TH1 cells can co-initiate the expression of both TFH and TCM gene programs and that IL-7 signalling represses TFH-associated but not TCM-associated genes.
Collapse
Affiliation(s)
- Paul W McDonald
- Virginia Tech Carilion Research Institute, Roanoke, Virginia 24016, USA
| | - Kaitlin A Read
- Virginia Tech Carilion Research Institute, Roanoke, Virginia 24016, USA
| | - Chandra E Baker
- Virginia Tech Carilion Research Institute, Roanoke, Virginia 24016, USA
| | - Ashlyn E Anderson
- Virginia Tech Carilion Research Institute, Roanoke, Virginia 24016, USA
| | - Michael D Powell
- Virginia Tech Carilion Research Institute, Roanoke, Virginia 24016, USA
| | | | - Kenneth J Oestreich
- Virginia Tech Carilion Research Institute, Roanoke, Virginia 24016, USA.,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia 24061, USA.,Virginia Tech Carilion School of Medicine, Roanoke, Virginia 24016, USA
| |
Collapse
|
209
|
Yasuda K, Ueda Y, Ozawa M, Matsuda T, Kinashi T. Enhanced cytotoxic T-cell function and inhibition of tumor progression by Mst1 deficiency. FEBS Lett 2016; 590:68-75. [PMID: 26787462 DOI: 10.1002/1873-3468.12045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/26/2015] [Accepted: 12/08/2015] [Indexed: 01/03/2023]
Abstract
Mammalian ste-20 like kinase Mst1 plays important roles during apoptosis, proliferation, cell polarity, and migration. Here, we report a novel role of Mst1 for cytotoxic T-cell responses and tumor suppression. The defect of Mst1 caused decreased levels of FoxO, and promoted cytotoxicity in vitro. Mst1(-/-) cytotoxic T cells also exhibited enhanced T-bet expression that was associated with elevated expression levels of IFNγ and granzyme B. Moreover, Mst1(-/-) cytotoxic T cells suppressed tumor growth in vivo. The data suggest that Mst1 inhibits cytotoxicity via T-bet suppression by FoxO1 and FoxO3a. Thus, Mst1 is a potential therapeutic target for tumor immunotherapy.
Collapse
Affiliation(s)
- Kaneki Yasuda
- Department of Urology and Andrology, Kansai Medical University, Osaka, Japan
| | - Yoshihiro Ueda
- Department of Molecular Genetics, Kansai Medical University, Osaka, Japan
| | - Madoka Ozawa
- Department of Molecular Genetics, Kansai Medical University, Osaka, Japan
| | - Tadashi Matsuda
- Department of Urology and Andrology, Kansai Medical University, Osaka, Japan
| | - Tatsuo Kinashi
- Department of Molecular Genetics, Kansai Medical University, Osaka, Japan
| |
Collapse
|
210
|
Liu D, Burd EM, Coopersmith CM, Ford ML. Retrogenic ICOS Expression Increases Differentiation of KLRG-1hiCD127loCD8+ T Cells during Listeria Infection and Diminishes Recall Responses. THE JOURNAL OF IMMUNOLOGY 2016; 196:1000-12. [PMID: 26729800 DOI: 10.4049/jimmunol.1500218] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 12/02/2015] [Indexed: 12/26/2022]
Abstract
Following T cell encounter with Ag, multiple signals are integrated to collectively induce distinct differentiation programs within Ag-specific CD8(+) T cell populations. Several factors contribute to these cell fate decisions, including the amount and duration of Ag, exposure to inflammatory cytokines, and degree of ligation of cosignaling molecules. The ICOS is not expressed on resting T cells but is rapidly upregulated upon encounter with Ag. However, the impact of ICOS signaling on programmed differentiation is not well understood. In this study, we therefore sought to determine the role of ICOS signaling on CD8(+) T cell programmed differentiation. Through the creation of novel ICOS retrogenic Ag-specific TCR-transgenic CD8(+) T cells, we interrogated the phenotype, functionality, and recall potential of CD8(+) T cells that receive early and sustained ICOS signaling during Ag exposure. Our results reveal that these ICOS signals critically impacted cell fate decisions of Ag-specific CD8(+) T cells, resulting in increased frequencies of KLRG-1(hi)CD127(lo) cells, altered BLIMP-1, T-bet, and eomesodermin expression, and increased cytolytic capacity as compared with empty vector controls. Interestingly, however, ICOS retrogenic CD8(+) T cells also preferentially homed to nonlymphoid organs and exhibited reduced multicytokine functionality and reduced ability to mount secondary recall responses upon challenge in vivo. In sum, our results suggest that an altered differentiation program is induced following early and sustained ICOS expression, resulting in the generation of more cytolyticly potent, terminally differentiated effectors that possess limited capacity for recall response.
Collapse
Affiliation(s)
- Danya Liu
- Emory Transplant Center, Emory University, Atlanta, GA 30322; Department of Surgery, Emory University, Atlanta, GA 30322
| | - Eileen M Burd
- Department of Pathology, Emory University, Atlanta, GA 30322; and
| | - Craig M Coopersmith
- Department of Surgery, Emory University, Atlanta, GA 30322; Emory Critical Care Center, Emory University, Atlanta, GA 30322
| | - Mandy L Ford
- Emory Transplant Center, Emory University, Atlanta, GA 30322;
| |
Collapse
|
211
|
Abstract
Memory for antigen is a defining feature of adaptive immunity. Antigen-specific lymphocyte populations show an increase in number and function after antigen encounter and more rapidly re-expand upon subsequent antigen exposure. Studies of immune memory have primarily focused on effector B cells and T cells with microbial specificity, using prime-challenge models of infection. However, recent work has also identified persistently expanded populations of antigen-specific regulatory T cells that protect against aberrant immune responses. In this Review, we consider the parallels between memory effector T cells and memory regulatory T cells, along with the functional implications of regulatory memory in autoimmunity, antimicrobial host defence and maternal-fetal tolerance. In addition, we discuss emerging evidence for regulatory T cell memory in humans and key unanswered questions in this rapidly evolving field.
Collapse
Affiliation(s)
- Michael D Rosenblum
- Department of Dermatology, University of California San Francisco, San Francisco, California 94143, USA
| | - Sing Sing Way
- Division of Infectious Diseases and Perinatal Institute, Cincinnati Children's Hospital, Cincinnati, Ohio 45229, USA
| | - Abul K Abbas
- Department of Pathology, University of California San Francisco, San Francisco, California 94143, USA
| |
Collapse
|
212
|
Ji Y, Hocker JD, Gattinoni L. Enhancing adoptive T cell immunotherapy with microRNA therapeutics. Semin Immunol 2015; 28:45-53. [PMID: 26710685 DOI: 10.1016/j.smim.2015.11.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/20/2015] [Accepted: 11/25/2015] [Indexed: 12/15/2022]
Abstract
Adoptive T cell-based immunotherapies can mediate complete and durable regressions in patients with advanced cancer, but current response rates remain inadequate. Maneuvers to improve the fitness and antitumor efficacy of transferred T cells have been under extensive exploration in the field. Small non-coding microRNAs have emerged as critical modulators of immune system homeostasis and T cell immunity. Here, we summarize recent advances in our understanding of the role of microRNAs in regulating T cell activation, differentiation, and function. We also discuss how microRNA therapeutics could be employed to fine-tune T cell receptor signaling and enhance T cell persistence and effector functions, paving the way for the next generation of adoptive immunotherapies.
Collapse
Affiliation(s)
- Yun Ji
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD, USA.
| | - James D Hocker
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD, USA
| | - Luca Gattinoni
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD, USA.
| |
Collapse
|
213
|
Carpio VH, Opata MM, Montañez ME, Banerjee PP, Dent AL, Stephens R. IFN-γ and IL-21 Double Producing T Cells Are Bcl6-Independent and Survive into the Memory Phase in Plasmodium chabaudi Infection. PLoS One 2015; 10:e0144654. [PMID: 26646149 PMCID: PMC4672895 DOI: 10.1371/journal.pone.0144654] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 11/20/2015] [Indexed: 11/19/2022] Open
Abstract
CD4 T cells are required to fight malaria infection by promoting both phagocytic activity and B cell responses for parasite clearance. In Plasmodium chabaudi infection, one specific CD4 T cell subset generates anti-parasitic IFN-γ and the antibody-promoting cytokine, IL-21. To determine the lineage of these multifunctional T cells, we followed IFN-γ+ effector T cells (Teff) into the memory phase using Ifng-reporter mice. While Ifng+ Teff expanded, the level of the Th1 lineage-determining transcription factor T-bet only peaked briefly. Ifng+ Teff also co-express ICOS, the B cell area homing molecule CXCR5, and other Tfh lineage-associated molecules including Bcl6, the transcription factor required for germinal center (GC) T follicular helper cells (Tfh) differentiation. Because Bcl6 and T-bet co-localize to the nucleus of Ifng+ Teff, we hypothesized that Bcl6 controls the Tfh-like phenotype of Ifng+ Teff cells in P. chabaudi infection. We first transferred Bcl6-deficient T cells into wildtype hosts. Bcl6-deficient T cells did not develop into GC Tfh, but they still generated CXCR5+IFN-γ+IL-21+IL-10+ Teff, suggesting that this predominant population is not of the Tfh-lineage. IL-10 deficient mice, which have increased IFN-γ and T-bet expression, demonstrated expansion of both IFN-γ+IL-21+CXCR5+ cells and IFN-γ+ GC Tfh cells, suggesting a Th1 lineage for the former. In the memory phase, all Ifng+ T cells produced IL-21, but only a small percentage of highly proliferative Ifng+ T cells maintained a T-bethi phenotype. In chronic malaria infection, serum IFN-γ correlates with increased protection, and our observation suggests Ifng+ T cells are maintained by cellular division. In summary, we found that Ifng+ T cells are not strictly Tfh derived during malaria infection. T cells provide the host with a survival advantage when facing this well-equipped pathogen, therefore, understanding the lineage of pivotal T cell players will aid in the rational design of an effective malaria vaccine.
Collapse
Affiliation(s)
- Victor H. Carpio
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Michael M. Opata
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Marelle E. Montañez
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Pinaki P. Banerjee
- Center for Human Immunobiology of Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, United States of America
| | - Alexander L. Dent
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Robin Stephens
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
214
|
Smad4 represses the generation of memory-precursor effector T cells but is required for the differentiation of central memory T cells. Cell Death Dis 2015; 6:e1984. [PMID: 26583325 PMCID: PMC4670941 DOI: 10.1038/cddis.2015.337] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 10/18/2015] [Accepted: 10/19/2015] [Indexed: 12/16/2022]
Abstract
The transcriptional regulation underlying the differentiation of CD8+ effector and memory T cells remains elusive. Here, we show that 18-month-old mice lacking the transcription factor Smad4 (homolog 4 of mothers against decapentaplegic, Drosophila), a key intracellular signaling effector for the TGF-β superfamily, in T cells exhibited lower percentages of CD44hiCD8+ T cells. To explore the role of Smad4 in the activation/memory of CD8+ T cells, 6- to 8-week-old mice with or without Smad4 in T cells were challenged with Listeria monocytogenes. Smad4 deficiency did not affect antigen-specific CD8+ T-cell expansion but led to partially impaired cytotoxic function. Less short-lived effector T cells but more memory-precursor effector T cells were generated in the absence of Smad4. Despite that, Smad4 deficiency led to reduced memory CD8+ T-cell responses. Further exploration revealed that the generation of central memory T cells was impaired in the absence of Smad4 and the cells showed survival issue. In mechanism, Smad4 deficiency led to aberrant transcriptional programs in antigen-specific CD8+ T cells. These findings demonstrated an essential role of Smad4 in the control of effector and memory CD8+ T-cell responses to infection.
Collapse
|
215
|
Mathieu C, Beltra JC, Charpentier T, Bourbonnais S, Di Santo JP, Lamarre A, Decaluwe H. IL-2 and IL-15 regulate CD8+ memory T-cell differentiation but are dispensable for protective recall responses. Eur J Immunol 2015; 45:3324-38. [PMID: 26426795 DOI: 10.1002/eji.201546000] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 08/11/2015] [Accepted: 09/25/2015] [Indexed: 11/09/2022]
Abstract
The ability to mount effective secondary responses is a cardinal feature of memory CD8(+) T cells. An understanding of the factors that regulate the generation and recall capacities of memory T cells remains to be ascertained. Several cues indicate that two highly related cytokines, IL-2 and IL-15, share redundant functions in this process. To establish their combined roles in memory CD8(+) T-cell development, maintenance, and secondary responses, we compared the outcome of adoptively transferred IL2Rβ(+/-) or IL2Rβ(-/-) CD8(+) T cells after an acute viral infection in mice. Our results demonstrate that both IL-2 and IL-15 signals condition the differentiation of primary and secondary short-lived effector cells by altering the transcriptional network governing lineage choices. These two cytokines also regulate the homeostasis of the memory T-cell pool, with effector memory CD8(+) T cells being the most sensitive to these two interleukins. Noticeably, the inability to respond to both cytokines limits the proliferation and survival of primary and secondary effectors cells, whereas it does not preclude potent cytotoxic functions and viral control either initially or upon rechallenge. Globally, these results indicate that lack of IL-2 and IL-15 signaling modulates the CD8(+) T-cell differentiation program but does not impede adequate effector functions.
Collapse
Affiliation(s)
- Cédric Mathieu
- Cytokines and Adaptive Immunity Laboratory, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Jean-Christophe Beltra
- Cytokines and Adaptive Immunity Laboratory, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Tania Charpentier
- Immunovirology Laboratory, INRS-Institut Armand-Frappier, Laval, Quebec, Canada
| | - Sara Bourbonnais
- Cytokines and Adaptive Immunity Laboratory, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - James P Di Santo
- Innate Immunity Unit, INSERM U668, Institut Pasteur, Paris, France
| | - Alain Lamarre
- Immunovirology Laboratory, INRS-Institut Armand-Frappier, Laval, Quebec, Canada
| | - Hélène Decaluwe
- Cytokines and Adaptive Immunity Laboratory, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada.,Immunology and Rheumatology Division, Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
216
|
Dominguez CX, Amezquita RA, Guan T, Marshall HD, Joshi NS, Kleinstein SH, Kaech SM. The transcription factors ZEB2 and T-bet cooperate to program cytotoxic T cell terminal differentiation in response to LCMV viral infection. J Exp Med 2015; 212:2041-56. [PMID: 26503446 PMCID: PMC4647261 DOI: 10.1084/jem.20150186] [Citation(s) in RCA: 204] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 09/15/2015] [Indexed: 12/16/2022] Open
Abstract
The transcription factor T-bet is critical for cytotoxic T lymphocyte (CTL) differentiation, but it is unclear how it operates in a graded manner in the formation of both terminal effector and memory precursor cells during viral infection. We find that, at high concentrations, T-bet induced expression of Zeb2 mRNA, which then triggered CTLs to adopt terminally differentiated states. ZEB2 and T-bet cooperate to switch on a terminal CTL differentiation program, while simultaneously repressing genes necessary for central memory CTL development. Chromatin immunoprecipitation sequencing showed that a large proportion of these genes were bound by T-bet, and this binding was altered by ZEB2 deficiency. Furthermore, T-bet overexpression could not fully bypass ZEB2 function. Thus, the coordinated actions of T-bet and ZEB2 outline a novel genetic pathway that forces commitment of CTLs to terminal differentiation, thereby restricting their memory cell potential.
Collapse
Affiliation(s)
- Claudia X Dominguez
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Robert A Amezquita
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520 Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | - Tianxia Guan
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520 Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | - Heather D Marshall
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Nikhil S Joshi
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Steven H Kleinstein
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520 Interdepartmental Program in Computational Biology and Bioinformatics, Yale University School of Medicine, New Haven, CT 06520 Department of Pathology, Yale University School of Medicine, New Haven, CT 06520
| | - Susan M Kaech
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520 Howard Hughes Medical Institute, Chevy Chase, MD 20815
| |
Collapse
|
217
|
Regulation of CD8+ T-cell cytotoxicity in HIV-1 infection. Cell Immunol 2015; 298:126-33. [PMID: 26520669 DOI: 10.1016/j.cellimm.2015.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/20/2015] [Accepted: 10/23/2015] [Indexed: 01/03/2023]
Abstract
Understanding the mechanisms involved in cellular immune responses against control of human immunodeficiency virus (HIV) infection is key to development of effective immunotherapeutic strategies against viral proliferation. Clear insights into the regulation of cytotoxic CD8+ T cells is crucial to development of effective immunotherapeutic strategies due to their unique ability to eliminate virus-infected cells during the course of infection. Here, we reviewed the roles of transcription factors, co-inhibitory molecules and regulatory cytokines following HIV infection and their potential significance in regulating the cytotoxic potentials of CD8+ T cells.
Collapse
|
218
|
Shakya A, Goren A, Shalek A, German CN, Snook J, Kuchroo VK, Yosef N, Chan RC, Regev A, Williams MA, Tantin D. Oct1 and OCA-B are selectively required for CD4 memory T cell function. J Exp Med 2015; 212:2115-31. [PMID: 26481684 PMCID: PMC4647264 DOI: 10.1084/jem.20150363] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 09/25/2015] [Indexed: 12/31/2022] Open
Abstract
Shakya et al. identify the transcription factor Oct1 and its cofactor OCA-B as central mediators for generating memory T cell responses in mice. Epigenetic changes are crucial for the generation of immunological memory. Failure to generate or maintain these changes will result in poor memory responses. Similarly, augmenting or stabilizing the correct epigenetic states offers a potential method of enhancing memory. Yet the transcription factors that regulate these processes are poorly defined. We find that the transcription factor Oct1 and its cofactor OCA-B are selectively required for the in vivo generation of CD4+ memory T cells. More importantly, the memory cells that are formed do not respond properly to antigen reencounter. In vitro, both proteins are required to maintain a poised state at the Il2 target locus in resting but previously stimulated CD4+ T cells. OCA-B is also required for the robust reexpression of multiple other genes including Ifng. ChIPseq identifies ∼50 differentially expressed direct Oct1 and OCA-B targets. We identify an underlying mechanism involving OCA-B recruitment of the histone lysine demethylase Jmjd1a to targets such as Il2, Ifng, and Zbtb32. The findings pinpoint Oct1 and OCA-B as central mediators of CD4+ T cell memory.
Collapse
Affiliation(s)
- Arvind Shakya
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Alon Goren
- Broad Technology Labs, The Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Alex Shalek
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138 Department of Physics, Harvard University, Cambridge, MA 02138 The Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Cody N German
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Jeremy Snook
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Vijay K Kuchroo
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115 The Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Nir Yosef
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115 The Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Raymond C Chan
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
| | - Aviv Regev
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 The Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Matthew A Williams
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Dean Tantin
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| |
Collapse
|
219
|
Ramsbottom KM, Sacirbegovic F, Hawkins ED, Kallies A, Belz GT, Van Ham V, Haynes NM, Durrant MJ, Humbert PO, Russell SM, Oliaro J. Lethal giant larvae-1 deficiency enhances the CD8(+) effector T-cell response to antigen challenge in vivo. Immunol Cell Biol 2015; 94:306-11. [PMID: 26391810 DOI: 10.1038/icb.2015.82] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 07/20/2015] [Accepted: 08/18/2015] [Indexed: 01/31/2023]
Abstract
Lethal giant larvae-1 (Lgl-1) is an evolutionary conserved protein that regulates cell polarity in diverse lineages; however, the role of Lgl-1 in the polarity and function of immune cells remains to be elucidated. To assess the role of Lgl-1 in T cells, we generated chimeric mice with a hematopoietic system deficient for Lgl-1. Lgl-1 deficiency did not impair the activation or function of peripheral CD8(+) T cells in response to antigen presentation in vitro, but did skew effector and memory T-cell differentiation. When challenged with antigen-expressing virus or tumor, Lgl-1-deficient mice displayed altered T-cell responses. This manifested in a stronger antiviral and antitumor effector CD8(+) T-cell response, the latter resulting in enhanced control of MC38-OVA tumors. These results reveal a novel role for Lgl-1 in the regulation of virus-specific T-cell responses and antitumor immunity.
Collapse
Affiliation(s)
- Kelly M Ramsbottom
- Cancer Immunology Laboratory, The Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Faruk Sacirbegovic
- Cancer Immunology Laboratory, The Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Edwin D Hawkins
- Cancer Immunology Laboratory, The Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia.,Lo Celso Laboratory, Imperial College London, Sir Alexander Fleming Building, London, UK
| | - Axel Kallies
- Division of Molecular Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Gabrielle T Belz
- Division of Molecular Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Vanessa Van Ham
- Cancer Immunology Laboratory, The Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Nicole M Haynes
- Cancer Immunology Laboratory, The Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Michael J Durrant
- Cancer Immunology Laboratory, The Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Patrick O Humbert
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.,Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, Australia.,Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Sarah M Russell
- Cancer Immunology Laboratory, The Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.,Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia.,Centre for Micro-photonics, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Jane Oliaro
- Cancer Immunology Laboratory, The Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.,Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
220
|
Waugh KA, Leach SM, Slansky JE. Targeting Transcriptional Regulators of CD8+ T Cell Dysfunction to Boost Anti-Tumor Immunity. Vaccines (Basel) 2015; 3:771-802. [PMID: 26393659 PMCID: PMC4586477 DOI: 10.3390/vaccines3030771] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 02/07/2023] Open
Abstract
Transcription is a dynamic process influenced by the cellular environment: healthy, transformed, and otherwise. Genome-wide mRNA expression profiles reflect the collective impact of pathways modulating cell function under different conditions. In this review we focus on the transcriptional pathways that control tumor infiltrating CD8+ T cell (TIL) function. Simultaneous restraint of overlapping inhibitory pathways may confer TIL resistance to multiple mechanisms of suppression traditionally referred to as exhaustion, tolerance, or anergy. Although decades of work have laid a solid foundation of altered transcriptional networks underlying various subsets of hypofunctional or “dysfunctional” CD8+ T cells, an understanding of the relevance in TIL has just begun. With recent technological advances, it is now feasible to further elucidate and utilize these pathways in immunotherapy platforms that seek to increase TIL function.
Collapse
Affiliation(s)
- Katherine A Waugh
- University of Colorado School of Medicine, 12800 East 19th Avenue, Mail Stop 8333, Aurora, CO 80045, USA.
| | - Sonia M Leach
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO 80206, USA.
| | - Jill E Slansky
- University of Colorado School of Medicine, 12800 East 19th Avenue, Mail Stop 8333, Aurora, CO 80045, USA.
| |
Collapse
|
221
|
Vieira Braga FA, Hertoghs KML, Kragten NAM, Doody GM, Barnes NA, Remmerswaal EBM, Hsiao CC, Moerland PD, Wouters D, Derks IAM, van Stijn A, Demkes M, Hamann J, Eldering E, Nolte MA, Tooze RM, ten Berge IJM, van Gisbergen KPJM, van Lier RAW. Blimp-1 homolog Hobit identifies effector-type lymphocytes in humans. Eur J Immunol 2015; 45:2945-58. [DOI: 10.1002/eji.201545650] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/16/2015] [Accepted: 07/13/2015] [Indexed: 01/17/2023]
Affiliation(s)
- Felipe A. Vieira Braga
- Department of Hematopoiesis; Sanquin Research and Landsteiner Laboratory AMC/UvA; Amsterdam The Netherlands
| | | | - Natasja A. M. Kragten
- Department of Hematopoiesis; Sanquin Research and Landsteiner Laboratory AMC/UvA; Amsterdam The Netherlands
- Department of Experimental Immunology; AMC; Amsterdam The Netherlands
| | - Gina M. Doody
- Section of Experimental Haematology; Leeds Institute of Cancer and Pathology; University of Leeds; Leeds UK
| | - Nicholas A. Barnes
- Section of Experimental Haematology; Leeds Institute of Cancer and Pathology; University of Leeds; Leeds UK
| | - Ester B. M. Remmerswaal
- Department of Experimental Immunology; AMC; Amsterdam The Netherlands
- Internal Medicine; Renal Transplant Unit; AMC; Amsterdam The Netherlands
| | - Cheng-Chih Hsiao
- Department of Experimental Immunology; AMC; Amsterdam The Netherlands
| | | | - Diana Wouters
- Department of Hematopoiesis; Sanquin Research and Landsteiner Laboratory AMC/UvA; Amsterdam The Netherlands
| | | | - Amber van Stijn
- Department of Experimental Immunology; AMC; Amsterdam The Netherlands
- Internal Medicine; Renal Transplant Unit; AMC; Amsterdam The Netherlands
| | - Marc Demkes
- Department of Experimental Immunology; AMC; Amsterdam The Netherlands
| | - Jörg Hamann
- Department of Experimental Immunology; AMC; Amsterdam The Netherlands
| | - Eric Eldering
- Department of Experimental Immunology; AMC; Amsterdam The Netherlands
| | - Martijn A. Nolte
- Department of Hematopoiesis; Sanquin Research and Landsteiner Laboratory AMC/UvA; Amsterdam The Netherlands
- Department of Experimental Immunology; AMC; Amsterdam The Netherlands
| | - Reuben M. Tooze
- Section of Experimental Haematology; Leeds Institute of Cancer and Pathology; University of Leeds; Leeds UK
| | | | - Klaas P. J. M. van Gisbergen
- Department of Hematopoiesis; Sanquin Research and Landsteiner Laboratory AMC/UvA; Amsterdam The Netherlands
- Department of Experimental Immunology; AMC; Amsterdam The Netherlands
| | - René A. W. van Lier
- Department of Hematopoiesis; Sanquin Research and Landsteiner Laboratory AMC/UvA; Amsterdam The Netherlands
- Department of Experimental Immunology; AMC; Amsterdam The Netherlands
| |
Collapse
|
222
|
Vieira Braga FA, Hertoghs KML, van Lier RAW, van Gisbergen KPJM. Molecular characterization of HCMV-specific immune responses: Parallels between CD8(+) T cells, CD4(+) T cells, and NK cells. Eur J Immunol 2015; 45:2433-45. [PMID: 26228786 DOI: 10.1002/eji.201545495] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 07/15/2015] [Accepted: 07/28/2015] [Indexed: 11/07/2022]
Abstract
CD8(+) T cells are important for immunity against human cytomegalovirus (HCMV). The HCMV-specific CD8(+) T-cell response is characterized by the accumulation of terminally differentiated effector cells that have downregulated the costimulatory molecules CD27 and CD28. These HCMV-specific CD8(+) T cells maintain high levels of cytotoxic molecules such as granzyme B and rapidly produce the inflammatory cytokine IFN-γ upon activation. Remarkably, HCMV-specific CD8(+) T cells are able to persist long term as fully functional effector cells, suggesting a unique differentiation pathway that is distinct from the formation of memory CD8(+) T cells after infection with acute viruses. In this review, we aim to highlight the most recent developments in HCMV-specific CD8(+) T-cell differentiation, maintenance, tissue distribution, metabolism and function. HCMV also induces the differentiation of effector CD4(+) T cells and NK cells, which share characteristics with HCMV-specific CD8(+) T cells. We propose that the overlap in differentiation of NK cells, CD4(+) and CD8(+) T cells after HCMV infection may be regulated by a shared transcriptional machinery. A better understanding of the molecular framework of HCMV-specific CD8(+) T-cell responses may benefit vaccine design, as these cells uniquely combine the capacity to rapidly respond to infection with long-term survival.
Collapse
Affiliation(s)
- Felipe A Vieira Braga
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory AMC/UvA, Amsterdam, The Netherlands
| | - Kirsten M L Hertoghs
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory AMC/UvA, Amsterdam, The Netherlands
| | - René A W van Lier
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory AMC/UvA, Amsterdam, The Netherlands
| | - Klaas P J M van Gisbergen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory AMC/UvA, Amsterdam, The Netherlands
| |
Collapse
|
223
|
Mould AW, Morgan MAJ, Nelson AC, Bikoff EK, Robertson EJ. Blimp1/Prdm1 Functions in Opposition to Irf1 to Maintain Neonatal Tolerance during Postnatal Intestinal Maturation. PLoS Genet 2015; 11:e1005375. [PMID: 26158850 PMCID: PMC4497732 DOI: 10.1371/journal.pgen.1005375] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 06/19/2015] [Indexed: 11/18/2022] Open
Abstract
The neonatal intestine is a very complex and dynamic organ that must rapidly adapt and remodel in response to a barrage of environmental stimuli during the first few postnatal weeks. Recent studies demonstrate that the zinc finger transcriptional repressor Blimp1/Prdm1 plays an essential role governing postnatal reprogramming of intestinal enterocytes during this period. Functional loss results in global changes in gene expression patterns, particularly in genes associated with metabolic function. Here we engineered a knock-in allele expressing an eGFP-tagged fusion protein under control of the endogenous regulatory elements and performed genome wide ChIP-seq analysis to identify direct Blimp1 targets and further elucidate the function of Blimp1 in intestinal development. Comparison with published human and mouse datasets revealed a highly conserved core set of genes including interferon-inducible promoters. Here we show that the interferon-inducible transcriptional activator Irf1 is constitutively expressed throughout fetal and postnatal intestinal epithelium development. ChIP-seq demonstrates closely overlapping Blimp1 and Irf1 peaks at key components of the MHC class I pathway in fetal enterocytes. The onset of MHC class I expression coincides with down-regulated Blimp1 expression during the suckling to weaning transition. Collectively, these experiments strongly suggest that in addition to regulating the enterocyte metabolic switch, Blimp1 functions as a gatekeeper in opposition to Irf1 to prevent premature activation of the MHC class I pathway in villus epithelium to maintain tolerance in the neonatal intestine. The transcriptional repressor Blimp1/Prdm1 plays a pivotal role in the metabolic switch that occurs in the small intestine during the suckling to weaning transition. Notably, expression profiling of perinatal Blimp1-deficient small intestine revealed premature activation of metabolic genes normally restricted to post-weaning enterocytes. To further elucidate the function of Blimp1 in intestinal development, we engineered a novel Blimp1-eGFP-fusion knock-in mouse strain to perform ChIP-seq analysis. In addition to identifying which metabolic genes are direct Blimp1 targets, ChIP-seq analysis revealed a highly conserved Blimp1/Irf-1 overlapping sites that function to control MHC class I antigen processing during acquisition of neonatal tolerance in the first weeks after birth during early colonization of the intestinal tract by commensal microorganisms. Moreover, immunohistochemical analysis of human fetal intestine suggests that a BLIMP1/IRF-1 axis may also function in human intestinal epithelium development.
Collapse
Affiliation(s)
- Arne W. Mould
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Marc A. J. Morgan
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Andrew C. Nelson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Elizabeth K. Bikoff
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- * E-mail: (EKB); (EJR)
| | - Elizabeth J. Robertson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- * E-mail: (EKB); (EJR)
| |
Collapse
|
224
|
Mathieu M, Duval F, Daudelin JF, Labrecque N. The Notch signaling pathway controls short-lived effector CD8+ T cell differentiation but is dispensable for memory generation. THE JOURNAL OF IMMUNOLOGY 2015; 194:5654-62. [PMID: 25972473 DOI: 10.4049/jimmunol.1402837] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 04/19/2015] [Indexed: 11/19/2022]
Abstract
Following an infection, naive CD8(+) T cells expand and differentiate into two main populations of effectors: short-lived effector cells (SLECs) and memory precursor effector cells (MPECs). There is limited understanding of the molecular mechanism and cellular processes governing this cell fate. Notch is a key regulator of cell fate decision relevant in many immunological pathways. In this study, we add to the role of Notch in cell fate decision and demonstrate that the Notch signaling pathway controls the MPEC/SLEC differentiation choice following both Listeria infection and dendritic cell immunization of mice. Although fewer SLECs were generated, Notch deficiency did not alter the rate of memory CD8(+) T cell generation. Moreover, we reveal that the Notch signaling pathway plays a context-dependent role for optimal cytokine production by effector CD8(+) T cells. Together, our results unravel critical functions for the Notch signaling pathway during effector CD8(+) T cell differentiation.
Collapse
Affiliation(s)
- Mélissa Mathieu
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec H1T 2M4, Canada; Department of Microbiology, Infectiology and Immunology, University of Montreal, Montreal, Quebec H3T 1J4, Canada; and
| | - Frédéric Duval
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec H1T 2M4, Canada; Department of Microbiology, Infectiology and Immunology, University of Montreal, Montreal, Quebec H3T 1J4, Canada; and
| | | | - Nathalie Labrecque
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec H1T 2M4, Canada; Department of Microbiology, Infectiology and Immunology, University of Montreal, Montreal, Quebec H3T 1J4, Canada; and Department of Medicine, University of Montreal, Montreal, Quebec H3T 1J4, Canada
| |
Collapse
|
225
|
Gray SM, Kaech SM, Staron MM. The interface between transcriptional and epigenetic control of effector and memory CD8⁺ T-cell differentiation. Immunol Rev 2015; 261:157-68. [PMID: 25123283 DOI: 10.1111/imr.12205] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immunity to many intracellular pathogens requires the proliferation, differentiation, and function of CD8(+) cytotoxic T lymphocytes (CTLs). While the majority of effector CTLs die upon clearance of the pathogen, a small proportion of them survive to become long-lived memory CTLs. Memory CTLs can provide protective immunity against re-exposure to the same pathogen and are the principle motivation behind T-cell- based vaccine design. While a large body of cellular immunologic research has proven invaluable to define effector and memory CTLs by their different phenotypes and functions, an emerging focus in the field has been to understand how environmental cues regulate CTL differentiation on a genomic level. Genome-wide studies to profile transcriptional and epigenetic changes during infection have revealed that dynamic changes in DNA methylation patterns and histone modifications accompany transcriptional signatures that define and regulate CTL differentiation states. In this review, we emphasize the importance of epigenetic regulation of CD8(+) T-cell differentiation and the likely role that transcription factors play in this process.
Collapse
Affiliation(s)
- Simon M Gray
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | | | | |
Collapse
|
226
|
Crotty S, Pipkin ME. In vivo RNAi screens: concepts and applications. Trends Immunol 2015; 36:315-22. [PMID: 25937561 DOI: 10.1016/j.it.2015.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 11/17/2022]
Abstract
Functional genomics approaches that leverage the RNAi pathway have been applied in vivo to examine the roles of hundreds or thousands of genes; mainly in the context of cancer. Here, we discuss principles guiding the design of RNAi screens, parameters that determine success and recent developments that have improved accuracy and expanded the applicability of these approaches to other in vivo settings, including the immune system. We review recent studies that have applied in vivo RNAi screens in T cells to examine genes that regulate T cell differentiation during viral infection, and that control their accumulation in tumors in a model of adoptive T cell therapy. In this context, we put forward an argument as to why RNAi approaches in vivo are likely to provide particularly salient insight into immunology.
Collapse
Affiliation(s)
- Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA
| | - Matthew E Pipkin
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL, 33458, USA.
| |
Collapse
|
227
|
Crompton JG, Narayanan M, Cuddapah S, Roychoudhuri R, Ji Y, Yang W, Patel SJ, Sukumar M, Palmer DC, Peng W, Wang E, Marincola FM, Klebanoff CA, Zhao K, Tsang JS, Gattinoni L, Restifo NP. Lineage relationship of CD8+ T cell subsets is revealed by progressive changes in the epigenetic landscape. Cell Mol Immunol 2015. [DOI: 10.1038/cmi.2015.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
228
|
Lin R, Sampson JH, Li QJ, Zhu B. miR-23a blockade enhances adoptive T cell transfer therapy by preserving immune-competence in the tumor microenvironment. Oncoimmunology 2015; 4:e990803. [PMID: 25949909 DOI: 10.4161/2162402x.2014.990803] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 11/18/2014] [Indexed: 01/01/2023] Open
Abstract
In adoptive T cell transfer therapy (ACT), the antitumor efficacy of cytotoxic CD8+ T lymphocytes (CTLs) has been limited by tumor-induced immunosuppression. We have demonstrated that miR-23a blockade in tumor-specific CTLs conferred resilience to TGFβ-mediated immunosuppression, resulting in superior tumor control. Our studies highlight miR-23a in tumor-specific CTLs as a clinically relevant target to enhance ACT.
Collapse
Affiliation(s)
- Regina Lin
- Department of Immunology; Duke University Medical Center ; Durham, NC, USA
| | - John H Sampson
- Department of Immunology; Duke University Medical Center ; Durham, NC, USA ; Department of Neurosurgery; Duke University Medical Center ; Durham, NC, USA
| | - Qi-Jing Li
- Department of Immunology; Duke University Medical Center ; Durham, NC, USA
| | - Bo Zhu
- Institute of Cancer; Xinqiao Hospital ; The Third Military Medical University ; Chongqing, China
| |
Collapse
|
229
|
Böttcher J, Knolle PA. Global transcriptional characterization of CD8+ T cell memory. Semin Immunol 2015; 27:4-9. [PMID: 25841628 DOI: 10.1016/j.smim.2015.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 02/28/2015] [Accepted: 03/03/2015] [Indexed: 12/24/2022]
Abstract
The differentiation of memory CD8T cells after acute infections comprises generation of functionally distinct populations that either have proliferative potential or display cytotoxic effector functions and that either recirculate into lymphoid tissues or remain tissue-resident. The development of these functionally distinct cell populations is dictated by defined signals from the microenvironment that result in a coordinated expression of a network of transcription factors, which determine the functionality of memory T cells. Distinct transcriptional regulation observed during chronic viral infection that results in generation of T cells that control viral replication in the absence of immunopathology suggests the existence of so far unappreciated functional adaptation of T cell function to the particular need during chronic infections to control infection and avoid immunopathology. Furthermore, the non-canonical generation of CD8T cell memory outside of lymphoid tissues in the liver in the absence of inflammation is correlated with a distinct transcriptional profile and indicates further complexity in the commensurate immune response to infectious pathogens that escape innate immunity. Taken together, distinct profiles of transcriptional regulation are linked to CD8T cells with different functions and provide important mechanistic insight into the continuous functional adaptation of CD8T cells to generate a commensurate immune response to infectious challenges.
Collapse
Affiliation(s)
- Jan Böttcher
- Immunobiology Laboratory, Cancer Research UK, United Kingdom
| | - Percy A Knolle
- Institute of Molecular Immunology, München Rechts der Isar, Technische Universität München, Germany; Institute of Experimental Immunology, Universität Bonn, Germany.
| |
Collapse
|
230
|
Abstract
Memory CD8 T cells generated after acute viral infections or live vaccines can persist for extended periods, in some instances for life, and play an important role in protective immunity. This long-lived immunity is achieved in part through cytokine-mediated homeostatic proliferation of memory T cells while maintaining the acquired capacity for rapid recall of effector cytokines and cytolytic molecules. The ability of memory CD8 T cells to retain their acquired properties, including their ability to remain poised to recall effector functions, is a truly impressive feat given that these acquired properties can be maintained for decades without exposure to cognate antigen. Here, we discuss general mechanisms for acquisition and maintenance of transcriptional programs in memory CD8 T cells and the potential role of epigenetic programming in maintaining the phenotypic and functional heterogeneity of cellular subsets among the pool of memory cells.
Collapse
Affiliation(s)
- Ben Youngblood
- Department of Microbiology and Immunology, Emory University1510 Clifton Road, Atlanta, GA 30322USA
- Department of Immunology, St Jude Children's Research Hospital262 Danny Thomas Place, Memphis, TN 38105-3678USA
| | - J. Scott Hale
- Department of Microbiology and Immunology, Emory University1510 Clifton Road, Atlanta, GA 30322USA
- Emory Vaccine Center, Emory University School of MedicineAtlanta, GA 30329
| | - Rafi Ahmed
- Department of Microbiology and Immunology, Emory University1510 Clifton Road, Atlanta, GA 30322USA
- Emory Vaccine Center, Emory University School of MedicineAtlanta, GA 30329
| |
Collapse
|
231
|
Abstract
PURPOSE OF REVIEW This review highlights the control of transcriptional networks, including induction of inhibitory receptors, by T cell-specific transcription factors in exhausted T cells that accumulate in chronic viral infections including HIV. RECENT FINDINGS Transcriptional profiling has established distinct molecular phenotypes for exhausted CD4 and CD8 T cells in chronic viral infection models. There exists a subset of transcription factors associated with exhaustion, notably Blimp-1, basic leucine zipper transcription factor, ATF-like and Helios. Epigenetic phenomena are likely important in regulating gene expression networks during exhaustion as illustrated by programmed death 1 promoter methylation patterns. SUMMARY Following chronic viral infections, CD4 and CD8 T cells defined functionally and phenotypically as exhausted have distinct transcriptional profiles. These studies have identified a core set of transcription factors that have been implicated in promoting exhaustion. However, no single factor appears to be an exhaustion determining factor, suggesting that T cell exhaustion reflects a combinatorial mechanism with multiple transcription factors interacting to influence the development of functionally exhausted T cells as well as different T effector populations.
Collapse
|
232
|
Billingsley JM, Rajakumar PA, Connole MA, Salisch NC, Adnan S, Kuzmichev YV, Hong HS, Reeves RK, Kang HJ, Li W, Li Q, Haase AT, Johnson RP. Characterization of CD8+ T cell differentiation following SIVΔnef vaccination by transcription factor expression profiling. PLoS Pathog 2015; 11:e1004740. [PMID: 25768938 PMCID: PMC4358830 DOI: 10.1371/journal.ppat.1004740] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 02/10/2015] [Indexed: 01/03/2023] Open
Abstract
The onset of protective immunity against pathogenic SIV challenge in SIVΔnef-vaccinated macaques is delayed for 15-20 weeks, a process that is related to qualitative changes in CD8+ T cell responses induced by SIVΔnef. As a novel approach to characterize cell differentiation following vaccination, we used multi-target qPCR to measure transcription factor expression in naïve and memory subsets of CD8++ T cells, and in SIV-specific CD8+ T cells obtained from SIVΔnef-vaccinated or wild type SIVmac239-infected macaques. Unsupervised clustering of expression profiles organized naïve and memory CD8+ T cells into groups concordant with cell surface phenotype. Transcription factor expression patterns in SIV-specific CD8+ T cells in SIVΔnef-vaccinated animals were distinct from those observed in purified CD8+ T cell subsets obtained from naïve animals, and were intermediate to expression profiles of purified central memory and effector memory T cells. Expression of transcription factors elicited by SIVΔnef vaccination also varied over time: cells obtained at later time points, temporally associated with greater protection, appeared more central-memory like than cells obtained at earlier time points, which appeared more effector memory-like. Expression of transcription factors associated with effector differentiation, such as ID2 and RUNX3, were decreased over time, while expression of transcription factors associated with quiescence or memory differentiation, such as TCF7, BCOR and EOMES, increased. CD8+ T cells specific for a more conserved epitope expressed higher levels of TBX21 and BATF, and appeared more effector-like than cells specific for an escaped epitope, consistent with continued activation by replicating vaccine virus. These data suggest transcription factor expression profiling is a novel method that can provide additional data complementary to the analysis of memory cell differentiation based on classical phenotypic markers. Additionally, these data support the hypothesis that ongoing stimulation by SIVΔnef promotes a distinct protective balance of CD8+ T cell differentiation and activation states. The live attenuated vaccine SIVΔnef can induce robust CD8+ T cell- mediated protection against infection with pathogenic SIV in macaques. Thus, there is substantial interest in characterizing these immune responses to inform HIV vaccine design. Animals challenged at 15–20 weeks post vaccination exhibit robust protection, whereas animals challenged at 5 weeks post-vaccination manifest little protection. Since the frequency of SIV-specific T cells decreases from week 5 to week 20, it is likely that the quality of the response to challenge changes as virus-specific cells differentiate. We applied a novel approach of transcription factor expression profiling to characterize the differences in SIV-specific cell function and phenotype at more protected and less protected time points. Using unsupervised clustering methods informed by expression profiles assessed in purified CD8+ T cell subsets, we show that SIV-specific cells display expression profiles different than any purified CD8+ T cell subset, and intermediate to sorted effector memory and central memory subsets. SIV-specific cells overall appear more effector memory-like at week 5 post-vaccination, and more central memory-like at week 20 post-vaccination. Distinct profiles of CD8+ T cells specific for different SIV epitopes having different immune escape kinetics suggests maturation is regulated by ongoing low-level replication of vaccine virus.
Collapse
Affiliation(s)
- James M. Billingsley
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Premeela A. Rajakumar
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Michelle A. Connole
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
| | - Nadine C. Salisch
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
- Crucell Holland BV, Leiden, The Netherlands
| | - Sama Adnan
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Yury V. Kuzmichev
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
| | - Henoch S. Hong
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
| | - R. Keith Reeves
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Hyung-joo Kang
- Division of Preventive and Behavioral Medicine, University of Massachusetts Medical Center, Worcester, Massachusetts, United States of America
| | - Wenjun Li
- Division of Preventive and Behavioral Medicine, University of Massachusetts Medical Center, Worcester, Massachusetts, United States of America
| | - Qingsheng Li
- Nebraska Center for Virology and School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Ashley T. Haase
- University of Minnesota, Microbiology Department, Minneapolis, Minnesota, United States of America
| | - R. Paul Johnson
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
233
|
Kurioka A, Ussher JE, Cosgrove C, Clough C, Fergusson JR, Smith K, Kang YH, Walker LJ, Hansen TH, Willberg CB, Klenerman P. MAIT cells are licensed through granzyme exchange to kill bacterially sensitized targets. Mucosal Immunol 2015; 8:429-40. [PMID: 25269706 PMCID: PMC4288950 DOI: 10.1038/mi.2014.81] [Citation(s) in RCA: 287] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/26/2014] [Indexed: 02/06/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells are an innate-like T-cell population restricted by the non-polymorphic, major histocompatibility complex class I-related protein 1, MR1. MAIT cells are activated by a broad range of bacteria through detection of riboflavin metabolites bound by MR1, but their direct cytolytic capacity upon recognition of cognate target cells remains unclear. We show that resting human MAIT cells are uniquely characterized by a lack of granzyme (Gr) B and low perforin expression, key granule proteins required for efficient cytotoxic activity, but high levels of expression of GrA and GrK. Bacterial activation of MAIT cells rapidly induced GrB and perforin, licensing these cells to kill their cognate target cells. Using a novel flow cytometry-based killing assay, we show that licensed MAIT cells, but not ex vivo MAIT cells from the same donors, can efficiently kill Escherichia coli-exposed B-cell lines in an MR1- and degranulation-dependent manner. Finally, we show that MAIT cells are highly proliferative in response to antigenic and cytokine stimulation, maintaining high expression of GrB, perforin, and GrA, but reduced expression of GrK following antigenic proliferation. The tightly regulated cytolytic capacity of MAIT cells may have an important role in the control of intracellular bacterial infections, such as Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- A Kurioka
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK,
| | - J E Ussher
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - C Cosgrove
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - C Clough
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - J R Fergusson
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - K Smith
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Y-H Kang
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - L J Walker
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - T H Hansen
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri, USA
| | - C B Willberg
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK,National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - P Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK,National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| |
Collapse
|
234
|
Lee N, You S, Shin MS, Lee WW, Kang KS, Kim SH, Kim WU, Homer RJ, Kang MJ, Montgomery RR, Dela Cruz CS, Shaw AC, Lee PJ, Chupp GL, Hwang D, Kang I. IL-6 receptor α defines effector memory CD8+ T cells producing Th2 cytokines and expanding in asthma. Am J Respir Crit Care Med 2015; 190:1383-94. [PMID: 25390970 DOI: 10.1164/rccm.201403-0601oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
RATIONALE Cytokine receptors can be markers defining different T-cell subsets and considered as therapeutic targets. The association of IL-6 and IL-6 receptor α (IL-6Rα) with asthma was reported, suggesting their involvement in asthma. OBJECTIVES To determine whether and how IL-6Rα defines a distinct effector memory (EM) CD8+ T-cell population in health and disease. METHODS EM CD8+ T cells expressing IL-6Rα (IL-6Rα(high)) were identified in human peripheral blood and analyzed for function, gene, and transcription factor expression. The relationship of these cells with asthma was determined using blood and sputum. MEASUREMENTS AND MAIN RESULTS A unique population of IL-6Rα(high) EM CD8+ T cells was found in peripheral blood. These cells that potently proliferated, survived, and produced high levels of the Th2-type cytokines IL-5 and IL-13 had increased levels of GATA3 and decreased levels of T-bet and Blimp-1 in comparison with other EM CD8+ T cells. In fact, GATA3 was required for IL-6Rα expression. Patients with asthma had an increased frequency of IL-6Rα(high) EM CD8+ T cells in peripheral blood compared with healthy control subjects. Also, IL-6Rα(high) EM CD8+ T cells exclusively produced IL-5 and IL-13 in response to asthma-associated respiratory syncytial virus and bacterial superantigens. CONCLUSIONS Human IL-6Rα(high) EM CD8+ T cells is a unique cell subset that may serve as a reservoir for effector CD8+ T cells, particularly the ones producing Th2-type cytokines, and expand in asthma.
Collapse
Affiliation(s)
- Naeun Lee
- 1 Department of Internal Medicine and
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Kaczmarek Michaels K, Natarajan M, Euler Z, Alter G, Viglianti G, Henderson AJ. Blimp-1, an intrinsic factor that represses HIV-1 proviral transcription in memory CD4+ T cells. THE JOURNAL OF IMMUNOLOGY 2015; 194:3267-74. [PMID: 25710909 DOI: 10.4049/jimmunol.1402581] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
CD4(+) T cell subsets differentially support HIV-1 replication. For example, quiescent CD4(+) memory T cells are susceptible to HIV-1 infection but do not support robust HIV-1 transcription and have been implicated as the primary reservoir of latent HIV-1. T cell transcription factors that regulate maturation potentially limit HIV-1 transcription and mediate the establishment and maintenance of HIV-1 latency. We report that B lymphocyte-induced maturation protein-1 (Blimp-1), a critical regulator of B and T cell differentiation, is highly expressed in memory CD4(+) T cells compared with naive CD4(+) T cells and represses basal and Tat-mediated HIV-1 transcription. Blimp-1 binds an IFN-stimulated response element within HIV-1 provirus, and it is displaced following T cell activation. Reduction of Blimp-1 in infected primary T cells including CD4(+) memory T cells increases RNA polymerase II processivity, histone acetylation, and baseline HIV-1 transcription. Therefore, the transcriptional repressor, Blimp-1, is an intrinsic factor that predisposes CD4(+) memory T cells to latent HIV-1 infection.
Collapse
Affiliation(s)
- Katarzyna Kaczmarek Michaels
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA 02118; Graduate Program in Molecular and Translational Medicine, Boston University School of Medicine, Boston, MA 02118
| | | | - Zelda Euler
- Ragon Institute of MGH, MIT and Harvard University, Boston, MA 02139; and
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard University, Boston, MA 02139; and
| | - Gregory Viglianti
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118
| | - Andrew J Henderson
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA 02118; Graduate Program in Molecular and Translational Medicine, Boston University School of Medicine, Boston, MA 02118; Department of Microbiology, Boston University School of Medicine, Boston, MA 02118
| |
Collapse
|
236
|
Li J, Valentin A, Ng S, Beach RK, Alicea C, Bergamaschi C, Felber BK, Pavlakis GN. Differential effects of IL-15 on the generation, maintenance and cytotoxic potential of adaptive cellular responses induced by DNA vaccination. Vaccine 2015; 33:1188-96. [PMID: 25559187 DOI: 10.1016/j.vaccine.2014.12.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/24/2014] [Accepted: 12/18/2014] [Indexed: 11/30/2022]
Abstract
IL-15 is an important cytokine for the regulation of lymphocyte homeostasis. However, the role of IL-15 in the generation, maintenance and cytotoxic potential of antigen specific T cells is not fully understood. Because the route of antigenic delivery and the vaccine modality could influence the IL-15 requirement for mounting and preserving cytotoxic T cell responses, we have investigated the immunogenicity of DNA-based vaccines in IL-15 KO mice. DNA vaccination with SIV Gag induced antigen-specific CD4(+) and CD8(+) T cells in the absence of IL-15. However, the absolute number of antigen-specific CD8(+) T cells was decreased in IL-15 KO mice compared to WT animals, suggesting that IL-15 is important for the generation of maximal number of antigen-specific CD8(+) T cells. Interestingly, antigen-specific memory CD8 cells could be efficiently boosted 8 months after the final vaccination in both WT and KO strains of mice, suggesting that the maintenance of antigen-specific long-term memory T cells induced by DNA vaccination is comparable in the absence and presence of IL-15. Importantly, boosting by DNA 8-months after vaccination revealed severely reduced granzyme B content in CD8(+) T cells of IL-15 KO mice compared to WT mice. This suggests that the cytotoxic potential of the long-term memory CD8(+) T cells is impaired. These results suggest that IL-15 is not essential for the generation and maintenance of adaptive cellular responses upon DNA vaccination, but it is critical for the preservation of maximal numbers and for the activity of cytotoxic CD8(+) T cells.
Collapse
Affiliation(s)
- Jinyao Li
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, United States
| | - Antonio Valentin
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, United States.
| | - Sinnie Ng
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, United States
| | - Rachel Kelly Beach
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, United States; Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, United States
| | - Candido Alicea
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, United States
| | - Cristina Bergamaschi
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, United States
| | - Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, United States
| | - George N Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, United States.
| |
Collapse
|
237
|
Chang JT, Wherry EJ, Goldrath AW. Molecular regulation of effector and memory T cell differentiation. Nat Immunol 2014; 15:1104-15. [PMID: 25396352 PMCID: PMC4386685 DOI: 10.1038/ni.3031] [Citation(s) in RCA: 433] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 10/14/2014] [Indexed: 02/07/2023]
Abstract
Immunological memory is a cardinal feature of adaptive immunity and an important goal of vaccination strategies. Here we highlight advances in the understanding of the diverse T lymphocyte subsets that provide acute and long-term protection from infection. These include new insights into the transcription factors, and the upstream 'pioneering' factors that regulate their accessibility to key sites of gene regulation, as well as metabolic regulators that contribute to the differentiation of effector and memory subsets; ontogeny and defining characteristics of tissue-resident memory lymphocytes; and origins of the remarkable heterogeneity exhibited by activated T cells. Collectively, these findings underscore progress in delineating the underlying pathways that control diversification in T cell responses but also reveal gaps in the knowledge, as well as the challenges that arise in the application of this knowledge to rationally elicit desired T cell responses through vaccination and immunotherapy.
Collapse
Affiliation(s)
- John T Chang
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - E John Wherry
- 1] Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA. [2] Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ananda W Goldrath
- Division of Biological Sciences, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
238
|
Andersson KME, Svensson MND, Erlandsson MC, Jonsson IM, Bokarewa MI. Down-regulation of survivin alleviates experimental arthritis. J Leukoc Biol 2014; 97:135-45. [PMID: 25381389 DOI: 10.1189/jlb.3a0714-317r] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Survivin is a proto-oncogene that regulates cell division and apoptosis. It is a molecular marker of cancer. Recently, survivin has emerged as a feature of RA, associated with severe joint damage and poor treatment response. The present study examined if inhibition of survivin affects experimental arthritis, which was induced in mBSA-immunized mice by an injection of mBSA in the knee joint or developed spontaneously in collagen type II-immunized mice. The inhibition of survivin transcription by a lentivirus shRNA construct alleviated joint inflammation and reduced bone damage. The inhibition of survivin reduced the levels of metalloproteinases, β-catenin, and vimentin, limiting the invasive capacity of synovia, while no inhibition of osteoclastogenesis could be found. The inhibition of survivin led to a p53-independent reduction of T cell proliferation and favored the transcription and activity of Blimp-1, which limited IL-2 production and facilitated formation of regulatory Foxp3(+)CD4(+) and effector CD8(+) T cells. The study shows that the inhibition of survivin is sufficient to reduce joint inflammation and bone damage in preclinical models of arthritis. Antiarthritic effects of survivin inhibition are related to p53-independent control of lymphocyte proliferation.
Collapse
Affiliation(s)
- K M E Andersson
- Department of Rheumatology and Inflammation Research, Sahlgrenska University Hospital, University of Gothenburg, Sweden
| | - M N D Svensson
- Department of Rheumatology and Inflammation Research, Sahlgrenska University Hospital, University of Gothenburg, Sweden
| | - M C Erlandsson
- Department of Rheumatology and Inflammation Research, Sahlgrenska University Hospital, University of Gothenburg, Sweden
| | - I-M Jonsson
- Department of Rheumatology and Inflammation Research, Sahlgrenska University Hospital, University of Gothenburg, Sweden
| | - M I Bokarewa
- Department of Rheumatology and Inflammation Research, Sahlgrenska University Hospital, University of Gothenburg, Sweden
| |
Collapse
|
239
|
Russ BE, Olshanksy M, Smallwood HS, Li J, Denton AE, Prier JE, Stock AT, Croom HA, Cullen JG, Nguyen MLT, Rowe S, Olson MR, Finkelstein DB, Kelso A, Thomas PG, Speed TP, Rao S, Turner SJ. Distinct epigenetic signatures delineate transcriptional programs during virus-specific CD8(+) T cell differentiation. Immunity 2014; 41:853-65. [PMID: 25517617 DOI: 10.1016/j.immuni.2014.11.001] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 10/07/2014] [Indexed: 02/06/2023]
Abstract
The molecular mechanisms that regulate the rapid transcriptional changes that occur during cytotoxic T lymphocyte (CTL) proliferation and differentiation in response to infection are poorly understood. We have utilized ChIP-seq to assess histone H3 methylation dynamics within naive, effector, and memory virus-specific T cells isolated directly ex vivo after influenza A virus infection. Our results show that within naive T cells, codeposition of the permissive H3K4me3 and repressive H3K27me3 modifications is a signature of gene loci associated with gene transcription, replication, and cellular differentiation. Upon differentiation into effector and/or memory CTLs, the majority of these gene loci lose repressive H3K27me3 while retaining the permissive H3K4me3 modification. In contrast, immune-related effector gene promoters within naive T cells lacked the permissive H3K4me3 modification, with acquisition of this modification occurring upon differentiation into effector/memory CTLs. Thus, coordinate transcriptional regulation of CTL genes with related functions is achieved via distinct epigenetic mechanisms.
Collapse
Affiliation(s)
- Brendan E Russ
- Department of Microbiology and Immunology, The Doherty Institute at The University of Melbourne, Parkville, VIC 3010, Australia
| | - Moshe Olshanksy
- Department of Bioinformatics, Walter and Eliza Hall Institute, Parkville, VIC 3010, Australia
| | - Heather S Smallwood
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jasmine Li
- Department of Microbiology and Immunology, The Doherty Institute at The University of Melbourne, Parkville, VIC 3010, Australia
| | - Alice E Denton
- Department of Microbiology and Immunology, The Doherty Institute at The University of Melbourne, Parkville, VIC 3010, Australia
| | - Julia E Prier
- Department of Microbiology and Immunology, The Doherty Institute at The University of Melbourne, Parkville, VIC 3010, Australia
| | - Angus T Stock
- Department of Microbiology and Immunology, The Doherty Institute at The University of Melbourne, Parkville, VIC 3010, Australia
| | - Hayley A Croom
- Department of Microbiology and Immunology, The Doherty Institute at The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jolie G Cullen
- Department of Microbiology and Immunology, The Doherty Institute at The University of Melbourne, Parkville, VIC 3010, Australia
| | - Michelle L T Nguyen
- Department of Microbiology and Immunology, The Doherty Institute at The University of Melbourne, Parkville, VIC 3010, Australia
| | - Stephanie Rowe
- Department of Microbiology and Immunology, The Doherty Institute at The University of Melbourne, Parkville, VIC 3010, Australia
| | - Matthew R Olson
- Department of Microbiology and Immunology, The Doherty Institute at The University of Melbourne, Parkville, VIC 3010, Australia
| | - David B Finkelstein
- Hartwell Centre for Bioinformatics and Biotechnology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Anne Kelso
- Department of Microbiology and Immunology, The Doherty Institute at The University of Melbourne, Parkville, VIC 3010, Australia; WHO Collaborating Centre for Reference and Research on Influenza, The Doherty Institute at the University of Melbourne, Parkville, VIC 3010, Australia
| | - Paul G Thomas
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Terry P Speed
- Department of Bioinformatics, Walter and Eliza Hall Institute, Parkville, VIC 3010, Australia
| | - Sudha Rao
- Department of Molecular and Cellular Biology, Canberra University, Canberra, ACT 2000, Australia
| | - Stephen J Turner
- Department of Microbiology and Immunology, The Doherty Institute at The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
240
|
Lin R, Chen L, Chen G, Hu C, Jiang S, Sevilla J, Wan Y, Sampson JH, Zhu B, Li QJ. Targeting miR-23a in CD8+ cytotoxic T lymphocytes prevents tumor-dependent immunosuppression. J Clin Invest 2014; 124:5352-67. [PMID: 25347474 DOI: 10.1172/jci76561] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 09/11/2014] [Indexed: 12/12/2022] Open
Abstract
CD8(+) cytotoxic T lymphocytes (CTLs) have potent antitumor activity and therefore are leading candidates for use in tumor immunotherapy. The application of CTLs for clinical use has been limited by the susceptibility of ex vivo-expanded CTLs to become dysfunctional in response to immunosuppressive microenvironments. Here, we developed a microRNA-targeting (miRNA-targeting) approach that augments CTL cytotoxicity and preserves immunocompetence. Specifically, we screened for miRNAs that modulate cytotoxicity and identified miR-23a as a strong functional repressor of the transcription factor BLIMP-1, which promotes CTL cytotoxicity and effector cell differentiation. In a cohort of advanced lung cancer patients, miR-23a was upregulated in tumor-infiltrating CTLs, and expression correlated with impaired antitumor potential of patient CTLs. We determined that tumor-derived TGF-β directly suppresses CTL immune function by elevating miR-23a and downregulating BLIMP-1. Functional blocking of miR-23a in human CTLs enhanced granzyme B expression, and in mice with established tumors, immunotherapy with just a small number of tumor-specific CTLs in which miR-23a was inhibited robustly hindered tumor progression. Together, our findings provide a miRNA-based strategy that subverts the immunosuppression of CTLs that is often observed during adoptive cell transfer tumor immunotherapy and identify a TGF-β-mediated tumor immune-evasion pathway.
Collapse
|
241
|
Backer RA, Helbig C, Gentek R, Kent A, Laidlaw BJ, Dominguez CX, de Souza YS, van Trierum SE, van Beek R, Rimmelzwaan GF, ten Brinke A, Willemsen AM, van Kampen AHC, Kaech SM, Blander JM, van Gisbergen K, Amsen D. A central role for Notch in effector CD8(+) T cell differentiation. Nat Immunol 2014; 15:1143-51. [PMID: 25344724 PMCID: PMC4232996 DOI: 10.1038/ni.3027] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/03/2014] [Indexed: 12/14/2022]
Abstract
Activated CD8+ T cells choose between terminal effector cell (TEC) or memory precursor cell (MPC) fates. We show that Notch controls this choice. Notch promoted differentiation of immediately protective TECs and was correspondingly required for clearance of an acute influenza virus infection. Notch activated a major portion of the TEC-specific gene expression program and suppressed the MPC-specific program. Expression of Notch receptors was induced on naïve CD8+ T cells by inflammatory mediators and interleukin 2 (IL-2) via mTOR and T-bet dependent pathways. These pathways were subsequently amplified downstream of Notch, creating a positive feedback loop. Notch thus functions as a central hub where information from different sources converges to match effector T cell differentiation to the demands of the infection.
Collapse
Affiliation(s)
- Ronald A Backer
- 1] Department of Cell Biology and Histology, Academic Medical Center, Amsterdam, the Netherlands. [2] Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, the Netherlands
| | - Christina Helbig
- 1] Department of Cell Biology and Histology, Academic Medical Center, Amsterdam, the Netherlands. [2] Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, the Netherlands
| | - Rebecca Gentek
- Department of Cell Biology and Histology, Academic Medical Center, Amsterdam, the Netherlands
| | - Andrew Kent
- The Icahn School of Medicine at Mount Sinai, Immunology Institute and Tisch Cancer Institute, Department of Medicine, New York, New York, USA
| | - Brian J Laidlaw
- Department of Immunobiology and Howard Hughes Medical Institute, Yale University, School of Medicine, New Haven, Connecticut, USA
| | - Claudia X Dominguez
- Department of Immunobiology and Howard Hughes Medical Institute, Yale University, School of Medicine, New Haven, Connecticut, USA
| | - Yevan S de Souza
- Department of Cell Biology and Histology, Academic Medical Center, Amsterdam, the Netherlands
| | - Stella E van Trierum
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands; Viroclinics Biosciences BV, Rotterdam, the Netherlands
| | - Ruud van Beek
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands; Viroclinics Biosciences BV, Rotterdam, the Netherlands
| | - Guus F Rimmelzwaan
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands; Viroclinics Biosciences BV, Rotterdam, the Netherlands
| | - Anja ten Brinke
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam, the Netherlands
| | - A Marcel Willemsen
- Bioinformatics Laboratory, Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, Amsterdam, the Netherlands
| | - Antoine H C van Kampen
- Bioinformatics Laboratory, Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, Amsterdam, the Netherlands
| | - Susan M Kaech
- Department of Immunobiology and Howard Hughes Medical Institute, Yale University, School of Medicine, New Haven, Connecticut, USA
| | - J Magarian Blander
- The Icahn School of Medicine at Mount Sinai, Immunology Institute and Tisch Cancer Institute, Department of Medicine, New York, New York, USA
| | - Klaas van Gisbergen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, the Netherlands
| | - Derk Amsen
- 1] Department of Cell Biology and Histology, Academic Medical Center, Amsterdam, the Netherlands. [2] Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, the Netherlands
| |
Collapse
|
242
|
Oestreich KJ, Read KA, Gilbertson SE, Hough KP, McDonald PW, Krishnamoorthy V, Weinmann AS. Bcl-6 directly represses the gene program of the glycolysis pathway. Nat Immunol 2014; 15:957-64. [PMID: 25194422 PMCID: PMC4226759 DOI: 10.1038/ni.2985] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/05/2014] [Indexed: 12/11/2022]
Abstract
Despite the increasing knowledge of the molecular events that induce the glycolysis pathway in effector T cells, very little is known about the transcriptional mechanisms that dampen the glycolysis program in quiescent cell populations such as memory T cells. Here we found that the transcription factor Bcl-6 directly repressed genes encoding molecules involved in the glycolysis pathway, including Slc2a1, Slc2a3, Pkm and Hk2, in type 1 helper T cells (TH1 cells) exposed to low concentrations of interleukin 2 (IL-2). Thus, Bcl-6 had a role opposing the IL-2-sensitive glycolytic transcriptional program that the transcription factors c-Myc and HIF-1α promote in effector T cells. Additionally, the TH1 lineage-specifying factor T-bet functionally antagonized the Bcl-6-dependent repression of genes encoding molecules in the glycolysis pathway, which links the molecular balance of these two factors to regulation of the metabolic gene program.
Collapse
Affiliation(s)
- Kenneth J Oestreich
- 1] Department of Immunology, University of Washington, Seattle, Washington, USA. [2] Virginia Tech Carilion Research Institute, Roanoke, Virginia, USA. [3] Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Kaitlin A Read
- Virginia Tech Carilion Research Institute, Roanoke, Virginia, USA
| | - Sarah E Gilbertson
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Kenneth P Hough
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Paul W McDonald
- Virginia Tech Carilion Research Institute, Roanoke, Virginia, USA
| | - Veena Krishnamoorthy
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Amy S Weinmann
- 1] Department of Immunology, University of Washington, Seattle, Washington, USA. [2] Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
243
|
Shih HY, Sciumè G, Poholek AC, Vahedi G, Hirahara K, Villarino AV, Bonelli M, Bosselut R, Kanno Y, Muljo SA, O'Shea JJ. Transcriptional and epigenetic networks of helper T and innate lymphoid cells. Immunol Rev 2014; 261:23-49. [PMID: 25123275 PMCID: PMC4321863 DOI: 10.1111/imr.12208] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The discovery of the specification of CD4(+) helper T cells to discrete effector 'lineages' represented a watershed event in conceptualizing mechanisms of host defense and immunoregulation. However, our appreciation for the actual complexity of helper T-cell subsets continues unabated. Just as the Sami language of Scandinavia has 1000 different words for reindeer, immunologists recognize the range of fates available for a CD4(+) T cell is numerous and may be underestimated. Added to the crowded scene for helper T-cell subsets is the continuously growing family of innate lymphoid cells (ILCs), endowed with common effector responses and the previously defined 'master regulators' for CD4(+) helper T-cell subsets are also shared by ILC subsets. Within the context of this extraordinary complexity are concomitant advances in the understanding of transcriptomes and epigenomes. So what do terms like 'lineage commitment' and helper T-cell 'specification' mean in the early 21st century? How do we put all of this together in a coherent conceptual framework? It would be arrogant to assume that we have a sophisticated enough understanding to seriously answer these questions. Instead, we review the current status of the flexibility of helper T-cell responses in relation to their genetic regulatory networks and epigenetic landscapes. Recent data have provided major surprises as to what master regulators can or cannot do, how they interact with other transcription factors and impact global genome-wide changes, and how all these factors come together to influence helper cell function.
Collapse
Affiliation(s)
- Han-Yu Shih
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
244
|
Bim controls IL-15 availability and limits engagement of multiple BH3-only proteins. Cell Death Differ 2014; 22:174-84. [PMID: 25124553 DOI: 10.1038/cdd.2014.118] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 05/27/2013] [Accepted: 07/10/2014] [Indexed: 01/16/2023] Open
Abstract
During the effector CD8+ T-cell response, transcriptional differentiation programs are engaged that promote effector T cells with varying memory potential. Although these differentiation programs have been used to explain which cells die as effectors and which cells survive and become memory cells, it is unclear if the lack of cell death enhances memory. Here, we investigated effector CD8+ T-cell fate in mice whose death program has been largely disabled because of the loss of Bim. Interestingly, the absence of Bim resulted in a significant enhancement of effector CD8+ T cells with more memory potential. Bim-driven control of memory T-cell development required T-cell-specific, but not dendritic cell-specific, expression of Bim. Both total and T-cell-specific loss of Bim promoted skewing toward memory precursors, by enhancing the survival of memory precursors, and limiting the availability of IL-15. Decreased IL-15 availability in Bim-deficient mice facilitated the elimination of cells with less memory potential via the additional pro-apoptotic molecules Noxa and Puma. Combined, these data show that Bim controls memory development by limiting the survival of pre-memory effector cells. Further, by preventing the consumption of IL-15, Bim limits the role of Noxa and Puma in causing the death of effector cells with less memory potential.
Collapse
|
245
|
HIV-1 Tat affects the programming and functionality of human CD8⁺ T cells by modulating the expression of T-box transcription factors. AIDS 2014; 28:1729-38. [PMID: 24841128 DOI: 10.1097/qad.0000000000000315] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE HIV infection is characterized by several immune dysfunctions of both CD8⁺ and CD4⁺ T cells as hyperactivation, impairment of functionality and expansion of memory T cells. CD8⁺ T-cell dysfunctions have been associated with increased expression of T-bet, Eomesdermin and pro-inflammatory cytokines, and with down-regulation of CD127. The HIV-1 trans-activator of transcription (Tat) protein, which is released by infected cells and detected in tissues of HIV-positive individuals, is known to contribute to the dysregulation of CD4⁺ T cells; however, its effects on CD8⁺ T cells have not been investigated. Thus, in this study, we sought to address whether Tat may affect CD8⁺ T-cell functionality and programming. METHODS CD8⁺ T cells were activated by T-cell receptor engagement in the presence or absence of Tat. Cytokine production, killing capacity, surface phenotype and expression of transcription factors important for T-cell programming were evaluated. RESULTS Tat favors the secretion of interleukin-2, interferon-γ and granzyme B in CD8⁺ T cells. Behind this functional modulation we observed that Tat increases the expression of T-bet, Eomesdermin, Blimp-1, Bcl-6 and Bcl-2 in activated but not in unstimulated CD8⁺ T lymphocytes. This effect is associated with the down-regulation of CD127 and the up-regulation of CD27. CONCLUSION Tat deeply alters the programming and functionality of CD8⁺ T lymphocytes.
Collapse
|
246
|
Zaunders JJ, Lévy Y, Seddiki N. Exploiting differential expression of the IL-7 receptor on memory T cells to modulate immune responses. Cytokine Growth Factor Rev 2014; 25:391-401. [PMID: 25130296 DOI: 10.1016/j.cytogfr.2014.07.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Interleukin-7 is a non-redundant growth, differentiation and survival factor for human T lymphocytes. Most circulating, mature T cells express the receptor for IL-7, but not all. Importantly, CD4 Tregs express greatly reduced levels of IL-7R compared to conventional CD4 T cells, presenting an opportunity to selectively target the latter cells with either more IL-7 to boost responses, or to block IL-7 signalling to limit responses. This article reviews what is known about regulation of IL-7R expression, and recent progress in therapeutic approaches related to IL-7 and its receptor.
Collapse
Affiliation(s)
- John J Zaunders
- Centre for Applied Medical Research, St. Vincent's Hospital, Australia; Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Yves Lévy
- Inserm, U955, Equipe 16, Créteil, 94000, France; Université Paris Est, Faculté de médecine, Créteil, 94000, France; Vaccine Research Institute (VRI), Créteil, 94000, France; AP-HP, Hôpital H. Mondor-A. Chenevier, Service d'immunologie Clinique et maladies infectieuses, Créteil, 94000, France
| | - Nabila Seddiki
- Inserm, U955, Equipe 16, Créteil, 94000, France; Université Paris Est, Faculté de médecine, Créteil, 94000, France; Vaccine Research Institute (VRI), Créteil, 94000, France.
| |
Collapse
|
247
|
Hu G, Chen J. A genome-wide regulatory network identifies key transcription factors for memory CD8⁺ T-cell development. Nat Commun 2014; 4:2830. [PMID: 24335726 DOI: 10.1038/ncomms3830] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 10/28/2013] [Indexed: 01/02/2023] Open
Abstract
Memory CD8⁺ T-cell development is defined by the expression of a specific set of memory signature genes. Despite recent progress, many components of the transcriptional control of memory CD8⁺ T-cell development are still unknown. To identify transcription factors and their interactions in memory CD8⁺ T-cell development, we construct a genome-wide regulatory network and apply it to identify key transcription factors that regulate memory signature genes. Most of the known transcription factors having a role in memory CD8⁺ T-cell development are rediscovered and about a dozen new ones are also identified. Sox4, Bhlhe40, Bach2 and Runx2 are experimentally verified, and Bach2 is further shown to promote both development and recall proliferation of memory CD8⁺ T cells through Prdm1 and Id3. Gene perturbation study identifies the interactions between the transcription factors, with Sox4 positioned as a hub. The identified transcription factors and insights into their interactions should facilitate further dissection of molecular mechanisms underlying memory CD8⁺ T-cell development.
Collapse
Affiliation(s)
- Guangan Hu
- David H. Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jianzhu Chen
- David H. Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
248
|
Boulet S, Daudelin JF, Labrecque N. IL-2 induction of Blimp-1 is a key in vivo signal for CD8+ short-lived effector T cell differentiation. THE JOURNAL OF IMMUNOLOGY 2014; 193:1847-54. [PMID: 25015830 DOI: 10.4049/jimmunol.1302365] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During infection or vaccination, only a small proportion of CD8(+) T cells differentiate into memory cells. The mechanisms underlying the differentiation of CD8(+) T cells into short-lived effector cells (SLECs) or memory precursor effector cells are poorly defined. It was recently shown in infectious models that the transcriptional repressor B lymphocyte-induced maturation protein 1 (Blimp-1) enhances the formation of SLECs. The factors controlling Blimp-1 expression leading to the in vivo formation of SLECs are still not known. However, it has been shown that cytokines such as IL-2 induce Blimp-1 expression in vitro. In this study, we took advantage of the low-inflammation model of dendritic cell immunization to study the role of the IL-2/Blimp-1 axis in SLEC differentiation as well as the importance of Blimp-1 expression in memory precursor effector cells for proper CD8(+) memory generation. Our results show that Blimp-1 deficiency affects effector differentiation and function in the absence of inflammation. Unexpectedly, memory generation was not affected in Blimp-1-deficient OT-I cells responding to vaccination. In addition, modulation of the bioavailability of IL-2 by injection either of a blocking Ab or of the cytokine, demonstrates a link between IL-2, Blimp-1 induction, and SLEC formation in wild-type cells. Conversely, injection of IL-2 had less effect on Blimp-1-deficient CD8(+) T cells, indicating that the effect of IL-2 on in vivo SLEC differentiation is mediated by Blimp-1. In conclusion, IL-2 induction of Blimp-1 expression is a key regulator of SLEC differentiation in vivo.
Collapse
Affiliation(s)
- Salix Boulet
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec H1T 2M4, Canada
| | | | - Nathalie Labrecque
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec H1T 2M4, Canada; Department of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada; and Department of Microbiology, Immunology and Infectiology, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
249
|
Provine NM, Larocca RA, Penaloza-MacMaster P, Borducchi EN, McNally A, Parenteau LR, Kaufman DR, Barouch DH. Longitudinal requirement for CD4+ T cell help for adenovirus vector-elicited CD8+ T cell responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:5214-25. [PMID: 24778441 PMCID: PMC4025612 DOI: 10.4049/jimmunol.1302806] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 03/26/2014] [Indexed: 11/19/2022]
Abstract
Despite the widespread use of replication-incompetent recombinant adenovirus (Ad) vectors as candidate vaccine platforms, the mechanism by which these vectors elicit CD8(+) T cell responses remains poorly understood. Our data demonstrate that induction and maintenance of CD8(+) T cell responses by Ad vector immunization is longitudinally dependent on CD4(+) T cell help for a prolonged period. Depletion of CD4(+) T cells in wild type mice within the first 8 d following Ad immunization resulted in dramatically reduced induction of Ag-specific CD8(+) T cells, decreased T-bet and eomesodermin expression, impaired KLRG1(+) effector differentiation, and atypical expression of the memory markers CD127, CD27, and CD62L. Moreover, these CD8(+) T cells failed to protect against a lethal recombinant Listeria monocytogenes challenge. Depletion of CD4(+) T cells between weeks 1 and 4 following immunization resulted in increased contraction of memory CD8(+) T cells. These data demonstrate a prolonged temporal requirement for CD4(+) T cell help for vaccine-elicited CD8(+) T cell responses in mice. These findings have important implications in the design of vaccines aimed at eliciting CD8(+) T cell responses and may provide insight into the impaired immunogenicity of vaccines in the context of AIDS and other CD4(+) T cell immune deficiencies.
Collapse
Affiliation(s)
- Nicholas M Provine
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215; and
| | - Rafael A Larocca
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215; and
| | - Pablo Penaloza-MacMaster
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215; and
| | - Erica N Borducchi
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215; and
| | - Anna McNally
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215; and
| | - Lily R Parenteau
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215; and
| | - David R Kaufman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215; and
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215; and Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139
| |
Collapse
|
250
|
Heterogeneity in the Differentiation and Function of CD8+ T Cells. Arch Immunol Ther Exp (Warsz) 2014; 62:449-58. [DOI: 10.1007/s00005-014-0293-y] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 04/24/2014] [Indexed: 01/01/2023]
|